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“[That’s] what distinguishes the good theorists from the bad ones. The good ones always

make an even number of sign errors, and the bad ones always make an odd number.”

Anthony Zee, Quantum Field Theory in a nutshell



To Camilla, who will make her way.
To my land, to all men from the South, wherever they come from.
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by Oscar de Felice

In this thesis we develop and use the tools of generalised geometry. First of all we review

construction and symmetries of these structures, defining the key elements of generalised

geometry, including the notion of torsion-free generalised connections, and show how this

geometry can be used to give a unified description of the supergravity fields, exhibiting

an enlarged local symmetry group. The first part of the work will be ended showing

how the equations of motion for the NSNS sector of Type II Supergravity theories can

be elegantly expressed in the framework of generalised geometry in the same form of the

Einstein’s equations of motion for gravity in ordinary geometry. In the second part we

investigate the notion of “Leibnitz generalised parallelisations”, the analogue of a local

group manifold structure in generalised geometry, aiming to characterise completely

such class of manifolds, which play a central role in the study of consistent truncations

of supergravity. Original results of this works are examples of Leibnitz parallelisms for

the manifolds S2 × S1, S3 × S3 and homogeneous spaces AdS3, dS3 and H3 which,

according to a conjecture recently formulated, should provide consistent truncations of

supergravity theories. As conclusion of this part, we formulate and analise a proposition

by Gibbson, Pope et al. in the context of generalised geometry, showing how it can be

better investigated with this new instruments.
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Introduction

Nowadays, in the most agreed picture of the nature, physicists believe in the existence

of four fundamental forces, gravitational, electromagnetic, strong nuclear and weak nu-

clear. The main open problem in theoretical physics in the last half century is certainly

the description of the four fundamental forces in a single unified framework. For the

last three interactions, we have a theory that describes them in quite a satisfactory way,

even if several points remain obscure. This theory makes use of the Quantum Field

Theory and is commonly known as the Standard Model. It is, as far as we know, the

most complete, experimentally verifiable theory of fundamental interactions. Currently,

the Standard Model is the agreed picture of fundamental physics among the physicists,

also thanks to the important results from CERN and from many other laboratories. It

has the important property of being renormalisable. In fact, some infinite quantities ap-

pears in calculating, for instance, correlators with perturbative methods. This problem

afflicted many of the most brilliant minds of the last century, since correlation functions

are related to observable quantities, that, of course, cannot be divergent. Renormalisa-

tion is the procedure that removes these divergencies: although ultraviolet divergencies

exist they can be enclosed into a finite set of parameters, called sometimes regularisation

parameters, such that physical quantities are finite, then the renormalisation consists

into the redefinition of the constants of the theory (mass, charge, etc.) such that the

regularisation parameters we introduced are removed.

Obviously, world cannot be so simple. There are several conditions a theory must satisfy

in order to be renormalisable, and Einstein’s general relativity, the currently accepted

theory of gravity, is not renormalisable.

Several extensions of Standard model have been proposed in order to incorporate gravity

into a quantum field description, but none of them can be confirmed by experiments yet,

however a larger and larger number of physicists believe that String Theory – or better,

SuperString Theory – can provide a good unified explanation of all the four fundamental

interactions.

The fundamental objects in string theory are not the point particle of the standard

ix



Introduction x

model, but finite dimensional entities (strings or branes) and their vibrational modes

are what we know for fields. This simple idea has a lot of very deep and still not com-

pletely understood and discovered implications, but the theory seems to be able to unify

all forces of nature.

String theory was born in the sixties in order to find an explanation to some complex

phenomena related to hadrons behaviour, it has been reconsidered in the second half of

the seventies since Schwarz and Scherk realised it could explain some properties of the

particle supposed to mediate the gravitational force, the graviton.

At the beginning the field content of string theory was just bosonic and, for reason of

consistency, the number of spacetime dimensions had to be fixed to 26. However, this

theory has several aspects that make it unsatisfactory. Above all, it admits tachyons,

that is singularities in the spacetime, contrasting special relativity, and it does not con-

sider the existence of fermionic particles. To solve these issues and to introduce fermions

in string theory, we need supersymmetry for consistency. This gives origin to superstring

theory, in which spacetime is 10 dimensional. Introduction of supersymmetry, and the

development of superstring theories is known as first string revolution.

Thus, modern string theory is based on supersymmetry, a deep symmetry between

bosons and fermions, whose one of the most famous consequences is the (expected)

existence of a superpartner for each existing particle in nature, following the opposite

statistics. This hypotesis solves elegantly and admirably the problem of renormalisa-

tion, since for each divergent loop diagram there exists a corresponding diagram that

contributes in the same way, but with opposite sign, because of the statistics, to the

total correlator. Thus, the divergent diagrams cancel each other as in figure 1.

− = 0

Figure 1: Loop diagram cancellation.

Another strong point of string theory is the possibility of avoiding short distances singu-

larities. In fact, substituting point particles with extended object, we get a worldsheet

that is a smooth manifold and the interaction vertices are given by diagrams as in figure

2. The price we pay is the loss of sharpness in the spacetime localisation of the interac-

tion, nonetheless we have not to cope with singularities due to a short-distance scale of

interaction, since the scale of the string `s defines naturally a cut-off scale Λ ∼ `−1
s .

The fact that the consistency of the theory requires the spacetime to be 10 dimen-

sional can be overcome by a procedure called compactification. It consists in curling

extra-dimensions on compact manifold with characteristic volume such that they are
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Figure 2: Feynmann diagram of a string interaction vertex.

not perceptible at the energy-length scales examinable by measures.

This leads us to the concepts of dimensional reduction and consistent truncations, better

analysed in the main text.

The dimensional reduction is a procedure that allows us to define a field theory in a

spacetime of dimension d ≤ 10. Our aim is to produce a theory in 4 dimensions, since

this is the dimension of the physical world we experience everyday. The dimensional re-

duction consists in taking the limit of the characteristic volume of the compactification

space and make it smaller than the scale Λ defined above. This produces, given a mass-

less field in the higher dimensional space, a tower of massive states in lower dimensional

theory. A consistent truncation is a finite subset of modes, where the omitted heavy

modes are not sourced by the light ones. In other words, we have found two sets of

modes, and one of them has a dynamics which is independent from the other, this gives

origin to a decoupled consistent theory constructed by one set of modes only. The last

statement is the reason of our interest in consistent truncations, in fact, any solution

to the equations of motion expressed by only consistent truncated modes in the lower

dimensional theory remains a solution when uplifted in the higher dimensional space.

Moreover, it is worth to notice that the theory encoding both string theory and super-

symmetry is not unique, there are five different superstring theories: type I, type IIA,

type IIB, SO(32) heterotic and E8 × E8 heterotic.

In mid 1990s the concept of dualities arose in string theory, giving start to a process

called second string revolution, and this allowed to discover that superstring theories

are actually different limits of a more fundamental theory, living in an 11-dimensional

spacetime, called M -theory. The five superstring theories are, in fact, related by duali-

ties.

In this work we are going to analyse principally the bosonic part of the spectrum of the

type IIA and IIB theories, made, for both, by the fields {gµν , Bµν , φ}. The remaining

part of the spectrum is what makes the IIA and IIB thoeries different and is known as

Ramond-Ramond sector. To be more precise, we are going to take into account the low

energy limit of these theories, the supergravity type IIA and IIB.

As the name may suggest, supergravity is a theory encoding both Einstein gravity and
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supersymmetry (making this a pointwise symmetry). It was discovered independently

from string theory in mid seventies, and only at a later stage physicists realised it was

a limit at low energy scales of the latter.

We are going to use a particular mathematical environment, the so-called Generalised

Geometry. It was firstly introduced by Hitchin and Gualtieri in an effort to study invari-

ant functionals on differential forms in differential geometry, and then Hull, Waldram,

et al. realised that it provides an extremely powerful and elegant tool to reformulate

and better understand supergravity and string theory, stressing certain important sym-

metries of the theory. In particular, we are going to focus on the type II supergravity

symmetries: the invariance under diffeomorphisms and the gauge invariance, showing

how is possible encapsulating them into a single geometric object.

The principal idea of generalised geometry is, roughly speaking, to promote the tangent

bundle TM to a generalised version of it built by the direct sum TM ⊕ T ∗M , and then

develop a differential geometry on the generalised structure, proceding by analogies. In

this work we will go through the construction of generalised objects analogous to the

ones we are used to in differential geometry, like the metric, the Lie derivative, the

connection, etc. After that, we are going to analyse consistent truncations and their

relation to generalised geometry.

An important property of consistent truncations is the fact that their existence is only

related to the choice of the compactification manifold. Although this nice property, ex-

amples of consistent truncations are not so copious, and still not well understood. Thus,

we are going to study a conjecture that links a special class of generalised parallelisable

manifolds in generalised geometry to consistent truncations in string theory.

Finally, we will study a conjecture about gauged theories coming from compactification

of higher dimensional theories, due to Gibbson, Pope et al. and we will show how in the

context of generalised geometry it takes a natural and more elegant form.

There are several reasons to study generalised geometry further than these we indicated

above, for example, it has been proved that generalised geometry is locally equivalent

to double field theory, a particular kind of field theory, developed by Hull and Zwiebach,

that lives in a doubled configuration space with coordinates (x, x̃) and so 2d-dimensional.

The remarkable fact is that both theories share the same (generalised) tangent bundle

with an O(d, d) group structure.

The group O(d, d) is also the group related to T -duality, and this gives a fashionable

hint to relate generalised geometry with the description of dualities. However, we have

to stress the fact that actually the O(d, d) groups appearing in the two contexts are

different. In generalised geometry it is the structure group acting on the fibers of the
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tangent bundle, on the other hand, in the T -duality case the group encodes the symme-

try between string and background configurations, when a string theory is compactified,

for example on a torus T , and so the string has some configurations where it can be

wrapped around the torus.

To summarise, this work has the aim of reviewing the principal aspects of generalised

geometry, and, taking advantage of this review, investigating the concepts of Leibnitz

parallelism and consistent truncations.





Chapter 1

Mathematical Environment:

Introduction to Generalised

Geometry

In this chapter we are going to introduce the most important tools for this thesis. First

of all, we are going to define the generalised tangent bundle [1, 2], on which we will

construct the analogues of the objects we use in ordinary differential geometry.

Following [2], we will show that a metric emerges naturally on these structures, defining

a principal bundle, so we will study the behaviour of the frame bundle under the action

of the structure group.

At conclusion of the chapter there is a section about the analogous of Riemannian metric

in the context of generalised geometry. There we will present two different constructions

of the generalised metric.

1.1 Generalised Tangent Bundle

Let us introduce the concept of Generalised Tangent Bundle. The basic idea of gener-

alised geometry is to substitute the usual tangent bundle TM with the direct sum of

TM and its dual space T ∗M . This has several deep implications as regards geometric

structures, and our aim is to analyse them throughout this project.

Formally, the direct sum TM ⊕ T ∗M is not wat we call generalised tangent bundle, but

we are not worried about this at this stage. We will come back later on this point.

1



Chapter 1. Introduction to Generalised Geometry 2

Let M be a real differentiable manifold of dimension d, let TM be its tangent bundle,

then consider the direct sum of the tangent and cotangent bundles TM ⊕ T ∗M .

As in [3], this kind of construction gives rise to a bundle. So a section of TM ⊕ T ∗M
can be written as the formal sum

V = v + λ.

Here, we indicated with v and λ sections of TM and T ∗M respectively.

1.1.1 Linear Structure: the natural metric

Since TM and T ∗M are vector space, related by a duality relation, this leads to a natural

symmetric bilinear form [4] on TM ⊕ T ∗M

〈V,W 〉 = 〈v + λ,w + µ〉 :=
1

2
(λ(w) + µ(v)) . (1.1)

Where, we denoted λ(w) as the contraction iwλ, and iw : ΛrT ∗M → Λr−1T ∗M . Given

an r-form with components ωµ1...µr in a basis, the contraction ixω is an (r − 1)-form

which has components xαωαµ1...µr−1 in the same basis. The factor 1/2 is chosen for

convention and has no geometrical meaning.

This provides a non-degenerate inner product with signature (d, d) and therefore leads

to define a natural metric tensor as

ηAB =
1

2

(
0 1

1 0

)
, (1.2)

that after a diagonalisation process becomes

η̃AB =
1

2

(
1 0

0 −1

)
,

in which signature becomes explicit.

Defining a metric on a space is equivalent to set a group, in fact, metric can be seen as

the invariant tensor of a particular group of matrices. In our case, the metric defined

above characterises the group O(TM ⊕ T ∗M) ∼= O(d, d).

The O(d, d) structure naturally arises from the linear structure of TM ⊕ T ∗M , in fact,

this generalised bundle is the analog of the tangent one, and we can consider the group

O(d, d) as the structure group that acts on the generalised tangent bundle, in analogy

with GL(d,R) acting on the fibres of TM in the ordinary geometry case.
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This leads to the concept of tensors, which in generalised geometry are representations

of the O(d, d) group.

Consider a frame (see later 1.3.1) {êa} on TM and its dual {ea} on T ∗M and define a

frame on TM ⊕ T ∗M as follows

ÊA =

êa A = a

ea A = a+ d

this lets us to express a generalised section of TM ⊕ T ∗M as V = V AÊA. The metric

can be used to raise and lower indeces. In fact contracting a generalised vector with the

metric we get a generalised one-form ηABV
A = VB.

This provides an isomorphic map between TM ⊕ T ∗M and (TM ⊕ T ∗M)∗, the “dual

generalised tangent bundle”. However, since

(TM ⊕ T ∗M)∗ ∼= TM ⊕ T ∗M ,

we can think VA also as a generalised vector and we can write a generalised tensor in

the following way

TA1...Ar
B1...Bs

∼= TA1...ArB1...Bs ∈ (TM ⊕ T ∗M)⊗r+s ,

where indeces run from 1 to 2d. Thus, the last provide a representation of the O(d, d)

group, not necessarily irreducible.

Note that in addition to the product (1.1) we have pointed out, the generalised tangent

bundle has a further structure: it is an orientable manifold too [4]. In fact, we can

consider the highest antisymmetric tensor product of the generalised bundle

Λ2d (TM ⊕ T ∗M) .

It can be decomposed, in terms of antisymmetric tensor products of TM and T ∗M only

(since it is the maximal power) as

ΛdTM ⊗ ΛdT ∗M,

so we can argue that there is a natural pairing between two sections of ΛdTM and

ΛdT ∗M provided by the determinant map1 [5].

1Actually, there is a natural pairing between ΛrTM and ΛrT ∗M for any 1 6 r 6 d.
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(·, ·) :ΛdTM × ΛdT ∗M R

v∗, w det(v∗i (wj))

Thus we have an identification between Λ2d (TM ⊕ T ∗M) and R; moreover 1 ∈ R (or

any other non-zero number) defines an orientation on TM ⊕ T ∗M .

