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1 Introduction: Planck Stars and Asymptotic Freedom

When the life of a star is coming to an end, it exhausts its entire fuel supply, the thermal

pressure at the center can no longer prevent gravitational collapse, and the star contracts

to find a new equilibrium point. Currently, massive stars have no known mechanism to

compensate for the gravitational pressure, and this causes the star to collapse all the way to a

singularity. When this happens, our standard classical theories break down and predictability

of the spacetime is lost, because the singularity prevents information reaching future null

infinity. According to the Cosmic Censorship Conjecture, the singularity must be hidden

behind an event horizon, and we call this object a black hole. When Hawking radiation is

included, the ingoing radiation has negative energy causing the black hole to shrink, until it

reaches the central singularity. However this process does not radiate away all the information

contained within the black hole [4], leading to issues concerning the unitarity of the theory,

and must mean some of it is lost.

In this paper, I will propose some models of gravitational collapse that do not lead to

the singularity, therefore restoring unitarity to our spacetime, and altogether avoiding the

information paradox. In these cases, the singularity is replaced with a ”quantum bounce”.

Consider a general spherically symmetric metric of the form

ds2 = −F (r)dt2 +
1

F (r)
dt2 + r2dΩ2. (1.1)

Trapping horizons, which determine the area from which null geodesics cannot escape,

are given by F (r) = 0. A surface, with area 4πr2, is trapped if F (r) < 0, and is untrapped

if F (r) > 0. For an asymptotically flat spacetime, and black hole of mass m,

F (r) ∼ 1− 2m

r
as r →∞, (1.2)

while a regular and flat center requires

F (r) ∼ 1− r2

l2
as r → 0. (1.3)

Here l governs the central energy density, assumed positive. For a metric of the form

(1.1), with the above conditions, it can be shown [8] the Einstein tensor has a cosmological

constant form

G ∼ −Λg, where Λ = 3/l2. (1.4)

Hence we have an effective cosmological constant at small distances, governed by l. This

behaviour has previously been proposed as the equation of matter at high density, or as an

upper limit to the density/curvature, which would be described fully in a more complete

theory of quantum gravity. Since l gives the approximate length scale below which such

quantum effects would dominate, it had been expected that l would be of the order of the

Planck length.
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Recently however, it has been proposed that these effects may kick in at scales much

larger than the Planck length, and would be instead governed by the scale of the Planck

density. According to recent results in Loop Quantum Cosmology, the Friedmann equation

that governs a(t), the scale factor of the universe, should be modified as(
ȧ

a

)2

=
8πG

3
ρ

(
1− ρ

ρcr

)
. (1.5)

This would indicate that nature enters the quantum gravitational regime around ρ ∼ ρP .

Given that ρP ∼ mp/l
3
P , we can estimate that the volume at which quantum gravitational

effects would begin to dominate should be given by

V ∼ m

mP
l3P ,

and this could happen at scales much larger than that of the Planck length.

Pi

Pf

future null
infinity

past null
infinity

surface of
star

event
horizon

singularity

inner
horizon

outer apparent 
horizon

i+

i0

i-

Figure 1.1: Penrose Diagram of a Star Undergoing Gravitational Collapse

Pi is the point at which the apparent horizon forms in the process of the collapse, and Pf is

the point at which it vanishes again. The red lines indicate what happens in the classical

case, as the stellar surface collapses to form a black hole. In the semiclassical case there is

no singularity, so no null geodesics are disconnected from furture null infinity, and unitarity

never even becomes an issue.

According to Rovelli [1], this quantum bounce is due to a quantum gravitational repulsion

originating from the Heisenberg uncertainty principle, similar to the ”force” that keeps an

electron from falling into the center of a nucleus. On the other hand, Bambi et al. [6] proposed

that this repulsion is not actually quantum mechanical in nature, but that the bounce follows

from the dynamics of the system. In the effective picture, they propose that the bounce comes

from the conservation of the energy-momentum tensor, since ρeff + peff < 0 at the time of

the bounce, violating the energy conditions, and is therefore unstable, causing the bounce to
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occur. In either case, we will not know until we have a more complete picture of quantum

gravity.

We can mimic the quantum gravitational repulsive force by correcting F (r) as

F (r) = 1− 2mr2

r3 + 2l2m
≈ 1− 2m

r
+

4l2m2

r4
, (1.6)

where we have expanded the last part in 1/r, which gives a regular metric everywhere.

This will reduce to a Schwarzschild black hole for l = 0, and to a flat spacetime for m = 0.

Analysis [9] of F (r) gives a critical mass of m∗ = (3
√

3
4 )l and critical radius r∗ =

√
3l. For

r > 0, if m < m∗ then F (r) has no zeros, one double zero at r = r∗ if m = m∗, and two

simple zeros at r = r± if m > m∗. These three cases describe:

1. A flat spacetime with a regular causal structure.

2. A regular extreme black hole with a degenerate Killing horizon

3. A regular non-extreme black hole with an outer and inner trapping/Killing horizon at

r+ ≈ 2m, r− ≈ l for m >> m∗

Hence, black holes with mass m < m∗ cannot form. Next we rewrite the metric in terms

of advanced time Eddington-Finklestein coordinates

ds2 = −F (r)dv2 + 2dvdr + r2dΩ2 (1.7)

and allow the mass to depend on the advanced time, m(v). The density, and the transverse

and tangential pressures have the same form in these new coordinates, but there is now a

radially ingoing energy flux, from the T rv component of the Einstein equations, given by

Grv =
2r4m′

(r3 + 2l2m)2
, (1.8)

where m′ = dm/dr. This is a description of pure radiation, which we need to match with

an external Vaidya solution. However in these models the center remains totally regular, being

protected by the ”quantum repulsion” of an effective cosmological constant. The ingoing flux

is positive if m is increasing or negative if m is decreasing, but the trapping horizons still

occur at F (r, v) = 0.

Outgoing Hawking radiation does not enter the equation of motion of the trapping surface,

but we model it as in [12] and [13] so that at some r0 > 2m0 there is negative energy inside that

region only, balanced by outgoing radiation outside the boundary. This Hawking radiation

will shrink the outer horizon, which we represent in the metric by our time dependence of m.

However the inner horizon receives positive energy (since the partner with negative energy

in the Hawking pair has positive energy when in-falling), and therefore expands the inner

horizon. This process continues until the growing inner horizon meets the outer shrinking

horizon, where all the trapped surfaces are released and information inside can escape. A

key point in this process is that the inner horizon never reaches the center, so a singularity

never forms. Once the trapping horizons reunite, particle production ends.
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One inevitable effect of these models is the apparent mass loss of the black hole. This

is a result of asymptotic freedom, whose only necessary condition is that gravity becomes

very weak at densities approaching the Planck scale. The object should appear as a black

hole with time-dependent mass, and this is quite a general prediction. The explicit dynamics

of the system will depend on the framework used to describe it, as well as on the physical

content such as equation of state, or matter content, but we should see the same general

picture.

This seems to me to be a very intuitive idea, much more so at least than the existence of

a singularity. Given some of the extremely complex ideas that have been proposed to solve

the issues surrounding black holes, we have described a regular spacetime with a simple, flat

causal structure. For an observer at infinity the whole process is seen in ”slow motion”, due

to the extreme gravitational time dilation of the system. It would appear as though a black

hole existed in the spacetime, due to the strength of the gravity around the collapsing star,

but there is never a violation of causality and unitarity is not even an issue.

Section 2 of this paper covers the dust models of gravitational collapse. I will review and

combine the latest work in the area to give an overall picture of how a spherically symmetric

dust ball would gravitationally collapse in the homogeneous and inhomogeneous cases, and

show that the current collapse process is very unstable. The collapse of such an object will

only certainly result in a black hole if the object is homogeneous. Under small perturbations

from this model it can just as easily form a naked singularity, depending on the initial pressure

profile. We will see that a black hole can only result from a very finely tuned collapse, which

seems very unlike for a realistic scenario. However, if the end stage of the process is a naked

singularity this contradicts with the Cosmic Censorship Conjecture, pointing to something

being fundamentally flawed in our current understanding of the collapse process.

I will then show using assumptions about the density that follow from the above descrip-

tion of Planck stars, we can get a collapse process that halts at a certain density before

re-expanding indefinitely. It is a very intuitive idea, and alleviates many of the unstabil-

ity and causality issues that arrise from a singular collapse process, as well as avoiding the

Cosmic Censorship Conjecture entirely.

In sections 3 and 4, I will similarly review the most current works on the collapse process

for perfect fluid and massless scalar field models. In the case of the perfect fluid, inhomo-

geneities introduced as perturbations from the homogeneous model produce instabilities in

the collapse process which are very similar to the dust case. For the inhomogeneous models,

any small perturbation will change the outcome of the collapse from a black hole to a naked

singularity, again contradicting the Cosmic Censorship Conjecture. The semi-classical ”quan-

tum bounce” model is then examined and offers a simple and intuitive solution once more.

In section 4 I follow a similar process for examining the massless scalar field model. Using

the correspondence of a massless scalar field with that of a stiff fluid, I describe a bounce

model for the homogeneous case, and show how it could solve many of the issues that arise

through the existence of a singularity.

To date, most of the work on these models has been done for homegeneous matter profiles,
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which is the simplest case, but a more realistic inhomogeneous description should give similar

results. It would expected that the density profile is most dense at the center, monotonically

decreasing radially outward. In this case, the homogeneous model should still hold for at least

the central shell, but the shells at larger radii where the density is lower will have a different

dynamical effect on the trapping horizons. What we will show for the bounce models, at

least in the case of the dust model, is that since the outer shells bounce before the center,

the apparent horizon never actually disappears completely, and that the process is always

hidden from observers at infinity.

If these Planck stars do exist, it could have some real astrophysical and cosmological

implications. One possibility that has been discussed [1] is that some primordial ”black

holes” produced in the early universe would have a lifetime of approximately the age of the

universe, and could end in our era, which may be detectable. And any model consistent with

observations needs to account for the super-massive black hole candidates at the center of

galaxies, so trapped surfaces formed during the collapse of these super-massive objects must

last for a length of time at least to the order of the age of the universe.
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2 Dust Models of Gravitational Collapse

The simplest case of gravitational collapse is the Oppenheimer-Snyder model for marginally

bound collapse of a dust sphere. The end product of this process is a black hole in spacetime,

as during the collapse process an event horizon forms within the collapsing cloud from which

no particles or light rays can escape. The collapsing star enters the horizon and continues

until a spacetime singularity is formed, which is hidden from all observers at infinity. The

introduction of pressures in dust collapse can stop this from happening, and cause some

interesting effects. Classically, we must apply certain conditions to end up with a physically

viable model, such as the weak energy condition and the Cosmic Censorship Conjecture,

but the occurrence of a simultaneous singularity is closely linked to the homogeneity of the

density profile.

The second model I will examine is the generalization of the OS model, known as the

Lemaitre-Tolman-Bondi (LTB) model. Inhomogeneities in the pressureless matter profile

cause it to lose the simultaneous singularity structure, and different shells become singular

at different times. Even more importantly, the behaviour of the horizon changes, so we must

determine if a black hole forms or if we are left with a globally or locally naked singularity.

Finally I will look at some non-singular models in which the singularity is avoided by

using an effective density, which is the result of work in Loop Quantum Cosmology [2]. The

effective density changes the model semi-classically, because we attribute the difference to

some unknown quantum effects which kick in when the collapsing star reaches a Planckian

density, rather than the usual assumption that effects would kick in at Planckian length. The

main difference here is that this can have some interesting effects when the volume of the

star is orders of magnitude larger than Planckian volume, so we have a bound on the local

curvature as well as on the energy density. The gravitational attraction of the star is replaced

by a quantum pressure which causes the star to re-expand, and so a black hole as we know

it never actually forms. We call these new objects Planck stars.

2.1 Homogeneous Dust Collapse

2.1.1 Oppenheimer-Snyder Model

The most general spherically symmetric line element describing the collapsing matter cloud

as

ds2 = −e2ν(t,r)dt2 + e2ψ(t,r)dr2 +R(t, r)2dΩ2 (2.1)

and the stress-energy tensor for a generic matter sources is given by T tt = −ρ, T rr =

pr, T
θ
θ = T φφ = pθ. This the most general scenario, without assumptions about the form of

matter or equation of state. Using Einstein’s equations in natural units, this spacetime can

be written as

pr = − Ḟ

R2Ṙ
, (2.2)
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ρ =
F ′

R2R′
, (2.3)

ν ′ = 2
pθ − pr
ρ+ pr

R′

R
− p′r
ρ+ pr

, (2.4)

Ġ = 2
ν ′

R′
ṘG, (2.5)

F = R(1−G+H), (2.6)

where ′ refers to a derivative with respect to r, and ˙ refers to a derivative with respect to t.

The function F (r, t) is interpreted as the Misner-Sharp mass function, which is proportional

to the amount of matter in shell labelled by r at time t. The functions H and G are defined

H = e−2ν(r,a)Ṙ2 and G = e−2ψ(r,a)R′2. The area radius R is set equal to the comoving radius

r at initial time ti = 0, R(r, 0) = r, and we introduce an overall scale function a(r, t) such

that

R(r, t) = ra(r, t) (2.7)

So our scale function has the properties a(ti, r) = 1, a(ts(r), r) = 0, andȧ < 0, where

the time t = ts(r) corresponds to the shell-focusing singularity at R = 0. Using the a(t, r)

description has the advantage that it allows us to distinguish between the regular centre of

the cloud, the point where the comoving radius r = 0, and the genuine singularity where

the density and curvature diverge. This is due to the curvature scalars remaining finite at

r = 0, even though R goes to zero there too. We define all the relevant functions in terms

of these new coordinates (r, a), where any function X(r, t) becomes a function X(r, a) with

X ′ = X,r +X,aa
′ and a′(r, t) itself is treated as a function of r and a.

