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Abstract

The applicability of machine learning techniques to the landscape of Calabi-Yau

manifolds is examined. A review of the necessary mathematics is undertaken fol-

lowed by a review of the Calabi-Yau manifold and its role in physics. The complete

intersection Calabi-Yau manifold is explained and a machine learning approach is

motivated. A working introduction to machine learning, with a focus on neural net-

works, is provided. Neural networks are then employed to learn the Hodge numbers

of complex dimension 4 complete intersection Calabi-Yau manifolds. After training

the networks on 10% of the data, they are able to predict h1,1, h2,1, h3,1, and h2,2

correctly with accuracies 0.82, 0.63, 0.16, and 0.04 respectively. The predicted dis-

tributions of Hodge numbers are also analysed and training with different fractions

of the data is tested. The results suggest that machine learning may be applica-

ble to model building where it can be utilised to identify promising regions in the

landscape of string theory vacua.
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Introduction

String theory grew from a theory of the strong interaction in the 1960s [53] to the leading

candidate for unification of the geometric ideas of general relativity with the quantum field

theory of the Standard Model. The first formulation with a string as the fundamental

object was bosonic string theory. This requires a 26-dimensional (D = 26) space for

consistency and is plagued with a tachyon and no fermionic content. The superstring

revolution in the 1980s led to five theories of a supersymmetric string: type I, type IIA,

type IIB, and heterotic E8×E8 and SO(32). They incorporate fermions and, as dictated

by anomaly cancellation, are consistent in D = 10 spacetime. These superstring theories

were all later found to be limits of the same 11-dimensional theory called M-theory [31].

Another notable development in string theory has been F-theory [51]. This offers a 12-

dimensional description of type IIB string theory that gives a geometric reason for some

of the peculiarities present in type IIB.

To make contact with the physical world we must address the extra 6 dimensions of

the superstring theories. Doing this would permit string theory to give a phenomenologi-

cally realistic and mathematically consistent description of nature. This is typically done

by supposing that the 10 dimensions of spacetime is a product of a familiar 4 dimensional

manifold and some compact 6 dimensional manifold. In the spirit of Kaluza-Klein theory,

the dimensions associated with the 6-manifold are made small in a process called com-

pactification. The resulting compactified superstring theory can then be consistent with

experimental evidence for D = 4. In order for it to also produce a supersymmetric gauge

theory with a realistic particle spectrum, the 6-manifold must be a Calabi-Yau manifold.

Through this realisation, the study of Calabi-Yau manifolds became an integral part of

model building in string theory.

A Calabi-Yau manifold is defined as a Ricci-flat Kähler manifold. For now, this can
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just be thought of as a complex manifold obeying some specific conditions. We will often

refer to a Calabi-Yau manifold of n complex dimensions as a Calabi-Yau nfold or simply

as CYn. The threefold allows superstring theories to make contact with experimental

truths. The fourfold is also of interest as a certain subset of them can be used in F-

theory compactifications in a similar way to how the threefold is used. The study and

cataloguing of the three and fourfold is of great importance as the topological properties

of the compactified manifold dictates certain properties of the resulting D = 4 theory. We

will refer to the collection of topologically distinct Calabi-Yau manifolds as the Calabi-

Yau landscape. It forms part of the more general landscape of string theory vacua. This

is the collection of all D = 4 Lorentz symmetric effective field theories that can be found

by compactifications of string theories. In this way, string theory offers to the theoretical

physicist the momentous task of understanding and selecting from the landscape of string

theory vacua in return for the quantisation of gravity. The search for a vacuum that

reproduces the particle physics and cosmology of our universe is known as the vacuum

selection problem and is yet to be solved. A complete classification of the Calabi-Yau

landscape would aide in the search for realistic vacua by allowing favourable Calabi-Yau

manifolds to be identified.

It is interesting to view the challenge of understanding the Calabi-Yau landscape as a

big data problem. Viewed through this lens, a machine learning approach is compelling.

Taking a machine learning approach means using computer algorithms that will teach

themselves to learn complex patterns in data without needing any specific programming.

The Calabi-Yau landscape is primed for the implementation of these techniques as decades

of study means there exists large data sets of inequivalent manifolds. The use of machine

learning in the study of string vacua has recently seen substantial development with

many techniques and algorithms being applied. To name a few, artificial neural networks

(NNs) have been applied to the Hodge numbers of the Calabi-Yau threefolds [9], genetic

algorithms used in the search for phenomenologically viable string vacua [1], and linear

regression has been used to generate a previously proven conjecture regarding the gauge

group rank in F-theory compactifications [16]. Much of this work is exploratory as the

role of machine learning in the vacuum selection problem and string theory in general

is yet to be properly established. It is certainly an avenue worth exploring as learning
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landscape data may reveal unseen patterns and help to generate new data.

This work focuses on one aspect of the wider aim of developing machine learning tech-

niques in string theory: using NNs to learn complete intersection Calabi-Yau manifolds

(CICYs). The first part of this work is to understand what a CICY and a NN is. Under-

standing the CICY will take up a large portion of the dissertation as we must first build

foundations in complex geometry and then define the Calabi-Yau manifold. The second

part of this work will be a study of how NNs can be applied to learn topological data of

CICY fourfolds (CICY4s). We will attempt to construct NNs that can predict the Hodge

numbers (topological invariants) of unseen CICY4s, as opposed to seen CICY4s which are

used to teach the NNs patterns in the data, and document the results. This has not yet

been done in the literature1 but is a natural extension to the work in [9, 28]. The study

does not claim to be definitive but is undertaken to explore the applicability of machine

learning to CICY4s and to give an original example of how it can contribute to string

theory in general.

In § 1, the reader is made familiar with the basic concepts from complex geometry

needed to understand the Calabi-Yau manifold and the topological invariants we will

encounter in later sections. This section is structured around taking the reader from real

to complex manifolds, and then to Kähler manifolds. Detours are made into holonomy,

Hodge theory, holomorphic vector bundles and Chern classes as these are all necessary

tools for later sections. The complex projective space (CPN) is frequently used as an

example for various concepts as it is the space CICYs are built in.

With the review of complex geometry complete, § 2 is on the Calabi-Yau manifold.

Four equivalent conditions are used to define the Calabi-Yau manifold and their equiva-

lence is explained. To motivate the study of Calabi-Yau manifolds, the initial argument

for why the compactified dimensions of heterotic string theory must be Calabi-Yau are

outlined. Lastly, the Hodge numbers of a Calabi-Yau manifold are examined thoroughly

with particular attention to the fourfold.

In § 3, we introduce the complete intersection construction of Calabi-Yau manifolds,

1A preprint titled ’Machine Learning Calabi=Yau Four-folds’ [29] became available a few weeks before

submission of this dissertation. At this time, the majority of the work for this dissertation was complete.

Encouragingly, the results of the preprint are in agreement with the results found in this work.
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again with a focus on fourfolds. An understanding is built by successive generalisation

of an initially simple construction until we reach the most general CICY. After this we

are ready to look at the Calabi-Yau landscape. The data available from the complete

intersection construction is described and the size of the landscape is gauged by briefly

outlining an additional method for constructing Calabi-Yau manifolds that uses reflexive

polytopes. With some knowledge of the Calabi-Yau landscape, we motivate the applica-

tion of machine learning techniques and state the goals of such an application.

Section 4 describes how NNs can be applied to learn data. The aspects covered are

selected to give the reader an understanding of the techniques used in the study that is

the focus of the next section. The concept of a neuron is introduced and we describe

how multiple neurons can be connected to form a basic NN. The process of training a

NN to a particular data set is explained using a typical network as an example. We

then describe the wider process of constructing an optimal NN and explain some common

techniques to do this. It should be noted that although NNs are a very interesting part of

machine learning, they are a small corner in the wider field. In addition to this, the section

only introduces the most basic NN architectures, completely ignoring convolutional NNs,

regularisation techniques, data augmentation, and many more of the advanced topics that

are crucial in some of the cutting edge NNs being developed today. For this reason, § 4

should be treated as a working introduction to machine learning and an invitation to read

further.

In § 5 the dissertation transitions into a study of the ability of NNs to predict Hodge

numbers of unseen CICY4s. First, the results of relevant publications are summarised

and the aims of the study are outlined. The CICY4 data set being used is then examined

and the process of creating and training the NNs is documented. We then present a

comprehensive analysis of their performance in predicting Hodge numbers.
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1 Complex Geometry

To understand Calabi-Yau manifolds a firm grasp of complex geometry is required. This

section provides a brief overview of the mathematics needed to understand the Calabi-

Yau manifold and its complete intersection construction. The reader is assumed to have

a good grasp of real manifolds, Riemannian geometry, differential forms, and de Rham

cohomology. A recap of these topics can be found in [44]. In an effort to keep this section

brief, familiarity with fibre bundles has also been assumed. It is important that the reader

has at least a working knowledge of vector bundles and the tangent bundle. An excellent

introduction to these topics can be found in Chapter 5 of [35]. The following is based off

[44, 12, 52, 8, 41, 23].

1.1 Complex Manifolds

The definitions of complex and real manifolds appear quite similar but have one crucial

difference: the transition functions of a complex manifold must be holomorphic.

Definition 1.1.1. A function f : Cm → C is holomorphic if f = f1 + if2 satisfies the

Cauchy-Riemann relations

∂f1

∂xµ
=
∂f2

∂yµ
,

∂f2

∂xµ
= −∂f1

∂yµ
, (1.1.1)

for each zµ = xµ + iyµ.

Definition 1.1.2. M is a complex manifold if:

(i) M is a topological space.

(ii) M is endowed with a family of pairs {(Ui, ϕi)}.

(iii) {Ui} is a family of open sets which covers M . The map ϕi is a homeomorphism

from Ui to an open subset U of Cm.
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(iv) Given Ui and Uj such that Ui ∩ Uj 6= ∅, the map ψji = ϕj ◦ ϕ−1
i from ϕi(Ui ∩ Uj) to

ϕj(Ui ∩ Uj) is holomorphic.

The transition functions fij of a complex manifold relate the coordinates on overlap-

ping coordinate patches Ui and Uj by

zµi = fµij(zj), (1.1.2)

where zµ are complex coordinates. The condition that fij is holomorphic amounts to zµi

being functions of zµj but not their complex conjugates zµj . The holomorphic condition

is more restrictive than the C∞ condition of real manifolds. All m-dimensional complex

manifolds are also 2m-dimensional real manifolds but not vice versa.

Remark. For real coordinates we use Latin indices and for complex coordinates we use

Greek indices. We will use a bar over the index to denote the complex conjugate coor-

dinate so that zµ = zµ. Any complex manifold with 2m real coordinates has m complex

coordinates zµ each with a complex conjugate zµ.

Using the holomorphic function we can define a holomorphic map.

Definition 1.1.3. Let f : M → N with M and N being complex manifolds of complex

dimension m and n respectively. Take a point p in a chart (U,ϕ) of M and let (V, ψ) be a

chart of N such that f(p) ∈ V . Assign coordinates {zµ} = ϕ(p) and {wµ} = ψ(f(p)) so

that there is a map ψ ◦ f ◦ϕ−1 : Cm → Cn. If each function wν is a holomorphic function

of zµ, then f is called a holomorphic map. If the inverse map f−1 : N →M exists and is

also holomorphic we call f biholomorphic and say that M is biholomorphic to N .

In going from a 2m-dimensional real manifold to an m-dimensional complex manifold

we have a notion of complexification. The complexified tangent space at a point p on a

manifold is simply TpM
C = TpM ⊗ C with elements z = x + iy for x, y ∈ TpM . The

cotangent space T ∗pM
C can also be complexified in this way and will remain dual to the

complexified tangent space. Taking the basis of TpM and T ∗pM for a manifold with m

complex dimensions to be {
∂

∂x1
, . . . ,

∂

∂xm
;
∂

∂y1
, . . .

∂

∂ym

}
, (1.1.3)

{dx1, . . . , dxm; dy1, . . . , dym} (1.1.4)
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respectively, we find a natural basis for TpM
C and T ∗pM

C formed by

∂

∂zµ
=

1

2

(
∂

∂xµ
− i ∂

∂yµ

)
,

∂

∂zµ
=

1

2

(
∂

∂xµ
+ i

∂

∂yµ

)
, (1.1.5)

dzµ = dxµ + idyµ, dzµ = dxµ − idyµ (1.1.6)

respectively, where µ and µ run from 1 to m.

We would like some way to recognise if a real manifold can be considered a complex

manifold. To enable this we introduce an alternative definition of a complex manifold via

complex structure. Denoting the tangent bundle with TM ,

Definition 1.1.4. A smooth tensor field J ∈ Γ(TM ⊗ T ∗M) is the almost complex

structure of a manifold M if it is an endomorphism J : TM → TM that obeys J2 = −I.

A manifold with an almost complex structure is called an almost comlpex manifold.

At a given point on the manifold the almost complex structure acts on the real basis

as

Jp

(
∂

∂xa

)
=

∂

∂ya
, Jp

(
∂

∂ya

)
= − ∂

∂xa
. (1.1.7)

So that in this basis it can be written in matrix form as

Jp =

 0 −Im

Im 0

 (1.1.8)

for a 2m-dimensional manifold. The almost complex structure is naturally extended to

TpM
C where we can use (1.1.5) to see that it acts on the basis of complex coordinates as

Jp

(
∂

∂zµ

)
= i

∂

∂zµ
, Jp

(
∂

∂zµ

)
= −i ∂

∂zµ
. (1.1.9)

So in this basis the almost complex structure can be expressed as

Jp = idzµ ⊗ ∂

∂zµ
− idzµ ⊗ ∂

∂zµ
. (1.1.10)

In components this takes the diagonal form

Jµp ν = iδµν , Jµp ν = −iδµν (1.1.11)

with all other components zero. We will refer to this as the canonical form of J .
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Given an almost complex manifold (M,J) and any single point p on M , one can always

find local coordinates zµ such that J takes the canonical form at the point p. The impor-

tant question is can we choose complex coordinates that put J in the canonical form for

the whole open set near p? Such coordinates are called local holomorphic coordinates and

if they exist we say that the almost complex structure is integrable. Drawing inspiration

from general relativity’s Riemann tensor, we attempt to answer this question by defining

a new tensor field from J and its derivatives called the Nijenhuis tensor

N c
ab = Jda(∂dJ

c
b − ∂bJ cd)− Jdb(∂dJ ca − ∂aJ cd). (1.1.12)

Note that the proof that this is a tensor can be reformulated by writing

Ñ c
ab = Jda(∇dJ

c
b −∇bJ

c
d)− Jdb(∇dJ

c
a −∇aJ

c
d), (1.1.13)

where ∇ are covariant derivatives, and showing that Ñ , which is manifestly a tensor,

is equal to N . This can be done fairly easily using J2 = −I and the definition of the

covariant derivative in general relativity.