The subgroup of O(d, d) that preserves the invariant form η and the orientation is

SO(d, d), as we expected from the analogy we stated before between structure group

GL(d,R) for the conventional tangent bundle and O(d, d). In fact, in the ordinary geom-

etry case, the transformations that preserve orientation form the subgroup SL(d,R) ⊂
GL(d,R). Having an orientable space is equivalent to the existence of a top form nowhere

vanishing, this allows us to define integration of differential form on the whole manifold,

therefore they are useful objects to work with. Furthermore introducing spinors in this

context, as in [6], will fix an orientation, suggesting that treating the subgroup SO(d, d)

is the right path to follow.

Before going on in our analysis, it is useful to make a remark about the nature of the

structure we have exposed above.

Remark 1.1. Everything we stated until now for TM ⊕ T ∗M descends from the duality

between the two bundles and not from any other structures, thus all the properties are

true also for a generalised space like V ⊕ V ∗ where V is a generic vector (real) space.

We have seen how the O(d, d) structure always arises from the construction TM ⊕
T ∗M , now we restrict to the subgroup SO(d, d), and firstly to its algebra, to study its

decomposition and its action on the generalised bundle.

The Lie Algebra of the SO(TM ⊕ T ∗M) ∼= SO(d, d) is given by

so(TM ⊕ T ∗M) = {T | 〈TV,W 〉+ 〈V, TW 〉 = 0} , (1.3)

i.e. generators are antisymmetric. This algebra decomposes [7] in

End(TM)⊕ Λ2TM ⊕ Λ2T ∗M

or, equivalently, a generic element T ∈ so(TM ⊕ T ∗M) can be written as

T =

(
A β

B −AT

)
, (1.4)

where A ∈ End(TM), B ∈ Λ2T ∗M , β ∈ Λ2TM , and hence

A : TM TM
B : TM T ∗M
β : T ∗M TM .
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We will be more interested in studying B transformations, as we will see, We can think

to B as a 2-form acting on a section x of TM to give a 1-form as B(x) := ixB. We will

discuss this later and more in depth in section 1.2. We first need to put some differential

structures on the generalised bundle, this will be the main goal of the next section.

1.1.2 Differential Structure: Dorfman derivative and Courant bracket

In the next, we are looking for an object that generalises the Lie derivative action in the

conventional sense to generalised sections, these because we are moved by the aim of

finding generalised version of objects we know in differential geometry, and developing

them by analogy.

Given two sections of TM ⊕ T ∗M , as for example V = v + λ and W = w + µ, where

v, w ∈ Γ(TM) and λ, µ ∈ Γ(T ∗M), we define the following object [1, 8]

LVW := Lvw + Lvµ− iwdλ (1.5)

Called Dorfman derivative [9].

This seems to play the same role as the Lie derivative in the ordinary geometry, in fact,

it can be verified that it satisfies the Leibinitz rule for the product of two sections. The

Leibinitz rule for Dorfman derivative can be arranged such that it resembles the Jacobi

identity,

LV (LWU) = LLVWU + LW (LV U) .

However, at a more deep look, it appears that it is not antisymmetric, and therefore it

does neither satisfy any Jacobi identity.

To solve this we can antisymmetrise the Dorfman derivative, defining a new object: the

Courant bracket [10, 11].

JV,W K :=
1

2
(LVW − LWV ) . (1.6)

This becomes the analogous of Lie bracket in the generalised geometry environment.

From this we can get also a deeper understanding of Lie structures. Lie derivative and

Lie bracket are different objects: they coincide in ordinary geometry, but not in this

generalised construction.

At this stage, we can point out a property that will be very useful in what follows, and

that can be proved by a simple application of the definitions (1.5) and (1.6). The differ-

ence between the Courant bracket and the Dorfman derivative is the exterior derivative

of the inner product, i.e.

JV,W K = LVW − d〈V,W 〉 . (1.7)
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Following our analogy, as Lie bracket is related to a Lie algebra, Courant bracket is

connected to a structure called Courant algebroid [10, 12]. This kind of structures has

been widely studied in mathematics, not only in the context of generalised geometry

(see for example [13]) so in this work we will not analyse it extensively.

Although this, we can still give a vague idea of this interesting structure properties. We

can use the definition 1.18 of [12] to introduce the Courant algebroid.2

Definition 1.2 (Courant algebroid). A Courant algebroid over a manifold M is a vector

bundle E −→ M endowed with an antisymmetric bracket J·, ·K, a non-degenerate sym-

metric bilinear form 〈·, ·〉, and a projection map π : E −→ TM (often called anchor)3,

which satisfies the following conditions:

c1 π (JV,W K) = [π(V ), π(W )];

c2 Jac(V,W,Z) := JJV,W K, ZK + circ. perm. = 1
3d (〈JV,W K, Z〉+ circ. perm.);

c3 JV, fW K = fJV,W K + (π(V )[f ])W − 〈V,W 〉df, ∀f ∈ F(M);

c4 π ◦ d = 0;

c5 π(Z)
[
JV,W K

]
= 〈adj(Z)[V ],W 〉+ 〈V, adj(Z)[W ]〉.

Here, we have considered

adj(V )[W ] := JV,W K + d〈V,W 〉

as the adjoint action of V on W , as suggested by the symbol. Moreover we denoted

symbolically the further cyclic permutation in c2 as circ. perm.

One of the main efforts of chapter 3 will be to study some cases when the frames from

which we construct the Courant Algebroid actually define a Lie sub-algebra. This seems

to have deep implications related to consistent truncations in string theory and super-

gravity, still not completely understood. The principal aim of this work is to investigate

these implications, as we will see in what follows.

At this stage, what we can do is to verify that the Courant bracket we defined in (1.6)

and our generalised tangent bundle TM⊕T ∗M satisfy properties c1-c5, or equivalently,

they define effectively a Courant algebroid.

Proposition 1.3. The generalised tangent bundle TM⊕T ∗M endowed with the O(d, d)

metric product (1.1) and with the bracket (1.6) defines a Courant algebroid.

2A brief historical review of the subject can be found in the nice paper [14].
3This map must not be confused with the familiar bundle projection E

π−→M .
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Proof (sketch). Here we only give a partial proof of the fact that the bracket (1.6)

satisfies all the properties to define a Courant algebroid. A more complete proof can be

found in [15] and in [2].

For our purposes it is useful to give a more explicit form of the Courant bracket we

defined previously as

JV,W K = [v, w] + Lvµ− Lwλ+
1

2
d (iwλ− ivµ) . (1.8)

Where, as above, V = v + λ, W = w + µ.

c1

We can apply the anchor map π to the explicit form of the bracket given above,

noting that the vectorial component (i.e. an element of TM) is made just by the

usual Lie bracket.

π
(
JV,W K

)
= π

{
[v, w] + Lvµ− Lwλ+

1

2
d (iwλ− ivµ)

}
= [v, w] .

Recalling that π (V ) = v and π (W ) = w, we have shown the property is satisfied.

c2

This property can be proved by direct calculation. The proof is quite long and not

very instructive, so we omit it (see [16] for details).

c3

Given a function on the manifold f : M −→ R consider the following expression

JV, fW K = [v, fw] + Lvfµ− Lfwλ+
1

2
d (ifwλ− ivfµ) .

As usual, we use the known properties holding in the conventional geometry for

the Lie derivative and for the inner product contraction,

JV, fW K = [v, fw] + Lvfµ− Lfwλ+
1

2
d (ifwλ− ivfµ) =

= f [v, w] + v [f ]w + v [f ]µ+ fLvµ− fLwλ− df iwλ +

+
1

2
df iwλ+

1

2
f diwλ−

1

2
df ivµ−

1

2
f divµ =

= f [v, w] + v [f ] (w + µ)− 1

2
df (iwλ+ ivµ) + fLvµ− fLwλ +

+
1

2
f d (iwλ− ivµ) .
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By rearranging the last expression and writing v = π (V ), we can recognise the

following quantity

JV, fW K = fJV,W K + (π(V )[f ])W − 〈V,W 〉df ,

as wanted.

We want to point out what this property implies about the difference between a

Courant algebroid and a Lie algebroid [2]. The Courant bracket differs to be a

Lie bracket by exact exact terms. In fact, in the case of a Lie structure we should

have the known expression [x, fy] = f [x, y] + x[f ]y.

c4

This property states that the exterior derivative d acting on functions, mapping a

general f into a one-form df , will give us a section of the generalised bundle, made

just by the form part. We will use this property explicitly to define generalised

frames in section 1.3.

π
(
df
)

= 0 .

c5

Also this property can be proved by direct calculation and we do not report it.

Refer to [15].

1.1.3 A basis for TM ⊕ T ∗M

In this brief section we want to introduce a basis, induced from the choice of a basis on

TM and its dual on T ∗M . This will be useful in what follows to keep track of the relation

between generalised quantities and the usual ones in ordinary differential geometry.

Given a coordinate basis of TM on a chart Ui of M with components xµ, {∂/∂xµ} -

often denoted for simplicity as {∂µ} - and its dual basis {dxµ} on T ∗M we can define a

basis on TM ⊕ T ∗M (restricted to Ui) as follows

∂A =

∂µ A = µ

0 A = µ+ d
(1.9)

This provides an expression for the generalised derivative operator too, moreover, by

dint of this we can give expression for Courant bracket and Dorfman derivative in terms
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of coordinates. For Dorfman derivative we have

(LVW )A = V B∂BW
A +

(
∂AVB − ∂BV A

)
WB (1.10)

and analogously for Courant bracket

JV,W KA = V B∂BW
A −WB∂BV

A − 1

2

(
VB∂

AWB −WB∂
AV B

)
. (1.11)

Where index contractions are made using the metric (1.2), and so the expressions are

O(d, d) covariant.

In the (1.10) we can recognise the action of the adjoint representiation of o(d, d) by

the matrix AAB :=
(
∂AVB − ∂BV A

)
, analogously to the case of the Lie derivative in

ordinary geometry.

This observation allows us to extend the definition of Dorfman derivative to the case of

a generalised tensor,

LV T
A1...Ar = V B∂BT

A1...Ar −
(
∂A1VB − ∂BV A1

)
TBA2...Ar − . . .+

−
(
∂ArVB − ∂BV Ar

)
TA1...Ar−1B .

where we have considered just an (r, 0)-tensor field, since, as argued above, because

of (TM ⊕ T ∗M)∗ ≡ TM ⊕ T ∗M , any (p, q)-generalised tensor can be rewritten as a

(p+ q, 0)-generalised tensor.

1.2 Symmetries

Here, we would analyse symmetries of the structure we have defined above. In particular

we are interested in determining the group of transformations that preserve the Courant

bracket J·, ·K and the inner product 〈·, ·〉.
We have seen how the relevant algebra to consider is the (1.3), the so (TM ⊕ T ∗M)

algebra. We have also seen which form a generic element of the algebra should take in

(1.4). We rewrite it here for our convenience

T =

(
A β

B −AT

)
.

We are now interested in considering a particular subclass of transformations among the

whole algebra, as anticipated in the previous discussion. Consider the only action of the

2-form B

TB =

(
0 0

B 0

)
,
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in order to get an SO(d, d) element we can use the exponential map, symbolically denoted

as eB, and observe how the B-field acts on the fibre of TM⊕T ∗M , noting that (TB)2 = 0

we can write

eB := eTB =

(
1 0

0 1

)
+

(
0 0

B 0

)
=

(
1 0

B 1

)
. (1.12)

Then the action of the B-field on an element V of Γ (TM ⊕ T ∗M), called B-shift is

eBV =

(
1 0

B 1

)(
v

λ

)
= v + λ+ ivB . (1.13)

An important result of this construction is that we have encoded into the SO(d, d)

transformations the old GL(d) group action in conventional geometry. In fact, take into

account another subset in so(d, d)

TA :=

(
A 0

0 −AT

)
,

as usual, by the exponential map we find

eTA =

(
eA 0

0 eA
−T

)
,

where we indicated A−T =
(
AT
)−1

.

Noting that A ∈ GL (d,R), and since End(TM) ≡ GL (d,R), we argue that eA, eA
−T ∈

GL (d,R) and so we can write them as ordinary matrices M,M−T , and recalling

v′ = Mv λ′ = M−Tλ . (1.14)

We can combine these two transformation into a generalised SO(d, d) one,

eTA

(
v

λ

)
=

(
Mv

M−Tλ

)
. (1.15)

Thence, we have showed that the usual GL(d,R) transormations are embedded into a

bigger group O(d, d). There are, of course, other transformations like (1.13), which has

been analysed previously, or the so called β-shift generated by elements in the algebra

(1.3) taking the form

Tβ :=

(
0 β

0 0

)
.

Its exponential transformation acts on a generalised vector as eTβ (v + λ) 7→ v+λ+β(λ)

where for β(λ) we mean (in components) the contraction between the 1-form λ and the



Chapter 1. Introduction to Generalised Geometry 11

(2, 0)-tensor β.

However, this kind of transformations will not play any important role in our discussion

and we will not analyse it further [15].

1.2.1 Invariance of the Courant algebroid structure

Equipped with these tools, we can examine in some detail which kind of transormations

in the so(d, d)-algebra leaves not only the inner product invariant (the whole algebra),

but also the Courant bracket unchanged, finding so the group of symmetries of the gen-

eralised space structure (TM ⊕ T ∗M, 〈·, ·〉, J·, ·K).

We have stated that any transformation in the algebra so(d, d) leaves the inner product

invariant. Let’s verify this in particular for a B-shift. Consider, as usual, two generalised

vectors V = v + λ and W = w + µ,

〈eBV, eBW 〉 = 〈v + λ+ ivB, w + µ+ iwB〉 =

=
1

2

(
iv (µ+ iwB) + iw (λ+ ivB)

)
=

=
1

2

(
ivµ+ iwλ+ iviwB + iwivB

)
=

= 〈V,W 〉 .

where, to go from the third line to the last one, we have used the antisymmetry of the

inner product iviw when contracted with a 2-form as the B field, i.e. iviwB = −iwivB.

As stated, the whole group O(d, d) preserves the inner product, hence, in order to find

the subgroup preserving the Courant structure, we have to look at the Courant bracket.

We state here a useful identity for the Lie derivative of forms of which we will make

extensive use throughout this section, the so-called Cartan identity,

Lvω =
(
ivd + div

)
ω ,

that also implies [Lv, iw] = i[v,w].

Thus, let’s apply a B-shift to two sections of TM ⊕ T ∗M , take their Courant bracket
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and substitute the form we found in (1.8)

JeBV, eBW K = Jv + λ+ ivB, w + µ+ iwBK =

= Jv + λ, w + µK + LviwB − LwivB −
1

2
d (iviwB − iwivB) =

= Jv + λ, w + µK + LviwB − LwivB − d (iviwB) =

= Jv + λ, w + µK + LviwB − iwd (ivB) =

= Jv + λ, w + µK + i[v,w]B + iwLvB − iwd (ivB) =

= Jv + λ, w + µK + i[v,w]B + iwivdB =

= eB (JV, W K) + iwivdB .

This clearly show us that the B-shift is a symmetry of the structure if and only if dB = 0,

i.e. B has to be a closed 2-form.