We now have five field equations in ρ, ψ, ν,R, and F , and we solve these subject to the

weak energy condition and certain regularity conditions for the collapse at the initial spacelike

hypersurface t = ti. The evolution of this initial data will determine the final states of the

gravitational collapse. There are different classes of solutions based on these initial conditions

that will result in either a black hole or a naked singularity.

We now consider a general mass function F (r, t) for the collapsing cloud, which can be

written as

F (r, t) = r3M(r, a) (2.8)

where M is a suitably differentiable, regular function with M > 0. From the regularity

and finiteness of the density profile at the initial t = ti, we require that F goes like r3 close

to the centre. From equations (2.2), (2.3), and (2.7), we see that

ρ =
3M + r[M,r +M,aa

′]

a2(a+ ra′)
, (2.9)

pr = −M,a

a2
. (2.10)

But in the Oppenheimer-Snyder case we take pr = pθ = 0, so from equation (2.2) we have
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dF

dt
= r3dM(r, t)

dt
= 0,

⇒M = M(r).

The collapsing cloud can be matched to a Schwarzschild exterior with total mass 2MT =

F (rb) at the boundary rb. From (2.4) we see that ν ′ = 0, and we can choose a guage such

that ν = 0. Therefore equations (2.5) and (2.6) imply

G = 1 + f(r),

Ṙ = ±
√
F

R
+ f(r), (2.11)

where the plus sign describes expansion and the minus sign describes collapse. In general

F and f are free parameters of the system which we choose to correspond to physically

realistic conditions. The solution can always be matched with a Schwarzschild exterior at

the boundary Rb(t) = R(rb, t).

To integrate equation (2.11), there are three possible cases for the value of f [26]:

1. Hyperbolic region where f > 0 which corresponds to an unbound collapse. The particles

in the cloud have positive initial velocity in the limit R→∞.

2. Flat region where f = 0 which corresponds to a marginally bound collapse. The

particles in the cloud have zero initial velocity in the limit R→∞.

3. Elliptic region where f < 0 which corresponds to a bound collapse. The particles in

the cloud have negative initial velocity in the limit R→∞.

For the purpose of this paper we will be focusing on the marginally bound case, where

f(r) = 0.

We now have an equation of motion for the Misner-Sharp mass

Ṙ = −
√
F

R
+ 0,

⇒ ȧ = −
√
M

a
. (2.12)

It is then straightforward to see that

a(r, t) = (1− 3

2

√
Mt)2/3. (2.13)

Since the shells become singular at a(r, ts) = 0, we can see that the singularity is achieved

along the curve ts = 2
3
√
M

. Since we defined G = e−2ψ(r,a)(R′)2 ⇒ e2ψ = (R′)2/G, and we

know that a = a(t), the metric becomes
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ds2 = −dt2 + a2(dr2 + r2dΩ2). (2.14)

For the OS dust collapse model, the choice of M(r) = M0 causes the density to be

homogeneous. We are left with

ρ(t) =
3M0

a3
, (2.15)

M0 = aȧ2, (2.16)

a(t) = (1− 3

2

√
Mt)2/3, (2.17)

where all the shells become singular at the same comoving time ts = 2
3
√
M

. The apparent

horizon curve is given by (2.30)

tah = ts −
2

3
r3M0, (2.18)

and since the apparent horizon forms before the singularity, the collapse process is at all

times covered by the horizon, ending in a black hole.

2.1.2 Shell Collapse

We can also invert the function a(r, t) to obtain the time needed by a matter shell of radius

r to reach an event with a particular value of t. We start by defining a general and suitably

regular function A(r, a) by A,a = ν ′/R′. Then integrating equation (2.5)

Ġ = 2A,aṘG,

= 2A,arȧG,

= 2rȦG,

⇒ G(r, t) = b(r)e2rA. (2.19)

We interpret the arbitrary function of integration b(r) as related to the velocity of the

collapsing shells [16], and write it as b(r) = 1 + r2b0(r). Using equation (2.6), we see

b(r)e2rA − e−2νṘ2 = 1− F

ra
,

⇒ e−2νr2ȧ2 =
F

ra
+ (be2rA − 1),

⇒ da

dt
= eν

√
F

r3a
+
b(r)e2rA − 1

r2
,

⇒ t(r, a) =

∫ 1

a

e−νdã√
F
r3ã

+ b(r)e2rA−1
r2

. (2.20)

Taking h(r, a) = e2rA−1
r2

, we can rewrite this as

13



⇒ t(r, a) =

∫ 1

a

√
ãdã

eν
√
b0(r)ae2rA + ah(r, ã) +M(r, ã)

. (2.21)

The time taken for shell r to reach the spacetime singularity at a = 0 is given by ts(r) =

t(r, 0). Because of our regularity conditions for the functions involved, t(r, a) is in general at

least C2 everywhere, and is continuous at the center, so we can write it as

t(r, a) = t(0, a) + rχ(a) +O(r2). (2.22)

When t(r, a) is differentiable, we Taylor expand near r = 0, and the above integral is

evaluated at r = 0 where

χ(a) =
dt

dr
= −1

2

∫ 1

a

√
ãB1(0, ã)

B(0, ã)
3
2

dã, (2.23)

with

√
B(r, a) = eν

√
b0(r)ae2rA + ah(r, a) +M(r, a), (2.24)

B1(r, a) = B,r(r, a). (2.25)

We will show that the quantity χ(0) is very important in determining the end stage of the

gravitational collapse process. The time taken for the shell r in a close neighbourhood of the

center to collapse to the singularity will take ts(r) = ts(0) + rχ(0) + O(r2), and this means

the singularity curve should have a well defined tangent at the center. To ensure regularity

of the initial data at the center of the cloud, the metric function ν cannot have constant or

linear terms in r close to the center. We then take

ν(r, a) = r2g(r, a), (2.26)

where g(r, a) is at least a C1 function of r for r = 0 and at least a C2 function for r > 0.

It can be written near r = 0 as

g(r, a) = g0(a) + g1(a)r + g2(a)r2 + .... (2.27)

2.1.3 Instability of the Collapse

To look at the effect of pressure perturbations in the OS collapse model, we need to relax

one of the conditions which we applied. We have seen that the dust model ends in a simul-

taneous singularity, a black hole, but if the outcome was not a black hole, we cannot have

a simultaneous singularity. We relax the condition applied to the scaling function a, giving

that a = a(r, t), instead of a = a(t) only. This allowance for small pressure perturbations

amounts to perturbations of ν from equation (2.4), permitting it to be non-zero.

Close to the center of the cloud, where r → 0, we have R′ = a + ra′ → a. This gives us

A,a = ν ′/a, and this small limit G(r, t) = b(r)e2ν(r,t). We still have pr = 0 as Ḟ = 0, while

the tangential pressure has the form [25]
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pθ =
3M0g0r

2

aR′2
+

9M0g1r
3

2aR′2
+ ... (2.28)

The coefficient χ in ts(r), the time curve of the singularity, is now

χ(0) = −
∫ 1

0

a3/2g1(a)da

(M0 + ab+ 2ag0(a))3/2
. (2.29)

This quantity governs the behaviour of the singularity curve, whether it is increasing or

decreasing away from the center. It is the system’s initial data, such as the density/stress

profiles, collapsing shell velocity, and the dynamical evolution, that determine the value of

χ(0). It is also responsible for the apparent horizon and trapped surface formation, which

will allow us to check whether the singularity is naked, locally or globally, or whether it is

covered by a black hole.

The condition for the formation of trapped surfaces requires that the R(r, t) = const.

surface is null. So we require gµν(∂µR)(∂νR) = 0. For the metric (1), this means

−e−2νṘ2 + e2ψR′2 = 0,

⇒ G−H = 0.

From the definition (2.6) of the Misner-Sharp mass, we can write the trapped surface

formation condition as

F

R
= 1, (2.30)

and the apparent horizon curve is given by

r2
ah(t) =

aah
M0

. (2.31)

Inverting this equation gives aah = a(rah(t), t), which in turn will give us the time curve

tah(r). We can determine whether the singularity is visible at infinity by the nature of this

apparent horizon curve, given by

tah(r) = ts(r)−
∫ aah

0

e−νda√
M0
a + be2ν−1

r2

, (2.32)

and near to r = 0 this becomes

tah(r) = ts(0) + χ(0)r +O(r2). (2.33)

We can now check how the pressure perturbations affect the time of the apparent horizon

formation, and this will allow us to determine whether a black hole forms or we have a naked

singularity.
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2.1.4 Naked Singularity or Black Hole?

The end state of a gravitationally collapsing object is typically considered a naked singularity

when a comoving observer at fixed r doesn’t meet any trapped surfaces until the time that

the singularity forms. Hence, for a black hole to form, the trapped surfaces must form before

the singularity

⇒ tah(r) ≤ ts(0) for r > 0, near r = 0, (2.34)

Clearly for all functions g1(a) such that χ(0) > 0, this condition is violated and the

apparent horizon therefore must form after the singularity. The apparent horizon curve then

begins at r = 0 and t = ts(0), and increases with increasing r moving into the future

⇒ tah > ts(0) for r > 0.

This means that null geodesics can originate at the singularity as seen from infinity,

making it visible to external observers. Therefore we would have a naked singularity.

Clearly g1(a) is the term from the tangential pressure perturbations pθ which determines

whether we have a naked singularity forming, or a black hole. We can choose it to be

arbitrarily small, but even the tiniest change in inner pressures will change the outcome of

the collapse dramatically. This gives us a very interesting insight into the nature of the

Cosmic Cencorship Conjecture, in that gravitational collapse would have to be very precise

and fine-tuned to prevent a naked singularity and result in a black hole end-state.
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2.2 Inhomogeneous Dust Collapse

From the discussion on the OS collapse model, we see it is characterised by two main features,

the occurance of a simultaneous singularity and the appearance of trapped surfaces before

the singularity, which are both closely linked to the homogeneity of the initial density profile.

We will now examine a slightly more general matter profile, where a simultaneous singularity

is a feature of only very few collapse scenarios.

The simplest generalisation of the OS model is the Lemaitre-Tolman-Bondi(LTB) inho-

mogeneous dust collapse. Inhomogeneities in the pressureless matter profile cause the collapse

to lose its simultaneous singularity structure, as each shell becomes singular at a different

time. Another consequence of the inhomogeneities is that the apparent horizon behaviour

is changed, resulting in the possibility for the singularity at the center becoming locally or

globally naked. Some matter profiles still cause the horizon to form before the formation of

the singularity, while others develop trapped surfaces at the time of formation of the singu-

larity, leaving open the possibility for geodesics to escape from the high-density cloud center.

These models are of course only simple mathematical models that do not describe a realistic

star, however they let us examine the important features that determine the end state of a

gravitational collapse.

This section will characterize the process of black hole formation with some physically

reasonable requirements, such as positive and radially decreasing density, and the absence

of shell crossing singularities. We will show that once these requirements are imposed, the

only models which develop a black hole have a simultaneous singularity, and all other allowed

scenarios having non-constant singularity curve develop a locally naked singularity.

2.2.1 Lematre-Tolman-Bondi Models

The LTB metric describing inhomogeneous dust in comoving coordinates is given by

ds2 = −dt2 +
(R′)2

G
dr2 +R2dΩ2, (2.35)

where again R = R(r, t) and f = f(r). Requiring a Lorentzian metric imposes a condition

on the energy function f(r) such that f(r) ≥ −1. Again, from equation (2.6) we have

F = R(Ṙ2 − f(r)), (2.36)

which gives us F = F (r), the MS-mass, describing the amount of matter enclosed in any

shell labelled r. And once again

⇒ Ṙ = ±
√
F

R
+ f. (2.37)

The integration of (2.37) gives us

t(r,R) = − 2

3
√
F

(R)3/2 + k(r), (2.38)
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⇒ R(r, t) =

(
3

2

√
F (k(r)− t)

)2/3

, (2.39)

where k(r) is some integration function that is determined from the initial conditions.

In general, given any curve Rγ(r) we will have some tγ(r) = t(r,Rγ(r)). The curves which

are most relevant to solutions of equation (2.37) in gravitational collapse are:

1. Rs(r) = 0, the singularity curve, ⇒ ts(r) = t(r, 0) and t′s = ( ∂t∂r )R=0. This gives us

the time at which shell r becomes singular. It indicates a strong curvature singularity

along the curve, where physical quantities such as the energy density ρ diverge.

2. Rah(r) = F (r), the apparent horizon,⇒ tah(r) = t(r, F (r)) and t′ah = ( ∂t∂r + ∂t
∂RF

′)R=F .

This gives us the time at which shell r becomes trapped behind an apparent horizon.

The apparent horizon curve ist he boundary of the region where trapped surfaces form,

given by the condition gµν∂Rµ∂Rν = 0.

