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Abstract. This thesis has two aims: Firstly, it attempts to answer the following question:

What are the implications of the requirement that sets of behaviors allowed by quantum measure

theory should be closed under general physical operations? Secondly, it reviews the existing

literature and results relevant to this question. Following a brief and general introduction of

the background and motivation for such a project in Section 1, Sections 2- 5 will introduce the

reader to the concepts and formalism necessary to understand the thesis question. Section 6 is

an attempt to answer it in the light of the current state of knowledge. This section also contains

most of the original material. In particular, it discusses a proof that SPJQM/SPJQMb are

⊗-maximal under PPI and possible strengthenings thereof. Furthermore the axioms underlying

the above notions are discussed and related to the path integral interpretation behind quantum

measure theory. Section 7 discusses these results and their relevance to answering the thesis

question. Finally, Section 7.2 summarizes the findings of this work and suggests a number of

directions for future research implied by them.
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1. Introduction and Motivation

The interpretation of quantum theory remains one of the biggest topics in foundational

research. While remarkable progress has been made in formally developing the quantum me-

chanics of Heisenberg, Dirac and Schrdinger in the 1920’s and 1930’s into the impressively cor-

roborated standard model and beyond, no attempt to answer John Wheeler’s question “Why

the quantum?” could, as of yet, establish itself canonically. While answering this question may

be of interest for its own sake, it will also almost certainly be necessary to develop a satisfactory

theory of a unified quantum gravity. This is because the two basic building blocks of such a

unification, quantum theory and general relativity, seem utterly incompatible in a number of

ways.

Bell inequalities and non-locality. One of these concerns the propagation of effects over regions

of spacetime: While the principle that no effect propagates faster than the speed of light is

the resting stone of relativity theory, quantum mechanics allows for states in which a “spooky

action at the distance”, as Einstein has called it, is possible. These particular tensions between

relativity and quantum theory and the extent to which they involve incompatible accounts of

how effects are physically allowed to propagate between system in some spatiotemporal rela-

tionship can conveniently be studied via the concept of correlations: Consider two conditional

probability distributions P (a|x) and P (b|y) for two systems A and B. It For the moment it does

not matter whether one thinks of the sets {a}, {b} and {x}, {y} as possible states a, b of A and

B upon the occurrence of interaction events x, y or, operationally, as being an experimenter’s

meter readings a, b upon setting a measurement device to x, y. We then define the correlator

for a given x, y and finite sets {a}, {b} as

(1) Cxy :=
∑
a,b

a · b · P (a, b|x, y).

where P (a, b|x, y) is the joint probability distribution for the two distributions. Correlators

measure the strength of statistical dependence of the marginal distributions and if they are

uncorrelated, i.e. the sum of correlators is zero, then P (a, b|x, y) = P (a|x) · P (b|y), i.e. the

joint probability can be split into two entire independent distributions. For the case of the

standard EPRB-experimental setup, in which two spacelike separated parties Alice and Bob

share a bipartite system prepared in some state |ψ〉 which they can measure in two settings

each to obtain possible outcomes a, b = ±1, John S. Bell famously showed that the correlators

of every local, hidden variable theory have to satisfy certain simple inequalities, known as Bell

inequalities, namely [1]

(2) |Cxy + Cx′y + Cxy′ − Cx′y′ | ≡ S ≤ 2,

where S is called the CHSH-value and three similar inequalities are obtained by circulating the

LHS.
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Apart from very weak ones like the assumption of Alice and Bob’s free will to pick settings,

these inequalities can be derived based only on the assumption that

(3) P (a, b|x, y, λ) = P (a|x, λ)P (b|y, λ),

where λ is a hidden variable that represents a complete specification of the state |ψ〉 beyond the

possibly incomplete quantum state description. (3), known as Bell locality, states that the joint

probability distribution for the EPRB-setup is given by the product of the marginal distributions

if one has full access to the complete state λ of the system being prepared. Different ways of

breaking this condition into further assumptions are possible and have been discussed since Bell’s

first publication of it: These include parameter and outcome independence [2] or as a ”screening

off” condition resulting from the combination of a principle of Relativistic Causal Structure and

a form of Reichenbach’s Principle of Common Cause which states that correlations require causal

explanation [3]. In this case λ is identified with a full description of the causal past shared by

the margins, i.e. the intersection of their past light cones, see [4] for a discussion. What all

discussions share in common is to identiy (3) as expressing commitment to a combination of

locality and realism.

The paradigmatic example of how quantum mechanics allows for the violation of Bell locality

in the EPRB-setup is then given by the measurement of the axial spin of two spin-1
2 systems

and is quantum mechanically represented by the four projective sets formed by elements

Exa =
1

2
(1 + aαx · σ)

Eyb =
1

2
(1 + bβy · ρ),

(4)

where x, y ∈ {0, 1}, a, b ∈ {−1, 1}, αx, βy are 3-vectors that give the direction of measurement

for x, y and σ, ρ are the Pauli matrices. By preparing the systems in the singlet state |ψ−〉 and

choosing directions such that

α0 · α1 = β0 · β1 = 0

α0 · β0 = α0 · β1 = α1 · β0 = −α1 · β1 =
1√
2
,

the resulting correlators for this measurement violate the Bell inequalities.

Bell’s derivation articulates very clearly and generally the classical assumptions that are dis-

obeyed by quantum mechanics, and that were discussed already by Einstein, Podolsky and

Rosen in their 1935-paper [5]. Since experimental results, first by Aspect [6] but also more

recently, e.g. [7], confirm the quantum mechanical predictions (disregarding the notorious loop-

hole debate), this shows nature violates either realism or locality, or a peculiar mixture thereof,

as they appear in (3).

Bell’s result initiated research on the strength of correlations possible under the assumption

of physical principles or other formal conditions for general setups in which several parties are

space-like separated. This field of research is known as “non-locality”-research. A number of

important results here were the generalization of the Bell inequalities for more general scenarios,

with the ones discussed here corresponding to CHSH-inequalities [8] and Tsirelson’s exact result

for the maximal violations of quantum theory for CHSH-inequalities known as the Tsirelson’s

bound which is given by S ≡ 2
√

2 and produced also by the procedure above [9]. Finally,
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Figure 1. Schematic representation of the correlation bounds for the
EPRB-setup: S, S′ are the CHSH-values for two Bell inequalities, while the sets
L,Q,NS contain distributions consistent with locality, quantum mechanics

and the non-signalling requirements respectively (see Sec. 2.1).

Popescu and Rohrlich gave another boost to the field with their construction of probability

distributions for the EPRB-setup which maximally violate the Bell inequalities with S = 4 while

remaining consistent with relativity theory in the sense that they do not allow for superluminal

signalling. While all of these concepts will be discussed in more detail in Sec. 2.1, we can already

schematically represent these values for two CHSH inequalities in Fig. 1.

Contextuality. Bell’s results were in fact later given a new twist by the Kochen-Specker theorem

[10] in which it is proven that no hidden variable theory that assumes both λ to be independent of

a given measurement context and to assign values to every observable that could be measured on

the system at every moment can reproduce the predictions of quantum theory. In the standard

quantum mechanical formalism the reason for this is the non-commutativity of the observables

in terms of which [11] give an elegant and simple theorem reproducing the result.

Without going into any detail, it should be noted that since contextuality “attacks” hidden

variable theories directly and does not require spacelike separation of margins it is a more

general concept than non-locality. At the same time it is more difficult to study in that, for

example, principles such as the one of Relativistic Causal Structure cannot be used to motivate

the causal independence between margins as in the case of Bell locality (3). In this text we

will be mostly concerned with non-locality and connections to contextuality will be pointed out

where necessary.

Replacing by reconstructing. As we have seen, Bell arrived at his inequalities on the basis of

assumptions about the physical world that seem reasonable from everyday, i.e. classical, experi-

ence (ignoring for the moment the further subtleties one encounters when delacing Bell locality

further). With quantum mechanics things are the other way around. At least for the case of the
4



EPRB-setup, the Tsirelson bound tells us the exact limits of correlations but not the physical

principle(s) that yield(s) these limits. To seek physical principles, or simple formal conditions,

that produce the same correlation bounds as those of quantum theory then is a natural endeavor

and is the subject of “reconstructions” research which produces axiomatic derivations of the

quantum mechanical formalism.

Of course, despite its enormous degree of experimental corroboration, chances are that quan-

tum theory will be superseded, although any successor theory would have to produce predictions

and correlation bounds very close to the it. Nevertheless, this means that reconstructions that

produce quasi-quantum theories can be interesting in their own right if they are more intelli-

gible in terms of their physical content than quantum theory (conditional of course on their

performance in experiment).

In recent years, especially with the advent of quantum information theory, many such princi-

ples have been suggested, such as non-trivial communication complexity (NTCC) [12], Macro-

scopic Locality (ML) [13] (≡ Q1), no advantage for nonlocal computation [14] and local orthog-

onality (LO) [15] or information causality [16], see [17] for a review. However, most of these

are formulated operationally in terms of limits on the exchange of information between distant

experimenter having access to measurement devices and their output readings. Regardless of

the question whether these operational principles could, even in principle, can satisfyingly cap-

ture a theory’s physical content, they are certainly bound to lose their meaning in the extreme

scenarios for the description of which a unified quantum gravity is needed.

The Fine trio and conistent histories. One alternative reconstructive approach bases on a deep

result in non-locality known as Fine trio: In his [18], Fine proved that, for the EPRB-scenario,

the statements that

• P (a, b|x, y) satisfies the Bell inequalities,

• P (a, b|x, y) satisfies Bell locality (3) and

• there exists a probability measure P (ax, ax, by, by) over the whole space of possible out-

comes for all measurements such that it reproduces the correct experimental probabili-

ties, i.e.

(5) P (ax, by|x, y) =
∑
ax,by

P (ax, ax, by, by),

are equivalent. Here ax denotes the ath outcome for setting x, x the alternative setting and

similarly for y, by, by. An analogue trio holds true for more general scenarios as well [19].

The third statement, the existence of a well-defined joint probability measure, is of natural

interest to researchers in quantum gravity since, under the identification of elements of the space

of possible outcomes above with “histories” or possible space-time “paths” of a system to take,

it allows for the study of correlation limits as manifestations of the dynamics and kinematics

of path integral-type theories, which, due to their inbuilt Lorentz covariance, are much better

suited for quantum gravitational research than the above operational framework.

This is exactly the idea behind the histories approach to quantum theory which builds on

Feynman’s path integral formulation [20] and was first introduced by Griffiths, [21] and Hartle

[22]. In the context of non-locality research the interesting question for this kind of approach

then becomes how one can reconstruct a (quasi-)quantum theory that admits a histories inter-

pretation. As will be shown in Sec. 3, this naturally leads to quantum measure theory, which,
5



in a nutshell, is a histories based formulation of quantum theory in which the three members of

the Fine trio are replaced by a quantum generalized analogue.

Closure for many copies of nonlocal distributions. Even though the operational principles stem-

ming from information theoretic reconstructive research may be considered bad candidates for

the development of a unified theory of quantum gravity, the information theoretic approach

to the study of non-locality has certainly been fruitful, the PR-box being only one of many

examples. Another one are a number of insights obtained by a resource theoretic approach to

non-locality [23], in which the PR-box figures as a unit of non-locality [24] (and which should be

distinguished from the treatment of entanglement as a resource [25]). In any resource theory the

most natural question to ask is what states one can built from any number of identical copies of

the basic unit state by acting on them with the free operations available in that resource theory

(cf. LOCC) and by “wiring” them together in different ways.

Two important spin offs of asking this question about PR-boxes are, firstly, that quantum

correlations require multipartite information principles [26], i.e. it is impossible to encompass

all possible quantum correlations by reconstructive principles that are only bipartite, at least

information theoretically; Secondly, that from the perspective of reconstructing quantum theory

it seems clear that if some distribution is consistent with a fundamental principle about the

universe, so should several copies of it. This gives rise to the notion of “closure” of sets of

distributions [27], which will be discussed in detail in Ch. ??.

For somebody working quantum measure theory to which this last requirement sounds reason-

able, it is then of interest to study how it and notions related to it affect the sets of probability

distributions deemed physical by quantum measure theory. To do so is the basic project of this

thesis.

2. Non-signalling scenarios

In the study of non-locality in particular it is useful to consider the space of probability

distributions for a given non-local scenario, i.e one in which parties are space-like separated.

Denote a general scenario in which there are n parties being able to perform m measurements

each with d possible outcomes on a jointly shared system as a (n,m, d)-scenario Sn,m,d. Of

course, more general scenarios exist but all the features studied here are covered in these sce-

narios which are much more convenient to study. One can then construct a space Pn,m,d of

(dm)n dimensions (reduced by a few normalization constraints) in which every point is a vec-

tor P ≡ P (a1, . . . , an|x1, . . . , xn), k ∈ {1, . . . , n}, xk ∈ {1, . . . ,m}, ak ∈ {1, . . . , d}, containing a

complete specification of the probability for any possible combination of measurement choice

and outcome for all parties. This correlation space space is bounded by the normalization con-

straints
∑

a1,...,an
P = 1 for every measurement setting. Also, every axial direction in this space

corresponds to a sum of correlators of the form of (2), however generalized appropriately to

the scenario. The study of correlations allowed under some physical principle then becomes the

study of regions in Sn,m,d that satisfy this principle’s formal representations.

2.1. Local, quantum and non-signalling distributions: The NS-polytope. We begin

by defining the set of distributions that satisfy Bell locality.
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Definition 2.1 (Local Correlations L). Given a scenario Sn,m,d, a probability distribution is

local or classical iff 1

(6) P (a1, . . . , an|x1, . . . , xn) =
∑
λ

P (λ)P (a1|x1, λ), . . . , P (an|xn, λ),

where λ ∈ Λ is an element of a hidden variable set satisfying P (λ) ≥ 0 and
∑

λ∈Λ P (λ) = 1 and

P (ai|xi) are vectors in P(1,m,d).

(6) clearly corresponds to 3. Any distributions in L can be prepared in any classical theory,

using only local operations and classical, i.e. (sub-)luminal, communication.

This set is convex, meaning that for any two elements of {Pi} ⊆ L, their convex mixture∑
i αiPi ∈ L,

∑
i αi = 1. Its extreme points are P (a1, . . . , an|x1, . . . , xn) = δa1,f1(x1) . . . δan,fn(xn),

so-called deterministic boxes2, where fk are any function of the measurement settings. Since

there exist maximally d(nm) of these, L is furthermore a convex polytope, i.e. the convex hull

of finitely many extremal points [19]. There are two types of “facets”, the surfaces connecting

extremal points, for this polytope. One warrants positivity of the probabilities in (6), while the

other is given by the Bell inequalities for this scenario [28].

Next consider quantum correlations.

Definition 2.2 (Quantum Correlations Q). For a (n,m, d)-scenario, a conditional probability

distribution is quantum iff there exist a Hilbert spaces H, a normalized state |ψ〉 ∈ H and

projector operators {Ea,xk } ⊂ B(H) with the properties:

(1)
∑

aE
a,x
k = Ik, ∀x, k

(2)
[
Ea,xk , Ea

′,x′

k′

]
∀k, k′, x, x′ if k 6= k′

(3) P (a1, . . . , an|x1, . . . , xn) = 〈ψ|Eak,xkk |ψ〉

An alternative definition can be given in terms of individual Hilbert spaces to form the set

Q′:

Definition 2.3 (Quantum Correlations Q′). For a (n,m, d)-scenario, a conditional probability

distribution is in Q′ iff there exist Hilbert spaces {H}nk=1, a normalized state |ψ〉 ∈
⊗n

k=1Hk
and projector operators {Ea,xk } ⊂ B(Hk) with the properties:

(1)
∑

aE
a,x
k = Ik, ∀x, k

(2) P (a1, . . . , an|x1, . . . , xn) = 〈ψ|
⊗n

k=1E
ak,xk
k |ψ〉

These two definitions are known to be equivalent for finite dimensional systems, however it

is an open question whether the same is true for the infinite-dimensional case [29]. In any case,

since any measurements with a tensor product form Q′ ⊆ Q, so here the main definition will

be Q.

