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Abstract

The development of a quantum theory of gravity has been ongoing in the theoretical

physics community for about 80 years, yet it remains unsolved. In this dissertation,

we review the loop quantum gravity approach and its application to cosmology, better

known as loop quantum cosmology. In particular, we present the background formalism

of the full theory together with its main result, namely the discreteness of space on the

Planck scale. For its application to cosmology, we focus on the homogeneous isotropic

universe with free massless scalar field. We present the kinematical structure and the

features it shares with the full theory. Also, we review the way in which classical Big

Bang singularity is avoided in this model. Specifically, the spectrum of the operator

corresponding to the classical inverse scale factor is bounded from above, the quantum

evolution is governed by a difference rather than a differential equation and the Big

Bang is replaced by a Big Bounce.
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1 INTRODUCTION

1 Introduction

Quantum mechanics as a field was established in the late 19th century when Max Planck

made a formal assumption that energy was transferred discretely in order to derive his

blackbody radiation law. Then, Einstein used this idea to explain the photoelectric

effect, followed by Bohr, who employed the idea of quantised energy to develop his

atomic model. It was not long before physicists of the era realised that the concept plays

a fundamental role in describing nature. Over time, quantum mechanics was refined

and extended. Several quantisation procedures were developed, for instance, Dirac’s

canonical quantisation [1] and Feynman’s path integral formulation [2]. Eventually,

these developments led to the U(1)× SU(2)× SU(3) standard model of particle physics.

Around the same time as the quantum revolution began, there was another

revolution taking place. Einstein’s theory of special relativity, which was later

generalised to his theory of general relativity, transformed how space and time were

viewed. Space and time were united into a single entity known as spacetime, and

gravitational effects were incorporated into the curvature of spacetime. More

importantly, spacetime itself was no longer a fixed background in which physics takes

place. Instead, it was promoted to a dynamical entity influenced by the distribution of

matter in it. The relationship between spacetime and matter is governed by the

Einstein equations

Gµν ≡ Rµν −
1

2
Rgµν = Tµν

whereGµν is the Einstein tensor,Rµν is the Ricci tensor that encodes some information

about the curvature of spacetime given by the metric gµν , R is the Ricci scalar and Tµν

is the stress-energy tensor that encodes how matter is distributed in spacetime.

General relativity, however, is a purely classical theory. It does not incorporate any

idea of quantum mechanics into the formulation. As early as 1916, which was only

one year after Einstein finalised the theory, he pointed out that quantum effects must

lead to modifications in general relativity [3]. The development of a quantum theory of

gravity (or quantum qravity for short) began. Despite various efforts and ideas being

put forward, there has been no single complete theory of quantum gravity until today -
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1 INTRODUCTION

99 years after general relativity was completed.

There are several reasons why the development of a suitable theory has been very

difficult. Firstly, the effects of quantum gravity are expected to be significant on the

Planck scales:

Planck energy, EP ≡
√

~c5

G
≈ 1.22× 1019 GeV

Planck length, lP ≡
√

~G
c3
≈ 1.62× 10−33 cm

Planck time, tP ≡
√

~G
c5
≈ 5.39× 10−44 s

which are very remote from everyday life. In fact, even the Large Hadron Collider

(LHC), which collides beams of protons on an energy scale of TeV, is nowhere near

the regime of interest. As such, we have neither direct observational nor experimental

results to guide us in our pursuit of a theory for quantum gravity. This also means that

it will not be easy to test the prediction of quantum gravity theory.

Secondly, quantum mechanics and general relativity are counter-intuitive, or at least

the ideas are not easily digested. Thus, there is a high probability that the combination

of the two will not be intuitive either. Physicists, then, have to turn their attention to

what they believe is true or important among the ideas in current theories and work for

a mathematically consistent theory of quantum gravity.

Thirdly, there are apparent and genuine conceptual incompatibilities and technical

difficulties between quantum mechanics and general relativity. For example, quantum

mechanics is probabilistic in nature, while general relativity is deterministic. In

addition, quantum mechanics is usually formulated in the presence of a background

metric, while in general relativity the metric itself is dynamic.

Having said that quantum gravity effects are very remote from everyday life, why

then do we bother constructing a theory of quantum gravity? Firstly, we note that the

Einstein equations have the stress-energy tensor of matter on the right-hand side. In

this expression, Tµν is purely classical. The standard model, on the other hand, tells us

that matters in the universe are best described by quantum mechanics. So, the Einstein
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1 INTRODUCTION

equation must somehow be modified to accommodate this fact. The modification may

eventually lead to non-trivial and surprising consequences.

Secondly, the theory of general relativity on its own is incomplete. The presence

of singularity in general relativity means that the theory breaks down somewhere near

the singularity. With respect to Big Bang singularity, for instance, the energy density

of matter diverges. Before reaching this point, the universe is very small and dense,

implying that both quantum mechanics and general relativity are required to describe

the situation.

Loop Quantum Gravity

Loop Quantum Gravity [4, 5, 6, 7, 8, 9, 10] is one of the approaches to achieve the goal.

It originates from the attempt to quantise general relativity using canonical methods.

As a result of starting from general relativity and taking the lessons from it seriously

[10], one is led to a mathematically rigorous, non-perturbative background independent

theory of quantum gravity.

In loop quantum gravity, a basis state |s〉 describing space is represented by a

collection of connected curves known as a knotted spin network (s-knot) state. An

example of such a state is shown in Figure 1. This will be reviewed in more detail in

Section 3 later. The curves are initially defined to be embedded in a Riemannian

manifold Σ. However, due to the diffeomorphism invariance inherited from general

relativity, the positions of the curves on the manifold lose their meanings. Important

information is encoded in the combinatorics between the structures associated with the

curves and their meeting points.

Even though it is not yet complete, the theory already gives some important

insights on the nature of space on the Planck scale. Specifically, it predicts that space is

indeed granular on such a scale. This prediction follows from the discovery that the

operators corresponding to classical area and volume have discrete spectra

[12, 13, 14]. By the standard interpretation of quantum mechanics, this suggests that

the physical measurement of area and volume will give quantised results.
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1 INTRODUCTION

Figure 1: (Left) An example of an s-knot state, |s〉. The curves are referred to as links,
while their meeting points, represented as dots in the diagram, are referred to as nodes.

(Right) The interpretation of |s〉 as quanta of space it describes. This figure is taken
from [11].

The spectrum of the area operator depends only on the SU(2)-spin associated with

the links in |s〉, while that of the volume operator depends only on the “intertwiner”

associated with the nodes. These results offer a compelling physical interpretation of

the s-knot state. It can be viewed as a set of quanta of space (represented by the nodes),

each with a particular size, connected by the surface (represented by the links) [7]. This

interpretation is illustrated in Figure 1.

In Section 3, we will review the kinematical structures of the theory. Then, these

important results will be made more precise. In particular, the spectra of area and

volume operators will be presented. Then, we will briefly review the implementation of

an important operator, namely the Hamiltonian constraint, which is necessary to obtain

a spacetime picture of loop quantum gravity instead of just space. This part of the

theory, however, is one of the main open problems yet to be solved [7]. As such, the

physical interpretation is not very clear.

Loop Quantum Cosmology

An important area of research closely related to loop quantum gravity is loop quantum

cosmology [15, 16, 17, 18, 19]. In this line of research, the methods from loop quantum

gravity are applied to a symmetry-reduced setting, specifically to cosmology. In this

way, one is able to avoid some technical difficulties inherent to the full theory. Also,

the setting is well-suited to address the deep conceptual issues in quantum gravity such

as the problem of time and extraction of dynamics from a theory that has no “time
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1 INTRODUCTION

evolution”. More importantly, it opens up the possibility of addressing quantum gravity

theories with observations .

The main result in loop quantum cosmology is the resolution of the classical Big

Bang singularity in some simple models of cosmology [20, 21, 22, 23]. There are two

aspects in the resolution: (i) The operator corresponding to the inverse scale factor in

the classical limit is bounded from above. This resolves the divergent quantities at the

Big Bang. (ii) The evolution of the universe does not suddenly “cut off” at the Big

Bang. One can continue to model the evolution of the universe beyond the classical

singularity point, leading to a pre-Big-Bang universe.