3. R′sc(r) = 0, the shell crossing singularity, ⇒ tsc is given by R′(r, tsc(r)) = 0. This gives

the time at which shell r intersects another shell. We interpret this as a breakdown of

the coordinate system. The singularity is seen in equation (2.3), but is a weak curvature

singularity that can be removed by a suitable change of coords.

We now apply regularity conditions to our equations to make them physically reasonable.

Regularity of ρ at r = 0, ti = 0 implies

F (r) = r3M(r),

f(r) = r2b(r).

Once again using gauge freedom we set R(r, t) = ra(r, t) such that a(r, 0) = 1. Then we

can rewrite equation (2.37) as

ȧ = −
√
M

a
+ b, (2.40)

and a further condition for collapse is given by b+M ≥ 0.

The energy density is given by equation (2.3)

ρ =
F ′

R2R′
,

and for the model to be physically reasonable we require ρ ≥ 0, satisfying the weak energy

condition, and radially non-increasing outwards. Condition 1 implies F ′ ≥ 0 and R′ > 0.

The case where F ′ < 0 and R′ < 0 is not allowed because it would imply M < 0 around

the center. F ′ > 0 ⇒ 3M > −rM ′ ⇒ M(0) > 0. R′ > 0 means we avoid shell-crossing

singularities.

The second physicality condition is that the energy density be a non-decreasing function

of r, giving ρ′ ≥ 0,
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⇒ F ′′ ≤ F ′
(

2R′

R
+
R′′

R′

)
. (2.41)

Choosing the energy density so that it can be expanded as a power series near r = 0 [26]

ρ = ρ0(t) + ρ1(t)r +O(r2), (2.42)

with ρ0(t) = 3M0/a(o, t)3, and ρ1(t) = 4M ′(0)/a(0, t)3 − 12M0a
′(0, t)/a(0, t)4. Initially,

when a = 1, a′ = 0, we have ρ0(0) = 3M0 and ρ1(0) = 4M ′(0), so having ρ′ ≤ 0⇒M ′(0) ≤ 0.

In most astrophysical models we only have even terms in r appearing in the expansion, so this

requires that M ′(0, t) = 0, implying the absence cusps at center for energy density. Instead

we must have M ′′(0) ≤ 0.

Integrating equation (2.40) in the flat (b = 0) region, we find

t(r, a) = − 2a3/2

3
√
M

+ k(r) (2.43)

,

and when we impose the initial conditions ti = 0, R(r, ti) = r

⇒ k(r) =
2r2/3

3
√
F

=
2

3
√
M

= ts(r), (2.44)

t(r, a) = ts(r)−
2a3/2

3
√
M
. (2.45)

where ts(r) = t(r, 0) is the singularity curve.

2.2.2 Singularity Formation

The Kretschmann scalar, RabcdRabcd, for the LTB metric is [26]

K =
12F 2

R6
+

8FF ′

R5R′
+

3F ′2

R4R′2
, (2.46)

and we can see there are singularities forming when R = 0 or R′ = 0. We have already

established that R′ = 0 is a shell crossing singularity, and is typically ’weak’, since it is due

to coordinate breakdown and can be removed by a change of coordinates. The condition

for avoidance of shell crossing is R′ > 0, so once we solve the equation of motion for t(r, a)

we can evaluate R′ = − ∂t
∂r Ṙ, to find further conditions. Requiring no shell crossing implies

∂t
∂r > 0, since Ṙ < 0 for collapse models.

For the marginally bound case [19]:

R′ = − ∂t
∂r
Ṙ = − ∂

∂r

(
ts(r)−

2a3/2

3
√
M

)(
−
√
F

R

)
,

⇒ 2R′ =

√
r√
R

+
1

3

R3/2 − r3/2

√
R

F ′

F
. (2.47)
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The no shell crossing condition gives

3F > F ′

(
r − R3/2

r1/2

)
⇔M ′(1− a3/2) < 0, (2.48)

and since a ∈ [0, 1] we must have that M ′ < 0. We can find the shell crossing curve by

setting R′ = 0, and we do this in equation (2.47) to get

tsc(r) =
2
√
M

3M + rM ′
, (2.49)

and from this we can see that M = const⇒ tsc = ts, and M ′ < 0⇒ tsc ≥ ts, where they

are only equal at r = 0, and no shell crossings occur.

On the other hand, applying the condition that the singularity curve is non-increasing,

which is the condition for the formation of a black hole, the singularity curve given by (2.44)

indicates

t′s =

√
r√
F

(
1− F ′r

3F

)
≤ 0,

⇒ 3F ≤ F ′r,

⇒M ′ ≥ 0. (2.50)

Clearly we have a contradiction, telling us that black hole formation and no shell crossings

are incompatible conditions for marginally bound LTB collapse. The only exception is the

simulatneous collapse case, where ts(r) = t0. This also means that, again excluding the si-

multaneous collapse case, having positive energy density and radially non-increasing outward

is compatible with no shell crossings, but not with the black hole formation process. In my

opinion, what we’re seeing is that some very reasonable physical conditions contradict with

formation of a black hole throughout the collapse process in this model, implying that the

black hole formation process violates some basic physical principles.

The general conditions for avoidance of shell-crossings were given by Hellaby and Lake

[18], and assuming F > 0, F ′ > 0 in the marginally bound case, we have that t′s ≥ 0. The

apparent horizon curve is given by Rah = F (r), which implies

tah(r) = ts(r)−
2

3
F (r), (2.51)

and tah(r)→ ts(0) as r → 0. It was shown by Goswami and Joshi [44] that, generally, an

increasing apparent horizon is a sufficient condition for the locally visibility of the singularity.

So t′s > 0 near the singularity implies tah is increasing near r = 0, and the singularity will be

locally naked. From this we see that the shell-crossing singularity condition means the only

process which ends with a black hole, where the singularity curve is at all times trapped, is

the case of the simultaneous singularity ts = t0. Therefore, under our physically reasonable

conditions, the only process where an inhomogeneous dust model can collapse gravitationally

to a black hole is the simultaneous collapse model. All other physically valid processes which

end as a singularity will be locally or globally naked, and violate the Cosmic Censorship
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Conjecture. Whether the singularity is globally or locally naked will depend on the initial

matter configuration, but regardless the Cosmic Censorship Conjecture is still violated.

The condition for simultaneous collapse is that all the shells fall into the central singularity

at the same comoving time ts(r) = t0, which is only satisfied if M = M0, a constant. This

corresponds to the model of OS collapse discussed before. We can also use the no shell-

crossing condition t′s > 0, giving

t′s(r) = − M ′

3M3/2
> 0, (2.52)

which is satisfied when M ′ < 0, agreeing with the positive and decreasing energy density

condition and the formation of a locally naked singularity.

2.2.3 Instability of the Collapse

I will now demonstrate how arbitrarily small pressure perturbations of the LTB model can

dramatically effect the endstate of collapse, where ’small’ means the pressure is much smaller

than the energy density at all times. The spacetime singularity curve, corresponding to

a(r, ts) = 0, is written in a neighborhood of the center as

ts(r) = t0 + χ1(0)r + χ2(0)r2 + o(r3), (2.53)

from the formalism descirbed in [44], and by expanding b(r) = b0 + b1r + b2r
2
. .. we find

∂t

∂r r=0
= χ1(0) = −1

2

∫ 1

0

M1 + b1a

(M0 + b0a)3/2
da,

∂2t

∂r2 r=0
= χ2(0) =

3

8

∫ 1

0

(M1 + b1a)2

(M0 + b0a)5/2
da− 1

2

∫ 1

0

M2 + b2a

(M0 + b0a)3/2
da.

The overall behaviour of the collapsing cloud is determined by M(r, t), the evolution

a(r, t), and the initial velocity profile b(r). Our LTB model has M = M(r), b0(r) = 0. To

perturb the LTB model, we require a = a(r, t), rather than just a(t), and therefore the

simultaneous collapse, which is required for black hole formation, doesn’t happen. As seen

previously, this allowance for pressure perturbations corresponds to perturbations of ν in

equation (2.4), so it can be non-zero.

Taking the matter profile to be

M = M0 +M2(a)r2,

where M0 is a constant, we immediately see that M2 = C reduces the model to inho-

mogeneous dust, and M2 = 0 gives us the OS collapse model. Hence, in this model χ1 = 0

and

χ2(0) = −1

2

∫ 1

0

M2
√
a

M
3/2
0

da = − M2

3M
3/2
0

, (2.54)

⇒ ts(r) = t0 + χ2(0)r2 +O(r3) (2.55)
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We can see that ts ≥ t0 for all M2 < 0, and this will end the process in a naked singularity. If

we now add in a small tangential pressure near the center, then similar to the homogeneous

case we get a pressure of the form [22]

pθ =
r2

aR′2

(
3M0g0 +

9

2
M0g1 + ...

)
(2.56)

For the marginally bound case, we always have χ1 = 0, but the pressure pθ will have

an effect on ν via equation (4), so we must add this back into our calculation of χ2. As in

equation (2.21), taking h(r, a) = h0(a) + h1(a)r + ... = e2rA−1

r2
[22], we get

χ2(0) = −1

2

∫ 1

0

M2
a + 2h2 + 2h2

0 + 2g0(M0
a + 2a0)

(M0
a + 2a0)3/2

da (2.57)

Now we can see, in a similar fashion to the homogeneous dust model case, that if g0 is

chosen in such a way that χ2 is positive, the final stage of the gravitational collapse will be a

naked singularity, rather than a black hole. We have therefore constructed a class of models

of small tangential pressure perturbations of the LTB model collapse that drastically change

the final outcome of the collapse process with the introduction of small pressures.

Once again we have a model of collapse, on which we have placed some reasonable phys-

icality and reality conditions, that requires some very fine tuning to actually collapse to a

black hole. The far more likely end product of the collapse would be a naked singularity, but

this is in violation of the Cosmic Censorship Conjecture. The main question I focus on in

this thesis is how do we resolve this contradiction?
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2.3 Non-singular Dust Collapse Model

2.3.1 Quantum-Corrected Gravitational Collapse

The most important feature about the onset of quantum-gravitational effects in these models

comes from a recent idea in loop quantum cosmology [2]. The Friedmann equation that

governs the dynamics of a(t), the scale factor, is modified by quantum gravitational effects

as (
ȧ

a

)2

=
8πG

3
ρ

(
1− ρ

ρcr

)
. (2.58)

The quantum correction term is determined by the ration of ρ to a density of Planckian

scale

ρ ∼ mp/l
3
p ∼ c5(~G2),

where mp and lp are the Planck mass and Planck length. This indicates that rather

than at a Planckian length scale, as is usually assumed, it is a Planckian density scale where

matter enters the quantum gravitational regime. This may happen at scales much larger than

the Planck length scale, resulting in a gravitationally collapsing object bounces back to an

expanding one, thereby avoiding the singularity end-state. We attribute the bounce to yet

undetermined quantum gravitational forces acting on the collapsing matter once it reaches

this density, which force the object to start expanding again. When the bounce occurs, the

volume of the object is of order

V ∼ m

mp
l3p,

where m is the mass of the object. This would imply that the bounce can happen long

before the object can collapse to the singularity.If this is the case, we would have one extra

phase in the life of a collapsing star, where the extreme gravitational attraction is balanced

by an extreme internal quantum pressure. A star in this stage of its life is called a ”Planck

Star”.

What would this process look like from a far away observer? It turns out the life of a

Planck star is extremely long as measured by an observer at infinity, because it is determined

by the Hawking evaporation time of the black hole in which it is hidden. The extreme

gravitational time dilation and the apparent horizon formation would cause a distant observer

to see something with many of the properties of a black hole, however, if an observer was

sitting on the surface of the star, this collapse/expand process would be extremely short, of

the order of time taken for light to cross the radius of the star. The proper lifetime of a

Planck star is essentially an extremely quick bounce.

In what follows, we rewrite Einstein’s equations as dust + corrections, where ρcr indicates

the scale at which the corrections become relevant. For the corrections to become important

at high densities, we write [24]
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ρcorr = α1ρ
2 + α2ρ

3 +O(ρ4), (2.59)

⇒ ρeff = ρ+ ρcorr, (2.60)

where the parameters αi(ρcr) determine the scale of the corrections and would be deter-

mined from the quantum theory. We then take

Tµν = T classµν + T corrµν .

To study how this effective theory with quantum effects included affects the singularity

formation, we assume that at first order the corrections are of the form on equation (2.58).

We will then consider an effective theory where the corrections to the energy density take the

form

ρeff = ρ

(
1− ρ

ρcr

)γ
, γ ≥ 1, (2.61)

and we will examine the case where γ = 1. This is because for γ > 1, the value of the

scale factor a→ acr only as t→∞. This will be explained in more detail later, but amounts

to the process taking an infinite amount of time. The γ = 1 case corresponds to setting

α1 = −1/ρcr and αi = 0 for i > 1. In the weak field limit with low densities, the effective

density approaches the classical density.
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2.3.2 Quantum-Corrrected Homogeneous Dust Model

Reminding ourselves of the scale function a, in equations (2.15) and (2.16), from the first

model

ρ(t) =
3M0

a3
,

M0 = aȧ2,

and replacing ρ with ρeff from equation (2.58), we find

M0 =
a3

3
(ρ+ α1ρ

2 + ...) (2.62)

⇒ aȧ2 =
a3

3
(ρ+ α1ρ

2 + ...) (2.63)

⇒ ȧ2 =
M0

a
+ α1

3M2
0

a4
+ ... (2.64)

Now, considering an effective density of the form (2.61), and integrating, we can solve

for ρ, p and M in the effective theory by replacing them with the corresponding effective

quantities

ρeff =
3Meff

a3
. (2.65)

Meff (t) is the effective Misner-Sharp mass, and now depends on t. This will induce an

effective pressure peff in an otherwise pressureless dust.