Q is not a polytope. In fact, its characterization is not known to be a decidable problem

and it is in general very difficult to decide membership of a given set to either Q or Q′. This

1Throughout the whole text we consider only finite dimensional probability spaces. For continuous variables the
same definitions can be made using integration instead of sums
2Distributions are in the information theoretic community often referred to as boxes, with the idea that any
behavior can be abstractly thought of as a box with every party having access to a set of knobs to a measurement
and outcome displays on the box such that statistics on sets of measurements and outcomes are given by marginals
of the probability function. In this text “box” and “distribution” are used interchangeably.
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is partly because correlation inequalities can only sample single points on its boundary, due to

the absence of facets.

There is a third set that received much interest by researchers in non-locality.

Definition 2.4 (Non-signalling Correlations NS). For a (n,m, d)-scenario, a conditional prob-

ability distribution is non-signalling iff

(7)
∑
ak

P (a1, . . . , ak, . . . , an|x1, . . . , xk, . . . , xn) =

∑
ak

P (a1, . . . , ak, . . . , an|x1, . . . , x
′
k, . . . , xn) ∀k, k′.

(7) expresses the property of a behavior that the statistics of of the individual parties are

independent from another’s measurement settings. The name derives from the fact that, for

spacelike separated parties, if a behavior did not obey the condition, the parties could signal

superluminally by choosing different measurement settings on their end of the system. In

this sense the condition is motivated from relativity theory. The NS-polytope has two kinds

of extremal boxes. These are, firstly, the deterministic boxes from L and, secondly, a finite

number of so-called PR-boxes. In the (2, 2, 2)-scenario there exist eight PR-boxes, which are all

equivalent to

(8) PPR(a, b|x, y) =

1
2 if a⊕ b = xy

0 otherwise

up to local operations. Overall, we have that, in any non-trivial scenario L ⊆ Q ⊆ NS,

with all containments being strict for the standard (2, 2, 2)-scenario. That NS contains Q is

remarkable in at least two ways: On the one hand, it is not obvious from the algebraic structure

of quantum mechanics that it should be sensitive to relativistic constraints. Secondly, the fact

that this containment relation is strict for some scenarios implies that non-signalling itself is not

enough to characterize the latter: The principles of relativity theory are not enough to explain

physics on the quantum level. How far from achieving a full characterization of the physically

possible correlations the NS-condition is, illustrates [30] nicely, where it is shown that PR-boxes

trivialize communication complexity. Looking back at Fig. 1, some of the various features can

now be read more clearly, for example the positivity facets indicated by the coincidence points

of the three sets.

2.2. Complexity of characterizing sets in P: The NPA-hierarchy. Often it is of interest

to decide whether a given distribution is an element of some set or not. For the case of sets

which are convex polytopes, this problem can be formulated as a linear program (LP). Linear

programs are used in the field of convex optimization. A problem is (equivalent to) a linear

program if it can be stated in the form:

(9)

maximize cTx

subject to Ax ≤ b

and x ≥ 0

where x is the vector to be determined and A,b, c are known.

The connection to the polytope sets in S becomes evident if we identify the first line with an

area, the second with a facet and the third with a positivity constraint on the polytope.
8



As has already been noted, for Q membership cannot be decided in this way. Indeed, no

algorithm is known to decide membership of it for an arbitrary behavior with certainty. To aid

this situation, [31, 29] introduced a hierarchy of increasingly strong tests of membership of Q for

any bipartite scenario (2,m, n).3 The idea is to define sets of correlations Qn, n ∈ N, containing

Q with lim
n→∞

Qn → Q such that membership of any of them is decidable. In this way, failure of

membership in Qn for any n immediately implies that the distribution is not quantum.

This goal is achieved in the following way: Take any quantum distribution satisfying Def. 2.2

for bipartite case n = 2. By convexity we can form a mixed quantum state ρ ∈ HA ⊗HB and

sets of projectors Ea = Êa ⊗ I, Eb = I ⊗ Êb describing a single measurement per party. We also

have [Ea, Eb] = 0 and

(10) Pab = tr[EaEbρ].

Now consider mathttS = S1, . . . , Sn as a set of n operators obtained by taking products and

linear combinations of Eµ with µ ∈ a, b. Define the hermitian n× n-matrix

(11) Γij = tr(S†i Sjρ)

Γ is positive-semidefinite, since for any v ∈ Cn

(12)

v†Γv =
∑

i,j v
∗
i tr(S

†
i Sjρ)vi

= tr
[
(
∑

i viSi)
†
(∑

j vjSj

)
ρ
]

≥ 0,

since ρ is positive.

Furthermore, by the linearity of the trace,

(13)
∑
i,j

cijΓij = 0 if
∑
i,j

cijS
†
i Sj = 0

and, if
∑

i,j cijS
†
i Sj =

∑
a,b dabEaEb, then

(14)

∑
i,j cijΓij =

∑
i,j cijtr(S

†
i Sjρ)

= tr(
∑

i,j cijS
†
i Sjρ)

=
∑

a,b dabtr[EaEbρ]

=
∑

a,b dabPab

Therefore, the existence of a matrix Γwith the above properties is a necessary feature of any

behavior in Q. The possibility of constructing this question given a behavior is an instance of

a semidefinite program (SDP).

A semidefinite program is a problem of the form [33]:

(15)
minimize cTx

subject to F (x) ≥ 0

where

(16) F (x) := F0 +

m∑
i=1

xiFi,

3The NPA hierarchy is generalized to any contextuality scenario in [32], however considering the bipartite case
will be sufficient in this context.
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x ∈ Rm is the vector to be determined, c ∈ Rm and the m + 1 symmetric and positive semi-

definite matrices Fj ∈ Rn×n are known. Like linear programs SDPs are convex optimization

programs for the solution to which powerful methods exist, even though they are more complex

than the former. They have also been previously employed in the context of non-locality,

specifically to prove extensions of the Tsirelson inequalities to multipartite scenarios [34] and,

implicitly, in older work on correlation functions [35].

Since clearly there are no a priori limitations on the number of projectors that could be

combined into S, for any quantum behavior the matrix Γ, also called a certificate for S, exists

for all |S| = n ≥ 1. Conversely, a non-quantum behavior may yield a certificate for some

n ≤ kP , where is some critical value specific to P . Call then Qn the set of behaviors for which

a certificate (denoted Γn) exists given that |S| = n. Clearly, if P ∈ Qn then P ∈ Qk, 1 ≤ k ≤ n
and Qn+1 ⊆ Qn for all n ≥ 1.

This hierarchy is very useful given the difficulty to investigate membership to the quantum

set directly, at least for bipartite scenarios. Moreover, [29] show that it is complete in the sense

that a behavior is quantum if and only if there exists a certificate Γn for all n ≥ 1. In other

words

(17) lim
n→∞

Qn = Q

At the same time, the complexity of testing the existence of a certificate of order n increases

exponentially with n. This is because the size of Γn for a scenario with m measurements and

d outcomes is (md)n and SDP algorithms used to construct the certificate have a running time

polynomial in the latter’s size.

2.2.1. Almost quantum correlations. While the NPA hierarchy from Sec.2.2 was initially devised

to compuationally aid the characterization of the quantum set, two of the sets in the hierarchy

have found interest in a reconstructive context: Q1 which defines the principle of macroscopic

locality [13] and the set Q1+AB which, in its multipartite generalization defines the almost

quantum distributions as

Definition 2.5 (Almost quantum set Q̃). Given any (n,m, d)-scenario, a conditional probability

distribution is almost quantum iff there exists a Hilbert space H, a normalized state |ψ〉 ∈ H
and projector operators Ea,xk ⊂ B(H) with the properties:

(1)
∑

aE
a,x
k = Ik, ∀x, k

(2) Ea1,x11 . . . Ean,xnn |ψ〉 = E
aπ(1),xπ(1)
π(1) . . . E

aπ(n),xπ(n)
π(n) |ψ〉 for any permutation π ∈ Sn

(3) P (a1, . . . , an|x1, . . . , xn) = 〈ψ|
∏n
k=1E

ak,xk
k |ψ〉

Clearly, Q ⊆ Q̃, since for any quantum distribution according to Def. 2.3 the projective set

formed of projectors Ẽa,xk = I⊗k−1 ⊗Ea,xk ⊗ I⊗n−k satisfies the requirements of Def. 2.5. In [36]

this result is proven to be strict for the (2, 2, 2)-scenario.

Almost quantum correlations approximate the quantum set very closely: [36] prove that Q̃

implies4 all of the operational principles that were listed in the introduction, i.e. non-trivial

communication complexity (NTCC) [12], Macroscopic Locality (ML) [13] (≡ Q1), no advantage

for nonlocal computation [14] and local orthogonality (LO) [15] (Sec.?? and all of which are

4Here “A implies P” means that the set A is contained by the set of correlations satisfying a given principle P
in any scenario.
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proposed information theoretic principles to reconstruct the quantum set. The authors also

present strong numerical evidence that Q̃ implies information causality [16].

Lemma 2.1. Q̃ recovers the Tsirelson bound

Proof. This result is obtained in [29] who show that for (2, 2, d)-scenarios the maximal violations

of the generalized Bell inequalities (the CGLMP inequalities [37]) by Q̃ coincide with those of

Q at least for 2 ≤ d ≤ 8. For the case d = 2 these are the Tsirelson’s bound. �

3. Quantum Measure Theory

3.1. The Quantum Fine Trio. Recall that the Fine trio presented in Sec. 1 proves the equiv-

alence of (i) the (original) Bell inequalities (2), (ii) the satisfaction of Bell locality (3) and (iii)

the existence of a probability function reproducing the right statistics,

(18) P (ax, by|x, y) =
∑
ax,by

P (ax, ax, by, by).

Note that the two functions on the LHS and RHS are completely different objects: While

the conditional probability on the LHS is a vector in P, the domain of the equation on the

RHS is a set, or corresponding vector space, whose elements specify the outcomes of of all

possible measurements in the scenario, including alternative measurements for the same party.

They are denoted by the same symbol because they both relate to probabilities and can be

clearly distinguished by their arguments. The existence of a probability function over this space

expresses both a kind of realism, asserting that measurement statistics are the product of having

only partial access to this well-defined statistics on this other space, and a non-contextuality

assumption in that the probability function on the right hand-side is independent of what is

being measured (i.e. the outcomes over which one traces). This intuition becomes clearer if

one takes the elements of this space, atoms γi ≡ {ax11 , . . . , a
xm
1 , ax12 , . . . , a

xm
n }, which we call the

“non-contextuality (NC-) space” Ξ to be a full specification of the state of a system over all

time, its “history” or “path” (through spacetime or phase space).

Apart from articulating this expectation, Fine’s trio also connects locality as a physical

principle of the world with a clear formal statement about the ability to define a function over

a certain space. Since this is easier to study and at the same time admits a neat interpretation

in terms of histories or paths, being the most natural kinematic objects of path integral-type

theories, it is a reasonable hope to seek a similar trio on the quantum level, a quantum Finte

trio, even though in the light of the past section it is easy to see that such a generalization

might be more difficult than for the classical case.

The obvious starting point to seek such a this is to investigate possible generalizations of

the original trio. Of course, there is no unique way of carrying out such a generalization. It is

suggestive to first generalize Fine’s result about joint probability spaces to the quantum level

and then look for the corresponding physical statement, by analogy or otherwise. But what

does it mean to “generalize probabilities to the quantum level”? One possible way of carrying

out such a generalization results in Quantum Measure Theory (QMT) and is the subject of this

section.

3.2. The quantum measure.
11



3.2.1. Measures. 5 To carry out this generalization some terminology is required. Adopting

the above history-type approach, given scenario Sn,m,d call the set formed by “atoms” γi ≡
{ax11 , . . . , a

xm
1 , ax12 , . . . , a

xm
n } with i ∈ {1, . . . , d(mn)} the “non-contextuality (NC-) space” Ξ.

It is easy to see from a generalized form of (18) that every single outcome event e≡ (a1, . . . , an|x1, . . . , xn)

corresponds to a subset A of Ξ, namely the set of atoms over which one sums to obtain the cor-

responding probabilities. For a given measurement, set of all subsets for the different outcomes

in fact forms a partition M ≡M(x1, . . . , xn) of Ξ which we can identify with that measurement.

Denote A(e) and A(I) the bijective maps from events and sets I of atom labels to the power set

2Ξ respectively (yielding a bijective map e(I) as well) and also callM the set all measurements

M . Next define the notion of a sigma algebra [39]:

Definition 3.1 (Sigma algebra A). A class of subsets A of some set X forms a sigma algebra

of X if it contains X itself and is closed under the formation of complements and countable

unions:

(1) X ∈ A

(2) if A ∈ A then A ∈ A

(3) if A1, A2, · · · ∈ A then A1 ∪A2 ∪ · · · ∈ A

where A denotes the complement of A. The largest possible sigma algebra over X is the

power set of X, 2X and the smallest is the union of X with the empty set ∅. The set AM of all

“coarse-grainings”, i.e. all possible unions of outcomes for a given measurement M , together

with the empty set ∅ forms such an algebra. For notational convenience can further form

C :=
⋃
M∈MAM . That outcomes of measurements form a (sigma) algebra is important because

it is necessary to define a measure for every M .

Definition 3.2 (Measure µ). Let X be a set and A an algebra over X. Then the function

µ : A→ R is a measure if it satisfies:

(1) µ(A) ≥ 0 ∀A ∈ A

(2) µ(∅) = 0

(3) if
⊔∞
i=1Ai ∈ X then

(19) µ

( ∞⊔
i=1

Ai

)
=

∞∑
i=1

µ(Ai)

Here R denotes the extended real line, i.e. R together with ±∞. Also t represents pairwise

disjoint union, i.e. it acts like the binary ∪ operator, however only on sets that are disjoint. Its

use in the above definition (and henceforth) then implies that we require all members of the

collections on which it acts to consist of disjoint members. The condition in the third property

is called countable additiviy.6 Here, really we are interested in defining a probability measure

as a special kind of measure.

5This section introduces some of the concepts from the joint measurement scenarios (JMS) [38] necessary to dis-
cuss quantum measure theory. Since it is not necessary here to distinguish between basic and joint measurements
the set of all measurements is denoted M, i.e. the tilde is dropped, following the example of [?]
6It is required since A does not need to be a sigma algebra. Of course, for any finite collection of n elements of
A we are warranted that

(20) µ

(
n⊔
i=1

Ai

)
=

n∑
i=1

µ(Ai),

12



Definition 3.3 (Probability Measure P ). Let Ξ be a NC- space. Then a function P : A → R
is a probability measure over Ξ if it is a measure over Ξ such that

(1) P (A) ≥ 0 ∀A ∈ Ξ

(2) P (Ξ) = 1

For every probability measure one has that 0 ≤ P (A) ≤ 1 for every member of the algebra.

The upper limit follows since 1 = P (Ξ) = P (A) + P (A) implies that P (A) ≤ 1.

The reason for these considerations is that we know from the Fine trio and the violation of

the Bell inequalities that already for the simple (2, 2, 2)-scenario one cannot define a probability

measure over the whole of 2Ξ such that it produces the correct conditional probabilities on

P(2,2,2) for every possible state. Nevertheless, consistency with the observation of classicality

of any macroscopic measurement devices imposes the strict requirement on any probability

function on 2Ξ that at least the conditional probabilities it produces are probability measures.

This is the case if we know that for any M ≡ M(x1, . . . , xn), P (A) behaves like a probability

measure for all A ∈ AM .

A probability measure is defined over an algebra on the NC-space and not the NC-space itself

or its power set because probabilities are assigned to alternative outcomes of possible measure-

ments (where these measurements can sometimes be thought as representing physical processes

that happen outside any laboratory or operational context). The definition of an algebra, in

particular its closure under set-theoretic operations, warrants the minimal requirement for col-

lections of subsets of Ξ to fulfill exactly this representative function as sets of measurement

outcomes, with sigma algebras allowing for the treatment of measurements with infinitely many

(but countable) outcomes.

Subsets of the NC-space, or its power set, in general correspond to events involving incompat-

ible measurements or outcomes, for which it makes no sense to attribute probabilities to them

under any interpretation of classical probability. To take the standard example from quantum

mechanics this would be the case for the description of the spin measurement of an electron.

