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Abstract

Time in Quantum Mechanics as a concept and as a measurable quan-
tity is the general topic discussed inside this MSc Dissertation. The inherit
difficulty of expressing formally the probabilistic expectation of time mea-
surements via the standard procedure in Quantum Mechanics is explained,
focusing specifically on the much studied time-of-arrival problem. Due weight
is given in the perception of time measurements in the classical limit and in
deriving for reference necessary classical statistical expressions for the time-
of-arrival problem. The so called “Pauli’s Theorem” is also explained in
detail. While the main focus of the project is on the extensive and detailed
presentation of two specific and highly disputable attempts by researchers
to construct an apparatus-independent expression for the probability distri-
bution of the time-of-arrival measurements for the free particle case using
indeed self-adjoint expressions of operators, an option supposedly prohibited
by the “Pauli’s Theorem”.
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Chapter 1

Introduction

“.. the time of transitions or ‘quantum jumps’
must be as concrete and determinable as, say,
energies in stationary states.”

— Werner Heisenberg (1927) [21]

It’s again one of these cases in Physics where a problem so easily explained
and defined can exhibit such an elusive tendency for a definite answer. Time
in Quantum Mechanics. Time of arrival of particle, the time that it needs to
reach to a specific point in space. What can possibly be difficult to express
on these concepts? Don’t we simply have to treat time like we do with
space dimensions, “on the same footing” as we usually say for the spacetime
concept of the (relativistic) quantum field theories?

The answer to the latter cannot be more ambiguous and the answer to the
former cannot be anything else than discouraging. The perception of time
in Quantum Mechanics has been a conceptual struggle for almost a hundred
of years, leading to a cornucopia of ideas and methods in dealing with it and
it has been since then a constant opportunity for contemplation again and
again on the very foundations of the Quantum Mechanics.

1.1 So, what’s wrong with time in Quantum
Mechanics?

Our difficulty with the perception of time in Quantum Mechanics, or
the quantization of time, mustn’t be misunderstood as some bizarre and
scholastic obsession for a consistent philosophical definition of time in the
quantum level. Actually, we don’t even suppose much difference with the
Newtonian time in Quantum Mechanics, since it is assumed that we are
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safely away from the relativistic limit. As mentioned above, the inaugural
question for the problem that we’re dealing with on the concept of time,
of time intervals, in Quantum Mechanics, is easily posed and initially quite
easy to be understood. It’s the typical question, as in Classical Mechanics,
of “when” a well-defined incident is about to happen.

In Classical Physics, despite of any definitions we would like to assign to
the concept of time, this specific question is first of all and clearly a question
on measurement; time measurement with devices (clocks) or without (from
direct calculation of time intervals from other measurable parameters). Time
as measurement is both a parameter inside our equations and an index on
our (very accurate nowadays) clocks. And we can arrange for these two
definitions to coincide very precisely.

Naturally so, this was the kind of questions that were primarily posed by
the pioneers of Quantum Mechanics when they were contemplating on these
very bizarre and mysterious phenomena for them, the famous “quantum
jumps”: “when” an atomic electron will change its state from a higher-
energy state to a one of lower energy, for the emission of a photon?, they
wondered [29]. This kind of reflections maybe seem naive for us on hindsight,
but they deserve more appreciation since still, almost a hundred years after
they were conceived, there’s not a definite answer. They evolved tough in
more recent years to much more sophisticated questions, like: “When does
a Measurement or Event Occur?” [30], where the concept of “event” tries to
enter the quantum realm, calling for a change on the fundamental postulates
of the Quantum Mechanics [0].

And again this absence of a definite answer is not because of any tech-
nical or computational reasons, not even because of experimental data dis-
crepancies. On the contrary, experimentalists perform measurements of time
quantities, time-of-flight measurements, tunnelling times, decay rates etc, in
a daily routine, in any degree of accuracy desired, at impressive small scales,
reaching nowadays to the, unimaginable even for some decades ago, level of
one-particle experiments.

So what’s the exact difficulty concerning measurements of time intervals
in Quantum Mechanics? Quantum Mechanics inherently admits a probabilis-
tic character for any kind of measurement procedures and hence a measure-
ment of time too in the quantum level is expected to follow this characteristic.
More accurately then, the question on “when” must be rephrased to: “when”
is expected for something to happen?, demanding an answer of probabilistic
nature.

Since then Quantum Mechanics as a system has managed, through the
experience of so many years, to successfully formulate mathematically this
probabilistic character for measurements of various other quantities, a corre-



sponding expression for time measurements wasn’t expected to exhibit any
particular difficulty in obtaining it. Time was already a dynamical parameter
[32] inside our mathematical expressions of states and amplitudes through
one of the most important equation of Quantum Mechanics, the Schrodinger
equation. And on the other hand, generations of experimentalists manage to
give us progressively even more accurate expectations values on time quan-
tities on various phenomena, from lifetimes to dwell times. There must be
a link between these two; we must be able to write down on paper an accu-
rate probability distribution on when a particle radiated from source will be
detected. Or we simply cannot do it? There are indeed researchers suggest
our inherit incapability in doing so.

This question still remains for the simple reason that we couldn’t manage
to decide yet if the time measurements we conduct, even for the simplest
ones, are dependent on the apparatus used for this purpose or not. And this
is definitely not something we can easily go along with. A measurement in
Quantum Mechanics indeed is a destructive procedure; after the measure-
ment of a quantity performed on a system, no other information is available
to be known for this system for the simple reason that the system has changed
due to the measurement. However, when we perform measurements of mo-
mentum for example, we don’t assume that the measurement was affected
by the device used for it. Indeed we can’t continue right afterwards with
measurements of position accurately, but still: we consider the value we ob-
tained for the momentum, a quantity that attributed the system at the time
of measurement and definitely not device-dependent.

Thus, asserting that time measurements are depended on the apparatus
used, we immediately reject that time is a characteristic attribute of the
evolving system. Then the time parameter we use inside the Schrodinger
equation is just an “external parameter”, as it is often described. Something
though not particularly convincing if you simply take a look at a list of all
these characteristic time observables for various quantum processes, or if you
contemplate a bit on how successful the Schrodinger equation have been in
describing the evolution of quantum systems.

Moreover, it has to be made clear that the aforementioned scepticism on
whether we are able to reach to a probabilistic description of when a quantum
system can be detected independently or not from the detecting apparatus is
not simply a cynic statement, from some strange rejectionists, but from the
same people that lead the way of the advancement and the establishment of
Quantum Mechanics (Pauli more famously, see (3.1)). And exactly this awe
against the “weight of authority” [29, p. 6] is considered by some experts in
the field as one of the reasons the further advancement on the problem had
been halted for so long.



In conclusion the difficulty insists because it addresses to and challenges
both our understanding of time as a concept in Quantum Mechanics and our
understating of the very conceptual heart of Quantum Mechanics.

1.1.1 And what’s special about the time of arrival?

Probably it is its simplicity, along with its stubbornness for a definite
solution, which makes the widely called time-of-arrival problem so widely
popular among researchers. It can be defined very accurately, thus it can be
tested experimentally accurately too [12, p. 3]. Thus it can be considered as
a promising path we can take in pursuing a more conclusive answer to the
general problem of time measurements in Quantum Mechanics.

More specifically, we investigate the potentiality of constructing an ex-
plicit expression for the probability distribution of the expected time of de-
tection of an emitted ensemble of (quantum) particles or of a single particle
moving supposedly towards a specific spatial position, at which point the
detector is located. There are many variants of this time-of-arrival problem,
from encompassing or not degrees of freedom from detecting apparatus inside
the desired probability distribution, to including or not interactions for the
particles of the ensemble, between them or from external fields. The simplest
case is the free particle case, where no interactions are considered, neither
external or between the particles and this is the one considered throughout
this whole analysis.

There are two aspects of this specific free particle case that have to be
given due weight. One the one hand, that by specifying a spatial position
for detection, what we actually require for the particle to be detected is that
its quantum state has to be attributed with a specific characteristic, namely
its spatial coordinates variables must coincide with these of the spatial point
of detection. And on the other hand, the initial conditions of this ensemble
of particles have to be determined in order for us to reach to an expression
for the probability distribution. By initial conditions again we refer to states
attributed with specific values for their parameter values, for example initial
momentum value, or initial spatial position value, or even an arbitrary def-
inition of the state with time equals to zero, ie. the beginning of the time
measurements. Further remarks on initial conditions of states on Chapter 4.

The rest of the Dissertation focuses specifically on the time-of-arrival
problem for the free particle case as a reference to the general topic of time
measurements in Quantum Mechanics.



1.1.2 And why do we insist studying it despite the
difficulty?

Hopefully we already managed to convey to the reader the significance
of studying the time concept in Quantum Mechanics. But what about the
significance of the time-of-arrival problem? Is it just the typical persistence of
Physicists to give a consistent answer to whichever question are confronted
with, even when it comes to a toy model though experiment? Partially
this is true, but nowadays reaching to definite answer to the problem will
be much assistive for other fields too. As enumerated by Grot et al. [19,
p. 2] the reason for studying this problem can be really practical, deeply
theoretical or simple because we would like romantically to maintain the
prestigious position Quantum Mechanics theory holds in the interpretation
of most of the processes of the quantum level. Indeed, it will quite unfair
for this theory to manage to have gone thus far, passing through so many
theoretical challenges and experimental tests and to fail in the interpretation
of such a simplistic process. Quoting Felix T. Smith: “we do not expect that
quantum mechanics could fail to predict a probability distribution that can
be experimentally measured by simply placing a detector at a fixed position
and noting the time at which it “clicks” 7 [33]. Tt’s just too simple to fail.

Furthermore, apart from the general area of study of time in quantum
mechanics, there are adjacent fields which need immediately more specific
answers on the perception of time in Quantum Mechanics, in order to con-
template for example on quantum theories in which we don’t even consider
Newtonian time, quantum gravity be the most significant example [20].

Finally, we can already trace some more practical implications, in con-
trast to the previous more academic reasons, for example in calculating and
simulating rates for chemical reactions. A definite procedure for calculating
expressions of probability distributions for the so called tunnelling time, the
time for which a particle manages to escape through a potential barrier and
not its expectation value, ie. the quantity our detectors measure, will allow
to even more accurate simulations of chemical reaction processes.

1.2 An overview of the project

This project was assign to the author on the 26th of June 2014 and it
was submitted on the 22th of September the same year. It was composed
under the supervision of Professor Dr. Jonathan J. Halliwell, who encouraged
me choosing a preferable, more specific subject for the project on the general
topic of the perception of time in Quantum Mechanics and the time-of-arrival



problem. This is not by any means a thorough account on the subject; it’s
mainly an expression of the level of understanding I managed to reach on the
subject, through intensive study of a number of books, thesis and articles,
during this very short interval of time.

1.2.1 Goals

This project aims to:

Introduce even the most unsuspected reader to the difficulties of ex-
pressing time measurements in Quantum Mechanics.

Give to the reader a brief understanding of the necessity for a clearer
view on time measurements in Quantum Mechanics.

Introduce the reader specifically to the additional obstacles one has
to confront if we want to express measurements of the time-of-arrival
quantity via the standard procedure in Quantum Mechanics, used for
so many other measureable quantities.

Make clear the distinction which is widely used to typically classify the
various methods and approaches to the time-of-arrival problem.

Make clear that the focus is on the so called “ideal” approaches and
introduce the reader to a further classification of this category using
self-adjointness as a criterion. Of course, as explained later, the latter
is not a strict way of distinguish methods, it’s mainly schematic for the
sake of a more comprehensive presentation.

Give the reader a clear understanding why a commutation relation for
the Hamiltonian operator and an operator of time measurements can-
not be primarily considered. This is maybe one of the most important
aspects of the whole topic.

Present briefly historical milestones that played a crucial role for the
development of the subject, but which all avoid including self-adjoint
expressions of operators inside their analysis.

Introduce the reader to two highly disputed methods of introducing
self-adjoint expressions of operators for an “ideal” perception of time
of arrival in Quantum Mechanics. This is the main focus of the whole
project and it is presented exhaustively.



e Give finally a brief overview of how delicately one must think when
evaluating the conclusions and the results of researches on the area and
how much elusive can be to reach to a definite answer for an aspect of
the topic.

1.2.2 Structure

There are another four chapters apart from this introductory chapter in-
side this project. Chapter 2 is the necessary classical reference to the topic of
time measurements and the time-of-arrival problem. Chapter 3 presents the
“Pauli’s Theorem” and significant milestones of the historical development of
the topic, giving a view to the reader that in general researches tend to avoid
the use of self-adjoint expression for operators in order to reach to probability
distributions for the time-of-arrival measurements. Chapter 4 concentrates a
great deal of the research effort conducted for this project, even though seem-
ingly the subject of the chapter is very narrowly defined. It presents almost
thoroughly the works of two independent teams of researchers on methods of
introducing self-adjoint expressions for operators of dimensions of time that
eventually, after imposing specific conditions, enable us to construct a spe-
cific time-of-arrival probability distribution expression. Chapter 5 is mainly
a commentary on Chapter 4 and conclusive remarks.

1.2.3 Prerequisites

Good knowledge of Complex Analysis and Quantum Mechanics are more
than sufficient for reading and understanding this project. No exquisite pe-
culiar concepts are needed or introduced. However, a caveat to the reader:
the whole topic might seem simple or even simplistic, but it’s not. There
are very subtle and delicate points inside this analysis, and the reader is en-
couraged to check for their validity and contemplate carefully upon these by
himself.

1.2.4 Acknowledgements

I would like to thank Professor Jonathan J. Halliwell, under the supervi-
sion of whom this project was composed and written, firstly for giving me the
opportunity to work on this very interesting topic, next for all of his constant
encouragement and the freedom he allowed me on choosing a subject on my
own and of course for his prompt help on whatever I requested from him.

Also, special thanks to my advisor for the QFFF MSc course, Dr. Tim-
othy Evans, for all the valuable pieces of advice, on dissertation matters as

10



well, he gave me during the whole past academic year.

1.2.5 Declaration

The following dissertation is my own work; the structure and manner in
which concepts are explained is my own, though numerous resources have
been used in forming that understanding, and references are given where
appropriate. Some sections follow closely the work of others, and are always
indicated as such.
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Chapter 2

The Classical Reference to the
Quantum Problem

“.. quantum theory presupposes the classical
level... it does not deduce classical concepts as
limiting cases of quantum concepts.”