We shall begin by reviewing some aspects of general relativity that are important

to the discovery and development of loop quantum gravity in Section 2. In particular,

the Hamiltonian formulation will be presented, followed by the introduction of the

Ashtekar-Barbero variable, holonomy and flux. After reviewing loop quantum gravity

in Section 3, we will proceed to review loop quantum cosmology in Section 4. Finally,

we will conclude with some remarks on aspects of both lines of research that are not

discussed here, including some important open problems.
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2 GENERAL RELATIVITY

2 General Relativity

In general relativity, spacetime is described by a metric field g(x) on a background

manifoldM. The dynamics of g(x) is encoded in the Einstein-Hilbert action

SEH [g] =
1

16πG

∫
d4x
√
−det gR[Γ(g)] (2.1)

where R is the Ricci scalar and Γ(g) is the Christoffel symbol. The variation of this

action with respect to the metric results in the Einstein equations in vacuum (Tµν = 0).

One can add matter to the system simply by adding the relevant action to (2.1).

Although the phrase “dynamics” is used, it is not in the usual sense of field

evolution through time. Instead, it is about the determination of the field for the whole

of spacetime. This should not come as a surprise since general relativity is a theory

about spacetime. So, it makes no sense to speak of “spacetime evolution through

time”. For example, consider the Schwarzschild metric and Friedmann-Lemaitre-

Robertson-Walker (FLRW) metric. Each describes a universe, and there is no scenario

in which one will evolve into the other at a later time. This feature of general relativity

persists even in the Hamiltonian formulation and quantum gravity, leading to what is

known as the problem of time.

2.1 Hamiltonian Formulation

In order to quantise a theory using canonical methods, one has to rewrite it in the

Hamiltonian form first. This subsection will review such a formulation of general

relativity based on [5, 24, 25]. This version of general relativity is also known as the

ADM formulation in honour of Arnowitt, Deser and Misner [26].

To put a theory into its Hamiltonian form, we have to identify the appropriate

configuration variables and define the corresponding conjugate momenta, which are

related to the temporal derivative of the configuration variables. Thus, we have to

identify a “time” parameter in the theory. In the case of general relativity, this

procedure departs from manifest covariance of the theory.
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2 GENERAL RELATIVITY 2.1 Hamiltonian Formulation

This requirement is automatically satisfied if we set spacetime (M, gµν) to be

globally hyperbolic. In such spacetime, we can define a global time function t and

foliates it into a family of Cauchy hypersurfaces Σ labelled by t [27, 28]. We can then

describe general relativity in terms of spatial metric hab on Σ evolving through time

t ∈ R. However, one must be aware that establishing this condition restricts the

spacetime to have the topologyM ∼= R × Σ whereas general relativity in its original

formulation can have arbitrary topology [4]. Also, note that t is not necessarily a

physical time.

With the 3+1 decomposition above, a general metric can be written as

ds2 = −N2dt2 + hab (dxa +Nadt)
(

dxb +N bdt
)

(2.2)

where N and Na are the lapse function and shift vector, respectively. The information

about the spacetime metric gµν is now completely encoded in hab, N and Na. Given a

Cauchy hypersurface and the associated Riemannian metric, its relation to the

neighbouring hypersurface is given by the extrinsic curvature

Kab =
1

2N

(
ḣab −∇aNb −∇bNa

)
(2.3)

where the dot indicates derivative with respect to t and∇c is the covariant derivative on

the hypersurface, compatible with hab.

Written in terms of the structures on Σ, the Einstein-Hilbert action (2.1) takes the

form

S =
1

16πG

∫
d4xN

√
det h

(
(3)R−KabK

ab − (Ka
a)2
)

(2.4)

where (3)R is the Ricci scalar on the hypersurface. It depends only on the spatial metric

hab and its spatial derivative. By analysing the action, we can derive the canonical
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2 GENERAL RELATIVITY 2.1 Hamiltonian Formulation

momentum conjugate to hab,

pab(x) ≡ δL

δḣab(x)
=

1

2N

δL

δKab(x)

=

√
det h

16πG

(
Kab −Kc

ch
ab
)
. (2.5)

These variables satisfy the Poisson bracket

{hab(x), pcd(y)} = δc(aδ
d
b)δ(x, y). (2.6)

The canonical momenta conjugate to N and Na, on the other hand, are zero since

no time derivative of these variables appear in the action. These types of variables are

known as Lagrange multipliers and are not actually configuration variables. So, we

identify that in the Hamiltonian formulation of general relativity, the only configuration

variable is the spatial metric, hab. The phase space variables are then hab and pcd

satisfying Poisson bracket (2.6).

Although the Lagrange multipliers do not serve as configuration variables, they do

have an important role. Setting the action to be invariant under arbitrary variation of

the Lagrange multipliers yields a set of equations of the form Ci = 0, where Ci are

known as the constraints of the system. These constraint equations are meant to be

applied after the Poisson bracket structure of the canonical variables is constructed.

They are sometimes written with a symbol ≈ rather than = to indicate this feature. For

any system with constraints, not all points on the phase space are physically relevant.

Instead, only those that satisfy all the constraint equations are physically relevant.

For general relativity, the variation with respect toN gives the Hamiltonian or scalar

constraint

Cgrav =
16πG√

det h

(
pabp

ab − 1

2
(pcc)

2

)
− N

√
det h

16πG
R ≈ 0 (2.7)

while variation with respect to Na gives the diffeomorphism or vector constraint

Cgrava = −2Dbp
b
a ≈ 0. (2.8)

8



2 GENERAL RELATIVITY 2.2 Ashtekar-Barbero Variable

Other than reducing the number of physically relevant phase space points, these

constraints also encode the symmetry of the system. The diffeomorphism constraint,

for example, generates spatial diffeomorphism of the phase space variables. The action

of the Hamiltonian constraint, on the other hand, is more complicated. This is

discussed in more detail in [5, 24, 25].

Given an action of a system, one will now proceed to calculate the Hamiltonian that

would generate the time evolution for the system. In our case now, the Hamiltonian

obtained from the action (2.4) is

Hgrav =

∫
d3x

(
ḣabp

ab − Lgrav
)

=

∫
d3x

(
16πG√

det h

(
pabp

ab − 1

2
(pcc)

2

)
+ 2pabDaNb −

N
√

det h
16πG

R

)

=

∫
d3x (NCgrav +NaCgrava ) (2.9)

where we have to integrate by parts to arrive at the third line. One should immediately

recognise that for physically relevant situations, the Hamiltonian vanishes since it

consists entirely of constraints. This gives rise to the problem mentioned at the

beginning of this section, namely the problem of time. With the vanishing

Hamiltonian, one is led to a theory with apparently no “time evolution”.

2.2 Ashtekar-Barbero Variable

In 1986, Ashtekar introduced a new complex variable that puts general relativity in the

language of gauge theory [29]. The real version was suggested later by Barbero [30] in

1995. The introduction of the variable was a crucial step towards the development of

loop quantum gravity. It allows one to employ, or at least be guided by, methods in

gauge theory, which was better understood for the purpose of quantisation. This

subsection, based on [16, 24, 25, 31], will review the Hamiltonian formulation of

general relativity in terms of the new variable.

To introduce the Ashtekar-Barbero variable, we first consider a set of three vectors

e(i) = eai ∂a, where i = 1, 2, 3, at each point in space. These vectors are taken to be

9



2 GENERAL RELATIVITY 2.2 Ashtekar-Barbero Variable

orthonormal to each other; that is:

habe
a
i e
b
j = δij . (2.10)

We can also define a set of three co-vectors e(i) = eiadxa, where i = 1, 2, 3, and

demand that e(i)(e(j)) = δij . With this condition, eia and eai become uniquely inverse to

each other. We can then invert (2.10) to obtain

hab = δije
i
ae
j
b, (2.11)

from which we can see that specifying eia (or eai ) is equivalent to specifying hab.

However, the use of triads introduces an internal SO(3) symmetry to the theory since

Rije
j
a where Rij ∈ SO(3) gives the same hab as eja. One can also view the triads and

co-triads as su(2)-valued vectors and co-vectors, respectively. Under an SU(2) gauge

transformation, the internal indices i, j, k, ... transform in the vector representation. In

this way, the SO(3) symmetry is replaced by SU(2) symmetry.

The variable of interest is not actually the triads themselves. Instead, it is the

densitised triads

Eai ≡
√

det h eai = |det(e)|eai (2.12)

which will later serve as the canonical momentum. This introduces additional symmetry

to the theory. Due to the absolute value of the determinant of ejb in (2.12), the theory is

invariant under orientation (left-handed or right-handed) of the triads.