That the spin along some canonical reference axis, call it the x-axis, and an axis orthogonal to

the x-axis, call it the y-axis, should be both ”up” at time t or both ”down” at the time t are not

alternative outcomes of a possible measurement but both events are members of the power set

of Ξ. In this example it wouldn’t make sense to impose the conditions of a classical probability

measure on any collection of sets including these events as members.

If one is interested in studying the possibility of making statements about sets of events that

are not alternative measurement outcomes - the basic premise of non-contextuality research -

then the above however is by no means the end of the game. Indeed, if one reformulates the

subject of non-contextuality research as the study of functions that are defined over 2Xi, then the

above only imposes the restriction on the these functions to reduce to probability measures over

any algebra corresponding to possible measurements with classical outcomes. In this sense, the

recovery of probability measures at the level of classical events in probability theory is exactly

analogous to the requirement on any physical theory to reproduce classical behavior in the

corresponding limit - a requirement of empirical (as opposed to logical) consistency.

called finite additivity, by setting An+1, An+2, · · · = ∅. The requirement of countable additivity for measures on
general algebras also nicely illustrates the independence between finite/countable additivity and closure under
finite/countable unions.

13



3.2.2. The Kolmogorov sum rule and higher-order interference. This empirical motivation of

the definition of a probability measure7 may invoke the question at which part of the definition

of a probability measure classical assumptions enter. The answer lies in the additivity-property.

Countable additivity is a consequence of the axioms of axiomatic probability theory, in particular

of the “Kolmogorov Sum rule” that for any pair of disjoint elements A,B of some algebra X

(21) P (A) + P (B) = P (A tB)

In general of course, this needn’t be true for functions on algebras. For a general linear function

f : X → R on a set X we have for any A,B ∈ X that

(22) f(A) + f(B) = f(A ∪B)− f(A ∩B)

It is obvious that (21) postulates for f = P that P (A ∩B) = P (A ∪B)− P (A)− P (B) = 0,

i.e. that the interference term vanishes. In this sense the Kolmogorov sum rule is a physical

or logical decoherence requirement in the sense that, if A and B correspond to alternative

measurement outcomes or logical propositions and ∩ represents conjunct occurrence or logical

binary-AND respectively, the rule postulates that the probability of the latters’ occurrence or

being true is zero. And this postulate, for the physical case at least, is motivated by the fact that

we never see alternative measurement outcomes occur both at once (see [40, 4] for investigations

on relaxing logic in quantum measure theory or [41] for more general consistent histories).

If one considers situations in which the alternatives in question are histories of the universe,

that is, specifications of the state of the universe over some space-time volume, then this de-

coherence postulate becomes the requirement that there exists no interference between pairs of

alternative histories for the universe in question or the two universes in which either history is

realized depending on one’s underlying ontology.

In [42], Sorkin first discussed the possibility of generalizing this prohibition of interference of

two histories to higher-orders, that is to n histories. Define the interference term for a function

µ : X → R

(23) In(A1, A2, . . . , An) :=

n−1∑
i=0

Ni∑
j=1

(−1)iµ

(⊔
k∈K

Ak

)
= µ(A1 tA2 t . . . An)−

∑
µ(A1 tA2 t . . . An−1)

− µ(A2 tA3 . . . An) + · · ·+ (−1)n−1
n∑
k=1

µ(Ak),

where K(i, j) is the subset of N = 1, . . . , n with |K(i, j)| = n− i members corresponding to

the choice of Ak for the pair (i, j) and Ni =
(
n
i

)
.

Clearly, For the case of n = 2 this reduces to the Kolmogorov sum rule (21) if we set I2 to

zero. For n = 3 we have

(24) I3(A,B,C) = µ(A tB t C)− µ(A tB)− µ(B t C)− µ(A t C) + µ(A) + µ(B) + µ(C)

7The following considerations are, to some extent, also valid for general measures but we will restrict attention
to the relevant case of probability measures only.
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For I3 = 0 this equation, called the Sorkin sum rule, allows for the possibility of pairwise

interference but not third-order interference. In fact, for any n, we have that, if In = 0 then

Ik = 0 for all k ≥ n. This follows by the following lemma

Lemma 3.1. For any n ≥ 1,

(25) In+1(A1, A2, . . . , An+1) = In(A1, . . . , AntAn+1)−In(A1, An−1, An+1−In(A1, A2, . . . , An)

Proof. This is proven in [43]. �

One can classify stochastic theories by the order of interference which they allow. As we saw

above, classical probability theory forbids any non-trivial interferences. Quantum theory allows

for pairwise interference but forbids interferences for n ≥ 3.

To see this, consider a three-split experiment as a simple generalization of the double-slit

experiment in which installing blinds at each slit gives 23 = 8 settings of the slits leading to

different interference patterns. One can represent possible paths of a quantum system in this

setup by defining and 7-dimensional projective set {EJ} where EJ = |EJ〉〈EJ | and each J is an

element of the power set of {1, 2, 3} ignoring the empty set which corresponds to all slits being

closed. Then, the quantum mechanical probability that any prepared state |ψ〉 =
∑

k ck|k〉
follows some path J (in the sense of interfering histories) is

(26) P (J ||ψ〉) = tr[EJ |ψ〉〈ψ|] =
∑
k

〈EJ |ck|k〉〈k|c∗|EJ〉 =
∑
k

a
(J)∗
k

and we have a
(ij)
k = a

(i)
k +a

(j)
k etc.. Furthermore, for a set of POVMs {Di} given byDi = |Di〉〈Di|

which correspond to detectors di on a screen, the quantum mechanical probability that a system

will first follow a certain path through the slits and then be measured by detector di is

(27) P (di, J ||ψ〉) = P (di|J, |ψ〉)× P (J ||ψ〉) = tr [Di|EJψ〉〈ψ|EJ ]

Superimposing the probabilities for all J and a given di such that probabilities with |J | even

or odd destructively interfere then gives

(28) tr [DiE123ψ〉〈ψ|E123]−
3∑

1=m≤n
tr [DiEmn|ψ〉〈ψ|Emn] +

3∑
m=1

tr [DiEmψ〉〈ψ|Em]

=
∑
k

〈Di|

a(123)∗
k a

(123)
k −

3∑
1=m≤n

a
(mn)∗
k a

(mn)
k +

3∑
m=1

a
(m)∗
k a

(m)
k

 |Di〉

=
∑
k

〈Di|
[(
a

(1)
k + a

(2)
k + a

(3)
k

)∗
(a

(1)
k + a

(2)
k + a

(3)
k )

−
3∑

1=m≤n

(
a

(m)
k + a

(n)
k

)∗ (
a

(m)
k + a

(n)
k

)∗
+

3∑
m=1

a
(m)∗
k a

(m)
k |Di〉

= 0,

where we used the cyclicity and linearity of the trace and the fact that the projectors sum up

to identity. (28) is clearly true for any Di and state preparation, it can also easily be generalized
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to mixed states, since interferences will cancel for every state in an ensemble. The generality of

this result and recognizing its form as that of I3 = 0 in the hierarchy lets one classify quantum

mechanics as a stochastic theory forbidding third and higher order interference. It is also in this

way that we can understand the coincidence with the classical probabilities PJ for the three-slit

experiment which yields

(29) P123 − P12 − P23 − P13 + P1 + P2 + P3 =

3∑
j=1

2(Pj − Pj) = 0.

See [44] for a discussion of the three-slit experimental in an operational framework. Motivated

by this interesting property of quantum statistics which automatically produces the marginal

classical behavior we are seeking for our non-contextual probability function P (A), we can

formulate the following principle to study the correlations it allows.

Principle of pairwise interference (PPI)

The only kind of interference that is possible between

histories of systems is pair-wise interference.

3.2.3. The quantum measure. To formalize PPI the natural step is to weaken the Kolmogorov

sum rule to allow for second-order interference:

Definition 3.4 (Quantum measure µ). Let Ξ be a NC-space for some scenario S(n,m,d). Then

a function µ : 2Ξ → R is a quantum measure over Ξ if

(1) µ(A) ≥ 0 ∀A ∈ 2Ξ

(2)

µ(A) + µ(B) + µ(C)

−µ(A tB)− µ(A t C)− µ(B t C)

+µ(A tB t C) = 0 ∀A,B,C ∈ 2Ξ

(3) µ(A(e)) = P (e) ≡ P (a1, . . . , an|x1, . . . , xn) ∀A ∈ C

We recognize 2 as the Sorkin sum rule (24) and find the third condition 3 to express exactly

the empirical consistency condition discussed above. Also µ is a proper measure in that it is

defined over an algebra on Ξ.

In the literature one finds ambiguous usage of the terms “quantum measure” and “quantal

measure”. Here we adopt the convention that any generalized measure satisfying the Sorkin

sum rule will be called a “quantal measure”, while a quantal measure that also reduces to the

classical probabilities for a given behavior is called a “quantum measure”.

The definition for the interference term in Eq. (23) and the proof for Lemma 3.1 still work

out for the function in question being a quantum measure. The Sorkin sum rule then implies

that the quantum measure is bi-additive in its argument in the sense that

(30) I2(A tB,C) = I2(A,C) + I2(B,C),

which follows immediately from Lemma 3.1 and can also be generalized to n-additivity for

In+1 = 0.
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3.3. The decoherence functional. The bi-additiviy of I2 allows for the construction of a

convenient equivalent formal representation of a quantal measure. Consider the following defi-

nition

Definition 3.5 (Decoherence functional D). A map D : 2Ξ × 2Ξ → R is called decoherence

functional if, for all sets A,B,C ∈ 2Ξ

(1) D(A,B) = D(B,A)∗

(2) D(A tB,C) = D(A,B) +D(A,C)

(3) D(A,A) ≥ 0

(4) D(Ξ,Ξ) = 1,

where we remind the reader that the t-operation is defined for disjoint sets only. Clearly, a

decoherence functional corresponds to a quantum measure if it also satisfies

(31) D(A(e), A(e)) = P (e) ≡ P (a1, . . . , an|x1, . . . , xn) ∀A ∈ C

This equivalence is particularly useful in that, by defining the matrix DAB := D(A,B), the

quantum measure can be studied using simple algebraic tools.

3.3.1. Atomic decoherence functional. As DAB grows exponentially with the size of the NC-

space, it is often even more convenient to define an “atomic” decoherence functional over the

NC-space.

Definition 3.6 (Atomic decoherence functional D̂). A map D : Ξ × Ξ → R is an atomic

decoherence functional for a quantum measure if, for all atoms γi ∈ Ξ with I ⊂ {1, 2, . . . , n}
(1) D̂(γi, γj) = D̂(γj , γi)

∗

(2)
∑

i,j∈I D̂(γi, γj) ≥ 0

(3)
∑n

i,j D̂(γi, γj) = 1

(4) D̂(γi t γj , γk) = D̂(γi, γk) + D̂(γj , γk)

(5)
∑

i,j∈I D̂(γi, γj) = µ(A(I)) = P (e(I)) ∀A ∈ C

The existence of an atomic decoherence functional follows by the simple relation, which we

already used, that

(32) A(I) =
⊔
i∈I

γi I ⊂ {1, . . . , d(mn)}.

Again, we can represent D̂ with the hermitian matrix D̂ij := D̂(γi, γj).

3.3.2. Strong positivity. The properties of the decoherence functional are very weak, which

makes their properties difficult to study in all generality. Most of the existing literature on

quantum measure theory has therefore focussed on a family of decoherence functionals, charac-

terized by their being strongly positive.

Definition 3.7 (Strong positivity). A decoherence functional D, or its corresponding atomic

decoherence functional D̂, is strongly positive if D̂ij ≡ D̂(γi, γj) is a positive semi-definite

matrix.

There is no obvious a priori reason for requiring strong positivity of the decoherence func-

tional. Nevertheless most of the research on quantum measures has focussed on this family of
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functional. Besides the fact that by requiring strong positivity the full array of tools in the

linear algebra of positive matrices becomes available, this is because strong positivity is also

sufficient for the construction of a Hilbert space in the following way.

3.3.3. Hilbert space construction from strongly positive decoherence functional. Define a Hilbert

space as a complex vector space with non-degenerate Hermitian inner product which is complete

with respect to the induced norm. The construction proceeds in the fashion of “GNS” (Gel’fand-

Naimark-Segal) who use C∗-algebras and is employed similarly in [45] and [46]. Given a behavior

(Ξ,M, P ), define the vector space H1 that is spanned by basis vectors {|[γi]〉} where γi are the

atoms of the partition scenario induced by the behavior. If P ∈ SPJQM then we can define a

(possibly degenerate) Hermitian inner product on H1 as

(33) 〈[γi]|[γj ]〉 := D̂ij ,

where D̂ is the positive-semidefinite matrix given by the atomic decoherence functional for this

behavior as defined in Def. 3.6.

The double (H1, 〈·|·〉) forms an inner product space only, since it in general contains vectors

with zero norm (see [47] for an example). Since a true Hilbert space does not contain vector

with zero norm we define H = H1/H0 where H0 is the vector subspace of states with zero norm.

Then the vectors |γi〉 ∈ H corresponding to |[γi]〉 ∈ H1 form a complete basis for H, making it

a proper Hilbert space as defined above [48]. In the case of infinite-dimensional systems this

construction is more subtle but still possible as is shown in [47] for path integrals, i.e. for a

non-relativistic particle moving in d-dimensions and over possibly infinite time. Since here we

consider finite-dimensional systems only, the above construction is sufficient.

3.4. Correlations in Quantum Measure Theory. Following the idea presented in the in-

troduction to this section our main concern lies in investigating the possibility of formulating

a quantum analogue of the Fine trio based on the quantum measure. To do so the first step

is to study the extent to which the Sorkin sum rule characterizes quantum theory, how could

is PPI as a reconstructive principle? In terms of non-locality research this question asks about

the relationship between the sets whose member distributions allow for a quantum measure and

the quantum set. First define the following natural quantum measure theoretic sets, where we

use the power set 2Ξ since we are only considering finite-dimensional noncontextuality-spaces.

Definition 3.8 (JQM). For a given (n,m, d)-scenario a conditional probability distribution

P (e) is in JQM if there exists a quantum measure µ on 2Ξ for this scenario such that

(34) µ(A(e)) = P (e) ∀A ∈ C

We can equivalently define the set in terms of the decoherence functional as above.

Definition 3.9 (JQM). For a given (n,m, d)-scenario a conditional probability distribution

P (e) is in JQM iff there exists a decoherence functional D(A,B) on 2Ξ such that

(1) D(A(e), A(e)) = P (e) ∀A ∈ C
(2) D(A(e), B(e′)) = 0 ∀A,B ∈ AM , A ∩B = ∅,∀M ∈M

Here,B(e′) ≡ A(e′), i.e. it is given by the same mapping, however denoted differently for con-

venience. Note that for decoherence functionals whose entries are real, property 2 is redundant,
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however for the complex case this adds the non-trivial requirement that Im[D(A,B)] = 0 for

the above sets. Another set of interest further involves strong positivity.

Definition 3.10 (SPJQM). For a given (n,m, d)-scenario a conditional probability distribu-

tion P (e) is in SPJQM if there exists a strongly positive decoherence functional D on 2Ξ such

that

• D(A(e), A(e)) = P (e) ∀A ∈ C
• D(A(e), B(e′)) = 0 ∀A,B ∈ AM , A ∩B = ∅,∀M ∈M

Since the possibility to construct a Hilbert space is not only a necessary but also a sufficient

condition for the existence of a Hilbert space, one can define SPJQM alternatively as

Definition 3.11 (SPJQM). For a given (n,m, d)-scenario a conditional probability distribu-

tion P (e) is in SPJQM iff there exists a Hilbert space H spanned by a set of vectors indexed

by elements A of 2Ξ, {|A〉} such that, for any I ⊆ {1, 2, . . . , d(mn)}
(1) |A(I)〉 =

∑
i∈I |γi〉

(2) 〈A(e)|A(e)〉 = P (e) ∀A ∈ C
(3) 〈A(e)|B(e′)〉 = 0 ∀A,B ∈ AM , A ∩B = ∅, ∀M ∈M,

where the |γi〉 are the vectors constructed in 3.3.3.

These sets are defined in [38], however for bipartite scenarios only. Even though this makes

sense in that these scenarios are the best studied, our investigation of scenarios with multiple

copies makes it necessary to define them for any scenario. Note however, that this does not

mean that Fine’s trio applies for any scenario, since it does not.

