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1 Introduction

In this review we will be concerned with the problem of the arrival time in quantum

mechanics, where we consider a particle in one dimension, located in x < 0 and

consisting entirely of positive momenta, and try to find the probability that it crosses

x = 0 between a time T and T + dT .

In general, the question of time in quantum mechanics is one which continues

to be the subject of much research and disagreement. From a basic knowledge of

quantum mechanics, one might assume that the issue had been resolved, at least

in the nonrelativistic case. One of the first equations one encounters in QM is the

uncertainty relation

∆E∆t ≥ 1

2
. (1.1)

(Throughout this work, we use the convention that ~ = 1.) This is commonly inter-

preted as expressing the fact that a measurement of a system’s energy is inversely

proportional to the length of time for which one observes the system. However,

throughout the past century there has in fact been a great deal of debate about

what such an energy-time uncertainty relation actually means [1]. Now recall that

another result from elementary QM is that position-momentum uncertainty can be

expressed as [2]

(∆x)2(∆p)2 ≥ −1

4
(〈[x̂, p̂]〉)2. (1.2)

Since the x̂ and p̂ are canonically conjugate variables, then [x̂, p̂] = i and we recover

the familiar position-momentum uncertainty relation. Given the time-energy uncer-

tainty relation, we may then ask if there is a time operator T̂ canonically conjugate

to the Hamiltonian which leads to this relation.

To begin with, we must make a very important distinction between parameters

and dynamical variables. In the standard Schrödinger equation, time is merely a

parameter, and we are concerned with measuring quantities such as position and

momentum at a given time. However, we may also seek to measure the time at which

a quantum system is in a certain state, and in this case the relevant time depends
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upon the evolution of a dynamical system. We may think of the distinction as being

similar to the difference between space coordinates as general external parameters,

and the measurement of position for a particular system via the operator x̂ [3, 4].

This is the context in which we meet the arrival time problem. In this work, as we

said, we will be concerned primarily with this problem in one dimension, where we

have say a particle at x < 0 and ask at what time it will arrive at the position x = 0.

For the purposes of this review, we will also consider the problem in the absence of

any potential which might cause particles to cross the arrival point several times,

so that the first crossing is the only crossing. In the same way that position at

constant time is given by a probability distribution P (x) = |ψ(x)|2 = | 〈x|ψ〉 |2 for a

state |ψ〉, we expect the arrival time to be given by a probability distribution which

we denote Π(T ), so that Π(T )dT denotes the probability that the particle crosses

the arrival point between T and T + dT . Such a distribution should clearly be

normalizable as in the case of the position distribution, so that the total probability

for detection is 1. The reason this is not as straightforward as in the position case is

that, as Pauli argued in the 1930s, it does not seem possible to define a self-adjoint

time operator T̂ canonically conjugate to Ĥ due to the semi-bounded nature of the

Hamiltonian’s spectrum - i.e. there are no negative eigenvalues or corresponding

eigenstates of the Hamiltonian [3]. Since standard QM requires observables to be

represented by self-adjoint operators with orthogonal eigenstates, the non-existence

of such an operator may make it problematic to put arrival time on the same footing

as other observables in quantum theory. This issue will be extensively discussed in

the following chapters. Regardless of the answer to this question, it seems clear that

there ought to be some theoretical means of deriving an arrival time distribution,

since it is an experimental fact that the arrival time distribution of a particle at a

screen can be measured. This dissertation will present a review of some of the main

approaches to this subject over the last couple of decades, although earlier works

will also be examined where they are relevant to more recent developments. We

will, for example, look at arguments by Allcock and Kijowski from the 1960s and
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1970s, because they were highly influential and continue to be cited [5–8].

We shall begin in chapter 2 by examining some useful background before ad-

dressing some of the main approaches to the problem. We shall first look at some

long-established possible candidates for the arrival time distribution. In analogy

with classical mechanics, we might define the arrival time distribution at x = 0 to

be the equal to the quantum probability current density at that point J(0, T ). This

is problematic due to its having negative values under certain conditions, which ob-

viously disqualifies it from being a candidate for a probability distribution. Another

widely cited possibility is given by Kijowski’s distribution [8]. Rather than taking

the probability current density, Kijowski writes down axioms from which one can

derive the classical version of this quantity a priori. He then posits a quantum ver-

sion of these axioms and obtains a probability distribution which is distinct from

J(0, T ). This probability distribution has been cited again and again in the arrival

time literature over the years, and we will find that many approaches derive it by

alternative means. We shall then briefly discussion the reason for the negative values

of J(0, T ), the quantum backflow effect, since this has been an active area of recent

research which will occasionally be mentioned later on. We will also describe the

Zeno effect, which is the tendency of a constantly monitored particle to remain in

the same state, as it will be important later on.

In chapter 3, we shall examine some of the work done on an arrival time operator

and arrival time eigenstates. We will firstly look at Pauli’s argument against the

possibility of defining a self-adjoint arrival time operator. Despite his influential

argument, attempts have nonetheless been made to define such an operator. The

most popular candidate is the Aharonov-Bohm operator. We will look at its eigen-

states and find that they are not orthogonal, suggesting that this operator cannot

correspond to an observable. In an attempt to circumvent this, we will see how

Allcock tries to define arrival time eigenstates in the presence of a source, which due

to the modified boundary conditions results in the energy spectrum being extended

to negative eigenvalues. We will see how he argues that even these eigenstates can-
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not be orthogonal [5]. Being aware of these difficulties, some authors have tried in

more recent times to modify the Aharonov-Bohm operator to obtain one which is

self-adjoint. We will see how they were successful in obtaining arrival time distribu-

tions. We will also examine the argument that the operator does not in fact have

to be self-adjoint in order to obtain a physical theory with a plausible arrival time

distribution. Finally in chapter 3, we will look at a refutation of Pauli’s argument,

and an attempt to define a self-adjoint time operator for a particle in a box.

In chapter 4 we will look at how systems with detectors and clocks have been

modelled in an attempt to obtain an arrival time distribution. This is in response

to the concerns expressed by some authors that the arrival time cannot be obtained

from excessive idealizations, but must in fact take account of the fact that any

arrival time distribution results from the process of detection. The basic idea of

this family of approaches is that the Schrödinger equation is solved with a modified

Hamiltonian Ĥo → Ĥo + Ĥapparatus. The idea expressed by many authors is that

the resulting distributions are convolutions of the ideal (apparatus-independent)

distribution with response functions depending on the particular apparatus. One

may, then, in principle, obtain the ideal distribution by deconvolution. We will see

how this has been done for different models with varying success.

Finally, in chapter 5, we will look at attempts to address the arrival time problem

in the context of the decoherent histories approach. This basic idea of this approach

to QM is that in a closed system we may consider all possible histories of the system,

and attempt to assign probabilities to each different alternative. However, between

the different histories there is usually quantum interference which prevents the prob-

abilities of histories from being disjoint and additive, something which we clearly

require in order to define appropriate probabilities for physical theories. When we

impose the condition of non-interference, which may be obtained by grouping to-

gether sets of histories, we can often obtain suitable probability distributions. Many

authors have attempted to apply this to the arrival time problem. We shall see

how Yamada and Takagi were among the first to apply it to this problem, reaching

4



a negative conclusion about the possibility of defining an arrival time distribution.

However, we shall look at more recent work which contests this conclusion, on the

basis that it failed to take account of the Zeno effect, and which overcomes this issue

to succeed in obtaining a plausible arrival time distribution.
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2 Background

In this chapter we will look at some work on arrival time which is important for an

understanding of much of the work done on the subject in recent years. We will

begin by looking at the classical expression for arrival time distribution, and examine

how it can be quantized to give an expression which recurs time and time again in

different approaches to the subject. Then we shall summarize an argument given by

Kijowski where he adduces a set of axioms pertaining to the form that any arrival

time distribution must take. From these axioms he obtains a distribution which

also frequently recurs in later work. We shall then briefly discuss the backflow effect

which, although not the primary topic of this review, has been a topic of increasing

interest in studies of arrival time in recent years, and which will occasionally be

mentioned in the following chapters.

2.1 Probability current density

In this section we will review the classical approach to arrival times for an ensemble

of free particles [9, 10]. The fact that the particles are free means that they will

only once cross x = xa, the point at which arrival is to be measured. This simple

idea of arrival time, in the absence of complicating potentials, is the focus of this

work. In the classical case, there is no problem whatsoever in defining the arrival

time distribution. For particles travelling only left-to-right, such that momentum

p > 0, the time of passage across x = xa is obviously

T =
(xa − x0)

p
. (2.1)

If the phase space distribution function of our ensemble is ρ(x, p, T ), then the arrival

time distribution at x = xa is given by the classical probability density current

Jcl(xa, T ) =

∫ ∞
−∞

dx

∫ ∞
0

dp ρ(x, p, T )
p

m
δ(x− xa). (2.2)
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We may consider this current density to be the average over ρ of the following

quantity:

J (x, p, xa) =
p

m
δ(x− xa). (2.3)

If x0 and p0 are the initial position and momentum respectively, then we may

use the classical equation of motion, x(T ) = x0 + p0T/m, and the Liouville the-

orem, which states that the phase space distribution function remains constant -

i.e. ρ(x(T ), p(T ), T ) = ρ(x0, p0, 0) - to show show that the average arrival time at

x = xa is given by

〈ta〉 =

∫ ∞
−∞

dx0

∫ ∞
0

dp0 ρ(x0, p0, 0)
m(xa − x0)

p0

. (2.4)

We can see that there is a singularity for p0. When we consider arrival time operators

in chapter 3, we will see that just such a singularity for the p = 0 case poses problems

for the definition of a self-adjoint operator.

In order to obtain an arrival time distribution in QM, it might now be considered

to be reasonable to use the quantum analogue of Eq. 2.2, namely the quantum

probability current density for a wave function ψ at x = xa. If we take the position

at which arrival time is to be measured as xa = 0, the relevant quantity is given by

Π(T ) = J(0, T ) =
1

2mi
(ψ∗(0, T )

∂

∂x
ψ(0, T )− ψ(0, T )

∂

∂x
ψ∗(0, T )). (2.5)

We may now rewrite this quantity as the expectation value of an operator Π̂J , such

that

Π(T ) = 〈ψ(T )|Π̂J |ψ(T )〉

= 〈ψ(T )| 1

2m
(p̂δ(x̂) + δ(x̂)p̂)|ψ(T )〉 ,

(2.6)

where δ(x̂) = |0〉 〈0|, |0〉 in this case being the eigenstate of x̂ within eigenvalue 0.

x̂ and p̂ are just the standard position and momentum operators respectively. It is

quite clear that Eq. 2.5 can be obtained from Eq. 2.6. It is also manifest that the

operator Π̂J is a symmetrized quantum version of the classical quantity J (x, p, xa)
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in Eq. 2.3. The quantum expression will reappear in the following chapters.

2.2 Kijowski’s arrival time distribution

Kijowski [8] sought a different means of obtaining an expression for the arrival time

distribution, and this was partly motivated by his observation that there is a problem

with taking the arrival time distribution Π(T ) at x = 0 to be given by the quantum

probability flux. He noted that it is possible for J(0, T ) to have negative values,

implying that the probability can flow in a direction opposite to the movement

of the particle. It is clearly unacceptable that a probability distribution should

have negative values. Kijowski, therefore, takes a different approach to obtaining

Π(T ) [8, 10]. He begins by noting that the classical expression Jcl(0, T ) = Πcl(T )

in Eq. 2.2 may be obtained by imposing a set of rather intuitive conditions on the

family of all possible distributions. Taking Π(ρ) to be a function defined over the

phase space ρ(x, p, t) as in Eq. 2.2, the set of axioms is:

1. Πcl ≥ 0.

2.
∫∞
−∞ dT Πcl(T ) = 1.

3. By imposing time reversal, such that x→ x and p→ −p, and reflection, such

that x → −x and p → −p, we obtain ρ1(x, p, t) = ρ(−x, p, t). We must take

Πcl(ρ1) = Πcl(ρ), which fixes xa = 0 as the arrival point in this case.

4. The correct arrival time distribution is obtained by taking the distribution

with the minimum value of the variance
∫∞
−∞ dT (T − 〈T 〉)2Π(ρ).

〈T 〉 is the average arrival time. We may think of condition 4 as a stipulation that

we take the correct distribution as that which corresponds to an ideal detector

measuring the arrival time as accurately as possible. This is proven in the final

section of [8].

The main idea leading to Kijowski’s derivation of an arrival time distribution is

now as follows: instead of simply quantizing the probability current density, look for
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a unique distribution in the quantum case which is derived by quantum versions of

the above axioms. Accordingly, Kijowski defines a set of conditions on the allowed

distributions which are quantized versions of those above. As in Eq. 2.6 above,

possible distributions are of the form Π[ψ(T )] = 〈ψ(T )|Π̂|ψ(T )〉, where the ψ(T )

are wave functions with only positive momentum components. We then have the

axioms:

1. Π[ψ(T )] ≥ 0.

2.
∫∞
−∞ dT Π[ψ(T )] = 0.

3. Taking π̂ to be the parity operator, and R̂ to be the time reversal operator,

then we require that 〈ψ(0)|Π̂|ψ(0)〉 = 〈π̂R̂ψ(0)|Π̂|π̂R̂ψ(0)〉.

4. The correct arrival time distribution is obtained by taking the distribution

with the minimum value of the variance
∫∞
−∞ dT (T − 〈T 〉)2Π(ψ(T )).

Again, Kijowski gives a mathematical proof showing that the appropriate operator

Π̂K satisfies

ΠK(T ) = 〈ψ(T )|Π̂K |ψ(T )〉

= 〈ψ(T )| 1
m

(p̂
1
2 δ(x̂)p̂

1
2 )|ψ(T )〉 .

(2.7)

Similar arguments may be made for the case of states of purely negative momentum,

and both may be added together in order to give a total distribution. Explicitly this

may be written

ΠK(T ) =
1

2πm

∣∣∣∣∫ ∞
0

dp
√
pe−iTp

2/(2m)ψ(p)

∣∣∣∣2 +
1

2πm

∣∣∣∣∫ 0

−∞
dp
√
−pe−iTp2/(2m)ψ(p)

∣∣∣∣2
(2.8)

This distribution is cited widely in the literature on arrival time. Often, attempts to

define arrival time will arrive at the same result for Π(T ), and indeed the similarity

to ΠK(T ) is often used as a benchmark to judge the success or otherwise of the

method by which the distribution was derived. We shall see numerous examples of

this in the coming chapters.
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As an aside, one must not mistake the operator ΠK(T ), nor the operator defined

above as the quantization of the probability density current, for a time operator

T̂ . If we examine the average arrival time 〈T 〉, we find that if there exists a time

operator, then [9]

〈T 〉 = 〈ψ(0)|T̂ |ψ(0)〉 =

∫ ∞
−∞

dT Π̂(T )T (2.9)

so that they are clearly not the same thing.