— David Bohm (1951) [7]

Despite of the special details of every version of the time-of-arrival prob-
lem, all of them refer to the classical description, invoking Bohr’s corre-
spondence principle for validity. In this chapter the basic assumptions and
relations, and their implications, describing the time-of-arrival problem are
presented, giving due weight to the free particle case.

2.1 Formulating the general case

From the definition given to the time-of-arrival problem at the (1.1.1)
subsection of the Introduction, we identified the time interval at which the
particle is detected, at the position X, with the time-of-arrival quantity (7).
For Classical mechanics the time of detection at X coincides with the time
the moving particle needs to reach this specific position in space. This is not
a valid assumption of course in Quantum Mechanics a priori and that’s why
a clear distinction was made.

The central question in the time-of-arrival problem is if we are capable
to predict when a particle is detected, ie. the T" quantity, given the initial
condition of its movement or of the system it belongs. As mentioned before
it’s the simplicity of solving this problem classically that makes it so appeal-
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ing for study and makes us confident that indeed we can reach to a definite
answer for it.

Thus, starting with the single-particle case [19], in Classical Mechanics,
given specific initial conditions (q,p) = (qo, po), a trajectory for the particle
can be definite, uniquely if we refer (if there are any) to conservative inter-
acting fields with the particle. In general thought, a trajectory of the particle
q = q(qo, po, t) is the general solution of the equations of motion, with ¢ = ¢
and p = po for time set to zero, t = 0. As a general algorithm again for
obtaining the time of arrival for this particle at position ¢ = X, which is
exactly the same with the time of detection in Classical Mechanics, we can
invert (given this is possible) the trajectory equation ¢ = ¢(qo, po,t) for t in
order to obtain an equation of the form: ¢ = ¢(qq, po, q). Replacing g with the
position X of the detector, we have immediately constructed an expression
for calculating the classical time-of-arrival quantity:

T = t(Q07p07X) ) (21)

again provided that the definition of 7" and t = t(qo, po) coincide.

Multiple crossings

Of course, this inverted equation can be multivalued even with this three
arguments qg, po and X specified exactly. In this case, which is widely called:
multiple crossings (for the particle or the ensemble of particles), we are only
interested in the lowest value for the time quantity 7', ie. the first time the
particle crosses X, or as it also widely called the first-passage time. For
ensembles of n particles, it must be specified if we are interested in the n
first-passage times detected, or the first-passage time for each of the n parti-
cles. Cases of multiple crossings are definitely out of the scope of this project.

There’s another significant attribute of (2.1). Position variables ¢ is de-
fined as real, but it wasn’t explicitly specified that its range of values covers
the whole axis; maybe it covers a part of it. Thus in case we refer to a po-
sition of the detector X out of the range of ¢, then instead of a real value,
we get of course from the inverted equation ((2.1) a complex result. The
physical interpretation of this in terms of the time-of-arrival quantity is that
for real values of T" we refer to positions X that they do can be reached
from the particle due to its initial conditions and for complex 1" values, we
refer to position not reachable by the particle. Thus in classical mechanics
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the distinction between positions and initial conditions that allow detection,
from those that do not, is very precise.

2.1.1 Standard Quantization, a brief aside

Observables in Quantum Mechanics are usually associated with self-adjoint
operators acting on properly defined quantum states. Its set of eigenval-
ues from the eigenstates-eigenvalues equation is correspondingly the set of
possible values that the observable quantity can exhibit. Also the average
expression of the quantum probability distribution of the set of possible ob-
servable values is expected to coincide in the classical limit (A — 0) with the
value measured or calculated from the classical equations of motion, invoking
Borh’s correspondence principle and Ehrenfest theorem.

The Standard or Canonical Quantization is a generic heuristic mainly
procedure in Quantum Mechanics [27, p. 9] addressing the problem of how
to relate classical expressions referring to observable quantities to quantum
operators with a proper set of eigenvalues as described before. In plain words,
this procedure assumes that a classical expression maintains its validity in
the quantum realm translating its canonical variables as operators (quanti-
zation). However, it has to be made clear from the start that there’s not a
single or unique way for doing this. And moreover, different quantizations
don’t always lead to different result, but they may coincide, as some examples
from different quantizations of tunnelling times proved [12].

Hence for the time-of-arrival case the standard quantization would pre-
scribe a substitution of the type:

Cj(t) = Q(Cj[))ﬁ(b t) and T = t(dOaﬁOa X) ’ (22)

where ¢y and pg are self-adjoint operators of position and momentum corre-
spondingly. However, there’s a great difficulty at this point that leads to the
aforementioned not-uniqueness on defining operators this way: the ordering
of the products of operators when the latter do not commute. Products of
operators are not always commutative as this is the case for c-numbers. So
which ordering must we choose? This a serious obstacle even for the easiest
of the cases, as for example for the free-particle case of the time-of-arrival
problem.

2.2 The Free Particle Case

The simplest of the cases, where no interactions at all are assumed. Let
particle m which at t = 0 is at a position gy and it has momentum pq. Its
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trajectory equation is simply:

q(q0, po,t) = qo + pot/m.. (2.3)

Thus, for go = X, the inverted equation with reference to ¢ will result to the
classical expression for the time of arrival, T' = t(qo, po, X ):

(X — qom)
DPo

=T = (2.4)
Let’s consider, next, an ensemble of non-interacting particles in the free
case. We follow for the rest of this subsection the same structure as in
Muga and Leavens in [28, p. 360-362]. For classical mechanics, a statistical
ensemble of non-interacting particles follows definitely a deterministic motion
and by definition Liouville’s equation is valid. Let a normalized phase space
distribution function F'(q,p,t), for which we assume F(q,p > 0,t) = 0,
namely the ensemble moves only to the right of the ¢ axis. Thus we have:

dF(q,p,t)

o =0 (Liouville’s equation) (2.5)

OF OFdg OFdp

ot Yoqa Topar "
oF OF oF
L i+ = p=0 2.6
o Tl gt (26)
and
/ dq/ dpF(q,p,t) =1 (normalization) (2.7)
—00 0

2.2.1 The classical time-of-arrival probability distribu-
tion

Our aim is to construct an expression of the probability distribution
[I(X,T) of time of arrival of a particle of the ensemble at a specific spa-
tial position ¢ = X. The way we can interpret this probability distribution is
that it refers to the probability of detecting a particle (of m mass) of the en-
semble (or otherwise the fraction of the ensemble detected) inside the specific
spatial range X and X + dq at an arbitrary time interval 7" and T" + dt.

Of course the probability for the ensemble to cross a point X < ¢q are
zero classically since pg > 0. But we won’t assign it though as a condition
to the whole setting or we won’t confine the time range to positive values
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mainly for comparison purposes, because the probability for the correspond-
ing quantum-mechanical case is not zero.

Intuitively we can guess what this expression might be, confining firstly
the normalization relation (2.7) to the range X and X + dq only, per every
time interval T" and T + dt:

Jo dpF(X,p,T)dq
ot

which considerations lead to an expression:

/000 dpgF(X,p,T). (2.8)

This product of velocity and probability density resembles to a probability
flux expression. But still this is not a strict proof:

Proof of the expression for the current density:. The distribution function
F(q,p,t) obeys a continuity equation on the phase space since there aren’t
any sources or drains:

0F(q,p,1) N 0Jq4(q,p,t) N 9J,(q,p,t)
ot dq op

=0,

-

where J(q,p,t) = (J,(¢,p,t), Jp(¢q,p,t)) is the probability flux or current
density of the distribution. Using (2.6) and Hamilton’s equations we can
compute this current density. Firstly we observe:

oF an+%_<aF, aF,) aJ, aJ,

ot T e T N\ T @) e T

I(GF) o4 O(pF) op dJ, 0J,
N pt MR pZE) = 224y TP
- < dq dq * Op op dq * op
A(GF)  O(pF) aq op\ 8J, 8J,
Y Al e STt ) e At 2.
- dq * Op dq * op dq * Op (2:9)

and since 9/dp and 0/0p operators commute, we get from Hamilton’s equa-
tions:

oH  OH
dqdp — dpdq
9 _ _9p _ 9¢  0Op _

- _ — 2.1
dq 0p;$<3q dp ’ (2.10)
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Hence substituting (2.10) to (2.9):

o(GF) O(pF) dJ,  0J,
~ "o T Top g T op

and by application of Gauss’s theorem:

:>/ dq/ [ (¢F — J)Jra(pFap—Jp) _0

dq[(GF — J,)dS, + (pF — J,)dS,) =0  (2.11)

semi—circleS

At infinity we don’t expect any value for the current, so every contribution
comes from the rest, on the p = 0 line, thus it is valid to assume: J, = ¢F
and J, = pF O

Therefore we conclude:
EXT) = [ dp (X, T) = JXT), (2.12)
0

where J(X,T) is the current density at spatial point X, for the time interval
T to T + 0t. And in order to make a clear connection the initial and general
probability density F'(q,p,t) and substituting ¢ to p/m:

(X, T) = / g / LRG0 1) (- X) (2.13)

This is the expression of the classical probability distribution of the time of
arrival [27, 28]. It coincides with the intuitive expression (2.8) we constructed
and it has the right dimensions of inverse time, namely II( X, T) dT = J(X,T) dT
is the probability detecting a particle (or again the fraction of the ensemble
detected) crossing the X to X + dg spatial interval at the 7" to T'+ dt time
interval.

What if we integrate over all the momentum values?

In case we hadn’t assumed in the beginning that F(q,p > 0,t) =0, ie. a
constraint on the momenta values, we couldn’t have taken an expression of
the form:

ﬂxn:[§@Mxnﬂ:/m@%ﬂxgn (2.14)

[e.9] —0o0
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as the probability distribution. An example for which its inadequacy is made
obvious is the case where we can have the same and opposite contribution
to the integral resulting to zero total contribution, ie. particles with same
and opposite momenta coming the same time at X. Thus, immediately this
renders the above expression as not trustworthy. Of course still, if distinguish
between the positive momenta and the negative one, the corresponding cur-
rent density expressions are perfectly valid:

J+(X,T):/Oodp%F(X,p,T) (2.15)
J_(X,T):/O dp%F(X,p,T), (2.16)

with the drawback though that they are not normalized since they do not
refer to the domain in terms of the momenta values. Thus, since the density
distribution F'(X,p,T) and the mass m are by definition positive, then in
order to sum over positive contribution from each term, we can assign a
minus sign in front of the second equation, formulating so an acceptable
expression for the time-of-arrival probability distribution [25]:

H(T,X):J+(X,T)—J_(X,T):/Ooodp%F(X’p’T)_/o

—00

dp L F(X,p,T)
m

= (T, X) = /Oo dp % F(X,p,T). (2.17)

—0o0

Kijowski’s axioms for the classical distribution II(7)

For future reference and because of their relevance, it’s worthwhile to
mention the axioms Kijowski [23] postulated in order to construct immedi-
ately through these the probability distribution II(7):

1. The probability distribution is positive throughout its whole domain:
I(T)>0,VT € (—o0,0)

2. Its time integral equals to the unit: [°° dTTI(X,T) =1

3. If we choose another probability density expression such as: Fi(q +
X,p,t) = F(q— X,p,t) =, then we must have: II(F7) = II(F'), so that
X is the fixed position where the measurement takes place.

4. Among any other function that satisfies the above three axioms, we
will consider as the probability distribution II(7") the one who results
to the minimum value of the expression of the variance of T', (A(T))%.

18



2.2.2 The classical expression for the average time of
arrival

An expression for the classical average time of arrival is important and
useful, because many times in Quantum Mechanics we invoke Bohr’s corre-
spondence principle, or even Ehrenfest’ theorem, in order to justify some of
our assumptions and validate results. Also it’s the first (order) statistical
moment, the existence of which is a good indication that the probability
distribution under investigation exists indeed. Hence it is expected that the
quantum-mechanical expression for the average time of arrival coincides with
the classical one.

We will denote in general (classically or quantum-mechanically) the av-
erage time of arrival as (t4)x. By definition the average time-of-arrival ex-
pression is obtained by:

(ta)x = / dT'TII(X,T) (2.18)

In obtaining a simpler expression we have to follow carefully some further
steps. For start let’s substitute (2.13) inside (2.18), after integrating over the
positions:

#@MX:/WdTTAW@%FMﬁﬂD (2.19)

—0o0
There’s a subtle point here. The way we have to interpret the definition
(2.18) is that T now is the random variable, obtaining values through the
integration over its whole range; not the resulting value of an expression
T = T(qo,po,0). Hence T has no dependence from momenta values p = py
and so we can change the order of the two integrations:

tAX/ dp/ ari? FXp,T). (2.20)

Then for the equation of motion (2.3): Tp/m = Tpy/m = X — qo. Again
we have to interpret this properly. The time value 7" multiplied by the
momentum of the free particle gave this expression from the equation of
motion, in which, since the X value is predefined for the problem, the only
variable is the initial position gy = qo(T, po), where py can be considered as
constant before the integration over momenta values. The differential of ¢,
again from the equation of motion, is:

= 0 = dgo + 22dT (2.21)
m

= dgo = —%dT (2.22)
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Hence, multiplying the differential d7° with a factor of —py/m we obtain a
differential of the initial position gg.

Again, we have to be careful at this point. The dT" differential is positive
by definition and the same applies for py and m. Thus we are lead to consider
dqo differential as negative and so the range of integration is not from —oco
to 0o, but reversed, from oo to —oo:

& T o0 T X —
#/ ﬂuﬁ%xnﬂz/‘(dm)( DM px T
— 00 m —00 Po Do

> X — e X —
=—/ @é—ﬁ@EﬂXnﬂ=/)@é—ﬁ@ﬁﬂXnﬂ

Finally we are left to deal with the probability density F(X,p,T). How-
ever, invoking again Liouvile’s theorem, we are allowed to suppose that the
probability density F(q,p,t) at the spatial position X and time T (p arbi-
trary) is the same for the corresponding initial values of the variables, ie.
F(X,p,T) = F(qo,po,0). This 1:1 correspondence of the variables with their
initial values of course is an obvious result again of the equation of motion
relation (2.3).

Conclusively, (2.19) can be writen as follows, while changing the order of
integration since qo and py are dependent of each other:

)m

o0 () X —
(ta)x :/ dQO/ dpo—( p;]o F(qo,po,0) (2.23)
—00 0

This the final expression of the average time-of-arrival expression [27, 28],
which equivalently can be considered as the first statistical moment of the
phase-space function (X — qo) m/po, evaluated with the F'(qo,po,0) phase-
space density distribution, where we assumed that the singularity at pq is
cancelled by F(qo,po,0) in order for the integral over momenta to be well
defined.