3
ȧ2

a2
= ρ

(
1− ρ

ρcr

)γ
, (2.66)

ȧ2 =
M0

a

(
1− a3

cr

a3

)γ
, (2.67)

ȧ2 =
M0

a3γ+1
(a3 − a3

cr)
γ , (2.68)

with ρcr = 3M0
a3cr

. We now have a differential equation for the scale function a(t).

Solving this equation with the initial condition a(0) = 1 and γ = 1 gives

da

dt
=
√
M0

(
a3 − a3

cr

a4

)1/2

, (2.69)

⇒ t(a) =
2

3
√
M0

(
√

1− a3
cr −

√
a3 − a3

cr). (2.70)

Because of the effective energy density, the new dynamics cause the system to have an

effective pressure given by equation (2.2):

peff (t) = −
Ṁeff

a2ȧ
. (2.71)

This effective pressure comes from the quantum correction terms, and is homogeneous as

well.
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Meff = M0

(
1− ρ

ρcr

)
, (2.72)

⇒ peff = − ρ
2

ρcr
. (2.73)

The effective pressure is always negative and approaches p = −ρ as ρ→ ρcr, and it is this

negative pressure that causes the bounce as it reaches the quantum level.

Rearranging (2.70), the scale function a(t) has the form

a(t) =

[
a3
cr +

(√
1− a3

cr −
3
√
M0

2
t

)2
]1/3

, (2.74)

and reaches the minimum value acr in finite time, as shown in figure (2.1)

t(acr) = tcr =
2
√

1− a3
cr

3
√
M0

< ts. (2.75)

At this time, ρ = ρcr, so ρeff = 0 and begins to increase for t > tcr. We also find

ä(t) = −3M0

2

[
4

3
a−5

(√
1− a3

cr −
3
√
M0

2
t

)2

+ a−2

]
, (2.76)

which at tcr reaches

⇒ ä(tcr) = −3M0

2
a−2
cr . (2.77)

Contrary to the classical dust case where ρ diverges at ts = 2/3
√
M0, the density now

tends to a maximux ρcr as t → tcr and then decreases. The velocity of the collapsing shells

ȧ→ 0 as t→ tcr. Since a never goes to zero, the value of the Kretschmann scalar [24]

RabcdRabcd = 12
ä2a2 + ȧ4

a4
(2.78)

never diverges. We also remove the possibility for shell crossing singularities because we

have a system that is equivalent to a homogeneous perfect fluid, with R(r, t) = ra(t), and

the scale function a(t) is everywhere positive, therefore the spacetime is everywhere regular.

From equation (2.71) we see that Meff decreases, becoming zero when t = tcr. We can

match the exterior spacetime with the Vaidya solution for outgoing radiation.

We can also clearly see that since M(tcr) = ρ(tcr) = 0, the spacetime must be flat at this

stage. This is because in our model, as ρ → ρcr, the gravity becomes weaker and weaker

until it is finally turned off. After this point the models describes an expanding cloud with

ȧ > 0. If this is true, there may be some astronomical phenomena that could be explained by

this process. It is plausible that this process could be the cause of some of the high-energy

phenomena observed today.
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Figure 2.1: Dust Scale Factor

In this graph the red line indicates the scale factor a(t) in the classic case, whereas the blue

line represents the quantum corrected model. Initially, in the weak-field regime, the

semi-classical model behaves in a similar way to the classical case, however once we get

close to tcr the quantum effects become important, and the scale factor diverges from the

classical case. We have taken M0 = 1 and ρcr = 3000.

2.3.3 Apparent Horizon

The apparent horizon is again defined as the curve tah(r) for which a(r, tah) = r2Meff (r, tah(r).

For the classical OS model, from equation (2.18) we find it to be given as

tah = ts −
2

3
r3M0.

For the semi-classical model

a = r2M0

(
1− ρ

ρcr

)
(2.79)

⇒ rah =
a2√

M0(a3 − a3
cr)

(2.80)

The curve rah has a minimum at

dr

dt
= 0⇒ a3 = 4a3

cr, (2.81)

⇒ tmin =
2

3
√
M0

(
√

1− a3
cr −

√
3a3

cr). (2.82)

This implies there must also exist a minimum radius

rmin = rah(tmin) = 24/3

√
acr

3M0
. (2.83)

This is the limiting radius for which, if rb < rmin, no trapped surface can form at any

stage of the collapse. Hence, this gives us a threshold mass below which the collapsing matter
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cloud can always be seen by an observer at infinity. From the boundary condition for the

collapse, 2MT = r3
bM0, MT being the total mass, we find this threshold mass is

Mmin = 8

√
a3
cr

27M0
. (2.84)

After tcr the cloud starts to expand again, and another trapped region forms. This is

due to the gravitational strength growing once the system leaves asymptotic freedom. Since

the object is expanding now the density starts to decrease, and once it becomes too low the

apparent horizon disappears forever.

rah

t

Figure 2.2: Dust Apparent Horizon

This is a graph of the apparent horzon curve rah(t) for the classical model (red line) and

semiclassical model (blue line). We can clearly see that as t→ tcr, rah →∞, so the process

becomes visible to an observer an infinity for a brief period of time.

The whole process would look something like figure (2.3), where we can clearly see that

no geodesics are disconnected from future null infinity.
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Figure 2.3: Quantum Corrected Homogeneous Dust Collapse

Penrose diagram for the semiclassical homogeneous dust collapse model discussed above.

The black lines correspond to the trapped surface of the collapsing object. The red dotted

line is the boundary curve of the collapsing object. The dashed-dotted black and red lines

correspond to the classical collapse case. At some point after the collapse starts the quantum

effects kick in, and the semiclassical solution departs from the classical singularity

formation.

2.3.4 Quantum-Corrected Inhomogeneous Dust Model

We now examine a model in which inhomogeneities are introduced, but that recovers the

classical case once ρcr goes to zero, and recovers the homogeneous case once the density

perturbations go to zero. We will examine the structure at the center of the cloud, near

r = 0, by Taylor expanding certain quantities. By expanding, we reduce the system of

five coupled partial differential equations (2.2) - (2.6) to two coupled ordinary differential

equations. Using equation (2.3) in

ρeff = ρ

(
1− ρ

ρcr

)
, (2.85)

we find that the effective mass function and scale function can be expanded in powers of

r as [27]

a(r, t) = a0(t) + r2a2(t) + ..., (2.86)

Meff = M0,eff + r2M2,eff + ..., (2.87)

29



where

M0,eff = M0

(
1− 3M0

a3
0ρcr

)
, (2.88)

M2,eff = M2

(
1− 6

M0

a3
0ρcr

)
+ 9

M2
0a2

ρcra4
0

. (2.89)

Now we can use equation (2.2) to solve for the induced effective pressure of the system due

to the dependence on t of the effective mass. Once again expanding peff = p0,eff+r2p2,eff+...

we find

p0,eff = − 9M2
0

a6
0ρcr

, (2.90)

p2,eff = −18M0M2

a6
0ρcr

+
54M2

0a2

a7
0ρcr

. (2.91)

Equations (2.4) and (2.5) give

ν ′ = −
p′eff

ρeff + peff
= −

2p2,eff

ρeff + peff
r + ..., (2.92)

⇒ ν = ν2r
2 + ... = −

p2,eff

ρ0,eff + p0,eff
r2 + ..., (2.93)

=
6M0

a3
0ρcr

M2
M0
− 3a2

a0

1− 6M0

a30ρcr

 r2. (2.94)

For r → 0, in the marginally bound case,

G = b(r)e2rA, (2.95)

' 1 + 2A2r
2, (2.96)

where A is defined by (from equation (2.5))

Ȧ := ν ′
Ṙ

R′
= 2ν2

ȧ

a+ ra′
r2 = Ȧ2r

2 + ..., (2.97)

⇒ A2 = 2

∫ t

0
ν2
ȧ0

a0
dt. (2.98)

This model provides everything required to solve the equation of motion for the scale

parameter a which comes from equation (2.6). It can be rewritten as

Meff = a

(
1−G
r2

+ e−2ν ȧ2

)
, (2.99)

= (a0 + a2r
2)(−2A2 + e−2ν2r2(ȧ0 + ȧ2r

2)2, (2.100)

⇒M0,eff = a0(−2A2 + ȧ2
0), (2.101)

⇒M2,eff = a2(−2A2 + ȧ0
2) + 2a0(ȧ0ȧ2 − ν2ȧ

2
0). (2.102)
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In the limit of ρcr → ∞, we retrive the classical inhomogeneous collapse model with

ν2 → 0,M0,eff → M0,M2,eff → M2, and in the limit of M2 → 0 we return to the quan-

tum homogeneous model discussed previously. We now have a model which satisfies the 2

conditions originally laid out.

Combining these equation with (2.88) and (2.89), we get the equations of motion for the

scale factor that need to be solved.

ȧ2
0 =

M0

a0

(
1− 3M0

a3
0ρcr

)
+ 2A2, (2.103)

ȧ2
2 =

M2

2a0ȧ0

(
1− 6M0

a3
0ρcr

)
− M0a2

2a2
0ȧ0

(
1− 12M0

a3
0ρcr

)
+ ν2ȧ0. (2.104)

This analysis is valid in the small r limit, where we assume higher order terms are neg-

ligble, but this breaks down at a certain radius for any given M2 and ρcr. The other issue is

that of shell crossing singularities, where R′ = 0 and different collapsing shells overlap, but as

discussed before these are weak singularities and do not signal geodesic incompleteness of the

spacetime. This situation is complicated by the fact that outgoing shells which have already

reached the bounce point could overlap with in-falling shells, causing more shell-crossing

singularities, however in the model discussed here the bounce occurs first at the outer-most

shells, so if shells crossings do occur they are outside the small r limit.

2.3.5 Apparent Horizon

In this model the collapsing cloud is affected one shell at a time due to the inhomogeneities,

and the bounce time will be different for each shell. The bounce curve tcr(r) is defined from

ȧ(r, tcr(r)) = 0, and in contrast to the homogeneous case, tcr(r) is not a constant. This will

mean the region of asymptotic freedom is reached at different times for each shell, and so

the gravity never completely turns off. Importantly, the outer shells bounce before the inner

shells, meaning there are no shell crossing singularities near the center. The fact tcr is not

constant also means the effective density doesn’t reach 0, as opposed to the homogeneous

case where ρeff (tcr) = 0. The effective density still decreases as we approach the bounce.

This process looks similar to the case for the homogeneous dust collapse model earlier,

but the apparent horizon never full disappears.

The apparent horizon condition is still given by F = R, so the time tah(r) at which shell

r becomes trapped is given implicitly by

a(r, tah(r)) = r2Meff (r, tah(r)), (2.105)

⇒ a0 + a2r
2 = r2(M0,eff +M2,effr

2), (2.106)

while we can invert this to find tah explicitly through

r4M2,eff + r2(M0,eff − a2)− a0 = 0 (2.107)
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Figure 2.4: Quantum Corrected Inhomogeneous Dust Collapse

Penrose diagram for the semiclassical inhomogeneous dust collapse model discussed above.

The black lines correspond to the trapped surface of the collapsing object. The red dotted

line is the boundary curve of the collapsing object. The dashed-dotted black and red lines

correspond to the classical collapse case. At some point after the collapse starts the quantum

effects kick in, and the semiclassical solution departs from the classical singularity

formation, however in contrast with the homogeneous model, the bounce point is never

visible to an observer at infinity as the apparent horizon does not vanish until the very end.

Like the homogeneous case the apparent horizon will behave classically in the weak field

regime and reaches a minimum rmin at time tmin given by ṙah(tmin) = 0.

Once again we have shown that, as opposed to the classical picture in which collapse

inevitably leas to singularity formation, this final outcome can be avoided by including the

semi-classical corrections discussed above. The singularity never forms, and instead the end

stage is a process of re-expansion of the cloud, solving related problems such as non-unitarity.

The fact that no event horizon forms arises from the fact that the exterior spacetime of the

star is not described by a Schwarzschild metric, but instead a Vaidya spacetime where the

solutions are matched at the boundary.
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3 Perfect Fluid Models of Gravitational Collapse

3.1 Homogeneous Perfect Fluid Collapse

In this section, we will analytically study spherical gravitational collapse models of a perfect

fluid, under an equation of state condition p = kρ. This equation of state is extensively

used and studied in astrophysics, and offers a physically interesting model. This equation

of state will apply an additional constraint to the collapsing matter, on top of the Einstein

equations. We will see how applying a physically reasonable equation of state affects the

collapse evolution, and how the final stage of the process is affected by it as the pressures

cannot be ignored in the later stages of collapse.

We will show that the perfect fluid collapse model could end in either a black hole or

naked singularity, depending on the nature of the initial data and how it evolves during the

collapse process. Given regular initial data the final stage will be determined by the choice

of free functions in the theory, such as initial velocity of the collapsing matter and we will see

how the equation of state and initial data affect the outcome of the collapse process. Much of

the preliminary work has been done in the previous section, so I will give only a brief recap

here, but I will elaborate further on any new or unique points.