In summary then, we have two flux operators whose expectation values for |ψ(T )〉

give possible arrival time distributions:

Π̂J =
1

2m
(p̂δ(x̂) + δ(x̂)p̂) (2.10)

and

Π̂K =
1

m
(p̂

1
2 δ(x̂)p̂

1
2 ). (2.11)

We can think of these as two distinct symmetrizations of the classical expression in

Eq. 2.3 [10].

We now notice a feature of this distribution ΠK(T ). Recalling the expression for

the time evolution of a state, |ψ(T )〉 = e−iĤT |ψ(0)〉, and taking Ĥ to be the free

particle Hamiltonian p̂2/(2m), we notice that

ΠK(T, ψ(t)) = 〈ψ(0)|eiĤtΠ̂Ke
−iĤt| |ψ(0)〉〉

= ΠK(T + t, ψ(0)).

(2.12)

This expresses the so-called covariance of the arrival time distribution, which means

that the probability for a state |ψ(0)〉 to arrive at time T + t is the same as the

probability for a time-evolved state |ψ(t)〉 to arrive at the earlier time T [11]. This

is a very intuitive condition which any arrival time distribution must meet be in order

to be a physically interesting distribution. We will see in the following chapters that

whether or not a distribution satisfies this covariance condition is important for

determining the validity of that distribution.
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2.3 The backflow effect

As we noted there in section 2.2, it is possible for the probability current density

to have negative values, which is known as the backflow effect. This means that for

a particle with entirely positive momenta located in x < 0, there may be times at

which the probability of detection in x < 0 increases rather than decreases. The

possible negativity of J(0, T ) is the reason that Allcock rejected it as a candidate

for the arrival time distribution, since it seems unreasonable to suggest that a prob-

ability for arrival within a certain time range could be negative [6, 7]. However, in

the following chapters we will find that various approaches to obtaining an arrival

time distribution arrive at the probability density current. As a result, this distri-

bution will be taken as an approximation to the arrival time distribution or, in the

decoherent histories approach, a time uncertainty will be introduced to ensure that

this quantity remains positive. It is therefore useful to better understand how this

quantity can be negative, and to understand the magnitude of the effect.

Firstly, let us define the quantum probability flux, which measures how much

probability flows across x = 0 in a given time interval. We can define this to be

F (t1, t2) =

∫ t2

t1

dT J(0, T ). (2.13)

In analogy with Eq. 2.2, which gives Jcl(0, T ) for the classical case in terms of the

classical phase space distribution function ρ(x, p, T ), we can express the quantum

flux in terms of the Wigner quantum phase space distribution function as follows:

F (t1, t2) =

∫ t2

t1

dT

∫
dp dx W (x, p, T )

p

m
δ(x). (2.14)

It is well-known that the Wigner function is not necessarily positive. We can clearly

see, then, that the flux need not be positive either.

To quantify this effect, it is customary to treat it as eigenvalue problem. Bracken

and Melloy [12] did this by taking the standard form for time-dependent wave func-
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tions:

ψ(0, T ) =
1

2π

∫ ∞
0

dp φ(p)e−ip
2T/(2m). (2.15)

Using this with the formula for J(0, T ) in Eq. 2.5 gives

J(0, T ) =
1

4πm

∫ ∞
0

dp

∫ ∞
0

dq (p+ q)ei(p
2−q2)T/(2m)φ∗(p)φ(q). (2.16)

Using Eq. 2.13, we may then write

F (0, T ) =

∫ ∞
0

dp

∫ ∞
0

dq φ∗(p)K(p, q)φ(q), (2.17)

where

K(p, q) =
i

2m

(
1− ei(p2−q2)T/(2m)

p− q

)
. (2.18)

Now Bracken and Melloy maximize F (0, T ) subject to normalization constraints, by

using Lagrangian multipliers, and obtain the equation

∫ ∞
0

dq K(p, q)φ(q) = λφ(p). (2.19)

Hence we have an eigenvalue equation, and it can be shown from Eq. 2.17 that

λ = F (0, T ). Letting Φ(p) = e−ip
2T/(4m)φ(p) gives us

1

π

∫ ∞
0

dq
sin((p2 − q2)T/4m)

p− q
Φ(q) = λΦ(p). (2.20)

This is difficult to solve analytically, but may be solved numerically to give−0.038452 ≤

λ ≤ 1 [13]. Hence we have calculated a small but non-zero backflow effect.

2.4 The Zeno effect

Finally, we describe briefly the Zeno effect, which will be important for discussions

in chapters 4 and 5 [14]. The Zeno effect is a peculiar effect in quantum mechanics

whereby a system which is rapidly monitored is more likely to remain in its initial

state. To understand this mathematically, we shall use the density matrix formalism.
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Consider an initial state ρ which evolves unitarily over a period of time t. Now recall

that a measurement on a system corresponds to applying a projection operator to

a state, so that a measurement of ρ corresponds to ρ→ PρP . Assume that a state

is initially in a Hilbert subspace Hs of H, and take P to be the projector onto the

subspace. Whether or not the system remains in the subspace is now measured at

regular intervals ε, where Nε = t, giving us

ρ→ Pe−iĤε . . . P e−iĤεPρPeiĤεP . . . eiĤεP (2.21)

so that the probability for the system to still be found in Hs at the end of the period

is

p(t) = Tr(Pe−iĤε . . . P e−iĤεPρPeiĤεP . . . eiĤεP ). (2.22)

Defining P = 1− P , we obtain for small ε

Pe−iĤεP ≈ Pe−iP ĤPε
(

1− ε2

2
PĤPĤP

)
(2.23)

so that in this limit we have

(Pe−iĤεP )N = Pe−iP ĤP t
(

1− ε2

2
PĤPĤP

)N
, (2.24)

Substituting this into Eq. 2.22, we have to leading order:

p(t) = 1− Nε2

t2z
, (2.25)

where tz is the Zeno time given by (
〈
ĤPĤ

〉
)−1/2. The important point here is that

as ε→ 0, which corresponds to continuous observation of the system, the probability

for remaining in this Hilbert subspace goes to one. We can see that this might be

a significant effect for measurements of arrival time, where the Hilbert subspace

corresponds to a particle remaining on one side of the arrival point, and indeed we

will find that it is important when we consider decoherent histories in chapter 5.
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3 Time Operators and eigenstates

3.1 Introduction

In this chapter we will look at the issue of arrival time operators and their eigenval-

ues. We will begin by explaining in more detail Pauli’s assertion that it is impossible

to define a self-adjoint time operator canonically conjugate to the Hamiltonian, given

the semi-bounded spectrum of the Hamiltonian. We will then explain the difference

between self-adjoint and symmetric operators, and we will examine the spectrum

of the symmetric Aharonov-Bohm arrival time operator, observing that the eigen-

values are not orthogonal. Next we will look in detail at Allcock’s argument that

even in the presence of a source, which enables us to introduce effective negative

energy states, it is impossible for there to be orthogonal arrival time eigenstates.

We will then examine various attempts which have nonetheless been made to obtain

an arrival time operator from which a distribution may be derived. Next, we will

see a refutation of Pauli’s argument, and an attempt to define a self-adjoint opera-

tor for a particle confined particle. Finally, we discuss why these attempts may be

inadequate due to their excessively ideal nature.

3.1.1 Pauli’s theorem

If one wants to deal with the time of arrival mathematically in quantum mechanics,

a natural first approach is to attempt to define a self-adjoint time of arrival operator

T̂ . Just as with position and momentum operators, we should then be able to easily

define a commutation relation between time and energy, such as

[Ĥ, T̂ ] = i, (3.1)

and hence to define an uncertainty relation such as that which pertains between

position and momentum. Furthermore, due to the spectral theorem, which applies

for self-adjoint operators, we should be able to calculate orthogonal eigenstates of
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the operator |T 〉, and hence obtain a time of arrival distribution for a state |ψ〉 via

Π(T ) = |〈T |ψ〉|2 = 〈ψ| P̂ (T ) |ψ〉 , (3.2)

where P̂ (T ) is the projector |T 〉 〈T | onto the subspace of the Hilbert space corre-

sponding to detection at time T. We will now examine why this method doesn’t work

for arrival time operators, necessitating the more complicated proposals presented

below.

Pauli was one of the earliest people to note the problematic nature of time as an

observable in quantum mechanics. In the 1930s he noted that, due to the bounded

nature of the spectrum for the Hamiltonian in the absence of a potential, where all

the eigenvalues must be positive, it is not possible to define a time operator which

will satisfy the commutation relation in Eq. 3.1. Delgado and Muga showed this [3]

by noting that using Eq. 3.1 one can show by induction that

[Ĥ, T̂ n] = inT̂ n−1, (3.3)

for n ≥ 0. Hence, if we have a parameter ε with dimensions of energy, we can show

that

[Ĥ, eiεT̂ ] = −εeiεT̂ (3.4)

and hence for eigenstates of the hamiltonian |E〉 we have

ĤeiεT̂ |E〉 = (E − ε)eiεT̂ |E〉 . (3.5)

We can also reverse the argument to show Eq. 3.1 from Eq. 3.5, and hence show

that the existence of the commutation relation between the Hamiltonian and the

self-adjoint time operators is equivalent to the statement that the time operator

generates unitary energy translations. But this implies that we could apply this to

produce energy eigenstates |E − ε〉 corresponding to arbitrary energy values ranging

across the entire real line, which contradicts the required semi-boundedness of the
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energy spectrum. Hence one cannot construct a self-adjoint time operator satisfying

Eq. 3.1.

This was perceived to be an insurmountable problem for putting time on the

same footing as other observables in the mathematical formalism. By the spectral

theorem, if the time operator is not self-adjoint, then its eigenvalues are not orthog-

onal, a fact which we explicitly demonstrate for a particular time operator below.

In the past, such non-orthogonality of eigenstates was seen as being inconsistent

with quantum observables. Allcock noted, for example that when measuring some

observable, two different wave functions corresponding to different measurement

eigenstates must be distinguishable from another and hence must not overlap in the

final state measured by an apparatus. This implies they must be orthogonal [5]. But

since evolution according to the Schrödinger equation conserves inner products, this

implies that the initial eigenstates were also orthogonal. Hence an operator which

is not self-adjoint cannot describe physically interesting and distinguishable states,

and is hence useless. Despite these issues, we will see how attempts have been made

to nonetheless define a useful arrival time operator. But first we will briefly discuss

some important subtleties relating to self-adjoint operators.

3.1.2 Symmetric and self-adjoint operators

A fact often glossed over in elementary introductions to QM is that a symmetric

operator is not the same thing as a self-adjoint operator. We first define the domain

of an operator, D(Â), which is the subset of eigenfunctions or eigenstates upon which

the operator Â can act. A symmetric operator is one such that 〈φ|Âψ〉 = 〈Âφ|ψ〉.

The adjoint of an operator A is given by A† where 〈φ|Â†ψ〉 = 〈Âφ|ψ〉. If the domains

D(Â) and D(Â†) are not the same, it is possible for an operator to be symmetric

without being self-adjoint. An explicit example is provided in [15]: the domain of

the operator p̂, when conjugate to x̂, defined only for positive values of x, is not

the same as the domain of its adjoint. In fact, the domain of p̂† in this case is

bigger than that of p̂, since p̂† also has non-degenerate eigenstates with eigenvalues
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containing a positive imaginary part . Only if it is specifically demonstrated that Â

= Â†, which is to say that the domains are equal, are we assured that the operator

is self-adjoint and that the eigenvalues will be orthogonal [4]. Self-adjoint operators

will have real, complete, and orthogonal eigenvalues, which may not be the case for

symmetric operators. For non-self-adjoint operators such as p̂ above, the deficiency

indices are two numbers which give the dimension of the space of eigenstates with

positive and negative imaginary parts respectively. This operator consequently has

deficiency indices (1, 0). According to the theory of von Neumann, only in the case

that the deficiency indices are equal can one extend the domain of the operator in

such a way that it becomes self-adjoint. Such self-adjoint extensions do not exist for

p̂. In the case that self-adjoint extensions do exist, we may consider an operator to

be effectively self-adjoint. In the case that such extensions do not exist, we refer to

a symmetric operator as maximally symmetric [15].

3.1.3 Aharonov-Bohm operator

Aharonov and Bohm were among the first to look at a candidate for the time oper-

ator [16], which has been (with the addition of a minus sign) studied as a possible

arrival time operator [9, 11,15]. The form of this operator is

T̂ = −m
2

(
x̂

1

p̂
+

1

p̂
x̂

)
, (3.6)

where x̂ and p̂ are the standard operators for position and momentum respectively.

This was obtained by simply symmetrizing the classical expression for time of arrival

- the symmetrization being necessary in order to ensure the operator is Hermitian.

We can see that, if we take a free particle Hamiltonian Ĥ = p̂2

2m
, this arrival time

operator satisfies the commutation relation in Eq. 3.1. However, as we shall see, the

eigenstates of this operator are non-orthogonal, veryifying that this time operator

is not self-adjoint. Egusquiza and Muga solve for the eigenvalues of (3.6) by going

to the momentum representation, where p̂ → p and x̂ → i ∂
∂p

. This is the natural
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choice since it makes it easier to deal with p̂−1. The result is that

T̂ → im

2

(
1

p2
− 2

p

∂

∂p

)
. (3.7)

There is clearly a singularity at p = 0. This suggests that there are constraints

on the functions in the Hilbert space upon which the operator can act. To under-

stand exactly what the domain of this operator is, we must impose some conditions.