Another structure that we need to introduce is the spin connection ωaij that appears

in the definition of SU(2) gauge covariant derivative:

Dav
i = ∂av

i + ωa
i
jv
j (2.13)

where vi is an arbitrary su(2)-valued function. By defining Γia ≡ 1
2ωajkε

ijk, the

Ashtekar-Barbero connection is then defined as

Aia ≡ Γia + γKi
a (2.14)

10



2 GENERAL RELATIVITY 2.3 Holonomy and Flux

where Ki
a ≡ δijKabe

b
j is the extrinsic curvature in mixed indices and γ > 0 is the

Barbero-Immirzi parameter [30, 32]. Aia is an su(2)-valued one-form transforming as

a connection under gauge transformation, that is, Aa → g(Aa + ∂a)g
−1 where g ∈

SU(2). The important fact is that Aia and Ebj are conjugate variables satisfying Poisson

bracket

{Aia(x), Ebj (y)} = 8πγGδijδ
b
aδ(x, y). (2.15)

We can fully describe general relativity using these new variables together with the

constraints (2.7) and (2.8) in the appropriate form. The Hamiltonian constraint now

takes the form

Cgrav =
(
εijkF iab − 2(1 + γ2)(Aia − Γia)(A

j
b − Γjb)

) E
[a
j E

b]
k√

|detE|
≈ 0 (2.16)

where

F iab = ∂aA
i
b − ∂bAia − εijkAjaAkb (2.17)

is the Yang-Mills curvature and the diffeomorphism constraint reads

Cgrava = F iabE
b
i ≈ 0 (2.18)

In addition, a new constraint arises from the use of triads. The Gauss constraint

D(A)
a Eai ≡ ∂aE

a
i + εijkAjaE

a
k

= DaE
a
i + εijkKj

aE
a
k

≈ 0 (2.19)

generates SU(2) gauge symmetry in the theory.

2.3 Holonomy and Flux

Before we end this section on general relativity, we would like to introduce another set

of variables that will actually be promoted to basic operators in loop quantum gravity.

These variables, namely holonomy and flux, smear Aia and Ebj fields, respectively, in

11



2 GENERAL RELATIVITY 2.3 Holonomy and Flux

a background independent way. As a result, one is able to obtain well-defined Poisson

brackets without the Dirac delta function.

Given a manifold Σ and an oriented curve e ∈ Σ, a holonomy he is defined as

he[A] = Pexp
(
G

∫
e

dλėaAiaτi

)
(2.20)

where G is Newton’s gravitational constant, τi ≡ − i
2σi, with i = 1, 2, 3, is a basis of

su(2) and σi are the Pauli matrices. ėa is the tangent vector to curve e parametrised by

λ. The symbol P is to denote that the integration should be carried out in a path-ordered

manner. Note that the holonomy is coordinate-independent, but is not gauge-invariant.

Under a gauge transformation, the holonomy transforms as

he[A]→ gs(e)he[A]g−1
t(e) (2.21)

where s(e) denotes the source or starting point of e and t(e) denotes the target or ending

point.

Given a surface S ∈ Σ with local coordinates ya, a flux FSf is defined as

FSf [E] =

∫
S

d2ynaE
a
i f

i (2.22)

where f i is an su(2)-valued function, na = 1
2εabcε

uv ∂xb

∂yu
∂xc

∂yv is the co-normal to the

surface S and xa is the local coordinate of Σ. From the expression, it is obvious that

the flux is both coordinate-independent and gauge-invariant.

12



3 LOOP QUANTUM GRAVITY

3 Loop Quantum Gravity

Historically, the first attempt to canonically quantise general relativity was made using

the spatial metric hab and its conjugate momentum pab as the basic variables. Following

Dirac’s procedure [1], these variables were promoted to operators on a kinematical

Hilbert spaceHkin

hab → ĥab pab → p̂ab (3.1)

such that the Poisson bracket (2.6) between them is promoted to a commutation relation

[ĥab(x), p̂cd(y)] = i~δc(aδ
d
b)δ(x, y). (3.2)

Then, one chooses a representation space to study the action of the operators (3.1)

on a general quantum state |Ψ〉 ∈ Hkin. For instance, in metric representation, we

would have

ĥab(x)Ψ[hab(x)] = hab(x)Ψ[hab(x)] (3.3)

p̂cd(x)Ψ[hab(x)] = −i~ δ

δhcd(x)
Ψ[hab(x)]. (3.4)

Among the elements of Hkin, only those that are annihilated by both quantum

versions of constraints (2.7) and (2.8)

ĈgravΨ[hab(x)] = 0 Ĉgrava Ψ[hab(x)] = 0 (3.5)

are physically relevant. They are elements of the physical Hilbert space Hphys. One

can also implement the diffeomorphism constraint (2.8) alone first to identify a

diffeomorphism-invariant Hilbert space Hdiff . In this way, one will have a chain of

Hilbert space construction

Hkin
Ĉgrava−−−−→ Hdiff

Ĉgrav−−−−→ Hphys. (3.6)

However, note that constraints are not necessarily implemented as operators

13



3 LOOP QUANTUM GRAVITY 3.1 Cylindrical Functions

annihilating wave functionals as described in (3.5). Sometimes, it is more convenient

to identify the restrictions implied by the constraints and implement them, for

example, via a group-averaging procedure.

Loop quantum gravity, more or less, follows a similar path. Instead of working the

metric variables (hab, pcd), we will work with the connection variables (Aia, E
b
j ). As

we have mentioned above, using these variables introduces another constraint (2.19).

Therefore, there will be an additional chain in (3.6) from Hkin to Hinvkin before we can

arrive at Hdiff . We start by introducing the kinematical Hilbert space Hkin following

[5].

3.1 Cylindrical Functions

The kinematical Hilbert space of loop quantum gravity is related to the concept of

holonomy introduced in Section 2.3 and uses the notion of cylindrical functions.

Instead of just a single curve e as in the definition of holonomy above, consider a

graph Γ defined as a collection of oriented paths e ∈ Σ meeting at most at their

endpoints (see Figure 2 for an example). The paths are usually referred to as links or

edges in loop quantum gravity literature.

Given a graph Γ ∈ Σ with L links, one can associate a smooth function

f : SU(2)L → C with it. A cylindrical function is a couple (Γ, f), which in connection

representation is defined as a functional of A given by

〈A|Γ, f〉 = ψ(Γ,f)[A] = f(he1 [A], ..., heL [A]) (3.7)

where el with l = 1, ..., L are the links of the corresponding graph Γ. The space of all

functions f associated with a particular graph Γ is denoted as CylΓ.

Since the holonomies are simply an element of SU(2), a scalar product between

elements of CylΓ can be defined as

〈Γ, f |Γ, g〉 ≡
∫

dhe1 ...dheLf(he1 [A], ..., heL [A])g(he1 [A], ..., heL [A]) (3.8)

where dhen is the Haar measure. This turns CylΓ into a Hilbert space HΓ associated
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3 LOOP QUANTUM GRAVITY 3.2 Loop States

Figure 2: An example of a graph Γ with seven curves. The dots are the endpoints of
the curves.

with a given graph Γ.

The kinematical Hilbert space Hkin is then defined as Hkin ≡ ⊕
Γ⊂Σ
HΓ with the

scalar product

〈Γ1, f1|Γ2, f2〉 ≡ 〈Γ1 ∪ Γ2, f1|Γ1 ∪ Γ2, f2〉

≡
∫

dµALψΓ1,f1 [A]ψΓ2,f2 [A] (3.9)

where dµAL is Ashtekar-Lewandowski measure [33, 34, 35].

3.2 Loop States

An example of cylindrical function is the case where each e is a single closed curve

(that is, a loop) α and f is the trace function, Tr [10]. For a graph with a collection of

loops, that is, Γ ≡ α = (α1, ..., αn), we have1

〈A|α〉 = ψα[A] = ψα1 [A]...ψαn [A] = Tr hα1 [A]...Tr hαn [A] (3.10)

where Tr hα[A] = Tr Pexp
∮
αA is known as the Wilson loop. These functions are

called (multi-)loop states and play an important role in the history of loop quantum

gravity. They are the reason why loop quantum gravity bears the word “loop”.

Historically, they were found to be exact solutions to the quantum version of the

Gauss constraint (2.19) and Hamiltonian constraint (2.16) [36]. This suggested that one

1For these types of functions, we suppress the f ≡ Tr label.
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3 LOOP QUANTUM GRAVITY 3.3 Spin Network States

can expand a general quantum state Ψ[A] in terms of these multi-loop states

〈A|Ψ〉 ≡ Ψ[A] =
∑
α

Ψ(α)ψα[A] (3.11)

where Ψ(α) is the loop space representation of the state |Ψ〉 [37]. In fact, using (3.9)

one can ascertain, for instance, if α consists of only a single loop

〈α|Ψ〉 ≡ Ψ(α) =

∫
dµAL Tr Pe

∮
α AΨ[A] (3.12)

which bears close resemblance to momentum space representation in ordinary quantum

mechanics. The transformation (3.12) is known as “loop transform”.