The importance of the Nijenhuis tensor comes from the Newlander-Nirnberg theorem

(for a proof see [54]).

Theorem 1.1.1 (Newlander and Nirnberg). An almost complex structure J is inte-

grable if and only if its Nijenhuis tensor vanishes.

The importance of integrability comes from

Definition 1.1.5. For a real manifold M with an integrable almost complex structure J ,

(M,J) defines a complex manifold. An integrable almost complex structure is referred to

as a complex structure.

To see this, consider a manifold M covered with open sets U(α) that has an integrable

complex structure J . Since J is integrable, we can find a local holomorphic coordinate

system zµ(α) that puts it in its canonical form globally. This means the coordinates zµ(α)

and zµ(β) on the overlap U(α)∩U(β) must be related in a way that preserves J . To preserve

the diagonal nature of the canonical form, the coordinates on the overlap must be related

by holomorphic coordinate transformations zµ → z̃ν(zµ). Recalling that holomorphic
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transition functions mean that the manifold is complex, we confirm that (M,J) is a

complex manifold if J is integrable. Proof of the converse proceeds in a similar way.

Understanding that all complex manifolds are equipped with a complex structure

allows for a deeper analysis of the tangent space. Consider the two vectors Z = Zµ∂/∂zµ

and Z = Zµ∂/∂zµ. By acting on them with Jp we get JpZ = iZ and JpZ = −iZ

respectively i.e. Z and Z are eigenvectors of Jp with eigenvalue +1 and −1 respectively.

This tells us that TpM
C can be decomposed into two disjoint vector spaces as

TpM
C = TpM

+ ⊕ TpM−, (1.1.14)

where

TpM
± = {Z ∈ TpMC|JpZ = ±iZ}. (1.1.15)

Since this can be done at all points p on M , the decomposition extends to the full com-

plexified tangent bundle TMC. We refer to TM+ as the holomorphic tangent bundle and

TM− as the anti-holomorphic tangent bundle. The duals of these can be taken to give the

holomorphic and anti-holomorphic cotangent bundles. It is clear that TM+ and TM− are

related by complex conjugation and so isomorphic. Upon complexifying the tangent bun-

dle this isomorphism means we can choose to use only TM+ in place of the real tangent

bundle TM . Because of this we will often write TM in the context of complex manifolds

to mean the holomorphic tangent bundle.

Projection tensors can be defined as

P a
b =

1

2
(δab − iJab), Qa

b =
1

2
(δab + iJab) (1.1.16)

so that any Z ∈ TpMC can be decomposed as Z = Z+ +Z−, where Z± ∈ TpM±. We refer

to Z ∈ TpM
+ as a holomorphic vector and Z ∈ TpM

− as an anti-holomorphic vector.

Note that this tangent space decomposition occurs for almost complex as well as complex

manifolds.

1.1.1 Example: Complex Projective Space CPN

The complex projective space is an important family of complex manifolds as they facil-

itate a particular construction of Calabi-Yau manifolds. For this reason, it is important

that they are understood. We can think of CPN as the space of complex lines through
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the origin of CN+1. Consider CN+1\{0} which is characterised by the complex numbers

zµ, µ = 0, . . . , N+1 such that there is always at least one that is non-zero. These are often

called the homogeneous coordinates. CPN is then obtained by quotienting this space by

the equivalence relation

(z, . . . , zN+1) ∼ λ(z, . . . , zN+1), ∀λ ∈ C. (1.1.17)

We define the i-th inhomogeneous coordinates in a region where zi 6= 0 by

ξµ(i) =
zµ

zi
, (1.1.18)

which clearly obeys the equivalence relation. These define a coordinate system for the

region where zi = 0. They cover all of CPN and since ξi(i) = 1 they describe N independent

coordinates so that CPN has complex dimension N . Since the zµ are never all zero, we

can construct an atlas from these coordinate patches using the coordinates ξµ(i) with the

open subsets Ui := {zi 6= 0}.

Theorem 1.1.2. CPN is a complex manifold.

Proof. On the non-trivial intersection Ui ∩ Uj we have

ξµ(j) =
zµ

zj
=
zµ

zi
zi

zj
=
ξµ(i)
ξi(j)

(1.1.19)

which is holomorphic. This means that the transition functions are holomorphic and so

CPN is a complex manifold.

It should also be noted that CPN is compact [12].

1.1.2 Differential Forms

The complex structure of a complex manifold M allows for the construction of projection

tensors (1.1.16) which can be used to refine exterior calculus on real manifolds. The

projection tensors have a natural action on complex-valued 1-forms ω = ωadx
a that

induces a split

ω(1,0) = Pω = Pa
bωbdx

a, ω(0,1) = Qω = Qa
bωbdx

a (1.1.20)
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of the complex-valued 1-form into a (1, 0)-form and a (0, 1)-form. By the usual properties

of projectors we have

ω = ω(1,0) + ω(0,1). (1.1.21)

This extends to complex-valued k-forms to give the decomposition

Ωk(M)C =
⊕
r+s=k

Ω(r,s)(M), (1.1.22)

where Ωk(M)C denotes the space of complex-valued k-forms and Ω(r,s)(M) denotes the

space of (r, s)-forms that are obtained by the application of r of the P projectors and

s of the Q projectors to a complex-valued (r + s)-form. In terms of the k-th exterior

power of the complexified cotangent bundle, which the space of complex-valued k-forms

are sections of, the decomposition follows from (1.1.14)

k∧
T ∗MC =

⊕
r+s=k

r,s∧
T ∗M, (1.1.23)

where
∧r,s T ∗M =

∧r T ∗M+ ⊕
∧s T ∗M−. Sections of

∧r,s T ∗M compose the space of

(r, s)-forms. The result of the decomposition (1.1.22) is that any complex k-form can be

written as a sum of (r, s)-forms

ω =
∑
r+s=k

ω(r,s). (1.1.24)

We find that dzµ and dzµ of the basis (1.1.6) is a (1, 0)-form and a (0, 1)-form respec-

tively. This basis can then be used to write an (r, s)-form as a complex-valued differential

form with r holomorphic pieces and s anti-holomorphic pieces

ω =
1

r!s!
ωµ1...µrν1...νsdz

µ1 ∧ . . . ∧ dzµr ∧ dzν1 ∧ . . . ∧ dzνs . (1.1.25)

The way that the projection operators are applied to k-forms results in the components

of an (r, s)-form in the above basis being totally antisymmetric in µ and µ separately.

Notice that if ω ∈ Ω(r,s) then ω ∈ Ω(s,r) where the bar denotes complex conjugation.

The decomposition of differential forms this way occurs on almost complex and com-

plex manifolds. On a complex manifold we get some additional structure. The exterior

derivative on a complex manifold admits a simple decomposition into holomorphic and

anti-holomorphic directions as d = ∂ + ∂, where

∂ : Ω(r,s)(M)→ Ω(r+1,s)(M), ∂ : Ω(r,s)(M)→ Ω(r,s+1)(M) (1.1.26)
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are called Dolbeault operators. This decomposition of the exterior derivative is due to

the complex structure being constant and so only occurs on a complex manifold. The

nilpotency of the exterior derivative, d2 = 0, carries over to the Dolbeault operators,

∂2 = ∂2 = 0.

1.1.3 Dolbeault Cohomology

To probe the fundamental properties of a complex manifold we need to understand the

cohomology. The Dolbeault operators associated with complex manifolds allows for a

refinement of de Rham cohomology. We define Dolbeault cohomology for a complex

manifold M as follows:

Definition 1.1.6. The set of ∂-closed (r, s)-forms (ω ∈ Ω(r,s)(M) such that ∂ω = 0) on a

complex manifold M is called the (r, s)-cocycle and is denoted Z
(r,s)

∂
(M).

Definition 1.1.7. The set of ∂-exact (r, s)-forms (ω ∈ Ω(r,s)(M) such that ω = ∂η for

some η ∈ Ω(r,s−1)(M)) on a complex manifold M is called the (r, s)-coboundary and is

denoted B
(r,s)

∂
(M).

Definition 1.1.8. The (r, s)th ∂-cohomology group is the quotient space

H
(r,s)

∂
(M) = Z

(r,s)

∂
(M)/B

(r,s)

∂
(M). (1.1.27)

An element of a Dolbeault cohomology group [η] ∈ H(r,s)
∂(M) is an equivalence class of

∂-closed (r, s)-forms which differ from η by a ∂-exact form.

In analogy with the Betti numbers of de Rham cohomology, we have for Dolbeault

cohomology

Definition 1.1.9. The Hodge numbers are defined by hr,s = dimCH
(r,s)

∂
(M).

Hodge numbers of a complex dimension m manifold are often arranged using the Hodge
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diamond

hm,m

hm,m−1
... hm−1,m

. .
. ...

. . .

hm,0 . . . . . . . . . . . . h0,m.

. . .
... . .

.

h1,0
... h0,1

h0,0

There are (m + 1)2 Hodge numbers in the diamond but much fewer independent Hodge

numbers.

1.2 Kähler Manifolds

To understand the Kähler manifold we must first introduce and analyse the Hermitian

manifold.

Definition 1.2.1. Let (M,J) be a complex manifold with a Riemannian metric g. We

call g a Hermitian metric if

g(v, u) = g(Jv, Ju) ∀v, u ∈ Γ(TM). (1.2.1)

A complex manifold with a Hermitian metric is called a Hermitian manifold.

An equivalent definition of a Hermitian metric is that its pure holomorphic and pure

anti-holomorphic components vanish i.e. gµν = gµν = 0.

Theorem 1.2.1. A complex manifold (M,J) always admits a Hermitian metric.

Proof. If g is a Riemannian metric on M we can always define for u, v ∈ Γ(TM),

h(u, v) :=
1

2

(
g(u, v) + g(Ju, Jv)

)
. (1.2.2)

If g is positive definite then so is h. Since it can easily be seen that h satisfies the condition

(1.2.1), h is a Hermitian metric.

On a Hermitian manifold we can always define the Hermitian 2-form.
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Definition 1.2.2. Let (M,J) be a complex manifold with a Hermitian metric g. The

Hermitian 2-form is defined as

ω(u, v) = g(Ju, v) ∀v, u ∈ Γ(TM). (1.2.3)

The Hermicity of the metric can be used to confirm that ω is a 2-form

ω(u, v) = g(Ju, v)
(1.2.1)

= g(J2u, Jv) = −g(u, Jv) = −g(Jv, u)−−ω(v, u). (1.2.4)

In terms of a coordinate basis the Hermitian 2-form is written ωab = Ja
cgcb. So using the

complex basis we can write the 2-form as the (1, 1)-form

ω = igµνdz
µ ∧ dzν . (1.2.5)

To study the curvature of the Hermitian manifold we need to first look at connections.

Definition 1.2.3. Let (M,J, g) be a Hermitian manifold. The manifold permits a connec-

tion that is compatible with both the Hermitian metric and complex structure, meaning

∇g = ∇J = 0, (1.2.6)

called the Hermitian connection.

To obtain a unique Hermitian connection we must make one further restriction. We

impose that the anti-holomorphic covariant derivative of a holomorphic vector field and

the holomorphic covariant derivative of an anti-holomorphic vector field must obey

∇µv
ν = ∂µv

ν , ∇µv
ν = ∂µv

ν . (1.2.7)

Such a connection is called the Chern connection.

Theorem 1.2.2. On a Hermitian manifold there exists a unique Chern connection.

Proof. To prove the existence and uniqueness of the Chern connection we will attempt to

construct it. The condition that the Chern connection is compatible with J implies

Γρµν = 0, Γρµν = 0, Γρµν = 0, Γρµν = 0. (1.2.8)

The condition unique to the Chern connection (1.2.7) implies

Γρµν = 0, Γρµν = 0. (1.2.9)
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The only non zero components of the Chern connection are therefore Γρµν and Γρµν .

In reference to there being no components with mixed holomorphic and anti-holomorphic

indices, we say that the Chern connection is pure in its indices. All that is left is to impose

the metric compatibility condition. Using that the connection is pure in its indices and

that a Hermitian metric is mixed in its indices, this condition reads

∇µgνρ = ∂µgνρ − Γσµνgσρ = 0, ∇µgνρ = ∂µgνρ − Γσµρgνσ = 0. (1.2.10)

Solving for the connection, we get a unique Chern connection

Γρµν = gρσ∂µgσν , Γρµν = gρσ∂µgσν . (1.2.11)

We are now equipped with a unique connection to examine the curvature of Hermitian

manifolds with. The form of the Chern connection greatly simplifies the Riemann tensor.

Starting with the usual expression for the Riemann tensor in terms of the connection and

its derivative we find that the only non-zero components are

Rµ
νρσ = −∂σΓµρν , Rµ

νρσ = −∂σΓµρν . (1.2.12)

When equipped with only a metric the next step is to contract indices of the Riemann

tensor to form the Ricci tensor. The complex structure of the Hermitian manifold permits

an additional way to contract the indices of the Riemann tensor,

R =
1

4
Ra

bcdJ
b
adx

c ∧ dxd, (1.2.13)

to form what is called the Ricci 2-form. The simple form of the Riemann tensor for the

Chern connection allows the Ricci 2-form to be written in a much neater way. In the

decomposition (1.1.24) of the 2-form, the (2, 0)-form and (0, 2)-form parts vanish due

to the Riemann tensor vanishing. We are then left with the Ricci 2-form written as a

(1, 1)-form with non-vanishing components

Rµν =
i

2
(Rρ

ρµν −Rρ
ρµν), (1.2.14)

where we have made use of the canonical form of J . Evaluating the first Riemann tensor

explicitly gives

Rρ
ρµν = −∂νΓµρρ = −∂ν

(
gρσ∂µgσρ

)
= −∂ν∂µ log

√
|g|, (1.2.15)
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where g := det g. Evaluation of the second Riemann tensor yields the same but with a

factor of −1. We then see that the Ricci 2-form can be written as

R = −i∂∂ log
√
|g|. (1.2.16)

We can use the identity ∂∂ = (1/2) d
(
∂ − ∂

)
for complex manifolds to show that the Ricci

2-form is closed i.e. dR = 0.

We are now ready to introduce the Kähler manifold.

Definition 1.2.4. A Kähler manifold is a Hermitian manifold (M,J, g) with a Hermitian

2-form that is closed dω = 0. We call M the Kähler manifold, g the Kähler metric, and

ω the Kähler form.