Firstly, the operator must obey the property that when it operates on a state |ψ〉,

T̂ |ψ〉 remains in the same Hilbert space, and is therefore square integrable across the

entire spectrum of p. Hence, we get two possible conditions: either ψ(p)/p3/2 → 0

as p → 0, or ψ(p) ∼ p1/2, for functions ψ(p) in the operator’s domain. Secondly, if

we impose the condition that T̂ is symmetric, such that 〈ψ|T̂ψ〉 = 〈T̂ψ|ψ〉 for any

|ψ〉 in the domain of T̂ , then it is clearly the case that ψ(p) ∼ p1/2 is untrue, and

we are left with the condition that ψ(p)/p3/2 → 0 as p→ 0.

The eigenvalues of the operator T̂ can now be shown to be [9, 11,15,17]

〈p|T, α〉 = ψα
(T )(p) =

( αp

2πm

) 1
2
eip

2T/(2m)θ(αp) (3.8)

where α = ± and p 6= 0. We can confirm that these are the eigenstates by applying

the operator T̂ to them:

T̂ψα
(T )(p) =

im

2p2
ψα

(T )(p)− im

p

∂

∂p
ψα

(T )(p)

=
im

2p2
ψα

(T )(p)− im

p

[
1

2

(
α

2πmp

) 1
2

eip
2T/(2m)θ(αp)

+
( αp

2πm

) 1
2 ipT

m
eip

2T/(2m)θ(αp) +
( αp

2πm

) 1
2
eip

2T/(2m)αδ(αp)

]
= −im

p

(
ipT

m

( αp

2πm

) 1
2
eip

2T/(2m)θ(αp)

)
= Tψα

(T )(p).

This operator is also consistent with the covariance condition described in section
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2, since

e−iĤt |T, α〉 = |T − t, α〉 . (3.9)

For an operator to be self-adjoint, it must not only have real eigenvalues, its eigen-

states must also be complete and orthogonal. It can be shown that,

∑
α

∫ ∞
−∞

dTψα
(T )

(p)ψα
(T )(p′) = δ(p− p′) (3.10)

and so these eigenvalues provide a resolution of the identity and are therefore com-

plete. The overlap of two eigenstates is given in [17], [11] and [15]. It is given

by

〈T ′, α′|T, α〉 =
δα,α′

2πm

∫ ∞
0

dk2eik
2(T−T ′)/(2m)

=
1

2
δα,α′

(
δ(T − T ′) +

i

π
P

(
1

T − T ′

))
,

(3.11)

where P () refers to a quantity called the principal part which comes from a stan-

dard result for this type of integral in complex analysis. The important point is

that the RHS is not simply δα,α′δ(T − T ′), and that the eigenstates are therefore

not orthogonal. Hence, we have verified that the operator is not self-adjoint. Due

to the absence of orthogonal eigenstates, we cannot define projectors as in Eq. 3.2,

and hence dealing with distributions and probabilities in the standard quantum me-

chanical fashion is not possible. Furthermore, as demonstrated in [15], the deficiency

indices of this operator are (2, 0), so that no self-adjoint extensions exist. It is there-

fore a maximally symmetric operator. We will see how this arrival time operator,

and variants of it, have nonetheless been the starting point for many attempts to

define a suitable arrival time operator ever since. In many cases we will see that

the result of these efforts is to obtain Kijowski’s distribution, but this time in the

context of the traditional mathematical formalism of QM.

19



3.2 Allcock’s consideration of the problem with sources

Allcock was aware of the non-orthogonality of the Aharonov-Bohm operator, and

suggested that this non-orthogonality applied to any possible arrival time eigenfunc-

tions due to the semi-bounded nature of the energy spectrum [5]. He concludes that

the only way of salvaging the situation is to somehow introduce negative energy

components of the spectrum. This is his motivation for introducing a source for the

incoming particles at some point xs, where xs < x0 < 0, in an attempt to derive

an expression for the arrival time at x = 0 of particles travelling left-to-right. This

source term ρ(x, t) leads to the Schrödinger equation.

i∂ψ

∂t
+

1

2

∂2ψ

∂2x
= ρ(x, t) (3.12)

such that ρ(x, t) is nonzero in the region of the source, but zero outside of it - e.g.

in the region x > x0.

By introducing a source term, he is also introducing an additional time boundary

condition, namely the condition since the particle is liberated from the source at

a particular time, there must be a time t0 before which the wave function satisfies

ψ = 0 in the region x > x0. This boundary condition leads to the following solution

for the Schrödinger equation in the region x > x0:

ψ(x, t)x≥x0 =
1

(2π)1/2

∫ ∞
−∞

dE
ψ(E)

(2E)1/4
e(i(2E)1/2x−iEt), (3.13)

where ψ(E) is in the energy representation. Allcock assumes that the source term

ρ(x, t) can be modified in order to match any arbitrarily chosen ψ(E), such that

his analysis is quite general. An important point about Eq. 3.13 is that there are

now negative energy values in the integral, implying that the total wave function

includes contributions from exponentially decaying evanescent waves, as can be seen

by entering negative E values in the factor e(i(2E)1/2x) in the intergral above.
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Allcock now shows that in the limit as t→∞, for any finite a > x0, we have that

lim
t→+∞

∫ a

xs

dx |ψ(x, t)|2 = 0, (3.14)

and

lim
t→+∞

∫ ∞
a

dx |ψ(x, t)|2 =

∫ ∞
0

dE |ψ(E)|2. (3.15)

Hence in the limit as t → ∞, the probability that that the particle has arrived at

any point a finite distance from the source, such as the point at which arrival time

is measured, is

P (∞) =

∫ ∞
0

dE |ψ(E)|2. (3.16)

Obviously Eq. 3.14 is an expression of the intuitive fact that a wave function’s tail

goes to zero in the limit as x → ∞, so that as the centre of the wave function

goes towards ∞, the norm left in any finite region goes to zero. Note that the

0 in the lower limit of the integral in Eq. 3.16 is crucial. Now, we come to the

matter of arrival time eigenstates. If we now posit the existence of orthogonal arrival

time eigenfunctions ψ(T )(E) = 〈E|T 〉, we may write our energy representation wave

functions as

ψ(E) = 〈E|ψ〉 ==

∫ ∞
−∞

dT c(T )ψ(T )(E). (3.17)

where c(T ) is some set of c-numbers. Now calculating the total norm of a state |ψ〉,

which may be of course interpreted as the total time integral of the arrival time

distribution Π(T ) for particles with p > 0 originating at x < 0, we obtain

〈ψ|ψ〉 =

∫ ∞
−∞

dE |ψ(E)|2 =

∫ ∞
−∞

dT |c(T )|2 =

∫ ∞
−∞

dT Π(T ). (3.18)

This quantity can be identified with P (∞), and is clearly positive for all values. In

this case we note that due to the introduction of negative energy terms, the integral

ranges over the entire real line. However, for P (∞) as defined in Eq. 3.16, we may

obtain P (∞) = 0 for waves with E < 0. Allcock argues that this contradiction

implies the impossibility of defining orthogonal arrival time eigenstates even for the
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case where we take the particles as originating at a source.

Allcock uses this argument to suggest that an operational approach must be con-

sidered in order to define an arrival time distribution theoretically. It is worth

pointing out, however, that Muga and Leavens disagree with this argument since

they suggest that the evanescent waves associated with the E < 0 contribution,

although tied very closely to the source location, may in fact contribute to the ar-

rival time distribution through tunnelling in the infinite time limit [9]. As we see

in the following sections, moreover, other authors not only accept the possibility of

orthogonal arrival time eigenstates, but in fact explicitly calculate them.

3.3 Attempts to define self-adjoint operators

3.3.1 Grot, Rovelli and Tate

In recent years, one of most discussed attempts to construct a self-adjoint arrival

time operator has been that of Grot, Rovelli and Tate [18]. These authors do not use

exactly Aharonov-Bohm operator defined above, but rather a different symmetriza-

tion of the classical expression, namely

T̂ = −m 1√
p̂
x̂

1√
p̂
→ −im 1

√
p

∂

∂p

1
√
p
. (3.19)

It turns out, however, that this operator gives the same eigenstates as in Eq. 3.8,

and hence that the two operator expressions are equivalent [9,18]. Grot et al. trace

the non-orthogonality of the expression above to the singularity when p = 0, and

they therefore modify the operator so that this singularity no longer exists. While

this may no longer represent the standard quantity for time of arrival in the classical

limit, it can be defined so as to be arbitrarily close to it, which the authors consider

to be satisfactory. Their suggested definition for the arrival time operator is

T̂ε = −im
√
fε(p)

∂

∂p

√
fε(p), (3.20)
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where

fε(p) =
1

p
, |p| > ε;

fε(p) =
p

ε2
, |p| < ε.

(3.21)

We can see that there is continuity of the function at p = ε, but that the singularity

at p = 0 is now removed. We may now find the eigenstates which are given by

〈p|T, α〉ε = ψα
(T )(p) =

(
1

2πm

) 1
2 1

fε(p)
exp

(
iT

m

∫ p

αε

dp′
1

fε(p′)

)
θ(αp). (3.22)

ε may be arbitrarily small, and when doing calculations we may later restrict our-

selves to the values of |p| > ε (labelled with the subscript o). Inserting the value of

fε(p) from Eq. 3.21 and carrying out the integral, we obtain

ψα,o
(T )(p) =

( αp

2πm

) 1
2

exp

(
iT

2m
(p2 − ε2)

)
θ(αp). (3.23)

However, we also note that for |p| < ε (labelled with the subscript ε we have

ψα,ε
(T )(p) =

( αp

2πm

) 1
2

exp

(
iT

m
(ε2 ln |p|/ε)

)
θ(αp). (3.24)

To show that the operator is self-adjoint, we must demonstrate that the eigenstates

in Eq. 3.22 are complete and orthogonal. To do this, we must introduce a new

coordinate system which ranges from −∞ to +∞:

zα(p) =

∫ p

αε

dp′
1

fε(p′)
. (3.25)

We may then rewrite the eigenstates as

ψα,ε
(T )(p) =

(
1

2πm

) 1
2 1

fε(p(zα))
exp

(
iTzα

m

)
θ(αp), (3.26)

so that the overlap of two states is now

〈T ′, α′|T, α〉 = δα,α′

∫ ∞
−∞

dzαfε(p(z
α))ψα

(T ′)
(p)ψα

(T )(p). (3.27)
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Due to the presence of the function fε, which comes in due to the coordinate

change defined above, we now have the simple form

〈T ′, α′|T, α〉 = δα,α′

∫ ∞
−∞

dzαei(T−T
′)zα/m = δα,α′δ(T − T ′), (3.28)

which demonstrates that the eigenvalues in this case are orthogonal. The absence

of more complicated terms is mathematically due to the fact that z ranges over the

entire real line, and not just the half line as in Eq. 3.11.

We may also show that these eigenstates are complete by noting that

∑
α

∫ ∞
−∞

dTψα
(T )

(p)ψα
(T )(p′) =

∑
α

δ(zα(p)− zα(p′))√
fε(p)

√
fε(p′)

=
∑
α

δ(p− p′)θ(αp)
|∂zα/∂p|

√
fε(p)

√
fε(p′)

= δ(p− p′),

(3.29)

where in the second line we used the fact that δ(f(x)) = δ(x−x0)/|f ′(x0)|. Hence the

modified operator presented by Grot et al. has real eigenvalues, and its eigenstates

are complete and orthogonal. Hence it is a self-adjoint operator.

From these eigenstates we can now obtain the arrival time distribution via

Π(T ) =
∑
α

|〈T, α|ψ〉|2, (3.30)

which is of course summed over α due to the double degeneracy of the eigenvalues

at each T , corresponding to particle moving in the positive and negative directions.

Grot et al. now argue that since we may make ε as small as we wish, we may

effectively ignore the states of |p| < ε and only use the states of Eq. 3.23. This is

important because under time translation the states ψ
(T )
α,ε (p) are not consistent with

the covariance condition for the time operator. If we limit ourselves to a particle

moving in the positive direction, the arrival time distribution for detection at x = 0
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is

Π(T ) =
1

2πm

∣∣∣∣∫ ∞
0

dp
√
pe−iTp

2/(2m)ψ(p)

∣∣∣∣2 , (3.31)

which is basically Kijowski’s distribution. Grot et al. further bolster their argument

that this is a plausible arrival time operator by demonstrating that a Gaussian

wave packet’s arrival time is centred around the classical arrival time value, and

by demonstrating that the operator’s commutation relation with the Hamiltonian

produces a plausible uncertainty relation. On the basis of this evidence, there may be

very good grounds for considering this operator a plausible candidate for a definitive

arrival time operator.

However, Oppenheim, Reznik and Unruh [19] examined this operator further and

reached some unsettling conclusions. In order to examine it, they also looked at a

Gaussian wave packet, and examined the norm of the state. Oppenheim et al. noted

that the eigenstates are not normalizable, so that it is necessary to introduce states

which are superpositions of eigenstates, with a spread of arrival states ∆. These are

given by

|τ∆, α〉 = N

∫
dT |T, α〉 e−

(T−τ)2

∆2 . (3.32)

where N = 1
(2π3)1/4

√
∆

. Now, restricting ourselves to states with momentum going to

the right, α = +, we can find 〈x|τ∆,+〉 not only as a function of position, but also

as a function of time, by applying the free particle propagator e
−ip2t

2m where t = 0 is

the classical time of arrival. The result can be divided between states of |p| < ε and

|p| > ε, and without loss of generality setting τ = 0 we obtain

τ+(x, t) = 〈x|τ∆,+〉 = N

∫
dT 〈x|e

−ip2t
2m |T,+〉 e−

T2

∆2

= N

∫ ε

0

dTdpe−
T2

∆2 e
−ip2t

2m eipxψα,ε
(T )(p) +N

∫ ∞
ε

dTdpe−
T2

∆2 e
−ip2t

2m eipxψα,o
(T )(p)

= τ+
ε (x, t) + τ+

o (x, t).

(3.33)

The calculation of the term τ+
ε (x, t) is quite complicated, but it is shown in [11]

and [19] that as ε → 0, its modulus squared vanishes at x = 0 and t = 0 - i.e. the
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probability of detection of these states is zero at the time of arrival. However as

we saw above, these states are excluded when using the operator of Grot et al. to

determine the arrival time distribution, and hence the fact that these correspond to

a probability that the particle is undetected may by irrelevant, if their contribution

to the overall norm is small. Let us then calculate the norm of this state at the

time of arrival t = 0, which may be divided into two sections corresponding to

superpositions of states with |p| < ε and |p| > ε:

∫
dx| 〈x|τ∆,+〉 |2 = N2

∫
dx|dTdpe−

T2

∆2 eipxψα,ε
(T )(p)|2 +N2

∫
dx|dTdpe−

T2

∆2 eipxψα,o
(T )(p)|2

≡ Nε
2 +No

2.