We start with the spherically symmetric metric in comoving coords (t, r, θ, φ)

ds2 = −e2νdt2 + e2ψdr2 +R2dΩ2. (3.1)

The energy-momentum tensor for a perfect fluid in this frame is given by

T ij = (ρ+ p)V iV j + pgij , (3.2)

where V i is a timelike vector.

⇒ T tt = −ρ(r, t) and T rr = T θθ = T φφ = p(r, t). (3.3)

Taking the matter to satisfy the weak energy condition, we have that

TijV
iV j ≥ 0,

⇒ ρ ≥ 0 and ρ+ p ≥ 0.

From equations (2.2) and (2.3), and using the equation of state, we have

ρ(r, t) =
F ′

R2R′
= −1

k

Ḟ

R2Ṙ
= −1

k
p(r, t), (3.4)

and from our other initial equations

ν ′ = − k

k + 1

ρ′

ρ
= − k

k + 1
[ln(ρ)]′ (3.5)

Ġ = 2
ν ′

R′
ṘG (3.6)

F = R(1−G+H) (3.7)
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From the energy conditions, the MS mass function F ≥ 0, and to preserve initial regularity,

we have F (ti, 0) = 0, meaning the mass function vanishes at the center. Again, for collapse

Ṙ < 0 where R(r, t) = ra(r, t), and a(r, ti) = 0, a(r, ts(r)) = 1. This allows us to distinguish

the point at which the physical radius vanishes, and the singularity at time ts(r). We now

have five field equations, and five unknowns in ρ, ψ, ν,R, and F . These equations, subject to

the energy and regularity conditions discussed, determine the evolutions of the initial data

into the final states of collapse.

We will see there are different classes of solutions which end in either a black hole or

naked singularity as the final stage of collapse, depending on the initial data configurations

and class of evolution chosen.

3.1.1 Collapsing Matter Clouds

We will now examine the equations to see when the spacetime singularity occurs, and how

the initial data and evolution classes lead to a singularity being formed in the spacetime.

Given

F (r, t) = r3M(r, a),

where M is suitably regular and differentiable, and since M is a general (at least C2)

function, we have a very generic form of the mass profile for the cloud. Equation (3.4) gives

ρ(r, a) =
3M + r(M,r +M,aa

′)

a2(a+ ra′)
= −1

k

M,a

a2
= −1

k
p(r, a). (3.8)

A regular distribution at the initial epoch is given by

ρ(r, 0) = 3M(r, 1) + rM(r, 1),a. (3.9)

It is clear from these equations that, generally, as a → 0, ρ → ∞, and both the pressure

and density blow up at the singularity. Rewriting equation (3.8) gives

3kM + krM,r +Q(r, a)M,a = 0, (3.10)

where

Q(r, a) = (k + 1)ra′ + a.

Equation (3.10) above has a general solution of the form [28]

F(X,Y ) = 0,

where X(r, a,M) and Y (r, a,M) are the solutions of the system of equations

dM

3Mk
=
dr

kr
=
da

Q
.
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From all the classes of solutions of M(r, a), we only consider those which satisfy the

constraints outlined earlier, i.e. the energy condition, regularity, and in the limit a→ 0, ρ→
∞. This limits the class of mass functions we need to examine.

Integrating (3.5)

⇒ ν = − k

k + 1
ln(ρ). (3.11)

Using A(r, a),a := ν ′/R′ as before, we can determine the regularity of our solutions. Our

main interest is again analyzing the shell-focusing singularity at R = 0, which is a physical

singularity. Again we are assuming there are no shell-crossing singularities, where R′ = 0,

ensuring the function A(r, a) is well defined.

Initially we have

A(r, a),a|a=1 = − k

k + 1

[
ρ′0(r)

ρ0(r)
,

]
(3.12)

and at any stage of the collapse we can relate the functions M and A by

A,aR
′ = − k

k + 1
ln[−M,a

ka2
]′.

Considering a smooth initial profile, where initial density gradient is zero at the center,

we must have A(r, a) = rg(r, a), where g(r, a) is also suitably differentiable [28].

We also have

G(r, a) = b(r)e2rA, (3.13)

where

b(r) = 1 + r2b0(r), (3.14)

and b(r) is the velocity function for collapsing shells. As shown in equation (2.20), we

can use equation (2.6) to get

b(r)e2rA − e−2νṘ2 = 1− F

ra

⇒
√
aȧ = −ρ−

k
k+1

√
e2rAab0(r) + ah(r, a) +M(r, a), (3.15)

with h(r, a) = e2rA−1
r2

, giving

⇒ t(r, a) =

∫ 1

a

√
ãdã

ρ−
k
k+1

√
b0(r)ae2rA + ah(r, ã) +M(r, ã)

. (3.16)

Close to the center

t(r, a) = t(0, a) + rχ(a) +O(r2). (3.17)

When t(r, a) is differentiable, we Taylor expand near r = 0, and the above integral is

evaluated at r = 0 where
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χ(a) =
dt

dr
= −1

2

∫ 1

a
dã

√
ãB1(0, ã)

B(0, ã)
3
2

, (3.18)

with

√
B(r, a) = ρ−

k
k+1

√
b0(r)ae2rA + ah(r, ã) +M(r, ã), (3.19)

B1(r, a) = B,r(r, a). (3.20)

To obtain (119) we required that the integral (118) be differentiable, which is possible

because it is finite by definition, and as long as all the functions A(r, a), b0(r), and M(r, a)

are suitably differentiable. They must be at least C2 for r 6= 0, and C1 for r = 0. The central

shell will reach the singularity in a time

ts0 =

∫ 1

0

√
ada

B(0, a)
. (3.21)

For other shells to reach the singularity it will take a time

ts(r) = ts0 + rχ(0) +O(r2), (3.22)

which defines the singularity curve that develops in the spacetime as a result of the

collapse. From equation (3.15) - (3.18)

√
aȧ = χ(a)B(0, a) +O(r2). (3.23)

We can see that χ(0), representing the singularity curve tangent, depends on M, b0, and

h, which are determined by values of the initial data at t = ti. Given the density and matter

profiles initially is therefore enough to completely determine the tangent to the singularity

curve at the center. We now have to figure out the nature of the singularity, and determine

when it will be naked and when it will become a black hole.

3.1.2 Nature of the Singularity

We can now determine the final stage of collapse as either a naked singularity or a black

hole, using the initial data and allowed evolutions. Once again, the apparent horizon is

given by R = F within the collapsing cloud, and if the area around the center gets trapped

before the singularity, it will be covered and a black hole will form, otherwise future-directed

null/timelike curves can escape and we will have a locally or globally naked singularity. We

now examine whether there exist families of future directed and outgoing null geodesics which

terminate in the past at the singularity.

We first consider the equation for the null radially outgoing geodesics, given by

dt

dr
= eψ−ν , (3.24)

where the singularity is given by a(ts(r), r) = 0⇒ R(ts(r), r) = 0. If any future directed

null geodesics exist which originate from the singularity in the past, we must have R→ 0 as

t→ ts. Writing the geodesic equation in terms of (u = rα, R) [28], we get
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dR

du
=

1

α
r−(α−1)R′

[
1 +

Ṙ

R′
eψ−ν

]
. (3.25)

From equation (2.6) we find that

1 +
Ṙ

R′
eψ−ν =

1− F
R√

G(
√
G−

√
H)

, (3.26)

and taking α = 5
3 [16] we get

dR

du
=

3

5

R
u

+

√
aa′√
R
u

( 1− F
R√

G(
√
G−

√
H)

)
. (3.27)

If null geodesics exist that terminate at the singularity in the past and have a definite

tangent, then dR
du > 0 at the singularity in the (u,R) plane and has a finite value. So all points

r > 0 are covered, because the apparent horizon equation F/R →∞ as dR/du→ −∞, and
√
H < 0 since Ṙ < 0 for collapse. This means that no null outgoing geodesics can originate

from these past points.

However, the r = 0 singularity could be naked. Defining the tangent to null outgoing

geodesics as

x0 = lim
t→ts

lim
r→0

R

u
=
dR

du
|t→ts;r→0. (3.28)

Using (3.27) and (3.23) we have

x0 =
3

5

(
x0 +

χ(0)
√
B(0, 0)

x
1/2
0

)
, (3.29)

⇒ x
3/2
0 =

3

2
χ(0)

√
B(0, 0). (3.30)

We now examine the necessary/sufficient condions for the existence of a naked singularity.

The equation for the null geodesic emerging from the singularity is R = x0u,which in (t, r)

coordinates, this is equivalent to

ts(r) = ts(0) + x0r
5/3.

If χ(0) > 0 ⇒ x0 > 0, and we have a null radially outgoing geodesic escaping from

the singularity, resulting in a naked singularity, however if χ(0) < 0, then obviously the

singurlarity curve is a decreasing function of r, and therefore the central region will become

singular before the central shell resulting in a black hole solution. This is because the central

region is always covered by an apparent horizon. If χ(0) = 0 the we must account for the

next highest order non-zero term in the singularity curve equation, with a similar analysis

for a different value of α.

We know that the behaviour of χ(0) is entirely determined by the initial conditions, as

shown in equation (3.18), so it is possible to determine the end state as either a black hole or
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naked singularity purely from the initial data and dynamical evolution of the system. Given

any regular density and pressure profiles, we can always choose velocity profiles so that the

end state is one or the other.

The general result here shows that for any perfect fluid case with p = kρ as the equation

of state, the value of k doesn’t have any special significance. The initial data and the chosen

evolutions are the things that matter, which will result in a certain final stage.

3.1.3 Classic Radiation Model

This classic FRW solution describes the collapse of a homogeneous perfect fluid, with pr =

pθ = p(t), where we have an equation of state governing radiation as

ρ = 3p. (3.31)

The homogeneous pressure in this case means the mass profile must depend on t through-

out the collapse, and can be matched with Vaidya solution on the exterior [30], [31] . This

equation of state, along with equation (3.4), will give us a differential equation for the mass

profile

dM

da
= −M

a
, (3.32)

⇒M(t) =
M0

a
. (3.33)

We then have an energy density ρ = 3M0
a4

, and in the marginally bound case the equation

of motion (3.7) becomes

M0 = a2ȧ2, (3.34)

⇒ a(t) = (1− 2
√
M0t)

1/2. (3.35)

At a(t) = 0⇒ ts = 1/2
√
M0, and the end stage of the process results in a black hole.
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3.2 Inhomogeneous Perfect Fluid Collapse

We will now try to make a more physically realistic collapse scenario by including inhomo-

geneities in the density and pressure profiles of the collapsing fluid model. After this, we can

examine the possible outcomes of the collapse, and show how unstable the currently theorized

process is because it is just as likely to end in a naked singularity as it is to end in a black

hole. If the Cosmic Censorship Conjecture is to hold, this points to something fundamentally

flawed in our current ideas, since the process must be very fine tuned to definitely result in

a black hole.

To do this, the currently known models are considered under small perturbations of

the initial data, and we want to see how stable the black hole solutions are under these

perturbations. In the dust case already examined, we have already seen how drastically the

outcomes of collapse can be affected by these perturbations, and that we must consider naked

singularities just as stable and general an outcome as black holes.

Following [37] we begin with regular initial data that has no trapping horizons or singu-

larity, and then introduce small homogeneities into the pressure profile of a perfect fluid. We

will not use an equation of state, but still require that it obeys the energy conditions.

3.2.1 Introducing Inhomogeneities

From the Einstein equations (2.2)-(2.6), we have our usual five equations with six unknowns.

We will not specify an equation of state here, leaving the mass profile M as the free function,

and consider matter that acts classically in the weak field limit. To examine the inhomoo-

geneities in the density and pressure radial inhomogeneities are introduced in the mass,

giving M(t)→M(t, r). This is a physically reasonable assumption for any collapsing object,

as it should be most dense in the center, and decrease radially outward. This also causes

a(t)→ a(t, r), allowing us to change coords from (r, t)→ (r, a) as earlier. Since a is a function

of r and t, any radial derivatives will become X ′ = X,r +X,aa
′.

The pressure and density inhomogeneities are introced in [37] as

p(a, r) = p0(a) + p1(a)r +
1

2
p2(a)r2, (3.36)

ρ(a, r) = ρ0(a) + ρ1(a)r +
1

2
ρ2(a)r2, (3.37)

where pi(a), ρi(a) depend on the specific form of M. They then choose the Misner-Sharp

mass F so the M is seperable in r and a as

M(r, a) = m(a)(1 + ε(r)), (3.38)

where ε is the radial perturbation of M(r, a), and is ”small” compared to m(a). For

regularity and continuity, we assume M is at least C2 in r and C1 in a, and again see that

M(r, a) = M0(a) +M1(a)r +
1

2
M2(a)r2. (3.39)
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Similar to the dust case, to prevent cusps at the origin and ensure regularity of data,

M1 must vanish at r = 0. Thus, M1(a) = m(a)ε′(0) = 0 ⇒ ε′(0) = 0. Fixing another

gauge allows us to assume ε(0) = 0, ensuring the center of the clound acts in the same was

as the homogeneous fluid collapse model. The final requirement is for |M2| << M0, giving

ε′′(0) << 1.

The continuity of M means we can take m(a) to be of the form [37]

m(a) = m0 +m1a. (3.40)

Expanding the pressure and density about r = 0 in equations (2.2) and (2.3) gives

p(a, r) = −m(a),a
a2

− 1

2

m(a),a
a2

ε′′(0)r2, (3.41)

ρ(a, r) =
3m(a)

a3
+

5

2

m(a)ε′′(0)

a2
r2. (3.42)

For a realistic model in which density decreases radially outward, we must have ε′′(0) < 0.