The Kähler form being closed has some interesting consequences. An extension of

Poincaré’s lemma to complex coordinates gives that any closed (r, s)-form α can be written

locally as α = ∂∂η for some (r − 1, s − 1)-form η. Since the Kähler form is closed this

means it can be written locally as ωµν = i∂µ∂νK for some scalar function K(z, z) called

the Kähler potential. By looking at (1.2.5) we then see that the Kähler potential can be

used to write the Kähler metric locally as

gµν = ∂µ∂νK. (1.2.17)

On overlaps of coordinate patches U ∩ U ′ the Kähler potentials K and K′ must encode a

common metric i.e. ∂∂K = ∂∂K′. This is ensured by the Kähler potentials being related

by a Kähler transformation

K′(z, z) = K(z, z) + f(z) + f(z), (1.2.18)

where f(z) is a holomorphic function. If a Kähler potential can be globally defined up

to a Kähler transformation such that the metric is given by (1.2.17), then the manifold

is Kähler. This is often how in practice whether a complex manifold is Kähler or not is

determined.

The condition that ω is closed leads to an important result for the connection on a

Kähler manifold. It reads explicitly

dω = ∂ω + ∂ω

= i∂ρgµνdz
ρ ∧ dzµ ∧ dzν + i∂ρgµνdz

ρ ∧ dzµ ∧ dzν = 0.
(1.2.19)
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The two parts must vanish separately so that we have the following conditions on the

Kähler metric

∂ρgµν = ∂µgρν , ∂ρgµν = ∂νgµρ. (1.2.20)

This property of the Kähler metric means that the Chern connection (1.2.11) is symmetric

in its lower indices and so has vanishing torsion. To summarise, the Chern connection

is unique, metric-compatible, and is also torsion-free for a Kähler manifold. However,

all Hermitian manifolds are equipped with the Levi-Civita connection which is unique,

metric-compatible, and torsion-free. What this means is that the Chern and Levi-Civita

connection must be the same for a Kähler manifold.

On a Kähler manifold we find that the Ricci 2-form and the usual Ricci tensor are

closely related. By contracting (1.2.12) to get the Ricci tensor we see that that the pure

components of the Ricci tensor vanish. Computing the non-vanishing mixed components

gives

Rµν = Rρ
µρν = −∂νΓρρµ = −∂νΓρµρ. (1.2.21)

By comparison with the components of the Ricci 2-form we find the relation

Rµν = −iRµν . (1.2.22)

From this relation it is clear that on a Kähler manifold the Ricci tensor and Ricci 2-form

encode the same information. An important result of this is that a Kähler manifold with

a Ricci-flat (vanishing Ricci tensor) metric is equivalent to one that has R = 0.

1.2.1 Example: Complex Projective Space CPN

We will see that the compact complex manifold CPN introduced in § 1.1.1 is an example

of a Kähler manifold.

Theorem 1.2.3. The complex projective space CPN is Kähler.

Proof. On a patch Ui we can construct the scalar function

Ki = log

(
1 +

N∑
a=1

|ξa(i)|2
)
. (1.2.23)
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On the non-trivial intersection of patches Ui ∩ Uj the relation (1.1.19) means that the

scalar functions defined on these patches differ by

Ki(z, z) = Kj(z, z)− log ξi(j) − log ξi(j) (1.2.24)

i.e. a Kähler transformation. This ensures that on CPN

gµν = ∂µ∂νKi (1.2.25)

is globally defined. This is known as the Fubini-Study metric. If we can show that it is

positive definite on TM then K will be a Kähler potential and so g a Kähler metric.

Working on a specific coordinate patch we can evaluate (1.2.25) explicitly giving

gµν =
δµν(1 + |ξ|2)− ξµξν

(1 + |ξ|2)2
, (1.2.26)

where |ξ|2 =
∑N

a=1 |ξa|2. Then for a real vector field v ∈ Γ(TM) we get

gabv
avb =

|v|2(1 + |ξ|2)− |(ξv)|2

(1 + |ξ|2)2
. (1.2.27)

By application of the Cauchy-Schwartz inequality to the above, we confirm that the

Fubini-Study metric is positive definite on TM and so CPN is Kähler.

1.2.2 Holonomy

The holonomy of a manifold is expressed as a subgroup of GL(n,R) and measures how

vectors are transformed by parallel transport around a closed loop on the manifold. Let

(M, g) be a Riemannian manifold with affine connection Γ and consider a vectorX ∈ TpM .

Parallel transport X around a closed curve C to get a new vector XC ∈ TpM . The loop

C and connection Γ has induced a linear transformation PC : TpM → TpM . The set of all

these transformations is the holonomy group at p and is denoted Holp(M). For connected

manifolds it can be shown that the holonomy groups at different points are all isomorphic

to each other so we consider the holonomy group to be independent of the point p.

If Γ is a metric connection and M an n-dimensional orientable Riemannian manifold

then the length of a vector is preserved on parallel transport. This implies that the

holonomy group is ⊆ SO(n).

We have seen that for a Kähler manifold the Chern connection is pure in its holo-

morphic and anti-holomorphic indices. This means that a (anti-)holomorphic vector will
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always remain (anti-)holomorphic after parallel transport as well as preserving the length

of vector. This tells is that the holonomy group for a Kähler manifold of complex dimen-

sion m must be contained in U(m) ⊂ SO(2m).

It will be useful to examine the holonomy of a Ricci-flat Kähler manifold. Let M be a

Kähler manifold with complex dimension m. The vector V ∈ TpM+ is parallel transported

around an infinitesimal rectangle with area δabc and edges that run parallel to the basis

vectors ∂b and ∂c to get a new vector V ′ ∈ TpM+. It is a standard result that

V ′a = V a + δabcRbc
a
dV

d. (1.2.28)

From this, we see that the matrix δad + δabcRbc
a
d is an element of the holonomy group

near the identity. Since the metric is Kähler these matrices are elements of the Lie algebra

u(m) which can be decomposed into a traceless part and a trace as

u(m) = su(m)⊕ u(1). (1.2.29)

The u(1) element is given by the trace

δbcRbc
a
a = −4δaµνRµν , (1.2.30)

where we have used that the only non-vanishing components of the Riemann tensor are

of the form Rµνρσ.

It is then clear that if the metric is Ricci-flat the U(1) part of the holonomy group

vanishes and the manifold has a holonomy group contained in SU(m) rather than in

U(m). Note that the converse is also true, meaning a Kähler manifold has ⊆ SU(m)

holonomy if and only if the Kähler metric is Ricci-flat.

1.2.3 Hodge Theory

To understand Hodge theory on Kähler manifolds we must introduce some additional

structure. Much of this will be stated without proof for brevity, [44] is a good starting

point for a developing a deeper understanding. Many of the following definitions apply

more generally to complex manifolds but we restrict ourselves to a Kähler manifold M

with complex dimension m.

The Hodge star operator of real manifold extends naturally to the complexified tangent

space
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Definition 1.2.5. The Hodge star ∗ is a map

∗ : Ω(r,s)(M)→ Ω(m−r,m−s)(M), (1.2.31)

where ∗β = ∗β.

Definition 1.2.6. The inner product between α, β ∈ Ω(r,s)(M) is defined as

(α, β) =

∫
M

α ∧ ∗β. (1.2.32)

Definition 1.2.7. The adjoint Dolbeault operators ∂† and ∂† are maps

∂† : Ω(r,s)(M)→ Ω(r−1,s)(M), ∂† : Ω(r,s)(M)→ Ω(r, s− 1)(M) (1.2.33)

defined by

(α, ∂β) = (∂†α, β), (α, ∂β) = (∂†α, β). (1.2.34)

A Kähler manifold has the additional Laplacians

∆∂ = (∂ + ∂†)2 = ∂∂† + ∂†∂, ∆∂̄ = (∂ + ∂†)2 = ∂∂† + ∂†∂ (1.2.35)

as well as the usual ∆ = dd†+ d†d. Recall that since the Laplacian is a positive operator

any k-form that is closed under it must also be closed under d and d†. The same is true

for (r, s)-forms closed under ∆∂ or ∆∂ and their corresponding Dolbeault operators. We

denote

Harm
(r,s)

∂
(M) = {ω ∈ Ω(r,s)(M)|∆∂ω = 0}. (1.2.36)

An element of Harm
(r,s)

∂
(M) is called ∂-harmonic form.

We can now introduce Hodge decomposition on a complex manifold.

Theorem 1.2.4 (Hodge’s theorem). Ω(r,s)(M) has the following unique orthogonal

decompostion

Ω(r,s)(M) = ∂Ω(r,s−1)(M)⊕ ∂†Ω(r−1,s)(M)⊕ Harm
(r,s)

∂
(M). (1.2.37)

Hodge’s theorem means that any (r, s)-form ω can be uniquely decomposed as

ω = ∂α + ∂†β + γ, (1.2.38)
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where α ∈ Ω(r,s−1)(M), β ∈ Ω(r,s+1)(M), and γ ∈ Harm
(r,s)

∂
(M). As a consequence of

Hodge’s theorem, cohomology groups have a unique harmonic representative. For de

Rham and Dolbeault cohomology groups respectively this means

Hk
dR(M) = {[ω]|ω ∈ Ωk(M),∆ω = 0}, (1.2.39)

H
(r,s)

∂
(M) = {[ω]|ω ∈ Ω(r,s)(M),∆∂ω = 0}. (1.2.40)

A Kähler manifold has the property that if a form is harmonic with respect to one of

d, ∂, or ∂ it must be harmonic with respect the other two also. Specifically

∆ = 2∆∂ = 2∆∂. (1.2.41)

This has an important consequence. Consider the de Rham and Dolbeault cohomology

groups in terms of their harmonic representative (1.2.39) and (1.2.40). Complexification

of (1.2.39) gives Hk
dR(M)C = {[ω]|ω ∈ Ωk(m)C,∆ω = 0}. Since M is Kähler we can

invoke (1.2.41) along with the decomposition of the complexified space of k-forms into

(r, s)-forms (1.1.22) to find

Hk
dR(M)C =

⊕
r+s=k

H
(r,s)

∂
(M). (1.2.42)

From this, we see that the Betti and Hodge numbers of a Kähler manifold are related by

bk =
∑
r+s=k

hr,s. (1.2.43)

The Euler number is then related to the Hodge numbers by

χ =
∑
r,s

(−1)r+shr,s. (1.2.44)

1.2.4 Hodge Numbers

The Kählericity of a manifold M with dimCM = m puts restrictions on the number of in-

dependent Hodge numbers. Due to complex conjugation and the Hodge star respectively,

we find

hr,s = hs,r, (1.2.45)

hr,s = hm−r,m−s. (1.2.46)
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There are also the restrictions that odd Betti numbers are even and that even Betti

numbers are positive. The proofs of these are omitted as we will not find use for them in

later discussions.

It will be useful to note the form of the Hodge diamond for a generic Kähler manifold

with complex dimension 4:

h0,0

h1,0 h1,0

h2,0 h1,1 h2,0

h3,0 h2,1 h2,1 h3,0

h4,0 h3,1 h2,2 h3,1 h4,0.

h3,0 h2,1 h2,1 h3,0

h2,0 h1,1 h2,0

h1,0 h1,0

h0,0

1.3 Holomorphic Vector Bundles

Having spent some time working towards an understanding of Kähler manifolds, we now

make a slight change of direction to cover some topics important for later sections. Upon

complexifying the tangent space of a complex manifold we saw via the eigenspaces of

the complex structure that the complexified tangent bundle decomposes into a holomor-

phic and anti-holomorphic tangent bundle. We understood TM+ to be the holomorphic

tangent bundle only in name. Here we will formalise the notion of holomorphic vector

bundles.

Definition 1.3.1. Let E
π−→ M with E and M complex manifolds and π a holomorphic

map. E is a holomorphic vector bundle if the local trivialisation maps φi : π−1(U) →

Ui ×Ck are biholomorphic. This is equivalent to the complex vector bundle E admitting

holomorphic transition functions.

The simplest holomorphic vector bundle is the trivial bundle M×Ck. The holomorphic

tangent and cotangent bundles also meet the criteria of a holomorphic vector bundle. This

extends to
∧r,0 T ∗M as defined in § 1.1.2 to make it a holomorphic vector bundle too.
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Holomorphic vector bundles also have the notion of a line bundle. A holomorphic

vector bundle of rank one is called a holomorphic line bundle. The typical example is the

canonical line bundle KM :=
∧m,0 T ∗M for a manifold M with complex dimension m.

We should recall a useful property of line bundles that the tensor product of any two line

bundles is also a line bundle.

1.3.1 Example: Complex Projective Space CPN

We will now examine the holomorphic line bundles of CPN . There is the tautological line

bundle

O(−1) := {(l, v) ∈ CPN × CN+1|v ∈ l} (1.3.1)

which comes from attaching to each point in CPN the line through the origin it represents

in CN+1 as a fibre. The dual of O(−1) is denoted O(1) and is called the hyperplane line

bundle. We can take tensor products of k hyperplane line bundles to give new holomorphic

line bundles over CPN that we denote O(k). For k ≥ 0 the vector space of Γ(O(k)) is

identified with the set of homogeneous polynomials of degree k in CPN . This means that

the homogeneous coordinates of CPN (zµ, µ = 0, . . . , N) are sections of O(1).

1.4 Chern Classes

Given a fibre F , a structure group G, and a base space M , we can construct many

fibre bundles over M by choosing different transition functions. We would like a way

of classifying these fibre bundles depending on how much they differ from the trivial

bundle M × F . Characteristic classes are concerned with this classification. These are

subsets of cohomology classes of M that measure the obstruction of the bundle to being

a trivial bundle. Chern classes are a particular type of characteristic class relevant to

Calabi-Yau manifolds. The discussion of Chern classes will be done in the language of

differential geometry, rather than the axiomatic approach of algebraic geometry, and with

their application to defining the Calabi-Yau manifold in mind. A more general discussion

of Chern classes and characteristic classes can be found in Chapter 11 of [44] and in

Chapter 6 of [19]. These are good resources for proofs of the identities introduced in this

section.
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Definition 1.4.1. Let V be a complex vector bundle over a manifold M and let F be

the curvature two-form of a connection on V . The total Chern class c(V) of V is

c(V) := det

(
1 +

iF
2π

)
. (1.4.1)

The total Chern class can be written as a direct sum of forms of even degree by an

expansion in powers of curvature

c(V) = c0(V) + c1(V) + . . .+ cr(V), (1.4.2)

where ck(V) are called Chern forms and r is the complex rank of V . The Chern forms are

2k-forms that are representatives of the cohomology class they define. The cohomology

classes are called the Chern classes.

The Chern classes do not depend on the choice of connection used to define the cur-

vature two-form. Different curvature two-forms give different Chern forms that are in the

same Chern class.

It is often useful to have explicit formulae for the Chern classes. This can be obtained

by expanding the determinant to give

c0(V) = [1],

c1(V) =

[
i

2π
TrF

]
,

c2(V) =

[
1

2

(
i

2π

)2

(TrF ∧ TrF − TrF ∧ F)

]
,

...

cr(V) =

[(
i

2π

)k
detF

]
.