(3.34)

We may now explicitly calculate the values of the norms Nε
2 and No

2. Specifically,

using the expression for 〈p|T, α〉ε given in Eq. 3.22, a calculation of Nε
2 gives us

Nε
2 =

N2

2πm

∫ ε

0

dpdp′
∫
dTdT ′dx

√
p
√
p′e

(−T2−T ′2)

∆2 e
iε2

m

(
T ln p

ε
−T ′ ln p′

ε

)
(3.35)

Carrying out the integral over x, then p′, completing the square in the exponential,

doing the integral over T and T ′, and changing variables gives us

Nε
2 =

N2ε2∆2π

m

∫ ∞
0

du e
−ε4∆2

2m2 u2

=
1

2
. (3.36)

Hence, the norm corresponding to the |p| < ε eigenstates corresponding to half the

total norm for arbitrarily small ε, making it problematic to consider the remaining

part as truly representative of the arrival time distribution. The reason that these

eigenstates represent half the total norm can be understood by comparing Eq. 3.23

to the eigenstates of the unmodified operator given in Eq. 3.8. The form of the

exponential in the unmodified eigenstates is e(iET ), where E = p2/(2m) is the energy

of a free particle. Hence for the eigenstates in Eq. 3.23, values of |p| < ε correspond

to effectively negative energies [9,19], so that excluding them excludes half the real

line. This also helps us to understand why the modified operator is self-adjoint,
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since it effectively spans the real line, thus circumventing Pauli’s objection.

3.3.2 Delgado and Muga

Delgado and Muga also consider a self-adjoint variation of the standard arrival time

operator [3]. Delgado and Muga acknowledge from the beginning that their result is

similar to a self-adjoint operator defined by Kijowski at the end of [8] based on the his

axiomatically derived distribution, but they are unhappy with Kijowksi’s derivation.

Specifically, they believe the wave functions used by Kijowski in his mathematical

derivation are not the standard wave functions of quantum mechanics, and hence

they seek to derive a distribution in the standard framework of quantum mechanics.

However, Kijowski himself rejects this criticism in [20], and insists that his self-

adjoint operator exists in the usual Hilbert space of QM. For this reason, we may

consider Delgado and Muga’s derivation to be a modern restatement and expansion

of Kijowski’s [20,21]. Their method of arriving at this operator is to first explicitly

construct a new self-adjoint Hamiltonian which has a non-bounded spectrum i.e.

with eigenvalues spanning the entire real line. This enables them to define an arrival

time operator T̂ via the commutation relation in Eq. 3.1. While the eigenstates of

this operator cannot be identified directly with the physical time, Delgado and Muga

describe how a physical interpretation can nonetheless be extracted from them.

To see how this works, we define projectors onto subspaces corresponding to pos-

itive and negative momentum plane waves

θ(αp̂) =

∫ ∞
0

dp |αp〉 〈αp| . (3.37)

We can now define a new self-adjoint Hamiltonian

Ĥ = (θ(p̂)− θ(−p̂))Ĥ (3.38)

where Ĥ is simply the regular plane wave Hamiltonian. Now consider the eigenstates

of the free particle Hamiltonian, |E,α〉 = (m/2E)1/4
∣∣∣p = α

√
2mE

〉
, where E ≥ 0.
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Now if we relabel these as

|ε〉 =


|+E〉 ≡ |E,+〉 , ε ≥ 0;

|−E〉 ≡ |E,−〉 , ε ≤ 0

for ε ∈ (−∞,∞), then we have that

Ĥ |E,α〉 = α |E,α〉 ;

Ĥ |ε〉 = ε |ε〉 .
(3.39)

Hence we have defined a Hamiltonian with eigenvalues spanning the entire real line.

Now without explicitly defining an operator T̂ in terms of x̂ or p̂, for example, we

may nonetheless obtain such an operator simply by considering the states |ε〉. Then

we may define the eigenstates of a T̂ operator via

|τ〉 =

∫ ∞
∞

dε eiετ |ε〉 . (3.40)

Completeness and orthogonality of these eigenstates can be very easily demon-

strated, suggesting that we can define a self-adjoint time operator as

T̂ =

∫ ∞
∞

dτ τ |τ〉 〈τ | . (3.41)

This operator automatically satisfies the correct commutation relation with our

Hamiltonian due to the relationship between the eigenstates.

Delgado and Muga explain why this cannot be an operator corresponding to a

physical time observable. We note a result from elementary quantum mechanics

which states that the time reversal operator R̂ acts such that R̂ |p〉 = |−p〉. For a

physical time, it should be the case that |τ〉 → |−τ〉. We may write

〈p|τ〉 = (
|p|

2πm
)

1
2 exp[i(θ(p)− θ(−p)) p

2

2m
τ ] = 〈−p|τ〉 *. (3.42)

Hence, applying the time reversal operator and inserting a resolution of the identity
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gives us

R̂ |τ〉 =

∫ ∞
−∞

dp R̂ |p〉 〈p|τ〉 * =

∫ ∞
−∞

dp |−p〉 〈−p|τ〉 = |τ〉 . (3.43)

The complex conjugate comes in due to the anti-unitarity of the time reversal oper-

ator. Hence, time reversal does not have the expected effect on |τ〉. The covariance

condition will also not hold since although e−iĤt |τ〉 6= |τ − t〉, where Ĥ is the free

particle propagator.

However, if we go back to Eq. 3.40, we see that we can decompose the eigenstates

in the form

|τ〉 = |T = −τ,−〉+ |T = τ,+〉 (3.44)

where

|T, α〉 ≡
∫ ∞

0

dE eiET |E,α〉 . (3.45)

This decomposition means that it is now manifestly the case that

R̂ |T, α〉 = |−T,−α〉 (3.46)

so that each of these states could individually be associated with physical time. We

also note that these states individually satisfy the covariance condition. Delgado

and Muga now relate this to the probability current density defined in chapter 2.

They assume that the quantum backflow effect is negligible when considering only

positive momenta at large times, and in the presence of a perfect absorber as a

detector (see section 4). Hence they assume that the average arrival time in the

quantum case is a simple quantization of the arrival time at x = 0 in terms of the

classical probability current:

〈t〉α =

∫∞
−∞ dτ τ 〈ψα(τ)| Ĵ(0) |ψα(τ)〉∫∞
−∞ dτ 〈ψα(τ)| Ĵ(0) |ψα(τ)〉

(3.47)

After much complicated manipulation, Delgado and Muga show that this can be

expressed in the form

〈t〉α = α 〈ψα| T̂ |ψα〉 (3.48)
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implying that the self-adjoint operator T̂ defined in Eq. 3.41 measures the arrival

time of particle at x = 0, such that in the semiclassical limit the form for the mean

time of detection is of the appropriate form. Inserting Eq. 3.41 into Eq. 3.48, we

obtain

〈t〉α =

∫ ∞
−∞

dτ ατ | 〈τ |ψα〉 |2 (3.49)

so that

〈t〉+ =

∫ ∞
−∞

dτ τ | 〈T = τ |ψ+〉 |2 (3.50)

with a similar expression obtaining for negative momenta. We may then assume

that

Π(T ) = | 〈T = τ |ψ+〉 |2 (3.51)

for particles with positive momenta only. In fact, as we can see by looking at

Eq. 3.42, this once again gives us Kijowski’s distribution, but in this case we are

limited to superpositions of positive or negative momentum states only due to the

covariance condition given in section 2.

3.4 POVMs

In both of the examples above, one obtains a physically meaningful arrival time

operator by restricting the domain D(T̂ ) over which the operator is to used. Grot

et al. required us to restrict the domain to states with |p| > ε. As we saw, this leads

to a situation where an entire half of the norm is discarded when considering the

arrival time probability, which may be unacceptable. Delgado and Muga chose to

restrict the domain by only calculating arrival time distributions for states of purely

positive or purely negative momentum. As we saw, despite limiting the domains

of applicability, both of these methods obtained standards results for the arrival

time distribution outlined in section 2. Despite this success, some authors believe

these results to be problematic [9, 11]. If we are to obtain a mathematical theory

of arrival times which has a definite connection to experimental reality, it seems

artificial to limit the momentum states in the way prescribed in both of these cases,
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and it would be advantageous if a theoretical treatment could be devised which

does not require limiting the domain in this way. One simple of way of doing this is

simply by dropping the requirement for self-adjointness of the arrival time operator.

Traditionally, it was assumed that one could not describe observables using non-self-

adjoint operators, but many authors have pointed out that this need not necessarily

be the case. Giannitrapani defines a generalized observable as a positive operator

valued measure (POVM) on a measurable space, a POVM being defined as a map

B̂ from the real line to the algebra of positive operators (those giving only positive

expectation values) on the Hilbert space of a quantum system [17]. A POVM satisfies

the following conditions:

1. B̂(x) ≥ B̂(∅), ∀x ∈ R;

2. B̂(
⋃
xi) =

∑
B̂(xi), where xi is a countable collection of disjoint elements on

R;

3. B̂(R) = 1.

As pointed out in [15], this set of conditions coincides with the requirements of

quantum mechanics for describing probabilities related to observables. For the case

that B̂(x)2 = B̂(x), this becomes a projection valued measure (PVM), which is

the normal set of projectors onto orthogonal subspaces which we associate with

self-adjoint operators. This is what we have generalized with this definition, and

the above formulation suggests that projection onto orthogonal subspaces is not

necessarily a requirement for something to be an observable. In a similar way to how

we define probabilities for PVMs, P ([x1, x2]) = Tr[ρB̂([x1, x2])] can be interpreted as

the probability of measuring the observable in a state corresponding to the interval

[x1, x2]. It can be shown, moreover, that a maximally symmetric operator has a

unique POVM [15, 22], and as we saw above the Aharonov-Bohm time operator

is maximally symmetric. Now recalling our eigenstates for this operator given in
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Eq. 3.8, we can take the real line to correspond to the set of all times, and define

B̂([T1, T2]) =
∑
α

∫ T2

T1

dT |T, α〉 〈T, α| . (3.52)

This is a POVM since it fulfils the three conditions laid out above: it’s clearly

positive; it is clearly additive for disjoint sets owing to the additivity property of

integrals; and Eq. 3.10 tells us that B̂([−∞,∞]) = 1. Hence the arrival time

distribution for a state |ψ〉 is given by

Π(T ) =
〈
ψ
∣∣∣ B̂(T )

∣∣∣ψ〉 =
∑
α

| 〈T, α |ψ〉 |2. (3.53)

Using the terms for |T, α〉 given in Eq. 3.8 gives us the expression

Π(T ) =
1

2πm

∣∣∣∣∫ ∞
0

dp
√
pe−iTp

2/(2m)ψ(p)

∣∣∣∣2 +
1

2πm

∣∣∣∣∫ 0

−∞
dp
√
−pe−iTp2/(2m)ψ(p)

∣∣∣∣2
(3.54)

which is again none other than Kijowski’s distribution. We also note that when we

apply Eq. 3.9 to the expression for B̂(T ) in terms of eigenstates, we get

e−iĤtB̂(T )eiĤt = B̂(T − t) (3.55)

which means that according to Eq. 3.53

Π(T, ψ(0)) = Π(T − t, ψ(t)) (3.56)

which again satisfies the covariance condition necessary for something to be consid-

ered a valid arrival time distribution.
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3.5 Galapon’s work on self-adjoint time operators

3.5.1 Refutation of Pauli’s argument

Recent work by Galapon has contradicted assumptions made in previous work by

suggesting that it is, in fact, possible to define self-adjoint operators which are

conjugate to a semibounded Hamiltonian. To see how this is possible, we must

expand our discussion in section 3.1.2 and look a little more closely at domains. In

order to consider commutators of the form âb̂ − b̂â on a Hilbert space H, we must

recognize two facts.

Firstly, the domain of the commutator is not necessarily the same as the domain

of either â or b̂. The domain of âb̂, Dab, is the set of |ψ〉 ∈ H such that b̂ |ψ〉 is in the

domain of â. Defining the domain of b̂â similarly, the domain of the commutator is

then simply Dcom = Dab ∩ Dba.

Secondly, the domain on which the commutation relation [â, b̂] = i is defined is

not necessarily the whole domain Dcom. In the event that the canonical domain Dc

on which the commutation relation is defined is not dense (i.e. if there is a vector

other than the zero vector that is orthogonal to all elements of the domain), then the

canonical domain is a subset of the commutator domain. We may then conceivably

define a time operator conjugate to the Hamiltonian which is self-adjoint on the

relevant domain Dc.

To see why Pauli’s theory is incomplete, we note that the argument for the impos-

sibility of a self-adjoint operator conjugate to a semibounded Hamiltonian, given in

section 3.1.1, relies upon Eq. 3.3. Clearly this relationship can naively be shown by

induction to follow from Eq. 3.1, as long as no consideration is given to the domain

of the operators. Galapon shows [23] that this relationship is not necessarily valid,

hence invalidating Pauli’s argument. We note that the domain of validity of the

canonical conjugation relationship, [Ĥ, T̂ ] = i, is the specific canonical domain in

this case Dc, and that Pauli’s arguments implicitly assume that we are dealing with

the same domain throughout. Now consider the LHS of Eq. 3.3 with n = 2. We

33



may write, for |ψ〉 ∈ Dc,

[Ĥ, T̂ 2] |ψ〉 = (ĤT̂ 2 − T̂ 2Ĥ) |ψ〉 = (ĤT̂ − T̂ Ĥ)T̂ |ψ〉+ T̂ (ĤT̂ − T̂ Ĥ) |ψ〉 . (3.57)

Now for the second term on the very RHS, we obtain iT̂ |ψ〉, but for the first we do

not in all cases. Note from the above discussion that the domain of T̂ may actually

be larger than the canonical domain. Galapon shows in [23] that one can consider

cases where T̂ |ψ〉 6∈ Dc in general for |ψ〉 ∈ Dc. Therefore we can’t apply the

commutation relation to it, and (ĤT̂ − T̂ Ĥ)T̂ |ψ〉 6= iT̂ |ψ〉 in general. So Eq. 3.3 is

not true in general and Pauli’s argument is rendered invalid.