We will show in the next how conciliate this with the request of having a non-trivial

globally defined 3-form H = dB. For now, let’s point out an important observation:

Remark 1.4. The group that preserves the Courant bracket and the inner product at

the same time is not the group of diffeomorphism on the manifold Diff (M), but a

bigger group, containg also B-field transformations, this group is Diff (M) n Z2 (M)

[17]. Here with Z2 (M) we denoted the set of closed 2-form fields on M . It can also be

proved that this is the only group that preserves this structure [2].

We can note also that the two factor in the semi-direct product Diff (M) n Z2 (M)

encodes different kind of transformations. In fact, diffeomorphisms take a point in the

manifold and map it into another one, they are transformation on the manifold, whereas

the B-shift is a local transformation, in the sense that it acts on fibre elements leaving

the point on the manifold fixed; it is pointwise.

Finally, we should define something analogous to the pushforward of diffeomorphism for

the general tangent space, in fact, recall for the conventional Lie bracket the invariance

under pushforward can be represented by a commutative diagram[3]

TM TM

M M

π

f∗

π
f

(1.16)

where f : M →M is a diffeomorphism and f∗ : TpM → Tf(p)M its pushforward on the

tangent space to M in the point p. Since f is a diffeomorphism we can actually define

f∗ acting on a vector field, not only on a vector, so f∗ : TM → TM .

The diagram (1.16) actually says that the Lie bracket “commutes” with the pushfoward
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action, in the following sense: given two vector fields x, y in TM ,

f∗
(
[x, y]

)
= [f∗x, f∗y] ∀x, y

Analogously for the generalised case. Recall that we define the pullback of a form field

as f∗ : T ∗M → T ∗M , thus now we define a map F : TM ⊕ T ∗M → TM ⊕ T ∗M as

F := f∗ ⊕ f∗ such that the Courant bracket “commutes”, in the same sense of the Lie

derivative, with this F action

F (JV, W K) = JF (V ) , F (W )K ,

where F (V ) = f∗v+ f∗λ. Just for completeness we can draw the commutative diagram

in the generalised case.

TM ⊕ T ∗M TM ⊕ T ∗M

M M

π

F

π
f

1.2.2 Patching rules

The usual approach [18] when we are in the presence of a geometrical structure with a

symmetry is to restrict the structure locally, for instance on each open set of an open

covering, and patch it with itself on an overlap between charts by the symmetry. We are

going to follow this approach and study the Courant algebroid (TM ⊕ T ∗M, 〈·, ·〉, J·, ·K)
restrictions and patching properties over an open cover {Ui} of the base manifold M .

Take into account the generalised restricted space TM ⊕ T ∗M
∣∣
Ui

(sometimes denoted

as TUi⊕ T ∗Ui) endowed with the Courant bracket and inner product we defined above,

consider in addition TM ⊕ T ∗M
∣∣
Uj

, where Ui ∩ Uj 6= ∅ and sew them together on the

overlapping region by the action of an element of the symmetry group, in particular we

are interested in considering the B-field [19].

We can think at the B-field transformation that glues the two patches together as the

transition function of a new bundle that is locally isomorphic to TM ⊕ T ∗M . We will

return to this perspective at the end of this section. For now, we require the coherence of

our patching procedure by imposing [20] a so-called cocycle condition on our transition

“functions” on a triple intersection, like Ui ∩ Uj ∩ Uk(
1 0

B(ij) 1

)(
1 0

B(jk) 1

)(
1 0

B(ki) 1

)
=

(
1 0

0 1

)
.

This reduces to

B(ij) +B(jk) +B(ki) = 0 on Ui ∩ Uj ∩ Uk . (1.17)
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Therefore we can form a new bundle, what we call the Generalised tangent bundle

E defined as follows.

Definition 1.5 (Generalised Tangent Bundle). The generalised tangent bundle E is

defined as an extension of the tangent bundle TM by its cotangent bundle T ∗M , given

by the short exact sequence

0 T ∗M E TM 0 ,
ι π

where π is the anchor map we introduced in the definition 1.2 and by ι we mean the

trivial inclusion, i.e. ι(λ) = 0 + λ, where 0 is the zero vector field in TM .

Given a point p ∈M we will denote the fibre at p as Ep, often called generalised tangent

space.

There exists an important result in category theory, related to short exact sequences

as the one written above, the splitting lemma [21]. This result is of crucial importance

also for the generalised geometry since it allows us to prove the isomorphism between

E and TM ⊕ T ∗M (not only locally, as we expect from our construction). In order to

formulate it properly we should need a lot of definitions and results that are over and

above this project, so we remand to the literature for a complete rigorous treatment of

the subject, for example [22, 23].

One important aspect to remark is that E has a (d, d) metric since each piece TM ⊕
T ∗M

∣∣
Ui

has the metric (1.2) and we patched charts by transformations in SO(d, d),

that do not affect the metric. It also have a Courant bracket on intersections since the

forms B(ij) we used in the patching are closed, thus they preserve the bracket. To be

rigorous, we should also check that the anchor map is actually the same we defined for

TM ⊕ T ∗M , this is true indeed, since the B-shift does not affect the vector part of a

generalised section, which means that π
(
eBV

)
= π (V ) = v.

Consider now the transition closed form B(ij) and find two forms B(i) and B(j) (not

necessarily closed) defined respectively on Ui and Uj such that on the overlap region

Ui ∩ Uj this provides a local trivialisation of B(ij), that is,

B(ij) = B(i) −B(j) . (1.18)

The key aspect of this splitting is that now we have a map (for each chart) that associate

an element of TM to an element of E. We indicate this map as B(i) although the actual

map is the matrix eB(i) , and dropping the chart index i, we write

B : TM E
v v + ivB
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Inserting this in the sequence defining the generalised tangent bundle,

0 T ∗M E TM 0 .
i π

B

(1.19)

Hence, maps B(i) are only defined locally and we can patch them [24] on Ui ∩ Uj by

B(i) = B(j) − dΛ(ij) . (1.20)

This patching rule means that we have chosen the closed 2-form B(ij) in (1.18) to be

equal to the exact form −dΛ(ij).

The cocycle condition (1.17) for the one forms Λ(ij), after integration, becomes

Λ(ij) + Λ(jk) + Λ(ki) = dΛ(ijk) on Ui ∩ Uj ∩ Uk . (1.21)

Where Λ(ijk) is a function.

The condition (1.21) is an analogous for one-forms transition “functions” of the patching

requirements for a U(1)-bundle, and indeed to recall this, sometimes in literature (like in

[24]) the one form dΛ(ijk) is denoted, through a U(1) element g(ijk) = eit, as g(ijk)dg(ijk).

This makes B a connection structure on a gerbe [20], that is to say the B is the two-form

analogous of the U(1) one-form connection A.

The choice of the patching through the one form Λ(ij) fixes the patching rules between

sections of E over different charts of M . Take into account v(i) ∈ Γ (TUi) and λ(i) ∈
Γ (T ∗Ui) such that V(i) is a section of E over Ui, the patching of sections consistent with

the connection structure given by B in (1.20) isv(i) = v(j)

λ(i) = λ(j) − iv(j)
dΛ(ij)

(1.22)

on the overlap Ui ∩ Uj . Note that we are not considering the usual GL(d,R) transfor-

mation between different patches over the manifold.

The important aspect to notice is that while v(i) globally defines a vector field, λ(i) is

not a proper globally defined one-form, since it does not patch in the required way for a

one-form. In fact, E is isomorphic to TM ⊕ T ∗M but this isomorphism is not natural,

it is related to the choice of the splitting map B in the defining sequence 1.19. We can

point out the relation between sections of TM ⊕ T ∗M and elements of Γ (E), sections

of E, by the map B. In fact,

V = v + λ+ ivB = eBṼ , (1.23)

where we denoted as Ṽ = v + λ a section of TM ⊕ T ∗M .
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From the last expression we can see that the choice of a connection form B provides

an isomorphism between TM ⊕ T ∗M and E, as consequence of the splitting lemma

[21, 25, 26]. We can see also that the isomorphism, as stated above, is crucially related

to the choice of B. Moreover, this affects also the Courant bracket on E, which are said

to be twisted by the choice of a trivialisation for the B-field, they are sligthly modified

in [15]

JV,W K =: eBJV,WKH . (1.24)

Where V,W are sections of E and V,W are sections of TM ⊕ T ∗M . The three form

H := dB is defined globally and is analogous to the field strength F of the A field in

the case of a connection on a U(1)-bundle, as stated previously. It represents the field

strength of the B-field and, in string theory, turns out to be quantised by a co-cyclicity

condition on the quadruple intersection.

Hence, the twisted bracket (1.24) is defined globally on E thanks to the fact that on the

intersection Ui ∩ Uj the B(ij) is a closed form and H = 0, otherwise the bracket would

not patch properly [2].

1.3 Generalised Metric

In this section we look for a structure that plays an analogous role of the Riemannian

metric in ondinary differential geometry. Therefore, we would like to put an “extra

structure” on the generalised bundle, as the familiar metric structure on the manifold in

differential geometry, and explore to what consequences the presence of this structure

leads us.

1.3.1 Frames

As in ordinary geometry, we are interested in introducing an orthonormal frame over

TM ⊕ T ∗M .

We will follow [3] to define a frame bundle in the ordinary case and then we will generalise

it to the generalised geometry one.

Let us consider a manifold M endowed with a Riemannian metric g and a coordinate

patch Ui of TM . It is possible to introduce a set of linearly independent vector fields

{êa}, not related to any coordinate system.
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Vielbeins

Firstly, we define non-coordinate basis by the concept of vielbeins. In a coordinate basis

TpM is spanned by {∂/∂xµ|p}, where xµ are the coordinates of a chart on a Riemannian

manifold M containing the point p. As usual, the dual space T ∗pM is spanned by {dxµ}.
Consider a “rotated” basis defined as follows

êa := e µ
a ∂µ {e µ

a } ∈ GL (d,R)+ . (1.25)

Therefore we can state that the basis {êa} is the frame of a basis obtained by rotating

{∂/∂xµ} by a GL (d,R) transformation that preserves the orientation (i.e. up to a posi-

tive scaling factor, a SL (d,R) transormation). This coefficients e µ
a are called vielbeins,

sometimes vierbeins, if we are in four dimensions. Furthermore, is required {êa} to be

an orthonormal frame with respect to the metric g,

g (êa, êb) = δab. (1.26)

By linearity of the metric product (recall the metric is a (0, 2)-tensor) we can write the

previous expression as

g (êa, êb) = e µ
a e

ν
b g (∂µ, ∂ν) δab = e µ

a e
ν
b gµνδab.

If the metric is Lorentzian instead of Riemannian, δab is replaced by ηab. We can also

express metric components in terms of (inverse) vielbeins,

gµν = eaµe
b
νδab; (1.27)

where eaµ is the inverse matrix of e µ
a , i.e. eaµe

ν
a = δ ν

µ and eaµe
µ
b = δab.

As for each basis any vector v ∈ TpM can be expressed in components with respect to

the basis,

v = vµ∂µ = vaêa = vae µ
a ∂µ

and from these equalities we can write explicitly the relation between components

vµ = vae µ
a va = eaµv

µ.

As expected, if the basis transforms with a matrix, components transform with the

inverse matrix.

Consider now the dual basis {ξa} defined by (ξa, êb) = δab. We can see they are given
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in terms of the dual coordinate basis as

ξa = eaµdx
µ.

Thus, we can express the metric in terms of this basis as follows

g = gµνdx
µ ⊗ dxν = δabξ

a ⊗ ξb.

When we talk about non-coordinate basis we refer to the basis defined above, {êa} and

{ξa}. One of the most notable property of these basis is the fact that their Lie bracket

is non-vanishing, in particular, if we take a non-coordinate basis defined as in (1.25) it

satisfies the relation

[êa, êb]|p = f c
ab (p)êc|p (1.28)

where

f c
ab (p) = ecν

(
e µ
a ∂µe

ν
b |p − e

µ
b ∂µe

ν
a |p

)
.

Note that the “structure constant” are not constant at all. They crucially depend on

the point p ∈ M . The importance of this statement will become clear in what follows,

in particular when we will analyse the generalised parallelisability in chapter 3.

The frame bundle

We have seen how a frame is defined on a point, or better, how is defined as a basis of

the tangent space to the manifold in a point. Here, we want to extend our discussion to

the whole bundle TM , defining the frame bundle.

As we have seen, the set {êa} defines a local basis, said local frame on Ui and we can

call a = 1, . . . , d the frame index.

In general, could be impossible to define these frames globally, as may not be possible

to cover the whole manifold with a single chart.4

The frame bundle is the bundle associated with these basis vectors, defined as [27]

F :=
⋃
p∈M

Fp, (1.29)

where

Fp := {(p, {êa}) | p ∈M} .

In other words, Fp is the set of all frames at p ∈M . The frame bundle can be seen as a

GL(d,R)-principal bundle, even if it seems to lack a proper group structure. This because

4In the particular case where a global frame is defined, the manifold is said parallelizable. This will
be discussed later in chapter 3.
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Fp is homeomorphic to GL(d,R) as topological space, so we can associate naturally to

the frame bundle a principal bundle with structure group GL(d,R), we are not able to

identify the identity element in a natural way. Now, the group GL(d,R) acts freely and

transitively on each fibre on the right - i.e. Fp is a principal homogeneous space for

GL(d,R) - to give another frame on the fibre. From this point of view we can see the

action of the group GL(d,R) as the way of changing frames keeping the point p ∈ M
fixed, so the change of frame is a tranformation on the fibre only. To be more explicit,

two frames on Fp are related by

ê′a = A b
a êb, A b

a ∈ GL (d,R) . (1.30)

We can now proceed in two different directions, that turn out to be equivalent. The

first choice we can operate is to restrict the transformations allowed to a subgroup

O(d) ⊂ GL(d,R), such that we take into account, in each point, just frames connected

by an orthogonal transformation. We choose the group O(d) since this group preserves

the metric structure. We have a residual freedom: we can still choose which is the initial

frame, the frame from which we start performing transformations to find the others. We

can fix this choice by imposing a relation involving the metric (O(d)-invariant) between

vectors of the frame, like

g (êa, êb) = Aab. (1.31)

Imposing this relation is equivalent to fix the tensor Aab as invariant tensor under O(d)

transformations.

An equivalent choice is to fix a relation the frame vectors must satisfy, one like the

(1.31), or more conventionally

g (êa, êb) = ηab, (1.32)

where the matrix η is the usual Minkowski metric in a Lorentzian manifold (if g is

Lorentzian), or the Kronecker delta in a Riemannian one. This choice and its invariant

condition reduce the group of allowed transformation to the subgroup of GL(d,R) that

leaves the tensor ηab invariant, thus the O(d) group in the Riemannian case, which is the

one we are taking into account. For a Lorentian metric the group would be O(1, d− 1),

but nothing would be conceptually different, so we will analyse just the Riemannian

situation.

The restriction to the O(d) group implies {êa} is now an orthonormal frame.

We have seen that imposing the invariance of the previous condition restricts the struc-

ture group GL(d,R) to O(d). This form an object known in mathematics as G-structure,

where G ⊂ GL(d,R) [28].