3.4.1. Relations between sets. We have the following basic relationships for quantum measure

theoretic sets.

Lemma 3.2. SPJQM ⊆ JQM

The containment relation is clear. In the case of the (2, 2, 2)-scenario this containment is

strict, which follows by Theorem ?? and Lemma 3.7 to be discussed in the upcoming subsection.

It is not clear whether there exist scenarios in which JQM ≡ SPJQM .

Lemma 3.3. Q ⊆ SPJQM

Proof. Take any behavior P ∈ Q. Then there exists a normalized state |ψ〉 ∈ H together with

projection operators Eak,xkk ∈ B(H) with the properties and statistics of Def. 2.2. Now define

vectors |γi〉 as

(35) |γi〉 :=
∏
k

m∏
l=1

E
ak(i),lk
k |ψ〉

for every atom γi where ak(i) specifies the measurement outcomes for every measurement setting

and party corresponding to the ith element of the NC-space. We can then define vectors for

coarser events as

(36) |A(I)〉 :=
∑
i∈I
|γi〉

These vectors allow for the construction of a Hilbert space with the properties given in Def.3. �
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Lemma 3.4. Q ⊆ JQM

Proof. This is implied by the two lemmata above. �

These results are very interesting: They show that for any scenario the weakening of the Kol-

mogorov Sum Rule according to the PPI, that is weakening it by only one order, already allows

for the recovery of all quantum correlations and distributions together with the existence of a

well defined, albeit quantized, measure on the non-contextuality space. Since this corresponds

to a precise principle that can be interpreted in terms of a physical path integral framework it is

a promising first step towards a quantum Fine trio. Of course, one first needs to investigate how

closely these sets approximate the quantum set. Here a number of results have been obtained

for the (2, 2, 2)-scenario.

Correlation bounds for the CHSH scenario. If one considers only single copies of boxes the

following results exist for the above sets:

Lemma 3.5. For the (2, 2, 2)-scenario, the correlators of behaviors in SPJQM are given by

the inner product of unit vectors given by

(37) |x〉 :=
∑

ax,ax,by ,by

ax|ax, ax, by, by〉 ∈ H

and similarly for the other outcomes.

Proof. This is simply proven using the Hilbert space construction ang done explicitly in [48]. �

From this we can prove the following:

Theorem 3.6. SPJQM recovers the Tsirelson bound: The correlators (1) of any distribution

in SPJQM in the (2, 2, 2)-scenario obey

(38) |Cx=0y=0 + C10 + C01 − C11| ≡ S ≤ 2
√

2

and similarly for the three other CHSH inequalities.

Proof. The full proof is again given in [48]. It suffices to proof (38) without considering the

absolute value as can be seen by flipping the y-settings.

Using (33) we can express the correlators defined in (1) as

(39) Cxy = 〈x|y〉.

Denoting |x = 0〉 ≡ |0x〉 etc., this gives

S = 〈0x|0y〉+ 〈1x|0y〉+ 〈0x|1y〉 − 〈1x|1y〉

= (〈0x|+ 〈1x|)|0y〉+ (〈0x| − 〈1x|)|1y〉

≤ ||0y〉+ |1x〉|2 + ||0y〉 − |1x〉|2,

(40)

where we used the fact that the vectors are normalized and that S is maximal when |0y〉 and

(|0y〉 + |1x〉) as well as |1y〉 and (|0y〉 − |1x〉) are parallel. Now for any normalized vectors u, v

such that S = |u+ v|2 + |u− v|2 ≡ ‖u+ v‖+ ‖u− v‖ then, writing ξ ≡ Re[〈u|v〉],

S2 = ‖u+ v‖+ ‖u− v‖+ 2‖u+ v‖‖u− v‖

= (2 + 2ξ) + (2− 2ξ) + 2
√

(s+ 2ξ)(2− 2ξ)

= 4 + 2
√

4− 4ξ2 ≤ 4 + 2
√

4 = 8

(41)
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Substituting this into (40) then gives S ≤ 2
√

2. �

[48] also provide a decoherence functional which satisfies this bound by constructing the

decoherence functional for the standard EPRB-setup with quantum model given by the singlet

and the projectors and settings given in the introduction. The functional to this behavior is

constructed as in the proof to Lemma 3.3 as

(42) D(a, a′, b, b′|c, c′, d, d′) = 〈ψ−|Ex=0
c Ex=1

c′ Ey=0
d Ey=1

d′ Ey=1
b′ Ey=0

b Ex=1
a′ Ex=0

a |ψ−〉.

As expected by continuity this decoherence functional has 12 null directions corresponding

to an effectively smaller 4-dimensional Hilbert space for the measured system than the 16

dimensions of the NC- space, thus making the atomic decoherence functional only positive

semi -definite.

Concerning JQM , the continuity of (38) together with the fact that 42 does not lie on the

boundary of WPJQM (i.e. for no binary 16-vector x is xTDx = 0) are already sufficient to

show that JQM does not, for single copies of systems, recover Tsirelson’s bond. In fact, every

PR-box admits a valid decoherence functional with examples provided in [48, 49], e.g.

D̂(0000|0000) = D̂(1010|1010) = D̂(1001|1001)(43)

= D̂(0101|0101) =
1

2
(44)

D̂(0101|0100) = D̂(0001|1100) = D̂(1001|1010) = D̂(0101|1001) =
1

4
(45)

D̂(0001|0000) = D̂(1010|1000) = D̂(1001|1100)(46)

= D̂(0101|1100) = D̂(1001|0001) = D̂(0101|0001)(47)

= −1

2
(48)

This immediately implies the following [49].

Lemma 3.7. For single copies of boxes in the (2, 2, 2)-scenario, NS ≡ JQM

Proof. First show that for this scenario NS ⊆ JQM . Recall first of all that NS is a convex

polytope with 24 extremal boxes, 8 of which are PR-boxes and the other 16 local. This means

that any box in NS can be expressed as a convex mixture of these extremal boxes with some 24-

vector p of weights. By the above we know that every PR-box admits a decoherence functional

and from L ⊂ Q ⊆ SPJQM we also know that every local box admits a (diagonal) decoherence

functional. It is furthermore easy to see that any convex mixture of the decoherence functionals

corresponding to these extremal boxes defines a new decoherence functional satisfying Def. 4

and producing the right statistics for the box that is produced by the same weights p. Therefore

every non-signalling distribution in this scenario admits a decoherence functional.

Finally, JQM\NS = ∅ for any scenario since the additivity of the decoherence functional

prevents the construction of decoherence functionals for any non-signalling distribution. This

implies NS ≡ JQM . �

This is not true for more than one copy as will be discussed in Sec.5.

Finally, [49] also prove the following strengthening of Theorem 3.4.1.
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Theorem 3.8. For any distribution with a strongly positive decoherence functional in the

(2, 2, 2)-scenario the correlators obey

(49) | arcsinCx=0y=0 + arcsinC10 + arcsinC01 − arcsinC11| ≤ π,

where each angle Cxy lies between −π2 and π
2 .

Proof. As in the proof to Theorem we need to prove the above expression without the absolute

signs only. By defining θxy := π
2 − arcsinC(x, y) the expression becomes

(50) θ11 − θ00 − θ01 − θ10 ≤ 0

By the strong positivity and Lemma 3.5 we further have cos θxy = 〈x|y〉 where |x〉, |y〉 are

unit vectors. Now consider the two cases

• Θ := θ00 + θ01 + θ10 ≤ π: If all vectors are coplanar, then θ11 = Θ, otherwise θ11 ≤ Θ

• Θ > π: Since θ11 ≤ π, Θ− θ11 ≥ 0

In either case, (50) follows. �

Tsirelson proved that the satisfaction of (49) is necessary and sufficient for the existence of

an “ordinary quantum model for the coorelators” (OQMC) of a given behavior, while it is only

a necessary condition for the existence of an “ordinary quantum model for the probabilities”

(OQMP) [50, 51, 9] which is just Q for this scenario. Theorem 3.8 then shows that for any

behavior in SPJQM for the (2, 2, 2)-scenario there exist two commuting pairs of hermitian

operators {Sx} and {Sy} in a model with a normalized state ψ in a Hilbert space H such that,

for any (x, y),

(51) Cxy = 〈ψ|SxSy|ψ〉.

The fact that SPJQM satisfies the Tsirelson bound means that, at least in certain directions

of P(2,2,2), it exactly coincides with the quantum set, further motivating the suitability of PPI

to produce a quantum analogue of Bell locality. However, by itself it surely cannot be sufficient,

as JQM ≡ NS for the CHSH scenario also impressively illustrates. At least in this scenario,

then, the “magic ingredient” to tighten the bound seems to be the strong positivity property, for

the origin of which still no intuition could be provided, the constructability of the Hilbert space

being a motivation but not an explanation for the prominence of this set. The next sections

develop one possible approach to such an explanation.

4. Multiple boxes: Wirings and branching

One possibility that has so far been disregarded is that of combining several distributions,

whether they be elements of the same correlation space or not. The simplest combinatory

action is composition of independent systems. In order to discuss even only composition it is

first necessary to consider the formation of joint scenarios.

4.0.2. joint scenarios. We have seen that the correlations space PS , the pairS = (Ξ,M) and a

(n,m, d)-triple can all be constructed from another. It is convenient to look at the composition

of scenarios in terms of the NC-space.

For a set of scenarios T = {S1,S2, . . . ,Sn} we construct S(T ) = {ΞT ,MT } by defining

ΞT =×n

i=1
ΞSi andMT = {MT } where × is the Cartesian product and MT are the sets given
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by

(52) AT = A×

(
n

×
i 6=k

ΞSi

)
for every outcome A of every measurement M in every scenario Sk. These MT again form

partitions of the new, larger NC-space of the joint scenario. S(T ) then defines a new correlations

space. The CHSH scenario is then an example of a joint scenario composed of two marginal

(1, 2, 2)-scenarios whose spacelike separation motivates their treatment as being independent.

tensor product and composition. We here adopt the tensor product as the standard representa-

tion of composition of distributions, see [52] for a general derivation of this rule for distributions

under very weak assumptions.

Definition 4.1 (Tensor product rule). For any two scenarios S1, S2, the joint distribution of

any two conditional probability distributions P ∈ PS1 , P
′ ∈ PS2 is given by 8

(53) PT := P ⊗ P ′ ∈ PS(T ),

where T = {S1,S2}.

4.1. Wirings. Less trivial ways of combining systems to produce a smaller number of effective

boxes are described by means of “wirings”. Introduced in [27], they have been studied in several

contexts. In general one can distribute r copies of an n-partite box among up to rn parties

which can then form s ≤ r groups, which, for group inputs y1, . . . , ys ∈ {1, . . . , p} produce

group outputs b1, . . . , bs ∈ {1, . . . , q} to give the effective wired distribution. For a group k

of l members its output bk is determined by a strategy of subsequent measurements of each

member. Upon reception of yk, a first member measures x1 = f1(y1) to obtain outcome a1

which is then passed o to a second party (and so on) who determine their measurement settings

as xj+1 = fj+1(y1, a1, . . . , aj). Finally, the group output is determined as bk = gk(y1, a1, . . . , al)

[55]. Taking for example the group k = 1, the wired box is then given as

(54) P r(b1, . . . , bs|y1, . . . , ys)

=
∑

a1,...,al
s.t.g(a1,...,al)=b1

P⊗r(a1, . . . , al, b2, . . . , bs|f1(y1), . . . , fl(y1, a1, . . . , al−1), y2, . . . , ys) ∈ P(s,p,q),

This process, together with the example of a grouping is given in Fig. 2. In fact, these wirings,

which so far are deterministic and in which the order of measurement within a group is taken

to be fixed beforehand (meaning they are static), can be generalized to stochastic, dynamic

wirings in which the group members share randomness and in which measurement outcomes

determined the ordering of parties. Furthermore the wiring of boxes that are not identical

copies, or originate from different scenarios, is described in the same way. The general form of

all of these generalizations is in general notationally very cumbersome but perfectly possible.

Here we will write P ri , s ≡ W⊗s(⊗siPi) to denote any wiring that can be obtained by the wiring

8For a more general discussion about how joint distributions should be formed from marginals it is informative
to consider the writings of the ”minimalist” school around Fine that questions the necessity to produce the joint
probability function by the arithmetic product, in particular surrounding the discussion of the interpretation of
the Bell inequality violations. See [53, 54] for this debate.
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Figure 2. Left: Three bipartite boxes distributed among three groups of two
parties each. Right: Determining the group output by passing on outcomes to

subsequent paties. Taken from [55]
.

of r boxes {Pi} by s parties. The tensor product index on the wiring map W is meant to

indicate that these wirings are local operations.

Every wiring can be represented as a combination of grouping, composition and post-selection

on outcomes, which together exhaust the set of classical operations one can perform on sets of

distributions [36].

4.2. Branching. The introduction of multiple boxes and the possibility of wiring it brings along

adds complications to defining the joint scenario that define the correlations spaces or wired

boxes. This possibility of conditionalizing on measurement outcome of previous measurements

enlarges the number of measurements that parties can perform. In terms of the partitions

M of the NC-space Ξ, this possibility of “branching” is taken into account by extending M,

and the various sets defined from it. This is illustrated here for the case of a single decision

but can easily be generalized for any number of decisions: Given two elements, M,M ′ ∈ M̃
where M is included by M ′, meaning that one can produce the partition M by taking unions

of the partition elements of M ′, and M ′ ≡ M ′(A), i.e. M ′ is determined by the outcome of

M . Together these define a new partition Mb(M,M ′) which contains all outcomes A′ of M ′(A)

such that A′ ⊂ A for all A ∈M . Then, M̃b = {Mb} is the set of all these branching partitions

which, for trivial branching, clearly includes M. we then define Ab, C̃b as before. Since every

fine-grained outcome for a branching measurement is also a fine-grained outcome for the element

of M̃, we can otherwise otherwise construct the branching joint scenario Sb(T ) for T = {S,S}
as before, with Pb also being uniquely determined by PS .

4.2.1. The QMT branching sets. The possibility of branching also imposes further decoherence

constraints on the decoherence functionals corresponding to branching scenarios, in which which

events appear as alternatives of a single measurement when before they did not (in other words

branching reduces the number of orthogonal events). We can therefore introduce the following

strengthenings of JQM and SPJQM .

Definition 4.2 (JQMb). For a given (n,m, d)-scenario S a conditional probability distribution

P (e) is in JQMb iff there exists a decoherence functional D(A,B) on 2Ξ such that

(1) D(A(e), A(e)) = P (e) ∀A ∈ Cb
(2) D(A(e), B(e′)) = 0 ∀A,B ∈ AM , A ∩B = ∅, ∀M ∈Mb,

where Cb and Mb are given by the joint branching scenario Sb which is determined by S.
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and similarly for SPJQMb.

Definition 4.3 (SPJQMb). For a given (n,m, d)-scenario S a conditional probability distri-

bution P (e) is in SPJQMb if there exists a strongly positive decoherence functional D on 2Ξ

such that

• D(A(e), A(e)) = P (e) ∀A ∈ Cb
• D(A(e), B(e′)) = 0 ∀A,B ∈ AM , A ∩B = ∅, ∀M ∈Mb,

where Cb and Mb are given by the joint branching scenario Sb which is determined by S.

Of course one can also define branching extended versions for any other set considered so far

but that they remain invariant under this extension is a simple corollary of Lemma 5.1 proven

in the next section. We also get the following central result for the branching set SPJQMb.

Theorem 4.1. In any bipartite scenario SPJQMb ≡ Q̃.

Proof. This is proven in [38]. �

This is interesting because these sets were derived in very different contexts, convex optimiza-

tion using semidefinite programming and quantum gravity research. This not only motivates,

at least to some extent, that these sets capture an interesting structure that goes beyond either

approach, and also, more pragmatically, allows for the translation of a number of results from

information theoretic research to quantum measure theory (and vice versa) that are central to

the thesis question, especially in the next section.

5. Closure and Stability

Given that wirings are taken to be (exhaustively) representing the possible actions local

experimenters can perform on their part of a shared state, it is a natural requirement that sets

corresponding to physical theories should be closed under them.