The time integral of the probability distribution II(7)

As an aside, it’s won’t be difficult for the reader to see that by the same
method and the normalization condition (2.7), it can be proven that the time
integral of the time-of-arrival probability distribution equals to 1:

/ dTH(X,T)—/ dT/ dp%F(X,p,T) (2.24)
o) —00 0

:/ dQO/ deF<QOap0aO) =1, (2-25)
—00 0

as expected for a probability distribution of a time quantity.
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2.2.3 The difficulty of obtaining a probability distribu-
tion in Quantum Mechanics

Following the standard procedure in Quantum Mechanics for constructing
a probability distribution of an observable quantity, first a proper self-adjoint
operator has to be defined corresponding to the quantity and then its set of
eigenstates from the eigenvalue problem have to obtained. Then we construct
the probability amplitude for the quantity by projecting the general expres-
sion of states defined for the Hilbert space of states onto an eigenstate of the
operator. If in the Schrodinger picture, this general state can be considered
as the time evolution of an earlier state corresponding to the initial condi-
tions of the problem in consideration. This squared modulus of the complex
amplitude is finally the probability distribution for the measurement of the
quantity under consideration.

There are in general three main obstacles for reaching to a quantum-
mechanical expression for the time-of-arrival probability distribution via the
above standard procedure:

e The association of the time-of-arrival quantity with the time parameter
of the Schrédinger equation is still highly disputable. Thus assuming
the (2.2) identification that T' = t(go, po, X ) is not acceptable a priori.

e Even if we consider valid to make the above identification, we have to
choose an ordering for the constituent operators of the operator expres-
sion of the considered time-of-arrival operator. And indeed researchers
suggested through time many different expression for such an operator.

e Finally, maybe the severest of the obstacles is the so called “Pauli’s
Theorem” (3.1), a statement that indicates that the domain of any time
operator considered do not coincide with the Hilbert space of state of
the problem. Further on this great obstacle in the next chapter.

2.3 The Variety of Approaches

The various methods suggested by researchers in order to deal and give
or not an answer to the time-of-arrival problem are usually classified into
two categories [29, 32], based on our conceptual incapability described in
the introduction of giving a more definite answer on whether or the time-of-
arrival measurements are apparatus-independent:

e The “operational approaches”, focused on deriving probability distri-
butions which include the behavior of the detection apparatus, even
with the simplest detection process.
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e The “ideal approaches”, seeking to construct a specific quantum-mechanical

operator proper for time-of-arrival measurements and consequently a
probability distribution without postulating any degree of freedom from
apparatus.

Furthermore, inside this project another classification was applied specif-
ically for the second category of the “ideal approaches”. We distinguished
between methods that avoid to use self-adjoint expressions for the “ideal
operators” they postulate, and methods that indeed use self-adjoint adjoint
operators. The latter is the case by far given prominent weight and studied
inside this project.

However, there something that it must be clarified at this point. The
distinction between methods that use or not self-adjoint expressions of time-
of-arrival operators, is not widely used. Mainly it’s a schematic way of pre-
senting a specific aspect, out of the very wide topic of time in Quantum
Mechanics, in order to emphasize that the two works of researchers, exhaus-
tively described inside this project, exhibit this specific attribute that they
use self-adjoint expressions for the operators postulated. This is not a strict
way of distinguishing the two methods, as there are indeed methods from the
two categories far more relevant than others supposedly in the same category,
something explicitly shown in the next chapters.

Moreover, the reader mustn’t be misled by the volume dedicated to the
chapters 3 and 4 corresponding to each category. This is a project aiming to
present extensively methods of self-adjoint operators. However, the truth is
that in the general bibliography the methods not using self-adjoint operators
supersede in numbers and in the attention given to them the corresponding
methods of self-adjoint operators. As an indication we can mention that
there are whole reviews on the subject that they only dedicate only a page
on the latter methods out of almost a hundred [28]. Hence, it must be clear
that this project is dedicated to these few, highly disputable methods.
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Chapter 3

Rejecting self-adjointness

“It is surprising that the current mathematical
apparatus of quantum mechanics does not
include a simple representation for so
eminently observable a quantity as the lifetime
of metastable entities”

— Felix T. Smith (1960) [33]

Every proper historical review on the topic of time measurements in
Quantum Mechanics duly assigns a place as a milestone for the so called
“Pauli’s Theorem”. On hindsight however, many modern researchers agree
with this perspective from a rather different point of view. Eric A. Galapon,
for example, entitled a 2003 paper of him [16], part of a series of very inter-
esting papers on the subject, as: ”What could have we been missing while
Pauli’s theorem was in force?”; a simple indication of the modern trends on
contemplating agian on the “theorem” nowadays.

It’s indeed a milestone; nobody has to dismiss this. But from a modern
reading it’s not only a milestone because of its conceptual and technical
contribution to the topic, but rather because of its pessimist undertone which
it inherited to whole generations of researchers. And even it might sound
peculiar to use sentimental terms as “pessimism” for explaining a certain
study direction which a whole topic on Physics had taken, some suggest that
it was indeed the heavy name of one the legends of Quantum Mechanics,
Wolfgang Pauli himself, that influenced more this evolution of the topic,
rather strict scrutiny of every assertion presented, the sacred duty of every
scientist. Even this opinion of course, as everything in this topic, is again
disputable. In any case, “Pauli’s Theorem” was the beginning of a long chain
of rejections that time is anything else than an “external parameter” assigned
to quantum states and not at all an inherit attribute of these. In other words,
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let only the clocks to tell the time. Time won’t “tell”, quoting Prof. J. J.
Halliwell.

Then, as the story goes, some “courageous spirits” appeared giving a
possible way out to the dead end. They didn’t reject the validity of “Pauli’s
Theorem” itself; they rather rejected the necessity in Quantum Mechanics of
associating observables with self-adjoint operators. And it worked. This has
been the prominent way of dealing less “pessimistically” with the topic, ie.
accepting a certain inherit character of time in quantum evolution.

It’s an extensive and truly fascinating subject of the general topic and
there’s indeed a plethora of this kind of approximations of the problem. In
this chapter we are only confined in presenting only two of them, because
this projects aims in presenting methods that use self-adjoint expressions of
operators. Again, in comparison with the volume of the next chapter, it’s
not indicative at all of the extent of appreciation these approaches usually
receive from the bibliography. The contrary by any standards; methods
avoiding self-adjoint expressions is the rule, rather than the exception. Here,
only these two methods are presented for the sole purpose of future reference
inside this project. And again, distinguishing between methods that use or
avoid self-adjoint expressions is mainly a way of presenting the subject in
this project, rather than a strict categorization.

3.1 Pauli’s “Theorem?”

The first thing one has to know about “Pauli’s Theorem” is that it is
not actually a theorem. And it seems it wasn’t intended to be considered
as one. It’s a footnote on the second article by Pauli inside his famous
“Encyclopedia of Physics” (1958) [1]. It’s a statement without a strict proof,
and as Galapon in the aforementioned series of articles showed [14, 15, 16, 17],
there wasn’t any rigorous consideration of the domains of the operators. Thus
any conclusions Pauli derived from this statement are simply not generally
valid. Muga et al., in their historical review, refer to it as a “formal argument”
[29, p. 6], while we will refer to this statement as Pauli’s “Theorem” from
now on, a little bit sarcastically, but not disrespectfully though.

It’s historical and conceptual significance again cannot be underestimated
because of its proven non-generality and it’s always a very good introduction
to the technical difficulties and the general problem that lead seemingly un-
escapably to a dead end. The next is the detailed typical presentation of the
statement, where we follow a similar, but more straightforward, structure of
a proof as in [12].
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3.1.1 Time-energy commutation relation

Let a conservative classical system. We know from Analytical Mechanics
that we can describe it using the canonical coordinate variables of position
and momentum (g, p). We can also choose another set of coordinate variables
to express the behaviour of the system, by imposing a canonical transforma-
tion on the initial ones. Choosing specifically energy (through the Hamilto-
nian) as one of the coordinate variables, we are lead to the time variable as its
conjugate. And this due to the following property for the Poisson brackets of
the Hamiltonian with another dynamical variable F' with no direct time de-
pendence, F' = F(q,p) (for a more general treatment, with time dependence
for F: [24]):

(H, F(g.p)} = LD,
namely, this specific Poisson brackets is the time derivative of the dynamical
variable.
Thus, for an arbitrary variable T conjugate to the Hamiltonian, ie. in
terms of the Poisson brackets: { H,T'} = 1, it is straightforward that:

dT
={HT}=1= ik
And this arbitrary variable has uniquely dimensions of time and a simple
dependence with the time variable of the classical system.

Translating this result to the quantum level, standard (canonical) quan-
tization can be evoked, according to which we replace Poisson brackets to
commutators and variables to self-adjoint operators (in the Heisenberg pic-
ture)

(0T} — %[H, 7]
= [H,T] = ih (3.1)

Even though all these considerations seem sufficient for defining a self-
adjoint quantum-mechanical operator for time, unfortunately they are not.
As Pauli first put forward, assuming self-adjointness for a time operator con-
jugate to the Hamiltonian operator is in contrast with fact that the Hamil-
tonian (energy) spectrum is only infinite to the positive values and it is
bounded below to the zero value (semi-bounded). And this is definitely not
an easily-surpassed obstacle.
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An aside on the canonical quantization of the Poisson bracket

It must be stressed that the canonical quantization as described above
implies self-adjoint operators for both of the operators for the considered
commutator. This is an assumption based mainly on the fact that we pos-
tulate a range of values for both the canonical variables on the real axis.

However, assuming or prooving a commutation relation of an operator,
say A, with the Hamiltonian of the form: [H, A] = il does not lead to self-
adjointness for the A operator. This something sometimes misunderstood in
the bibliography.

Proof. Let’s denote the complex scalar product of two functions of states
as: (¢[Y)) = (4,v) and let’s suppose that we have a valid commutation
relation: [H A] ifi, for Hamiltonian H and an arbitrary operator A. The
commutator itself of course is not self-adjoint. If it was then by defintion:

(ol A1) = ( (1A1) o00) = (1, Alo.v),
but since:

(([ﬁ,fi])%,w) = (=ihe,v) = —ih(¢,¥)  and (3:2)
([H, A, ¢) = (ihg, ¥) = ih(¢, 1), (3.3)

it is obvious that the commutator is not self-adjoint, as expected of course
for an imaginary scalar quantity.

But, what about A operator? Can we prove its self-adjointness only
using the commutation relation? Firstly, let’s use the fact that Hamiltonian
is indeed self-adjoint. Thus:

11, A" = [A, B] = [AT, {1 (3.4)

and replacing then (3.4) inside (3.2) and since (3.2) and (3.3) are actually
the same and opposite:

(([FLA})%, ¢) = (AT, H1p,9) = ~ih(¢, ) = —([H, Ao, v)

= ([H, A¢,y) = ([, A]p,¥)
= ([H, (AT — A)]¢,v) =0 (3.5)

Hence, we reached to equation (3.5), for which we have to investigate if
it leads univocally to the self-adjointness of A. The answer obviously is no.
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Operator A can be of course self-adjoint, ie. AT = A which satisfies equation
(3.5), but there are another two possibilities also. Either the difference AT—A
is a c-number, not an operator, or it’s indeed an operator with the same set of
eigenvalues, or part of it, with the Hamiltonian operator. Both cases render
the commutator with the Hamiltonian as zero.

Therefore, we concluded that the self-adjointness of an arbitrary operator
cannot be derived from the commutation relation, but it has to be assumed
or proven. ]

Finally, from (3.5) we can infer that in general the anti-self-adjoint ex-
pression:
At — A
2

(3.6)

commutes with Hamiltonian, while in general again, for every arbitrary A
operator, the self-adjoint expression:

At + A
2

(3.7)

has exacty the same commutation relation with the Hamiltonian as A has.
This can be shown if, instead of subtracting, we add equations (3.2) and
(3.3), using again (3.4):

= ([H, (AT + A))¢,¥) = 2ih(, V) (3.8)
i A 2* A i (3.9)

3.1.2 Proof of nonexistence according to Pauli

Assuming the existence of a (proper) self-adjoint time operator T, its
cigenstates, T'|T) = T'|T), will form a complete set of states for the Hilbert
space on which they have been defined. The existence of any higher (integer)
power for this operator can be also be postulated, by assuming also that it
is a well behaved operator. Thus by induction:

T"|T) =T"|T) ,n € N°

and multiplying each part of the equation with a factor (ie/h)"/n!, where
this e parameter has dimension of energy, then by adding all the possible
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powers from 0 to oo will result to a power series equal to the an exponential
function of the time operator:

N 2_: (z’eT;/h)” 7 — Z (z'eT;/h)” -

& exp (i€T/h) |T) = exp (ieT/h) |T) (3.10)

Thus, assuming the validity of the time-energy commutation relation
(3.1), a new commutation relation can be inferred, involving this time the
exponential operator (3.10). To calculate this commutation relation, we use
first a property of the commutators:

= [H,T" = ihnT" ", (3.11)

which leads then for the commutation relation of the Hamiltonian and the
exponential operator:

= [H,exp (ieT/h)] = [H,> M] => w[ﬁ, ™

n!
n=0 n=0
NG e (ie/P)" " s
_Z n! ™" = Z n—1!
n=0 n=0
= [I:I,eief/h] = —eeT"/h (3.12)

So let’s consider now the action of this exponential operator on an energy
eigenstate |E), using the latter commutation relation (3.12):

i€l 1 - i€l 1 - iel it ~
= ¢TNE) = —[H, T |B) = ——(H T/ — T ) |B)
1/~ .+ .
I <HezeT/ﬁ |E> - ezeT/hE |E>)
€
= I:Ieief/h |E> — (E— 6) eieT/h |E> (313)

Therefore, eiel™ /h |E') expression is an energy eigenstate too, correspond-
ing to the F — € eigenvalue. And then with the proper normalization we can
assert from (3.13) that:

= T/ E) = |E —¢) (3.14)

But since there aren’t any restrictions for the value of the ¢ parameter,
apart from the convergence of the power series, then there aren’t any obsta-
cles for these states to be attributed with a negative energy value. Thus,
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the initial commutation relation (3.1) is not sufficient to restrict the domain
of the energy eigenstates to the positive half of the (real) energy axis, but
instead, according to (3.14) they have to span, continuously moreover, to the
whole axis, ie. £ € (—o00,00). This is contradictory with the by-definition
semibound character of the energy spectrum of the states and hence the as-
sumption of the commutation relation (3.1), for this hypothetical self-adjoint
time operator, cannot be considered acceptable until this contradiction is set-
tled.