A G-structure is a principal subbundle of the tangent frame bundle P ⊂ F . For our

concern the tangent frame bundle is the F in (1.29).
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In our case, G = O(d) and the correspondent subbundle is

P = {(p, {êa}) ,∀p ∈M | g (êa, êb) = ηab} . (1.33)

In order to make this construction clearer take into account the following situation.

Given an open cover {Ui} of M and a point p ∈ Ui ∩ Uj , any vector field v(i) on TM
∣∣
Ui

can be expressed in coordinates with respect to an (orthonormal) basis, thanks to the

local frame on Ui, as v(i) = v a(i)êa. Analogously for another vector field v(j) defined on

TM
∣∣
Uj

. Therefore, on each fibre of P , frames are connected by an O(d) transformation,

ê′a = êb A
b
a, (1.34)

where we have denoted as {ê′a} the orthonormal frame on Uj , and A ∈ O(d). The

components in the two charts transform consequently,

va(j) =
(
A−1

)a
b
vb(i). (1.35)

This fact hides something very deep, in fact, we have showed how imposing the invari-

ance of the (1.33) reduces the structure group GL(d) to its maximally compact sub-

group O(d). This is equivalent to the presence of an O(d)-structure on our manifold.

This result descends from a fundamental theorem in the theory of Lie groups known as

Cartan-Iwasawa-Malcev theorem, stating that every locally compact Lie group admits a

maximally compact subgroup. This subgroup is unique up to conjugation, in the sense

that given H and K, two maximally compact subgroups of G, there exists an element

g ∈ G such that H ∼= gKg−1. The uniqueness up to conjugation class corresponds to

our freedom in choosing an invariant tensor in the (1.31), i.e. an inner product. Thanks

to this property, we are allowed to talk about the maximally compact subgroup [29].

In light of this fact we can see the metric tensor as a representative of an equivalence

class in GL(d)/O(d), and for this reason we often refer to the metric structure as O(d)-

structure. This new perspective provides a useful interpretation of the metric strucure

that will be extremely useful in the construction of a generalised metric [9].

The generalised frame bundle

The definition of generalised frame bundle is straightforward from the generalisation of

the frame bundle. Given a frame on E, that we name {ÊA}, satisfying the orthonormality

condition with respect ot the natural inner product

η
(
ÊA, ÊB

)
≡ 〈ÊA, ÊB〉 = ηAB =

1

2

(
0 1

1 0

)
AB

, (1.36)
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we can define the generalised frame bundle as follows. The frame bundle is the bundle

associated to these basis vectors. Points on the fibre (frames) are connected by O(d, d)

transformations. Conversely, all frames connected by O(d, d) transformations to a given

frame that satisfies (1.36) will satisfy it too. In other words, these frames form an

O(d, d)-bundle, that we call generalised frame bundle,

F :=
⋃
p∈M

{(
p, ÊA

)
| p ∈M, η

(
ÊA, ÊB

)
= ηAB

}
. (1.37)

Given the frame {êa} for TM and {ea} for the cotangent bundle T ∗M , we can made a

particular choice of frame, that will be convenient in the further analysis. We introduce

the split frame from frames on TM and T ∗M such that we can keep track of the vector

and form part of our generalised sections. Explicitly,

ÊA :=



 êa

−iêaB

 , A = a ;ea
0

 , A = a+ d .

(1.38)

Note that this is not simply the basis for TM⊕T ∗M we defined in section 1.1.3, but the

B-shift, the map that induces the splitting of E, is present in our definition of the split

frame. This because we require the compatibility with patching rules defined above.

1.3.2 O(d)×O(d)-structure

The fact that in the generalised case the structure group for the frame bundle is O(d, d)

and its maximally compact subgroup is O(d)×O(d) arises from various considerations

we have done above. Now we wanto to investigate the meaning of introducing a metric

and, as consequence, reducing O(d, d) to O(d) × O(d), analogously as what has been

seen before. This reduction, or splitting, has important consequences, and analysing it

will let us recover an explicit representation for the generalised metric tensor G.

In order to motivate our way of introducing a generalised metric we can refer to figure

1.1. Consider a Riemannian manifold (M, g) and observe that the metric g is completely

described by its graph C+ = {x + gx | x ∈ TM} ⊂ TM ⊕ T ∗M , where g is seen as a

linear map from TM to T ∗M . We are going to show that the restriction to G of the

natural scalar product (1.1) is positive definite and allows us to define a generalised

metric [16].

We can take as definition of generalised metric the definition 4.1.1 of [16].
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Definition 1.6 (Generalised metric). Let E be a generalised tangent bundle over M .

A generalised metric C+ is a positive definite sub-bundle of rank d = dim M , that is,

the restriction of the scalar product 〈·, ·〉 to C+ is positive definite.

The main goal of this section is to explore the meaning of the last definition.

We should now remark an important point: in mathematical literature like [4, 15, 16],

the concept of generalised metric is referred to the sub-bundle on which the scalar prod-

uct is restricted (as in definition 1.6), while in physics (as in [6, 9, 24]), and of course

often also in this work, for generalised metric we mean the matrix G, describing the

positive definite product.

Take into account the decomposition O(d, d) −→ O(d)×O(d), the generalised bundle E

decomposes into two d-dimensional sub-bundles C+ ⊕ C−[2, 24]. The sub-bundle C+ is

positive definite with respect to the inner product (1.1), while its orthogonal complement

C− is negative definited.

The presence of the natural metric η induces inner products on C± and this allows us

to define a positive definite generalised metric G on E as

G(·, ·) := 〈·, ·〉
∣∣
C+
− 〈·, ·〉

∣∣
C−
. (1.39)

Since any generalised section which is made only by a pure vector field or a pure form has

a zero norm with respect to the metric (1.2), we can state for instance T ∗M ∩C± = {0}.
Analogously intersections between TM and C± are just made by the zero section, as

represented in figure 1.1.

For these reasons we can define a map h : TM −→ T ∗M such that C+ is the graphs of

h, and C− its orthogonal complement, and explicitly

C+ = {x+ hx | x ∈ Γ (TM)} . (1.40)

The map h provides an isomorphism between TM and C+.

It is clear that h is a section of T ∗M ⊗ T ∗M and hence can be written as h = g + B

exploiting the decomposition T ∗M⊗T ∗M ∼= Sym2T ∗M⊕Λ2T ∗M , where g ∈ Sym2T ∗M

and B ∈ Λ2T ∗M . Thus we can write a general element X+ ∈ C+ as X+ = x+(B + g)x,

where as usual we denote with Bx the contraction ixB. The orthogonality condition

between C+ and C− force us to write X− ∈ C− as X− = x+ (B − g)x and so

C− = {x+ (B − g)x | x ∈ Γ (TM)} . (1.41)

We can identify g with the familiar Riemannian metric thanks to the invariance of
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x+ gx

Cg+

x− gx

Cg−

T ∗M

TMx

Figure 1.1: We can represent the splitting of E into the sub-bundles C+⊕C− by the
graph of a linear map h : TM −→ T ∗M . Here is represented the particular case of a
zero B field transformation.

the natural inner product under the shift by any 2-form B. In fact, take into account

X+, Y+ ∈ C+ and their inner product

〈X+, Y+〉 = 〈x+ ixB + gx, y + iyB + gy〉 =

= 〈x+ gx, y + gy〉 =

=
1

2
(iygx+ ixgy) = g (x, y) .

As required g(x, y) is the usual Riemannian (positive definite) inner product between

two vector fields.

We have now all the tools to find the form of the generalised metric tensor G. Our

strategy will be to use the definition of G in (1.39) in order to see how it acts on

elements of C+ and C− and hence write an explicit matrix expression for G.

We can write a generalised vector X ∈ E ∼= C+⊕C− as X = X+ +X−, where X± ∈ C±.

Thus we have the map G

G : E E∗ ∼= E

X G(X) = G(X, ·)

We denoted as G(X) the generalised one-form G(X, ·), but since the isomorphism E∗ ∼=
E, as stated above in section 1.1.1, it can be thought as a vector. In fact, using the

definition of G we can write G(X) as

G(X) = G(X, ·) = 〈X+ +X−, ·〉
∣∣
C+
− 〈X+ +X−, ·〉

∣∣
C−

= X+ −X− . (1.42)

From the last expression it is clear that G2 = 1, and that C± are the eigenspaces relative
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to eigenvalues ±1 of G. Consider firstly the simpler case represented in figure 1.1, with

B = 0. The map h now is just the Riemannian metric g on the manifold M , and the

two sub-bundles are

Cg± := {x± gx | x ∈ TM} .

A generic vector in Cg± can be written as Xg± = x ± gx. In this particular case

2x = Xg+ +Xg−, thus, we are now allowed to write

2G(x) = Xg+ −Xg− = 2g(x),

and since G2 = 1, it holds

2G2(x) = 2G(g(x)) = Xg+ +Xg− = 2x.

In this basis, the simplest form the matrix G can take is

Gg =

(
0 g−1

g 0

)
.

Now we want to reintroduce the B field we have ignored so far. Recall that

eBXg± = (x± gx+Bx) = X±

and also that

G (X±) = ±X±. (1.43)

Using the previous relations and applying the B transformation to Xg±, we can obtain

a matrix representation for G as follows,

X± = eBXg+ = ±eBGgXg+ =

= ±eBGge−BeBXg+ =

= ±eBGge−BX+ .

This is true if and only if

G = e−BGge
B =

(
g−1B g−1

g −Bg−1B −Bg−1

)
. (1.44)

What we would like to emphatise here is that we have written the generalised metric G

as an object corresponding to the group structure reduction O(d, d) −→ O(d) × O(d),

only in terms of g and B. This is a remarkable result of this work, since we obtained a

single geometrical object encoding both the fields appearing in the type IIA and type

IIB supergravity NS-NS sector, as already shown in [6, 24, 30].
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We have seen in the previous section how the metric g in ordinary differential geometry

can be thought as a class representative of the coset space GL(d)/O(d), whereas in

generalised geometry we can state that G parametrises the homogeneous space

O(d, d)/ (O(d)×O(d)) . (1.45)

Actually we have not proved that the 2-form B that appears in the generalised metric’s

construction is the B-field defined as the splitting map in the section 1.2.2. We can

prove this considering the local expression of C+ as a graph of the map x+g(i)x+B(i)x,

defined on the chart Ui, and look at its behaviour under the transition to a different

coordinate chart Uj . The expression in the chart Uj can hence be written as

x+ g(j)x+B(j)x = x+ g(i)x+B(i)x+ ixdΛ(ij).

Equating the symmetric and antisymmetric parts separately we find that g(i) = g(j),

defining a proper Riemannian metric,5 while B(j) = B(i) + dΛ(ij), that is precisely the

request for a connection structure on a gerbe [20], or, as we have seen before, it is the

patching prescription for the B-field in (1.20) [16].

There is an alternative way to construct the matrix representation (1.44) for the gener-

alised metric, following [9] and using generalised frames encoding both the geometrical

objects g and B and from these reconstruct G.

We are interested in finding, into the generalised frame bundle F , two set of frames

{Ê+
a } and {Ê−ā } (a, ā = 1, . . . , d) satisfying

〈Ê+
a , Ê

+
b 〉 = δab , 〈Ê−ā , Ê−b̄ 〉 = −δāb̄ , 〈Ê+

a , Ê
−
b̄
〉 = 0 . (1.46)

Here the O(d)× O(d) symmetry is explicit and each O(d) factor acts on a different set

of frames, for this reason sometimes the group symmetry is denoted as O(d)+ ×O(d)−.

Explicitly, a generic element in O(d)+ ×O(d)− can be written as

Θ =

(
ϑ+ 0

0 ϑ−

)
,

and acts on Ê± such that Ê+
a → ϑ+ b

a Ê+
b

Ê−ā → ϑ− b̄
ā Ê−

b̄

An equivalent definition is via the product structure G in the following projectors on

C±,

Π± :=
1

2
(1± P) , (1.47)

5Again, we are not considering the GL(d,R) transformations.
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with P2 = 1 and PÊ± = ±Ê±, we can compare with (1.43), since the resemblance is

evident at this stage.

This point of view hides something very deep, since here one can note a similarity with

the so called almost complex structures [31] in ordinary differential geometry, or with

pre-symplectic structures [32], this was in infact the starting point for Hitchins in order

to generalise to generalised complex structures. The deepness of the generalised geom-

etry construction is that from this point of view all these kinds of structures seems to

have a similar description.

In order to induce the inner product on C± we require a further condition on the operator

P,

〈PV, PW 〉 = 〈V, W 〉 ∀V,W ∈ Γ(E) ,

or equivalently PT ηP = η.

Now we can construct an analogous of the split frame defined in (1.38) from frames on

C± rather than from ones on TM and T ∗M .

Take on C± the frames {ê+
a } and {ê−ā } and their duals {e+

a }, {e−ā } respectively. Then a

solution to the system of costrains (1.46) can be written as

E+
a =

(
ê+
a − iê+a B

)
+ e+

a , (1.48)

E−ā =
(
ê−ā − iê−ā B

)
+ e−ā . (1.49)

Thus, the generalised metric takes the form

G = δabE+
a ⊗ E+

b + δāb̄E−ā ⊗ E−b̄ , (1.50)

and expressing the previous quantity in the coordinate basis of TM⊕T ∗M and imposing

PT ηP = η, we find

GAB = ηACPCB ; where PAB =

(
g−1B g−1

g −Bg−1B −Bg−1

)A
B

,

that is precisely what we found above in (1.44), providing the equivalence of the two

approaches described.
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1.4 An aside: why TM ⊕ T ∗M?

As stated previously, we have constructed an object that encodes both the field g and

B, appearing in the spectrum of the NS-NS sector of type II supergravity. Actually, we

miss the dilaton φ, but its inclusion is straightforward as showed by Waldram et al. in

[6, 9]. This can be considered a partial success of our approach, in fact, one of the main

aims of our work was to understand the geometrical meaning of the fields appearing

in the supergravity spectrum, so the generalised metric is the kind of object we were

looking for.

We should remark that G does not give us any information about the dynamics of the

fields, we need the supergravity action for this, but now we may be able (with some

further effort that we are going to face in the next section) to write the action of this

sector in a very elegant way, analogous to the Einstein’s general relativity, i.e. as a pure

metric theory.

Here, as conclusion of this part, we want to give an a priori motivation that could

bring a physicist to study generalised geometry. Consider the supergravity action for

the NS-NS sector [9, 33],

S =
1

2κ2

∫
d10x
√
−ge−2φ

(
R+ 4∂µφ∂

µφ− 1

12
H2

)
, (1.51)

this exhibits two important symmetries, the diffeomorphism invariance and the gauge

invariance. The first one comes from the fact that the supergravity is an extension of

the Einstein’s general relativity, the second from the promotion of supersymmetry to a

gauge symmetry.

Diffeomorphisms are parametrised by vector fields v ∈ Γ(TM), while gauge transforma-

tions by one forms λ ∈ Γ(T ∗M). To make this evident let us express the infinitesimal

variations of the fields by,

δvg = Lvg , δvφ = Lvφ , δvB = LvB + dλ .