First define some basic notions of closure

Definition 5.1 (Closure under composition). A set of conditional probability distributions

S(S) ⊆ PS that is defined for some set of scenarios S = {S} is closed under composition iff,

for any P ∈ S(S), P ′ ∈ S(S ′),

(55) P ⊗ P ′ ∈ S(SJ),

where SJ ,S,S ′ ∈ S and SJ is the joint scenario constructed from {S,S ′}.

Definition 5.2 (Closure under post-selection). A set of conditional probability distributions

S(S) ⊆ PS that is defined for some set of scenarios S = {S} is closed under post-selection iff,

for any P (a1, . . . , an|x1, . . . , xn) ∈ S(S),

(56) P (a2, . . . , an|x1, . . . , xn, a1) ∈ S(S ′)

where S,S ′ ∈ S .

One immediate and useful result for closure under post-selection is

Lemma 5.1. A set S such that S ⊆ JQM is closed under post-selection if and only of S ≡ Sb,
i.e. it is equivalent to its branching extension
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Proof. ⇒: Assume S is closed under post-selection. Then for any decoherence functional D

corresponding to some P ∈ S there exists a valid decoherence functional Db which reproduces

the right statistics for any post-selection Pc ∈ S of P . But this is equivalent to S ≡ Sb.

⇐: Assume S ≡ Sb. Then for any decoherence functional D corresponding to some P ∈ S
there exists a valid decoherence functional Db which reproduces the right statistics for any

post-selection Pc of P with Pc ∈ Sb ≡ S. Therefore S is closed under post-selection. �

Since we already know that L,Q and NS are closed under wirings, it follows that L ≡ Lb
etc. in any scenario. Whether SPJQM ≡ SPJQMb and JQM ≡ JQMb is however unclear. It

is also easy to see that the construction of the branching joint scenario Sb defines a new kind of

composition for scenarios that is different from the one in Sec. 4.0.2. This will be investigated

further in Sec. 6.4.

5.1. Physical Closure. With the same motivation but by also including convexity (possible

states should also be possible to prepare probabilistically) [56] define “physical closure” as a

necessary property of any set of distributions that is meant to correspond to a physical theory.

Definition 5.3 (Physical Closure). A set of n-partite boxes S defined for any scenario S is

“physically closed“if

(1) S is convex

(2) S is closed under wiring, i.e. for any collection of r boxes {Pi} ⊆ that are equally

distributed among by s parties, W⊗s(⊗siPi) ∈ P′S is an element of S as it is defined for

S ′.

In this text we will refer to “physically closed” simply as “closed” unless stated otherwise and

we will denote any general physical operation Wp(·). The exact sense in which these operations

are physical, however, is possibly unclear to someone who seeks the notion of “physicality”

outside an operational framework, as is the case in quantum measure theory. In Sec. 7 and, in

particular, in Sec. ?? this will be investigated further.

The requirement on sets to be closed under physical operations can then be formulated in

the following axioms.

Axiom of Physical Closure (APC)

The set of behaviors derived from any physically

feasible theory is physically closed.

Even though this seems to be a very weak requirement on reconstructive principles and the

sets they produce, APC rules out a surprising number of sets in the NS-polytope, as the next

section shows.

5.2. Some results about closed sets. L,Q and NS are all instances of closed sets. Indeed,

L is the smallest closed set because it is the convex hull of the deterministic extremal boxes and

every deterministic box can be generated by using a trivial wiring.

Given APC, it is a natural question to ask for the general properties of closed sets inside the

non-signalling polytope. Given their simple structure and the closure of L and NS, general

polytopes seem a good starting point for such an investigation. [27] discuss two families of

non-signalling polytopes for the CHSH scneario that violate APC and are illustrated in Fig. 3.
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Figure 3. Two simple polytope families that are ruled out by APC, in
particular the requirement of closure under wiring: (a) the polytope with a
CHSH-cutoff, (b) the squeezed polytope given by isotropic noisy PR-boxes.

Taken from [27]
.

CHSH cutoff. One way of producing polytopes is by considering the polytopes RSCHSH inside

NS of boxes whose correlators satisfy a certain CHSH value S where 2 ≤ S ≤ 4. The structure

of these polytopes looks just like L = R2
CHSH with “postivity” facets connecting deterministic

extremal boxes and a “CHSH”-facet for every CHSH-inequality CHSH ≤ S with the LHS

being a function of the correlators. Specifically, every non-deterministic vertex of RSCHSH
can be specified as a nested convex mixture of PR-boxes and deterministic, local boxes. One

can produce wired boxes lying outside of this polytope (for the wirings considered in [27], the

functions g and inputs y are Boolean and all boxes grouped into two parties so that the resulting

box will again lie in PS(2,2,2)) by “distilling” boxes lying on the edges of the polytope NS\L,

which overlaps with RS for any 2 ≤ S ≤ 4, i.e. wiring them such that the resulting box lies on

the same edge but with increased CHSH value.

Squeezed polytopes. The second class of general non-signalling polytopes that are found not

to be closed are isotropic noisy PR-boxes RSI . These are convex mixtures of a PR-box with

isotropic (white) noise, i.e. for the (2, 2, 2)-scenario,

(57) PPR(ε) = εPPR + (1− ε)1

4
I.

Importantly, every bipartite box can be turned into the form (57) by local operations without

changing its CHSH value S [28], with S = 4ε. Therefore RSI geometrically gives a “squeezed”

version of the NS-polytope in which all local boxes remain invariant (see Fig.??). A single AND

wiring is sufficient to produce boxes outside RSI for any 8
3 < S < 4 For smaller values of S, no

proof exists of their not being closed but it has been conjectured that they’re not closed as well.

Other relevant sets that have been shown to not be closed are the Uffink [57] and Pitowsky

set [58], both in [27].

That the above two classes of polytopes are not closed motivates the question whether APC

allows for only very small number of closed sets including the local, quantum and non-signalling

sets, or indeed only those three. This question has to be answered in the negative as the

following results show.
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5.2.1. There exists an infinity of closed super-quantum sets in the CHSH scenario. While the

last section gives an example of a super-quantum set that is closed under wiring, there exist

other examples that conclusively prove the existence of physically closed sets.

Lemma 5.2. Qn is closed for all n ≥ 1.

Proof. This is proven in [56]. �

We also have the following Lemma

Lemma 5.3. Assume that P 6= NP and that Kirchberg’s conjecture holds. Then, for any

k ∈ N, there exist k numbers N1, 1 . . . , Nk and a bi-partite scenario with binary outputs where{
QNi

}k
i=1

are all different.

Proof. This is proven in [56]. �

Together these imply that, under the weak assumptions of the lemma, there exists an infinity

of super-quantum closed sets in the CHSH scenario.

As is proven in [56], there also exists an infinity of bipartite closed super-quantum polytopes,

as there at least two families of polytopes, called ”Ghost world” and ”Twin world” which are

closed and of are infinite in size. Furthermore, [56] provide an example of a set that is tripartite,

super-quantum and closed. In fact, [36] prove that the more general n-partite Q̃ is closed under

wiring. Together with its convexity in any scenario this implies that

Corollary 1. Q̃ is physically closed.

meaning that there exists at least one super-quantum closed set (that isn’t NS) in every

scenario in which Q̃ 6= Q.

In the light of the above results one might hope that the quantum set then is characterizable

as the smallest closed set exhibiting non-locality, at least in the CHSH-scenario? The answer is

no.

5.2.2. There exist an infinite number of closed non-local subquantum sets. The question about

closed sets is closely related to the research program of non-locality distillation. Recall first the

isotropic noisy PR-box PNL(ε) from (57) which was is equivalent to all boxes of with the same

CHSH value S = 4ε up to local operations and where ε = 1
2 ,

1√
2
, 1 give extremal CHSH boxes

of the L,Q,NS sets respectively.

The problem of non-locality distillation is whether identical copies of isotropic boxes with

ε > 1
2 can be wired to give a box with ε′ > ε. All attempts to solve this problem so far have failed.

One result from [59] of interest to us is that there exists an infinity of values ε ∈ (1
2 ,

1√
2
), forming

the set E , for which distillation is impossible. This implies that each of the infinite number of

sets Qε, ε ∈ E which we define to be the sets obtainable by locally acting on PNL(ε) are closed

and for each two elements ε, ε′ ∈ E , ε < ε′ we have the strict nesting L ⊂ Qε ⊂ Qε′ ⊂ Q. It is

an open question whether mathcalE, or its extension E to the all values of 1
2 < ε < 1 for which

distillation is impossible, is discrete or continuous. This is an interesting question in that one of

either of turned out to be discrete (countable and complete in the corresponding regime, then

this would allow to label every physical theory (in the sense of CPS) by some ε ∈ E .

Finally, from Corollary 1 and Lemma 2.1 we also have that Q is not even the only set

recovering the Tsirelson bound, another property of quantum correlations one might have hoped
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for APC to single out. All together, it is clear that even though closure is certainly far from

being a trivial requirement on sets of behaviors it is also highly insufficient to single out out the

quantum set by itself.

5.3. Stability under composition - Maximality. So far we have neglected an important

subtlety: A reconstructive principle may allow for several closed sets that however intersect

non-trivially. To discuss this first introduce the closure of a set R as the smallest closed set C

such that R ⊆ C. Define then for any two closed sets S1, S2 the set S1 + S2 as the closure of

S1 ∪S2. We also have that S1 ∩S2 is also a closed set. Characterization of S1 +S2 and S1 ∩S2

are in general problems of very different complexity, the latter being much easier to decide than

the former [56]. In this terminology the above subtlety is easily expressed as the fact that for

a number of closed sets Si that are consistent with with some principle Z, i.e. Si ⊆ Z, ∀i,
where Z is the set of all behaviors consistent with Z, it is in general not the case that

⋃
i Si is

compatible with the principle, i.e.
∑

i Si * Z.

The additional property required of the principle to ensure that this is not the case is that

it is stable under composition [56].

Definition 5.4 (Stability under composition). A device-independent principle Z is stable under

composition iff, for any scenario S and any pair of physically closed sets S1, S2 compatible with

Z, the set S1 + S2 is also compatible with Z.

For convenience, refer to principles that are stable under composition as stable principles.

One can translate this, as in the case of closure, into an axiom:

Axiom of Stability under composition (ASC)

Any device-independent principle from which a feasible theory

can be constructed is stable.9

To clarify the structure that ASC imposes on sets of behaviors further consider the following

definition.

Definition 5.5 (×-Maximality). For some scenario S, a set S ⊂ PS that is closed under some

action × is ×-maximal under a principle Z with corresponding set Z if S ⊂ Z(S) and ∃P ∈ S
such that

(58) P ⊗ P ′ /∈ Z(S ′(T )) ∀P ′ ∈ Z\S,

where T = {S, S}.

In simple terms, a set is ×-maximal under a principle if it cannot be enlarged without yielding

violations of that principle under the ×-action. Note that the existence of a maximal set trivially

implies that Z is not closed under ×.

The connection between maximality and stability is made clear by the following Lemma.

Lemma 5.4. A principle Z is stable iff it has no non-trivially intersecting Wp-maximal sets.

Proof. By definition, for any set R that non-trivially intersects with a Wp-maximal set S,

Z ⊂ R+S. So if R is closed and satisfies Z, then Z is unstable under composition. Conversely,

9Note that one could have defined the notion of stability under composition for sets that are not closed, however,
it is implicit in calling a set R “compatible with Z” only if R ⊆ Z. Therefore we can w.l.o.g. define stability for
these closures.
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suppose that all closed sets in Z are nested. Then for any closed sets S1, S2 ⊂ Z, S1 + S2 is

either S1 or S2 and therefore Z is stable under composition. �

Note that we required Wp-maximality of the closed sets only to prove the right implication.

A theorem equivalent to the above for the CHSH scenario, namely that there exists a bipartite

Bell-type linear inequality unstable under composition iff there exist two bipartite closed sets

with non-trivial intersection, is proven in [56]. Also it is clear that for stable principles there

exists only one Wp-maximal set by Wp-closure of the maximal set. Call this set then the wiring

domain of Z in the sense that any physical wiring in the sense of Def. 5.3 that is guaranteed

to produce behaviors that are consistent with Z can have this set as its largest domain. Call

the corresponding ⊗-maximal set for principles stable under ⊗-composition its compositional

domain.

We an therefore see that APC and ASC impose, despite their weakness, impose highly non-

trivial requirements on the candidate principles for a physical theory and single out a natural

set, its wiring domain, for physical distributions in a universe governed by these principles.

5.4. Example: Q̃ as the wiring domain of local orthogonality. One highly relevant

example of Wp-maximality that has recently been found serves to illustrates these concepts.

5.4.1. Local Orthogonality. Recently is was shown proven that any principle that is to single

out quantum correlations for an arbitrary number of parties cannot be based on bipartite

information concepts [26]. In reaction to this [15] introduce an intrinsically multipartite principle

into reconstructive research with similar ideas having been discussed previously in [60]. The

basic notion for this principle is that of exclusiveness between possible events: For any (n,m, d)-

scenario, two events e ≡ (a1, . . . , an|x1, . . . , xn) and e′ ≡ (a′1, . . . , a
′
n|x′1, . . . , x′n) are “(locally)

orthogonal” if, for at least one party k, xk = x′k while ak 6= a′k. Sets of events {ei} are

then called “orthogonal” or “exclusive” if all their members are (pairwise) orthogonal, denoted

ei ⊥ ej . With this terminology [15] then define

Definition 5.6 (Local Orthogonality (LO)). For any exclusive set, every element of the set of

physically allowed distributions satisfy

(59)
∑
i

P⊗k(ei) ≤ 1

for any number of copies k.10

Call S ≡ {Si} the set of all exclusive sets Si for a given scenario. By definition,M⊂ S, with

every M ∈M yielding equality in (59). The same is true for any coarse-graining of elements in

M.

The origin and interpretation of LO, in particular its relation to logic, have been investigated

in several studies, see [61, 62, 63]. In terms of sets of distributions, one can define

Definition 5.7 (LOk). For a given (n,m, d)-scenario a conditional probability distribution

P (e) is in the set LOk if P⊗k satisfies Local Orthogonality in the (kn,m, d)-scenario, where

10Note that considering composition (as opposed to any general Wp(·) here is enough because the number of
events doesn’t change and the question which events are alternative outcomes of some branching measurement
can easily be inferred from the original scenario, especially the orthogonality graph, see below.
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Figure 4. Orthogonality graph of all non-zero weighted events for the PR-box
in the CHSH-scenario. Labels denote events

k ∈ N. In particular,

(60) LO∞ :=
⋂
k∈N
LOk.

Local Orthogonality can be conveniently studied in terms of graphs to represent the relations

between different events [15, 64].

Definition 5.8 (Orthogonality Graph). Given a (n,m, d)-scenario, its “orthogonality graph”

O(S) is an undirected graph whose vertex set is the set of all events for this scenario with

adjacency relation

(61) ei ∼ ej ⇐⇒ ei ⊥ ej .

One can study distributions over the corresponding scenario by constructing non-negative-

weighted subgraphs (G, pi) of O(S). The assumption of non-contextuality in this setting is the

assumption that the weights (interpreted as probabilities of the events’ occurrence) are inde-

pendent of G. Local orthogonality can be re-stated in graph theoretic terms as the requirement

that the sum of weights of every clique in O(S), that is, every subset of vertices inducing a

complete graph (a graph in which every vertex is connected to every other vertex) is less or

equal to one. By the assumption of non-contextuality a sufficient condition for the satisfaction

of local orthogonality by any clique is then its satisfaction by all maximal cliques, that is, cliques

from which no new clique can be generated by adding vertices.

A first result one can prove easily here is that LO1 ≡ NS. This is proven in [15] and,

differently, in [60]. However, the intrinsically multipartite character of LO becomes apparent

for k ≥ 2. For instance, the PR-box is ruled out by LO already for two copies [15]. To see this,

first note that, by the definition of the PR-box in (8), the only non-zero probabilities (weights)

of events for k identical copies of the PR-box are 2−k (for any event such that ai⊕ bi = xiyi, i ∈
{1, . . . , k}). This means that in the exclusivity graph consisting only of vertices with non-zero

weight finding a clique with 2k members is sufficient to prove the above. [15] find cliques with 5

members for k = 2 (that is, in the graph given by the strong product of two copies of the graph

given in Fig.4). Hence, LO excludes the PR-box.