3.2 Two renowned “ideal” suggestions

For future reference, this second part of the chapter refers very very briefly
to two quite famous ways of surpassing the difficulties from Pauli’s “The-
orem” in obtaining probability distributions for the time of arrival as an
“ideal” concept, no degrees of freedom from apparatus, without postulating
the need for a self-adjoint operator. Again, this is a very extensive topic;
the interested reader can consult the bibliography for further study. This is
merely a scratch, because this project focuses on another direction on the
topic.

3.2.1 Kijowski’s axiomatic time-of-arrival probability
distribution

On the previous chapter we presented the list of axioms that Kijowski
imposed in order to reach successfully and univocally to the classical expres-
sion of the time-of-arrival probability distribution. Assuming the same set of
axioms for the quantum case, a probability distribution was constructed for a
free particle moving in three dimensions [23]. This distribution was originally
presented by Allcock [4, 4, 1], through very different considerations, however
due to the axiomatic approach, it’s more famous because of Kijowski.

Here we skipped the derivation and we are confined to present two versions
only of the distribution, for convenience, for one dimensional movement.
Hence, for a state |¢)(o)) which is a superposition of momentum eigenstates
of only positive momenta, it was derived a probability distribution for the
arrival time at a spatial position X of the form:

2 2

/0+°° dpy/pexp (_QiTp " ipX) ot

k[T X5 (t)] = —

— (3.15)

mh
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or as function of k = p/h for future reference:

2

)

(3.16)

h
Mg [T X51(t)] = m

[ e (<50 ik ) ehutao)

m

where ¢y is the initial reference time and it is used notationally instead of
t = 0 in order for the covariance of the distribution with time translations to
be implied explicitly [35], as in the classical case: k[T X;1(to)] = Hg [T +
to; X;1(0)].

The general relations for states with momenta of any sign is:

2

/ " ek exp (_ihszz * ikX) (i)

m

Lk [T X (t0)] = o3

(3.17)

3.2.2 Aharonov-Bohm symmetric time-of-arrival oper-
ator

Aharonov and Bohm in their 1961 paper [2| presented a way to measure
or calculate time in the quantum level (for various purposes, mainly to argue
on the energy-time uncertainty relation) using a free particle as a “clock”,
simply by measuring its position x and its momentum p,. This measurement
was realized by an operator, which was the symmetrization of the classical
expression maz/p,. Thus correspondingly, for the time-of-arrival quantity,
the classical time-of-arrival expression (2.4) was symmetrized and translated
properly as an operator expression:

T = —%[(@ — X)p 4 p (@ — X)) (3.18)
This is not a self-adjoint operator, but a maximally symmetric one, namely

almost as useful as a self-adjoint operator.

3.2.3 Giannitrapani and the POVMs

The two methods above were associated together by Giannitrapani in
1997 using the POVM theory [18], by specifically showing that the probability
distribution for the Aharonov-Bohm time-of-arrival operator (3.18) coincides
with Kijowski’s distribution (3.17) [13, 12, 29, 27].

The more interested reader is redirected to the bibliography on the sub-
ject.
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Chapter 4

Retrieving self-adjointness

“.. the introduction of an operator T must
fundamentally be abandoned...”

— Wolfgang Pauli (1933) [1]

At a later, more recent, point in time, the aforementioned “courageous
spirits” of this whole endeavour decided to take another controversial and
highly disputable step forward towards the construction of this “ideal” ex-
pression for the probability distribution of the time of arrival. They indeed
embedded in their considerations and methods properly defined “time” op-
erators with the formerly rejected property of self-adjointness. Of course
no self-adjoint time-of-arrival operator, both conjugated and with identical
domain of definition to the Hamiltonian, was presented. This is widely still
considered non-feasible, or even non consistent with our understanding of
Quantum Mechanics. What the researchers suggested inside their works was
the construction of expressions of self-adjoint operators with dimensions of
time that are used carefully to the end of the construction of the desired
probability distribution.

More specifically, in this chapter we present the works of two independent
teams of researchers, N. Grot, C. Rovelli and R. S. Tate [19] (and partially
[31]) in the first section, and V. Delgado and J. G Muga [12] in the second.
The main idea that allows us the association of these two papers including
them as a whole in a chapter is based on two facts. That, on the one hand,
the reason that Pauli’s “theorem” (3.1) prohibits a [H,T] = ih commutation
relation is due to the semi-bounded character of the Hamiltonian energy
spectrum and that, on the other hand, it was proven recently [14, 15, 106,

|, that the consideration of bounded (this time) self-adjoint time-of-arrival
operators, conjugated to the Hamiltonian, is indeed consistent with its semi-
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bounded energy spectrum.

Taking these into account, it can become evident that the introduction of
a self-adjoint operator of dimensions of time conjugated to the Hamiltonian
can be achieved through two paths. Either we can change the range of
definition on the Hilbert space of states for the time-of-arrival operator we
postulated, modifying the operator this way, turning it into a new bounded
“time” operator, while leaving the Hamiltonian as it is. Or we can expand
the defining set of states for the Hamiltonian operator this time, in order to
incorporate states (of negative energy) prohibited before, modifying this way
both the Hamiltonian to a new energy operator and also the time-of-arrival
operator to a new self-adjoint “time” operator.

The resulting new operators corresponding to the time-of-arrival concept
are self-adjoint, thus they do can straightforwardly lead to a probability
distribution, more easily of course for the simple case of a free quantum
particle. Applying then proper conditions in each case, we can associate
these final distributions of the modified operators with the desired time-of-
arrival probability distribution. The results of the two different methods in
terms of the final time-of-arrival probability distribution amazingly coincide
and they are identical to the Kijowski’s distribution. Further remarks on
the two methods continue on Chapter 5, where also it is made apparent why
these results coincide.

Again it has to be said, as explained in the Introduction, that in this
project the whole classification into methods that use or avoid self-adjoint
“time operators” is in the most degree schematic, mainly for the sake of a
proper presentation, aligned with the goals of the whole project. The two
works considered relevant in this chapter, they might have been considered
diverging in another context, in a classification of different criteria.

4.1 Modifying the time-of-arrival operator

Grot et al. in their 1996 paper [19] manage to reach to an expression for
the time-of-arrival probability distribution for the free particle case (no de-
grees of freedom from apparatus were postulated), through the construction
of a self-adjoint operator of dimensions of time, which is the proper mod-
ification of the postulated expression for the time-of-arrival operator. The
confined domain of the initial time-of-arrival operator is expanded for the
definition of the new “time” operator, in an attempt to coincide with the
domain of the Hamiltonian operator. The Hamiltonian remains unmodified
throughout the whole analysis.
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4.1.1 Basic definitions and relations

Firstly, let’s assume that indeed a self-adjoint time-of-arrival operator T
exists in general (for the free case or not), as an “ideal” concept, namely that
it corresponds to measurements of the time-of-arrival quantity independent
of the measuring apparatus used. The eigenvalue equation of the operator
T|T) = T|T) produces its set of eigenstates {|T)}.

The projection of a state from the Hilbert space of states onto an eigen-
state |T') results to the probability amplitude ¥ (7"). The probability distri-
bution 7(7T') is of course the squared modulus of this complex amplitude:

m(T) = [(T)]” = »(T)(T)

= (1) = (TINT ) = WITHTI) = I (Tl (41)
Definiing then the projector operator:
P(T) =|T)(T] (4.2)
the expression for the probability distribution (4.1) then becomes:

= m(T) = (|P(T)[y) (4.3)

A self-adjoint operator as an expansion of its eigenstates

The eigenstates of a generally well-defined self-adjoint operator A form
a complete set of states. Integrating thus its projector operator gives the
identity operator:

/OO dA|A) (A| = /Oo dAP(A) =1. (4.4)

o0 o0

Using (4.4) an expression for the self-adjoint operator can be obtained, using
the definition of the average value of a measurable quantity:

[e.e]

(4), = WIAW) = (W|A1lp) = (|4 / dA|A) (A] )

—00

ol [ andy @ =l [ @ a
Therefore we get:

A= /oo A A|AY (A| = /Oo dA AP(A) (4.6)

—00 —00
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4.1.2 Redefining the domain of the T operator

It’s obvious that relation (4.6) is valid only for the cases of a complete set
of eigenstates. And Grot et al. warn us to avoid the temptation of defining
analogously the time-of-arrival operator, even if it admits real eigenvalues,
even if it is seemingly self-adjoint, ie. T = TT, because the "spectral family”,
as they call the P(T) operator (4.2) is not complete on the whole Hilbert
space of states. The only restrictions for the {|¢))} states of the Hilbert
space are maybe some initial conditions or any considered interactions with
the particle, while there are more restrictions on the {|T)} states.

Hence the domain for which the time-of-arrival operator T is defined is
a subset of the whole Hilbert space of states for the particle, for which the
Hamiltonian H is defined, because there are states for which the particle
cannot be detected at the predefined spatial position X (in correspondence
with the classic case). Thus the Hillbert space H can be split into a Haerected
part and a H,ever detected Part. In other words Hgerectea constitutes of states
with positive time of detection and H,cver detectea Of states with zero and
negative time of detection, the latter a priori postulated unphysical.

Remarks on the two components of the Hilbert space and on the
initial conditions

Another subtle point of the Grot et al. analysis is that they consider
these two sections of the Hilbert space of physical states of the particle as
orthogonal to each other, on the basis of the validity of the superposition
principle for the probability distribution. The validity of the principle is left
to be decided under the experimental scrutiny; however the authors consider
it reasonable to be postulated. In other words, whether there are states
never detectable indeed (ie. not small, zero possibility), has to be left to the
experimentalists.

Of course this strict separation between the states of the Hilbert space
characterized by a specific measurable attribute, the time of detection of the
particle, immediately leads to the question on the accuracy of this definition.
How can we be sure that we can’t get ”detection-before-preparation” states,
as the authors put it? Assuming, for example, |xg; po) as the initial state for a
particle, for x5 and py that classically allow the particle to reach X, this state
might be a superposition of |T") eigenstates or it might not be possible to be
expanded in |T') eigenstates because it consists partially of a superposition
of some states of the H,cver detected-

How do we define then carefully the initial conditions? The authors an-
swer this question in correspondence with the classical case. In the classical
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case we set that the beginning of the time measurements, at ¢t = 0, is for ini-
tial conditions zy and pgy, which will define the motion of the particle uniquely,
with the assumption though that these initial conditions not being disturbed
at all. Quite the same for the quantum analogue. If T" the time of arrival
for a particle, then we can assume that at a much earlier time in the past t,
the particle was in such a state ¥ (t) (Schrodinger picture), evolved uniquely
to the ¥ (t = 0) state, because it wasn’t disturbed at all. In other words, we
won’t measure initial conditions, we will set them long before and arrange
for the particle not to be disturbed while reaching these initial conditions.

An expression for the average time-of-arrival

Returning back to the projector operator, it’s now clear that integrating
the spectral projectors from —oo to oo won’t give the unity operator as in
(4.4), because, as mentioned before, the eigenstates of the T operator do not
form a complete set for the whole Hilbert space.

P = /OO AT |T)(T| = /OO dTP(T) #1. (4.7)

[e.9] o0

Instead the action of this P operator on the states |1)) of the particle will
project onto states belonging to the Hgerecteq Section, while the action of its
complement 1— P will project to the Hyever detectea States.

Thus again, an expression for the operator as an expansion of its eigen-
states cannot be obtained using (4.6), ie. the expression:

/_ Car TP(T)

o

is by no means an expression for the time-of-arrival operator.
Despite these, we are able thought to construct an expression for the very
useful quantity of the average of the time of arrival:
(7, = (WIPT PlY) _ (|PT PlY) (48)
(V[ P|P[Y) (V[Pl))

since, of course, P? = P.

On the self-adjointness of the T operator with confined domain

It has to be made clear that, even if we have confined the domain of
definition of the T" operator to the Hgeiectea part of the Hilbert space of states,
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we still cannot consider the operator as self-adjoint. It can be misleading the
fact that these Hgyetectea States correspond to real (ie. measureable) values for
the time-of-arrival quantity or that we do can find a basis for expressing these
states such that the eigenstates of the T operator are diagonal or even that
the action of the (4.7) operator on the Hgetectea State projects again on the
Hactectea Space. Still, they do not suffice for characterizing T as self-adjoint,
since the actual and accurate definition of self-adjointness for 7' would have
been:

(wITt) 1) = @I (T1)) (49)

with the {|1))} states defined on the whole Hilbert space, not only on Hgesected-
Thus, since the domains of definition do not coincide, the relation fails to be
valid.

4.1.3 The T operator for the free particle case

Again we consider the free particle case, as defined in detail in the Chapter
2, H = p?/2m the free Hamiltonian and the classical expression for the time
of arrival at a certain spatial position X:

m(X — zo)
Po

Obviously, expect from the case for po = 0 the particle is expected to
reach point X and thus be detected for any other initial conditions for xy and
Po, something that allows to postulate that the range of the Hilbert space
of states for the free particle (except again for the py = 0 case) coincides
almost with the domain of the 7 operator. This is very useful, since we
don’t have to investigate more for any finite regions of momentum for which
the corresponding momentum states are considered non-physical.

We reach again the point where we have to decide the way we have to
translate the classical expression to a quantum-mechanical expression of op-
erators (in the Heisenberg picture). Of course again the problem is the fact
that the quantum-mechanical operators (and their functions of operators)
corresponding to the variables of the classical expression (4.10) do not com-
mute with each other. And in the specific case the operators for the initial
spatial position z and the initial momentum py (and any functions of these)
do not commute of course:

T(X) = (4.10)

[0, Po] = iR
= [92'07 f(ﬁO)] 7é 0
= [A(bﬁ[;l} 7£ 0



Hence, in invoking the correspondence principle we have to also choose
an ordering for the operators, since for the operators involved we’'ve proven
that their ordering matters, and as explained before, this choice of ordering is
far from unique. Thus, Grot et al. made a specific choice of ordering for the
expression T(io, Do), on the grounds of convenience for calculations, on the
one hand, and on consistency, on the other hand, with the desired self-adjoint
character for the operator.