3.5.2 Example of a self-adjoint time operator

Galapon shows how to construct a self-adjoint time operator canonically conjugate

to a semibounded Hamiltonian by limiting the spatial domain to a region x ∈ [−l, l]

[24], so that we are now dealing with a Hilbert space Hl = L2[−l, l]. The position

opeerator in this space is unique, and is the usual operator such that x̂ψ(x) = xψ(x)

for all ψ(x) in the domain. The momentum operator is defined as p̂γ, such that

p̂γψ(x) = −i∂ψ(x)/∂x, where the domain comprises those differentiable functions

with square integrable first derivatives which satisfy the condition ψ(−l) = e−2iγψ(l)

at the boundaries, where |γ| < π/2. Notice it is possible for there to be periodic

boundary conditions, where γ = 0, and also non-periodic boundary conditions.

We therefore have a range of momentum operators rather than just one. Defining

the free Hamiltonian to be Ĥγ = p̂2
γ/2m as usual, Ĥγ and p̂γ have the common

eigenfunctions ψγk(x) = exp(i(γ + kπ)x/l)/2l, where k = 0,±1,±2 . . .. Hence we

have discrete spectra. Now, we define the time operator to be

T̂γ =
−m

2

(
x̂

1

p̂γ
+

1

p̂γ
x̂

)
, for γ 6= 0;

T̂0 =
−m

2

(
x̂

1

P̂0

+
1

P̂0

x̂

)
, for γ = 0.

(3.58)
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Here, P̂−1
0 = Ep̂−1

0 E, where E is the projector onto the subspace orthogonal to

the null space of p̂0. We can see that these are similar to the Aharonov-Bohm

operator, but this time with p̂γ momentum operators. We now cite without proof

several facts about these operators, worked out both numerically and analytically

by Galapon and collaborators in a series of papers [23–25]. Firstly, they are self-

adjoint with discrete spectra. Secondly, each T̂γ can be shown to be canonically

conjugate to the corresponding Hamiltonian Ĥγ. Thirdly, the eigenstates of the

time operator evolve such that the expectation value of their position is at the

origin at a time corresponding to their eigenvalues, and such that their width is a

minimum at this time. Hence, it is perfectly reasonable to interpret these operators

as time of arrival operators. Fourthly, in the limit that l → ∞, the spectrum of

the time operators becomes continuous, and the discrete time of arrival distribution

given by the eigenstates of T̂γ tends to Kijowski’s distribution.

3.6 Criticism of attempts to define a time operator

Several authors express the point of view that the POVM method is the definitive

expression of the arrival time concept in terms of operators [9, 11, 15, 17]. Mielnik

and Torres-Vega, however, take issue with this view, and indeed with all attempts

to define the arrival time using an operator approach [21]. In their view, most of the

above attempts to define an arrival time operator are overly idealized, paying insuf-

ficient heed to the effect that actual measurement will have on an incoming particle.

They detect an often unspoken assumption in Kijowski and all subsequent authors

that there some very unintrusive detector which registers the arrival of particles.

Either the detector is extremely weak, in which case there may be tunnelling across

the detector which affects the incoming wave packet, or it is strong, which also af-

fects the incoming wave packet. In neither case is there a free wave packet, which

renders questionable any theory which assumes there is. Mielnik and Torres-Vega

consider attempts to create self-adjoint time operators particularly unconvincing.

They liken modifying the Hamiltonian, as done by Delgado and Muga, to represent-

35



ing the harmonic oscillator potential by (θ(x̂)− θ(−x̂))x̂2/2, which they consider to

be an absurd proposition. For the case of a weak detector, Mielnik and Torres-Vega

also question the validity of theories involving POVM measures. As we saw above,

the probability distribution is a simple sum of the probabilities for arrival from the

left or the right. However, it may also be possible that a single wave packet has

coherent parts on both sides of a screen, in which case there will be interference

terms not represented by the simple additive nature of this distribution. It seems

then that in order to get a realistic picture of arrival times, it may be necessary to

include detectors in the theory from the beginning. Such attempts are dealt with in

the next chapter.
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4 Detectors and Clocks

In this chapter we will look at so-called operational models for determining the

arrival. This involves modelling the incoming particles in the presence of a detector

or clock such that the Hamiltonian becomes Ĥ = Ĥ0 +Ĥapparatus. It is then a matter

of solving the Schrödinger equation with this Hamiltonian so that an arrival time

distribution may be extracted. We begin by revisiting Allcock, who provided one of

the earliest attempts to model a detector with a complex potential. Then we will

look at a more realistic detector model, where the arrival time of an atom to an area

illuminated with a laser is associated with the time of first emission of a photon.

Next we will see how using path integral calculations with a complex potential leads

to realistic arrival time distributions. Finally, we shall describe quantum clocks, and

look in detail at the recent use of a clock model to obtain arrival time distributions.

We will find that the results often agree across different models, suggesting that

they possess some universal validity.

4.1 Detectors

4.1.1 Allcock’s complex potential

Following on from his argument, outlined in chapter 3, against the possibility of ob-

taining an arrival time distribution from a consideration of arrival time eigenstates,

Allcock sought to understand if this goal could instead be accomplished by modelling

incident waves interacting with a detector [6]. Allcock determined that a model de-

tector, situated at x = 0, must remove probability as quickly as possible from the

area x > 0 for incident waves. This is consistent with an irreversible process which

we would associate with a physical detector, whereby the incoming wave probability

is quickly diminished due to its transformation into something which might register

as a signal. His proposal was to model this process by modifying the Hamiltonian,
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introducing a potential −iV θ(x) so that the Schrödinger equation becomes

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
+ iV θ(x) = 0. (4.1)

Defining the total norm to be N = 〈ψ(T )|ψ(T 〉, we can calculate the probability of

detection in terms of the rate at which the norm is being absorbed - i.e. Π(T ) =

−dN(T )/dT . We can then use Eq. 4.1 to show that

Π(T ) = −dN
dT

= 2V

∫ ∞
0

dx |ψ(x, T )|2. (4.2)

Probability is disposed of within a time δT ∼ (2V )−1, and Allcock interprets this to

mean that one can only determine the time of arrival to within this uncertainty.

Allcock now solves the Schrödinger equation by matching boundary conditions at

x = 0. The amplitudes of transmitted and reflected waves in the energy representa-

tion, where ψ(E) is the incident wave, are given by

φtr(E) =
2

1 + E−1/2(E + iV )1/2
ψ(E); (4.3)

φref (E) =
1− E−1/2(E + iV )1/2

1 + E−1/2(E + iV )1/2
ψ(E). (4.4)

Using a version of Eq. 3.13 along with Eq. 4.2, we obtain

Π(T ) =
1

2π

∫ ∞
−∞

dE

∫ ∞
−∞

dE ′
[

2ψ(E)eiET

E1/4(1 + E−1/2(E + iV )1/2)

]∗
×

× 2ψ(E ′)eiE
′T

E ′1/4(1 + E ′−1/2(E ′ + iV )1/2)

iV ((E ′ + iV )1/2 + (E + iV )1/2∗)

2π(E ′ − E + 2iV )
.

(4.5)

The problem here, of course, is that Π(T ) depends on V , which ought not to be case.

Allcock identifies two possibilities for obtaining a V -independent distribution: the

limits V → 0 and V →∞. The latter case produces a very small time uncertainty,

but a perusal of the transmission and reflection amplitudes shows that this limit

corresponds to very little transmission of incident probability, leading to failure

of the measurement. Allcock consequently rejects this option. The low V limit
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corresponds to a higher time uncertainty. Allcock assumes that the above Π(T )

is actually a convolution of the ideal arrival time distribution Πid with some V -

dependent response function of the detector:

Π(T ) =

∫
dT R(V, T − T ′)Πid(T

′). (4.6)

Making suitable approximations for low V , Πid(T ) can be extracted from Eq. 4.5 as

Πid(T ) =
1

2πm

∣∣∣∣∫ ∞
0

dp
√
pe−iTp

2/(2m)ψ(p)

∣∣∣∣2 = 〈ψ(T )| 1
m

(p̂
1
2 δ(x̂)p̂

1
2 )|ψ(T )〉 , (4.7)

which is yet again Kijowski’s distribution, for the case of particles travelling only to

the right.

In the background of this derivation, however, is the increased time uncertainty

due to the fact that the probability is not absorbed sufficiently fast by the potential.

Allcock considers this to be a general result, and expresses the view that one cannot

simultaneously have perfect detection efficiency and perfect time resolution. As we

have seen, increasing the potential to speed up absorption results in increased reflec-

tion. Muga, Brouard and Macias [26] contest Allcock’s claim, by suggesting a model

for a perfect absorbing potential which absorbs the incoming wave function in an

arbitrarily short time. For a limited range of momenta, they suggest that the arrival

time distribution could be thus obtained to arbitrary accuracy. As will see below

Aharonov et al. also suggest a model for a perfect detector [27]. However, when

they subsequently attach the system to a clock, a time uncertainty is introduced.

Allcock’s claim that one cannot obtain an arrival time distribution in the limit

V → ∞ is challenged by several authors, who believe that a realistic distribution

can be obtained by normalizing the small amount of probability which is absorbed

in this limit. We will discuss this further below.
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4.1.2 Scattering methods

In recent times there has been some interest in studying the arrival time problem

with a more realistic detector model. A recent attempt has been made to describe

how the arrival time at x = 0 of an atom travelling to the right can be measured by

illuminating a region x ≥ 0 with a laser [10,28–30]. Its arrival time in this case will

be taken as the time at which the first photon is emitted from the atom within the

illuminated region. To model this, we make use of results from quantum optics. If

we think of the incoming atom as being a two-level system, then the Hamiltonian

for the motion through the laser field of the atoms for which no photon has been

detected is given by

Ĥ =
p̂2

2m
+

Ωθ(x̂)

2
(|1〉 〈2|+ |2〉 〈1|)− i

2
γ |2〉 〈2| (4.8)

Here, |1〉 and |2〉 are the ground state and excited state of the atom respectively,

Ω is the Rabi frequency, which parametrizes the strength of the coupling between

levels, and γ is the inverse lifetime of the state |2〉. Again, we simply have to solve

the Schrödinger equation for this Hamiltonian in the regions x ≥ 0 and x < 0, and

match conditions at x = 0. This will enable us to obtain an arrival time distribution

as the negative time derivative of the norm as outlined in section 4.1.1. As there is

effectively a step potential at x = 0, this will cause both a transmitted and reflected

component of the wave function. There will also be solution for both the |1〉 and

|2〉 states. The calculations are quite involved, but one ultimately obtains

Π(T ) = γ

∫ ∞
−∞

dx |ψ(2)(x, t)|2, (4.9)

where ψ(2)(x, t) is the wave function of the excited state. (Note that ψ(2)(x, t) is a

function of both γ and Ω.) Hence the first photon emission distribution is the decay

rate multiplied by the probability of finding the atom in the excited state. There

are two reasons why this distribution differs from the ideal case - reflection of the

wave packet and delay in detection.

40



This is, of course, similar to what pertains for Allcock’s complex potential. The

equivalent of modifying the potential in that case if modifying the decay rate γ and

the Rabi frequency Ω. The solution for the wave functions is dependent on both of

these parameters. One finds that the effect of sending γ →∞, while keeping Ω fixed

at a constant value, is to send the reflection coefficient to zero, but also to decrease

the photon absorption by the atom, and hence increase the detection delay. If, on

the other hand, one keeps γ/Ω constant, sending γ →∞ results in total reflection of

the wave packet [28]. Hence we have the same dilemma as with Allcock’s example.

The solution is via the same type of deconvolution considered by Allcock. They

ansatz is made that the measured distribution is a convolution such that Π = W ∗

Πid, where W (T ) gives the probability density for the detection of the first photon

emitted by an atom at rest when driven by a laser. The procedure is fundamentally

similar to Allcock’s. Taking the limit γ → ∞ with Ω constant is just like sending

V → 0 in Allcock’s example, and the resulting distribution is deconvoluted to obtain

an ideal distribution. The result presented in [28] is

Πid(T ) = 〈ψ(T )| 1

2m
(p̂δ(x̂) + δ(x̂)p̂)|ψ(T )〉 (4.10)

which is, of course, the probability current density of Eq. 2.6.

In fact, as demonstrated in [31] and [32], in the large γ limit, we may manipulate

Eq. 4.8 so that the equation to be solved can be thought of as effectively a standard

one-channel Schrödinger equation with a complex potential given by V = −iΩ2/(2γ).

For a region of length L illuminated with a laser, the Hamiltonian is then given by

Ĥ = p̂2/(2m) − iV , with V = 0 outside of this region. The detection rate is then

given by

Π(T ) = 2V

∫ L

0

dx |ψ(x, t)|2. (4.11)

Muga et al. [30] solve this in the V →∞ limit, where there is a great deal of reflection

due to the high potential. Defining p0 to be the initial average momentum, they
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hence normalize the distribution to give

ΠN(T ) =
Π(T )∫
dT Π(T )

=
1

mp0

〈ψ(T )|p̂δ(x̂)p̂|ψ(T )〉 , (4.12)

which is a new form for the arrival time distribution. In fact, this is (2/p0) 〈τ̂〉T ,

where τ̂ is called the kinetic energy density operator. This operator is clearly not

obtainable by reordering operators as with Π̂J and Π̂K in eqs. 2.10 and 2.11.

We have assumed that γ → ∞ to obtain this result, but it is experimentally

difficult to adjust the decay rate. However, Muga et al. demonstrate that even for

γ fixed, where we can no longer approximate the illuminated region as a complex

potential, it is possible to solve the full two-level problem and still obtain (2/p0) 〈τ̂〉T

by deconvolution [30].

4.1.3 Pulsed measurements

An interesting argument is provided by Echanobe et al. to demonstrate that the

result obtained for the arrival time distribution in Eq. 4.12 is also obtained if one

considers the pulsed detection in intervals of δT , where δT → 0 corresponds to the

condition V → ∞ [33]. They note that the propagator for pulsed measurements,

which periodically absorb the wave function by ’kicking’ it with an imaginary po-

tential, is given by Ûk(0, δT ) = exp(−iĤ0δT ) exp(−iV̂ δT ), whereas the operator for

the continuous potential is given by

Û(0, δT ) = exp(−i((̂H)0 + V̂ )δT )

= exp(−iĤ0δT ) exp(−iV̂ δT ) +O(δt2[V̂ , Ĥ0]).