(1.4.3)

When the vector bundle E over the manifold M is the holomorphic tangent bundle

TM , we call the Chern classes ck(TM) the Chern classes of the manifold and denote them

ck(M) or just ck. We will primarily be concerned with Chern classes of Kähler manifolds,

in particular with the first chern class c1. The Ricci two-form of a Kähler manifold can

be used to write its first Chern class as

c1(M) =

[
R
2π

]
. (1.4.4)
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We will now show that the first Chern class of a Kähler manifold is invariant under a

smooth variation of the metric gab −→ g′ab = gab + δgab. Under such a variation the Ricci

two-form (1.2.16) changes by

R′ = R− i

2
∂∂(gabδgab). (1.4.5)

Using the identity ∂∂ = 1
2

d
(
∂ − ∂

)
we find that δR is an exact form so that c1 is left

invariant.

Associated with the Chern class is the Chern character. If we write the total Chern

class in the form c(V) =
∏r

i=1(1 + xi) then the Chern character is ch(V) =
∑

i e
xi . The

utility of the Chern character is in the following identities:

ch(V ⊗W) = ch(V) ∧ ch(W), ch(V ⊕W) = ch(V) + ch(W). (1.4.6)

The first few terms of the expansion of the Chern character are

ch(V) = r+ c1(V)+
1

2
(c1(V)2−2c2(V))+

1

6
(c1(V)3−3c1(V)c2(V)+3c3(V))+ . . . . (1.4.7)

A property of the Chern classes that will be useful in later discussion requires an

understanding of short exact sequences.

Definition 1.4.2. A sequence of maps and vector spaces

A1
a1−−→ A2

a2−−→ . . .
an−−→ An+1 (1.4.8)

is an exact sequence if for all i = 1, . . . n− 1

ker(ai+1) = Im(ai). (1.4.9)

A short exact sequence is an exact sequence of the form

0
a−−→ B

b−−→ C
c−−→ D

d−−→ 0, (1.4.10)

where 0 denotes a trivial vector space.

The short exact sequence (1.4.10) can be interpreted as the statement that A ⊆ B and

C = B/A.

If vector bundles V , V ′ and V ′′ obey the short exact sequence

0 −−→ V ′ −−→ V −−→ V ′′ −−→ 0 (1.4.11)
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then their Chern classes obey the useful identity

c(V) = c(V ′) ∧ c(V ′′). (1.4.12)

Note that if V is the direct sum bundle V ′ ⊕ V ′′ then the short exact sequence (1.4.11)

holds.

Another useful identity is that the first Chern class of the tensor product of two line

bundles L and L′ is given by [7]

c1(L⊗ L′) = c1(L) + c1(L′). (1.4.13)

1.4.1 Example: Complex Projective Space CPN

The homogeneous coordinates zµ, µ = 0, . . . , N can be used to span the holomorphic

tangent bundle TCN+1 by the tangent vectors sµ(z) ∂
∂zµ

, where sµ ∈ O(1). We can

also use the homogeneous coordinates to span TCPN by the tangent vectors sµ(z) ∂
∂zµ

,

where sµ ∈ O(1), but we must account for the equivalence relation (1.1.17) that makes

overall rescalings in CPN trivial. This equivalence relation enforces that the map from

O(1)
⊕

(N+1) (the direct sum of N + 1 hyperplane line bundles) to TCPN has a kernel that

is the trivial line bundle C. This is summarised with the short exact sequence

0 −−→ C −−→ O(1)
⊕

(N+1) −−→ TCPN −−→ 0 (1.4.14)

called the Euler sequence. For the trivial line bundle we have c(C) = 1. If we then apply

(1.4.12) to the Euler sequence we see

c(CPN) := c(TCPN) = c(O(1)
⊕

(N+1)) = c(O(1))N+1. (1.4.15)

Since O(1) is a line bundle it is rank one and the expansion of its total Chern class

terminates at the first Chern class. If we denote x = c1(O(1)) so that c(O(1)) = 1 + x we

then get the expression for the total Chern class of CPN

c(CPN) = (1 + x)N+1. (1.4.16)
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2 The Calabi-Yau Manifold

The Calabi-Yau manifold has its roots in the 1950s conjecture by Calabi [11]

Conjecture 2.0.1 (Calabi). Let (M, g, ω) be a compact Kähler manifold and C be an

arbitrary (1, 1)-form such that [C] = [c1(M)]. Then there exists a unique Kähler metric g̃

and Kähler form ω̃ such that [ω] = [ω̃] ∈ H2
dR(M) and that C = R(ω̃).

Such a conjecture is valuable since it relates geometry (curvature) to topology (Chern

classes). Calabi was able to prove uniqueness but not existence of (g̃, ω̃). Such an existence

proof came from Yau in the 1970s [56]

Theorem 2.0.1 (Yau). The Calabi conjecture holds.

In celebration of Calabi’s conjecture and Yau’s proof, the Calabi-Yau manifold is

defined as the following special case of the Calabi conjecture:

Definition 2.0.1. A Calabi-Yau manifold is a compact Kähler manifold with a vanishing

first Chern class c1 = 0.

This definition can also be generalised to non-compact Kähler manifolds to give non-

compact Calabi-Yau manifolds. These non-compact Calabi-Yau manifolds enter physics

through brane-world descriptions of our universe [46]. In this work we only consider

compact Calabi-Yau manifolds.

Yau’s theorem ensures that given a Calabi-Yau manifold there always exists a Kähler

metric with vanishing Ricci curvature (equivalent to a zero Ricci 2-form). Recalling that

the first Chern class of a Kähler manifold M is invariant under metric variations, it is

clear from (1.4.4) that if M admits a Ricci-flat metric its first Chern class vanishes. This

means that we have an equivalent definition of a Calabi-Yau manifold as a compact Kähler

manifold with zero Ricci 2-form. If we recall the analysis of holonomy in § 1.2.2, this is
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quickly supplemented by a third equivalent definition: a Calabi-Yau manifold is a compact

Kähler manifold of complex dimension m with a holonomy group contained in SU(m).

There are in fact many equivalent definitions of a Calabi-Yau manifold in the literature.

We give an extended definition of the Calabi-Yau manifold using a select number of the

definitions

Definition 2.0.2. A Calabi-Yau manifold is a compact m-dimensional Kähler manifold

M that meets the following equivalent conditions:

(i) The first Chern class vanishes; c1(M) = 0.

(ii) There exists a Ricci-flat metric.

(iii) Has holonomy contained in SU(m).

(iv) There exists a globally defined and nowhere vanishing holomorphic m-form.

In what follows we will restrict our definition of a Calabi-Yau manifold to one with

a holonomy group of exactly SU(m). When we refer to the Calabi-Yau manifold we

mean one with this extra restriction. To do so is common in the literature and is often

done implicitly. The reason for this is that the landscape of Calabi-Yau manifolds with

a holonomy group smaller than SU(m) is populated by manifolds that are some lower

dimensional Calabi-Yau producted with a 2n-torus. Such manifolds are undesirable as

they contain no new information and create redundancies in classification attempts. We

will see another reason for restricting to SU(m) holonomy shortly.

Before explaining the origin of condition (iv) we want to provide a motivation for the

study of Calabi-Yau manifolds in string theory.

2.1 Application to String Theory

The Calabi-Yau manifold entered physics through the 1985 work of Candelas, Horowitz,

Strominger and Witten [14]. We will outline this work and recreate in brief their reasoning

for a simplified case. The original paper and [5, 23] offer more detail. The starting point

is with the 10-dimensional theory of the heterotic superstring and the goal is to create a
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sensible low-energy theory that incorporates Einstein’s general relativity and the Standard

Model.

We must first clarify what a sensible low-energy theory is. The most obvious require-

ment is that it is 4-dimensional. To achieve this we work with a 10-dimensional manifold

M10 = T4 ×M6, where T4 is a maximally symmetric manifold called the external man-

ifold and M6 some compact 6-dimensional manifold called the internal manifold. The

6-dimensional manifold can then be compactified so that in the low-energy limit physics

is restricted to T4. In what follows, the indices tangent to M10 are denoted by M and are

decomposed into indices tangent to T4 and M6 as M = (µ,m) respectively.

We next need to deal with the supersymmetry (SUSY) of the heterotic string. Exper-

iment has shown that the everyday world is not supersymmetric. However, this does not

rule out keeping some SUSY from the high-energy theory that then breaks at an energy

larger than what has been observed. This is actually desirable as such a scenario remedies

one of the most troubling issues with the Standard Model, the gauge hierarchy problem.

SUSY offers an explanation as to why the mass scale of the weak interaction symmetry

breaking is so small compared to other fundamental mass scales such as the Planck mass.

It does this by having the Higgs doublet be the the superpartner of a massless charged

fermion, ensuring that it is exactly massless in the limit of unbroken SUSY. Another

compelling reason for low-energy SUSY is that a state of unbroken SUSY in 4 dimensions

always obeys the equations of motion. This is welcomed since finding compactified solu-

tions to the equations of motion can be difficult. With these reasons in mind we seek a

theory with unbroken N = 1 supergravity (N ≥ 1 theories are not phenomenologically

viable).

Heterotic string theory is a promising starting point for compactification since in

addition to having an E8 ×E8 gauge group which naturally accommodates grand unified

theories, it has N = 1 SUSY in 10 dimensions. Obtaining N = 1 SUSY in 4 dimensions

then becomes the task of ensuring unbroken SUSY for the compactification. We denote the

infinitesimal SUSY parameters η(xM), where xM are the spacetime coordinates of the 10

dimensional manifold, and the conserved supercharges associated with these parameters

are denoted Q. An unbroken SUSY is a conserved supercharge that annihilates the

vacuum |Ω〉. The statement Q |Ω〉 = 0 is equivalent to the statement 〈Ω|{U,Q}|Ω〉 = 0 for
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every field U in the theory. This is trivial for bosonic fields but for fermionic fields it results

in a restriction on the compactification. For fermionic U we have that {U,Q} = δηU ,

where δη denotes the SUSY variation associated with the supercharge. Then at tree level

the condition of unbroken SUSY becomes that δηU = 0 for every elementary field in the

theory.

A theory of N = 1 supergravity in 10 dimensions contains a three-form field strength

HMNP , some two-form Yang Mills field strengths FMN , a dilaton Φ, and some fermionic

fields coupled to gravity. Supposing that T4 is maximally symmetric means that the

mixed and pure T4 indices of H and F vanish. We also make the simplifying assumptions

that H = 0 for pure M6 indices and that the dilaton is constant. Having made these

assumptions, we are left two non-trivial conditions for unbroken SUSY coming from δηU =

0 for the fermionic fields. These come from the variation of the gravitino ψM and the

gluinos (adjoint fermions of the Yang-Mills supermultiplet) χ,

δηψM = ∇Mη, (2.1.1)

δχ = −1

4
FMNΓMNη, (2.1.2)

where Γ with multiple indices is the antisymmetrised product of individual gamma ma-

trices. We will first look at the consequence of the gravitino SUSY variation vanishing.

The condition arising from the gravitino variation is the Killing spinor equation which

is interpreted as demanding that η is a covariantly constant spinor. Supposing that the 10

dimensional manifold is T4×M6 means the covariantly constant spinor can be decomposed

according to the product structure as

η = η(4) ⊗ η(6). (2.1.3)

This allows for a separate examination of the Killing equation on the external and internal

manifolds.

We consider the external manifold where the Killing equation reads ∇µη(4) = 0 which

implies the following integrability condition

[∇µ,∇ν ]η(4) =
1

4
RµνρσΓρση(4) = 0. (2.1.4)

For a maximally symmetric space the Riemann tensor is set by its symmetries to be

Rµνρσ = (R/12)(gµρgνσ − gµσgνρ). Because of this, (2.1.4) for a maximally symmetric
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space is the condition that the Ricci scalar R is zero. This means that the external

manifold is Minkowski space M4. This is an assuring result since N = 1 SUSY is also

possible in the much less desirable anti-de Sitter space (maximally symmetric space with

R < 0). For Minkowski space ∇µ = ∂µ so that η(4) is a constant spinor which for the

compactified theory on M4 is the infinitesimal parameter of an unbroken global SUSY.

We now turn to the Killing equation on the internal manifold ∇mη(6) = 0. Equipped

with the covariantly constant spinor η(6) provided by the Killing equation, we will attempt

to probe the structure of M6. The SUSY parameter of the heterotic string is a Majorana-

Weyl spinor [43] that is in the 16 irrep of Spin(1, 9). It can be decomposed under

SL(2,C)× SU(4) as

16 = (2,4)⊕ (2,4) −→ η = η(4)+ ⊗ η(6)+ ⊕ η(4)− ⊗ η(6)−, (2.1.5)

where the ± are used to denote the chirality of the representation. Dropping the notation

for the manifold, we have η+ and η− on the internal manifold. Since these are covariantly

constant we are free to choose the normalisation η†±η± = 1. Using the internal manifold

gamma matrices γ we define

Jmn := iη†+γ
m
nη+. (2.1.6)

Application of a Fierz identity yields JmnJ
n
p = −δmp so that (M6, J) is an almost com-

plex manifold. Constructing the almost complex structure using the covariantly constant

spinor ensures that it is also covariantly constant. Looking back to the discussion of al-

most complex structure we recall that the Nijenhuis tensor can be reformulated using the

covariant derivatives of J (1.1.13). From this we see∇mJ
n
p = 0 implies that the Nijenhuis

tensor vanishes. This makes J a complex structure and (M6, J) a complex manifold.

As M6 is a complex manifold it admits a Hermitian metric with a natural Hermitian

two-form that can be written as ω = 1
2
Jmndxm ∧ dxn, where we have used the Hermitian

metric to lower an index on J . For a metric connection (∇g = 0) we have that ∇ω =

0. We can always choose the Levi-Civita connection which is a metric connection with

vanishing torsion. Using the torsion-free property of the Levi-Civita connection, we find

that the connection terms in ∇ω vanish due to symmetric indices being contracted with

antisymmetric indices. Only the partial derivatives remain and we have that ∇ω = dω =

0. A closed Hermitian form is a Kähler form, meaning that (M6, ω) is a Kähler manifold.
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The covariantly constant spinor also puts restrictions on the holonomy of the internal

manifold we now know is Kähler. A general spin manifold (a manifold admitting spinors)

with real dimension 6 has a holonomy group Spin(d) ' SU(4). A covariantly constant

spinor is invariant under parallel transport around a closed curve. Spinors are in the

fundamental representation of SU(4) so this invariance is the statement Uη = η for SU(4)

matrices U . The existence of a covariantly constant spinor then restricts the holonomy

group to some subset of SU(4) that obeys this invariance condition. If we suppose that

the spinor η has positive chirality so that it is in the 4 of SU(4) then there always exists

an SU(4) rotation that puts it in the form

η− =


0

0

0

η−


. (2.1.7)

Using this, the subgroup SU(3) that acts on the first three components is identified as the

unbroken group that leaves a 4 of SU(4) invariant. This tells us that the holonomy group

of a spin manifold with a covariantly constant 6-dimensional spinor is SU(3) ⊆ SU(4).