From these it is clear that under a gauge transformation we have B → B + dλ, and so

that gauge transformations are parametrised by λ. It is also evident that the vector v

parametrises the diffeomorphisms, written by taking the Lie derivative along v.

Thus, this suggests to consider a generalised tangent bundle that could accomodate in

one single object the vector field and the one-form. This can be seen as an euristic

motivation to introduce the generalised tangent bundle TM ⊕ T ∗M .

Actually, other extensions can be considered, to encode also other symmetries of more

general actions. For example in [34] Hull introduced an exceptional generalised geometry,

then further developed by Pacheco, Waldram et al. in [26, 35]. This approach considers
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a generalised tangent bundle with an Ed(d)×R+ structure to incorporate symmetries of

the M -theory. We are not treating these arguments in this thesis, but their existence

could be a motivation to further investigate the relations between generalised geometry

and string theory.



Chapter 2

Generalised Connection, Torsion,

Curvature

Once the concept of metric has been inctroduced we can build the generalised analo-

gous of all the related objects that we know in ordinary differential geometry. In this

chapter we introduce a generalised notion of connection and a generalised torsion tensor.

Equipped with this tools, we are going to define a generalisation of the Riemannian cur-

vature tensor and, by its contraction, the generalised parallel of Ricci tensor and scalar.

We are going to take follow [6] to show the key results of this construction.

The notion of connection on Courant algebroids was first introduced by Xu, Stienon et

al. in [36] and Gualtieri and Cavalcanti in [17] and plays a very important role in this

geometric formulation of supergravity.

We are going to define the main objects by following [9] principally. Then, found the

connection components in coordinates related to the frames introduced in section 1.3.1,

we will define the torsion via the torsion map as in ordinary differential geometry. In the

end, after discussing the generalised analogous of a Levi-Civita connection and its non-

unicity we will construct an expression for the curvature map and write a “generalised

Einstein equation”, that, we will show, encodes the field equations for the type II NS-NS

sector of supergravity.

29
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2.1 Generalised connections

2.1.1 Definition and properties

The connection in differential geometry is an object that specifies how tensors are trans-

ported along a given curve on a manifold, and how this transport modifies them. In the

generalised enviroment we want to define an analogous notion in this sense. As usual

we begin considering vector fields, since the generalisation is straightforward.

Definition 2.1 (Generalised connection). A generalised (affine) connection D is a map

D : Γ (E)× Γ (E) Γ (E)

(V,W ) DV (W )

such that satisfies the following properties for all U, V, W ∈ Γ(E) and f ∈ F (M),

i. DV (W + U) = DV (W ) +DV (U);

ii. DV+U (W ) = DV (W ) +DU (W );

iii. DfV (W ) = fDV (W );

iv. DV (fW ) = fDV (W ) + V [f ]W .

As usual we are also interested in a coordinate expression, therefore consider a coordinate

basis {ÊM}. We can write the components of the connection as follows

DÊM
ÊN := Γ K

M N ÊK . (2.1)

We will refer to Γ K
M N as generalised connection components.

2.1.2 Spin connection

We could also define a generalisation of the spin connection, defined using vielbeins (see

[37]) as follows. First of all, recall how the spin connection is defined in conventional

differential geometry, consider a non coordinate basis {êa} defined via vielbeins as in

1.3.1 from a coordinate basis {∂µ}, we can define a connection ∇(s)
µ acting on a vector

va as in the following expression1 [38]

∇(s)
µ va = ∂µv

a + ω a
µ bv

b . (2.2)

1Note the different nature of the indeces on ∇µ and va.
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Note that the presence of the metric is crucial, since it induces an O(d)-subbundle and

hence a spinor bundle, where defining the covariant derivative of spinors is allowed.

Inserting the expression of vector va = eaµv
µ in the previous formula, we find a precise

form for the spin connection components ω a
µ b,

ω a
µ b = eaν ω

ν
bµ

where,

ωνaµ := ∇µeνb = ∂µe
ν
b + Γνµρe

ρ
b ,

and ∇µ is the familiar affine connection with components Γνµρ. From this in supergravity

is often defined a total covariant derivative Dµ acting on objects with mixed frame

indeces as

DµAνa = ∂µA
ν
a + ΓνµρA

ρ
a − ω

b
µ aA

ν
b .

Moving into a non-coordinate frame {ÊA}, in the generalised case we define a generalised

connection as in [9] by the expression

DMV
A = ∂MV

A + Ω A
M BV

B , (2.3)

where we indicated with M the index for the coordinate generalised basis {∂M} as

defined in 1.1.3.

The operator D defined in (2.3) is a differential operator (it satisfies the Leibnitz rule for

the product of two tensor fields) and its action can be extended, as usual, to a generic

tensor field like T ∈ Γ (E⊗r) as

DMT
A1...Ar = ∂MT

A1...Ar + Ω A1
M BT

B...Ar + . . .+ Ω Ar
M BT

A1...B .

In order to find some constraints on the connection components, consider the equation

(1.46) that gives us the expression of the O(d, d) metric in terms of the frame basis,

ηAB = ηMN Ê
M

A Ê N
B . (2.4)

We now impose metric compatibility condition of the connection. This implies the

antisymmetry of connection components as one explicitly see,

DMηAB = ∂MηAB − Ω C
M AηCB − Ω C

M BηAC .

Equating the last expression to zero, finally we get the antisymmetry condition

ΩMAB = −ΩMBA . (2.5)
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2.1.3 Lifting of an ordinary connection ∇

There is also the possibility of defining a generalised connection given an usual connection

∇ and a split frame like (1.38), by lifting the action of∇ on the components (with respect

to the split frame) to an action of a new object D∇M on E. The object such defined can

be proved by direct check to be a generalised connection.

Explicitly, take a generalised vector field V ∈ Γ(E), write it in components as

V = V AÊA = vaÊa + λaE
a ,

then the generalised connection defined (or, from a certain point of view, “induced”) by

∇ takes the form

(
D∇MV

)
=
(
D∇MV

A
)
ÊA =

{
(∇µva) Êa + (∇µλa)Ea M = µ

0 M = µ+ d
. (2.6)

If we want we can express this in a more schematic way, by a commutative diagram,

Γ(E)× Γ(E) Γ(E)

Γ(TM ⊕ T ∗M)× Γ(TM ⊕ T ∗M) Γ(TM ⊕ T ∗M)

B

D∇

B

∇
(2.7)

where has been made evident that the B-field, once again, plays a crucial role in def-

initions of generalised objects. In this case we can equivalently define a generalised

connection D∇ by the expression

D∇VW = eB
(
∇π(V )e

−BW
)

= ∇vw +∇v ζ̃ − i∇vwB . (2.8)

This formula represents nothing else than the commutative diagram (2.7) with a choice

of B-splitting, and with ζ̃ we denoted the form component on TM ⊕ T ∗M after the

action of the e−B map.

2.2 Generalised torsion

Going on with our construction of generelised objects, we want to define the concept of

generalised torsion. One way to do it is following a generalisation of the procedure to

that showed in [3] for the ordinary differential geometry. Firstly, defining a torsion map

of a general connection ∇, T (x, y) := ∇xy − ∇yx − [x, y] and then, acting on a basis,

obtaining a torsion tensor. However, though this approach is very elegant, it clashes
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with the fact that in generalised geometry we have two notions of Lie brackets. To solve

this we note that the torsion map has a nice expression in terms of the Lie derivative

given by

T (x, y) = xµ∇µy − yµ∇µx− xµ∂µy + yµ∂µx := L∇x y − Lxy , (2.9)

where we denoted as L∇ the Lie derivative expression with the substitution of the

ordinary derivative with the covariant one, ∂ → ∇ [9].

Going in components, that is analysing the torsion tensor, we can focus our attention

on the adjoint action of the group GL(d),

xµTαµνy
ν =

(
Tx
)α
ν
yν .

In the last expression the matrix (Tx)αν lives in the adjoint rep of gl (d,R) and, by dint of

these observations, we can generalise the torsion map defining its action on any tensor,

for instance

TxA
α1...αr

β1...βs
= L∇x A

α1...αr
β1...βs

− LxAα1...αr
β1...βs

=

= Aµα2...αr
β1...βs

xν
(
Γα1
νµ − Γα1

µν

)
+ . . .+

−Aα1...αr
νβ2...βs

xν
(
Γµνβ1

− Γµβ1ν

)
− . . .

where Γαµν are the connection components.

Here we can recognise the adjoint gl(d) matrices (Tx)αµ = xν
(
Γανµ−Γαµν

)
acting on each

tensor component.

In the same way, we generalise the torsion tensor by the Dorfman derivative, rather than

by a generalised torsion map.

Definition 2.2 (Generalised Torsion). The generalised torsion of a generalised connec-

tion D is defined as the following map,

T : Γ (E)× Γ (E) Γ (E)

(V,W ) T (V )W := LDVW − LVW

where LDVW is the Dorfman derivative in (1.10) with the prescription ∂ → D.

Given a basis we can write down an expression in components of the quantity T (V )W

as follows,

T (V )W = V RWN

(
ηNKΓ M

R K + ηMKΓ N
K R − ηNKΓ M

K R

)
ÊM =

= T M
R KV

RWKÊM .
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Analogously to what we have seen above, we can apply the last definition to a generalised

tensor field A ∈ Γ(E⊗s)

T (V )A := LDV A− LVA .

Therefore, from this point of view, we can think T as a torsion map from the sections

of E to adj(F ), where adj(F ) is the adjoint bundle related to the principal bundle F in

(1.37).

2.3 Levi-Civita connections

Once a notion of torsion has been introduced, one could wonder if exists a (unique)

generalised parallel of the Levi-Civita connection, that is, a connection metric compat-

ible and torsion-free. The answer of this question, as we are going to show, is positive.

However, in the generalised case we are not able to find a unique connection both metric

compatible and torsion-free.

Moreover, we should clarify what “metric compatible” and “torsion-free” mean in the

generalised environment. The following section is aimed to explore these concepts and

their implications.

Definition 2.3 (Generalised Levi-Civita connection). Given a differentiable manifold

M endowed with a generalised metric structure G = η · P, we define a generalised Levi-

Civita connection as a generalised connection that in addition satisfies the following

properties

i) O(d, d)-structure compatibility Dη = 0;

ii) O(d)×O(d)-structure compatibility DP = 0;

iii) Torsion-free TD = 0.

It is immediate to show that conditions i and ii imply D(G) = 0. Furthermore, the first

condition also restricts the connection components to be antisymmetric in the last two

indeces, i.e.

ΓMNK = ηNPΓ N
M K = ΓM [NK] .

The third condition, that express the torsionless of the connection D constrains further

the connection components

TMNK = ηNPT
N

M K = 3Γ[MNK] = 0 ;



Chapter 2. Generalised Connection, Torsion, Curvature 35

from which is clear that T ∈ Λ3E.

In order to understand better the meaning of the definition 2.3, we can investigate the

conditions i)-iii) in a different coordinate system, like an O(d) × O(d) frame like that

defined in (1.48),

DM Ê
+
a = Ω b

M aÊ
+
b + Ω b̄

M aÊ
−
b̄

DM Ê
−
ā = Ω b

M āÊ
+
b + Ω b̄

M āÊ
−
b̄
.

We impose the O(d) × O(d) compatibility and we find a simple condition on the coef-

ficients – dropping the M index – we can write Ωb̄
a

= Ωb
ā = 0, that means that the

action of the connection does not mix C+ and C− bundles components, that is, it does

not map C+ into C− or viceversa. Finally, imposing condition i) we obtain an antisym-

metric constraint on the components, Ωab = Ω[ab], where we raise/lower indices by the

O(d) metric. The same holds also for the C− components.

Moreover, we can be a bit more precise about the meaning of compatibility of a con-

nection with a G-structure in general. We are going to point out some notions widely

studied in mathematics, for instance in [18, 27], so we will be very brief and synthetic.

We have seen above in section 1.3.1 that a G-structure is a principal sub-bundle P ⊂ F
with fibre G ⊂ G, where G is the group structure of the principal bundle F (in all this

work G = GL(d)). Defining a metric, we take G = O(d) and P as the bundle of orthonor-

mal frames in (1.33). Points in P , we have seen are connected by O(d) transormations

and g, at each point, defines a class in GL(d)/O(d).

Now, focus our attention on the fact that a general connection ∇ is compatible with a

G-structure if and only if the corresponding connection on the principal bundle F , re-

stricted to the sub-bundle P defining the G-structure is still a connection on it [27]. This

means that once a frame {êa} is given is possible to find a set of connection one-forms

ωab defined implicitly by

∇µêa = ω b
µ a êb .

Note that these forms take values in the adjoint representation of the group G.

For an O(d)-structure defining a metric g, the former condition is equivalent to ∇g = 0,

that is indeed always named metric compatibility of the connection.

The existence of a connection G-structure compatible and torsion-free is not obvious

and in general can further restrict the structure. However, if G = O(d) and therefore

we have a metric, this does not put any restriction on g. In this case the torsion free,

compatible connection exists unique and is called Levi-Civita.
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Now we are going to prove the existence of a Levi-Civita connection in the generalised

case (in the sense of definition 2.3). The price paid for this generalisation is the loss of

uniqueness of this kind of object in this context. the prove of this important result was

found firstly by Waldram et al. in [6, 9] and our proof follows that one quite closely.

Theorem 2.4 (Existence of a Levi-Civita connection). Given an O(d)×O(d)-structure,

there always exists a torsion-free, structure compatible generalised connection D.

Proof. We are going to prove the theorem through a constructive procedure. We are

going to impose the constraints given by definition 2.3 on the most general connection

possible. We are also going to use what we have seen about the lifting of an ordinary

Levi-Civita connection ∇.

Given ∇, ordinary Levi-Civita connection, acting on a split frame, like (1.48), as

∇µê+
a = ω+b

µ aêb

∇µê−ā = ω−b̄
µ ā
ê−
b̄
.

In the previous section 2.1.3 we have shown how this defines a generalised connection

D∇. Furthermore, we require the O(d) × O(d) compatibility, hence its action on the

frame {Ê+
a } and {Ê−ā } is constrained to be

D∇M Ê
+
a =

{
ω+b
µ aÊ

+
b for M = µ

0 for M = µ+ d

D∇M Ê
−
ā =

{
ω−b̄µ āÊ

−
b̄

for M = µ

0 for M = µ+ d
. (2.10)

where, again dropping the index µ

Ωb
a = ω+b

a , Ωb̄
ā = ω−b̄

ā
, Ωb̄

a = Ωb
ā = 0 .

Such that we find D∇ compatible with the generalised metric projector P. Moreover,

∇ is a Levi-Civita connection, therefore its components ω±ab are antisymmetric and this

makes D∇ also compatible with η.

We are left with the condition iii) of definition 2.3, the torsionless condition. We can

calculate the torsion of the connection explicitly, as done in [9], to find T = −4H. Hence,

the connection D∇ is not torsion-free. Nevertheless, not everything is lost. A generic

connection can be written as

DM = D∇M + ΣM .
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We can easily impose the O(d)×O(d) compatibility by choosing a Σ such that

ΣMab = −ΣMba , ΣMāb̄ = −ΣMb̄ā , Σ b̄
M a = Σ b

M ā = 0 .