Explaining the latter, let’s remember firstly that xy and py are themselves
self-adjoint operators, but any simple product of any ordering of them is not.
Hence, we need an expression of these operators in an ordering which must
be in overall self-adjoint and of course that will coincide with the classical
expression in the classical limit. And since the adjoint of an operator expres-
sion has the ordering of its constituent operators reversed, thinking simply,
we would say that a symmetric expression for these constituent operators,
quite similarly to the Aharonov-Bohm symmetric operator (3.18), would be
very promising for constructing a self-adjoint operator.

We can observe next that an expression which splits one of the con-
stituent operators into square roots can be symmetric indeed: /zg (po)_l\/x_o

or (\/1?)71:1:0(\/]9_)71. These are both obviously symmetric if we reverse
their order (again up to py = 0). However, Grot et al. chose the latter
expression from the two, mainly for reasons of convenience in calculations.
This is made straightforwardly obvious when considering expressing the xg
and poy operators in the momentum basis which basis diagonalizes py (again
in the Heisenberg picture):

o (k) = i (h) (4.11)
P (k) = Bl (k) (4.12)

The square root of the momentum operator can be more easily treated, than
the square root of position, in the momentum basis.

Hence, with all these considerations Grot et al. manage to construct
a convenient self-adjoint expression for the T operator from the classical
expression (4.10) in the momentum basis using (4.11) and (4.12):

= T(X)(k) = |7 i —=——= | (k) (4.13)

defined on the whole momentum spectrum, apart from the £ = 0 value. The

square root for negative values of k was taken as: vk = iy/|k|.

Furthermore, using the unitary operator for spatial translations, e—iPX.

T(X) = e PXT(0) X (4.14)
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we can obtain a corresponding operator 7(0) for measurements (detection)
on the origin. Therefore, without any loss of generality, we can work with
the operator 7' = T'(0) which has the simpler form (again in the momentum
basis):

— T = S = (k£0). 415
An expression then for the eigenfunctions of the (4.15) operator in the

momentum representation (again excluding the k = 0 case) is easily calcula-
ble [19, p. 7]:

(4.16)

+
2mm

. 2
gr(k) = Auy/ =" vVEexp (Zm ) ,
2m

where AL are constant normalization factors only dependent of the sign of
the momentum value k, not on the value k itself. This distinction exists
because the operator T changes sign for £ < 0 and as Oppenheim et al. [31]
note, 7' not only changes sign, but it does it discontinually.

It shouldn’t come as a surprise to the reader that these eigenfunctions
are not orthogonal, since T is not self-adjoint (see 4.1.2). However, the latter
casts away any hopes that the T operator as expressed in the momentum
representation might be self-adjoint. In conclusion, gr (k) eigenstates are not
suitable for constructing the probability distribution of the time of arrival
via the standard procedure of Quantum Mechanics.

An aside on the reasons for the non-orthogonality of the g, (k) states

At this exact point it’s worthwhile to mention another disagreement be-
tween Grot et al.’s and Oppenheim et al.’s [31, p. 3,4] analysis, on the reasons
why the gr(k) eigenfunctions are not orthogonal. Grot et al. assume without
proof that again the singularity & = 0 prevents the gr(k) states from being
orthogonal. Oppenheim et al. instead reject this explanation as partial and
go even further stating with a simple proof that the reason actually is the
fact that the T operator (of the free particle case) and its adjoint 77 are
defined in different domains on the Hilbert space of states.

Proof. Let square integrable and differentiable arbitrary functions u(k) and
v(k). Denoting the complex scalar product as:

(ulv) = / dku(k)o(k)
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we investigate the result of the following difference, which of course is ex-
pected to be zero, it’s simply the definition of the adjoint of an operator:

(uTv) — (Thulv) =

fa [mi%ﬁwm [ e ()]0
m U(k) d m (k)

iy [\de(\/')+d_ 7)7]

i)

In order to deal with the singularity for k£ = 0, we split the integral:

m | (O d fu(k)v(k) * d (u(k)v(k)

And assuming a good asymptotic behaviour for the u(k) and v(k) at infinity:

o [ [u®mem)] | [alkem]”
- ([,

<

ulkjolk) | gy —“(k)”(k)> (4.17)
k—07t |k‘| k—0~ |/{Z|

Hence, in investigating what prevents this difference from being equal to
zero, we observe that the factor 1/|k| is not the only “problematic” term
in the expression. Indeed, this factor forces us to exclude from the defining
domain of T any state function for which the expression (4.17) diverges to
infinity at k£ = 0, but there’s another subtle “problematic” point.

Even if we confine 7' to be defined in a set of states “well behaved”
in terms of the 1/|k| factor, in order for (4.17) to be zero the expression
u(k)v(k)/|k| must be additionally continuous at & = 0 and odd. And this a
fact that clearly sets some further conditions on the allowed state functions
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for the domain of the T operator. However, the requirement for u(k)v(k) to
be specifically odd, leads to the next requirement that if one of the functions
is odd, then the other is necessarily even and vice versa. Thus there’s another
condition on the allowed functions, even more confusing, because it sets dif-
ferent restrictions on the domain of the 7’ operator and different restrictions
for the domain of the 77 operator.

In conclusion, defining T on the whole Hilbert space, while excluding
diverging states for the singularity case k = 0 does not in any way lead to
self-adjointness for the operator and thus the £ = 0 singularity is not the
only root of the evil.

O

4.1.4 The time-of-arrival probability distribution

It should be obvious by now that what prohibits us from the straightfor-
ward application of the relation (4.3), for the construction of the probability
distribution expression for the free case, is that still even in the free case
the operators H and T have different domains of definition. The k = 0 sin-
gularity forces the exclusion of some states of H from the domain of the T
operator and thus (4.3) is simply not valid. Temptations like, confining {|¢) }
states too on the Hgeecreq, are only theoretical games, not actually feasible;
for example how can we exclude this and only the £ = 0 component from a
Gaussian wave packet?

The regulated modification of T and its eigenfunctions

Hence, the ideal situation for the construction of the desired distribution
would have been if we had an operator corresponding to the time-of-arrival
quantity under investigation, defined in the same domain as the Hamiltonian
H and which it would have been of course self-adjoint. Seemingly the only
obstacle is this k& = 0 singularity. Thus, Grot et al. [19, p. 7] suggested a
way out of this dead end, by a reasonable expansion of the definition of the
T operator in an attempt to circumvent the k& = 0 singularity case and which
succeeds in being self-adjoint.

The main idea was to construct a modified expression for the T operator,
similar to the one already obtained, and which in the classical limit approx-
imates arbitrarily closely the classical expression for the time-of-arrival (ie.
the average value expression of the modified operator still equals the value
of the classical time of arrival). The suggested modified operator T. by the
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authors is:

T, = i TR TR, (4.18)

where: . for |1
B T or > €
fe(k) = { €2k, for k| <e

and € an arbitrary small parameter. Thus T and 7. remain identical for
values of momenta away from the k& = 0 value and for low momenta values,
the k=1 factor is replaced by a € 2k expression.

This procedure in general is called “regulation” and it is out of the scope
of this presentation to refer any further. What is really important to be
mentioned though is that the authors managed to construct for this regu-
lated operator a set of eigenstates in the momentum basis. Their explicit
expression for the |k| > € region of the momentum spectrum is:

gz (k) = (k|T; £), = Ai\/%\/zexp {W} : (4.19)

where {|T; £)_} are the cigenstates of the T, operator. By the above definition
of the operator (4.18), the {|T';%)_} states are defined continuously on the
momentum spectrum.

This + sign refers again to the sign of momenta values and its necessity
is made obvious when we observe the 2:1 degeneracy of the eigenvalues of 1.
on the momentum spectrum (ie. the +k momenta correspond to the same
T value). So we would like to explicitly refer to which sign of momenta we
are dealing with each time and that’s why the £ notations. A simple way
to observe this degeneracy of the 1. eigenvalues is by noticing that the 1.
operator simply changes sign for negative momenta. The expression remains
the same with a different sign for the corresponding +k values. Thus the
eigenvalue is the same for +k.

If more strictly we want to prove that a |T'; &), state consists of momenta
states of only a specific sign (eg. positive), we can start by noticing that the
T. operator (through its whole k spectrum) and the sign operator ©(k) =
sgn(k) = k/|k| commute. Thus an eigenfunction of T} is simultaneously an
eigenfunction of the sign operator and this implies that a 1. eigenfunction
can be expanded in terms of eigenfunctions of the k=P /h operator, with
support on the k momentum spectrum only on the positive or only on the
negative values.

There are next two aspects of the (4.19) result for the eigenstates of
the 7. operator which justify its significance. First of all, it’s the fact that
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their dependence on this € parameter can be factored out, because it’s inside
the exponential term, and hence its actual contribution to the initial g7 (k)
eigenstates (4.16) is simply up to a phase term:

| h ihTk? —ihTe?
= g%(k) =A; %\/Eexp ( o ) exp ( - ) , (4.20)

This is exactly what will make the rest of the calculations very easy to handle.

Secondly, it’s the fact that these gi (k) eigenstates are orthogonal for
the whole momentum spectrum, justifying this way the specific choice of
regulation the authors made. There’s a detailed proof of this magnificent
attribute of these states [19, p. 9,10] and indeed this fact is a clear indication
that the 7. is self-adjoint (since it’s defined for the whole Hilbert space of
states) and its eigenstates then can be used for the construction of an explicit
expression of the operator as in (4.6), alongside with the calculation of other
quantities such as the probability amplitude. And remembering that T and 7T,
are identical for large enough momenta, constructing the desired probability
distribution for this region of the momenta spectrum is straightforward now.

The final expression of the probability distribution

As described above, following the standard procedure in quantum me-
chanics (in the Heisenberg picture), the probability amplitude is obtained by
the projection of the states of the Hilber space onto the eigenstates of the
operator. Hence for the {|T; £).} states we refer to an expression of the form:
T'; £y, which expression we can split: (T £[1)) = (T +[) + (T; —|¢)
(due to the orthogonality of the {|7;£)_} states). Using the completeness
relation for the momentum eigenstates, we can calculate this amplitude using
the (general) g, (k) states:

o0

ATs) = (T [ ari) W) = [ kg e @2

—0o0

And since the probability distribution is the squared value of the (complex)
amplitude, 7(T) = | (T; %) |, then:

2

= (1) = \ [ angi 00

= 7(T) = + ‘ / dkgy, (k)ib(k) (4.22)

/O " kg (K)o (k)

due to the proven orthogonality of the gzjfe (k) states again.
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Hence substituting (4.20) to (4.22), the phase term containing the € pa-
rameter (and not any expression of k) vanishes immediately. We get then
a much more simple expression, without any e dependence, for which, if we
consider € very small, we are allowed to take 0 as one of the limits of the
integration. Still, of course, the final expression won’t be valid for the case
of a zero-velocity particle (ie. on the detector):

)

kR
2mm

Or more concisely, if we distinguish between the cases of well-defined positive
momentum direction to the corresponding negative ones:

+oo h ]{72
/O dk\/k exp (227;1 )w(k)

This is of course the case where the detector is located on the origin. For
detection in another spatial position X we have to apply a spatial translation
transformation to the eigenstates of the T, operator

=7(T) =
/OO dkVk exp (izzi“?)w(k) 2 + ‘/_OOO dkVk exp (iszQ@w(k))

0 m

2

h
iT —
-7 () 2mm

(4.23)

IT; 4 X), = e PXM T ) (4.24)
which in the momentum basis:
= g1.x (k) = (KT, £ X), = e g7 (k). (4.25)

Thus, using (4.25) as the expression for the eigenstates of the 7. operator
in the momentum basis, we reach to the final expression, according to Grot et
al., for the probability distribution of the time of arrival T" of a free quantum
particle with well-defined momentum direction, positive or negative, at a
specific spatial position X:

+o0 .
/O div/k exp (szf - z'kX>1p(k;)

2

h
:tT:
:>7T<) 2mm

(4.26)

which is obviously identical to Kijowski’s distribution (3.16).

Computational application with a Gaussian wave packet

As a very interesting application of the result of their analysis, Grot et
al. calculated computationally the probability distribution of the time of
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arrival according to (4.26) for a random Gaussian wave packet. This wave
packet considered localized (namely its average value for position) to the left
of a position X at a time ¢t = 0 and which is moving (ie. not zero velocity)
towards this X point to the right. In the Heisenberg picture - momentum
basis, a state representing a Gaussian wave packet, centered at kg and with
a width of 1/, has a normalized expression of the form:

Y(k) = (2752> ! exp [—(k — ko)?6® — ikao) (4.27)

Substituting this wave packet expression inside (4.26) and calculating the
integral gives a long-winded result for the probability distribution equation.
Preforming then a series of approximations and expansions of small quantities
[19, p. 16, 17], the authors managed to reach to a more convenient form of
the result, accurate up to an (1/kyd) order:

k 62 X*{L’QngL o o 2
n(T; X) = R 0"+ 4m53 5 exp | — (X =2 /{;ﬁ?/m) ) (4.28)
2m (62 + T2h2) / 2 (52 + )

Am252 4m?262

Finally, this result for the probability distribution of the time of arrival
of a wave packet was plotted to a graph [Figure 4.1] (with the time of arrival
on the horizontal axis) for various (detector) positions X (mentioned below)
with the constants of the expression set to the values of: o = —5, ky = 20,
0o =05and h=m = 1:

As expected the distribution is roughly centered on the classical time-
of-arrival value, with a left and right (quantum) spread along the T axis.
The width of this spread, as we can directly observe on the plot above or
from the expression (4.28), increases as the X position moves to the right,
ie. as the detector moves further away from the initial location of the wave
packet. In other words, while the wave packet evolves from its initial state,
its width spreads more due to the fact that the different parts of the wave
packet move with a different velocity and thus causing it to spread more
in space. Therefore, for further distances of the detector, this property of
the wave packet results to a wider interval of detected values for the time-
of-arrival quantity, namely a wider, more spread time-of-arrival probability
distribution.

4.2 Modyfing both operators

In the second part of this chapter the work of Delgado and Muga from
their 1997 paper [12] is presented. According to the researchers, inside this
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Figure 4.1: Time-of-arrival probability distribution of a Gaussian wave packet

paper an attempt to circumvent Pauli’s theorem was made. Instead of ex-
panding only the time-of-arrival operator, while leaving the semi-bounded
Hamiltonian as it is, ie. the case of the previous part, Delgado and Muga
introduce a new hypothetical and convenient operator H with dimensions
of energy, defined this time in the whole spectrum of energy, negative and
positive. Correspondingly then, a new self-adjoint operator of dimensions
of time conjugated to this new energy operator is defined, which is used to
reach to the desired expression of the time-of-arrival probability distribution
for the free particle case (again no degrees of freedom from detectors were
assumed).