Really, of course, one is interested in characterizing LO∞ as this is the only “physical” set.

[55] prove the following:
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Theorem 5.5. LO∞ is closed under wirings

Proof. This follows by Lemma 5.6 below for k =∞ together with the fact that if P r ∈ LO1 can

be produced by wiring, then so can any number of copies (P r)⊗r
′
, meaning that P r ∈ LO∞. �

Lemma 5.6. For any P ∈ LOk, P r ∈ LO1

Proof. This is proven in [55]. �

Note that this does not prove that LO∞ is physically closed. Indeed, it is not clear whether

LO∞ is convex in every scenario.11 An interesting corollary of Lemma 5.6 is that wirings are

“useless” to produce violations of local orthogonality, i.e. if a wiring of r boxes P violates

LO1 then P violates LOk, meaning that P⊗k already violates LO1. In [32] it is proven that

Q ⊂ LO∞ for the CHSH-scenario, meaning that LO cannot characterize the quantum set.

5.4.2. Maximality under LO. The most important result and the one illustrating maximality,

however, is that Q̃ is the wiring domain of an extended LO under the assumption that any

physical set should include Q. First prove ⊗-maximality.

Theorem 5.7. Q̃ is ⊗-maximal under

Proof. Given any collection of events {ei} for some scenario S consider another collection of

events {fi}, generally of another scenario S ′, such that ei ⊥6 ej ⇒ fi ⊥ fj . Then, by definition

O(S) = O(S ′), i.e. the orthogonality graphs of the two scenarios are complementary to another.

By virtue of the independence between events ei and fi implied by this relationship, the joint

probabilities of the events eifi for any distributions over the joint scenario T = {S,S ′} are

PiP
′
j , following the tensor product rule for distributions.

Since LO applies to this joint behavior as well we require

(62)
∑
i

PiP
′
i ≤ 1

This inequality can be rephrased as follows: By Local Orthogonality a distribution {Pi} has to

satisfy (62) for any other P ′i allowed by O(S). Given a normalized vector |ψ〉 and orthonormal

basis {|fi〉} this bounds the Pi as

(∑
i

Pi

)
min|〈ψ|fi〉|2 ≤

∑
i

Pi|〈ψ|fi〉|2 ≤ 1(63)

↔
∑
i

Pi ≤
1

max|〈ψ|fi〉|2
(64)

Since this has to hold for any |ψ〉 and {|fi〉} on S ′, we further minimize over all models such

that

(65)
∑
i

Pi ≤
1

min max|〈ψ|fi〉|2
.

The RHS of (65) is the Lovsz function on O(S) [65, 66] which in [64] is proven to be the

maximum CHSH-value allowed by almost quantum correlations. �

11In fact, in [32] it is proven that there exist some contextuality scenarios for wich CE∞ is not convex.
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We have skimmed over one detail: That the LO principle should apply to the product scenario

of two different scenarios is not actually part of the original formulation of LO, where copies of

the same distribution are considered. Given their independence by construction it nevertheless

seems like a reasonable requirement. This shows that Q̃ is ⊗-maximal but not that it is the

compositional domain of LO. Noting that the models on the second scenario used in the proof to

Theorem 5.7 to obtain the bound were any quantum model, assuming that any physically feasible

theory should contain Q then rules out any other maximal set that non-trivially intersects Q̃

and, by Lemma 5.4, makes Q̃ the compositional domain of LO.12 Finally, from the above results

that wirings are useless to produce violations of LO ([55]) together with the physical closure of

Q̃ it follows that the almost quantum is also the wiring domain of LO!

This argument provides an illustration of how local orthogonality (extended to apply to

combinations of different scenarios), APC, ASC together with the assumptions of the tensor

product rule for independent distributions and containment of the quantum set in any future

theory single out the almost quantum set. We now see that the recovery of the Tsirelson bound

by almost quantum correlations (Lemma 2.1) can be explained as a special case of the maximal

correlations that are allowed by these various principles for the CHSH scenario if the further

assumptions hold true.

What about the quantum measure theoretic sets? In the next section we show that, under the

assumption of a composition rule for decoherence functionals, a similar result can be obtained

for SPJQMb.

6. Closure and maximality in quantum measure theory

This section brings together the different concepts and results discussed in previous chapters

by asking what one learns about quantum set theory by studying in the light of APC and ASC

6.1. Closure. Are JQM and SPJQM closed? Since both these sets are defined by the exis-

tence of a decoherence functional, it is necessary to discuss closure and maximality in terms of

the latter. Firstly, it is clear that both sets are convex by convexity of the decoherence func-

tional. Regarding composition, by definition the joint behavior PJ = P ⊗P ′ ∈ PT ={S,S′} of two

independent behaviors P ∈ PS , P
′ ∈ PS′ that admit decoherence functionals D ∈ B(HS), D′ ∈

B(HS′) defined over the two vector spaces HS ,HS′ respectively, will be an element of JQM if

there exists a valid decoherence functional DJ ∈ B(HT ) for PJ .

For functionals in SPJQM this construction is easy as implied by this simple theorem.

Lemma 6.1. SPJQM is closed under composition

Proof. For any two behaviors P, P ′ ∈ SPJQM with atomic decoherence functionals D̂, D̂′ we

can produce a valid decoherence functional for PJ = P ⊗ P ′ as D̂J = D̂ ⊗ D̂′. It is easy to

check the validity of this functional: The tensor product of two positive semi-definite matrices

is again a positive semi-definite matrix and also hermiteanity, additivity and the production of

the right joint behavioral statistics are warranted by this construction. �

12[32] implicitly make this argument in defining an extended consistent exclusivity/ local orthogonality principle
involving closure under composition with any quantum model.
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For a general element of JQM this is not as simple in that the positivity property of de-

coherence functionals is not in general conserved. In analogy to the tensor product rule for

distributions we therefore make the following assumption:

Existence of product decoherence functional (EPD)

For any two independent distributions P ∈ PS , P
′ ∈ PS′ ∈ JQM ,

if PJ = P ⊗ P ′ ∈ JQM , then there exists a joint atomic decoherence functional of the form

D̂J = D̂ ⊗ D̂′ ∈ B(HJ) where

D̂ ∈ B(H), D̂′ ∈ B(H′) are two valid atomic decoherence functionals for the two distributions.

In particular, if either one of the distributions is an element of Q, then the correct

marginal decoherence functional is given by the construction

used in the proof of Lemma 3.3.

Some remarks EPD: Recall first that these vector spaces are not Hilbert spaces in that they

do not have a well defined positive inner product. Secondly, the axiom does not state that for

any valid decoherence functionals DA, DB, if their tensor product is not a valid decoherence

functional, then the joint behavior is not in JQM . This would be an unreasonable and overly

strong requirement. Because of this, the axiom is weaker than a general composition rule in that

it does not provide a recipe for producing a joint decoherence functional from given marginal

functionals (except for the case of two quantum models). At the same time, it prescribes the

tensor product algebra for the cases in which a joint decoherence functional exists. In this sense

it does establish a “chopping” rule.

Finally, the specification for the form of the functionals for quantum models is first of all

necessary for the upcoming proof of maximality but can also be justified otherwise by considering

a convex mixture of the decoherence functionals for the PR-box given in (48) and local noise

for (2, 2, 2)-scenario,

(66) D̂(ε) = εD̂PR + (1− ε) 1

16
I,

which gives a valid decoherence functional for the isotropic PR-box from (57) for any 0 ≤ ε ≤ 1.

Of course, at least for ε ≤ 1√
2

we know that there exists a strongly decoherence functionals for

this distribution, while (66) is not a positive matrix for any ε. Without adding the additional

clause in EPD the tensor product D̂⊗2(ε) for two independent noisy PR-boxes would be assumed

to be a valid decoherence functional for this range of ε because we know that Q is closed.

However, due to the sparseness of (48) it is easy to check that this tensor product does not

produce valid decoherence functionals for P⊗2
PR(ε). Indeed simple testing in Matlab gave this

result for values of ε as low as 0.275, illustrating the importance of keeping in mind non-

uniqueness of the decoherence functional and also motivating the above as a sufficiently weak

but adequate assumption.

What about the physical closure of these sets? In the following section it is proven that

JQM (and by implication JQMb) is not closed under composition and therefore also not closed

physically. For SPJQM it is still unclear whether it is physically closed but we can easily prove

physical closure of SPJQMb by recalling the connection between branching and closure under

post-selection from Lemma 5.1.

Lemma 6.2. SPJQMb is physically closed.
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Proof. For the bipartite case we know this already from Theorem 4.1 and Corollary 1. More

generally, since SPJQMb is by definition equivalent to its branching extension, it is closed under

post-selection by Lemma 5.1. Since SPJQMb ⊆ SPJQM , closure under wiring is warranted by

the additional decoherence requirements imposed on a decoherence functional in the definition

of SPJQMb together with its positive-semidefiniteness, the combination of which ensures that

any joint decoherence functional that is both strongly positive and closed under post-selection.

Finally, SPJQMb is convex because any convex mixture of positive-semidefinite matrices is

again a positive-semidefinite matrix and every convex mixture of behaviors that are closed

under post-selection is again closed under post-selection. �

6.2. Maximality. Consider next maximality, where the natural principle to study is PPI.

[67] proves the following theorem which links the example developed in the last subsection to

quantum measure theory.

Theorem 6.3. JQM ⊆ LO∞ for any non-locality scenario.

Proof. See [67] for a proof. �

This is not only interesting in its own right, opening up for the possibility of the two prin-

ciples actually being equivalent, at least for those families of scenarios for which they are both

defined. It also suggests the possibility of simply translating the result of the last section onto

SPJQMb and PPI since we know that for bipartite scenarios the equivalence result between

Q̃ and SPJQMb from Theorem 4.1 and furthermore the simple property that, if a set S is ×-

maximal under some set Z, then it is also ×-maximal under any set Z ′ for which S ⊆ Z ′ ⊆ Z.

However, things are not that easy because LO is a general contextuality principle and the max-

imality proof from the last section works for any contextuality scenario, meaning that it proves

Wp-maximality for sets of contextuality scenarios for which the quantum measure theoretic sets

are not defined. This is more rigorously discussed in Appendix A, since it requires some more

graph theoretic considerations that otherwise are not relevant for the main text.

6.2.1. SPJQMb is the wiring domain of PPI.. Despite the unavailability of the above maxi-

mality result to quantum measure theoretic sets, it is nevertheless suggestive and very likely to

hold similarly here. Indeed one can prove the following number of results.

First of all consider the following simple matrix lemma.

Lemma 6.4. Let N be the set of all positive-semidefinite hermitian matrices of any dimension

n×n and let M be the set of all hermitian matrices Mij of any dimension m×m such that, for

any vector w ∈ {0, 1}m, wiMijwj ≥ 0 where we use Einstein summation. If for some M ∈M,

M ⊗N ∈M, ∀N ∈ N , then M ∈ N .

Proof. Assume that M /∈ N . Then there exists a vector v ∈ Cm such that v∗iMijvj < 0. Now

define the m × m-dimensional hermitian matrix Nkl = v∗kvl ≡ vkl together with the vector

w ∈ {0, 1}m2
as wik = δik. Then

(67) wikMijNklwjl = δikMijvklδjl = v∗iMijvj < 0.

But this contradicts the assumption since u∗i v
∗
kvluj = |uv∗|2 ≥ 0 so that N ∈ N �
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The analogy to the definition of ⊗-maximality is clear, however in the case of decoherence

functionals one needs to be more careful. This is because N = |v∗〉〈v∗| is not in general a

valid atomic decoherence functional for any model since it does not warrant decoherence of any

alternative outcomes. Still, only a slightly more analogous proof does the job.

Theorem 6.5. SPJQM is ⊗-maximal under PPI if EDP is true.

Proof. For SPJQM to be ⊗-maximal under PPI means that, if for any two scenarios S,S ′,
PJ = PS ⊗ PS′ ∈ JQM ∀PS′ ∈ SPJQM , then PS ∈ SPJQM . Now let D̂ be any valid m×m-

dimensional atomic decoherence functional for a behavior PS ∈ JQM in scenario S. Assume

that PS /∈ SPJQM . Then there exists a vector |v〉 ∈ Cm which we can take to be normalized

w.l.o.g., such that 〈v|D̂|v〉 < 0.

Now consider a quantum model consisting of a normalized vector |v∗〉 ∈ Cm and two projective

sets {Ea}, {F0, F1} defined by Ea = |a〉〈a|, for a = 1, ...,m, i.e 1-rank projectors onto the

computational basis of Cm, and F0 = 1
m

∑
j,k |j〉〈k|, F1 = Im − F0.

Construct the decoherence functional for this model following the proof to Lemma 3.3 by

defining D̂′ ∈ B(Cm ⊗ C2) as

(68) D̂′(a, b|a′, b′) ≡ 〈v∗|Ea′Fb′FbEa|v∗〉.

Denoting the basis of C2 as {|0〉, |1〉} we then have

(69) D̂′ =
1

m
|v∗〉〈v∗| ⊗ |0〉〈0|+

(
m∑
a=1

|〈v∗|a〉|2|a〉〈a| − 1

m
|v∗〉〈v∗|

)
⊗ |1〉〈1|.

Since Q ⊂ SPJQM , this decoherence functional is strongly positive. By assumption of the

existence of a product joint decoherence functional (EPD) one has that if PJ ∈ JQM (otherwise

the proof would be finished), then D ⊗ D′ gives a valid decoherence functional for the joint

distribution PJ and so with |w〉 ≡
∑m−1

a=0 |a〉 ⊗ |a, 0〉,

(70) 〈w|D̂ ⊗ D̂′|w〉 =
m∑

a,b=0

〈a|D̂|b〉〈a, 0|D̂′|b, 0〉 =
1

m
〈v|D̂′|v〉 < 0.

Since this construction is always, this means that there is always at least one scenario S ′ such

that PJ /∈ JQM for T = {S,S ′}. �

One immediate result of this is that

Corollary 2. JQM is not closed under composition

It is particularly interesting that only a small subset of SPJQM , namely the set QS of

quantum models describing single-site experiments with two (incompatible) measurements, was

needed to prove maximality. Thus, analogously to the proof for Q̃, this can be used to strengthen

the result.

Corollary 3. SPJQM is the compositional domain of PPI if any physically feasible theory

contains the set contains QS, if EPS is true.

Proof. That SPJQM contains QS follows simply by QS ⊂ Q ⊆ SPJQM and any set that non-

trivially intersects SPJQM , whether or not it contains QS , is ruled out by Theorem 6.5. �
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As in the case of Q̃, we would like to strengthen this result to Wp-maximality. Given that

the exact relationship between SPJQM and SPJQMb is not yet known this is involves more

assumptions. Following the strategy of the maximality theorem above we can again consider

a reductio argument. For any behavior in JQM that lies outside SPJQMb, does there exist

an element of SPJQMb such that PSJ /∈ JQM? For any P ∈ JQM\SPJQM we can apply

Theorem 6.5 together with Q2 ⊂ SPJQMb since composition falls under physical maps. If

P ∈ SPJQM\SPJQMb (and SPJQM 6≡ SPJQMb) and SPJQM is not physically closed

then SPJQMb would very likely beWp-maximal under SPJQM. Otherwise, if SPJQM turned

out to be physically closed (and nevertheless different from SPJQMb), then it is itself the wiring

domain of PPI.

Proving Cor. 3 without single-site experiments. While the assumption that every physical theory

should include Q is certainly not very strong, ideally one could prove ⊗-maximality of SPJQM

without it.

Under the assumption of EDP, to prove this means to show that for any m-dimensional

D̂ ∈ JQM\SPJQM , there exists a |w〉 ∈ 0, 1n×m such that for finite n,

(71) 〈w|D̂⊗n|w〉 < 0.

This is more difficult to show than the above since we don’t have the freedom of constructing

a suitable D′. The problem can be made more explicit in the following way:

Denote the elements of D as di1j1 where i1, j1 ∈ 1, 2, . . . ,m. Then the elements of of D⊗n

are given by Dı, where ı = i1i2 . . . in,  = j1j2 . . . jn. In exact analogy to the reasoning leading

to (67) one has that, using Einstein summation convention, one requires a binary vector |w〉
such that

(72) waıDıwa′ = vaa′ ∀a, a′ ∈ 1, 2, . . . ,m,

the proposition was proven true.