Using the mass equation of motion (2.6), we can simplify it to find the equation of motion

of the system, as previously shown, to be

ȧ = −eν
√
M

a
+
be2A − 1

r2
, (3.43)

which will completely solve the system for given choices of M and b. In the marginally

bound case we have been discussing, b(r) = 1.

From equation (2.4)

ν(r, a) =

∫ r

0
− p′

ρ+ p
dr, (3.44)

=

∫ r

0

M,raa+ (M,aaa− 2M,a)a
′

(3M + rM,r − aM,a)a
R′dr̃, (3.45)

and defining A,a := ν ′r/R′, we have that

A(r, a) =

∫ 1

a

M,raa+ (M,aaa− 2M,a)a
′

(3M + rM,r − aM,a)a
rda. (3.46)

Given the expainsion around r = 0 for M , we find a corresponding expansion for A(r, a)

as A = A0(a) + A1(a)r + A2(a)r2 + A3(a)r3 + A4(a)r4 + ..., and checking the r2 coefficient

from the above integral for A using the expansion of the mass profile, we find [37]

A2(a) =

∫ 1

a

2M2, a

(3M0 −M0,a)
da =

2

3

m1ε
′′(0)

m0
(1− a). (3.47)

Inverting (3.43) as usual, the time curve is defined as

t(r, a) = ti +

∫ 1

a

e−ν
√
a√

M + 2A2a+ 2r2A4a
da. (3.48)

40



Again, regularity of the functions in t(r, a) means it is generally at least C2 near r = 0

and can also be expanded as

t(r, a) = t(0, a) + χ1(a)r + χ2(a)r2 +O(r3), (3.49)

with χ1 = dt/dr|r=0 and χ2 = 1
2d

2t/dr2|r=0. The singularity curve ts(r), defined as

ts(r) = t(r, 0), which is the time taken for a shell of radius r to collapse to the sinugarity, can

also be expanded as

ts(r) = t(0, 0) + χ1(0)r + χ2(0)r2 +O(r3). (3.50)

3.2.2 Nature of the Singularity

As shown in Section (2.2.3) and [22], since M1 = 0 ⇒ χ1(0) = 0, and it is the value of

χ2(0) which governs the nature of the singularity. If χ2(0) > 0, ts(r) is always increasing

in co-moving time t, so the singularity is first formed at the central r = 0 shell. As in

Section (2.1.4), for a black hole to form we requre that the trapping horizon forms before

the singularity, tah(r) ≤ ts(0). So the positivity of χ2(0)⇒ tah(r) > ts(0), which means null

geodesics could escape from the singularity forming at ts(0). At least locally, this results in

a naked singularity.

Solving for χ2(0), only keeping terms to the order of m1
m0

, this becomes [37]

χ2(0) = −
∫ 1

0

ε′′(0)

m
1/2
0

[
a1/2

2
+
m1

m0

(
7

12
a3/2 − ε′′(0)

m0
(a3/2 − a5/2)

)]
da. (3.51)

After solving the integral, and ignoring the last term due to to smallness of powers of a

near r = 0, we find

χ2(0) = − ε′′(0)

3m
1/2
0

(
1 +

7

10

m1

m0

)
. (3.52)

As already mentioned, a physically reasonable profile requires ε′′(0) < 0, so the sign of

χ2(0) is determined entirely by the value of the quantity in brackets. For small perturbations

of an otherwise homogeneous fluid model, we can safely assume that m0 < m1 ⇒ |m1
m0
| < 1.

Therefore, regardless of the sign of m1, the bracketed term is always positive, which implies

that the value of χ2(0) > 0 for any initial data, so it is safe to conclude that for any scenario

in which we make small perturbations from the homogeneous perfect fluid collapse model the

end state of collapse must result in a locally naked singularity.

In a very similar way to the inhomogeneous dust collapse model, we have shown that by

introducing small pressure perturbations to the collapse model we can change the outcome

quite remarkably. I think it is safe to assume that in the extremely dynamic process of a star

undergoing gravitational collapse, the pressures and forces would fluctuate wildly. Once again

we are left with an end state of collapse in the form of a naked singularity, and once again

we have to resolve this problem if the process is to obey the Cosmic Censorship Conjecture.
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3.3 Non-Singular Fluid Collapse

3.3.1 Radiating Star Model

Beginning with the usual five equations and six unknowns, ρ, p, ψ, ν,R, and F , this allows

us the liberty to choose a free function. The selection of this function, subject to certain

initial data and energy conditions, determines the evolution of the spacetime. We will choose

this to be F (r, t), the mass function for the cloud. The cloud has a compact support on a

t = const spacelike hypersurface, and the exterior spacetime is matched to the boundary of

the collapsing ball.

We consider the class of mass functions F (r, t), in which M(r, a) is a general function

subject to some physicality conditions [29]:

1. M(r, a) ≥ 0 and M(r, a) is at least C2.

2. lima→0M → 0 as aα, with 1 < α < 3.

3. There exists a value a∗ ∈ (0, 1), such thatM,a|a>a∗ < 0,M,a|a<a∗ > 0, and M,a|a=a∗ = 0.

Subject to these conditions, it is clear from p = −M,a

a2
that at the initial stage of collapse

the pressure is positive, but as it continues the pressure will decrease and eventually become

negative in a region around the singularity. For this model we will impose the continual

collapse condition Ṙ < 0, and in the next section discuss the case where the collapsing

system bounces back and re-expands.

The pressure is positive for all a > a∗, becoming negative where a < a∗. When a = a∗ it

acts like a pressureless dust. The apparent horizon is the boundary of the trapped area, and

determines whether or not a black hole forms during the collapse, given by F = R. When

F < R, the region described is not trapped, while F > R is where the region is trapped.

Regularity of the initial data would suggest there are no trapped surfaces to begin with, and

if r = rb is the boundary of the cloud, the condition (M0)r2
b < 1 will ensure there are no

trapped surfaces for r ≤ rb because F/R < 1 is preserved.

Basically, we can view the formation of trapped surfaces by how much mass is within

a given radius of the cloud. This determines whether there is a trapped surface or not. If

F > R tells us a trapped surface will form, the star must have some mechanism for radiating

away mass as R decreases, to preserve F < R throughout.

Given the general conditions discussed for this model, as a→ 0

F

R
' r2aα−1 = 0, (3.53)

therefore, even as the collapse ends and the physical radius r → 0 there are no trapped

surfaces forming in our spacetime. This is because because the induced negative pressure

means at some point Ḟ becomes less than zero. This implies the mass fuction decreases in

time, and as the process continues the mass is radiated away, there is never enough mass

within a given radius to allow trapped surfaces to form. When we reach a = 0⇒ F = 0, and

all the mass has been radiated away. We have a class of gravitational collapse models with
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regular initial data, a reasonable form of matter, and that statisfy the energy conditions, such

that trapping is avoided.

We can now match this set of non-singular perfect fluid solutions with an exterior Vaidya

metric. A Vaidya metric is a generalization of Eddington-Finklestein coordinates to a case in

which the mass is not constant, but is a function of the coordinate time, M = M(v). We can

then match this metric to the interior metric discussed above at the boundary hypersurface Σ

given by r = rb. This hypersurface divides the spacetime into two separate four-dimensional

manifolds V+ and V−. The metric of V− inside of Σ is given by

ds2
− = −e2νdt2 + e2ψdr2 +R2dΩ2, (3.54)

and outside of Σ we have V+, the generalised Vaidya metric

ds2
+ = −

(
1− 2M(rv, v)

rv

)
dv2 − 2dvdrv + r2

vdΩ2, (3.55)

where v is the retarded null coordinate and rv is the Vaidya radius. At the boundary the

Vaidya radius equals the area radius

R(rb, t) = rv(v), (3.56)

so that on Σ we have

ds2
Σ− = −e2νdt2 +R2dΩ2, (3.57)

ds2
Σ+ = −

(
1− 2M(rv, v)

rv
+ 2

drv
dv

)
dv2 + r2

vdΩ2. (3.58)

When approaching Σ in V+ or V−, we must have [30]

ds2
Σ− = ds2

Σ+ = ds2
Σ. (3.59)

Matching the first fundamental forms gives

(
dv

dt

)
Σ

=
eν√

1− 2M(rv ,v)
rv

+ 2drvdv

, (3.60)

(rv)Σ = R(rb, t). (3.61)

The second continuity equation imposed on Σ comes from matching the second funda-

mental forms [29]

[Kab] = K+
ab −K

−
ab = 0, (3.62)

where Kab is the external curvature of the metric. We can calculate the normal to the

hypersuface Σ in each metric system, using nµ = gµν∂νΣ at the boundary of the surface. In

the interior we have

ni− = (0, e−ψ, 0, 0), (3.63)
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and in the exterior Vaidya spacetime we have components

nv+ = − 1√
1− 2M(rv ,v)

rv
+ 2drvdv

, (3.64)

nrv+ =
1− 2M(rv ,v)

rv
+ drv

dv√
1− 2M(rv ,v)

rv
+ 2drvdv

. (3.65)

Defining the extrinsic curvature as

Kab =
1

2
Lngab =

1

2
[gab,cn

c + gcbn
c
,a + gacn

c
,b]. (3.66)

From the second continuity equation above, we set K−θθ|Σ = K+
θθ|Σ which gives us

RR′e−ψ = rv
1− 2M(rv ,v)

rv
+ drv

dv√
1− 2M(rv ,v)

rv
+ 2drvdv

. (3.67)

From equation (3.60), (3.61), and then defining F (rb, t) = 2M(rv, v) we can simplify this

to

RR′e−ψ = R(1− F (rb, t)

R(rb, t)
+
dR

dv
)e−ν

dv

dt
|Σ, (3.68)

⇒ dv

dt
|Σ =

eν(R′e−ψ − Ṙe−ν)

1− F
R

. (3.69)

Setting K−ττ = K+
ττ , with τ the proper time on Σ, we finally get

M(rv, v),rv =
F

2R
+
Re−ν√
G

√
G,t +Re2νν ′e−ψ, (3.70)

where G = e−2ψ(R′)2 and H = e−2νṘ2 as before.

Any mass function M(rv, v) from the Vaidya metric which satisfies this equation will

have a unique exterior spacetime with required equations of motion given by the matching

conditions (3.56) and (3.69) [29]. Some examples of this type of mass function would be a

charged Vaidya spacetime as the exterior, where M = M(v) +Q(v)/rv, or an anisotropic de

Sitter exterior where M = M(rv), which are both solutions of (3.70) [17].

Since the condition F (rb, t) = 2M(rv, v) gives the value of M at the boundary, and (3.70)

gives the value of the partial derivative with respect to rv at the boundary, the value of

the partial derivative with respect to v is still free, so our equations in fact give a class of

generalized exterior Vaidya mass functions.

Along the singularity curve t→ ts, we have that

lim
rv→0

2M(rv, v)

rv
→ 0,

therefore the exterior metric along the singularity curve will transform to
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Figure 3.1: A Schematic Diagram of the Radiating Star Process

ds2 = −dv2 − 2dvdrv + r2
vdΩ2.

This is the Minkowski metric in retarded null coordinates, i.e. flat spacetime.

We have shown here that as opposed to the naked singularity solutions or black hole

solutions discussed earlier, the Einstein equations readily admit solutions where a singularity

is not the final state of gravitational collapse,solving a lot of the paradoxical problems that are

associated with black holes such as information loss and violations of the unitarity principle.
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3.3.2 Quantum-Corrected Homogeneous Radiation Model

In this section we will use an alternative non-singular collapse process, where we try to rewrite

Einstein’s equation as a radiation + corrections mode,l and ρcr once again indicates where

the corrections become relevant. Taking [24]

ρeff = ρ+ ρcorr = ρ

(
1− ρ

ρcr

)γ
(3.71)

again we shall examine the case where γ = 1 because for γ > 1, the scale factor a→ acr

only as t → ∞. Following the same process as for the quantum inspired dust case, except

having the mass now time dependent as M(t) = M0/a, we find

ȧ2 =
M0

a2
+ α1

3M2
0

a6
+ ..., (3.72)

and for an effective density of the form ρeff =
3Meff

a4
,

ȧ2 =
M0

a4γ+2
(a4 − a4

cr)
γ . (3.73)

From the initial condition a(0) = 1, with γ = 1, we find

t(a) =

√
1− a4

cr −
√
a4 − a4

cr

2
√
M0

. (3.74)

We can see that the scale function a(t) reaches acr in finite time. The effective mass for

the system is now given by

Meff =
M0

a

(
1− ρ

ρcr

)
, (3.75)

where Meff → 0 as t→ tcr. The effective pressure of the system can be again evaluated

using peff = −Ṁeff

a2ȧ
giving

peff =
ρ

3

(
1− 5

ρ

ρcr

)
, (3.76)

showing that once we enter the strong field regime, with ρ→ ρcr, we have a negative effec-

tive pressure on the system. Once the density reaches ρcr/5 the pressure becomes negative,

and tends to −4ρ/3 at the critical limit.