Despite being very useful, these multi-loop states form an overcomplete basis and

complicates the formalism [10]. This overcompleteness problem was solved when the

spin network states (to be described in the next section) were found to be a genuine

gauge-invariant orthonormal basis [38].

3.3 Spin Network States

To introduce spin network states, we start by introducing an orthonormal basis obtained

using the Peter-Weyl theorem. The theorem states that a basis of the Hilbert space

HSU(2) = L2(SU(2), dµHaar) of functions on SU(2) is given by the matrix elements of

the irreducible representations of the group [10]. For example,

f(g) =
∑
j

f jmnD
(j)
mn(g) (3.13)

where D(j)
mn(g) is the Wigner matrices that give the spin-j irreducible representation

of the group element g ∈ SU(2). Since HΓ is a tensor product of HSU(2), the basic

elements are

〈A|Γ, jL,mL, nL〉 ≡ 〈A|Γ, je1 , ..., jeL ,me1 , ...,meL , ne1 , ..., neL〉

= D(j1)
m1n1

(he1 [A])...D(jL)
mLnL

(heL [A]). (3.14)
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3 LOOP QUANTUM GRAVITY 3.3 Spin Network States

These constructions can easily be extended toHkin by labelling the basis not only with

the j’s, m’s and n’s but also Γ. This basis is obviously not gauge-invariant. Under

gauge transformation (2.21), each Wigner matrix also transforms at its endpoints:

D(j)(he)→ D(j)(gs(e)heg
−1
t(e)) = D(j)(gs(e))D

(j)(he)D
(j)(g−1

t(e)). (3.15)

Let us now consider a graph Γ with L links such that the endpoints of each curve

necessarily meet another endpoint. These meeting points are known as nodes or

vertices. Let N denote the number of nodes in Γ. Then, the gauge-invariant basis can

be obtained by group averaging

[D(j1)
m1n1

(he1)...D(jL)
mLnL

(heL)]inv

≡
∫ L∏

n=1

dgnD(j1)
m1n1

(gs(e1)he1g
−1
t(e1))...D

(jL)
mLnL

(gs(eL)heLg
−1
t(eL)) (3.16)

which eventually amounts to associating each node n with an intertwiner in [5]. For

a node n where k links meet, an intertwiner associated with it is an element from the

invariant subspace of the Hilbert spaceHn

Hn = Hj1 ⊗ ...⊗Hjk . (3.17)

This then defines a gauge-invariant spin network state |S〉 ≡ |Γ, j1, ..., jL, i1, ...iN 〉

〈A|S〉 =

L⊗
l=1

D(jl)(hei [A]) ·
N⊗
n=1

in (3.18)

where · is to denote that indices of matrix elements ofD(j) and in contract appropriately

and give a gauge-invariant result.

For example, consider a spin network state |S〉 which is represented by a graph with

three links l1 = 1, l2 = 2, l3 = 3 and two nodes n1, n2 as shown in Figure 3. The links

are associated with spins j1 = 1, j2 = 1/2, j3 = 1/2 respectively. Then, in connection

17



3 LOOP QUANTUM GRAVITY 3.4 Quanta of Area and Volume

Figure 3: A spin network state |S〉 with three links l1, l2, l3 labelled by the respective
representation j1, j2, j3 of the associated holonomies and two nodes n1, n2.

representation, it is given by [10]

〈A|S〉 =
1

3
σiABσ

jCD(D(1)(h[A]))ij(D
(1/2)(h[A]))AC(D(1/2)(h[A]))BD (3.19)

where σi are the Pauli matrices, which happen to play the role of intertwiners for this

particular case.

With a complete gauge-invariant orthonormal [10] basis available, a general

quantum state made up of superposition of these spin network states (3.18) will be an

element ofHinvkin and solves the Gauss constraint.

3.4 Quanta of Area and Volume

At this stage, we can already present the main results from loop quantum gravity,

namely the discreteness of area and volume [12, 13, 14]. For this, we have to know

how basic operators act on a general quantum state. However, Aia(x) and Ebj (x) are not

well-defined on Hkin because they would send wave functionals Ψ[A] ∈ Hkin out of

the state space [10]. Therefore, holonomies and fluxes, which are well-defined, are

taken as the basic operators instead.

A holonomy operator ĥe[A] simply acts as a multiplicative factor in connection

representation:

ĥe[A]Ψ[A] = he[A]Ψ[A]. (3.20)

The action on a flux operator, on the other hand, is a bit complicated. Ebj (x) will still be
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3 LOOP QUANTUM GRAVITY 3.4 Quanta of Area and Volume

promoted as a functional derivative so that the action of a flux operator is

F̂Si Ψ[A] = −8πγi~
∫
S

d2yna
δ

δAia(x(y))
Ψ[A]. (3.21)

For the case of Ψ[A] = D(j)(he[A]) and e only intersect S at point p, that is,

e ∩ S = p, (3.21) will be [24]

F̂Si D
(j)(he[A]) = ±8πγi~GD(j)(he1 [A])τ

(j)
i D(j)(he2 [A]) (3.22)

where τ (j)
i is the SU(2) generator in spin-j representation, D(j)(he1 [A]) is the spin-

j holonomy from s(e) to p and D(j)(he2 [A]) is the spin-j holonomy from p to t(e).

Intuitively, the operator F̂Si would “cut” the curve at the point of intersection and insert

the corresponding spin-j representation generator τ (j)
i at that point together with the

extra factor ±8πγi~G. The sign + or - depends on the relative orientation of the curve

and the surface. For multiple intersections, (3.22) is generalised to [10]

F̂Si D
(j)(he[A]) = ±8πγi~G

∑
p∈(e∩S)

D(j)(hpe1 [A])τ
(j)
i D(j)(hpe2 [A]). (3.23)

However, if there is no intersection, or the curve e is tangential to the surface S, then

(3.22) (and thus (3.23)) will vanish.

An important composite operator to consider is the scalar product of two fluxes

F̂ 2
S ≡ δijF̂Si F̂

S
j . The action of this operator follows directly from (3.22). Instead of

inserting just a single generator τ (j)
i , this composite operator will insert a sum of them,

that is, δijτ (j)
i τ

(j)
j . However, this is equal to −j(j + 1)1 which can be commuted

through D(j)(he1 [A]) in the expression above and allows the segments e1 and e2 of the

curve e to reconnect. Therefore, we obtain a simple result:

F̂ 2
SD

(j)(he[A]) = (8πγ~G)2j(j + 1)D(j)(he[A]) (3.24)

which holds when there is only a single intersection between e and S [10].

19



3 LOOP QUANTUM GRAVITY 3.4 Quanta of Area and Volume

3.4.1 Area Operator

Classically, the area of a surface S is given by

A(S) =

∫
S

d2y
√
δijnaEai nbE

b
j

≈ lim
N→∞

N∑
n=1

Sn
√
δijnaEai nbE

b
j

= lim
N→∞

N∑
n=1

√
δijFSni FSnj (3.25)

where the integral has been written as the limit of a Riemann sum in the second line.

The third line follows from the fact that for a small enough surface δS, the flux (2.22)

can be approximated as

F δSi [E] ≈ δSnaEai . (3.26)

The corresponding area operator Â(S) is then obtained by promoting the flux in

(3.25) above into F̂Sni [39]. This definition of area operator ensures that each small

surface Sn intersects at most one time with the curves in a given quantum state. As

such, one can immediately use (3.24) to obtain

ÂS |S〉 = 8πγl2P
∑

p∈(Γ∩S)

jp(jp + 1) |S〉 (3.27)

which is clearly discrete and finite. Note that the smallest possible area is of order Plank

area l2P if the Immirzi parameter γ is taken to be of order unity .

3.4.2 Volume Operator

The definition of the volume operator V̂R of a regionR follows a similar strategy. One

starts by dividing the region into small cells C of coordinate size ε3 and writing the

classical expression for volume as a Riemann sum

V (R) =

∫
R

d3x
√

det h =

∫
R

d3x
√
|det E|

= lim
N→∞

N∑
n=1

ε3n

√∣∣∣∣ 1

3!
εabcεijkE

a
i (xn)Ebj (xn)Eck(xn)

∣∣∣∣ (3.28)
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3 LOOP QUANTUM GRAVITY 3.5 S-Knots

where xn is an arbitrary point inside the small cell Cn. To express the densitised triads

in terms of fluxes, there are two natural ways to proceed [14]. One was introduced by

Rovelli and Smolin [12], while the other, by Ashtekar and Lewandowski [34]. Each

approach leads to a slightly different volume operator, but maintains the characteristic

feature of acting only on the nodes of a graph. More importantly, both operators result

in discrete spectra.