4.2.1 Introducing a new commutation relation

It was proven in detail in Chapter 2 (3.1) that a commutation relation
[H,T] = ih, for the Hamiltonian and a time operator, is not consistent with
the semi-bounded character of the energy spectrum of the Hamiltonian. It’s
tempting though to investigate the hypothetical case that the Hamiltonian
operator is not bounded, but rather defined in the whole energy spectrum.
Of course, this change of the domain of the Hamiltonian will transform the
operator to a new one; we can’t assume that we refer to the physical Hamil-
tonian anymore. It will be a new self-adjoint operator with dimensions of
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energy H.

Furthermore, building to our assumptions, if we postulate that there’s
another conjugated operator to this new energy operator, T, it’s reasonable
to except that this conjugated operator will have the dimensions of time. Of
course, no prior association with the physical time can be assumed. How-
ever, if we still postulate that the new energy operator and its conjugate have
exactly the same domains of definition, then it is valid to introduce a com-
mutation relation for these two operators, like the one forbidden by Pauli’s
“Theorem”:

[H,T] = ih. (4.29)

where we cannot yet consider both of the operators involved as self-adjoint,
only # (see for further below (4.2.3)).

The authors admit that indeed these assumptions are in a sense arbitrary,
but still quite reasonable though. The whole attempt aims to the construc-
tion of a proper self-adjoint operator 7 with dimensions of time, which oper-
ator will be associated carefully with the classical quantity of time of arrival
in order to reach to an expression for the probability distribution of the time

of arrival.

4.2.2 Non-bounded energy states and a new energy
operator

The experimental case in consideration is again the simple one-dimensional
free particle case, described in detail in Chapter 2 (see (??)). The free Hamil-
tonian is Hy = P? /2m and even its energy spectrum is bounded, its momen-
tum spectrum is not, negative momenta belong to its support. Specifically,
the energy spectrum in the free case is degenerate to the momentum val-
ues, ie. for each energy value correspond two momenta of opposite sign:
p = £v2mkE. Thus, rewriting the eigenvalue equation for the momentum
operator, by denoting the momentum eigenstates with their corresponding
energy value:

Plp) =plp)
= P|E) = +V2mE|E) ,

Hence, it is made obvious that the energy eigenstates can be also (after
proper normalization) eigenstates of the momentum operator, despite their
degeneracy.
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For notational purposes, we can denote this momentum eigenstates, at-
tributed by the energy value, with the additional information of the sign of
the momenta values, schematically in the following 1:1 correspondence:

[p) = |Essgn(p)) = [E; %)
which states of course are still energy eigenstates:
Hy|E;+) = E|E; %) (4.30)

However, unlike the standard energy eigenstates, these states form a com-
plete set of states because their spectrum is not confined to the half of the
energy axis as with the semi-bounded spectrum of the Hamiltonian. They are
defined through the whole axis. Their completeness is a direct consequence
of the completeness relation for the momentum eigenstates, after a proper
normalization. Let |p) = A|F;+). From the classical-free-case relation:

p? =2mE = Ip|dp = mdFE,

the completeness relation for the momentum eigenstates turns into:

/ T ap Il =1 (4.31)

Thus considering then A = sgn (|p(E)])+/|p|/m for the normalization con-
stant, we get the completeness relatlon for the {|E;a)} states:

:»Z/O dE |E;a) (E;al =1 (4.32)
a==+

and the exact relation that associates the states {|F; )} to the momentum
eigenstates {|p)}:

1) = sen o))y 2 ;1)

Sl == (%)/ 1B ) (133)

Furthermore, these states are orthonormal, a consequence again of the
orthogonality of the momentum eigenstates:

(plp’) =o(p—p")
:X/ dp (plp') =
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and using (4.33) in replacing the {|p)} states:

o m
& dE——A*(E;a|FE'; o) =
5[, i Eel)
;sZ/O dE (E;a|E; ') =1 (4.34)
a=+

= (E;a|E;d) = 6,0 0(E — E') (4.35)

Thus it is proven that we now have indeed a valid, complete and orthonormal
set of energy eigenstates: {|E;a)}.

For convenience another notation is introduced for these states with a
parameter € of energy dimensions defined in the whole energy spectrum, ie.
€ € (—o0,+00):

&) = { B+, ife=0 (4.36)

|E;—), ife<0

Following from (4.32) and (4.35), a completeness relation and the orthog-
onality of these |€) states are straightforward to see:

= / de |€) (¢] = (4.37)
(€le') = d(e =€), (4.38)

as well as the action of the free Hamiltonian on these states:
Hole) = [el [e) , (4.39)

Hence, a complete and orthogonal set of energy eigenstates attributed
by the non-bounded energy parameter € has been obtained, {|e)}. It was a
carefully defined procedure and Delgado and Muga make another step defin-
ing carefully again an operator of energy dimensions A, with non-bounded
support in terms of the e parameter, for which also these {|e)} states will be
its eigenstates, namely:

Hle) =ele) . (4.40)
or from the definition of the {|e)} states (4.36):
HI|E;+) = +E|E; +)

Thus the action of this H operator can be roughly described as being
identical with that of the free Hamiltonian H for states of positive € value
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and for states of negative e value is almost identical, with the difference that
it assigns to the corresponding |e| energy eigenstate a minus sign.

In order then for Delgato and Muga to “rephrase” this action of the H
operator in terms of operators and domains of definition, they suggest that
the action of A is consisted by the consecutive actions of two operators, the
free Hamiltonian operator ﬁo, on the one hand, and a proper sign operator,
on the other. Thus the definition of a sign operator is necessary. The follow-
ing aside describes in detail the construction of this sign operator needed for
extracting the sign of the e parameter in the {|e)} states.

The sign operator

Rewriting for start (4.33) as follow:

Ipl

p) =« IE a) o = sgn (p(E))

and projecting then an energy eigenstate on a momentum eigenstate, using
also the orthogonality relation (4.35), we get:

o el /1P| :
= (p|E;d) =« m(E,a|E,a>— mémlé(E E').

We notice the sign-of-the-momentum variable o appears as a factor in-
side the last expression along with the others. This indicates a procedure
for which the sign of the momenta becomes significant. Multiplying then
(p|E’; ') to another momentum eigenstate (the conjugate to (p|) and rewrit-
ing it as an energy eigenstate:

= (p|E; /) |p) = <a\/g(5m,5 E—E') ) ar/|pl/m | E; o)

2Pl /
00 (E — E') | E;

— Gaard( )| E; )
Of course the o term equals now to 1. And since dE = |p| dp/m, integrating
the whole expression for momentum values only on the halve of the momenta
values axis, since we refer to a specific value for « (let’s assume o = +) we
get:

= [ dolpl/maS(E - B |E: +)
0

- / AE 6(1ywd(E = E') |E; +) = dya |[E +) -
0
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Integrating this time over half of the axis of a variable for the Kronecker
delta function is valid, since E is not defined on the whole axis and we can
consider that, for these negative values, the ket |E’; +) is simply the zero
vector.
|E;+), ifd =+
0, if o/ =—
Hence, the result of this whole aforementioned procedure is eventually
the initial energy eigenstate, if it had positive momenta and it’s the zero

vector (of the Hilbert space), if it had negative momenta. It’s no difficult to
see that the whole process actually is the action of this projection operator:

| i
0
on the |E; a) states.

It resembles the completeness relation of the momentum eigenstates (4.31),
however the integration range is on the half axis of the momenta values. Fur-
thermore, if we had integrated for the negative momenta values, the result
would have been reversed, but without assigning a minus sign to the initial
energy eigenstate:

dplp)pl ) ey =4 2 e T (4.42)
(LLamor)iea={ s 0

o0

= Oye [E+) = { (4.41)

Therefore from these two procedures we define the following projection
operators:

O(=P) = / " dp |4p) (£p) (4.43)

and if our aim is to construct an operator which reproduces the initial state
along with the sign of the momenta, we can define using (4.43) the desired
self-adjoint sign operator:

sgn(P) = O(P) — ©(—P). (4.44)

Extending the Hamiltonian

Hence now using (4.44), we can accurately define the H operator in con-
sistency with the aforementioned description:

H = sgn(P)H, (4.45)

Otherwise, we can consider the free Hamiltonian as the operator defined
for a set of states, which states are the projection for only positive € values
of these general states defined in the domain of the extended H operator of
energy dimensions.
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4.2.3 A self-adjoint “time” operator

Summarizing, we have established so far a valid self-adjoint operator with
dimensions of energy H, along with its complete and orthogonal set of eigen-
states {[¢)}, on the one hand. And on the other hand, a commutation relation
for this H operator with a conjugate operator of dimensions of time 7 has
been assumed that it exists (4.29). The next step forward now is to associate
this T operator with the actual measured time, if it’s possible. And a way
through this is to check if T correspond to a hypothetical real value quantity
via its eigenvalues (ie. that it’s self-adjoint indeed). Then we can check for
any relation that links this hypothetical quantity to physical time.

The set {|7)} of the eigenstates of this 7 operator are defined by its eigen-
value equation: 77) = 7|7). Completeness and orthogonally for the {|7)}
eigenstates are the two conditions necessary and sufficient for the operator T
to be proven self-adjoint. The step-by-step, strict proof of the self-adjointness
of the T operator, conjugated to the H operator as this was defined above
for the free particle case, follows:

Proof for the self-adjointness of the T operator

The only prior assumptions for this proof is the validity of the commuta-
tion relation (4.29) and the defining expression for the H operator (4.45):

1. Firstly let’s replace the expression for the # operator from (4.45) inside
the commutation relation (4.37):

(1, 7] = [sen(P) Ho, T] = [sgn(P), T]Ho + sgu(P) [Ho, T] = ih,

We have good reasons to make the assumption that the sgn(P) and the
T operators commute, since we want to associate T with physical time
in the free case. The sign of the velocity and of the momenta changes by
definition if we assume a reversal of the flow of time, or a time-reversal
transformation. Thus the least we can do in order for 7 to exhibit a
similar property under time-reversals (it doesn’t guarantee it of course)
is to assign to the expansion of the |7) states in terms of momentum
eigenstates, only a spectrum of momentum eigenstates of the same sign,
negative or positive. This is still of course an assumption, mainly for
convenience in the calculations and in the interpretation.

From this last assumption then we are lead to:

roam | iR, fore> 0
[HO,T]—{ —ih, fore<0 (4.46)
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2. This last result (4.46) has significant consequences on the way we can
associate the operator 7 with the actual time. A first investigation of
this association (further analysis in (4.2.4) ) has to be done following
a procedure similar to the one of Chapter 3 (3.1.2), while proving the
nonexistence of a self-adjoint time operator conjugated to the Hamilto-
nian. To begin with, we construct another commutation relation for an
exponential, this time, expression of the Hamiltonian, using for start
the € > 0 part of (4.46) and the next property of the commutators
(given of course that every positive integer power of the free Hamilto-
nian exists):

[HP T) = inhHP™', n>1 (4.47)

If we then multiple both parts of (4.47) with (—it/h)™/n!, where ¢ is an
arbitrary parameter of dimensions of time, and sum over all the powers
of n, while taking (Hy)° = 1:

N [e—iﬁot/ﬁ’ ﬂ — fo—iHot/n
= Te ot |7y = (7 — t)eHot/h |7)
= e~ Hot/h |1y = |7 — ¢) (4.48)
The corresponding result for € < 0 from (4.46) is:
= e ot/ |1y = |7 4 ¢) (4.49)

Since we refer to the free Hamiltonian operator ]:Io, this exponential
function e~*#o'/" can be considered as the time evolution operator, if ¢
is postulated to be a parameter for the actual time. And what we can
infer then from (4.48) and (4.49) is that the behaviour of the eigenstates
of this 7 operator on time evolution is different for positive momenta
values (¢ > 0) and different for negative momenta values (¢ < 0). For
positive momenta the 7 parameter decreases with the time passing,
while for negative momenta 7 increases. Further remarks on the asso-
ciation of ¢ and 7 in (4.2.4).

3. Next we investigate the expression for (rle), ie. the projection of an
cigenstate of the 7 operator to an eigenstate of the 7~ operator. An ex-
ponential expression of the form: exp (—ie7 /h) is expected, mainly from
its similarity with: exp (—zHot/h)|E) — exp (—iEt/h)|E). Rewriting
first the eigenvalue equation of 7 (4.40) using (4.39) and (4.45) we get:

7i|e) = sgn(P)Ho |e) = sgn(P)|e] |e) (4.50)
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Thus the time evolution of the {|¢)} states from (4.50) is:
exp (—iHyt/R)|€) = exp (—ile|t/h)|e) (4.51)
Projecting then (4.51) on an eigenstate of T

= (r|exp (—iHot/h)|e) = (7| exp (—ilelt/h)[e)
& (1] exp (—iHgt/h)|€) = exp (—ile|t/h)(T]e) (4.52)

It will be now useful to calculate the action of the time evolution opera-
tor on the bra: (7|. It corresponds of course to the action of the adjoint
of the time evolution operator: (exp (—iHot/h))" = exp (iHot/h) on the
ket: |7). So, in order to use (4.48) and (4.49) immediately, we have to
consider another parameter instead of ¢ of opposite sign, say t = —t/
and then (4.48) and (4.49) turn into:

lT+t), >0

exp (iHot'/h)|7) = { H (4.53)

Therefore, we can infer from (4.52) and (4.53) that:

A (T +tle) = exp (—ile|t/h)(T|e), €>0
(7l exp (—iHot/R)le) = { U116 = oxp (ilelt B) (rleh . ¢ < 0
(4.54)

Applying then a simple trick in order to avoid ¢t dependence, we set
the (7 &+ t|e) scalar products as (0le), ie. ¢ = F7 correspondingly for
positive and negative momenta:

= (0|e) = exp [— z]6|(:F7')/h] (Tl€)
< (1]e) = (0e) exp [l|€|(:FT)/h] (4.55)

Furthermore, it is more illuminating in (4.55) to write the absolute
value of € as +e:

= (7]e) = (0|e) exp [i(j:e)(:FT)/h}
= (7]e) = (0|¢) exp (—ieT/h) (4.56)

Hence, indeed a general expression for (7|e) can be obtained, valid for
both cases of momenta sign. The (0|e) scalar product in (4.56) can be
considered as the normalization factor of the equation dependent only
on the value of the ¢ parameter.
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4. In order to specify the exact expression for (0|¢), we repeat carefully the
procedure of point 1, but with powers of the T operator this time, mul-
tiplying it with a factor of (—iE/h)"™/n!, with E an arbitrary parameter
of dimensions of energy ((75)° = 1):

[Hy, T"] = £ink T4, (n>1)

- (—iTE/h)" —iTE/h)»!
:>[H0,( /h) ( . _/1))!