Now, in order to make D torsionless, we impose T
(
D∇
)

= −T (Σ) wich implies

3Σ[ABC] = −4HABC . (2.11)

To sum up, finally, we have explicitly constructed a generalised connection D that is

torsion-free and structure compatible, as required by definition 2.3. This proves the

theorem.

The quantities HABC we indicated above are the components of the 3-form H = dB in

the frame {Ê±A}, under the embedding Λ3T ∗M ↪→ Λ3E, that decomposes as

Λ3T ∗M ↪→ Λ3E ∼= Λ3C+ ⊕ 3
(
Λ2C+ ⊕ ΛC−

)
⊕ 3

(
ΛC+ ⊕ Λ2C−

)
⊕ Λ3C− .

It is a very interesting point to notice that the coefficients emerging in this decomposition

are the same that arise in supergravity, making us more confident about the usefulness

of this approach.

Another apparently surprising result is the fact that the generalised torsion tensor T

is an element in Λ3E and not, as one might expect, in Λ2E ⊗ E. This comes from

the isomorphism E ∼= E∗ we pointed out in the section 1.1.1 and from the embeddings

TM ↪→ E and T ∗M ↪→ E.

However, the generalised connection D constructed above is not unique. In fact, let us

analyse more closely the equation (2.11). In the split frame basis {ê±}, it appears as

the set of conditions

Σ[abc] = −1

6
Habc , Σābc = −1

2
Hābc , Σ a

a b = 0 ,

Σ[āb̄c̄] = +
1

6
Hāb̄c̄ , Σab̄c̄ = +

1

2
Hab̄c̄ , Σ ā

ā b̄ = 0 .

These do not determine Σ completely, in fact some components may be written as

Σ b
a c = Σ̃ b

a c +A b
a c Σ b̄

ā c̄ = Σ̃ b̄
ā c̄ +A b̄

ā c̄ ,

where Σ[abc] = Σ̃[abc] and Σ[āb̄c̄] = Σ̃[āb̄c̄], and so A[abc] = A[āb̄c̄] = 0 and A a
a b = A ā

ā b̄
= 0,

such that A components do not contribute to the torsion. We can state, equivalently,

that A lies in a representation of O(d) × O(d) such that its contribution to the torsion

is zero. The antisymmetry on the last two indeces is inherited from Σ, this imposes

some constraints on A, however, some of its components are uncostrained quantities
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and so arbitrary. This freedom in choosing some components of A encodes the lack of

uniqueness for a Levi-Civita connection we stated above.

Finally, given a generalised section V = va+Ê
+
a + vā−Ê

−
ā , in the frame coordinates, one

can write explicitly how a Levi-Civita generalised covariant derivative is expressed when

it acts on V ,

Dav
b
+ = ∇avb+ −

1

6
H b
a cv

c
+ +A b

a cv
c
+ ,

Dāv
b
+ = ∇āvb+ −

1

2
H b
ā cv

c
+ ,

Dav
b̄
− = ∇avb̄− +

1

2
H b̄
a c̄v

c̄
− ,

Dāv
b̄
− = ∇āvb̄− +

1

6
H b̄
ā c̄v

c̄
− +A b̄

ā c̄v
c̄
− ,

(2.12)

and the non-uniqueness is explicitly represented by the undetermined coefficients A.

Although this, it is still possible define some covariant operators, unambiguously by

contractions that make the A part null. We are going to discuss this briefly in the next

section.

2.3.1 Unique supergravity spinor equations

The fact that the Levi-Civita connection in the generalised case is not unique might raise

doubts about the validity of our approach, since ambiguities could come and applica-

tions to supergravity – in which expressions must be unambiguos – would be prevented.

However, we can show how is possible to find equations independent on the particular

D chosen (i.e. non depending on A), and so constructing equations for a pair of chiral

spinor fields ς±, like in [6].

This is also the way followed by Waldram et al. (see for instance [6, 9]) to introduce the

generalised geometry formalism also for RR fields and so spinors, i.e. the fermion sector

of supergravity.

The structure group for the generalised tangent bundle O(d, d) admits a double covering

by the group Spin(d, d).2 Let us further assume that a structure Spin(d) × Spin(d) is

allowed. We indicate as S (C±) the related spinor bundles to the sub-bundles C±, with

γa and γā the gamma matrices and, as anticipated above, with ς± the sections of the

spinor bundles, elements in Γ (S (C±)) [34].

Owning this, and following again [6], we write the action of the generalised (spin) con-

nection on ς± as

DM ς
+ = ∂M ς

+ +
1

4
Ω ab
M γabς

+ , DM ς
− = ∂M ς

− +
1

4
Ω āb̄
M γāb̄ς

− . (2.13)

2Actually the double cover is admitted by the connected component SO(d, d), however, worrying
about this is not relevant for the current discussion.
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From these two derivatives we can build the following operators, uniquely determined,

in the basis frames {Ê+
a } and {Ê−ā },

Dāς
+ =

(
∇ā −

1

8
Hābcγ

bc

)
ς+ , γaDaς

+ =

(
γa∇a −

1

24
Habcγ

abc

)
ς+ , (2.14)

Daς
− =

(
∇a −

1

8
Hab̄c̄γ

b̄c̄

)
ς− , γāDāς

− =

(
γā∇ā −

1

24
Hāb̄c̄γ

āb̄c̄

)
ς− . (2.15)

Note that no A appears, hence these quantities have no ambiguities, and are uniquely

determined. This happens because of the elegant cancellation owing to the gamma

matrices contractions with the A coefficients.

We can use this property to construct a generalised Ricci tensor. We will deal with

these aspects in section 2.4.2, but firstly we need to introduce the generalised notion of

curvature.

2.4 Generalised curvature

Once the concepts of generalised connection and torsion have been defined, it is natural

to wonder if defining an analogous generalisation of Riemannian curvsature is possible.

Let us recall how the curvature of a connection ∇ is defined in ordinary differential

geometry before moving into the generalised case. The curvature notion is encoded by

a (1, 3)-tensor named Riemann tensor R ∈ Γ
(
Λ2T ∗M ⊗ TM ⊗ T ∗M

)
defined by the

curvature map

R : Γ (TM)× Γ (TM)× Γ (TM) Γ (TM)

(u, v, w) R (u, v, w)
(2.16)

where

R (u, v, w) := [∇u,∇v]w −∇[u,v]w ,

and the Riemann tensor is defined from the curvature map (with respect to a coordinate

basis) as

R α
µν β := 〈eα,R(eµ, eν , eβ)〉 =⇒

R α
µν βv

β = [∇µ,∇ν ] vα − T βµν∇βv
α ,

where in the first line we denoted with the angle brackets 〈·, ·〉 the contraction between

the one-form eα and the (0, 3)-tensor R(eµ, eν , eβ).

Geometrically, the curvature – together with the torsion – encodes the dependence of the

parallel transport from the path. This is related to what is commonly called intrinsic

curvature of a space.
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We want now to generalise these concepts to the case of generalised geometry. One might

expect that simply defining an analogous “generalised Riemannian curvature map” is

enough. Unfortunately, this is not the case, as we are going to see in what follows, since

the “generalised Riemann tensor” will not be a tensor. However, we will show how is

possible to restrict our interest to orthogonal subbundles to solve this problem.

2.4.1 Generalised curvature map

The most straightforward procedure to generalised the notion of curvature we can imag-

ine is to define a map analogous to the curvature one in (2.16), where commutators,

covariant derivatives and vectors are replaced by the respective corresponding objects

in generalised geometry,

R : Γ (E)× Γ (E)× Γ (E) Γ (E)

(U, V,W ) R (U, V,W )

where we have

R (U, V,W ) := [DU , DV ]W −DJU,V KW .

Now we would like to verify that the object we defined is indeed a tensor, i.e. R (fU, gV, hW ) =

fghR (U, V,W ), for all f, g, h scalar functions. However, what we found is that the map

R(U, V,W ) does not define a tensor, in fact,

R (fU, gV, hW ) = [DfU , DgV ]hW −DJfU,gV KhW =

= fgh
(
[DU , DV ]W −DJU,V KW

)
− 1

2
h〈U, V 〉D(fdg−gdf)W .

We can see it is not linear respect to the first two arguments, and so it does not transform

as a tensor. Although this, is still possible recover the notion of curvature by this

procedure if we restrict our map to admit, as first two arguments only generalised vector

fields that are orthogonal to each other, such that 〈U, V 〉 = 0. This makes R(U, V,W )

a good tensorial quantity [9, 39]. Consider, as example, U ∈ C+ and V ∈ C−, then we

can express curvature generalised map in components with respect to a frame,

R (U, V,W ) = uavāWAR B
aā AÊB .

This quantity is a tensor and capital indeces A,B refer to the adjoint representation of

the group O(d)×O(d).

As consequence of requiring R to be a tensor, we get that it cannot “mix” C+ and

C− quantities, so R c
ab̄ d̄

= R c̄
ab̄ d

= 0. This because the connection D defining R is

an O(d) × O(d)-connection and so, once we fix U ∈ C+ and V ∈ C−, it cannot mix

components of these subbundles.
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It could seem that we achieved what we wanted, however the object we defined, also

when restricted to orthogonal subbundles of E, is not unique. As anticipated above, we

can use the fact that some contractions of gamma matrices with generalised connection

give rise to uniquely defined object. This will be the content of next section.

2.4.2 Generalised Ricci tensor and scalar

Recall that in conventional differential geometry the Ricci tensor is defined by a con-

traction of the Riemann one,

Rµν := R α
αµ ν ,

such that the action of this tensor on a vector is given by the commutator of covariant

derivatives,

Rµνvµ = [∇µ,∇ν ] vµ . (2.17)

A further important quantity derived from the Riemann tensor is the so-called Ricci

scalar given by

R = gµνRµν . (2.18)

Once we have revisited all these useful concepts in differential geometry, we are ready

to move into the generalised case.

We have seen above how is not possible, in general, defining a unique generalised Rie-

mann tensor, however, it is possible define a unique generalised Ricci object and show

it is a tensor. We anticipated that we would use the uniquely determined operators

we found in (2.14). Thus, we write a generalise Ricci tensor as a quantity that acts in

analogy with (2.17) [6], expressing everithing in the {Ê±} frames we write

R+
ab̄
va+ := [Da, Db̄] v

a
+ ,

R−ābv
ā
− := [Dā, Db] v

ā
− .

(2.19)

These two objects, that at first sight seem different, actually are the same, since R+
ab̄

=

−R−
b̄a

. Hence, we are allowed to define a unique generalised Ricci tensor Rab̄; we know

it is a tensor from the properties of the generalised connection D, when we restrict, as

above, to orthogonal subspaces as C±.

Another (equivalent) possibility is to restrict to the orthogonal subspaces, where the

generalised Riemann is actually a tensor, and then define two (a priori different) Ricci

tensors by R
+
b̄b

:= R+ a
ab̄ b

R−aā := R− b̄
ab̄ ā
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As shown, these are actually the same object (up to a sign) and equivalent to those

defined in (2.19), acting separately on C+ and C−.

If we choose the two frames on C± to be aligned, that is e+
a = e−ā , we can write the

non-zero components of the generalised Ricci tensor as

Rab = Rab −
1

4
HacdH

cd
b +

1

2
∇cHabc , (2.20)

in terms of the ordinary Ricci tensor Rab and the flux 3-form H.

It is also worth to notice that we cannot define a generalised Ricci tensor by a simple

contraction of the generalised Riemann, like RAB = R C
CA B, but, as we have seen, we

can still define a generalised Ricci tensor in the frame basis as

RAB =

(
Rab Rab̄

Rāb Rāb̄

)
=

(
1
2dRδab Rab̄

Rāb
1
2dRδāb̄

)
,

where R is the generalised Ricci scalar and the factor 1/2d is there for a normalisation

that will become clear in a while.

Recall also the representation of the generalised metric G in the frame basis in (1.50),

that, expressed in this fashion matrix form, becomes

GAB =

(
δab 0

0 δāb̄

)
.

This allows us to write the generalised Ricci scalar in a way very close to (2.18) (the

reason for the factor 1/2d is now evident),

R = GABRAB ,

that, from the last expression, appears to be unique. Finally, we can express R in terms

of R and H,

R = R− 1

12
H2 .

We are now ready to discuss what we anticipated at the end of chapter 1, when we

introduced the generalised metric. We have in mind to construct the equation of motion

of the NS-NS sector of type II supergravity in this generalised geometry formalism.

This let us reformulate all field content of supergravity from a geometric point of view,

similarly to Einstein’s general relativity.
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2.5 Supergravity Einstein-Hilbert action

Type II supergravity theories, which are the low energy limit of type II (IIA and IIB)

superstring theories, are (9 + 1)-dimensional theories and have a bosonic, or NS-NS,

sector made up by the massless fields {gµν , Bµν , φ}, where µ = 0, . . . , 9. With gµν we

denote the graviton, a tensor corresponding to the 2nd-rank symmetric and traceless

representation of the group SO(8), the Wigner little group for massless states in 10

dimensions. Bµν is the tensor transforming in the 2nd-rank antisymmetric representation

of SO(8) and the scalar field φ, a singlet for the group, is usually called the dilaton.

In this dissertation we have not treated the dilaton field, however, as in [9], it can be

introduced in this formalism by taking into account an extended generalised tangent

bundle Ẽ, given by E ⊗ R+. As expected, relations involving the generalised metric,

connection and curvature are slightly modified by the presence of the dilaton. For more

details one can read for instance [6, 24, 34].

Let us concentrate on the fields {gµν , Bµν} for the moment. We can count how many

components we have to determine, as in table 2.1, and so the maximum number of

equations of motion we are allowed to impose.

Field degrees of freedom

gµν
d(d+1)

2

Bµν
d(d−1)

2

Table 2.1: Number of degrees of freedom carried by the fields. Note that we are
considering fields off-shell in this counting.

From the table above, we can see that the total number of degrees of freedom carried

by the dynamical variables gµν and Bµν is d2, exactly the same number of indipendent

components of the generalised Ricci tensor Rab̄. This can suggest us an evocative form

for the generalised action, analogous to the Einstein-Hilbert action we know (and love)

in general relativity. For this reason we call

SH =
1

2κ2

∫
R (2.21)

the generalised Einstein-Hilbert action.

Varying SH in order to obtain equations of motion we get the generalised version of the

vacuum Einstein equations,

Rab̄ = 0 .

They are d2 equations, as required by the counting of degrees of freedom.

In fact, we can explicitly verify how the (2.21) reproduces the supergravity action for



Chapter 2. Generalised Connection, Torsion, Curvature 44

the bosonic sector [9],

S =
1

2κ2

∫
d10x
√
−ge−2φ

(
R+ 4∂µφ∂

µφ− 1

12
H2

)
.