Rearranging equation (3.74) we find the scale factor to be

a(t) = (a4
cr + (

√
1− a4

cr − 2
√
M0t)

2)1/4, (3.77)

which reaches a minimum at tcr < ts, where ȧ vanishes, and the system begins to respond

and bounce again before the singularity is ever actually reached. At tcr the effective density

is zero, which causes gravity to turn off and the bounce to occur.
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Figure 3.2: Radiation Scale Factor

In this graph the red line indicates the scale factor a(t) in the classic case, whereas the blue

line represents the quantum corrected model. Initially, in the weak-field regime, the

semi-classical model behaves in a similar way to the classical case, however once we get

close to tcr, quantum effects become important, and the scale factor diverges from the

classical case. We have taken M0 = 1 and ρcr = 3000.

3.3.3 Apparent Horizon

Now we can determine how the trapped surfaces are affected by the bounce process, and

whether an event horizon ever fully forms. As stated in the last section, we require (M0)r2
b < 1

to ensure no trapped surface forms at the initial time. Semiclassically, this becomes (M0)(1−
a4
cr)r

2
b < 1.

We find the apparent horizon curve by a = r2Meff , classically giving us (from equation

(3.35)

tah(r) = ts −
r2
√
M0

2
, (3.78)

and semi-classically we get

rah(t) =
a3√

M0(a4 − a4
cr)
. (3.79)

Since tah < ts there will be an apparent horizon for the collapse process, which will

briefly disappear when a = acr as rah diverges, and immediately returns until the density of

the expanding cloud drops suffieciently.

Once again the apparent horizon curve has a minimum value, given by

dr

dt
= 0⇒ a4 = 3a4

cr, (3.80)

⇒ tmin = ts(
√

1− acr4 −
√

2a2
cr), (3.81)

where
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rmin = rah(tmin) = 33/4 acr√
2M0

.

If we take the initial boundary rb < rmin, no trapped surface can form. Similar to the

dust case, if there is a minimum radius this implies there must be a threshold mass below

which no apparent horizon can form, given by 2MT = r3
bM0,

⇒Mmin = a3
cr(3)9/4

√
1

32M0
. (3.82)

rah

t

Figure 3.3: Radiation Apparent Horizon Graph

This is a graph of the apparent horzon curve rah(t) for the classical model (red line) and

semiclassical model (blue line). We can clearly see that as t→ tcr, rah →∞, so the process

becomes visible to an observer at infinity for a brief period of time.

The penrose diagram would be much the same as for figure (2.3), also having no null

geodesics disconnected from future null infinity.
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4 Massless Scalar Field Models of Gravitational Collapse

We now move onto the gravitational collapse model of a massless scalar field. The massless

scalar field is an interesting model as it has consequences for collapse scenarios as well in

cosmology. In cosmology ”one would like to know the behaviour of fundamental matter

fields towards understanding the transition from matter dominated regime to dark energy

domination” [38]. Scalar fields can also act as ’effective’ cosmological constant driving an

inflationary period of the universe. We examine the dynamic collapse of a scalar field to

hopefully gain some insight into phenomena like gravitational collapse or cosmic censorship,

and maybe gain a better understanding of the early universe.

I will begin by giving some mathematical background for dealing with scalar fields in

spacetime, and then examine the different classes of gravitational collapse models that can

come about as a result. We will describe models where the singularity is formed simultane-

ously as the collapse progresses, and see how the process is changed between homogeneous

and inhomogeneous models.

The analysis we shall study is done using comoving coordinates, and such a coordinate

system would break if we allowed the gradient of the scalar field to become null, and there-

fore we only examine the collapse of those models in which the gradient remains timelike

throughout the collapse process . Homogeneous and isotropic FRW solutions are examples

of this, or scalar fields with inhomogeneous perturbations of a homogeneous background also

satisfy this condition.

The requirement that the gradient remains timelike includes a large number of physically

relevant collapse scenarios, and is also applicable to the case of dynamic evolution of stiff

fluids in a spacetime. This is because a massless scalar field with timelike gradient minimally

coupled to gravity has an exact correspondence with a stiff fluid minimally coupled to gravity.

The Lagrangian of a massless scalar field φ(xa) in a spacetime (M, gab) is given by

L = −1

2
φ;aφ;bg

ab, (4.1)

and the energy-momentum tensor is

Tab = φ;aφ;b −
1

2
gab(φ;cφ;dg

cd). (4.2)

This massless scalar field is of Type 1, meaning it has one timelike and three spacelike

eigenvectors. The eigenvalue ρ gives the energy density, while eiginvalues pi give the pres-

sure in the three spacelike directions. Choosing comoving spherically symmetric coordinates

(t, r, θ, φ), the most general metric is again

ds2 = −e2νdt2 + e2ψdr2 +R2dΩ2. (4.3)

Generally φ = φ(r, t), but since we have a diagonal energy momentum tensor φ(r, t) = φ(r)

or φ(t). Since we are interested in the dynamic evolution of the field, we consider φ(t). In

this frame the components are
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T tt = T rr = T θθ = T φφ =
1

2
e−2ν φ̇2, (4.4)

and since

ρ(r, t) = p(r, t) =
1

2
e−2ν φ̇2, (4.5)

the field behaves like a stiff fluid with the above equation of state. For a perfect fluid

Tab = (ρ+ p)uaub + pgab, (4.6)

where the velocity vector is uµ, and ρ = p for a stiff fluid. Since ρ,µ is timelike, φ,µφ
,µ < 0,

and defining uµ = − φ,µ
|φ,µφ,µ|1/2

we re-express the energy momentum tensor for the scalar field

as

Tab = (|φ,µφ,µ|)uaub +
1

2
gab(|φ,µφ,µ|). (4.7)

Denoting |φ,µφ,µ| = ρ = p, this is the same energy momentum tensor for a stiff fluid.

All energy conditions are then satisfied for real functions φ(t), and the weak energy

condition guarantees that φ,u is always null or timelike by

ρ+ p ≥ 0,

⇒ φ̇2 ≥ 0,

φµφνg
µν = φtφtg

tt = −φ̇2e−2ν ≤ 0,

hence we can use a comoving coordinate system without a possible breakdown. For

physically reasonable scenarios, the energy density of the field should be expected to increase

with time. If we have initially regular conditions where the scalar field gradient is timelike, the

density is initially non-zero and will only increase. Clearly throughout the collapse process,

the gradient will always remain timelike since |φµφµ| = 2ρ.

The Einstein equations for the massless scalar field are given by

ρ =
1

2
e−2ν φ̇2 =

F ′

R2R′
, (4.8)

p =
1

2
e−2ν φ̇2 = − Ḟ

R2Ṙ
, (4.9)

∂t(R
2eψ−ν φ̇) = 0, (4.10)

Ġ = 2
ν ′

R′
ṘG, (4.11)

where these all have the usual meanings. Integrating (4.10) we find

R2eψ−ν φ̇ = r2f(r), (4.12)

with f(r) some function of integration. Eliminating φ̇(t) from (4.8) and (4.9) gives
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F ′

R′
= − Ḟ

Ṙ
=

1

2

r4f(r)2G

R2R′2
. (4.13)

Given these four Einstein equations with four functions ψ, ν,R, F , solving under the

initial data and energy conditions gives the whole evolution for the system. As shown before

G = b(r)e2rA, and substituting this into the equation above gives

2rA(r, a) = ln

[
−2M,aa

2(a+ ra′)2

f(r)2b(r)

]
. (4.14)

To determine M(r, a) we substitute into the first two parts of (4.13) to get

3M + rM,r +Q(r, a)M,a = 0 where Q(r, a) = 2ra′ + a, (4.15)

which have the general solutions F (X,Y ) discussed before. Solving this at r = 0 to find

the boundary conditions gives

lim
r→0

M(r, a) =
m0

a3
. (4.16)

So we an initial regular mass which diverges as a→ 0.

From (4.15) we find

a′ = W (r, a) = −3M + rM,r + aM,a

2rM,a
, (4.17)

and using the equation of motion we get

ȧ = V (r, a) = −eν
√
M

a
+
G− 1

r2
, (4.18)

where the negative sign is taken to describe the collapse. To get a solution of a(r, t), the

equation

V,aW − VW,a = V,r, (4.19)

gives the integribility condition for equations (4.17) and (4.18) [41]. The collapse requires
M
a + G−1

r2
> 0, which acts as a ’reality condition’. If the condition is not satisfied throughout

the process, the system will hit ȧ = 0 in a finite amount of time and the collapse will become

an expansion.

From here we can use the equations of motion to derive the time curve in the same way

as for the other models

t(r, a) =

∫ 1

a

√
ada√
B(r, a)

(4.20)

√
B(r, a) = eν

√
b0(r)ae2rA + ah(r, ã) +M(r, ã) (4.21)

and the time taken for a shell r to reach R = 0, where the spacetime becomes singular, is

given by the singularity curve
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ts(r) = t(r, 0) =

∫ 1

0

√
ada√
B(r, a)

(4.22)

For any sufficiently regular M(r, a) we can rewrite this near the center as

ts(r) = t0 + χ1r + χ2r
2 + ... (4.23)

where t0 = t(0, 0) is the time at which the central shell becomes singular, and χi =
1
i!
dit
dri
|r=0. As before, χ1 vanishes because of regularity conditions, so the tangent to the

singularity curve is determined by χ2 in the neighbourhood of the center, which is the term

which is responsible for the visibility of the singularity. If χ2 > 0, we can have outgoing

null geodesics from the singularity, and we have a locally naked singularity. If χ2 ≤ 0, the

singularity is covered by an event horizon at all times, and we have a black hole.
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4.1 Homogeneous Massless Scalar Field Collapse

Classically, the collapse of a homogeneous scalar field will always result in a simultaneous

singularity and a black hole, as we will show below. Given that the field is homogeneous,

we know ρ = ρ(t). With ρ = e−2ν φ̇2, we have ν = ν(t), so we can rescale t such that

e2ν = 1. The singularity appears when a = 0, i.e. when the physical radius goes to zero, so

for homogeneous density, ts(r) is independent of r. In general the time curve is given by

t = ts + h1(r) =

∫ 1

0

√
ada

( a
r2

(G− 1) +M)1/2
+ h1(r) (4.24)

where h1(r) is an arbitrary function. Since ts is a function of a only, the initial condition

t = ti ⇒ a = 1 means h1 must be a constant, and a can only depend on t⇒ a′ = 0. Equation

(4.9) gives us

e−2ν φ̇2 = −2M,a

a2
(4.25)

implying M = M(a). (4.15) implies M = M0
a3

. If ν = ν(t)⇒ A,a = 0, so A = A(r). From

(4.13)

G = −2a2M,a(a+ ra′)2

f(r)2
, (4.26)

and substituting in for M gives G = 6M0
f(r)2

. Therefore since ts(r) 6= 0, the integral must

have a finite result at r = 0. The term in the denominator we need to consider is

1

r2
(G− 1) = f1(r), (4.27)

where f1(0) is finite.

⇒ f(r)2 =
6M0

1 + f1(r)r2
, (4.28)

and since ts(r) is constant, f1(r) also must be constant. Substituting these values into

G = e−2ψ(R′)2 above gives

e2ψ =
a2

1 + cr2
, (4.29)

t = −
∫ √

a

(ca+ M0
a3

)1/2
da, (4.30)

and the metric becomes the FRW metric

ds2 = dt2 − a2

(
dr2

1 + cr2
+ r2dΩ2

)
. (4.31)
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4.1.1 Classic Scalar Field Model

For the flat FRW model, with c = 0, we have a collapse model which mirrors the perfect fluid

model, except for a stiff fluid with ρ = p. From equation (4.30), using the initial condition

a = 1 at t = 0, we find that

⇒ a(t) = (1− 3
√
M0t)

1/3 (4.32)

The singularity is reached when a = 0, which occurs when t = ts = 1/3
√
M0. This model

leads us to a simultaneous singularity, with the properties of a fluid as discussed in Section

2.
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4.2 Inhomogeneous Massless Scalar Field Collapse

For an inhomogeneous scalar field, the collapse doesn’t necessarily end with a simultaneous

singularity. Any realistic object that undergoes collapse is sure to have inhomogeneities in

it’s energy density, which is governed by ρ = ρ(r, t). We then apply some reality conditions

to make the process more physically reasonable, and examine the resulting collapse model.

These reality conditions are [38]:

1. We must have

lim
r→0

(ra′) = 0.

This is because when the condition is violated, a becomes divergent as r goes to zero

at the center.

2. Using condition 1 in equation (4.15) gives us 3M + rM,r + aM,a = 0. Due to the

divergences discussed in [38], we must have

lim
r→0

(rM,r) = 0.

This tells us that limr→0M(r, a) = M0/a
3 as long as a 6= 0, and amounts to saying that

M(0, a) =
M0

a3
,

for all 1 ≥ a ≥ 0.

Given these conditions, we can prove some general results about the gravitational collapse

of a scalar field, and determine the nature of the singularity. Initially considering the class

of solutions with ȧ ≤ 0, the collapse does end in a singularity. If we take a′ ≥ 0 for all r ≥ 0,

we can show that this class of solutions admits no non-simultaneous collapse scenarios. This

would imply that the central r = 0 shell collapses to the singularity before the outer shells.

Requiring these conditions,the scalar field will either collapse to a simultaneous singularity

in finite time, or the singularity time ts(r) diverges along any r = constant timelike curve.

I will now state some propositions and their conclusions that are elaborated on in [38].

Proposition 4.1 If φ̇(t) is divergent at some instant t1, there is a simultaneous singularity

at t = t1.