(4.13)

As we saw, this propagator gives the distribution of Eq. 4.12 when normalized.

Numerical studies show that in the limit where δT → 0 and V →∞, the last term

on the RHS of Eq. 4.13 goes to zero, so that the distribution achieved by the pulsed

method is the same as that in Eq. 4.12. Since pulsed measurements at very small

intervals give rise to the Zeno effect, this result not only shows that reflection due
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to high continuous potentials is an expression of the Zeno effect, but that this effect

is not enough to stop us from obtaining a reasonable arrival time distribution. This

result also justifies an original argument by Allcock in [6] that a complex potential

was an adequate approximation to a pulsed measurement detector model.

4.1.4 Path integral approach with a complex potential

A recent approach to calculating the arrival time distribution in the presence of a

complex potential has involved employing path integrals in order to find expressions

for propagators in terms of δ(x̂) and p̂, thus enabling comparison with the results

obtained in chapter 2 and in subsequent chapters [34,35]. We shall here assume that

the particles are travelling to the left and that the potential is located in x < 0. We

begin by observing that the arrival time distribution in the presence of a somewhat

general potential V (x) = −iV0θ(−x)f(x) can be expressed as

Π(T ) = 2 〈ψ(T )|V (x̂)|ψ(T )〉 = 2V0

∫ 0

−∞
dx f(x) | 〈x| exp (−iĤT |ψ〉 |2 (4.14)

We now wish to express this in a form involving δ(x̂) and p̂. In order to do this, we

make use of a theorem about propagators called the Path Decomposition Expansion

(PDX), a proof of which can be found in [36]. Recall that we may use a path integral

approach to derive a propagator via

g(x1, T |x0, 0) = 〈x1|Û |x0〉 =

∫
Dx eiS (4.15)

where S is the action, and the integral is a weighted sum over the infinity of paths

from the spacetime points x0 and T = 0 to x1 at time T . According to the PDX

composition law, if we take an intermediate surface in spacetime between the start

and end points, we may express this sum over paths in terms of the restricted sum

over paths gr to the intermediate surface which never cross the surface, and the

sum over paths from the intermediate surface to the end point, which is given by

an unrestricted propagator. Taking the intermediate surface in our case to be the
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arrival point x = 0, we may express this composition law mathematically as

g(x1, T |x0, 0) =
i

2m

∫ T

0

dt g(x1, T |0, t)
∂gr
∂x

(x, t|x0, 0)|x=0. (4.16)

Hence since our propagator is, from Eq. 4.14,

g(x1, T |x0, t) = 〈x1| exp(−iĤ(T − t))|x0〉 , (4.17)

where Ĥ = Ĥ0 − iV0θ(−x)f(x), we may express it in an alternative form using

Eq. 4.16. It may be shown the method of images [37] that

∂gr
∂x

(x, t|x0, 0)|x=0 = 2
∂g

∂x
(0, t|x0, 0)θ(x0) (4.18)

so that we may easily calculate that

g(x1, T |x0, t) = − 1

m

∫ T

0

dt 〈x1| exp(−iĤ(T − t)δ(x̂)p̂ exp(−iĤ0t|x0〉 . (4.19)

We may now insert this into Eq. 4.14, rearrange, and change variables from t and t′

to s = T − t and s′ = T − t′ to obtain

Π(T ) =
2V0

m2

∫ T

0

ds

∫ T

0

ds′
∫ 0

−∞
dxf(x) 〈0|exp(iĤ†s′)|x〉 〈x| exp(−iĤs)|0〉×

× 〈ψ| exp(iĤ0(T − s′))p̂δ(x̂)p̂ exp(−iĤ0(T − s))|ψ〉 .
(4.20)

The p̂δ(x̂)p̂ structure emerges from the observation that δ(x̂)Âδ(x̂) = δ(x̂) 〈0|Â|0〉.

We already notice the structure of the last term is similar to that obtained via the

scattering method above. We may now take either of the two limits suggested by

Allcock in order to obtain a V0-independent term, namely V0 →∞ and V0 → 0. In

the first case, the relationship δT ∼ (V0)−1 suggests near perfect resolution, whereas

in the latter case we would expect to obtain an ideal distribution by deconvolution

as suggested by Eq. 4.6. Let us therefore take each limit, motivated by the observa-

tion in [30] and [33] that distributions can be obtained in the high V limit despite
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Allcock’s objections.

Starting with the limit V0 → ∞, we note that due to the V0 in the Ĥ term, the

integrals over s and s′ will be concentrated around s = 0 and s′ = 0. Hence we may

estimate that

Π(T ) = C 〈ψ| exp(iĤ0T )p̂δ(x̂)p̂ exp(−iĤ0T )|ψ〉 (4.21)

where C is constant due to the large V0 value. It is now possible by a further

application of the path integral approach to calculate C exactly, so that the final

expression is

Π(T ) =
2

m3/2V
1/2

0

〈ψ| exp(iĤ0T )p̂δ(x̂)p̂ exp(−iĤ0T )|ψ〉

=
2

m3/2V
1/2

0

〈ψ(T )|p̂δ(x̂)p̂|ψ(T )〉 .
(4.22)

This coincides with the value obtained in the V0 → ∞ limit obtained via the scat-

tering method in section 4.1.2 above.

In the limit that V0 → 0, we may make the approximation that

〈x| exp(−iĤs)|0〉 ≈ 〈x| exp(−iĤ0s)|0〉 exp(−V0s) =
( m

2πis

)1/2

exp

(
imx2

2s
V0s

)
.

(4.23)

The resulting integral is complicated but achievable, as long as we assume that

V0T � 1, and the result is

Π(T ) = 2V0

∫ T

0

dt exp(−2V0(T − t)) 1

2m
〈ψ(t)|(p̂δ(x̂)Σ(p̂) + Σ†(p̂)δ(x̂)p̂)|ψ(t)〉 ,

(4.24)

where Σ(p̂) = p̂/(2m(Ĥ0 + iV0))1/2. In the low V0 limit, this reduces to p̂/|p̂|, which

is the momentum sign function - i.e. −1 for particles travelling to the left. We

notice that the resulting distribution conforms to the form for a convolution given

in Eq. 4.6, and hence we obtain

Πid(T ) =
−1

2m
(p̂δ(x̂) + δ(x̂)p̂), (4.25)
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which is of course the same as the probability current density given in Eq. 2.10, up

to a sign convention. An interesting point here is that we seem to have derived a

probability distribution with a detector model which may be negative for certain

values due to the backflow effect. This may be due to some of the approximations

made when taking the V0 → 0 limit. We may still reasonably take this as an

approximate probability distribution [35].

4.1.5 Other detector methods

There have of course been many other attempts to obtain arrival time distributions

using model detectors. Halliwell [38] explains that a realistic detector model must

include a certain irreversibility. Standard QM, where evolution is modelled by uni-

tary operators, is fundamentally reversible. If we model a detector as a two level

system where detection implies a transition from one level to another, then it is pos-

sible that the transition could reverse itself. Since realistic detectors are effectively

irreversible, Halliwell models a two level detector (with levels |0〉 and |1〉) in the

presence of an environment, such that

Ĥ = Ĥ0 + Ĥd + Ĥε + V (x)Ĥdε, (4.26)

where the RHS is the Hamiltonian of the particle, detector and environment, and

the interaction between the particle and environment respectively. Modelling the

environment as a collection of harmonic oscillators, and using the master equation

for the time-evolution of this system yields, for a pure state

|Ψ(T )〉 = exp(−iĤ0T − γV T/2) |Ψ(0)〉 , (4.27)

where γ is some parameter. This term is derived from a consideration of the entire

system above, and justifies the previous use of complex potentials to model detectors.

In this context, probabilities for detection in an interval [0, T ] are derived. Hence,

this method mirrors the modelling of detectors with a complex potential, but has
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the added benefit of including a realistic irreversibility in the system.

In the context of the fluorescence model described in section 4.1.2, another method

was introduced called operator normalization. We saw in Eq. 4.12 that in the pres-

ence of reflection, one can normalize the distribution in order to get

ΠN(T ) =
Π(T )∫
dT Π(T )

. (4.28)

Another way to normalize, according to [10], is on the level of the Π̂ operators whose

expectation values give arrival time distributions. Let us define a detection proba-

bility operator B̂ such that its expectation value over incoming states is 〈ψin|B̂|ψin〉

= total probability for detection. Then we may normalize the operator Π̂ whose

expectation value gives the unnormalized distribution (Π(T ) in Eq. 4.28) to get

Π̂ON = B̂−1/2Π̂B̂1/2, so that the expectation value of this quantity automatically

gives us a normalized distribution. This corresponds in an experimental situation

to passing the incoming waves through an initial potential in order to appropriately

filter them. The upshot of this method is that one may mathematically show that

in the limit V →∞, one obtains Kijowski’s distribution.

4.2 Clocks

In this section we will summarize the approach to the arrival time problem using

quantum clocks and, state the features of two examples [27] considered by Aharonov

et al. Then we will describe in detail a particular calculation of arrival time distri-

butions using a model clock given in [39]. A clock is defined by Peres as a “system

which passes through a succession of states at constant time intervals” [40]. The

idea behind a quantum clock is that it is coupled to whatever system we are inter-

ested in, and the interaction causes the clock to keep a record of some dynamical

time variable of the system in question. The Hamiltonian of the system becomes

Ĥ = Ĥ0 + Ĥclock with a certain region, and another variable y is introduced to

record the state of the clock. If the clock Hamiltonian turns off at the arrival point,
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the idea is that we may solve the Schrödinger equation, and since the clock stops

evolving we may use its final state in the limit T →∞ to obtain a time-independent

distribution Π(y). This will give us the arrival time. Aharonov et al. [27] looked at

several toy models of clocks in an attempt to understand the uncertainties involved

in obtaining an arrival time distribution. They begin by looking at simple linear

model where Ĥclock = θ(−x̂)p̂y, where y is the clock variable whose evolution can

be associated to the movement of a pointer on the clock. Aharonov et al. solve the

Schrödinger equation with this Hamiltonian and demonstrate that the peak of the

distribution y(k) for a wave packet coincides in the classical limit with the classical

arrival time. They discover, however, a fundamental limitation on the accuracy of

the clock given by 〈E〉∆T > 1, where 〈E〉 is the average energy of an incoming

wave packet, due to the occurrence reflection.

Another system they describe models a clock and a detector together, where the

detector triggers the clock to turn off once the particle is detected. This trigger is

given as a two level spin system, where |↑z〉 corresponds to the clock being on and

|↓z〉 to the clock being off. The Hamiltonian of the particle and trigger is given by

Ĥtrigger = Ĥ0 + α(1 + σx)δ(x̂). In the limit α → ∞, the repulsive Delta function

cause total reflection of the incoming wave if the spin state is |↑x〉 and has no effect if

it is |↑x〉. Given the relationship between |↑x〉 / |↓x〉 and |↑z〉 / |↓z〉 from elementary

QM, we may write the evolution of a system of an initial wave state |ψ〉 with an ’on’

clock |↑z〉 in terms of transmitted and reflected wave functions as

|ψ〉 |↑z〉 →
1

2
|↑z〉 (|ψref〉+ |ψtr〉) +

1

2
|↓z〉 (|ψref〉 − |ψtr〉). (4.29)

Hence the detector turns the clock off with probability 1/2. It is then possible to

include an arbitrary number of detectors N , which means that the probability of

at least one of the N spins flipping becomes 1 − 2−N . Hence the detector may be

made arbitrarily accurate. Aharonov et al. use this model to refute Allcock’s claim

that one cannot absorb a particle in an arbitrarily short time. They now couple this

system to a clock given by Ĥclock = (1+σz)p̂y. They again show that an uncertainty
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arises due to the clock. Hence while there may be perfect detectors, one must then

couple them to a clock which reintroduces an uncertainty.

We now look in detail at a model clock studied in [39] by Yearsley et al.

4.2.1 Clocks with path integral methods

Yearsley et al. use a clock model in conjunction with the type of path integral

techniques we saw in section 4.1.4, in an attempt to extract a reasonable arrival time

distribution [39]. They begin by considering a Hamiltonian for the combined system

of a particle and model clock: Ĥ = Ĥ0 + λθ(x̂)Ĥclock. The last term describes the

interaction between the clock and the particle. We can now consider this coupling

in two regimes: the weak case, where E � λε, E being the characteristic kinetic

energy of the particle; and the strong case, where E � λε. We may think of these

as being similar to the conditions V → 0 and V →∞ respectively for the complex

detector models given above. As we can see, for a particle in x > 0 travelling to the

left, this interaction continues until the particle reaches the arrival point, at which

point the clock stops and the time is recorded by the position of the clock pointer

variable. To obtain an arrival time distribution, let us begin by assuming that the

clock Hamiltonian may be written as

Ĥc =

∫
dε |ε〉 〈ε| , (4.30)

where the |ε〉 are eigenvalues of the clock Hamiltonian which form an orthonormal

basis. We now take the pointer variable of the clock to be y, and the total system

of clock and particle to be initial in the state |Ψ0〉 = |ψ0〉 |φ0〉, with the kets on the

RHS representing the particle and the clock respectively. We may then get the total

wave function as a function of time by calculating

Ψ(x, y, T ) = 〈x| 〈y| exp(−iĤT |ψ0〉 |φ0〉

=

∫
dε 〈y|ε〉 〈ε|φ0〉 〈x| exp(−iĤ0Tiλθ(x̂)εT )|ψ0〉

(4.31)
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This will enable us to calculate a probability distribution for y in the limit that

T → ∞, and since the value of y should be frozen in place at the arrival time, we

can obtain an arrival time distribution. Such a distribution would be given by

Π(y) =

∫ ∞
−∞

dx |Ψ(x, y, T )|2. (4.32)

We now wish to solve for the propagator using the same kind of path integral

techniques we saw previously. Previously, we assumed that the potential entered

the Schrödinger equation after a particle entered the region x < 0 and sought to

solve for the propagator accordingly. This time, we assume that the extra term

in the Hamiltonian enters the Schrödinger equation only in the period before the

crossing. Hence if we consider our Hamiltonian to be of the form Ĥ = Ĥ + V0θ(x̂),

we find that the same calculation that led to Eq. 4.19 now gives us

g(x1, T |x0, t) = 〈x1| exp(−iĤT |x0〉

=
1

m

∫ T

0

dt 〈x1| exp(−iĤ(T − t)δ(x̂)p̂ exp(−i(Ĥ0 + V )t|x0〉 .
(4.33)

In this case, contrary to Eq. 4.19, we note that we still have the V in the second

exponential due to the differing θ-function employed in this case.