In order to obtain the supergravity action from the (2.21) we should fix φ ≡ 0, since in

our derivation we did not consider this field, as said above. Once we have eliminated

the dilaton from our discussion, and setting d = 10, as the type II supergravity requires

we have an evident equality from the two actions,

SH =
1

2κ2

∫
d10x|VolG|R =

1

2κ2

∫
d10x
√
−g R =

=
1

2κ2

∫
d10x
√
−g
(
R− 1

12
H2

)
,

which is exactly the type II supergravity action without the dilaton. We have used the

fact that |VolG| is the volume form associated to the generalised metric G in (1.44) and

can be shown to be equal to
√
−g.

Just for completeness, we should say that when the dilaton is considered, even if the

expression for the Ricci scalar is different, the form of the generalised Einstein-Hilbert

action is always the (2.21).

To conclude, we should notice a subtlety, since we have just d2 degrees of freedom, we

are not allowed to contract the Ricci tensor to obtain a Ricci scalar. Indeed, in the (2.21)

R must be intended as simply a shorthand notation for GABRAB, and the equations of

motion generated by the variation of SB are the ones written above, since the generalised

Ricci tensor fills all the available degrees of freedom with its components, as indicated

in the table 2.1. In order to consider R as a proper object, encoding the dynamics of

the fields, we should include the dilaton φ degree of freedom and so obtaining another

equation of motion for it, R = 0, as showed in [6].

Furthermore, we could also include the RR sector in our analysis, as done in [9, 34] and as

outlined above, by including the fermions field as source for the generalised curvature.

We have now achieved one of the main aims of this dissertation: reformulating type

II supergravity theories in terms of generalised geometry, and geometrising their field

content.

Finally, we would stress that is possible to formulate other kind of generalised geometries,

see as example [25, 26], in which connection, metric and other structures can encode other

physical properties, like equations of motion of 11-dimensional supergravity, coming from

the M -theory [34, 35].



Chapter 3

Parallelisability and consistent

truncations in Generalised

Geometry

In this part of the dissertation we are going to cope with the notion of parallelisability.

After a brief revision of the basic concepts in ordinary differential geometry we will move

to generalised geometry, defining general parallelisations and general Leibnitz paralleli-

sations, and exploring the consequences of their existence and how this is related to

string theory.

The concept of parallelism is arising recently also in other applications in string theory,

like in the study of perturbations, see for instance [40], but for what concerns this work

these structures are interesting since they seems to be closely related to the existence

of consistent truncations of higher dimensional theories on lower dimensional manifolds.

For the 10-dimensional supergravity theory, this is the content of a conjecture formu-

lated firstly by Waldram et al. in [41], but also appeared implicitly in [24]. We are not

going to work on this conjecture, but we will find some examples of general Leibnitz

parallelism and we will to undersand the consequences of the existence of this structure.

At the end of the chapter, we will analyse an important result of this work. We will

take into account a conjecture by Cvetic, Gibbons, Lu and Pope in [42] which states

that taking a Lie group manifold G and reducing a theory on it, we are allowed to

take a gauged theory in lower dimension with gauge group G × G. We will show how

this conjecture becomes natural and easily explicable in the framework of generalised

geometry.

45
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3.1 Parallelisable manifolds

In ordinary differential geometry a parallelisable manifold [3] is defined as follows,

Definition 3.1 (Parallelisation). Given an n-dimensional differentiable manifold M, a

parallelisation – or an absolute parallelism – of M is a set {x1, . . . , xn} of n globally

defined vector fields such that for all p ∈M, the set {x1(p), . . . , xn(p)} form a basis for

the tangent space in p, TpM.

If M admits such a set, it is said to be parallelisable.

We can express the previous definition also saying that a manifold M is parallelisable

if admits a global frame, since each basis vector êa is a globally defined smooth vector

field. This property of the manifold restricts the topology of the tangent bundle such

that TM is a trivial bundle, i.e. if M is n-dimensional, then TM∼=M× Rn.

In fact, a parallelisation induces an isomorphism between tangent spaces in different

points of the manifold. For example, aligning frames in each point, we can identify tan-

gent spaces in that points. This assigns a connection with zero curvature to the manifold

[43]. We can equivalently define the concept of parallelisation from the point of view of

G-structures, infact, a parallelisation is a {e}-structure, where {e} is the trivial group,

containing only the identity element.

It is a well-known and remarkable result in algebraic topology – due to Bott and Milnor

et al. [44, 45] – that the only parallelisable spheres are S1, S3, S7, this is related to

the existence of the normed division algebras C, H, O. Another famous result is the

non-existence of a parallelisation for a 2-sphere. This statement descends directly from

the so-called hairy ball theorem, a particular case of the Poincaré-Hopf theorem that

is considered very important since it provides a link between topological properties of

manifolds and analytical ones [46, 47].

In addition to the spheres we indicated above, there other examples of parallelisable

manifolds. The simplest one is given by group maifolds. We can easily find a globally

defined set of vector fields, forming a basis on TgG in each point g ∈ G, i.e. a paralleli-

sation. These are the left(right)-invariant vector fields êa that are also related by the

Lie algebra condition,

[êa, êb] = f c
ab êc , (3.1)

where f c
ab are coefficients that do not depend on the point of the manifold where we

evaluate the Lie bracket of the fields1 and hence are called structure constants. If such

a parallelisation is admitted, it is possible to define a metric with constant coefficients

(see for example [48]) g = gab e
a⊗ eb, where gab are constants. This is nothing else than

the Cartan-Killing metric, and with ea we indicated the dual frame of êa.

1One could now compare with (1.28).
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Note that among the parallelisable spheres, only S1 ∼= U(1) and S3 ∼= SU(2) are group

manifolds, thus we can state immediately that the class of parallelisable manifolds is

bigger than the class of Lie groups. In fact, there are some results in differential geometry

stating that a local group manifold i.e. M∼= G/Γ, where Γ is some discrete, freely-acting

subgroup of the Lie group G, is a parallelisable manifold. A possible parallelisation is

given precisely by the left (right) invariant vector fields of G if Γ acts on the left (right),

moreover for any local group manifold, the parallelisation satisfies the (3.1).

Technically, this happens because the condition M = G/Γ has some consequences on

the left (right) invariant vector fields defined over the manifold. In particular, this

set of fields, which plays the role of generators of the Lie algebra g, must satisfy the

commutation relations (3.1), with the structure constants that do not depend on the

point on M , as seen before.

3.1.1 Parallelisability in generalised geometry

We are now ready to generalise definition 3.1 to the generalised case.

Definition 3.2 (Generalised Parallelisation). Given an n-dimensional manifold M, a

generalised parallelisation of M is a set of 2n globally defined generalised vector fields

{XA} such that at any point p ∈ M the set {XA

∣∣
p
} forms a basis of the fiber Ep ∼=

TpM ⊕ T ∗pM of the generalised tangent bundle E. Furthermore, it is required the

condition < XA, XB >= deltaAB.

It is immediate to verify that a globally defined generalised frame {ÊA} is a gen-

eralised parallelisation. Topologically, the existence of a globally defined generalised

frame, as in the ordinary case, means that the generalised tangent bundle is trivial, i.e.

E ∼=M2 × R2n.

We can observe how the condition for a manifold to be parallelisable in the generalised

sense are weaker than in the ordinary one. In fact, heuristically, we can think a section

of E as the sum of a vector and a form. Then, even if a global (ordinary) frame may

not exist, it could be possible to find two complementary sets of generalised vectors

(equivalently two global generalised frames) defined such that the vector part does not

vanish when the form part does and viceversa.

There exists a central point in our discussion: it is possible to define a generalised

geometric analog of a local group manifold. This kind of space is a manifold M , endowed

with a global generalised frame {ÊA} such that

LÊAÊB = F C
AB ÊC , (3.2)
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where F C
AB are constants, in the sense they do not depend on the point on the manifold.

By construction, E is trivial and frames in (3.2) defines a generalised parallelisation on

the manifold M . This leads us to the definition of a special class of vector fields among

parallelisations, the generalised Leibnitz parallelisations [41].

Definition 3.3 (Generalised Leibnitz Parallelisation). A generalised Leibnitz paralleli-

sation of an n-dimensional manifold M is a general parallelisation that in addition

satisfies the further condition (3.2).

As seen before, we can define an associated spinor bundle to E. If the latter is trivial,

also the former will be trivial as well and then, when equations for supergravity will

be truncated (as in [35]) on a lower dimensional manifold, they gives a theory with the

same number of supersymmetries as the higher dimensional one [41].

Note that the crucial point is the fact that the constants F C
AB are point-independent,

in fact, as seen in (1.28), any frame can be expressed in the form of (3.2), where the F

depend on the point.

As we will see in what follows, requiring a generalised Leibnitz parallelisation is more

restrictive than requiring just a generalised one, but it is still less restrive than requiring

the existence of an ordinary absolute parallelism, as defined in 3.1.

3.1.2 Consequences of the existence of a generalised parallelism

Following [24] we are going to prove that a necessary condition to admit a generalised

Leibnitz parallelisation is not to be a local group manifold, but it is enough to be an

homogeneous space, that is a coset space in the form G/H.

Firstly, we prove an useful lemma.

Lemma 3.4. Dorfman derivative and Courant bracket coincide when they acts on a

global section of the generalised frame bundle {ÊA}.

Proof. This statement can be proved quite easily by looking at the definitions of the two

objects, these imply, as seen in (1.7), that the difference between Courant bracket and

Dorfman derivative is the exact differential of the inner product,

LVW = JV,W K + d〈V,W 〉 .

On the other hand, {ÊA} is a global section of the global frame bundle (1.37), thus it

holds

η(ÊA, ÊB) = 〈ÊA, ÊB〉 = ηAB .
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Hence,

LÊAÊB = JÊA, ÊBK + d (ηAB) = JÊA, ÊBK .

The previous lemma will be useful to prove a series of results in what follows.

Theorem 3.5 (Characterization of generalised Leibnitz parallelisable manifolds). Given

a manifoldM, a necessary condition onM to admit a generalised Leibnitz parallelisation

is to be expressible in the form M∼= G/H, i.e. it must be an homogeneous space.

Proof (sketch). Consider a generalised geometry on the base manifold M.

Recall the properties c1 and c4 in the definition of Courant algebroid 1.2, and also

recall that the difference between Courant bracket and Dorfman derivative is the inner

product, as in (1.7). These implies the following relation on the Dorfman derivative,

π (LVW ) = π
(
JV,W K + d〈V,W 〉

)
= π

(
JV,W K

)
= [v, w] = Lvw ,

whose means that the Dorfman derivative reduces to the Lie one when projected on the

tangent bundle TM.

Now, consider a generalised Leibnitz parallelisation {ÊA}, defined as

ÊA = xA − ixAB + λA A = 1, . . . , 2d .

The (3.2) must be verified by the ÊA. In addition recall that, as we have seen in chapter

1, the Dorfman derivative defines a Leibnitz algebra.

Thus when projected by the anchor map, the Leibnitz algebra (3.2) reduces to a condition

defining a Lie algebra

[xA, xB] = F C
AB xC . (3.3)

We can see is also looking at the property c2 of the Courant algebroid. In fact, also

using the result of lemma 3.4 and the 3.2,

Jac(ÊA, ÊB, ÊC) =
1

3
d
(
〈JÊA, ÊBK, ÊC〉+ circ. perm.

)
=

=
1

3
d
(
F D
AB ηCD + circ. perm.

)
= 0 ,

where the last equality comes from the fact that the F are constants.

Hence, since we have a Jacobi identity, it defines a Lie algebra. Furthermore, from the

previous relations [2] we have the following

ηABF
B
CD + ηBDF

B
CA = 0 ,
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which implies FABC = F[ABC].

Previous equation means that F C
AB =: (TA) C

B can be seen as the adjoint representation

of the algebra with generators TA and the latter is a Lie sub-algebra g of o(d, d) [24].

We can now state that the (3.3) is a realisation of the sub-algebra g by the 2d vector

fields xA on the manifold. Since the manifold M is d-dimensional, eventually not all

xA can be linearly independent, and it is possible for some of them to be identically

zero. Nonetheless, since the ÊA are a basis of the generalised tangent bundle, there

must exists a subset of xA, i.e. at least d non-vanishing x, forming a basis of TpM for

all p ∈M.

We can now consider diffeomorphism generated by flows of these vector fields x, because

of the construction above, we can argue there are d linearly independent flows, on a

d-dimensional manifold, that meansM is an homogeneous space, i.e. M∼= G/H, where

the group acting on it is G corresponding to the algebra g, generated by the d linearly

independent combinations of x, and H is the group generated by the remaining vector

fields.

For a complete and more rigorous proof, one can read [24].

An observation that will be useful in what follows is that we can think any sphere as

an homeneous space: Sd ∼= SO(d + 1)/SO(d). In this case, we have a natural action

of SO(d + 1) on the manifold, defined by the Killing vector fields (given a metric on

the sphere). While, H ≡ SO(d) is the group that leaves points on the manifold invariant.

Previous results allow us to state also the fact that both Dorfman derivative and Courant

bracket (that on ÊA can be identified) define a Lie algebra. A very natural consequence,

as we could expect, is that a manifold M which is parallelisable in the conventional

sense is also Leibnitz parallelisable.

To conclude this section, we want to remark that if we restrict to consider global sections

of the generalised frame bundle, we can forget about the difference between Courant

bracket and Dorfman derivative, and moreover, we can treat both as Lie bracket. This

fact has deep implications, and analysing them will be the aim of the rest of the chapter.

3.2 Consistent truncations and Leibnitz parallelism

We want now to give an explation about why we are interested in parallelisability in

generalised geometry. For sure, it represents an interesting property from the math-

ematical point of view. It allows, for example, to understand better when differential
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structures on generalised bundles coincide, or it establishes a further link between gener-

alised geometry and G-structures, etc. thus, it is a tool to better understand generalised

geometry. However, we are interested in applications in physics, and more precisely, in

string theory and supergravity. The physical interest in generalised parallelisations, and

in particular in the Leibnitz ones, comes from the existence of a conjecture, like in [41],

that links consistent truncations with the existence of generalised Leibnitz parallelisa-

tions.

Before exposing the conjecture, we are going to introduce consistent truncations and to

explain their importance in string theory.

3.2.1 Dimensional reduction and consistent truncations

In order to give an idea of what consistent truncations are, we are going to introduce

a Kaluza-Klein dimensional reduction [49] of a theory of a massless scalar field. Hys-

torically, it was proposed to incorporate the electromagnetism into the Einsten gravity,

by adding a 4th spatial dimension [50, 51], and then operating a dimensional reduction,

recover an effective field theory on the usual 4-dimensional manifold. At a later stage it

had been recovered since the idea of compactifing extra-dimensions revealed to be very

prolific in string theory. Now we indicate as Kaluza-Klein dimensional reduction simply

the compactification on a circle.

Consider a theory of a massless scalar field ϕ on a d-dimensional (d = p + 1) manifold

M . Moreover, suppose that one of the d dimensions (the pth for convenience) on M is

periodic, i.e there is the identification xp ∼ xp + 2πR. Hence, we can write

M M× S1
R ,

where R is the radius of the circle. We write coordinates on M as xI ≡ (xµ, y), where

I = 0, . . . , p, µ = 0, . . . p− 1 and xp ≡ y.