In summary, we have found that in order to have N = 1 SUSY after compactification

the internal manifold M6 must be Kähler, have complex dimension 3, and have SU(3)

holonomy. This satisfies condition (iii) of our Calabi-Yau definition and so describes a

Calabi-Yau threefold. This discovery of Candelas, Horowitz, Strominger and Witten was

the initial motivation for the study of Calabi-Yau manifolds. We now see that by ignoring

Calabi-Yau manifolds with ⊂ SU(3) holonomy we are guaranteed N = 1 SUSY after

compactification.

An important realisation is that topological invariants of the threefold chosen dictates

certain properties of the compactified model. For example, the number of generations of

particles in the 4-dimensional theory is given by half the Euler number of the threefold.

With the topological information of the Calabi-Yau manifold we can know the particle

content and gauge group of the 4-dimensional theory. We can also obtain many exact

’topological’, meaning they depend on cohomology classes, formulas that give important

information such as Yukawa couplings [2]. This makes the study of the Calabi-Yau land-

scape an integral part model building in string theory. However, with only topological
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information we cannot learn about overall normalisations. This means that the coupling

constants and particle masses of the 4-dimensional theory are unknown. To deduce them

we require the explicit Ricci-flat Kähler metric of the Calabi-Yau manifold. Unfortu-

nately, no such analytic metric has been found. This presents another challenge to our

understanding of the landscape of string vacua. In this work, we shall only consider

the topological type the Calabi-Yau manifold and ignore the issue of finding an explicit

metric.

We have not yet considered the gluino variation (2.1.2). The condition arising from

it does not dictate properties of M6 but for completeness we will briefly outline what it

does imply. A more thorough explanation can be found in [23]. On the internal manifold,

which we have shown is Calabi-Yau so can make use of complex coordinates zm, the

condition means that the internal Yang-Mills field strengths must obey

Fmn = Fmn = 0, gmnFmn = 0. (2.1.8)

The field strengths are derived from some Yang-Mills gauge field that is a connection on

some vector bundle E. Assuming that the gauge fields are real, the conditions on the (1, 0)

and (0, 1) parts are equivalent via Hermitian conjugation. It can be shown that a solution

to Fmn = 0 is a holomorphic vector bundle. The condition on the (1, 1) part is known as

the Hermitian Yang-Mills equation. The choice of a connection on a holomorphic vector

bundle that is a solution to the Hermitian Yang-Mills equation is something that needs

to specified before the compactification. This forms a region in the landscape of string

vacua distinct from the Calabi-Yau landscape.

It should also be noted that Calabi-Yau manifolds appear in string theory not only as

threefolds but also as fourfolds via F-theory. Introduced by Vafa in 1996 [51], F-theory

is a promising framework for understanding string theory that offers a non-perturbative

way to compactify type IIB superstring theories with a non-constant dilaton. It is not

feasible to give an overview of F-theory on Calabi-Yau fourfolds here but detailed reviews

can be found in [55] and [5]. The important result is that F-theory compactifications

with an internal manifold that is an elliptically fibred fourfold can lead to 4-dimensional

theories with N = 1 SUSY. An elliptic fibration is a bundle of elliptic curves and for a

Calabi-Yau manifold to be elliptically fibred is common. So for the same reasons as for the
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heterotic string compactification, it is important to understand the landscape of Calabi-

Yau fourfolds. For fourfolds it must be determined whether the manifold is elliptically

fibred in addition to computing their topological invariants.

2.2 Holomorphic (m, 0)-form

Understanding condition (iv) of Definition 2.0.2 is important as a guaranteed nowhere

vanishing holomorphic (m, 0)-form is a useful tool for examining Calabi-Yau manifolds.

We will start by assuming that the holomorphic (m, 0)-form exists

Theorem 2.2.1. A compact 2m-dimensional Kähler manifold M with a nowhere vanish-

ing holomorphic (m, 0)-form Ω is Calabi-Yau.

Proof. Any (m, 0)-form Ω ∈ Ω(m,0)(M) must be proportional to the permutation symbol

εµ1...µm . Since the (m, 0)-form needs to be holomorphic it must be

Ωµ1...µm = f(z)εµ1...µm , (2.2.1)

where f(z) is a nowhere vanishing holomorphic function. Using the Hermitian metric on

the Kähler manifold, we define a globally well-defined coordinate scalar from Ω

||Ω||2 =
1

m!
Ωµ1...µmg

µ1ν1 . . . gµmνmΩν1...νm

(2.2.1)
=
|f |2
√
g
. (2.2.2)

Rearranging this for
√
g in terms of ||Ω||2 we see that the Ricci 2-form (1.2.16) is given

by

R = i∂∂ log ||Ω||2. (2.2.3)

Since log ||Ω||2 is a globally defined coordinate scalar, the identity ∂∂ = (1/2) d
(
∂ − ∂

)
implies that R is an exact form, meaning c1(M) ∝ [R] = 0.

We will now show that the (m, 0)-form is unique (up to a constant). Suppose there are

two globally defined holomorphic (m, 0)-forms Ω and Ω′. They must both be proportional

to the permutation symbol and so are related by

Ω′ = h(z)Ω, (2.2.4)
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where h(z) is a globally defined holomorphic function. The maximum modulus principle

implies that a globally defined holomorphic function is a constant. Thus, h(z) is constant

so that Ω is indeed unique up to a constant.

It will be useful to demonstrate that Ω is harmonic. To do this we must confirm

dΩ = d†Ω = 0. We quickly see dΩ = 0 by using that Ω is an (m, 0)-form, ∂Ω = 0, and

that it is holomorphic, ∂Ω = 0. To see d†Ω = 0 we need to work in local coordinates and

evaluate explicitly

d†Ω = − 1

(m− 1)!
∇νΩνµ1...µm−1dz

µ1 ∧ . . . ∧ dzµm−1

= − 1

(m− 1)!
gνρ∇ρΩνµ1...µm−1dz

µ1 ∧ . . . ∧ dzµm−1

= − 1

(m− 1)!
gνρ∂ρΩνµ1...µm−1dz

µ1 ∧ . . . ∧ dzµm−1 = 0.

(2.2.5)

To get to the last line recall that the Chern connection of a Kähler manifold is pure in its

indices so that it vanishes in the anti-holomorphic covariant derivative of Ω.

2.3 Hodge Numbers

The Calabi-Yau manifold inherits the structure of the Kähler manifold, meaning that the

relations between Hodge numbers introduced in § 1.2.4 apply to the Calabi-Yau mani-

fold also. As we have just discussed, the Calabi-Yau condition creates some additional

structure on the Kähler manifold. We will see that this additional structure restricts the

number of independent Hodge numbers even further.

A Calabi-Yau manifold admits a unique holomorphic (m, 0)-form Ω that we proved to

be harmonic. This implies hm,0 ≥ 1. We know that Ω is unique but we have not ruled

out the existence of some non-holomorphic harmonic (m, 0)-form Ω′. The permutation

symbol can be used to write Ω′ as

Ω′ = f(z, z)ε. (2.3.1)

An (m, 0)-form is trivially ∂-closed so to be harmonic we must confirm only that it is ∂-

closed. Requiring that Ω′ is ∂-closed gives ∂f(z, z) = 0 which means that f must actually

be holomorphic. But we have already seen that the holomorphic (m, 0)-form is unique,

so we find that Ω′ is not permitted and hm,0 = 1.
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Similar to how the Hodge star causes the relation hr,s = hm−r,m−s, the holomorphic

(m, 0)-form of the Calabi-Yau manifold results in the holomorphic duality hr,0 = hm−r,0.

To show this we start with some ω ∈ Ω(k,0) for 0 ≤ k ≤ m and define the ’holomorphic

Hodge dual’ by

vµ1...µm−k =
1

k!
Ωµ1...µm−kµm−k+1...µmω

µm−k+1...µm . (2.3.2)

Using that Ω is harmonic gives

∇µ1vµ1...µm−k =
1

k!
Ωµ1...µm−kµm−k+1...µm∇µ1ωµm−k+1...µm . (2.3.3)

Next we invert (2.3.2) and make use of the coordinate scalar defined previously (2.2.2)

ωµm−k+1...µm =
m!

(m− k)!k!

Ωµ1...µm−kµm−k+1...µm

||Ω||2
vµ1...µm−k (2.3.4)

=⇒ ∇µmω
µm−k+1...µm =

m!

(m− k)!k!

Ωµ1...µm−kµm−k+1...µm

||Ω||2
∇µmvµ1...µm−k . (2.3.5)

Writing Ω as in (2.2.1) it can be shown that Ω
||Ω||2 is holomorphic and non-singular. This

then means that from (2.3.3) and (2.3.5) we can conclude that the (0,m − k)-form v is

∂-harmonic if and only if the (k, 0)-form ω is ∂-harmonic. For a Kähler manifold this

implies that v is harmonic if and only if ω is harmonic. So given a harmonic (k, 0)-form

ω ∈ H(k,0)

∂
(M), there exists a unique harmonic (m − k, 0)-form v ∈ H(m−k,0)

∂
(M) giving

the holomorphic duality hk,0 = hm−k,0.

Further restriction to the Hodge numbers of a Calabi-Yau manifolds with exactly

SU(m) holonomy can be found by examining the harmonic representatives for the Dol-

beault cohomology groups H
(r,0)

∂
(M). The action of the Laplacian on the components of

a k-form is

∆ωa1...ak = −∇b∇bωa1...ak − kRb[a1ω
b
a2...ak] −

1

2
k(k − 1)Rbc[a1a2ω

bc
a3...ak], (2.3.6)

where the curvature tensors come from the relation

[∇a1 ,∇b]ω
b
a2...ak = −Rba1ω

b
a2...ak − ωbc[a3...akR

c
a2]a1b. (2.3.7)

Recalling that for Kähler manifolds ∆ = 2∆∂, examining H
(r,0)

∂
(M) requires that we

consider the Laplacian ∆ acting on an (r, 0)-form. Using that for a Ricci-flat Kähler

manifold Rµν = Rµνρσ = 0, the condition that an (r, 0)-form is harmonic simply reads
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∇a∇aωµ1...µr = 0. For a compact manifold we can contract this with ωµ1...µr and integrate

over the manifold

0 =

∫
M

√
gωµ1...µr∇a∇aωµ1...µr = −

∫
M

√
g∇aωµ1...µr∇aωµ1...µr . (2.3.8)

Since the integrand is positive definite we must have

∇νωµ1...µr = 0, ∇νωµ1...µr = ∂νωµ1...µr = 0. (2.3.9)

These equations tell us that under parallel transport ωµ1...µr transforms as a singlet of the

holonomy group SU(m). We know that ωµ1...µr is in the
∧r m of SU(m) so we require

that the singlet appears in the decomposition. This only happens for the trivial cases of

r = 0 and r = m. This contradiction means the harmonic representative cannot exist for

the cohomology groups H
(r,0)

∂
(M) with 0 < r < m. From this we see that hr,0 = 0 for

0 < r < m.

Applying the holomorphic duality along with the Kähler manifold Hodge number

relations (1.2.45) and (1.2.46) to the fixed Hodge numbers of a Calabi-Yau fourfold leaves

only four independent Hodge numbers known as the Hodge data of the fourfold. Organised

in a Hodge diamond, these are

1

0 0

0 h1,1 0

0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1.

0 h2,1 h2,1 0

0 h1,1 0

0 0

1

The Euler characteristic of a fourfold is related to the Hodge numbers by the expression

χ =
8∑

k=0

(−1)kbk = 4 + 2h1,1 − 4h2,1 + 2h3,1 + h2,2. (2.3.10)

There also exists a relation between the Hodge numbers of a fourfold that reduces the

number of independent Hodge numbers to three. The origin of this relation is beyond the
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scope of this work so we will only present an outline. The holomorphic Euler characteristic

of a holomorphic vector bundle E on a compact complex manifold M is

χ(M,E) =

dimCM∑
k=0

(−1)k dimHk(M,E). (2.3.11)

Defining χq := χ(M,
∧q T ∗M) and recognising Hr(M,

∧s T ∗M) = H(r,s)(M) gives that

for fourfolds

χs =
4∑
r=0

(−1)rhr.s(M). (2.3.12)

We then make use of the Hirzebruch-Riemann-Roch index theorem [30]

χs =

∫
M

ch
( s∧

T ∗M
)
∧ Td(TM), (2.3.13)

where Td(TM) is the Todd class [44] of the tangent bundle of M . Both (2.3.12) and

(2.3.13) can be used to compute the first three holomorphic Euler numbers of the fourfold

resulting in [30, 37]

χ0 = 2 =
1

720

∫
M

(3c2
2 − c4), (2.3.14)

χ1 = −h1,1 + h2,1 − h3,1 =
1

180

∫
M

(3c2
2 − 31c4), (2.3.15)

χ2 = −2h2,1 + h2,2 =
1

360

∫
M

(9c2
2 + 237c4), (2.3.16)

where we have used that c1 = 0 and made use of Hodge number relations. The calculation

using the Hirzebruch-Riemann-Roch theorem reveals the relation 22χ0 − 4χ1 − χ2 = 0

which implies the non-trivial relation between Hodge numbers

− 4h1,1 + 2h2,1 − 4h3,1 + h2,2 = 44. (2.3.17)

We now understand the Hodge numbers for CY4. We can fully specify the Hodge data

of a fourfold using only, say, (h1,1, h1,2, h1,3) as the independent Hodge numbers with an

Euler number given by the expression χ = 6(8 + h1,1 + h3,1 − h2,1).
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3 The Calabi-Yau Landscape

The vital role Calabi-Yau manifolds play in dictating the physics of compactified theories

motivates the exploration of the landscape. This is done by choosing a method of con-

struction and exhausting all the Calabi-Yau manifolds it can yield. The result is a list of

manifolds labelled by their topological invariants. We will focus on the earliest systematic

method of construction developed in the original papers [15, 13, 32, 25] known as CICYs.

We focus on CICYs since they are well established and so have complete data sets readily

available. These data sets are of a size amicable to machine learning but small enough

that they can be handled with a laptop. In addition to this, the construction is rela-

tively simple allowing for a compact explanation. We will also give a brief outline of an

additional construction to further our understanding of the Calabi-Yau landscape. Once

the landscape is familiar, we will then be in a position to motivate a machine learning

approach.