Now let us make the assumption that V = λε� E in order to consider the weak

coupling case. Let us look at Eq. 4.31, and note that we can use Eq. 4.33 to obtain

Ψ(x, y, T ) =

∫
dε 〈y|ε〉 〈ε|φ0〉

∫ T

0

dT×

× 〈x| exp(−i(Ĥ0 + λεθ(x̂))(T − t)δ(x̂)p̂ exp(−iĤ0 + λεt)|ψ0〉
(4.34)

Now we can use a simplifying assumption due to the weak regime. Recalling that

δ(x̂) = |0〉 〈0|, we note that we have in this equation the term 〈x| exp(−i(Ĥ0 + λεθ(x̂))(T − t)|0〉.

This is a propagator from x = 0 to x > 0. Although this propagator is a sum over

all possible paths, including those which cross the point x = 0 many times, the small

λε assumption allows us to assume most of the contribution will come from more
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direct propagation, so that we may neglect the effect of the potential-type term.

Hence 〈x| exp(−iĤ(T − t)|0〉 ≈ 〈x| exp(−iĤ0(T − t)|0〉.

We can now calculate the distribution Π(y) defined in Eq. 4.32. Using similar

techniques to those in section 4.1.4, the distribution can be calculated to be

Π(y) =
1

m2

∫
dε dε′ 〈φ0|ε′〉 〈ε|φ0〉

∫ T

0

dt dt′×

× 〈ψ0| exp(i(Ĥ0 + λε′)t′)p̂δ(x̂)p̂ exp(−i(H0 + λε)t)|ψ0〉 〈0| exp(−iĤ0(t′ − t)|0〉 .
(4.35)

The result of this expression now relies crucially on taking T →∞ in the integration

limit. These integrals can then be done to obtain the form

Π(y) =

∫ ∞
0

dt |Φ(y, t)|2(
−1

2m
) 〈ψ(t)|δ(x̂)p̂+ p̂δ(x̂)|ψ(t)〉 (4.36)

which once again gives us the convolution form of Eq. 4.6. The Φ term depends

on the clock wave function, and the remainder is of course the probability current

density once again. Hence we have used a clock with weak coupling to obtain the

same result as in the low V limit for the detector model above.

Naturally, we may now seek to obtain the strong coupling form of Π(y). The

calculation is again rather involved, but suffice it to say that for the case Ĥc = p̂y,

we can take suitable approximations and the limit T →∞ in order to obtain

A 〈ψ0| exp(iĤ0y/λ)p̂δ(x̂)p̂ exp(−iĤ0y/λ)|ψ0〉 , (4.37)

where A is a constant. This again, of course, gives us the kinetic energy density with

t = y/λ. It is also shown in [39] that this applies for more general clock models.

4.3 Summary of detectors and clocks

We now emphasize the fact that we have obtained similar results for a variety of

methods. A recurring theme first noted by Allcock is that arrival time distributions

can most suitably be obtained in limits V → ∞ and V → 0 or equivalent. When
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we send V → 0 in the complex potential model, which corresponds to the low

emission probability limit in the fluorescence model and the weak coupling regime

in the clock model, we obtain the expectation value of the probability current for

the arrival time distribution. Allcock claimed that the V → ∞ regime should be

rejected due to excessive wave function reflection at the potential boundary, but we

have seen that subsequent methods have normalized the small transmitted current

in order to obtain results proportional to the kinetic energy density. It seems, then,

that many methods have challenged the suggestion that an ideal distribution cannot

be obtained due to uncertainty effects.

The fact that different detector models and arbitrary clock models lead to the

same results in these limits suggest that it is reasonable to deduce that these results

are generically true. We also note that in one limit we obtain the probability current

as our probability density. The fact that this is often negative justifies the increasing

interest shown in the backflow effect in recent years.
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5 Decoherent histories

The decoherent histories approach considers a closed quantum system in terms of a

set of histories of the system, and attempts to assign probabilities to the different

histories. However, if we wish to know the position of a particle at a series of times

so that we can define its history, we may think of it as being similar to setting up

a series of double slits to measure the particle’s position at the each time step [1].

This helps us to understand why there will, in fact, be interference between different

histories. The result is that one cannot simply add up probabilities for each history

to obtain a total probability of 1. There are, however, some situations in which one

might group together sets of histories - called ’coarse graining’ - so that we achieve

disjoint and additive probabilities for distinct groups of histories. We may then

treat them as normal probabilities and hence define a probability distribution. In

this case, the histories are said to be ’decoherent’. The applicability of this approach

to the time of arrival problem is obvious, and is explored below.

We shall begin by taking a brief look at one of the first such attempts to derive

a time of arrival distribution due to Yamada and Takagi. We shall discover that

they reach a negative conclusion regarding the possibility of defining a time of arrival

distribution. We will see that this issue has recently been solved by a consideration of

the Zeno effect. A recent derivation of a time of arrival distribution using decoherent

histories is then presented in detail.

5.1 A brief account of Yamada and Takagi’s decoherent

histories approach

An early attempt to investigate the time of arrival concept via the decoherent his-

tories approach was that of Yamada and Takagi [41–43]. They use path integral

techniques in order to investigate the propagation of a particle from the 1+1 di-

mensional spacetime position A = (XA, TA) to B = (XB, TB). They described the

motion between these two points with a propagator defined as a familiar sum over
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paths Φ(B;A) =
∑

A→B e
iS(XT ), which we may think of a sum of histories of the

system going from A to B. For a wave function, the evolution is determined by the

equation

ψ(B) =

∫ ∞
−∞

dXAΦ(B;A)ψ(A). (5.1)

In accordance with the standard rules of QM, we may observe that at over a surface

of constant time TB, the normalization condition will hold for space wave functions:

∫ ∞
−∞

dXB |ψ(B)|2 =

∫ ∞
−∞

dXB

∣∣∣∣∫ ∞
−∞

dXA Φ(B;A)ψ(A)

∣∣∣∣2 (5.2)

Let us now consider an general intermediate surface S between A and B - it may

be constant T or constant X or a mixture of both which is divided into different

section of length ∆l. We wish to consider only a contribution to the propagator

which is a sum over paths travelling through the surface an odd number of times

through a certain sequence of subsections ∆ln. It may cross over and back many

times. We now wish to assign a probability of the set of histories given by this

particle sequence of crossings so that

P (∆ln,S) =

∫ ∞
−∞

dXB

∣∣∣∣dXA

∫
∆ln

dλ Φn(B;λ,S, A)ψ(A)

∣∣∣∣2 , (5.3)

such that ∫
∆ln

dλ Φn(B;λ,S, A) =
∑

A→∆ln→B

eiS[X(T )]. (5.4)

Two conditions are now given such that these probabilities can be additive and

disjoint as required:

Φ(B;A) =
∑
n

∑
∆ln

∫
∆ln

dλ Φn(B;λ,S, A); (5.5)

Re

∫
dXB

∫
dXA

∫
dX ′A Φ∗m(D;λ;A)Φn(B;λ′;A′)ψ∗(A)ψ(A′) ∝ δmnδ(λ− λ′).

(5.6)

The latter condition is clearly the condition for decoherence between histories.
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When the intermediate surface S is taken to be a constant time surface, Yamada

and Takagi demonstrate that one can define sets of propagators which satisfy these

conditions. This is consistent with standard QM where a distribution for a wave

function is obviously definable at constant time. The question which we are inter-

ested in is that of a constant x surface at x = 0. The propagators in this case are

calculated by a random walk method since we are dealing with time intervals rather

than space intervals on S. After much mathematical manipulation, they deduce that

only for a special case is it possible to define the probability of a particle arriving

for the first time at x = 0 within a finite time interval. This is for a wave function

antisymmetric about x = 0, and in this case the probability of crossing is zero. It

goes without saying that this result is not physical.

Subsequent attempts were made to address this problem. For example, Halliwell

and Zafiris [44] sought to couple the system to an environment made of harmonic

oscillators in order to induce decoherence. They claimed to induce decoherence of

states by this method, which had a sensible classical limit. However, this claim was

later shown to be incorrect (see footnote in [35]).

Recent work has suggested the reason for the failure of Yamada and Takagi to

produce sensible results via the decoherent histories method [35, 45]. As we saw

above, Yamada and Takagi use path integrals to obtain the propagators Φ(B,A). In

particular they use a method similar to the path decomposition expansion described

in section 4.1.4, in which the total propagator is expressed in terms of a composition

law involving a restricted propagator, which describes propagation on one side of

x = 0 without every crossing over. Halliwell aad Yearsley discovered a fundamental

problem with such path integrals: if we think of the derivation of path integrals

in terms of time slices, the condition that the width of the time slices goes to zero

corresponds to a continuous monitoring of the system. This means that restricted

propagators in x > 0 fall foul of the Zeno effect, which as we saw in section 2.4 causes

continuously monitored states within a Hilbert space to remain within that Hilbert

space. A naive application of path integrals in the decoherent histories approach
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can therefore lead to unphysical results. In particular, this explains why the only

case producing a probability for crossing x = 0 in Yamada and Takagi’s analysis

produces a zero probability. The results of Halliwell and Zafiris also suffer from an

inadequate appreciation of the Zeno effect. We will now see how recent work has

been done which takes account of this effect, and consequently achieves a sensible

arrival time distribution.

5.2 Halliwell and Yearsley’s model

5.2.1 The projector formalism for decoherent histories

Halliwell and Yearsley [35] were the first to demonstrate that imposing the condition

of decoherence recovers standard values for the arrival time distribution seen in

chapter 4. In their approach, the projector formalism is used to obtain an arrival

time distribution. We therefore review its basic principles [1, 35,46].

We can characterize a quantum mechanical history by a class operator, Cα, which

is made up of a string of projectors P onto the various possibilities at each time

instant. Hence we may write

Cα = Pαne
−iĤ(tn−tn−1)Pαn−1 . . . Pα1 . (5.7)

We see that the class operator has the structure of a projector onto a subspace

followed by standard unitary time evolution across a finite time step followed by

another projection etc. between the initial and final times. We can now clearly see

from the sum rules of orthogonal projectors that

∑
α

Cα = e−iĤt, (5.8)

where t is the total time interval. Each history can be assigned a probability via

p(α1, α2, . . .) = p(α) = Tr(CαρC
†
α), (5.9)
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but these histories need not necessarily obey the additivity property of probabilities

due to the quantum interference of the histories. We may quantify the interference

between histories in term of the decoherence functional

D(α, α′) = Tr(CαρC
†
α′). (5.10)

We want this quantity to go to zero in order for there to be decoherence, and the

consequent possibility of defining disjoint and additive probabilities. We may also

define the so-called quasi-probability which is

q(α) = Tr(Cαρe
iĤt). (5.11)

Note that we may thus show that

q(α) = p(α) +
∑
α 6=α′

D(α, α′). (5.12)

So when there is decoherence between histories, we have that q(α) = p(α). Unlike

for a regular probability, in the absence of decoherence it’s possible for q(α) to be

negative. These facts will be useful later on.

5.2.2 The Zeno effect and decoherent histories

In order to consider the arrival time problem, we consider a situation where a particle

is in x > 0 travelling leftwards. We my define two class operators Cc and Cnc

corresponding to histories which cross x = 0 within the time interval [0,t], and those

which do not respectively. Halliwell and Yearsley now note a serious problem with

previous definitions of class operators, if the time interval ε between projections is

taken to zero. In the limit ε → 0, the class operators fall foul of the Zeno effect,

as described in section 5.1 above, since this limit of continuous projection onto the

positive x-axis corresponds to continuous measurement of the particle. Indeed, one

may calculate that the probability for not crossing obeys pnc → 1 in this limit.
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The solution suggested in this case is to recall the result of Echanobe et al., pre-

sented in section 4.1.3 above, which demonstrated that constant measurement at

intervals ε within a region may be approximated as a continuous potential through-

out the region. We may therefore define the Cnc = exp(−iĤ0t−V0θ(−x̂)t), as in [33].

Now comparing with Eq. 5.8, we obtain the relation

e−iĤ0t = Cc(t) + Cnc(t). (5.13)

Using this relation with our definition of Cnc(t) gives us

Cc(t) = e−iĤ0t − e−iĤ0t−V0θ(−x̂)t. (5.14)

5.2.3 Infinitesimal class operators

Now let us divide the interval [0, t] into n steps of length ε. By Eq. 5.13 we have

e−iĤε = Cc(ε) + Cnc(ε). We may now obtain a useful and instructive expression for

e−iĤt by noting that:

e−iĤt = (e−iĤε)n

= (e−iĤ0ε)n−1Cnc(ε) + (e−iĤ0(t−ε))Cc(ε).

(5.15)

We may repeatedly substitute for e−iĤε to obtain

e−iĤ0t = Cnc(t) +
n−1∑
k=0

e−iĤ0(t−(k+1)ε)Cc(ε)Cnc(ε). (5.16)

Now, taking the infinitesimal ε limit, we obtain via suitable substitution and ap-

proximation for the class operators

e−iĤ0t = Cnc(t) +

∫ t

0

dt′ e−iĤ0(t−t′)V e−iĤ0t−V0θ(−x̂)t. (5.17)
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Hence for any time interval, we may define the crossing class intervals

Ck
c (t) =

∫ tk+1

tk

dt′ e−iĤ0(t−t′)V e−iĤ0t−V0θ(−x̂)t =

∫ tk+1

tk

dt′ Cc(t
′). (5.18)

5.2.4 Obtaining an arrival time distribution

Let us make the assumption that all energy scales E � V0, and attempt to derive

an arrival time distribution. We now recall the definition of probabilities in sec-

tion 5.2.1. Applied to our coarse-grained crossing class operators in Eq. 5.18, we

obtain that the probability of crossing in a time interval [tk, tk+1] is p(tk, tk+1) =

Tr(Ck
c ρ(Ck

c )†) and the quasi-probability is q(tk, tk+1) = Tr(Ck
c ρe

iĤt). Now consider

the quantity

〈x|eiĤ0tCc(t)|ψ〉 = V0 〈x|eiĤ0tθ(−x̂)e−iĤ0t−V0θ(−x̂)t)|ψ〉 . (5.19)

This may be calculated using the same path integral techniques which we saw in

section 4.1.4 leading to Eq. 4.25, assuming that the value of V0 is very small. The

result is that we may express the coarse-grained crossing operator as

eiĤ0tCk
c =

∫ tk+1

tk

dt′
−1

2m
(p̂δ(x̂) + δ(x̂)p̂). (5.20)

If we then calculate the quasi -probability using this expression, we have

q(tk, tk+1) = Tr(Ck
c ρe

iĤt) =

∫ tk+1

tk

dt′
−1

2m
〈ψ|(p̂δ(x̂) + δ(x̂)p̂)|ψ〉 , (5.21)

which gives us our probability as an integral in terms of the probability density

current Π̂J . This is, of course the same result we obtained for many of the detector

methods we examined in the V0 → 0 regime. But this is a quasi-probability, and

as Eq. 5.12 tells us this will only be equal to an actual (positive) probability in the

case that there is decoherence. This seems to give us some insight into the backflow

effect, since it suggests that the negativity of current will only lead to negative values
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when there is no decoherence - i.e. when we have not sufficiently coarse-grained the

probabilities by integrating over a time integral in order to induce decoherence. The

only thing that remains is to show that there is decoherence between histories. In

fact we must show that two types of decoherence are satisfied:

Dkk′ = Tr(Ck
c ρ(Ck′

c )†) = 0;

Dk,nc = Tr(Ck
c ρ(Cnc)

†) = 0.