In the construction of the Ashtekar-Lewandoski volume operator, for example, one

proceeds by choosing three non-coincident surfaces (S1,S2,S3) within each small cell

[6]. This allows (3.28) to be written in terms of fluxes, which are then quantised by

turning them into operators:

V̂ (R) = lim
N→∞

N∑
n=1

√∣∣∣∣ 1

3!
εabcεijkF̂i(San)F̂j(Sbn)F̂k(Scn)

∣∣∣∣. (3.29)

The spectrum of this volume can be obtained using a result similar to (3.23), but is

generalised to the action of flux operator on a node. Since this method relies on the

choice of three surfaces, one has to carry an averaging procedure over all possible

choices of surfaces. This results in a volume operator with the following discrete

spectrum [14]

V̂ (R) |S〉 = (8πγl2P )3/2κ0

∑
n∈S

√√√√√
∣∣∣∣∣∣ 1

48
εijk

∑
e,e′,e′′

ε(e, e′, e′′)τ
(jn,e)
i τ

(jn,e′ )

j τ
(jn,e′′ )

k

∣∣∣∣∣∣ |S〉
(3.30)

where n are nodes in the spin network state |S〉 and (e, e′, e′′) runs over all possible sets

of three links at the node n. The factor κ0 is a constant that came from the averaging

procedure, and ε(e, e′, e′′) is a function associated with the relative orientation of the

three links.

3.5 S-Knots

Let us now return to the implementation of the constraints. Since the spin network states

{|S〉} form a basis of Hinvkin, it is natural to seek Hdiff by analysing the transformation

of |S〉 under a diffeomorphism φ ∈ Diff(Σ). The elements of Diff(Σ) can be grouped
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3 LOOP QUANTUM GRAVITY 3.5 S-Knots

into three categories according to their action on the spin network states [5, 8]:

(a) Those that leave all labels in |S〉 invariant. The action of diffeomorphisms in this

category is trivial; they would at most shuffle the points inside the links. This

category is denoted by TDiffΓ(Σ).

(b) Those that exchange the links in |S〉 among themselves without changing Γ.

This category is obtained by factoring out TDiffΓ(Σ) from the group of all

diffeomorphisms that maps Γ to Γ, DiffΓ(Σ). Thus, this category is denoted as

GSΓ(Σ) ≡ DiffΓ(Σ)/TDiffΓ(Σ).

(c) Those that move Γ around on the manifold Σ. Analogous to (b), this category is

obtained by factoring out DiffΓ(Σ) from Diff(Σ).

Clearly, seeking Hdiff amounts to constructing quantum states invariant under any

diffeomorphism φ that falls into (b) or (c); that is, those in Diff(Σ)/TDiffΓ(Σ).

One way to construct such states is to carry out a group-averaging procedure

analogous to (3.16). Given a spin network state |S〉 associated with a graph Γ, the

corresponding invariant state then is defined as [6]

|Sdiff 〉 ≡
∑
φ

|φS〉 (3.31)

where the summation runs over all φ in Diff(Σ)/TDiffΓ(Σ) and |φS〉 label the spin

network states |S〉 acted by φ. However, there is an important difference between the

two group-averaging procedures. While (3.16) results in a gauge-invariant subspace of

Hkin, (3.31) results in a space outsideHinvkin.

The action (of the bra version) of (3.31) on a spin network is defined as [10]

〈Sdiff |S′〉 ≡
∑
φ

〈φS|S′〉 =

 0 if there is no φ s.t. φΓ = Γ′∑
φΓ′ 〈φΓ′S|S′〉 if there exists φ s.t. φΓ = Γ′

(3.32)

where the sum of φΓ′ runs over all diffeomorphisms that map Γ to Γ′. The results on

the right-hand side follow directly from the fact that the inner product between two spin
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network states represented by graphs that do not coincide is zero. The inner product

between two diffeomorphism-invariant spin network states is then defined as

〈Sdiff |S′diff 〉 ≡ 〈Sdiff |S′〉 . (3.33)

The definition of inner product (3.33) and the results (3.32) above tell us that |Sdiff 〉

and |S′diff 〉 are orthogonal unless they belong to an equivalence class K of graphs Γ

under diffeomorphisms. The class K is known as knot class. Therefore, instead of

being labelled by Γ, the basis states inHdiff is firstly labelled by K [10]. To obtain an

orthonormal basis, an additional label c is added to label the colouring of links and nodes

in the state. This, then, defines a knotted spin network (s-knot) basis, {|s〉 ≡ |K, c〉} for

Hdiff .

3.6 The Problem of Dynamics

The final step before one can really study the true physical consequences of loop

quantum gravity is the implementation of the Hamiltonian constraint (2.16). As

mentioned in the introduction, this part of the theory is still a work in progress. So, the

best way to implement it is not very clear. To implement the Hamiltonian constraint

(2.16) as an operator, one usually quantises it following Thiemann’s trick [40, 41] and

studies its action on s-knot states (or spin network states since the former are

constructed from the latter).

Following [41], instead of quantising (2.16) directly, it is more convenient to smear

it with the lapse function N first:

Cgrav[N ] ∝
∫

d3xN

((
εijkδilF

l
bc

EbjE
c
k√

|detE|

)
− 2(1 + γ2)

γ2

(
Kj
bK

k
c

E
[b
j E

c]
k√

|detE|

))

≡ CE [N ]− 2(1 + γ2)

γ2
T [N ] (3.34)
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Figure 4: An elementary tetrahedron ∆. This figure is reproduced from [24].

where we have used (2.14) in the second term. Using the identities

εijk
EbjE

c
k√

|det E|
∝ εabc

{
Aia, V

}
(3.35)

Ki
a ∝

{
Aia,

{
CE [1], V

}}
(3.36)

we can put both CE [N ] and T [N ] in terms of Poisson brackets

CE [N ] ∝
∫

d3xNεabcδijF
i
ab

{
Ajc, V

}
(3.37)

T [N ] ∝
∫

d3xNεabcεijk
{
Aia,

{
CE [1], V

}}{
Ajb,

{
CE [1], V

}}{
Akc , V

}
. (3.38)

Then, similar to the area and volume operator in Section 3.4, we want to write

the integral as a Riemann sum. In particular, consider dividing the integration region

into a collection of elementary tetrahedra ∆, as illustrated in Figure 4, with edges of

coordinate length ε (thus the size of each tetrahedron is of order ε3) and choose one

vertex v(∆). In this way, the holonomy along a loop and an edge can be written as

hαab = 1 +
1

2
ε2F iabτi +O(ε4) and hec = 1 + εAicτi +O(ε2) (3.39)

respectively, thus allowing the connection and curvature in (3.37) to be written as

holonomies. As a result, CE [N ] and T [N ] take the form

CE [N ] ∝ lim
∆→v(∆)

∑
∆∈Σ

N(v(∆))εabcδij(hαab − h
−1
αab

)i
(
h−1
ec {hec , V }

)j (3.40)
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and

T [N ] ∝ lim
∆→v(∆)

∑
∆∈Σ

N(v(∆))εabcεijk
(
h−1
ea

{
hea ,

{
CE [1], V

}})i
×
(
h−1
eb

{
heb ,

{
CE [1], V

}})j (
h−1
ec {hec , V }

)k (3.41)

respectively, where the limit ∆ → v(∆) is the same as the limit ε → 0. Note that the

coordinate size of ∆, ε3, does not appear in the expression since the contribution of the

integral offsets the contribution of writing Aia and F iab in terms of holonomies.

Now, one can quantise the Hamiltonian by promoting the variables in (3.40) and

(3.41) to the corresponding quantum operators and turn the Poisson brackets into

commutators (divided by i~) between the variables. For instance, the quantum

operator corresponding to CE [N ] is

ĈE [N ] ∝ 1

i~
lim

∆→v(∆)

∑
∆∈Σ

N(v(∆))εabcδij(ĥαab − ĥ
−1
αab)

i
(
ĥ−1
ec

[
ĥec , V̂

])j
. (3.42)

Due to the presence of the volume operator, the Hamiltonian constraint only acts on the

nodes of a state. Schematically, with an appropriate choice of position and orientation

of the tetrahedra, the Hamiltonian constraint will act on a node of a spin network state

|S〉 by (i) modifying the intertwiner associated with the node, (ii) creating new nodes

and, (iii) modifying the spin j of two links connected to the node. A detailed explicit

action of the Hamiltonian constraint on a simple node can be found in [6].