3.1 The Complete Intersection Calabi-Yau

A straight forward way to construct Calabi-Yau manifolds is to consider submanifolds of

Kähler manifolds that obey the Calabi-Yau condition. This is because the induced metric

of a submanifold of a Kähler manifold is also Kähler. As CN is Kähler, it is an obvious

starting point. However, it is known that none of the submanifolds of CN are compact.

We instead turn to submanifolds of complex projective space which are automatically

Kähler and compact.

There is a theorem by Chow [17] that allows for a natural way to construct submani-

folds of CPN algorithmically. It states

Theorem 3.1.1 (Chow). Any analytic subvariety of a projective space is algebraic.

What this means for our purposes is that the analytic submanifolds of complex projective
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spaces may be considered as the zero locus of a finite number of polynomials in the

homogeneous coordinates zµ. We will look at submanifolds that are complete intersections

of l polynomials pi. Here complete intersection means that on the submanifold the l-form

dp1∧. . .∧dpl does not vanish. This ensures that the hypersurface described by a complete

intersection of polynomials is smooth. A complete intersection manifold is defined as the

manifold embedded by the complete intersection of the hypersurfaces described by the

polynomials.

We need to understand how the restriction that the complete intersection manifold

is Calabi-Yau translates to the polynomials. The more traditional way of doing this is

to attempt to find the globally defined and nowhere vanishing holomorphic (m, 0)-form

whose existence defines a Calabi-Yau manifold. We will instead take the approach of

explicitly computing the first Chern class of the submanifold which can be done quickly

and neatly by making use of a few tricks. This is the approach taken in Hübsch’s bestiary

[33]. To understand the more traditional method the reader is referred to Candelas [15].

We first consider the zero locus of a single polynomial p that is homogeneous with

degree d in the homogeneous coordinates of CPN . This defines a hypersurface

M = {z ∈ CPN |p(z) = 0} (3.1.1)

of dimension N − 1. Recall that sections of the hyperplane line bundle O(1) are the

homogeneous coordinates of CPN . It follows that p is a section of O(d).

Let Γa be a connection on O(d) and Xa∇a represent a tangent vector at a point of

CPN . There is then a map from TCPN to O(d) via

Xa∇ap = Xa(∂ap+ Γap) := pX . (3.1.2)

If we restrict ourselves to points on the hypersurface M only, then the mapping is holo-

morphic and independent of the choice of connection since p = 0 on M. When X is

tangential to M we have Xa∂ap = 0 along M since p vanishes everywhere on M and

so has no gradient along M. Thus, we have that (3.1.2) maps vectors of the TM sub-

bundle of TCPN to zero i.e. ker(∇p) = TM. We can use p as a local coordinate in

the embedding space around M since it vanishes at M and is nonzero away from M.

Rescaling X ′ = λX allows the map (3.1.2) to cover the range of these local coordinates
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so that locally it maps onto O(d). The map is also global since it is holomorphic and

rankO(d) = dimTCPN − dimTM.

The relevance of this discussion is revealed when we summarise it with the short exact

sequence

0 −−→ TM id−−→ TCPN |M
∇p−−→ O(d)|M −−→ 0. (3.1.3)

This allows the Chern class ofM to be computed using c(M) = c(CPN)/c(O(d)). Recall

from § 1.4.1 that c(O(1)) = 1+x. Its Chern character is then simply ch(O(1)) = ex. Using

the properties of the Chern character (1.4.6) we find ch(O(d)) = edx. By comparison (x

is a closed 2-form and the Chern forms are closed 2k-forms) with the explicit expansion

of the Chern character (1.4.7) we see

c(O(d)) = 1 + dx. (3.1.4)

As we have already computed c(CPN), we now have an expression for the Chern class of

M

c(M) =
(1 + x)N+1

1 + dx
. (3.1.5)

Expansion of this expression as a power series in x gives the first Chern class

c1(M) =
(
(N + 1)− d

)
x. (3.1.6)

The Calabi-Yau condition is then realised as a constraint on the degree of the polynomial

that d = N + 1. We see immediately that the zero locus of a degree 6 polynomial in CP5

describes a Calabi-Yau fourfold.

The next step is to extend this treatment to the complete intersection of K polynomials

of degree da, a = 1, . . . , K in CPN that define a hypersurface M of dimension N − K.

The relevant line bundle is now
⊕K

a=1 O(da). The argument used to reach the short

exact sequence (3.1.3) remains valid when generalised to
⊕K

a=1 O(da). Using this and the

identity for Chern classes of direct sum bundles (1.4.12), the Chern class ofM generalises

to

c(M) =
(1 + x)N+1∏K
a=1(1 + dax)

. (3.1.7)

From which the vanishing first Chern class condition is realised on the polynomials as

K∑
a=1

di = N + 1. (3.1.8)
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At first glance it seems that we can find at least one Calabi-Yau manifold at every N .

However, we must consider what it means for one of the polynomials to have a degree

of homogeneity equal to one. A degree one polynomial after a coordinate change can be

written in the coordinates of CPN as zN+1 = 0. This reduces the manifold to CPN−1

meaning no new Calabi-Yau manifolds can be found using degree one polynomials. With

the restriction da > 1 we find the new fourfolds

[6‖2 5], [6‖3 4],

[7‖2 2 4], [7‖2 3 3],

[8‖2 2 2 3],

[9‖2 2 2 2 2].

(3.1.9)

We have adopted the notation that the number to the left of the double vertical line is

the dimension of the projective space and the numbers to the right are the degrees of the

polynomials e.g. the zero locus of a single degree 6 polynomial in CP5 is written [5||6].

Note that the condition (3.1.8) means the number to the left of the double vertical line

can be calculated from the numbers to the right so may be omitted without ambiguity.

For the most general treatment of CICYs we must consider an embedding space that

is a product of projective spaces. This general embedding space is denoted

X = CPn1
1 × . . .× CPnmm . (3.1.10)

The hypersurfaces that define the complete intersection manifold M are themselves de-

fined by polynomials pa, a = 1, . . . , K with degree of homogeneity dra with respect to the

homogeneous coordinates of each CPnrr in the product X . The resulting complete inter-

section manifold has dimension
∑m

r=1 nr − K. We can extend the notation introduced

in (3.1.9) to describe complete intersection manifolds in products of projective space via

configuration matrices 
n1 d1

1 · · · d1
K

...
...

. . .
...

nm dm1 · · · dmK

 . (3.1.11)
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The column to the left of the double vertical line are the dimensions of the projective

spaces in X . Each column to the right of the double vertical line is the degree of a

polynomial in the coordinates of the different projective spaces that make up X . We will

see that the condition imposed by the vanishing first Chern class means the the column

to the left of the double vertical line can be omitted without ambiguity. For this reason,

when working with the configuration matrix we consider the polynomial degrees only.

Each polynomial pa is now a section of the line bundle
⊗m

r=1 Or(d
r
a) where the subscript

on the hyperplane line bundle denotes that it is over the space CPnrr . The short exact

sequence (3.1.3) remains valid when generalised to
⊕K

a=1

(⊗m
r=1 Or(d

r
a)
)

:= E so that the

Chern class ofM obeys c(M) = c(X )/c(E). Using (1.4.12) and (1.4.13) and noting that

tensor products of line bundles are line bundles, we get

c(E) =
K∏
a=1

c
( m⊗
r=1

Or(d
r
a)
)

=
K∏
a=1

(
1 + c1

( m⊗
r=1

Or(d
r
a)
))

=
K∏
a=1

(
1 +

m∑
r=1

draxr

)
.

(3.1.12)

To calculate c(X ) we use that the tangent bundle of a product manifold is the direct sum

of the tangent bundles of each manifold in the product. Thus, c(X ) is simply the product

of the Chern classes of each CPnrr in X via the application of (1.4.12). Therefore, the

Chern class of M is

c(M) =

∏m
r=1(1 + xr)

nr+1∏K
a=1

(
1 +

∑m
s=1 d

r
axs

) . (3.1.13)

Which if we expand to get the first Chern class and then apply the Calabi-Yau condition

we have the restriction on the polynomials

K∑
a=1

dra = nr + 1, ∀r = 1, . . . ,m. (3.1.14)

In the search for fourfolds there is also the additional constraint that the complete inter-

section manifold has complex dimension 4 which manifests as

m∑
r=1

nr = K + 4. (3.1.15)
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It should be noted that a configuration matrix obeying the Calabi-Yau condition does

not specify a particular manifold but rather a family of all the possible complete intersec-

tions parameterised by the space of coefficients of the polynomials. A generic choice of

coefficients would define a CICY that we say is a member of the configuration defined by

the configuration matrix. An important proof [25] tells us that each configuration contains

one deformation class of Calabi-Yau manifolds. This is where the strength of the configu-

ration matrix notation lies; key properties of a CICY such as the Hodge numbers depend

only on the configuration matrix and not on the specific choice of polynomial coefficients.

For this reason, we make no distinction between a configuration and its members.

CICYs offer a method of generating fourfolds by finding the possible configuration

matrices that satisfy (3.1.14) and (3.1.15). An important point is that it is possible for

multiple configuration matrices to describe the same manifold. For this reason, we must

be aware of equivalences when building landscape data. The most restrictive equivalence

is regarding degree one polynomials and demands that

m∑
r=1

dra > 1, a = 1, . . . , K (3.1.16)

in order to avoid generating redundant manifolds. An obvious equivalence is between

configuration matrices that differ only by permutations of rows or columns as this cor-

responds to a reordering of ambient spaces and polynomials. There are numerous other

equivalences that should be considered to avoid needless effort. Some of these are un-

derstood well and others are empirical observations. These are described thoroughly in

[15].

It is fairly straightforward to compute an expression for the Euler number of a generic

CICY directly from the configuration matrix. The same can be done for the Chern classes

and for an additional topological invariant called the intersection number [12]. To com-

pletely classify a Calabi-Yau manifold the Hodge numbers are needed also, these can

occasionally be calculated with relative ease due to their relation to the manifold’s com-

plex structure. However, there is no way to read the Hodge numbers directly from the

configuration matrix. Their calculation employs spectral sequences and requires comput-

ing line bundle cohomologies which is computationally expensive when done on a large

scale. These calculations are well documented in [33].
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3.2 Why Machine Learning?

In the search for realistic compactifications it is important that we can easily traverse the

Calabi-Yau landscape. What this means is having large data sets of Calabi-Yau manifolds

with their topological properties computed to allow for identification of manifolds that lead

to compactified theories with desirable properties. The benefits of the machine learning

approach becomes apparent when we consider the size of the landscape.

In complex dimension 1 the 2-torus T 2 is the only compact Calabi-Yau manifold.

Going to complex dimension 2 we have the only compact Calabi-Yau manifolds being the

K3-surface (Chapter 8 of [4]) and the 4-torus T 4. At complex dimension 3 the Calabi-

Yau manifold becomes important for building physical models in string theory, it should

therefore not be surprising that the landscape is dramatically more complicated than for

complex dimension 1 and 2. The number of inequivalent Calabi-Yau threefolds is in fact

unknown. The same is true for complex dimension 4 and above. It is conjectured that

the number of topologically distinct Calabi-Yau manifolds in each dimension is finite [57]

but the size of the landscape is still very much an open question. We will briefly examine

two important data sets of Calabi-Yau three and fourfolds. Other data sets exist and are

covered in [27].

CICYs offer a glimpse into the vast Calabi-Yau landscape. The first complete data set

was for the threefolds and consists of 7,890 configuration matrices [15]. The inequivalent

configurations were classified and the Hodge numbers computed [24] revealing 266 distinct

Hodge pairs (threefolds have two independent Hodge numbers). The data set of CICY4s

is substantially larger, first computed in [21] the comprehensive list numbers 921,497

configuration matrices. The Hodge numbers were then computed in [22] revealing at least

36,779 topologically distinct manifolds.

The portion of the landscape the CICYs makeup is unknown but the existence of

another method for generating Calabi-Yau manifolds implies that it is a small portion.

A method generalised by Batyrev-Borisov in [3] allows mirror pairs of Calabi-Yau hyper-

surface families to be generated from reflexive polytopes. A good introduction to this is

[18]. A crude understanding can be gleaned from the diagram
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polytope polar polytope

Laurent polynomial mirror Laurent polynomial

hypersurface mirror hypersurface.

Starting with a reflexive polytope of dimension n and following the above steps will yield

a complex dimension n − 1 Calabi-Yau mirror pair. By mirror pair we mean Calabi-

Yau manifolds that are dual to eachother via mirror symmetry, a reflection along the

diagonal of the Hodge diamond. The construction of Calabi-Yau manifolds then becomes

an exercise in finding reflexive polytopes.

The n = 4 case was first classified by Kreuzer and Sarke in [39] resulting in a list

of 473,800,776 reflexive polytopes. From this list, 30,108 Calabi-Yau threefolds with dis-

tinct Hodge pairs were found. The number of distinct threefolds is in fact much greater

than this because determining inequivalence requires additional topological data and de-

pends on how singularities in the polytopes are dealt with [38]. Recently the n = 5 case

was classified in [48] resulting in a staggering 185,269,499,015 reflexive polytopes giving

532,600,483 distinct sets of Hodge numbers after a computation taking 57,321 core hours.

The size of the Calabi-Yau landscape makes it fertile ground for the application of

modern machine learning techniques. It is important that efforts are made to establish the

potential of such an application to further our understanding of the Calabi-Yau landscape

and string theory in general. The implementation of machine learning to the Calabi-Yau

landscape can be done with two goals in mind. The first, is to evaluate its effectiveness as

a predictor for incomplete data sets in string theory. If applied to the landscape of string

vacua it could aide in targeted searches for vacua that resemble our universe. The CICY

data sets being complete means that they can be used to establish how well machine

learning techniques perform in this capacity.

We can also consider implementing machine learning to complete data sets to probe

for unseen patterns. If, for example, we are able to train a NN on a complete CICY data

set so that it can predict certain properties of the manifolds near perfectly in a fraction
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of the time it takes conventionally, this may point to the machine using a simplification

in the data that has been overlooked. For CICYs, this may lead to a conjecture relating

the Hodge numbers to the configuration matrix. Machine learning techniques have been

demonstrated to be capable of making analytic discoveries, an example of this is [45]

where they have been used to make conjectures, some of which have since been proved,

involving fundamental constants. The possibility that similar success will be found upon

application to the Calabi-Yau landscape warrants further study.
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4 Rudiments of Machine Learning

With a good understanding of the Calabi-Yau manifold and its complete intersection

construction, we are almost in a position to apply machine learning to the CICY4 data.

All that is left is to understand what is meant by machine learning. As machine learning is

a vast field with many techniques and algorithms, we will focus on a branch of techniques

known as artificial neural networks. NNs can be used in both regression and classification

problems, understanding how a NN can be applied as a regressor is the purpose of this

section. In addition to this, we shall only consider supervised learning which uses known

input-output pairs for training. References for this section are [47, 6, 34].