N []f[(),efﬁ'E/h] _ iEefﬁ'E/h
- [:IO 6—2‘7’E/h|€> _ e—ﬁ'E/h f{0|€> —+FE 6—i7’E/h|€>
— ﬁo €—i7A'E/h’€> _ <|€| + E) 6—i7’E/h|€>
= ¢ TEMe) = ||| + E) (4.57)

o |==xF

The action of the ¢/7 /" operator on a bra (| is:
= (ele™ TEM = (|e| F B, (4.58)
Projecting then on a ket |7):
= (eleTEM7) = e TE/Me|r) = (|e| F E|r) (4.59)
and therefore by setting £ = £|¢|:
= (e|7) = (0|7)emE/R (4.60)

If we seek to calculate (0|€) from (4.60), which is the complex conjugate
of (4.56), we observe that:

= (€|0) =(e=0|T=0). (4.61)

Hence, the normalization factor (0le) is independent from the € pa-
rameter too, eventually it’s a constant and we will denote it as A. In
conclusion, the exact expression for the scalar product (7€) is:

(rley = Ae~r/n (4.62)
and for its complex conjugate from (4.60):
(e|T)y = Aeem/m (4.63)

where we have to observe that we used 7 and not its complex conjugate
(we never assumed 7 to be real). Thus, 7 is definitely real, another
indication (not proof) that we’ re dealing with a self-adjoint operator.
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5. Next let’s check if the {|7)} states are orthonormal, using the com-
pleteness relation for the {|e)} states (4.37) and the equations (4.62)
and (4.63):

ﬁh@z/‘ddﬂ@MH%ﬂAﬁ/ de =T/

[e.9]

= |AP27R (T — 7') = |A]*hé (T — ')

So imposing for the normalization constant a value of |A| = h™'/? we
get the exact expression for (7e):
(T|e) = K12 gmier/h (4.64)

and also we get a proper orthogonality relation for the {|7)} eigenstates:

(r|7") = d6(r — 7") (4.65)

6. Last of the steps is proving the completeness for the {|7)} eigenstates.
For start let’s expand a |7) eigenstate in terms of the {|€)} states using
again (4.37) and (4.64):

=il = ([ i) = [ detenle
= |7) = /2 /: de e/ |€) (4.66)

So substituting (4.66) inside the expression under investigation:

/ dr |T) (1] = h~ / dr / dee™ /M |e / de' e7€/M (/|
dT/ de/ de' =)/ e} (€]
de/ de'/ dr e/ ey (€]
T ae [ aese-enae
=/w@|w|=i

Hence the completeness relation for the {|7)} states is also proven:

o

~

/ﬁdThHﬂzl. (4.67)

oo
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Conclusively, we painstakingly managed to prove rigorously the self-adjointness
of this T operator we defined. Indeed for the free particle case, extending
the Hamiltonian to a new expanded operator H of energy dimensions and
assuming a conjugate operator T, defined on the same exact domain with
7—[ of dimensions of time, with the additional assumption that 7 commutes
with the sgn(P) operator, it results to the self-adjointness of T, unlike with
case of the Hamiltonian and an any-way-defined time operator.

An expression for the 7 operator

Moreover, provided now the orthogonal and complete set of eigenstates
{|m)} of the T operator, an expression of this operator can be constructed
from its spectral decomposition using relation (4.6) from the previous part
of the chapter:

T = /_OO dr 7 |7) (7| (4.68)

4.2.4 Association with physical time

Defining a self-adjoint operator with dimensions of time conjugated to this
extended “energy” operator is of course a great step, however it’s still not so
clear how useful it can be for the definition of a time-of-arrival operator or
simply for the derivation of a probability distribution for the time of arrival.

Having in mind these objectives, an immediate and reasonable question
is if the T operator can be identified as the operator for the actual physical
time that our defectors measure. The answer is negative. One way to see
this is from (4.48) and (4.49). The {|r)} states behave differently in time
evolution for positive and differently for negative: the 7 parameter decreases
in an evolution in time for positive momenta and decreases for negative. And
even if we are tempted to confine ourselves using only for example positive
momenta and using the 7 parameter in a way to indicates time (using the
opposite of the 7 parameter for example), Delgado and Muda [12, p. §]
discourage us even more while mentioning that the {|7)} states are invari-
ant under time reversal, something unacceptable for states corresponding to
measurements of the actual physical time.

So eventually, how is the T operator associated with the physical time,
according to Delgado and Muga? Contemplating on (4.66), we can observe
a way we can bring about physical time in our equations by splitting this
spectral decomposition into contributions from negative momenta values and
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positive momenta values and bringing back the momenta sign notation | F; £)
for the |e) states:

0 [e's)
|T) = h_l/Q/ de ™™/ |¢) + h_l/z/ de ™7/ |¢)

—00 0

0 e
_ —h_1/2/ dE e—iE‘r/ﬁ ’E, _> + h—l/2/ dE eiET/ﬁ |E, +>

00 0

_ h‘1/2/ dE ¢ ETM B ) +h_1/2/ dEPTME+) . (4.69)
0

0

Let’s define then:

It:4) = h—1/2/ dE "BV B 4) | (4.70)
0

with ¢ for the time being just a parameter of time dimensions. So rewriting
(4.69) using (4.70) we get:

S|P =lt= -1 =)+t =+ 4) (4.71)

We will then use the expressions (4.48) and (4.49) of the behaviour of the
{|7)} states on the action of the time evolution operator, in order to clarify
how this ¢ parameter can be linked with the physical time.
o—ifloto/h i) = el:}:loto/h t=—7;4+)=|r—t) =t =+7 —to;+) , fore>0

eHoto/h |t = 47 ) = |7+ 1)) = [t = =T —to;+) , fore<O0

So even though the {|7)} states behave abnormally on time transla-
tions, these {|t;+)} states satisfy (for both momenta signs) a proper time-
translation property, namely in time evolution their parameter ¢ is translated
by this amount of time for which the evolution operator is defined:

T4 4y = |t 4 7' ) (4.72)

However the crucial check will be on how these states behave on time-
reversal transformations (as {|7)} states were checked and failed to be consis-
tent). Let’s define for this the R operator as the time-reversal operator. We
refer of course to the reversal of sign for the actual time and not necessarily
for the ¢ parameter. We investigate thus the action of R on a |t;+) state.
Since time reversal changes the sign of the momentum value (reversing the
flow of time, changes the sign for velocity and thus for momentum) and then
+ turns to F. Hence from (4.70), ¢ also has to change sign in the |t; £) state,

57



in order for the |7) state to remain invariant under this transformation (the
vary latter about this invariance of {|7)} is proven in detail by the authors):

RIt;£) = [—t;F) (4.73)

Hence it is valid now to consider this ¢ parameter as the time parameter
of the Schrodinger equation and these |t; +) states as eigenstates of a certain
time operator. Despite of this success, Delgado and Muga also mention [12, p.
9] that, even though (due to (4.67)) these states are a complete set of states,
sadly, they are not orthogonal, a fact that prohibits us from constructing a
self-adjoint operator for time measurements of the form (4.6), as we did for
the T operator.

4.2.5 The time-of-arrival probability distribution

Following the standard procedure for constructing probability distribu-
tion for a measured quantity in quantum mechanics, if these {|t; £)} states
were orthogonal too, since they form a complete set of states, then reaching
to an expression for the time-of-arrival probability distribution would have
been straightforward. However, they are not, while the {|7)} states are.

The idea for circumventing this obstacle came for the authors from the
decomposition (4.71) of a |7) state. Since the {|7)} states are orthogonal and
a complete set, then the same will be valid for functions derived from the
scalar product (7]|¢) = (1), |¢) states in the Heisenberg picture, where 1) are
states defined on the whole expanded Hilbert space of the H operator. But
what if the spectral decomposition of these |1)) states is exclusively consisted
of momenta eigenstates (ie. well defined momentum) of the same sign? Or
in other words, what if we consider for the |¢)) states, only superpositions of
plane waves of either negative or positive momentum, but not both? Then
immediately:

(t; +|), for p>0

<ﬂw>:{ (b~ for p <0 (4.74)

with the orthogonality and the completeness of these states still valid. Hence,
it seems that now we acquired specific cases that the use of the these {|t; +)}
states, attributed by the time parameter ¢, is perfectly acceptable and valid
for constructing the probability amplitude and the probability distribution.

For this purpose the authors define the initial setting of the situation
under investigation with a wave packet |¢)(t = 0)), the ingoing asymptote of
which has well-defined momenta values of only positive (or negative) direc-
tion. In other words |¢(t = 0)) = |14 ;) and the action of the operator (4.43)
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on these states is: O(+P) |1h(t = 0)) = O(£P) [t)rin) = |th+.m), because of
course of the fact that these states are a superposition of plane wave states
of momenta values of the same sign (direction). For further careful remarks
on the initial conditions of the states see (4.1.2).

Also, since we consider the free (quantum) particle case, with the free
Hamiltonian: Hy = P2?/2m, and since the O(£P) operator is by definition
a projector operator of momentum eigenstates (integrated over a certain
interval), then the H, and the @(j:P) operators do commute. Therefore
©(£P) and the time-evolution operator exp(—iHyt/h) commute too. This
leads us to infer for the evolved initial state |¢)(t = 0)) that:

O(£P) [y+(1)) = [+ (1)) ,

ie. that still for the evolved states too, they are a superposition of plane wave
sates of momenta of the same sign as in the initial state. Evolution in time
does not change this attribute of the states.

Hence, since the condition for only positive (or negative) momenta is
satisfied for these states defined for the free particle case, we can apply the
conditional relation (4.74) for the time-of-arrival probability amplitude, with
) states defined to be: |) = [¢(t = 0)) = |+ in) (Heisenberg picture).

For convenience we express the |t;+) states in the (4.70) expansion on
|E; ) states and thus the amplitude (4.74) turns to:

sy = 2 | T B PN E; +|y) (4.75)
0

For later comparison purposes we will express (4.75) in the momentum
representation using (4.33), the relation between the energy and momentum

eigenstates, ie. |E;+) = sgn (|p|)v/m/|p| |p) and since dE = |p| dp/m:
B1/2 fooo dp <|7%|> o— it /2mhi /|7:7|<pw>’ for p > 0

(t; £|Y) = :
_p-1/2 fi)oo dp (%) e—p*t/2mh /ﬁ<p|¢>’ for p <0

= ({6 £[y) = dpy/[p| e/ (p) (4.76)

al

Furthermore, we will pursue an expression of (4.78) as a function of k,
p = hk. Firstly we have to determine the normalization factor between the
|p) and the |k) states. It’s straightforward if we recall that they are both
complete sets of states:

/”dp|p><p|:1 and /_wdk|k><k|=i.

—00 oo
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Thus using the p = hk relation:
= [Capiwl=n [ kil =1,

it becomes obvious that we can consider A~'/2 as the normalization factor
for the relation of the two sets of states, namely:

1
p) = ﬁlkﬁ (4.77)

Therefore we can finally reach to an expression for the amplitude (t; £[¢) as
a function of k:

:><t'i|¢):\/i / iOoalk || e~ 2 (k) (4.78)
’ 2mm J, '

This is the probability amplitude for detecting the particle at the origin
(since there’s not any reference to position). If we want change the detecting
position, we have to perform a spatial transformation on the z-axis, or in
other words, we have to act on the |t; £) states with the unitary operator for
spatial translation, as we did in (4.24), in the previous part of the chapter:

Ity 4 X) = e P £) (4.79)

Hence, following the same procedure as before, but for the (¢;4; X|v¢)
amplitude this time, (4.78) turns into:

+oo
(t: +; X)) = ,/ / dk/|k| e IRt/ 2m=kX) ) (| (4.80)

which leads to the amazing result for the probability distribution 7(7") =
|t £ X[0)[*:

A +o0 ) 2
= 7(T) = — / dk/|k| eI/ 2m=X) ) (] (4.81)
0

2mm

This is exactly the same as Kijowski’s distribution (3.16) and surprisingly
exactly the same with result as the one we reached at the end of the previous
part of the chapter (4.26), using a totally different method and a different
series of arguments (the minus sign in the exponential, due to the modulus,
becomes irrelevant of course). Further commentary on the coincidence of the
results for the two parts of this chapter will be made in the next chapter.
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An aside on how to check the validity of the result using the current
flux operator

The actual path the authors took for reaching to the probability ampli-
tude result, was firstly to prove by a detailed series of arguments [12, p.
10-16] that the quantity |(¢; &; X|w)|? could indeed represent the time-of-
arrival probability distribution, a fact we took for granted in the beginning
of our analysis. The reader should remember that we have only associated
{|t; £; X)} states with the concept of the time, as this appears as a pa-
rameter in the Schrodinger equation (or the time-evolution operator). No
specific reference was made on association of the {|t; £; X)} states with the
measurement of a quantity corresponding to time of arrival. This is indeed
really subtle, however from our point of view, for the “ideal” concept of time
of arrival and the free-particle case we are considering, we think that this
association was already made when the momenta eigenstates and the mo-
menta sign was linked in a specific way to the {|¢;4; X)} states and the 7
parameter.

Necessary or not, the authors considered it worthwhile to prove this asso-
ciation. On the one hand, they proved that the time integral of this quantity
over the whole time-axis is equal to 1, an important attribute of the desired
time-of-arrival probability distribution:

+o00
/_ 0]t 5 X)) = (e fibe) = 1.

o0

due to a completeness relation [12, p. 9]:

Z/ dt|t;a; X)(ta; X| =1
a=+Y ™

immediately deduced by (4.67) (of course orthogonality for these states is
not valid).

And on the other hand, through more complicated considerations, using
an expression for the current density (probability flux) operator, used also
in the past by many other researchers, which leads indeed to the standard
expression of the current density in non-relativistic Quantum Mechanics:

- 1

J(X) (P|X><Xy + |X>(X|P) (4.82)

" 2m

and the energy eigenstates {|E;£)} (4.30), through which we were lead to
the definition of the {|t; +)} states, they proved that this 7(7) quantity, as
defined above, eventually appears as a (weight) distribution function inside
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the expression for the average time-of-arrival value (tx). The significance of
the average value expression was discussed in Chapter 2 (2.2.2).