Physically relevant states |Ψ〉 ∈ Hphys are those annihilated by the quantum

Hamiltonian constraint Ĉgrav[N ]

Ĉgrav[N ] |Ψ〉 = 0 (3.43)

for any lapse function N . As we have mentioned at the beginning of Section 2, general

relativity is a theory with no external time evolution, and the feature is inherited by its

quantum version. This is reflected in (3.43). If there is external time evolution, we

would instead have Ĉgrav[N ] |Ψ〉 ∝ d |Ψ〉 /dt where t is the parameter labelling the
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external time. Since this is not the case, then each |Ψ〉 ∈ Hphys is a solution describing

a universe for the whole of spacetime.

For example, if |ΨSchw〉 corresponds to the Schwarzschild metric and

|ΨFLRW 〉 6= |ΨSchw〉 corresponds to the FLRW metric, then one will not evolve into

the other. However, in the quantum version, we can have a universe described by the

linear superposition of the two, which obviously satisfies (3.43). We end this section

with a remark that in symmetry-reduced settings, it is possible to view the quantum

Hamiltonian constraint equation as an evolution equation (see Section 4.6).
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4 LOOP QUANTUM COSMOLOGY

4 Loop Quantum Cosmology

4.1 Metric Variables

We will begin our discussion on loop quantum cosmology by reviewing basic results

from standard cosmology following [25]. In a homogeneous and isotropic universe,

spacetime is described by the FLRW metric

ds2 = −N(t)2dt2 + a(t)2

(
dr2

1− kr2
+ r2

(
dθ2 + sin2θ dφ2

))
(4.1)

from which we can derive the corresponding Ricci scalar

R = 6

(
ä

N2a
+

ȧ

N2a2
− ȧṄ

aN3
+

k

a3

)
. (4.2)

Together with det g = −r4sin2θ N(t)2a(t)6/(1 − kr2), we obtain the reduced

gravitational action

Sisograv[a,N ] =
3V

8πG

∫
dtNa3

(
ä

N2a
+

ȧ2

N2a2
− ȧṄ

aN3
+

k

a2

)

= − 3V
8πG

∫
dt
(
aȧ2

N
− kaN

)
(4.3)

where we have ignored the constant boundary term that comes from integrating by

parts. Due to homogeneity, the action (4.3) actually diverges. However, for the same

reason, it is sufficient to consider any compact integration region. This is obvious from

the appearance of V ≡
∫
R drdθdφr2sin2θ/

√
1− kr2 above. From the expression of

Sisograv[a,N ], we note that the only canonical variable is a while N is only a Lagrange

multiplier.

When we include matter (which must respect homogeneity and isotropy as well)

with Hamiltonian H iso
matter, further analysis would yield the Friedmann equation

(
ȧ

Na

)2

+
k

a2
=

8πG

3

1

a3V
∂H iso

matter

∂N
(4.4)
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and the Raychaudhuri equation

(ȧ/N)·

aN
= −4πG

3

(
1

a3V
∂H iso

matter

∂N
− 1

Na2V
∂H iso

matter

∂a

)
(4.5)

In a homogeneous and isotropic universe, any matter is completely specified by two

parameters, namely energy density ρ and pressure P which are defined as

ρ ≡ 1

a3V
∂H iso

matter

∂N
, P ≡ − 1

3Na2V
∂H iso

matter

∂a
. (4.6)

With these, we can put equations (4.4) and (4.5), respectively, into the more familiar

form (
ȧ

Na

)2

+
k

a2
=

8πG

3
ρ (4.7)

(ȧ/N)·

aN
= −4πG

3
(ρ+ 3P ) . (4.8)

An important thing to note from the brief review above is that a can take the value

zero. From equation (4.2) and (4.6) above, the Ricci scalar (which encodes the curvature

of spacetime) and energy density diverges. Both evolution equations (4.7) and (4.8) are

also useless at a = 0. Therefore, at this point, which is defined as the Big Bang, physics

itself breaks down .

4.2 Connection Variables

For simplicity, the discussion will focus only on loop quantisation of a spatially flat

k = 0 universe. As before, any spatial integration would inevitably diverge. Therefore,

one has to restrict the analysis to a finite cell C with coordinate volume V . After fixing

the gauge, the connection and densitised triads can be assigned the form [16, 42]

Aia = cV−1/3δia, Eai = pV−2/3δai (4.9)

where both c and p are spatially constant. The latter two are the only

coordinate-independent, gauge-invariant dynamical variables that satisfy the Poisson
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4 LOOP QUANTUM COSMOLOGY 4.3 Kinematical Hilbert Space

bracket

{c, p} =
8πγG

3
. (4.10)

However, they are sensitive to rescaling of the integration region; that is, C → λC where

λ > 0. A detailed discussion on rescaling can be found in [16]. These variables are

related to the metric variables in Section 4.1 via

c = γȧV1/3, |p| = a2V2/3. (4.11)

Since the Gauss and diffeomorphism constraints were automatically satisfied when

the gauges are fixed to putAia andEbj in the form of (4.9), the only non-trivial constraint

left is the Hamiltonian constraint (2.16). Adding in matter Hamiltonian,Hmatter, it now

reads [42]

Ciso = − 3

8πGγ2
c2
√
|p|+H iso

matter ≈ 0 (4.12)

4.3 Kinematical Hilbert Space

To proceed analogously to the full theory, we need to find the holonomies of Aia along

curves e and fluxes of Ebj across surfaces S. Thanks to the symmetry of the theory, we

need not consider all curves and surfaces. It suffices to consider only straight lines and

square surfaces.

For the holonomies, we can consider straight lines in any direction. For the sake of

clarity, consider a straight line ek of coordinate length lk in the kth coordinate. Then,

the holonomy will be

hek(c) = P exp

∫
ek

cV−1/3δikτidx
k

= exp
(
cV−1/3τklk

)
= cos

(
1

2
µc

)
1 + 2 sin

(
1

2
µc

)
τk (4.13)

where there is no sum on the index k and we have defined a coordinate-independent

parameter µ ≡ lkV−1/3 that labels the line. Here, note that the coordinate-

independent, gauge-invariant information about the holonomy is captured in the pair
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4 LOOP QUANTUM COSMOLOGY 4.3 Kinematical Hilbert Space

(cos(µc/2), sin(µc/2)). Therefore, it is sufficient to consider

Nµ(c) ≡ exp

(
iµc

2

)
= cos

(
1

2
µc

)
+ i sin

(
1

2
µc

)
(4.14)

as the elementary functions of the configuration variable c. This introduces an Abelian

artefact into the theory, which may not capture the structure arising from the fact that

the connection Aia in the full theory is non-Abelian. This is analysed in [43] which also

introduces a more careful way to quantise homogeneous models.

Similarly, for the flux, we can consider any square surface S to obtain

F
(f)
S [p] =

∫
S

d2ynapV−2/3δai f
i

= p
AS,f

V2/3
(4.15)

where AS,f is the area of the surface times some orientation factor dependent on the

choice of na and f i. We can define σ = AS,f/V−2/3 to label the surface and take

F
(f)
S [p] as a whole to the other elementary variable conjugate to (4.14). However, σ

does not carry any dynamical information and will simply be a linear multiplicative

factor to p̂ in the quantum version. Therefore, we can ignore it and take p alone as the

other elementary variable [16]. These variables satisfy the Poisson bracket

{Nµ(c), p} =
4πiγµG

3
Nµ(c). (4.16)

With the elementary variables and Poisson bracket between them available, we can

now construct the corresponding kinematical Hilbert space, Hisograv. As in Section 3.4,

the basic variables Nµ(c) and p are promoted as operators on Hisograv such that their

Poisson bracket (4.16) is promoted to a commutator

[N̂µ(c), p̂] = −4πγµG~
3

N̂µ(c). (4.17)

Following the lead of the full theory in Section 3.1 and 3.3, one would expect to start
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by considering all possible straight lines and representations of the U(1)-holonomies

(4.14). However, the Abelian artefact mentioned above hides the complexity and

simplifies the situation.

Consider first what we will find if we indeed follow the full theory. Then, we would

start by considering graph Γ = (µ1, ...µL) consisting of a collection of straight lines

labelled with µl. Then, the basis states analogous to (3.14) will be

〈c|Γ, jL〉 ≡ 〈c|Γ, jµ1 , ..., jµL〉

= exp

(
i
j1µ1c

2

)
... exp

(
i
jLµLc

2

)
= exp

(
i
(j1µ1 + ...+ jLµL)c

2

)
(4.18)

where we can combine the summation
∑L

l jlµl into a single parameter µ. Therefore,

the basis for the Hilbert spaceHisograv can be chosen to be

〈c|µ〉 = exp
iµc

2
. (4.19)

Since this basis is gauge-invariant and the diffeomorphism constraint has already been

satisfied, it is analogous to the s-knot states. In this way, however, µl’s and jl’s that

label the curves in a graph and the spin of the curve collapse to a single parameter µ.