This is essentially an eigenvalue problem, as is easily seen by transforming into the eigenba-

sis.Since D is Hermitian, there exists a unitary similarity transformation S such that

(73) 0 > 〈v|D|v〉 = 〈v|S†SDS†S|v〉 = 〈ṽ|D̃|ṽ〉 =
∑
a

|ṽa|2λa,

since,in terms of an orthonormal eigenbasis {|λa〉}, we have D̃ =
∑

a λa|λa〉〈λa| and |ṽ〉 =∑
a ṽa|λa〉. In this form it becomes clear that one solution to this problem is to find a procedure

that approximates to arbitrary precision and in finite time a vector in Λ
(S)
− = span{S|λa〉}, λa <

0 in the basis of the original decoherence functional. The matrices corresponding to general

atomic decoherence functionals have, however, not received much attention by mathematicians,

leaving their eigenspectrum unexplored. Once the latter was to be found, then developing an

algorithm should be straightforward since, as is easy to see, as n grows large, a general element

va of the sought after vector can be constructed from an almost entirely general polynomial

of products of the form va =
∑

ı,∈I(a)Dı for some I(a) ⊂ {1, 2, . . . ,mn} with only a couple

of constraints on the number of diagonal elements. This is, in a nutshell, because the number

of different elements (multisets) of Dı converges as n grows, i.e. for the ratio of elements per
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successive steps one has

(74)

(
d2 + n

n+ 1

)
/

(
d2 + n− 1

n

)
=
d2 + n

n+ 1

n→∞→ 1,

while the number of elements continues growing exponentially.

Since an analytic result to the eigenspectrum might in general not be obtainable, it is also

worth considering an approximation using inverse iteration, for which only an upper limit on

the positive eigenvalues would be required.

6.3. Probing CHSH inequality violations of JQM in the light of APC.. As discussed

in earlier sections, the characterization of sets of behaviors in terms of their violation of CHSH

inequalities, in particular the maximum CHSH-value they obey, is an important tool in non-

locality research. Lemma 3.7 proved that for single copies in the CHSH scenario JQM ≡
NS. However we know from Theorem 6.3 and Sec. 5.4.1 that, when requiring closure under

composition, this relationship for the same scenario becomes JQM ⊆ LO∞ ⊂ NS. One

immediate question then is whether JQM or LO∞ recover the Tsirelson bound. In [15], and

in more detail in [55], this is studied for two copies of isotropic PR-boxes. Recall that these are

defined as convex mixtures of the PR-box and local noise as

(75) PPR(ε) = εPPR + (1− ε)1

4
I.

and are distinguished by the fact that every bipartite box can be turned into the form (75)

by local operations without changing its CHSH value S [28]. This useful property means that

one can probe whether a principle, LO or PPI for example, recover the Tsirelson bound by

maximizing the ε for which a noisy PR-box (or copies thereof) satisfies that principle. Similarly

to the proof that the PR-box violates LO presented in Sec. ??, one seeks maximal cliques on

the orthogonality graph of PPR(ε)⊗2 such that the sum of its weights violates the corresponding

LO inequality. Unlike the case of P⊗2
PR, for noisy PR-boxes all vertices carry non-zero weight

which means that none of the 5-cliques used to rule out the PR-box is maximal anymore.

However, by extending the cliques to new, maximal ones [15, 55] find cliques that are for

εLO > (
√

10− 1)/3 ≈ 0.721. This is close to Tsirelson’s bound at εT = 1/
√

2 ≈ 0.707 and lead

the authors to conjecture that as k →∞, εLO → εT .

To prove this conjecture is a very difficult problem even for equiprobable distributions. [55]

illustrate this difficulty by relating the search for maximal cliques to the calculation of a graph

invariant called the “Shannon capacity of a graph”[68], whose computability is in fact unknown

(that is, membership of this problem to any computational complexity class is unclear), see [32].

The existing results on the maximal CHSH-value by these various sets is summarised in Fig. 5.

Given that PPI implies LO, it is an interesting project to study whether JQM gives a tighter

bound for the same setup. This is, firstly, because it could help to decide the question posed

in [67] whether JQM ≡ LO. Secondly, it could throw interesting light on the relation between

CHSH-values and the requirement of closure under composition or physical wirings. In Sec. 5.2

we saw that there exist many sub- and superquantum sets that are closed. Since it is already

known that SPJQM , being a ⊗-maximal set, recovers the Tsirelson bound, showing that JQM

already, or LO∞, do so as well could throw new light on the general relationship between the

maximal CHSH-value of sets and their ability to be wiring or compositional domains of physical

principles.
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Q
Q̃ ≡ SPJQMb

LO2

↓ 0

S ↑ 4

ST = 2
√

2

SLO = 2.883

Figure 5. Maximal Bell inequality violation by the quantum set Q, the
almost quantum relations Q̃ ≡ SPJQMb and the local orthogonality set LO2

in the (2, 2, 2)-scenario. The green area indicates the possible region for JQM .

First set up some suitable formalism. The NC-space (Sec. 3.1) is given by

(76) Ξ = {a0
0, a

0
1, b

0
0, b

0
1, a

1
0, a

1
1, b

1
0, b

1
1} ≡ {γi},

where the upper index denotes the PR-box, the lower the measurement setting and the invertible

function i : Ξ→ N translates the binary strings γi ≡ a0
0a

0
1b

0
0b

0
1a

1
0a

1
1b

1
0b

1
1 formed by elements of Ξ

into an integer i ∈ {0, 1, . . . , 255}.
To study this problem then amounts to the following problem: Maximize ε such that there

exists a atomic decoherence functional D̂(γi|γj) over Ξ, such that,∑
i,j∈I

D̂(γi|γj) ≡ 〈I|D̂|I〉

= P (a0
x0 , b

0
y0 , a

1
x1 , b

1
y1 |x

0, y0, x1, y1),

(77)

where, denoting a0
x0 ≡ a0

x for convenience, I = {i} for all γi ∈ Ξ for which {a0
x, b

0
y, a

1
x, b

1
y} ⊂ γi

and, in an alternative representation, |I〉 ∈ {0, 1}⊗256 is the binary vector with ones on the ith

elements.

Since the aim was to produce distributions for which such a decoherence functional does not

exist we can make things easier by considering real decoherence functionals only. Otherwise

we would have to impose explicitly the conditions that for alternative outcomes given by sets

I, J, I ∩ J = ∅,
∑

i∈I,j∈J D̂ij = 0.

Using the symmetries to reduce the complexity of the positivity constraint. As with most mem-

bership problems for quantum measure theoretic sets the difficulty lies in the positivity of the

measure: Already for this very simply scenario we have |2Ξ| = 2256 positivity constraints on

the decoherence functional. One way to tackle this problem is by using the high degree of

symmetry of the two PR-box scenario, in which many different marginal settings produce the

same statistics.

A convenient way of studying these symmetries is by considering the action of the cor-

responding group elements g ∈ G represented as map on the strings γi or, alternatively,

on the corresponding i-integer g(γi) = γg(i) = γi′ . The generating maps of the group, to-

gether with examples, are given in Table 1. We find that there are two commuting gener-

ators for each PR-box g1, g2, g3, g4, all of which commute, and one that swaps the two PR-

boxes, g5, which doesn’t commute with any of the others, with the commutation relation

[gi, g5] = [g5, gi+2 (mod 2)], i ∈ {1, 2, 3, 4}. Moreover, g1, g3, g5 have period 2 (i.e. they are

their own inverse) while g2/g4 have period 4. We therefore have |G| = 27 = 128
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Generator Action g(a0a1b0b1) E.g. g(1000) g(i = 8)
g1/g3 swap A↔ B b0b1a0a1 0010 1

g2/g4 flip conditional on xy a1a0b1b0 1101 13
g5 swap PR-boxes g(a0

0a
0
1b

0
0b

0
1a

1
0a

1
1b

1
0b

1
1) = a1

0a
1
1b

1
0b

1
1a

0
0a

0
1b

0
0b

0
1

Table 1. Symmetries of the two PR-box scenario. All group actions are given
for the original string γi ≡ a0

0a
0
1b

0
0b

0
1a

1
0a

1
1b

1
0b

1
1.

Recalling that the statistics for the single PR-box are

(78) PPR(a, b|x, y) =

1
2 if a⊕ b = xy

0 otherwise

it is easy to see that

〈I|D̂g|I〉 ≡ 〈I|D̂(g(γi)|g(γj))|I〉

= 〈I ′|D̂(γi′)|γj′)|I ′〉

= 〈I|D̂(γi)|γi)|I〉

= 〈I|D̂|I〉 ∀g ∈ G,

(79)

where in the penultimate step we used the fact that I and I ′ produce the same statistics.

Therefore every D̂g is a valid decoherence functional for this scenario.

Now consider the matrix formed by taking the uniform convex sum of the decoherence func-

tionals obtainable by the group action

(80) D̃ =
∑
g∈G

1

|G|
D̂g.

Since each D̂g is a valid decoherence functional, so is D̃. The key property of D̃ is that it is

invariant under group action since

(81) g · D̃ =
∑
g′∈G

1

|G|
g · (D̂g′) =

∑
g′∈G

1

|G|
(D̂g·g′=g′′ =

∑
g′′∈G

1

|G|
(D̂g′′) = D̃, ∀g ∈ G

by the Rearrangement Theorem. This means that D̃ is symmetrized and has a set O = {ok} of

k invariant subspaces, or orbits, ok, under the group action, for which we write ‖ ok ‖ to denote

the value that all elements of D̃ in this orbit have in common. For any collection of atoms {γi}
we can then translate the sum

∑
i∈I,j∈J D̃ij into a linear equation

(82) Xn(IJ) =
∑
ok∈O

nk(I t J) ‖ ok ‖,

where nk(I t J) are the numbers of elements in the original sum that are members of ok

and n(IJ) = (n0, n1, . . . , n255) is the vector constructed from them. In this formulation the

problem becomes to maximize ε such that there exists a function ‖ · ‖: Ø → R̄ such that

Xn(Ξ) ≡
∑

ok∈Ø |ok| ‖ ok ‖= 1, Xn(II) ≥ 0, ∀I ⊆ {0, . . . , 255} and

(83) XII = P (a0
x, b

0
y, a

1
x, b

1
y|x0, y0, x1, y1),

if I = {i} for all γi ∈ Ξ such that {a0
x, b

0
y, a

1
x, b

1
y} ⊂ γi, |ok| being the cardinality of ok.
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For the group G we find these orbits by studying the eigenspaces of the individual generators.

The orbits of the whole group are given by the intersection of the eigenspaces of the individual

generators. For example,

Generator Eigenspace decomposition

g1/g3 (on single PR-box) 14 ⊕ 26

g1 ⊗ g2 496 ⊕ 2144 ⊕ 116

and similarly for the other generators. Unfortunately some eigenspaces are contained in others,

meaning that they cannot be used to “bridge” between subspaces, so that all together we find

|O| = 1062 with |ok| ∈ {32, 64}.
All of this served to make use of the fact that many I produce the same n(II) so conversely

positivity of a single Xn(II) ensures positivity for all members of the equivalence class [I] of

n(II). Further, since for any decoherence functional one can construct a D̃, showing that for

some εD̃ does not exists is sufficient to show that no valid decoherence functional exists.

Further remarks. Since the aim was to achieve a tighter bound than the existing result for local

orthogonality, it seemed reasonable to further include the possibility of branching by requiring

decoherence, i.e. XIJ = 0, whenever there exists a measurement in the branching extension of

the scenario such that I, J correspond to alternative outcomes. This could easily be done by

noting that two events e, e′ are alternative outcomes of some possible branching measurement

if and only if e ⊥ e′. This is simply because any two events that involve some measurement

by some party with different outcomes (which, recall, is the definition of exclusivity) allow for

these results to be the alternative outcomes of a strategy involving a conditioning on these

outcomes. The decoherence requirement imposed by branching is therefore easily implemented

via the orthogonality graph of the the scenario.

Finally, one can note that in any of the above guises the problem is a semi-definite program as

introduced in Sec. 2.2 since P⊗2
PR(ε) is a second order polynomial in the variable to be optimized,

ε. In order to solve this problem as a linear program instead, we simply form another convex

mixture

(84) P (ζ) = ζP⊗2
PR(ε) + (1− ζ)

1

16
I

and maximize 0 ≤ ζ ≤ 1 for a given value ε and with the same constraints otherwise. We

use the Matlab-package YALMIP [69] to do this and treat an optimization for a given ε as

successful if ζmax − 1 ≤ ε where ζmax and ε are the solution and output uncertainty given by

YALMIP. Furthermore, since, despite the symmetrization, we cannot cover the whole range of

constraints, we follow a randomization strategy in which, following an initial set of randomly

generated n (and, of course, the vectors imposing the branching statistics of the behavior), new

n are constructed after run such that nk 6= 0 for the most negative ‖ ok ‖.
Despite these various strategies, no strenghtening of the existing bound of ε ≈ 0.721 was

achieved, leaving it open whether JQM recovers the Tsirelson bound, whether LO ≡ JQM

and how APC and ASC influence correlation limits.

6.4. Closure under temporal composition. So far the implications of requiring physical

closure and stability under composition for quantum measure theoretic sets have been studied.

To complete the translation of the ideas connected with closure into quantum measure theory,

however, one also needs to make sure that it is clear what these axioms mean in an interpretative
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context for quantum measure theory. In particular, it is not yet clear what some of the aspects

of physical closure correspond to in the histories setting suitable for the latter. In the following

an attempt to clarify this is made. It is proven that closure under pre- and post-selection

corresponds to the ability to describe any kind of future or past directed timelike joint histories

that have been composed from shorter (atomic or timelike) ones, yielding a clearer idea of how

to interpret these properties in the context of quantum measure theories.

6.4.1. Generalizing joint measurement scenarios for timelike scenarios. To study pre- and post-

selection in the JMS-framework it is necessary to generalize the latter to incorporate time. It

is convenient to first discuss this generalization operationally: Consider a single party Alice

that has access to n identical copies of some box with statistics P (a|x) in an (1,m, d)-scenario

Sk, k ∈ {1, 2, . . . , n}. To begin with, assume that Alice has access to only one button such

that, if she presses it N random generators output measurement settings xk, which is used to

measure box k yielding output ak. Further assume that all the boxes and random generators

are situated in a way that the only timelike related events are the kth random generator and

the kth box (and of course, the pressing of the button to all others).

Given the spacelike relation between all remaining events the joint behavior for this scenario

will be given by PT = ⊗kP (ak|xk), defined on the joint scenario T = {S1,S2, . . . ,Sn} [38]. If

P (a|x) ∈ JQM , then by EPD we have that there exist marginal decoherence functionals {DPk}
such that DPT =

⊗
kDPk . In fact the joint decoherence would be obtained in the exact same

way if one took away the random generators and allowed Alice to choose the settings according

to any strategy, i.e. xk ≡ xk(x′k′) for any k, k′.

Now consider the scenario in which the Alice instead has only one copy of the box P (a|x),

however instead of measuring the box once she gets to measure it n successive times without

resetting it (this would artificially impose independence). Since every prior measurement will in

general influence the statistics of the prior measurement, the distributions at the different times

now form a set {P (at|xt) ≡ Pt} ⊂ PSt for the (1,m, d)-scenario St. If we assume that no more

than one measurement can be conducted on the box at a single moment then t ∈ {1, 2, . . . , n}.
The analogy between the first setup with various boxes at a single time and this one becomes

clear when one exchanges t↔ k.13 For instance, since at every t Alice has the choice of |M| = m

measurements the NC- space for this process grows as |Ξ(t)| = d(tm) with NC-space elements

given by collections {at1, at2, . . . , atm} ∀t, which is exactly analogous to the growth and format

of the joint NC- space for T . At the same time it is clear that the timelike relation between

successive measurement events in the second setup introduces complications that weren’t present

in the first case. These complications are exactly the possibility of branching described earlier.