This was then another and stronger indication that the I1(7") quantity was
suitable for a probability distribution since it appears inside the expression of
the first (statistical) moment of the ¢ parameter (provided that this parameter
is associated with the time of arrival concept). This average expression was a
product of a reasonable, but still arbitrary, substitution of the aforementioned
current operator (4.82) to the quantum version of the classical average value
relation:

[ dttg (X, 1)
[F2dtJ (X, 1)

(tx) =

The authors of course make a specific comment on that the (4.82) operator
is not perfectly adequate for the desired purpose due to the fact that the
probability current it yields is not positive finite for every spatial position, a
phenomenon called “Backflow Effect” [26, 306, 8, 9, 37].

We do not present here analytically the whole procedure of the proof, even
though interesting indeed and successful in a sense. For more justification on
the use of (4.82) as the current operator, the interested reader is redirected
to these works [11, 3, 25].
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Chapter 5

Final Remarks and Conclusions

“.. there is mo single unique time observable,
but actually a whole class of time of occurrence
observables — one associated with each
observable event that could occur.”

— M. D. Srinivas, R. Vijayalakshmi (1981) [3/]

In this last chapter of conclusive remarks, we would to explain our opin-
ion on two aspects of the subject treated inside this project. On the one
hand, we would like to attempt to give an explanation on why the two ex-
haustively presented aforementioned methods coincide in their final results of
a probability distribution for the time-of-arrival quantity. And on the other
hand, we would like to set straight away the personal opinion, or intuition,
of ours that yes, a quantum time quantity can be considered to be an inherit
attribute of a quantum mechanical system, if defined properly. We'll treat
each part in no specific order.

5.1 Derivation of the Kijowksi’s distribution
using general arguments

It is a firm belief of the author of this project that the fact that the fi-
nal results (4.26) and (4.81) of the two different methods presented in the
previous chapter, in terms of the time-of-arrival probability distributions, co-
incide, and moreover that they coincide with the corresponding Kijowski’s
distribution (and also the distribution derived for the Aharonov-Bohm op-
erator (3.18) through POVMs), is not a coincidence at all. We will try to
sketch our own opinion for the reasons of this coinsidence.
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5.1.1 Clarifying remarks on the time-of-arrival quan-
tum quantity

Firstly, a list of clarifying points for the time-of-arrival quantum quantity:.
Muga and Leavens inside an extensive review on the time-of-arrival topic [28,
p. 398 - 400], they considered the two methods described inside this project,
which use self-adjoint expressions in order to reach to the desired probability
distribution, that they are not of much interest and that in the contrary they
are even much restrictive in terms of the allowed states used to construct
the probability distribution. Moreover, they consider POVM approach much
more general and complete.

Indeed, the theory of POVMs seems to be of many potentials and the
consistent way it circumvents Pauli’s “Theorem” is of great importance.
However, our personal opinion is that the successful or not construction of
distributions finally is not the actual goal of this mental exercise. The in-
terpretation is the main goal. And even if the distribution constructed are
indeed subject of interpretation and of extraction of physical meaning, this
mapping from intervals to positive operators must be given some clear phys-
ical meaning, not clear to the author of this project yet. Distributions are
simply expression, which must be interpreted. They are not the interpreta-
tion.

We are in favor then of more plain and “realistic” interpretations, we tend
to deviated from positivistic or constructivistic perceptions on Physics, and
thus we hence, we would like to attempt to explain with the plainest of the
words the whole process, while trying to clarify the cause of the results of the
previous chapter. We will do it in the form of Q&A mainly for convenience.

What do we want to measure?

We intend to measure or express probabilistically the value of this quan-
tity we called time of arrival. There’s the simplistic impression sometimes
that a postulated conjugation of a time quantity with the Hamiltonian, which
is expressed by the commutation relation [H,T] = ik is enough to determine
straight away the time-of-arrival quantity. This is definitely a misconception
due to classical prejudice [10].

In Classical Mechanics, time intervals do not have any distinct character-
istics according to the situation. Time-of-flight for example can be identified
by a time-of-arrival measurement. However, this is not the case in Quantum
Mechanics. More specifically, it must have been already clear to reader that
a definition for the time-of-arrival quantity needs certainly the position of
arrival. It’s not redundant information for reasons of simplicity; it’s part of
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the definition, ie. it’s part of the question we are looking for an answer. In
other kind of measurements may have been redundant, as in a time-of-flight
measurement, the exact spatial limits between which the particle moves are
not really necessary. The same for a measurement of when a particle crosses
a potential barrier.

That’s the reason we are in a significant degree agreed with opinion of
Srinivas and Vijayalakshmi stated in the epigraph, that “ there is no single

unique time observable” [31]. This is a characteristic of the Classical Me-
chanics not accurate in the Quantum level. And also that’s why disagree
with the opinion stated by Grot et al. [19, p. 2], that the study of the

time-of-arrival problem will contribute to studies of simulations of rates for
chemical reactions. Since a chemical reaction does not refer to a specific
position and the position too is treated probabilistically, the problem refers
to some other quantum time quantity. Maybe a more definite answer on
the time-of-arrival problem will clarify much in general on the time measure-
ments, but for the purposes for example of simulating chemical reactions’
rates is not specifically adequate as a quantity.

What do we mean by specific position of arrival?

We mean that the ideally that the state measured (while measuring the
time of arrival) must be an eigenstate of the position operator at the specific
position X. Maybe this sounds not feasible, but this is the definition, this is
what we’re looking for. By this we do not mean that we perform any mea-
surement of position. This would have destroyed any possibility of measuring
an attribute of the system. Simply that the state measure is the eigenstate
of position with its spatial parameter equal to X.

Can we measure position and time simultaneously?

No, it will show some kind of proof for it. Let’s assume a proper and de-
sired time-of-arrival operator T, conjugated to the Hamiltonian, ie. [H,T]| =
th and then let’s consider the Jacobi identity of H, T" and X:

[H,T),X]+ [[T,X],H +[[X,H], 7] =0
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Due to the postulated commutation relation, the first term is zero:

2m
A A N ~ Azhﬁ ~
A A N h2 ~
T X|,H| — —|p =0
= (12, X1, 8) - T ip, 1)

It’s not possible to postulate [p, T] = 0, because that would mean that [H,T)
is zero too. Thus in general neither [p, 7] or [ X, T are zero and therefore no
pair of these quantities can be measured simultaneously.

What does this imply for the “ideal” perception of time in Quan-
tum Mechanics?

It implies that maybe this is the actual difficulty of the whole endeavor.
We attempt to conceive a quantity expressed by a self-adjoint operator, but
which quantity it’s been proven, cannot be measured simultaneously to po-
sition and momentum, while the definition of the problem has right from the
start specific momentum and position initial conditions and specific arrival
position. Probably, this is the root of the evil [5], while others of course
suggest that the problem is more fundamental [22, 0].

5.1.2 The derivation

Let’s assume the commutation relation []:I , T] — ifi valid and the T oper-
ator self-adjoint. We can obtain the probability amplitude for this operator
through (7]¢). This implies the completeness relation and the orthogonality
of the |7) states.

Moreover, using the completeness relation of the momentum eigenstates
we can express this amplitude as a momentum integral:

)= [ " trlp) ) (5.1)

o0

We can calculate the expression (7]p) from the commutation realation [H, 7]
th. From previous chapters we know that treating properly the commutation
relation we are lead to this equation:

exp (—itH /h)|T) = |7 —t)
= exp (—itp?/2mh)|7) = |7 —t)
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and multiplying both sides with the bra (p|:

= (plexp (—itp?/2mh)|T) = (p|T —t)
= exp (—itp®/2mh)(p|T) = (p|T —t)

Thus setting t = 7:

= exp (—itp?/2mh)(p|T) = (p|0)
= (p|7) = (p|0) exp (iTp?/2mh) = A(p) exp (iTp? /2mh)

In order to calculate A(p), we use the orthogonality of the |7) states and the
completeness relation of momentum:

= [ ap ol = (1) = 57 = 7
= / dp|A(p)|? exp (i(7' — 7)p*/2mh) = 6(7' — 7)
By replacing E = p?/2m and dp = mdE/|p|:

=3 [ B AP exp (7 = 7B/ = 6 =7

ap

Therefore, we can assign to A(p) the value of:

Alp) = 1/ 22l (5.2)

hm

Thus we conclude for the amplitude that:

1) = 2 [ e it omt) 0l) (53)

or as a function of k:

(T])y =4/ % /00 dk~/ |k| exp (iThk?/2m) (k|v) (5.4)

Finally, after a spatial translation to the position X and considering in rea-
sonable grounds that a |7) consists only of momenta of the same sign:

Foo
(ro)s = [ g /0 /K] exp (—ikX) exp (irik? /2m) (k[)  (5.5)

We retrieve the exact same expression for the amplitude, and thus the prob-
ability distribution, with Kijowski’s distribution (3.16) and with the results
(4.26) and (4.81) of the two methods described in the previous chapter.
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5.1.3 Commentary on the two methods

The above result doesn’t render the two methods described in Chapter
4 and the Kijowski’s distribution as true or consistent with what we want.
We simply showed that since they were subject to the same assumptions, it
was expected to end up to the same results and thus it wasn’t finally so sur-
prising. Does this mean that the previous extensive analysis was redundant?
No, because the above derivation assumes the validity of the commutation
relation and [I;T T | = ih and the self-adjointness of the T operator. Thus,
we had to argue extensively on these aspects.

And a final, commentary on the two methods. Oppenheim et al. [31]
criticized the first of the methods, spotting an inconsistence on the normal-
ization of the eigenstates of the new regulated “time” operator, which doesn’t
actually allow to ignore so easily the states for very small e. Of course, he
used a specific expression of a wave packet to justify his arguments, some-
thing which doesn’t justify an assertion of generality to the arguments. Still
of course, this is not a criticism to be neglected.

Indeed k£ = 0 is still a singularity point and moreover, something we don’t
mention explicitly before, there is a singularity point for the second method
too, the |7 = 0)eigenstate of the ’7A‘, since the action of the time-evolution
operator on it: e—iHot/ "7 = 0), doesn’t lead univocally to a specific new state,
but equivalently to | £ ¢). For these points indeed it must be investigated
exhaustingly if in the general case they lead to an inconsistency for the two
aforementioned methods.

5.2 On Pauli’s “Theorem” and on our “opti-
mism”

Apart from the very interesting work of Eric Galapon on the domains
of the operators considered for the commutations relation investigated by
Pauli’s “Theorem”, we would like to commend further on it, expressing our
humble perspective, always without never underestimating its significance.

The inaugural reason for the dead end on the time in Quantum Mechan-
ics problem presented by the “Theorem”, is the action of this constructed
e “I'/M operator, ie. equation (3.14): e*T/" |E) = |E — ¢€). And since for non-
bounded systems, negative energy states cannot be defined, we seemingly
reach to an impasse.

But what is the physical meaning of the operator? Does it act like the
time evolution operator: e~*1/"? What does actually do on states? We took
for granted that it “creates” new states, which are eigenstates of the operator
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because of the relation (3.13) we concluded: H ¢“I/" |E) = (E—¢) T/ |E).
But is this more like a transformation of coordinates rather than the creation
of a new state?

We’ll come back to last question, but firstly let’s contemplate in general
on the power series that enabled us to construct the exponential operator.
For these mathematical constructions it is implied that they are defined on
existing states. If we exclude states from our definition, then the power series
cannot be defined either. These exponential operators won’t construct new
states outside of the domain in consideration. They are too confined inside
it. Hence, |E — €) states are inside our initially domain of definition, not
somewhere else scarily.

Of course, this doesn’t mean that it’s not a serious problem that a postu-
lated conjugation of the Hamiltonian operator with a certain time operator
is contradictory in the sense that two operators do not have the same domain
of definition inside the Hilbert space. But a confined range of values for a
certain parameter of the states does not render the commutation relation and
the conjugation itself contradictory or impossible. The momentum-position

commutation relation for example, [#,p| = ih, is still valid even for a spa-
tially confined infinite square well, for which with every momentum value is
possible.

And what actually does this conjugation of Hamiltonian operator with a
postulated time operator imply? The same exactly as in Classical Physics:
the covariance of the conservative system in time translations. It doesn’t
predict the specific behavior or the limits of the system; there is not enough
information for this purpose. It simply states its general behavior of covari-
ance when a parameter changes. Thus, the commutation relation couldn’t
have anticipated for the range of the energy values; this have to be imposed as
an additional assumption and thus still the commutation relation has much
to say. The main problem is first of all the defining domains of the operators.

Moreover, due to this covariance on time transformations, we can inter-
pret both ways the changing values of the time parameter, either as a flow
of time, or as a change of the reference point in time. Is there a correspond-
ing symmetry for time when the values of energy change? Possibly yes, but
since we confine the values of energy, in contrast with the values for time,
this cannot be considered that coincides well enough with the definition of
symmetry. Thus this |E — €) energy eigenstate can be interpreted that it
refers either to another state or to an arbitrary and absolutely valid change
of energy levels. However in our humble opinion, this is not the main prob-
lem, merely an indication of it. And, again in our opinion, this renders the
energy quantity as not always adequate to describe time, in the same way
which the time parameter, via its transformation, not only describes, but
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defines the energy concept. We have to be careful with the latter point.

It would have been, of course, really helpful if we could manage to con-
struct an expression for the time operator which it would cancel any states
below zero, like the annihilation operator of the harmonic oscillator systems.
Still, however the problem is, apart from any singularity points, the fact that
we aim to the measurement of the time-of-arrival quantity using expressions
of operators of position and momentum, while none of these three quantities
can be measured simultaneously.

So, how do we justify our optimism? On the grounds that via a proper
definition of the quantum quantity of time of arrival, which will lead to
restrictions on choices of operators and the defining domain (and we mustn’t
be afraid of restrictions, as in Muga and Leavens’ criticism), and sticking to
the fact that the aim of ours is not an operator, neither a direct association
with the ¢ time parameter of the Schrodinger equation, but rather a real
quantity, which will be consistent with the definition we concluded for this
specific time quantity and which will admit first of all the same symmetry
attribute as time in Classical Mechanics does for conserved energy, then
the intuition of ours is that via all these a consistent quantity for time of
arrival and a carefully defined corresponding self-adjoint operator can be
incorporated validity to the arsenal of the Quantum Mechanics. Even if
moreover, this operator doesn’t look like much at first sight with the classical
expression of the time of arrival, something researchers tend to forget, since
only its average expression has to coincide with the latter in the classical
limit (A — 0).
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