The different roles played by each type of label, then, are no longer obvious [42, 43].

Using the construction above, we actually obtain that the kinematical Hilbert space

Hisograv is given by L2(R̄Bohr, dµ0) where R̄Bohr is the Bohr compactification of the real

line R and dµ0 is the Haar measure in this space [44]. General quantum states are given

by the almost-periodic functions

〈c|Ψ〉 = Ψ(c) =
N∑
n

Ψn exp

(
iµnc

2

)
(4.20)

whereN is some finite positive integer, µn ∈ R and Ψn ∈ C with inner product [17, 25]

〈Ψ1|Ψ2〉 = lim
T→∞

1

2T

∫ T

−T
dc Ψ1Ψ2. (4.21)
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4 LOOP QUANTUM COSMOLOGY 4.4 Volume Spectrum

The basis (4.19) satifies

〈µ|µ′〉 = δµµ′ (4.22)

which implies that the representation is not continuous in µ. Therefore, we cannot

introduce the operator ĉ, for example, by taking the derivative of N̂µ(c) with respect to

µ [15, 25, 42].

In the connection representation, N̂δ(c) acts multiplicatively on a basis state

exp(iµc/2)

N̂δ(c)e( iµc
2

) = Nδ(c)e( iµc
2

) = e(
i(µ+δ)c

2
), (4.23)

while p̂ acts as a derivative operator

p̂e( iµc
2

) = −i
8πγl2P

3

d
dc
e( iµc

2
) =

4πγl2P
3

µe( iµc
2

). (4.24)

In terms of abstract ket notation, it follows that

N̂δ(c) |µ〉 = |µ+ δ〉 , p̂ |µ〉 =
4πγl2P

3
µ |µ〉 (4.25)

which shows that |µ〉 are eigenstates of p̂ with eigenvalues proportional to µ ∈ R.

Note that, although µ is apparently continuous from (4.25), the spectrum is considered

discrete in the sense that the eigenstates |µ〉 are normalisable [16, 24, 25, 42]. We

remark that since classically we have |p| ∝ a2, |0〉 corresponds to the state of the

universe (or more precisely, the cell C) at the classical Big Bang.

4.4 Volume Spectrum

The spectrum of the volume operator takes a simpler form than that of the full theory

and can be evaluated explicitly. In terms of the metric variables, classically the physical

volume of a region R is given by V iso
R = a3VR. Using (4.11), we obtain that the

physical volume of our cell C is given by V iso
C = |p|3/2. Then, (4.25) implies that the

32



4 LOOP QUANTUM COSMOLOGY 4.5 Inverse Scale Factor

corresponding quantum volume operator V̂ iso
C has a spectrum given by

V̂ iso
C |µ〉 =

(
4πγ

3

) 3
2

l3P |µ|
3
2 |µ〉 ≡ Vµ |µ〉 , (4.26)

which is discrete. So, µ is directly related to the physical volume of the universe and

large µ indicates a classical limit. The Big Bang state, however, still has zero volume.

4.5 Inverse Scale Factor

The main problem in cosmology as described by the FLRW metric (4.1) is the Big

Bang singularity, that is, when the scale factor a vanishes. At this point, any function

proportional to a−s with s > 0 diverges. This problem will be cured if the spectrum of

the quantum operator corresponding to |p|−1/2 is bounded from above. However, the

operator p̂ has a zero eigenvalue (c.f. (4.25)) and, thus, is not invertible. So, in loop

quantum cosmology, one instead analyses an operator that corresponds to the inverse

of p in the classical limit. This is reasonable since p−1/2 is not well-defined at the

singularity, so that the operator corresponding to it in the classical limit may eventually

be modified close to the singularity.

We start by introducing the classical identity [16, 42, 45]

sgn(p)|p|r/2−1 =
1

2πγGδr
Tr

(
3∑
i

τie
δcτi
{
e−δcτi , V r/3

})
(4.27)

where sgn(p) is the sign function and V ≡ V iso. Analogous to Section 3.6, this identity

is then promoted to be an operator with the Poisson bracket turned into a commutator

divided by i~. Using exp(Aτi) = 1 cos(1
2A) + 2τi sin(1

2A) to calculate the trace, will

obtain (for δ = r = 1)

̂sgn(p)|p|−1/2 = − i

2πγl2P
Tr

(
3∑
i

τiêcτi
[
ê−cτi , V̂ 1/3

])

=
3

4πγl2P
(−2i)

(
ŝin

c

2
V̂ 1/3ĉos

c

2
− ĉos

c

2
V̂ 1/3ŝin

c

2

)
=

3

4πγl2P

(
êic/2

[
ê−ic/2, ˆ|p|

1/2
]
− ê−ic/2

[
êic/2, ˆ|p|

1/2
])

(4.28)
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which has the same eigenbasis |µ〉 as p̂ but with eigenvalues

(
̂sgn(p)|p|−1/2

)
µ
|µ〉 =

(
3

4πγl2P

)1/2 (
|µ+ 1|1/2 − |µ− 1|1/2

)
|µ〉 . (4.29)

Form the spectrum above, we note that this operator has a vanishing eigenvalue at

µ = 0. This is in contrast with the classical value, which is divergent. At large |µ| � 1,

on the other hand, the operator does approach the inverse of p̂. More importantly, the

spectrum is bounded from above with an upper bound at µ = 1

(
̂sgn(p)|p|−1/2

)max
1
|1〉 =

(
3

2πγl2P

)1/2

|1〉 . (4.30)

The occurrence of an upper bound at µ = 1 instead of µ = 0 is interesting.

Consider defining the forward flow of time with an increasing value of µ as is the

standard in cosmology (i.e. increasing time corresponds to increasing scale factor or

volume). Then, if we reverse the time, there will be a divergence before one reaches

the Big Bang (µ = 0) if one remains classical, that is, ~→ 0. This heuristic evolution,

of course, employs classical intuition of continuous flow of time. In the next section,

we will review the proper evolution in loop quantum cosmology.

4.6 Quantum Evolution

To study the dynamics of this quantum universe, we need to quantise the Hamiltonian

constraint (4.12). However, the classical expression contains the variable c2 which,

as noted above for the operator ĉ, has no direct quantum counterpart in loop quantum

cosmology. As for the inverse of p̂ in Section 4.5, the idea is to substitute it with an

operator that reduces to c2 in low curvature regime (c� 1) [46]. There is, however, no

unique way to do so. An example would be to replace c2 with δ−2 sin2 δc [16, 46]. The

action of the corresponding quantum version is

1

δ2
ŝin δc

2
|µ〉 = − 1

4δ2

(
êiδc − ê−iδc

)2
|µ〉

= − 1

4δ2
(|µ+ 4δ〉 − 2 |µ〉+ |µ− 4δ〉) . (4.31)

34



4 LOOP QUANTUM COSMOLOGY 4.6 Quantum Evolution

For
√
|p|, one can quantise it directly or use the identity (4.27) to write it in terms

of holonomies and volume first before quantising. Either approach will retain crucial

properties of the quantum Hamiltonian constraint [16]. If one chooses the latter, which

is closer to the full theory, then it reads

Ĉiso = − 3

32π2γ3Gl2P δ
3
ŝin δc

2
sgn(µ)

(
ê−

1
2
iδcV̂ ê

1
2
iδc − ê

1
2
iδcV̂ ê−

1
2
iδc

)
+ Ĥ iso

matter

(4.32)

where sgn(p) is replaced by sgn(µ) by virtue of (4.25). Acting this form of Hamiltonian

constraint on a volume eigenstate |µ〉, we obtain

Ĉiso |µ〉 =
3

128π2γ3Gl2P δ
3

sgn(µ) (Vµ+δ − Vµ−δ) (|µ+ 4δ〉 − 2 |µ〉+ |µ− 4δ〉)

+ Ĥ iso
matter |µ〉 . (4.33)

Similar to the full theory, for a general quantum state |Ψ〉 to be an element ofHisophys,

it must be annihilated by (4.32), that is,

Ĉiso |Ψ〉 = 0. (4.34)

Note that |Ψ〉 also contains information about all matter content in the theory. From

(4.33), volume eigenstates obviously do not satisfy this criteria. As we remark at the

end of Section 3, it is possible to view (4.34) as an evolution equation. For that, we

need to introduce the notion of internal time.