It is important to note that much in the field of NNs, and machine learning in general,

is not understood at a fundamental level. Precisely why a certain technique works is

often unknown since the exact processes in the NN are obscure. Instead, we must use a

heuristic understanding to offer explanations. The techniques presented in this section

are well established in the field and have widely accepted explanations, but it should be

kept in mind that much is left to understand. Research into fundamental explanations

and a unified theory in machine learning is still very much underway [40, 42].

It is useful to first understand the basic problem a NN is designed for and how it

approaches it. A NN is used in regression problems when there is a large but incomplete

data set of input-output pairs which we shall label {xi, yi}. What is meant by a large

data set depends on the nature of the data, for example, if the input is high dimensional

a larger number of them will be needed to make a NN viable. The available input-output

pairs are used to train the NN so that it can recognise features of the data and learn how

the outputs are related to the inputs. The goal of the training process is for the NN to

adjust its parameters so that it can learn generalities of the data. If it has been successful

in this the NN will be able to predict the output of unseen inputs by recognising the

generalities it has learnt. A NN can be thought of as performing a nonlinear regression
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of some complicated function that maps the inputs to the outputs. It is best suited

for problems of larger dimensions where more conventional regression methods become

untenable.

4.1 Neural Networks

NNs are a common machine learning technique modelled after their biological namesake.

An input signal passes through connected layers activating a certain combination of neu-

rons to produce a final output signal. For a regression problem a NN simply takes some

n-dimensional input and gives a number f : Rn −→ R.

Remark. In what followings there is no longer a notion of complex coordinates so we

will repurpose the index notation introduced in § 1. We will use Latin indices to denote

elements of a set and Greek indices to denote components of a vector or matrix.

To understand the whole network we must first look at a single neuron. A neuron is

defined by an activation function σ, a weight vector wi, and a bias b. It takes an input

vector xµ and produces the output σ(wµxµ + b) := ŷ, where we make use of Einstein

summation notation. This is best understood with the diagram in Figure 4.1.

Input Layer

(σ,wµ, b)

Neuron

w
1

w2

w3

σ(w1x1 + w2x2 + w3x3 + b)

x1

x2

x3

Figure 4.1: Diagram of a single neuron with 3 inputs. The input layer is used to feed the inputs

into the neuron.
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The activation function is used to determine how much a signal ’activates’ the neuron.

Many functions have seen use as activation functions, some common choices are

Identity σ : R −→ R σ(x) = x,

Sigmoid σ : R −→ (0, 1) σ(x) = (1 + e−x)−1,

Tanh σ : R −→ (−1, 1) σ(x) = tanh x,

ReLU σ : R −→ R+
0 σ(x) =


x x ≥ 0

0 x < 0

.

(4.1.1)

The correct choice of activation function is not always obvious but some are better suited

to certain types of data and whether the network is used for classification or regression.

The weights dictate the weighting of each signal in the sum that gets passed to the

activation function for output. These parameters are adjusted in the training process to

allow the neuron to recognise features in the data. The bias is another parameter that

is varied in the training process. It is used to offset the weighted sum and ensure that

the signal that passes to the activation function remains in the ’active’ region. This is

best understood by considering the sigmoid function. Having a bias prevents inputs to

the sigmoid that are too large from getting stuck outputting very close to either 0 or 1.

We are now ready to start building a network by connecting collections of neurons

into layers. A layer is a group of neurons all with the same activation function and all

connected to the same inputs. If there are k neurons in a layer then there are k outputs.

When neurons are arranged like this, all the weight vectors wµ of the neurons in the layer

can be joined into a single weight matrix Wµν . The reason for doing this is that the output

for the µ-th neuron can be written compactly as

lµ := σ(Wµνxν + bµ). (4.1.2)

Taking multiple layers and connecting them, by which we mean making the output of

all the neurons in one layer the input for each neuron in the next layer, creates a fully-

connected NN. Each layer has its own weight matrix, bias vector, and activation function.

The output of the µ-th neuron in the i-th layer l(i) of a NN with s total layers is denoted

l
(i)
µ so that l

(0)
µ = xµ and l

(s)
µ = ŷµ. We then have for the outputs at each neuron

l(i)µ = σ(i)(W (i)
µν l

(i−1)
ν + b(i)

µ ). (4.1.3)
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When building a NN by connecting layers in this way we must always include an input and

output layer. The input layer simply feeds the input data into the network. If we consider

the constituents of this layer as neurons each would have a bias of zero, a single weight of

one, and the identity activation function. These do not get adjusted in the training of the

network. If the NN is to perform regression, the output layer must be a single neuron with

the identity activation function. The output of the network is then a single, unrestricted

value. This arrangement of neuron layers is a fully-connected feedforward NN as data

flows from the input to the output layer. The diagram in Figure 4.2 is elucidating.

Input Layer Hidden layer 1 Hidden layer 2 Output layer

x1

x2

x3

ŷ

Figure 4.2: Diagram of a feedforward fully-connected NN with two hidden layers, a three-

dimensional input, and a single output.

It is useful to establish some terminology relating to the architecture of a NN. Any

layers in between the input and output layers are called hidden layers. NNs with many

hidden layers are called deep while NNs with many neurons per layer are called wide. The

weights and biases of the network are optimised during training while other parameters

are set at design and do not change during training. These fixed parameters are called

hyperparameters while the weights and biases are often referred to as just parameters.

Although the hyperparameters are not changed during the training, they are adjusted

after training and evaluation of a NN to find their optimal values. Note that the number

of layers and the number of neurons in the layers are considered hyperparameters.
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4.2 Backpropagation in Neural Networks

Once a NN is initialised it must go through a training process where known input-output

pairs are used to adjust the weights and biases of the network. To find the optimal

parameters we need to define a loss function that measures how well the NN is predicting

the outputs. A typical choice of loss function is mean squared error but many others

are viable. Training the NN is done by gradient descent where a minimum for the loss

function in the parameter space is found by following the direction of steepest descent in

discrete steps. For a loss function L and parameters θ
(i)
µ , a single iteration of gradient

descent is the adjustment

θ(i)
µ −→ θ(i)

µ − η
∂L

∂θ
(i)
µ

, (4.2.1)

where η is an important hyperparameter called the learning rate. The choice of η dictates

the size of the adjustment in parameter space which is vital in the search for the loss

function’s global minimum. Fortunately, there are many adaptive algorithms available

for choosing an appropriate learning rate [47].

The algorithm used to evaluate the gradients used in (4.2.1) is called backpropagation.

It is called this since input data is first fed forward through the network so that the outputs

at each layer are computed and stored, and then a backward pass is performed where the

gradients are calculated starting with the last layer and working backwards. We say that

gradient descent is performed via a backpropagation algorithm.

To understand how the gradients are calculated, we consider the example of a NN

with s layers trained on a single input-output pair of arbitrary dimensions (x,y) and we

shall ignore the biases. We choose a mean squared error loss function

L :=
1

ns

ns∑
µ=1

(yµ − l(s)µ )2, (4.2.2)

where ni denotes the number of neurons in the i-th layer. Note that for a regression

problem we would have ns = 1. For compactness in what follows we write

z(i)
µ :=

ni−1∑
ν=1

W (i)
µν l

(i−1)
ν (4.2.3)

so that l
(i)
µ = σ(i)(z

(i)
µ ). We also turn off summation notation for this example. In the

forward propagating stage, the input is fed into the network and l
(i)
µ and z

(i)
µ are computed
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for all layers and the values stored. In the backward pass, the gradients of the loss function

with respect to the weights is computed using this information.

The first thing to note is that L depends on a weight W
(i)
µν only via the summed input

z
(i)
µ to the neuron labelled with µ. This means that the chain rule can be applied as

∂L

∂W
(i)
µν

=
∂L

∂z
(i)
µ

∂z
(i)
µ

∂W
(i)
µν

. (4.2.4)

It will be helpful to use the notation

δ(i)
µ :=

∂L

∂z
(i)
µ

. (4.2.5)

Looking at (4.2.3) we see that the second factor in (4.2.4) is given by

∂z
(i)
µ

∂W
(i)
µν

= l(i−1)
ν . (4.2.6)

Substituting (4.2.5) and (4.2.6) into (4.2.4) gives

∂L

∂W
(i)
µν

= δ(i)
µ l

(i−1)
ν . (4.2.7)

All of the l(i) are known from the forward pass, so for the derivatives to be evaluated in

the backward pass we need only to calculate the value of δ
(i)
µ for the neurons in the output

layer and in each hidden layer of the network. Calculating δ(i) at the output layer can be

done explicitly giving

δ(s)
µ = − 2

ns

(
yµ − σ(s)(z(s)

µ )
)
σ′(s)(z(s)

µ ), (4.2.8)

which can be computed easily from the information gathered in the forward pass.

To evaluate δ(i) for the hidden layers we must work recursively. We employ the chain

rule to calculate δ(s−1)

δ(s−1)
µ =

∂L

∂z
(s−1)
µ

=
ns∑
ν=1

∂L

∂z
(s)
ν

∂z
(s)
ν

∂z
(s−1)
µ

=
ns∑
ν=1

δ(s)
ν

∂z
(s)
ν

∂z
(s−1)
µ

=

( ns∑
ν=1

W (s)
νµ δ

(s)
ν

)
σ′(s−1)(z(s−1)

µ ).

(4.2.9)

We have used that variations in z(s−1) give rise to variations in L only through z(s). Note

that the summation is over the first index since information is now propagating backwards
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through the network. By induction we can produce an expression for any of the hidden

layers δ(i) known as the backpropagation formula

δ(i)
µ =

( ni+1∑
ν=1

W (i+1)
νµ δ(i+1)

ν

)
σ′(i)(z(i)

µ ). (4.2.10)

Using backpropagation we can now compute the gradients (4.2.7) for every neuron. The

weights can then be adjusted accordingly (4.2.1) and one iteration of gradient descent has

been completed. The biases can be incorporated into the weight matrix by including an

extra input fixed at +1, so no additional complexity is introduced by including biases.

Note that the above is an example of one step in a stochastic gradient descent where

the parameters are adjusted after each input-output pair has been processed. It is most

common that the input-output pairs are processed in batches and the parameters are

adjusted after each batch. It should also be noted that during training the full input-

output data set is passed through the network multiple times. The full training data

being processed once comprises one training epoch.

4.3 Training and Evaluating Neural Networks

During supervised learning, the NN is provided with a number of seen input-output pairs.

This is typically split into a training set, a validation set, and a test set. The majority

of the data is usually contained in the training set with the test and validation set being

similar sizes.

The training set is used to perform gradient descent and optimise the trainable pa-

rameters of the network as discussed in § 4.2. The validation set is used to evaluate

the performance of the NN while the hyperparameters are being adjusted and the test

set is used to evaluate the final performance after which the hyperparameters must be

unchanged.

To understand why the seen data is split like this we need to look at underfitting

and overfitting. Underfitting occurs when a network is not complex enough to learn the

general features of the input set and performs poorly because of this. This is generally

caused either by having a NN with too few neurons, or by training the NN for too few

epochs. Overfitting happens when the NN becomes too specialised to the training data
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and fails to learn general features which leads to poor perfomance on unseen data. This

can occur if there are too many neurons as then the NN has the capacity to ’memorise’

the training set causing it to struggle with unseen data. It can also occur if too many

epochs are used in the training.

During the training of a NN the performance against the training set should increase

convergently with each epoch. This is happening as the gradient descent guides the

network through the paramter space to a minima of the loss function. To avoid overfitting,

we use the validation set to evaluate how the NN performs on unseen data. This is

important because it allows us to recognise when the NN is getting too spectialsed to

the training set. The performance of the NN against the validation set is evaluated

after each training epoch. If the error against the validation set stops improving, the

training is halted. This is a technique known as early stopping. When early stopping is

implemented we often allow for a set number epochs with no improvement before halting

to allow for fluctuations. We call this number the patience. After the NN has finished

training the performance against the validation set is also used to make adjustments to the

hyperparameters. Finding the optimal hyperparameters is the main difficulty in building

a effective NN. There are some guiding principles in this search but it is mainly a task of

trial and error. There also exists many hyperparameter optimisation algorithms (HPOs)

that can be read about in [34].

The final performance of the NN is evaluated with the as of yet unused test set. It is

important that the test data is detached from the construction of the NN to ensure that

it is representative of truly unseen data.

An additional technique for preventing overfitting is to make some of the neuron layers

dropout layers [49]. For each training epoch a dropout layer will temporarily disable some

of its neurons so that their output is ignored on the forward pass and the weights do

not get adjusted on the backward pass. The neurons in a dropout layer to be disabled

are chosen randomly and the fraction of the layer that is disabled is a hyperparameter.

Randomly removing neurons forces the network to look for more features in the inputs

rather than relying on a specific set of weights that may be particular to the training

set. By forcing other representations of the input data to be learnt, the NN may perform

better on unseen data. In terms of gradient descent, dropout layers mean that more of
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the parameter space is explored so that the network is less likely to get stuck in local

minima of the loss function.
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5 Predicting Hodge Numbers

In this section a study of the viability of NNs as a tool in the Calabi-Yau landscape is

undertaken. To do this, we attempt to use NNs to predict unseen Hodge data for CICY4s.

The purpose of this is not to show that NNs can be of immediate application, but to

develop a precedent for how the techniques of machine learning can intersect with the

study of string theory. Work on this began in [26] where it was suggested that machine

learning may be applicable to the string landscape and some basic NNs were built to

demonstrate this point. Further work in [9, 10] showed that NNs can learn topological

data of CICY3s, the Hodge number h1,1 of unseen CICY3s were predicted correctly to an

accuracy of 0.81± 0.01. The review [47] covers many other machine learning techniques

that have seen application in various areas of string theory.

The CICY4 data set is chosen as it is a natural continuation on the work done for

CICY3s. The fourfold data is of a similar form but is much larger and has a far greater

range of Hodge numbers so will provide new challenges for a NN. Studying the CICY4

data is an important step to establishing the viability of a NN as a tool but is sparsely

investigated in the literature. Learning the Hodge data for CICY4s is briefly mentioned in

[26] where h1,1 for a small portion of the data is learnt using a generic NN with promising

results. Another study [28] used a NN to predict with high accuracy if a CICY4 is

elliptically fibred. This is a question of great importance to F-theory compactifications

but is a binary query so not a rigorous test of a NN’s viability as a tool. This study

presents a complete evaluation of the performance of NNs on the Hodge data of CICY4s.