This essentially comes from the fact that ρ = 1
2e
−2ν φ̇(t)2. It follows that if there exists a

singularity curve that is not simultaneous, then φ̇(t) will remain finite.

Proposition 4.2 If ts(r) is not constant and if a′ ≥ 0 everywhere in the spacetime, then

ts(r) must be divergent.
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The proof of this, centers around the fact that by using the definition of G in (4.26) in

the singularity equation, the denominator of the integrand has to be finite at r = 0 or else

ts(0) = 0 and the singularity is present from the very beginning, which contradicts the initial

data conditions. The finiteness and initial mass conditions give us that M(r, a) is of the form

M(r, a) = M0
a3

+ rng(r, a) where n ≥ 2. Since both terms in the denominator are finite as

r → 0, it is shown that we can write the denominator as c1
a3

, where c1 is some constant.

From equation (4.25) we see that eν(0,a) = a3φ̇(t)√
6M0

, and can be written as lima→0 e
ν(0,a) =

a3f3(a). So the divergence of ts will appear when a → 0, and in the divergent part of the

integral

tsd(0) =

∫ ε

0

√
ada

a3f3(a)( c1
a3

)1/2
=

1
√
c2

∫ ε

0

1

af3(a)
da (4.33)

If the singularity is non-simultaneous, φ̇(t) is always finite, and f3(a) is also finite. This

gives us a divergent ts(0). On the other hand, if the singularity is simultaneous, φ̇(t) is

divergent at a = 0 by Prop. 1, so f3(a) also must diverge and we have a finite ts(0). This

shows us that for a massless scalar field, with regular initial data and functions that are at

least C2 near r = 0, if the singularity is non-simultaneous and is increasing in time near

the center, then the time taken for the central shall to collapse to the singularity, where

a = 0, diverges logarithmically. We will now show that for the class of solutions we have been

considering, this class of non-simultaneous singular solutions cannot occur.

For any r = constant curve is timelike, the tangent vector is τ = dxµ/ds has components

τµ = (
dx0

ds
, 0, 0, 0)

Since ds2 = e2νdt2, the proper time along the curve is defined

τ(a(tf ), r) =

∫ a(tf )

a(ti)
eνdt

and τ(r, a) is the proper time taken for a shell labelled r to reach a = a(tf ), starting from

a = 1. We define the proper time along the central shell as

τ0(t) =

∫ t

ti

eν(0,t)dt (4.34)

Assuming the time taking to reach the singlarity is finite ⇒ dτ
dt = eν(0,t).

Proposition 4.3 If a′ > 0 at τ0 = τ0s, then for any r2 > 0, τr2(τ0s) is divergent.

This proposition tells us that if a′ > 0 when the central shell hits the singularity, then the

time taken for any other shell to reach the singularity is divergent, thereforeany singularity

that forms in this class of collapse models must be simultaneous, and a spacelike singularity

is the only possibility as the final stage of collapse. Any non-simultaneous singularity will

not form in these classes of collapse models.
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4.3 Non-Singular Massless Scalar Field Collapse

We next show the possibility of existence of a non-singular class of solutions for our scalar

field collapse model [38].

Proposition 4.4 If there is a solution which satisfies the regularity conditions, and for which

ȧ ≤ 0 and a′(r, t) ≥ b where b > 0, for r1 ≤ r ≤ r2 for some r1, r2 > 0, and t ∈ (ti,∞), then

we must have τ(a1, r) > k for all k > 0 for all r, for some a1 > 0, so the comoving shells

never become singular.

For these solutions, it can be shown that ȧ < l and for any l < 0 for an infinite interval

of coordinate time, implying the collapsing matter would eventually freeze [39].

All classes of solutions satisfying these conditions would be free of singularities. If there

are solutions of this type, it would indicate that bouncing models might exist in the framework

discussed.

4.3.1 Quantum-Corrected Homogeneous Massless Scalar Field Model

Since there is an exact correspondence between the massless scalar field and a stiff fluid,

we can analyse the homogeneous scalar field model bounce model in the same was a perfect

fluid, but with a different equation of state. We once again rewrite Einstein’s equations

as a classical + corrections, where ρcr governs the scale at where quantum effects become

important. The system has an effective energy density

ρeff = ρ

(
1− ρ

ρcr

)
In the case of the scalar field, it is equivalent to a perfect fluid with equation of state

ρ = p. So from the Einstein equations we find

dM

da
= −3M

a
(4.35)

⇒M(t) =
M0

a3
(4.36)

Substituting this back into the other density equation we find ρ = 3M0
a6

. We get an equation

of motion from the equation for the Misner-Sharp mass

F = R(1−G−H)

⇒ Ṙ2 = −r
2M

a
⇒ a4ȧ2 = M0 (4.37)

Combining these equations gives us an equation of motion in terms of real density

ȧ2 =
M0

a4
+

1

ρcr

3M2
0

a10
+ ... (4.38)

=
M0

a10
(a6 − a6

cr) (4.39)
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The effective mass is now given by

Meff =
M0

a3

(
1− ρ

ρcr

)
(4.40)

which goes to zero as t→ tcr. The effective pressure is still given by

peff = −
Ṁeff

a2ȧ
= ρ

(
1− 3ρ

ρcr

)
(4.41)

This pressure clearly tends to the original equation of state p = ρ in the weak field limit.

Once the quantum effects become important, and the density reaches ρcr/3, the pressure

starts to become negative. This continues until the critical point tcr when the quantum

effects reverse the gravitional collapse, causing the collapsing object to re-expand again.

Figure 4.1: Massless Scalar Field Scale Factor

In this graph the red line indicates the scale factor a(t) in the classic case, whereas the blue

line represents the quantum corrected model. Initially, in the weak-field regime, the

semi-classical model behaves in a similar way to the classical case, however once we get

close to tcr the quantum effects become important, and the scale factor diverges from the

classical case. We have taken M0 = 1 and ρcr = 3000.

Using this equation along with the initial condition that a(0) = 1 we find the collapse

time curve to be

t(a) =
1

3
√
M0

(
√

1− a6
cr −

√
a6 − a6

cr) (4.42)

which can be rearranged to give us the equation for the scale factor

a(t) = [a6
cr + (

√
1− a6

cr − 3
√
M0t)

2]1/6 (4.43)

This reaches a minimum at tcr < ts, so the collapse never reaches a singular state. At

tcr, ȧ(tcr) = 0, and from there the object starts to expand again.
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4.3.2 Apparent Horizon

The equation for the apparent horizon, F = R, becomes

r2 =
a

Meff
(4.44)

⇒ rah =
a5√

M0(a6 − a6
cr)

(4.45)

rah

t

Figure 4.2: Massless Scalar Field Apparent Horizon Graph

This is a graph of the apparent horzon curve rah(t) for the classical model (red line) and

semiclassical model (blue line). We can clearly see that as t→ tcr, rah →∞, so the process

becomes visible to an observer at infinity for a brief period of time. Unlike the previous

cases, there is a large deviation of the rah curve in the semi-classical case. This is due to

the dependence of rah on Meff , which in turn depends on 1/a3.

We can again find the minimum radius rmin, below which no apparent horizon can form

throughout the whole collapse process. Using dr/dt = 0 ⇒ a6 = (5/2)a6
cr, we find it is

approached as t tends to

tmin = ts(
√

1− a6
cr − a3

cr

√
3

2
).

From this,

rmin = rah(tmin) = a2
cr

√
2

M0

(
3

2

)5/6

which is the radius such that if the boundary rb < rmin, no trapped surfaces will form

throughout the collapse. In figure (4.2), it is shown as the black dashed line. This allows us

to find the minimum mass for such a process by 2MT = r3
bM0, hence

Mmin = a6
cr

√
2

M0

(
3

2

)15/6

(4.46)
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In figure (4.2), unlike the previous cases, we see that there is a rather large immediate

deviation between the classical and semi-classical apparent horizon curve. In my opinion,

this should be expected though, given that r ∝ 1/Meff ⇒ r ∝ a2. This a2-dependence of rah

would cause the horizon to drop off much quicker than in the classical case, as a decreases

towards the quantum bounce. Again, due to the homogeneous nature of the system, we

see that at the bounce point the process is visible to observers at infinity, however this just

a result of theF homogeneous nature of the system, and in a more realistic scenario the

different shell-bouncing times would most likely ensure that the process was surrounded by

an apparent horizon at all stages of the collapse, until it disappeared forever.
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5 Conclusions

Occam’s Razor - ”All things being equal, the simplest solution is usually the correct one.”

In this paper I have examined various models in which I took a gravitationally collapsing

object, of a certain matter type, applied a few physically reasonable conditions, and showed

that there are many classes of non-singular solutions to these models. I chose to work on

these models because I feel that, while a huge amount of work has been focused on black

holes, we don’t even have proof for the existence of them. Even if we ignore the fact that

there is little evidence for real, physical black holes, the problems that come about due to the

nature of the singularity are hard to overlook. There are currently many attempts to solve

these issues, whether through extra dimensions, the holographic theory, alternate universes,

or any number of other ideas, but very few focus on the possibility that a black hole might not

actually form, just something that can look like one. This seems like a much more intuitive

solution to the black hole problem.

In the models covered, I have shown how the collapse would come about from a general,

spherically symmetric metric, and given examples of singular collapse model in each case.

These models were examined in the homogeneous and inhomogeneous cases, to determine the

nature of the singularity that arises as the end state of collapse. For each of the homogeneous

models, the process of collapse ended in a simultaneous singularity, in which all matter shells

collapsed to the singularity at the same time, and this collapse was at always covered by an

apparent horizon. This resulted in the formation of what we know to be a black hole.

I then went on to examine models of inhomogeneous collapse, where the inhomogeneities

were introduced as small perturbations around the homogeneous case. In both the dust

and perfect fluid cases, these pressure/density perturbations changed the outcome of collapse

rather drastically. In the case of the inhomogeneous dust collapse, a black hole can only form

as the result of a simultaneous singularity collapse, and under pressure perturbations the

nature of the singularity was determined by one factor, g0s. If this was chosen such that χ2

was positive, the end state of collapse resulted in a naked singularity. In the inhomogeneous

fluid case, once small pressure perturbations were introduced the process had no choice but

to end as a naked singularity. Clearly the black hole solution is an extremely unstable one,

since small perturbations of the mass profile give us a vastly different outcome.

I then went on to show how by making some slightly different assumptions, the collapse

can be halted at a certain point and the object begins to re-expand. This is caused by

an as-yet unknown quantum reaction, which halts the collapse and exerts a ”force” on the

inward-falling matter to counter-act gravity, giving us an effective theory for the collapse.

The idea for this semi-classical case comes from some recent results in LQC [1], in which they

find the scale factor of the universe to go as(
ȧ

a

)2

=
8πG

3
ρ

(
1− ρ

ρcr

)
, (5.1)
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The interesting thing about this theory is that the point at which quantum effects become

important isn’t governed by the Planck length, but rather a Planckian density

ρcr ∼ mp/l
3
p ∼ c5/(~G2).

Exploiting the analogy between QG effects on black-hole and cosmological singularities, I

explain how close to r = 0 this quantum ”force” will cause a gravitationally collapsing object

to expand, resulting in a ”quantum bounce”.

I have also shown how the apparent horizon for these various cases forms, and give the

equation for it in each case. This is important because it governs what an observer at infinity

will see throughout the process, and whether we really have a naked singularity or a black

hole. In each of the quantum cases the apparent horizon is shown to cover the object for

most of the collapse process. The homogeneous models, which are the much simpler cases,

have an apparent horizon that disappears momentarily at the point when collapsing object

undergoes the ”quantum bounce”. This is a property of the simultaneous bounce of each of

the shellls. In the inhomogeneous dust case, we see that each shell will bounce at a different

time, meaning the gravity never fully turns off, causing the object to remain covered for the

entirety of the process.

An interesting idea I would like to follow-up to this paper, besides examining the quantum-

corrected inhomogeneous fluid and scalar field models, is to calculate and compare the proper

time for the collapse and bounce to occur with the time taken as seen from an observer at

infinity. It should show that for an observer at infinity, the time take would be of the order of

a black hole’s lifetime due to the intense gravitational time dilation, however to an observer

sitting on the surface of the star the process would happen in a (relatively) much shorter

time. As discussed in [1], a Planck star is essentially a shortcut to the distant future, since

any observer who managed to land on the surface of the object at some point during the

collapse would be bounced with the object through a ”very short” proper time to the end

stage. This would be extremely far future of the observer at infinity.

This bounce process solves many of the issues surrounding black holes. The non-singular

nature of it means that nothing is disconnected from future null infinity, and therefore we

have a restoration of unitarity in the spacetime. I think it is the simple nature of this solution

that makes it so intriguing. It is a very intuitive idea that a collapsing object would reach a

minimum size, governed by the density of the object, and after this point could explode its

material outwards again due to some as-yet unknown quantum forces.

This type of theory is also in the realm of somewhat-testable, if we could determine the

time a process like this would take for a more physically realistic star that may have formed a

primordial Planck Star in the early universe. If one of these primordial Planck Stars were to

be coming to the end of its lifetime in this era of the universe, there may be some extremely

energetic processes occuring which could be attributed to the end of this process, when the

star’s boundary emerges from the apparent horizon. While this would still probably be quite

a long way off, it does offer some more possibility for testing than alternate universe theories,

or physically investigating the interior of a black hole.
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