6.4.2. Closure under temporal composition is equivalent to closure under pre/post-selection. It

is not (and cannot be) the purpose of this section to fully discuss the differences between the

two setups, instead the focus here will lie only on implications of the above complications on

closure of sets. In particular, in the second setup we can ask what additional requirements we

have to impose on sets that are closed under composition to ensure that the joint behavior over

times 0 ≤ t ≤ T is still a member of this set. Formalize this closure as follows:

13The change of index position is to allow for their convenient notational combination in general setups later on.
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Definition 6.1 (Closure under timelike composition). For a one party (1,m, d)-scenario S, a

set S(S) ⊂ PS that is defined for any non-local scenario is closed under timelike composition

iff, for any P (at|xt) ∈ S(St), P (a′t
′ |x′t′) ∈ S(St′ and successive times t, t′,

(85) P (at, a′t
′ |x′t′ , xt) ≡ P (a′t

′ |x′t′ , xt, at) · P (at|xt) ∈ S(St×t′),

where St×t′ is the joint scenario constructed from {St,St′}.

One can further distinguish between future-directed and past-directed timelike composition

for the cases in which t < t′ and t′ < t respectively. Closure under composition clearly is

insufficient to warrant closure under timelike composition. However, closure under wiring is,

in fact one can prove that or closed sets closure under future-directed timelike composition is

equivalent to closure under post-selection, as is shown in the following.

Lemma 6.6. If a set S(S) ⊂ PS is closed under composition and for the tensor product rule,

any (non-trivial) joint probability distribution in S(S1) can be decomposed into two elements of

S, i.e. for any PJ ∈ S(SJ), ∃P ∈ S(S), P ′ ∈ S(S′), such that P ⊗ P ′ = PJ

Proof. This is quite obvious, since we exclude single setting probabilities as trivial. �

We can then prove the following theorem:

Theorem 6.7. A set S ⊆ JQM that is closed under composition is closed under future directed

temporal composition iff it is closed under post-selection

Proof. ⇒: Assume S is closed under future directed temporal composition. Then by Lemma 6.6

we know that if P (at, a′t
′ |x′t′ , xt) ∈ S(St×t′ , then also P (a′t

′ |x′t′ , xt, at) ∈ S(S ′) for t ≤ t′, where

S ′ is the scenario formed by the branching construction from Sec. 4.2.1 But this is the only

possible post-selection on the former, so we can immediately conclude that S is closed under

post-selection.

⇐: Assume S is closed under post-selection. Then by Lemma 5.1 we know that S ≡ Sb

so for any D corresponding to some P (a′t
′
, x′t

′
) ∈ S(St) there exists a Db which is valid for

P (a′t
′ |x′t+1, xt, at), implying that the latter is in S(S ′). Then by closure under composition

and (85) we have that S is closed under future directed temporal composition. �

Interestingly the exact same proof goes through for “pre-selection” and past-directed timelike

composition. Indeed, this similarity becomes apparent in JMS in that future and past directed

branching produce the same branching extension. It should furthermore be possible to generalize

this proof to the composition of {ti}, i ∈ {0, . . . , T} times, i.e. a set S ⊂ JQM that is closed

under composition is closed under future/past-directed timelike composition of P (ati , x′ti) ∈ S
into P (at0 , at1 , . . . , atT |xt0 , xt1 , . . . , xtT ) iff S is closed under post/pre-selection, although one

expects that further assumptions about ”markovianity” of the process are necessary.

That the requirement of closure is not itself sufficient to introduce a temporal or causal arrow

is not very surprising, in that it is an ”epistemic” requirement on a theory’s ability to jointly

describe systems as opposed to a physical one, see the next section. It is tempting to relate

the question of closure under timelike composition to the dynamics of a theory, for instance by

connecting the requirement of closure under both future and past directed temporal composition

to the reversibility of a theory but this might be a dangerous conflation of these physical and

epistemic aspects of theory making (in the above sense). A more fruitful investigation of is
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to relate the causality condition on decoherence functional presented in [48] and the growth

dynamics of decoherence functionals governed by the transfer matrix [70].

7. Discussion

Both the study of the properties of closure and maximality in the context of quantum mea-

sure theory has shown that bringing them together allows one to obtain sets of distributions,

that approximate the quantum set very closely for different non-locality scenarios. The last

subsection has also further attempted to turn these properties into statements that are easily

interpretable in the path integral kinematic framework underlying quantum measure theory. In

order to assess whether the singling out of the set SPJQMb under the various axioms presented

in this text can be interpreted as a promising approach to reconstructing quantum theory (or

a possible successor thereof) depends mainly on the feasibility of the axioms, which will be

discussed in this section.

7.1. Feasibility of Axioms.

Axiom of Physical Closure (APS). In March 1948, Einstein returned a manuscript sent to him

by Born with a long comment which contains the following passage (cited in [71, p.191], transl.

by Howard)

“However, if one renounces the assumption that what is present in different

parts of space has an independent, real existence, then I do not at all see what

physics is supposed to describe. For what is thought to be a system is, after all,

just conventional, and I do not see how one is supposed to divide up the world

objectively so that one can make statements about the parts.”

As interpreted by Howard, Einstein here suggests that the possibility to regard different

parts of the universe as independent is an epistemic necessity in that it is required to make

theories that describe the world, in other words, “to do science”. One can reformulate this

requirement by saying that a theory, at least a unified one and in principle, should be able to

discriminate between parts of the universe. It should be able to allow for any scope and graining

of description of the physical world. The possibility of producing joint descriptions from pairs

of given smaller descriptions, i.e. the notion of closure, is an expression of this requirement on

any theory.

However, this is only one aspect of APC: To require physical closure is stronger in that closure

is required only for joint descriptions that correspond to physically possible actions. In the case

of APS these actions are convexity and wiring, which trivially subsumes composition, and post-

selection, of which we have seen that it corresponds to future-directed timelike composition. So

while one could, in principle require closure under both pre- and post-selection, corresponding to

both future and past-directed timelike composition, we restrict our requirement to closure under

post-selection because only future-directed timelike composition describes a physical process.

These two aspects, the requirement of being able to produce joint descriptions that are consistent

with the possible physical processes then motivate APC, although it is theoretically possible

that the notion of physical closure in this text does not capture all physical processes that are

possible.
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It is interesting to note in this context that [32] employ the “Foulis-Randall” product as the

proper construction of joint scenarios. This product corresponds to the branching construction

of joint scenarios discussed in Sec. 4.2 and produces a smaller set of physically possible distri-

butions than the general joint scenario construction of 4.0.2. This is noteworthy because it is

known that this constructions automatically produces the NS polytope for the joint scenario,

linking these axioms in some sense even the locality appearing in Bell locality.

Finally, the apparent tension between the motivation of closure as an epistemic condition

on theories which is restricted to kinds of composition that are physical is a fine illustration of

the subtle role of that spacetime plays in physics, as both a physical entity and an “organizing

principle” that characterizes what description of the world by physical theories are possible,

and which is apparent in Einstein’s comment.

Axiom of stability under composition (ASC). That principles should be stable under compo-

sition is equivalent to the requirement that they should have compositional domain, it should

not allow for two physical theories in which one is not a special case of the other. While this

may seem like an unjustified requirement, it can be motivated from the point of view of the set

of behaviors corresponding to the real world which determines what behaviors are “physical”.

Then, ASC states that no principle under which this set is the compositional domain should also

admit unphysical behaviors. This is nevertheless a very strong axiom in that, if a number of

principles was to jointly produce the physical world, none of them individually would in general

satisfy it but only the whole lot.

Assumption of existence of a product joint decoherence functional (EPD). The purpose of

EPDin this reconstruction is different from the two others: It was introduced as a necessary

condition to prove theorem 6.5. It could be dropped if Wp-maximality could be proven without

it, while the other two are motivated on the above grounds and not meant to be dropped. Nev-

ertheless, relating finally these results to the sought after quantum fine trio, it is noteworthy

that EPD seems to have a relationship to the quantum screening off condition developed in

[48], in which the conditioning of decoherence functionals for marginal systems on their shared

causal past is taken to decorrelate them, that is similar to the assumption of separability in the

case of classical screening off.

7.2. Conclusion. In this thesis the recently introduced notions of physical closure and stability

under composition of principles were applied to quantum measure theoretic sets of behaviors.

The text also consists of a review of the current literature surrounding this subject. The main

result is that that the principle of pair-wise interference which underlies quantum measure theory

together with the axiom of physical closure singles out the at least one of the sets SPJQMb
?≡

SPJQM as its wiring domain under two additional explicit assumptions, namely the existence

of quantum single-site experiments in any feasible physical theory and the assumption that for

independent behaviors in JQM the decoherence functional corresponding to their joint behavior

is given by the tensor product on the the marginal decoherence functional.

Since both the axiom of physical closure as well as the assumption concerning the product

form of joint functionals can both be related to very basic aspects of physical theories, this

result motivates the principle of pair-wise interference as a candidate for an “explanation” of

the limits of physical correlations analogous to the way in which the assumptions underlying Bell
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locality are meant to explain the Bell inequalities. This is further supported by the principle’s

satisfaction of another axiom, the axiom of stability under composition.

The special properties of this set, for example the fact that it is the largest set that warrants

the possibility of defining an inner product on it which is necessary for the definition on a

Hilbert space.

7.2.1. Future work. Of the many possible directions of research that can take these early insights

as a starting point, the following seem particularly promising:

(1) The argument that infers the physical maximality of SPJQMb under JQM from the

⊗-maximality of SPJQM under the latter requires formal underpinning. A key step

here will be whether SPJQM ≡ SPJQMb, which itself requires a further investigation

of the branching extension and its consequences for the allowed correlations

(2) Given that SPJQMb ≡ Q̃ is closer to Q than all other reconstructive sets known

to the author, and that is was arrived at from independent approaches, it is worth

considering the option to develop a physical theory producing this set in order to possibly

derive a feasible critical test of quantum theory. Here quantum measure theory, being

closely connected to the path integral formalism, may be more suitable for such a job

than for example a general probability theory (GPT) framework. Indeed, there exist

attempts to develop such a theory for quantum measure theory for example in [70, 72]

and furthermore experimental investigations of the third-order interferences are already

being carried out [73, 74]. The (possible) strengthening from SPJQM to SPJQMb

may here yield new insights.

(3) [75] have recently introduced a characterization of quantum theory in terms of four

postulates that seem closely related to the ones discussed here. Their postulates are (i)

Classical decomposability (≡ EP?), (ii) no higher-order interference (≡ PPI), (iii) strong

symmetry and (iv) observability of energy (≈ APC/ASC ?). It would be interesting to

study the relationship between the various postulates and axioms in more detail.

(4) Finally, an interesting general idea, that arises only implicitly in the context of closure

and stability, is to investigate the possibility of the allowing for n-order interference,

with higher order interference being enormously more difficult to observe (as illustrated

already in the step from classical to quantum theory for example). However, depending

on their accuracy the above experiments could already rule out such a possibility.
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[11] A. Cabello, J. Estebaranz, and G. Garćıa-Alcaine, “Bell-kochen-specker theorem: A proof with 18 vectors,”

Physics Letters A, vol. 212, no. 4, pp. 183 – 187, 1996.
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[73] U. Sinha, C. Couteau, Z. Medendorp, I. Söllner, R. Laflamme, R. Sorkin, and G. Weihs, “Testing Born’s

Rule in Quantum Mechanics with a Triple Slit Experiment,” in American Institute of Physics Conference

Series (L. Accardi, G. Adenier, C. Fuchs, G. Jaeger, A. Y. Khrennikov, J.-rA. Larsson, and S. Stenholm,

eds.), vol. 1101 of American Institute of Physics Conference Series, pp. 200–207, Mar. 2009.

[74] U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, and G. Weihs, “Ruling out multi-order interference in

quantum mechanics,” Science, vol. 329, no. 5990, pp. 418–421, 2010.

[75] H. Barnum, M. P. Mueller, and C. Ududec, “Higher-order interference and single-system postulates charac-

terizing quantum theory,” 2014.

Appendix A. Theorem 5.7 does not apply to SPJQM

Theorem 5.7, proving that Q̃ is ⊗-maximal under LO, is a very general result in that it

applies to all contextuality scenarios. It is therefore not clear whether the same result follows

for only a subclass of scenarios, namely the non-locality scenarios for which quantum measure

theoretic sets are defined. This manifests itself implicitly in the use orthogonality graphs and

their complements. Since it is unclear whether scenarios corresponding to these complementary

graphs are always non-locality scenarios themselves. Indeed, the sole fact that SPJQM and

JQM are not define for some scenarios is not sufficient to rule out this possibility that the proof

nevertheless applies. If it could be shown that from the complementary graph to every graph

corresponding to a non-locality scenario one can construct another valid non-locality scenario,

then the theorem would apply. In other words, if the set of graphs corresponding to all non-

locality scenarios was closed under the complement action, the proof goes through. That this

is, even under “generous” translation of non-locality into graphs, not the case we show in the

following paragraphs.

Joint measurement scenarios to graphs. To every (non-trivial) non-locality scenario S corre-

sponds a (non-trivial) orthogonality graph. In particular we can re-formulate Definition ?? in

terms of the partition scenarios (Ξ,M) that were introduced in Sec. 3.1.
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Definition A.1 (OPS(S)). A graph with vertex set V is an orthogonality graph of a partition

scenario S = {Ξ,M} with coarse-graining set C and collection of exclusive sets S if

• the graph has adjacency relation

v(A) ∼ v(B) ⇐⇒ ∃M ∈M such thatA,B ∈M

• there exists a bijective map v : C→ 2V such that

– v(A) ∈ V for all A ∈M ∀M ∈M
– v is additive in the sense that, for any exclusive set of fine-grained outcomes S ∈ S

with elements Ai,
14

v

(⊔
i

Ai

)
=
⋃
i

v(Ai)

The proof of equivalence is straightforward. Furthermore, this representation can be extended

to behaviors in PS by defining the weights p(v(A)) ≡ P (A).

Illustrating non-applicability. The question of the applicability of the above maximality result

in the JMS-framework then becomes whether for any scenario S there exists another scenario

S ′ such that OJMS(S) ≡ OJMS(S ′).
To investigate this consider first a simple P3 path.

This graph cannot be an orthogonality graph of any scenario with non-empty M. This

is because we require by the additivity of v that every (maximal) clique corresponding to a

measurement gives v(Ξ). But this implies that the two outer vertices of P3 map into the same

outcome, which is forbidden by bijectivity. Therefore, no valid orthogonality graph may contain

P3 as induced path (which is sufficient to rule out induced paths Pk for any k ≥ 3). Now consider

the following pair of complementary graphs:

Comp.
←−−−→

The left graph is a valid orthogonality graph according to Def.A.1 for a scenario with two

measurements, while the right one clearly has P3 as induced subgraph. This simple example is

already sufficient to disprove applicability if one excepts Def.A.1 as a valid. However, looking

closer at the left graph it becomes clear that, again by the additivity property, its top vertex

corresponds to the union of the two bottom vertices. In other words, this scenario describes

a setting in which one measurement is a (partial) coarse-graining over the other. One might

therefore exclude graphs like this one by introducing a notion of “genuine fine-grained outcome”

which form the set M ⊂ M of all fine-grained outcomes of all measurements in M except

for those which can be obtained by the union of other members. Then define a “genuine

orthogonality graph Og(S)” similar to Def.A.1 with the only difference that v(A) ∈ V only for

all A ∈M.

14t is here slightly redundant in that orthogonal outcomes are by definition disjoint
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One can then check that this additional requirement rules out all graphs with “appendices”

of the form

1

Og\{1}

and therefore exclude the potential pair above as counterexamples. Seeing that we excluded

induced P2 paths it is worth noting that there exists a family of graphs, called co-graphs that

are closed under complementation and can be fully characterized by the non-existence of P4

induced subpaths.

Nevertheless, this additional requirement is not sufficient: While it is possible to disprove

applicability in general even for the case of genuine orthogonality graphs more rigorously, suffice

here to consider an even simpler issue with the example of single measurement scenarios whose

complementary graphs produce edgeless graphs that violate bijectivity, e.g.

Comp.
←−−−→

This result is not surprising in that in that many orthogonality graphs can be constructed

that correspond to scenarios that do not admit a single experimental probability distribution,

see [32] for examples in terms of their more general hypergraph framework.
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