We will attempt to create a NN for each of the four Hodge numbers the is capable of

predicting a Hodge number of an unseen CICY4 configuration matrix. The approach

taken will differ slightly to the literature where the performance against the entire data

set is often used to tune the NNs. Here, we will consider a fraction of the CICY4 data

to be known and test against the entire data set only after the development phase of the
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NNs is complete. By working this way, the viability of NNs as a tool for incomplete data

sets is better evaluated. Using the entire data set in the development is best suited to

probing for unknown underlying structure.

It should be noted that this work will not be a definitive investigation since the tech-

niques used are far from what is considered cutting edge today. In addition to this,

computing resources were limited so the hyperparameters of the final NNs can likely be

optimised further. The accuracies obtain in this study for the prediction of Hodge num-

bers can almost certainly be surpassed. For these reasons, this work should be considered

as an exploration of what the intersection of string theory and machine learning may yield

in the future. This goal motivates a presentation of the work that puts some focus on

how NNs were built and applied to the CICY4s as well as the results of their application.

5.1 CICY4 Data

The CICY4 Hodge data has been computed in full in [21, 22] and is available from:

www-thphys.physics.ox.ac.uk/projects/CalabiYau/Cicy4folds. The data includes

the configuration matrix entries, the Euler number, and the Hodge numbers. The list

numbers 921, 497 CICYs but 15, 813 of them have block diagonal configuration matrices.

This means that they they describe product manifolds. These are considered redundant

since to have complex dimension 4 they must be either T 8, T 2 × CY3, T 4 × K3, or

K3×K3 and so their Hodge data follows from Calabi-Yau manifolds of lower dimension.

With these excluded we are left with a data set of 905, 684 configuration matrix-Hodge

number pairs for each Hodge number.

The distribution of the CICY4 Hodge data is plotted in Figure 5.1. The Euler number

is included also as it helps in realising the topological variety in the data set. The Hodge

numbers are generally clustered at the lower end and fall off for higher Hodge numbers.

We see that h3,1 and h2,2 are likely going to be the most difficult for a NN to learn as they

have a large range of possible outputs, 235 and 304 respectively compared to 23 and 31

for h1,1 and h2,1 respectively. The mean values for the Hodge numbers and their maximal

and minimal values are

〈
h1,1
〉

= 10.124
1 ,

〈
h2,1
〉

= 0.81733
0 ,

〈
h3,1
〉

= 39.6426
20 ,

〈
h2,2
〉

= 2411752
204 .
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The configuration matrix is represented in the data set with a two-dimensional array

that contains the polynomial degrees e.g. for three polynomials in (CP3)2 ×CP5 the con-

figuration matrix may look like {{0,1,1},{1,0,1},{1,3,2}}. We note that the largest

fourfold configuration matrix, not including the column for the dimensions of the projec-

tive spaces, is 16 × 20. The NN requires that all the inputs are of the same dimension

so that the input layer can be initialised appropriately. To ensure this we make all our

configuration matrices into 16× 20 matrices by padding with zeros. We then flatten the

16×20 matrices into a one-dimensional array with 320 entries. We are then left with four

sets, one for each Hodge number, of input-output pairs that for the Hodge number h are

of the form

D := {d1, . . . , d320} −−→ h, (5.1.1)

where di ∈ Z : di ∈ [0, 6].

Figure 5.1: Distribution of Euler number (top), h1,1 (middle left), h2,1 (middle right), h3,1

(bottom left), and h2,2 (bottom left) in the CICY4 data computed in [22].
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5.2 Creating and Training Neural Networks

To create NNs capable of predicting Hodge numbers we use the Tensorflow library for

Python. To interface with this package we use the Keras library. This is a high-level

interface that allows NNs to be built in layers. We will use the Sequential model where

each layer of a feedforward fully-connected NN is specified. All code used is original and

written in Python using these libraries.

The difficulty in creating an effective NN is in choosing choosing the optimal hyper-

paramters. The hyperparameters we will consider are: the number of layers, the number

of neurons in each layer, the activation functions, and the dropout rates. Finding the op-

timal hyperparameters is a task of trial and error which is often automated by employing

HPOs. We will choose the hyperparamters by hand as we would like a familiarity with

the NNs and an understanding of their development process. In addition to this, we lack

the computing resources to properly apply HPOs to NNs for all four Hodge numbers.

In order to create the NNs by hand, we divide the CICY4 data as follows

training set : validation set : stoppping set : test set. (5.2.1)

The union training set ∪ validation set ∪ stopping set is the seen data. The performance

against the stopping set is evaluated after each training epoch and used to dictate when

early stopping is triggered. The validation set is used to tune the hyperparamters of the

NN between trainings. Dividing the usual role of the validation set between a stopping

set and a smaller validation set ensures the the NN does not become too specialised to

any one set of data.

To create the NNs we consider 10% of the CICY4 data, chosen at random, to be

known, simulating a scenario where we are presented with an incomplete data set. The

remaining 90% of the data is then allocated to the test set and we must divide the 10%

among the the seen data sets. We make the split of the seen data into training, validation,

and stopping as 70 : 15 : 15. Note that after the hyperparameter tuning is complete the

validation and training set are merged for the final training and evaluation against the

test set.
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Figure 5.2: Training curves for h1,1 (top left), h2,1 (top right), h3,1 (bottom right), and h2,2

(bottom left) showing the mean absolute error of the networks as a function of training epoch.

With the data partitioned in this way, four NNs are created with their hyperparameters

each tuned to one of the four Hodge number data sets. The architectures of these NNs

are documented in Appendix A. The networks are trained with a mean squared error loss

function, using the ADAM optimiser [36] for gradient descent, and until early stopping

with a patience of 20 is triggered. Each NN takes approximately 2 hours on a laptop CPU

to train.

Before evaluating the performance of the NNs against the Hodge data, we would like

to examine the training curves found in Figure 5.2. We note that the fluctuations in the

h2,1 training curve are due to the use of the ReLU activation function in the network and

are not indicative of data set. The curves for h3,1 and h2,2 appear to level off early in the

training before converging to an improved accuracy. This could be suggestive of the maps

D −→ h3,1 and D −→ h2,2 being more complex than for the other Hodge numbers but could

also just be a result of having less distinct configuration matrices per Hodge number in

the training set. For h2,2, an indication of the former being the case is that during the
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creation process the network would often get stuck outputting the average Hodge number

for every input. This means that the NN cannot recognise any generalities in the input

data and is reverting to outputting the average to minimise the loss function.

5.3 Evaluating Neural Networks

To evaluate the ability of the NNs to predict Hodge numbers we will first look at the

accuracies and predicted distributions of the Hodge numbers for the case where the 10%

of the data used for creating the NNs is taken as seen.

5.3.1 Prediction Accuracies

The final performance of the NNs can be seen in Table 1. By accuracy, we mean the

likelihood that the predicted Hodge number rounded to the nearest integer is correct.

For h1,1, the NN is able to predict the Hodge number of the unseen test set configura-

tion matrices with an accuracy of 0.82. This is an impressive result but an 18% chance of

an incorrect prediction cannot be considered reliable. The NN for h2,1 performed similarly

with an accuracy reduced approximately in proportion to h2,1’s greater range of outputs.

The results of these NNs suggests that machine learning is best suited to identifying

candidates for conventional computations to produce data sets with desirable properties,

rather than creating entire data sets independently.

We should note that there exists a simple relation between the configuration matrix

and h1,1 for favourable CICY4s. A favourable CICY is one where the second de Rham

cohomology class descends one-to-one from the ambient space that is the product of

Table 1: Summary of accuracies and mean squared errors when trained with 10% of the data

seen. Errors are obtained by repeating the training and prediction 5 times.

Accuracy MAE

h1,1 0.820± 0.006 0.27± 0.01

h2,1 0.633± 0.012 0.72± 0.01

h3,1 0.159± 0.002 2.76± 0.01

h2,2 0.036± 0.004 11.39± 0.19
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projective spaces. This means that b2 = h1,1 ≥ m for a favourable CICY4 in a product

of m projective spaces [25]. For the CICY4 data (which is labelled as favourable or not)

we find that 54% are favourable with h1,1 = m. So to learn h1,1 for these CICY4s the

NN would need to learn how to recognise the number of rows in the configuration matrix.

We need to check if this is happening to establish if the h1,1 results can be considered

representative of a NN’s performance on generic data sets in string theory. To do so the

accuracy of the NN in predicting the favourable CICY4s only is evaluated. This yields

an accuracy of 0.909± 0.005, somewhat higher than for the full test set. This increase in

accuracy can be partly attributed to the favourable CICY4s having h1,1 ∈ [1, 16] where

the NN performs better. These results suggest that the NN is not directly exploiting the

favourable h1,1 restriction.

Both h3,1 and h2,2 perform significantly worse than h1,1 and h2,1, highlighting the

limitations of NNs. That is, if there are too few seen inputs relative to the output

dimension, the network will perform poorly. In fact, the h2,2 NN would’ve achieved a

higher accuracy ( ∼ 10%) had it outputted the modal value of 204 for all unseen inputs.

The mean absolute error for the Hodge number predictions is promising. On an

incorrect prediction, the NN will often predict a Hodge number relatively close to the

true value. This is a useful since it could allow for a subset of configuration matrices

where it is likely that one with a desired Hodge number resides to be identified. This

reinforces the notion that machine learning may have a role in string theory as a tool that

guides computation in landscapes too large for complete classification.

The difference in performance between the NNs appears to approximately scale in-

versely with the number of possible Hodge numbers. There are too few data points to

make the conclusion that none of the Hodge numbers are intrinsically more complex than

the others but the data does seem to suggest this. A study of higher dimensional CICYs

would address this properly.

5.3.2 Predicted Distributions

To examine the performance of the NNs more closely we look at the predicted Hodge

number distributions for the case where 10% of the data is seen. These can be seen in

Figure 5.3. Overall, the NNs are able to reproduce the true distributions quite well. This
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is due to the networks’ tendency to make incorrect predictions near to the true Hodge

number.

Figure 5.3: Predicted and true distributions for h1,1 (top left), h2,1 (top right), h3,1 (bottom

left), and h2,2 (bottom right) with 10% seen data.

The predicted distributions for h1,1, h3,1, and h2,2 share a similar relationship with

their respective true distributions. They match with the true distribution well near the

modal Hodge number but fail to predict the Hodge numbers on the tails. For the h2,1

distribution the discrepancy between predicted and true is spread evenly throughout the

Hodge numbers, interestingly with some Hodge numbers beyond the range the NN has

seen being predicted. The reason for this difference is that the h2,1 NN is the only one

to use ReLU activation functions, the others use sigmoids. When sigmoid activation

functions are used, the inputs to the output layer are restricted to (0, 1) so that the

weights in the output layer have to forgo significant performance on the most common

Hodge numbers just to ensure it can output extremal values. The ReLU can output any

non-negative number so that the output layer can produce extremal values from its inputs

without needing significant adjustment to the weights. This highlights the requirement

that a NN is purpose built for a problem. If the desirable Hodge numbers are at the tails
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ends of the seen data, then the hyperparameters of the NN must be chosen to maximise

performance against those numbers.

5.3.3 Learning Curves

To understand how the performance changes with the fraction of the CICY4 data that

is seen by the NNs we look at the learning curves. These can be seen in Figure 5.4.

Note that it would be informative to extend the seen data tested beyond 30% but time

constraints prevented this as the data point at 30% took approximately a day on a laptop

CPU to compute.

Figure 5.4: Learning curves for h1,1 (top left), h2,1 (top right), h3,1 (bottom left), and h2,2

(bottom right) showing the accuracy of the NNs as a functions of the fraction of data seen.

Error bars are obtained by repeating the training and prediction 5 times.

As expected, a larger training set improves the performance of the NNs. The learning

curve of the h1.1 NN is the only one to show significant improvements in performance,

reaching an accuracy of 0.93 with 30% of the data seen. Considering that the h1,1 NN

can likely be optimised further, this suggests that it may be possible to learn h1,1 near

perfectly. Achieving near perfect accuracy would make machine learning a much more
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powerful tool for model building and open up the possibility of using it to reveal hidden

relations in string theory data sets. Although the NNs for other Hodge numbers do

improve with more seen data, it is not by enough to elevate machine learning beyond a

guiding role in model building. Take the h2,1 NN for example, increasing the accuracy

from 0.59 to 0.66 by increasing the seen data from 5% to 30% does not change how we

would use the predictions from the NNs.

A general remark from the learning curves is that it is important to maximise the

amount of seen data available. The best way to do this is to have more of the data set

computed but when this is not possible there are alternative ways. The seen data can be

enlarged in a process called data augmentation. For CICYs this would mean including all

permutations of the configuration matrix in with the original seen data. Such techniques

are not used in this work but a successful application of them to CICY3s can be seen in

[9].
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Conclusion

In this dissertation we gave a review of topics from complex geometry necessary for

understanding the Calabi-Yau manifold. The Calabi-Yau manifolds was then introduced

and we saw how it enters the field of string theory through the compactification of the

heterotic string. We then described how Calabi-Yau manifolds can be constructed as

complete intersections of polynomials in projective spaces. The notion of the Calabi-Yau

landscape was explored briefly and a machine learning approach to it was motivated. The

basic principles behind NNs were then explained.

After presenting many concepts important to understanding machine learning and the

Calabi-Yau landscape, we undertook an investigation into the applicability of NNs to the

CICY4 Hodge data, something that is absent in the literature. The aim being to further

establish the role of machine learning in string theory. We found mixed success with

accuracies for a NN that has seen 10% of the CICY4s as high as 0.82 for h1,1 and as low

as 0.04 for h2,2. The results suggest that machine learning techniques can be used to guide

model building efforts by identifying promising regions in the landscape of string theory

vacua. The success of the NN in h1,1 prediction indicates that machine learning may even

be applied to make conjectures about data sets in string theory.

Further work on the application of machine learning to the CICY4 Hodge data would

require making use of more advanced techniques such as data augmentation, utilisation

of HPOs, or experimentation with convolutional NNS. A recent study [20] was able to

model a NN on Google’s Inception model [50] that could predict h1,1 of the CICY3s with

an accuracy of 0.97 after having seen 30% of the data. Application of such a NN to the

CICY4 data may yield interesting results. In a more general sense, it is important that

we experiment with machine learning in the landscape of string theory vacua so that its

role in string theory can be better established. By doing this, we might hope that string

theory will thrive in the age of big data.
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A Neural Network Architectures

Figures A.1 and A.2 show the NN architectures used in § 5. The NNs are built using

the Sequential class in Keras. Dense (fully-connected) layers are labelled with their

activation function and an identifying number if similar layers exist. Dropout layers are

labelled with their dropout ratio and an identifying number if similar layers exist.

Figure A.1: Neural networks used for h1,1 (left) and h2,1 prediction (right).
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Figure A.2: Neural networks used for h3,1 (left) and h2,2 prediction (right).
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