The idea is fairly simple: choose a particular (set of) degree of freedom as the

internal time and view the configurations of other degrees of freedom with respect to

them. Although the concept is not very familiar in physics, or rather it is not made

explicit, we actually use it in everyday life. For instance, when one carries out an

experiment at 7.01 am, what it really means is that he/she does so when his/her watch

shows 7.01 am.
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In our case here, we can choose the volume of the universe as the internal time and

expand a general physical quantum state |Ψ〉 in terms of volume eigenstates [16, 47]

|Ψ〉 =
∑
µ

Ψµ |µ〉 (4.35)

where the sum runs over all possible values of µ. In this way, we can view Ψµ as the

wave function of the universe at time µ. This is analogous to specifying the

configurations of matter fields with respect to values of a in classical cosmology.

Due to the orthonormality condition (4.22) of volume eigenstates |µ〉, the constraint

equation (4.34) implies a difference equation [16]

sgn(µ+ 4δ) (Vµ+5δ − Vµ+3δ) Ψµ+4δ − 2sgn(µ) (Vµ+δ − Vµ−δ) Ψµ

+ sgn(µ− 4δ) (Vµ−3δ − Vµ−5δ) Ψµ−4δ =
128π2γ3Gl2P δ

3

3
Ĥ iso
matter(µ)Ψµ. (4.36)

The first thing to note is that we now have a discrete time evolution with a constant time-

step of 4δ instead of a continuous one.2 This is a direct effect of spacetime quantisation.

Next, the evolution equation (4.36) is well-defined at µ = 0, provided that Ĥ iso
matter(µ)

is similarly well-defined. Therefore, one can evolve a given initial value of Ψµ, for

instance µ > 0, backwards and passes through or jumps over the µ = 0 Big Bang

[16, 47].

4.6.1 Big Bounce

The simplest matter field known is the free massless scalar ϕ. In this case, the matter

Hamiltonian H iso
matter takes the form

H iso
matter =

p2
ϕ

2|p|3/2
(4.37)

where pϕ is the canonical momentum conjugate to ϕ. The matter sector of the model

can be quantised using standard Schrodinger representation, resulting in the total

2We note that one can also introduce δ(µ) so that the time-step will no longer be constant. For further
discussion on this, see [16].
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Figure 5: A result from [22] showing that the classical Big Bang is replaced with a
quantum Big Bounce. In this diagram, µ0 is a parameter analogous to δ in (4.27).

kinematical Hilbert space given by Htotalkin = L2(R̄Bohr, dµ0) ⊗ L2(R, dϕ) [22]. Upon

quantisation, the variable |p|−3/2 is substituted with the operator introduced in Section

4.5 while pϕ is promoted to a derivative operator in ϕ-representation

p̂ϕΨ(µ, ϕ) = −i~ ∂

∂ϕ
Ψ(µ, ϕ). (4.38)

In this way, the constraint equation (4.34) can be rearranged to take the form

∂2

∂ϕ2
Ψ(µ, ϕ) =

2

~2
B(µ)−1ĈisogravΨ(µ, ϕ)

≡ −ΘΨ(µ, ϕ) (4.39)

where B(µ) is the eigenvalue of ̂|p|−3/2 and Ĉisograv is the quantum operator

corresponding to the first term in (4.12). From the constraint equation above, it is very

appropriate to assume ϕ as the internal time. Indeed, this is the choice made in

[21, 22, 23] by Ashtekar, Pawlowski and Singh. Together with an alternative factor

ordering in quantising Cisograv, they derived a general solution to the Hamiltonian

constraint equation (4.39) and investigated the evolution of µ with respect to internal

time ϕ using numerical methods. The result is the replacement of the classical Big

Bang with a quantum Big Bounce, as shown in Figure 5.
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4.6.2 Effective Equations

The model of the homogeneous isotropic universe with the free massless scalar field

ϕ above has also been studied using effective equations, for instance, in [16, 46, 48]

by Bojowald. In the analysis, one first rearranges the classical Hamiltonian constraint

(4.12) to take the form

pϕ = ±H(c, p). (4.40)

Upon quantisation, this form of the constraint equation allows one to analyse the

model as a system evolving over time ϕ and governed by the Hamiltonian H(c, p). In

particular, one can use equations familiar in quantum mechanics such as

d
dϕ
〈Ô〉 =

〈[Ô, Ĥ]〉
i~

(4.41)

where Ô is an operator defined for the system. The details of the analysis can be found

in [16, 46, 48].

An advantage of this method is that we can recover equations of motion of the

classical type, which nevertheless incorporate quantum effects as corrections to the

equation. In the case of the homogeneous isotropic universe with the free massless

scalar, we can derive a modified Friedmann equation [16]

(
ȧ

a

)2

=
8πG

3
ρfree

(
1− ρfree

ρcrit

)
+O(~) (4.42)

where ρfree is the energy density of the free massless scalar field ϕ and ρcrit is a critical

density around which correction terms become important.

Since we now have a classical equation, we can use the usual intuitive notion of

time in cosmology. One can see that as we look at the reverse evolution of the

universe, the right-hand side of the modified Friedmann equation (4.42) approaches

zero (ignoring O(~) contributions) as the energy density ρfree approaches ρcrit. This

implies the existence of an extremum in the evolution of the scale factor a. We can
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similarly derive a modified Raychaudhuri equation [16]

ä

a
= −4πG

3
ρfree

(
1− 3ρfree

2ρcrit

)
(4.43)

from which we see that ä > 0 as ρfree approaches ρcrit. This implies that the extremum

above is a minimum point. Therefore, we again validate the Big Bounce picture as in

Section 4.6.1.
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5 Conclusion

Since its introduction to the theoretical physics community in 1987, loop quantum

gravity has developed significantly, to the extent that it has evolved into one of the

largest research focuses in the field of quantum theory of gravity [7, 11]. The most

appealing feature of the theory is its lack of additional a priori assumptions about the

nature of quantum spacetime. The inputs are only quantum mechanics and general

relativity, which have been very successful within their regime of applicability. Its

main result, namely the discreteness of the spectra of area and volume operators, gives

important insights into the quantum nature of space on the Planck scale. Nevertheless,

the theory is still far from complete.

As noted, one of the main open problems is the implementation of the Hamiltonian

constraint. This is a crucial step to the recovery of a quantum spacetime picture of loop

quantum gravity rather than “quantum space at fixed time”. The quantisation of the

Hamiltonian constraint, as briefly reviewed in Section 3.6, still suffers from unsettled

problems (see, for example, [6]). In the last few years, Thiemann has introduced another

idea to confront this problem. Specifically, he proposed the combination of the smeared

Hamiltonian constraints for all smearing functions into a single constraint known as the

Master constraint [49].

Alternatively, there are attempts to perform loop quantisation of general relativity in

a covariant way. This results in the spin-foam formalism [50]. In a sense, this formalism

avoids the Hamiltonian constraint altogether. Another closely related approach to the

study of the dynamics of loop quantum gravity is the group field theory approach [51].

Another important open problem in loop quantum gravity is to prove that it gives general

relativity in the low-energy, or classical, limit [7].

Due to the underlying symmetry in loop quantum cosmology, it is more developed

in these areas. As we have seen in Section 4.6, the Hamiltonian constraint equation

can even be viewed as an evolution equation that is closer to our physical intuition on

spacetime. There exists detailed analytical and numerical study of an isotropic, spatially

flat universe with a free massless scalar field [21, 22, 23]. Also, an investigation of the
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semiclassical limit yields the correct classical behaviour [52].

However, the purpose of loop quantum cosmology is to provide a way to “test” the

theory in a simpler setting. To that end, application to an isotropic, homogeneous model

alone is insufficient. Indeed, efforts are being made to extend the study to anisotropic

or/and inhomogeneous models of cosmology, for example in [15, 16].

Another important application of loop quantum gravity that is not discussed in this

dissertation is the application to black holes. Analogous to the cosmological case, loop

quantisation solves the singularity problem in the Schwarzschild black hole [53, 54].

There is also discussion of a paradigm to describe black hole evaporation in the context

of loop quantum gravity [55]. In addition, the Bekenstein-Hawking entropy of black

hole of surface area A has also been calculated (see, for example, [56, 57]).

We conclude that although there is still significant research to be done to finalise

loop quantum gravity, the theory has also progressed steadily since its inception. More

importantly, loop quantum gravity provides a framework to describe quantum

mechanics in a background independent way.
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