(5.22)

Here, k and k′ represent different coarse-grained sets of histories. For a model

Gaussian wave packet, for example, Halliwell and Yearsley show that as long as the

time interval within which one measures arrival time does not approach the Zeno

time, then decoherence is satisfied. Zeno time is defined as mσ/|p0|, where σ is the

wave packet width and p0 is its momentum. Hence there is again a time uncertainty

associated with arrival time measurement.
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6 Conclusion

In the foregoing, we have examined many of the main strands in recent research

into the time of arrival concept in quantum mechanics. It is clear that this is a

hugely active and complicated area of research, of which we were only able to give

a summary.

In chapter 2 we saw how some commonly occurring candidates for the arrival

time distribution are derived. The probability density current was suggested by a

simple quantization of the classical arrival time probability for an ensemble, and

Kijowski’s distribution was derived by considering a group of axioms limiting the

form that an arrival time distribution might reasonably take. In subsequent chap-

ters, both of these candidates recur frequently, suggesting both are plausible arrival

time distributions.

In chapter 3, we looked at many different attempts to define an arrival time opera-

tor canonically conjugate to the Hamiltonian. We found that, for many authors, the

semibounded nature of the Hamiltonian was considered an impediment to creating

a straightforward time of arrival operator with continuous eigenvalues across the

entire real line. The most often adduced candidate for an arrival time operator, the

Aharonov-Bohm operator, was produced by a symmetrization of the classical term

for arrival time. It was found that this operator is non-self-adjoint, requiring more

sophisticated methods to obtain an arrival time distribution. We saw how some

authors attempted to modify the Aharonov-Bohm operator to make it self-adjoint.

However, this involved excluding certain momentum states from the domain of the

operator. The theory of POVMs sought to solve the issue by noting that a self-

adjoint operator is not necessary in order to define an arrival time distribution. It is

sufficient that it is maximally symmetric. We also looked at a refutation of Pauli’s

argument against the possibility of defining suitable self-adjoint time operators. We

saw how a self-adjoint operator with a discrete spectrum could be defined in a spa-

tially confined domain, and that taking the size of this domain to infinity resulted

in convergence of the discrete arrival time distribution to Kijowski’s distribution.
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Regardless of the method used, it is obvious that defining a suitable arrival time

operator is highly non-trivial, and it may suggest the need to rethink or expand

upon the standard measurement theory of QM.

In chapter 4, we looked at several models of systems containing detectors and

clocks. We saw how Allcock was the first to suggest that a detector be modelled

with an absorbing complex potential, and that this idea has recurred ever since. A

more realistic detector model was described whereby the arrival time was obtained

as the time of emission of the first photon by an atom entering a laser field. A

method for using path integral techniques with a complex potential to obtain ar-

rival time distributions was also examined. And the use of a model clock to obtain

similar distribution was also described. In each case, we saw that in the limit of

high potential or strong coupling, we obtained a term proportional to the kinetic

energy density for the arrival time distribution, and in the opposite limit, we ob-

tained the probability current density. The remarkable frequency with which these

distributions recur suggests that they are generically true, and the fact that there

are different distributions for different regimes points to the difficulty of separating

an ideal distribution from the process by which it is measured. It will be interesting

to see what future research says about the role of the Zeno effect in the different

results for different regimes.

In chapter 5, we looked at the decoherent histories approach to defining arrival

times. We saw that early research using path integrals arrived at unphysical con-

clusions about the measurement of arrival times. We saw, however, that the most

successful application of the decoherent histories idea to arrival times solved this

problem by paying attention to the Zeno effect. Again the probability current den-

sity was obtained in a certain limit, giving further evidence for the validity of this

quantity as an arrival time distribution.

We note that a recurring theme in these investigations has been an uncertainty as-

sociated with the measurement of arrival time. In the detector models, for example,

we saw that the ideal distribution had to be obtained via a deconvolution from the
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actual measured distribution due to time delay. Aharonov et al. showed for several

clock models that there was a time uncertainty associated with the measurement

in each case. And in the decoherent histories approach, we saw that the Zeno ef-

fect meant that an uncertainty had to be introduced into arrival time measurement.

Indeed, the Zeno effect is an ongoing area of active research. It seems that it will

inevitably come into any discussion involving the use of path integrals or detectors,

and it is vital that it is fully understood for a wide variety of scenarios. In addition,

the backflow effect and the issue of negative probabilities is a vital area of study

given the recurrence of the probability current density throughout the literature.

Although we have focused on arrival time in this work, it is important to recognize

that it is not the only dynamical time variable of interest. For example, dwell time

or transit time is the time that a particle takes to traverse a particular region. The

question of how long a particle takes to tunnel through a barrier is an area of hugely

active research. The widely-accepted form for the dwell time operator is a self-

adjoint operator which commutes with the Hamiltonian. This avoids many of the

issues we see with the arrival time, and yet there are many complications relating

to this problem which could themselves fill a lengthy review. Suffice it to say that

there are many facets of time in quantum mechanics and each poses its particular

challenges.

Finally, we note that the conditions under which arrival time was generally ex-

amined in this review were very restrictive. Consideration of any problem in one

dimension should be a precursor to generalizing it to three dimensions. Furthermore,

we have generally dealt with free particles, without much consideration for the types

of complicated potentials which occur in real systems. Some of the methods out-

lined, such as Galapon’s work on operators, admit of straightforward generalizations

to scenarios with such potentials, while others, such as Kijowski’s derivation, do not.

Finally, it will be necessary to generalize this work to the relativistic regime in order

for it to be of universal application. Although some work has been done in this area

already, it will undoubtedly be a major focus of future research.

63



References

[1] G. Muga, R.S. Mayato, and I. Egusquiza, editors. Time in Quantum Mechanics

- Vol. I. Springer, Berlin, 2007.

[2] B.H. Bransden and C.J. Joachain. Quantum Mechanics. Pearson, New Delhi,

2011.

[3] V. Delgado and J. Muga. Arrival time in quantum mechanics. Phys. Rev. A,

56:3425, 1997, [quant-ph/9704010].

[4] J. Hilgevoord and D. Atkinson. Time in quantum mechanics. In C. Callender,

editor, The Oxford Handbook of Philosophy of Time. Clarendon Press, Oxford,

2011.

[5] G.R. Allcock. The time of arrival in quantum mechanics: I. Formal considera-

tions. Ann. Phys., 53:253, 1969.

[6] G.R. Allcock. The time of arrival in quantum mechanics: II. The individual

measurement. Ann. Phys., 53:286, 1969.

[7] G.R. Allcock. The time of arrival in quantum mechanics: III. The measurement

ensemble. Ann. Phys., 53:311, 1969.

[8] J. Kijowski. On the operator in quantum mechanics and the Heisenberg uncer-

tainty relation for energy and time. Rep. Math. Phys., 6:362, 1974.

[9] J.G. Muga and C.R. Leavens. Arrival time in quantum mechanics. Physics

Reports, 338:353, 2000.

[10] D. Seidel. Arrival times in quantum mechanics: Operational and quantum

optical approaches. PhD thesis, University of Göttingen, 2005.

[11] J.G. Muga, C.R. Leavens, and J.P. Palao. Space-time properties of free motion

time-of-arrival eigenstates. Phys. Rev. A, 58:4336, 1998, [quant-ph/9807066].

[12] A.J. Bracken and G.F. Melloy. J. Phys. A, 27:2197, 1994.

64



[13] J.M. Yearsley, J.J. Halliwell, R. Hartshorn, and A. Whitby. Phys. Rev. A,

86:042116, 2014.

[14] D. Bedingham and J.J. Halliwell. Phys. Rev. A, 89:042116, 2014.

[15] I.L. Egusquiza and J.G. Muga. Free motion time-of-arrival and probability

distribution. Phys. Rev. A, 61:012104, 1999, [quant-ph/9905023].

[16] Y. Aharonov and D. Bohm. Time in the quantum theory and the uncertainty

relation for time and energy. Phys. Rev., 122:1649, 1961.

[17] R. Giannitrapani. Positive-operator-valued time observable in quantu mechan-

ics. Int. J. Theor. Phys., 36:1575, 1997.

[18] N. Grot, C. Rovelli, and R.S. Tate. Time-of-arrival in quantum mechanics.

Phys. Rev. A, 54:4676, 1996, [quant-ph/9603021].

[19] J. Oppenheim, B. Reznik, and W.G. Unruh. Time-of-arrival states. Phys. Rev.

A, 59:1804, 1999, [quant-ph/9807043].

[20] J. Kijowski. Phys. Rev. A, 59:897, 1999.

[21] B. Mielnik and G. Torres-Vega. Time operator: the challenge persists. Concepts

of Physics, II:81, 2005, arXiv:1112.4198[quant-ph].

[22] P. Busch, M. Grabowski, and P.J. Lahti. Time observables in quantum theory.

Phys. Lett. A, 191:357, 1994.

[23] E.A. Galapon. Proc. R. Soc. Lond. A, 458:451, 2002.

[24] G. Muga, R.S. Mayato, and I. Egusquiza, editors. Time in Quantum Mechanics

- Vol. II. Springer, Berlin, 2007.

[25] E.A. Galapon, F. Delgado, J.G. Muga, and I. Egusquiza. Phys. Rev. A,

74:042107, 2005.

[26] J.G. Muga, S. Brouard, and D. Macias. Time of arrival in quantum mechanics.

Ann. Phys., 240:351, 1995, [quant-ph/9807066].

65



[27] Y. Aharonov, J. Oppenheim, S. Popescu, B. Reznik, and W.G. Unruh. Mea-

surement of time-of-arrival in quantum mechanics. Phys. Rev. A, 57:4130, 1998.

[28] J.A. Damborenea, I.L. Egusquiza, G.C. Hegerfeldt, and J.G.Muga. A

measurement-based approach to quantum arrival times. Phys. Rev. A, 66, 2002.

[29] J.A. Damborenea, I.L. Egusquiza, G.C. Hegerfeldt, and J.G.Muga. Atomic

time-of-arrival measurements with a laser of finite beam width. J. Phys. B: At.

Mol. Opt. Phys., 36:2657, 2003.

[30] J.G. Muga, D. Seidel, and G.C. Hegerfeldt. Quantum kinetic energy densities:

An operational approach. J. Chem. Phys., 122:154106, 2005.

[31] B. Navarro, I.L. Egusquiza, J.G. Muga, and G.C. Hegerfeldt. Optical atomic

detection by control of detuning and spatial dependence of laser intensity. J.

Phys. B, 36:3889, 2003.

[32] A. Ruschhaupt, J.A. Damborenea, B. Navarro, J.G. Muga, and G.C. Hegerfeldt.

Exact and approximate complex potentials for modelling time observables. Eu-

rophys. Lett., 67:1, 2004.

[33] J. Echanobe, A. Del Campo, and J.G. Muga. Disclosing hidden information in

the quantum Zeno effect: Pulsed measurement of the quantum time of arrival.

Phys. Rev. A, 77:032112, 2008.

[34] J.J. Halliwell. Path integral analysis of arrival times with a complex potential.

Phys. Rev. A, 77:062103, 2008.

[35] J.J. Halliwell and J.M. Yearsley. Arrival times, complex potentials and deco-

herent histories. Phys. Rev. A, 79:062101, 2009.

[36] J.J. Halliwell and M.E. Ortiz. Quantum mechanical composition laws in

reparametrization invariant systems. Phys. Rev. D, 48:195, 1993.

[37] A. Auerbach and L.S. Schulman. A path decomposition expansion proof for

the method of images. J. Phys. A, 30:5993, 1997.

66



[38] J.J. Halliwell. Arrival times in quantum theory from an irreversible detector

model. Prog. Theor. Phys., 102:707, 1999.

[39] J.M. Yearsley, D.A. Downs, J.J. Halliwell, and A.K. Hashagen. Quantum arrival

and dwell times via idealized clocks. Phys. Rev. A, 84:022109, 2011.

[40] A. Peres. Measurement of time by quantum clocks. Am. J. Phys., 48:552, 1980.

[41] N. Yamada and S. Takagi. Quantum mechanical probabilities on a general

spacetime surface. Prog. Theor. Phys., 85:985, 1991.

[42] N. Yamada and S. Takagi. Quantum mechanical probabilities on a general

spacetime surface: II. Prog. Theor. Phys., 86:599, 1991.

[43] N. Yamada and S. Takagi. Spacetime probabilities in nonrelativistic quantum

mechanics. Prog. Theor. Phys., 87:77, 1992.

[44] J.J. Halliwell and E. Zafiris. Decoherent histories approach to the arrival time

problem. Phys. Rev. D, 57:3351, 1998.

[45] J.J. Halliwell and J.M. Yearsley. Pitfalls of path integrals: Amplitudes for

spacetime regions and the quantum Zeno effect. Phys. Rev. D, 86:024016, 2012.

[46] J.J. Halliwell. A review of decoherent histories approach to quantum mechanics.

Annals of the New York Academy of Sciences, 755:726, 1995.

67