The scalar field satisfies the d-dimensional Klein-Gordon equation

�ϕ = 0 ,

and, as usual, � := ∂I∂
I .

The periodicity of the p-th dimension allows us to write the Fourier series of the function

along that direction

ϕ(xµ, y) =
∑
n

ϕn(xµ)e−ipny , pn :=
n

R
.
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As a consequence of the periodicity condition, we obtained the quantisation of the mo-

mentum along the y-direction.

Inserting the Fourier series into the Klein-Gordon equation we get,

∂µ∂
µϕn +

n2

R2
ϕn = 0 ∀n ∈ Z .

We got an infinite tower of massive modes (for n 6= 0) with masses mn = n/R. Hence,

from a massless scalar field theory, we can recover a theory with infinite massive scalar

fields, by dimensional reduction.

We are now ready to define consistent truncations. In the previous example, we sup-

posed a free massless scalar field and this gave us an infinite tower of free massive scalar

fields. If we introduce some interaction terms, we will obtain also interacting theories

in lower dimensions. Then, a consistent truncation is a choice of a finite set of modes

where the omitted ones are not sourced by the subset chosen. This is equivalent to say

that the set of truncated modes has a dynamics wich is not affected by the other modes.

This fact allows us to say that a solution to equations of motion in the lower dimensional

theory, which is a linear combination of only truncated modes, remains a solution also

on the higher dimensional manifold.

We can consider a simple example to understand what we mean for consistent trunca-

tions. Given a theory of two scalars with Lagrangian,

L =
1

2
(∂ϕ1)2 +

1

2
(∂ϕ2)2 − m2

1

2
ϕ2

1 −
m2

2

2
ϕ2

2 − gϕ2
1ϕ2 .

It generates the following equations of motion,

∂µ∂
µϕ1 +m2

1ϕ1 = −2gϕ1ϕ2 ;

∂µ∂
µϕ2 +m2

2ϕ2 = −gϕ2
1 .

Therefore, we can observe how ϕ1 = 0 is a consistent truncation, i.e. the evolution of

ϕ2 is given by a consistent (with the choice of suppresing ϕ1) equation of motion, and

fixed ϕ1 = 0 at the initial time, it will remain fixed at all times. In other words, ϕ1 = 0

is both a solution of the theory reduced to the only field ϕ1, and of the full theory of

the two scalar fields ϕ1, ϕ2. On the other hand, the dropping ϕ2 = 0 is not consistent,

since the dynamics of ϕ1 will affect ϕ2, due to the fact ϕ1 acts as a source term for ϕ2.

In our guide-example for dimensional reduction, we considered just the case of a scalar

field, the situation can be slightly different in the case of a string, since a string can

wrap around periodic dimensions with winding number k ∈ Z, this property, apparently

innocuous, gives origin to a famous and extremely important effect in string theory, the

T -duality. We are not going to treat these topics in this dissertation, so for more details
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one can read, for example [49, 52].

Consistent truncations are a very useful tools to study higher dimensional theories whose

solutions would be very difficult to find otherwise. Nonetheless, only few examples of

consistent truncations are known, in particular the so-called Scherk-Schwarz reductions

[53, 54], defined in the case of a theory on M × G, where G is a group manifold.

Furthermore it is a known result that parallelisable manifolds in the ordinary sense

admit consistent truncations on them [42, 55].

The idea of Waldram et al. in [41] was to conjecture the existence of a consistent

truncation everytime a general Leibnitz parallelism is admitted, since this represents

the analogous of a group manifold, in the generalised background.

Here, we report the conjecture as stated in [41],

Conjecture. Given a generalised Leibnitz parallelisation {ÊA} on a generalised paral-

lelisable manifold M, there exists a consistent truncation on M preserving the same

number of supersymmetries as the original theory.

If the conjecture is proved true, it allows one to look as generalised Leibnitz parallelisa-

tions as a systematic way to find consistent truncations for supergravity and superstring

theories.

In this thesis we are going to focus on studying generalised Leibnitz parallelisations, by

constructing some examples.

3.3 Some generalised Leibnitz parallelisations

In [41] is showed that all spheres are parallelisable in the generalised sense, and further,

they admitt a generalised Leibnitz parallelisation too. In general, it has been shown that

one has to consider other kinds of generalised geometry, of the form TM ⊕Λd−2T ∗M to

find a parallelisation for Sd.

3.3.1 A parallelisation for the 3-sphere

To introduce the method to find examples of generalised parallelisation we start by

taking into account, as done in [41], a generalised parallelisation of S3. In fact, for this

manifold we can consider the generalised geometry we have studied so far, the TM⊕T ∗M
introduced by Hitchin and Gualtieri.

The first thing to notice is that S3 ∼= SU(2) is a group manifold and so parallelisable
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also in the ordinary sense. In order to construct a generalised globally defined frame

we can choose left-invariant vector fields and their dual forms. Following the general

method to construct general parallelisms given in [41] we embed S3 (of radius R) into

R4 by (
x1
)2

+
(
x2
)2

+
(
x3
)2

+
(
x4
)2 ≡ δijxixj = R2 ,

with the Euclidean metric δij , and i = 1, . . . 4. Then, the constrained coordinates yi :=

R−1xi can be introduced. In terms of yi the 3-sphere embedding takes the form,

yiyjδij = 1 . (3.4)

The last defines six Killing vector fields, the generators of so(4) ∼= su(2) ⊕ su(2). They

can be represented in terms of y coordinates as vij = R−1 (yi∂j − yj∂i).
Therefore, we can define the 3-form flux in a natural way on S3, using the fact that it

is an orientable 3-dimensional manifold, by the projection on S3 of the R4 volume form.

Firstly, for convenience also for later examples, we give a general formula for the volume

form of a n-sphere as the projection of the Rn+1 canonical volume form,

vol (Sn) :=
Rn

n!
εi1···injy

jdyi1 ∧ . . . ∧ dyin .

Hence, the flux form can be written as

H =
2

R
vol
∣∣
S3 =

R2

3
εijkl y

idyj ∧ dyk ∧ dyl ,

which is combatible with the action of the vij Killing vectors in generalised geometry,

Lvijg = 0 , LvijH = 0 .

Hence, we define our O(3, 3)-generalised frame as

Êij := vij − ivijB + ∗
(
R2dyi ∧ dyj

)
, (3.5)

where ∗ denotes the Hodge star. Now, we want to prove that it is globally defined, i.e.

it never vanishes. Note that vij vanishes when yi = yj = 0, but this does not make the

whole Êij vanish since the constraint (3.4) implies a relation also on the dual basis,

δijy
idyj = yidy

i = 0 ,

obtained by differentiating the (3.4). Thus the form must vanish when the corrispon-

dent coordinate does not. In particular, the 2-form dyi ∧ dyj vanishes on the equator(
yi
)2

+
(
yj
)2

= 1, while vij is zero at the “poles”, i.e. where yi = yj = 0.
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We showed that (3.5) so defined never vanishes on S3, while vij and dyi∧dyj may vanish

separately. This implies that S3 admits the generalised parallelisation defined in (3.5).

Before proceding, it is worth to notice the role of the indeces (ij). We wrote Êij by this

pair of antisymmetric indeces running from 1 to 4, rather than the usual A = 1, . . . , 2d

with d = 3. This to keep track of the natural definition of vij in these constrained coor-

dinates and so of the so(4) algebra. One can easy check that the number of independent

components is actually the same (six) as should be.

Now, we prove that the parallelisation defined above is actually a generalised Leibnitz

parallelisation. In fact, calculating the Dorfman derivative we get,

LÊij Êkl = JÊij , ÊklK = R−1
(
δikÊlj − δilÊkj − δjkÊli + δjlÊki

)
, (3.6)

which is a representation of the so(4) algebra, as we stated above.

To recover the splitting of the so(4) algebra into su(2)⊕su(2) we can define the self-dual

and antiself-dual combinations of the Êij ,

Ê±ij := Êij ±
1

2
εijklÊkl , (3.7)

which the only non-zero components can be written as,

Ê+
a =

1

2
εaijÊ

+
ij

Ê−ā =
1

2
εāijÊ

−
ij .

In terms of these frame vectors we can write the algebra (3.6) as the direct sum of the

two su(2) algebras,

LÊ+
a
Ê+
b = R−1εabcÊ

+
c ,

LÊ−ā
Ê−
b̄

= R−1εāb̄c̄Ê
−
c̄ ,

LÊ+
a
Ê−
b̄

= 0 .

(3.8)

Finally, note that the decomposition of the so(4) algebra,

so(4) ∼= su(2)⊕ su(2) ∼= so(3)⊕ so(3) ,

is related to the fact that the frame (3.5) defines a generalised metric on the 3-sphere, as

seen in the section 1.6, since the inner product so(4) restricted on the spaces C± defines

two su(2) inner products on these sub-bundles. This last observation will be followed in

all the cases we are going to treat, and in particular, in section 3.3.4, it will be shown

how is not possible to define a generalised metric on the generalised geometry over dS3

and H3.
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From the point of view of generalised geometry, we have a splitting SO(3, 3) −→ SO(3)×
SO(3), where SO(3, 3) is the structure group acting on the generalised frame bundle.

Accidentally, the algebra so(3, 3) is isomorphic to sl(4) thus we can cosider SL(4) ←↩
SO(3)×SO(3) therefore taking into account the Êij properties of transformation under

the separate SO(3) factors leads us to the sub-frames in (3.7). In addition, note that

εijkl is the invariant tensor of SL(4) and that it is related also to the structure constants

of the so(3) algebras.

3.3.2 A parallelisation for S2 × S1

S2 × S1

Figure 3.1

We now move to some different manifolds, in particular we are going to construct a

generalised Leibnitz parallelism for S2 × S1. It is still a 3-dimensional manifold, such

that we can exploit our tools from the TM⊕T ∗M generalised geometry, but it is a prod-

uct manifold and a bit more interesting than the previous S3 case, due to the different

nature of the frames on the two factors that we use in order to construct a generalised

frame.

We know from [41] that both S2 and S1 are general Leibnitz parallelisable. A result from

the ordinary differential geometry states that a product of manifolds with at least one

of them is parallelisable is parallelisable too. Although an analogous theorem has not

yet been proved in generalised geometry, we are interested in a more restricitve property

than the parallelisability, we are looking at the Leibnitz parallelisability condition, thus

we can adfirm that S2×S1 has a general Leibnitz parallelism and we are going to build

it explicitly.

We could embed the manifold into R5 ∼= R3 × R2, with the usual euclidean metric on

each factor, but what we actually do is embedding just the S2 manifold into R3 and

using the constrained coordinates yi as before on it, with i = 1 . . . 3. On S1, instead, we

choose an atlas such that we are allowed to consider ψ ∈ (0, 2π) as the only coordinate

on the circle. The first issue arises when we want to define the 3-form flux H. Again, we

make the ansatz of choosing H proportional to the volume form on the manifold. On
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S2 and S1 we have, respectively,

vol2 = −1

2
εijky

idyj ∧ dyk , vol1 = dψ ,

where once we denoted as ψ the coordinate on S1, the volume form is just the dual basis

in that coordinates, dψ. Hence, the flux form is written as

H = −1

2
εijky

idyj ∧ dyk ∧ dψ . (3.9)

Thus, we can define the generalised frame on this manifold by the following two sets of

generalised vectors,

ÊA =

Êi = vi − iviB + yidψ

Ê′i = yi∂ψ − iyi∂ψB + εijky
jdyk

A = 1, . . . , 6 . (3.10)

In the previous vi := 1/2 εijkyj∂k are the SO(3) Killing vector fields, generating the

isometries on the sphere.

To verify the generalised frame defined by (3.10) never vanishes, as in the previous case,

we can observe the following.

Consider the vector part of Êi, vi. It vanishes, by definition, when yj = yk = 0, this

constrains yi = 1, that corresponds to a pole of the sphere on the yi axis, and there the

form part yidψ is non-zero, since dψ is constant and never vanishes on S1. Thus Êi is

globally defined. For Ê′i, the vector part vanishes when yi does, but when this happens

yjdyk must be non-zero, from the relation defining the 2-sphere yiyi = 1.

In analogy with the S3 case, we can calculate the Dorfman derivatives of frame elements

to check if they represents a generalised Leibnitz parallelisation. Indeed, we find that,

LÊiÊj = JÊi, ÊjK = −εijkÊk ;

LÊiÊ
′
j = JÊi, Ê′jK = −εijkÊ′k ;

LÊ′i
Ê′j = JÊ′i, Ê

′
jK = 0 .

One can find the detailed calculation in the appendix A. Here, we want to focus on

the algebra the relations above define, indeed it can be shown that they provide a

representation for the iso(3) algebra, corresponding to the group of isometries of the

3-dimensional Euclidean space ISO(3) ∼= SO(3) n R3.

To conclude, we can verify the orthonormality condition of the O(d, d) frame (3.10),

η
(
Êi, Êj

)
= 0 , η

(
Ê′i, Ê

′
j

)
= 0 , η

(
Êi, Ê

′
j

)
=

1

2
δij .
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These define a metric as (1.2), the explicit proof is given in the appendix A. The diag-

onalisation of the metric, and then the splitting O(3, 3) −→ O(3) × O(3), is made by

choosing the following linear combination of the frames,

Ê±i := Êi ± Ê′i .

3.3.3 An higher dimensional example: S3 × S3

We can also consider the higher dimensional case S3×S3. It is interesting since, instead

of considering a generalised geometry TM ⊕ Λ4T ∗M as [41] may suggest, we keep on

with our choice of the canonical TM ⊕ T ∗M , showing that constructing a generalised

global frame is possible also in this framework.

Firstly, let us define the volume form on this manifold, embedding our manifold into

R8 ∼= R4 × R4,

vol := vol3 ∧ vol3 =

=

(
R3

3!
εi1···i4y

i1dyi2 ∧ . . . ∧ dyi4
)
∧
(
R3

3!
εi1···i4t

i1dti2 ∧ . . . ∧ dti4
)

=

= Λ2 (vol3) ,

where we used y and t costrained coordinates on the two spheres.

We are now going to construct the generalised global frame. Recall that with the base

manifold S3 × S3 the generalised tangent bundle T
(
S3 × S3

)
⊕ T ∗

(
S3 × S3

)
admits a

structure group SO(6, 6) that can split into SO(6)× SO(6). Let now take into account

the algebras of these groups. For so(6) there exists the isomorphism of algebras,

so(6) ∼= su(4) ⊃ so(4) ∼= su(2)⊕ su(2) ∼= so(3)⊕ so(3) .

We have taken the sub algebra so(4) of so(6) since we want to consider SO(6, 6) ⊃
SO(6)× SO(6) ⊃ SO(3)× SO(3), in analogy with the S3 case.

Thus, focusing on one so(3) ∼= su(2) piece, we can define separately on the two spheres,
Ê

(1)
ij = v

(1)
ij − iv(1)

ij

B + ∗
(
R2dyi ∧ dyj

)
Ê

(2)
ij = v

(2)
ij − iv(2)

ij

B + ∗
(
R2dti ∧ dtj

) (3.11)

where v
(1)
ij and v

(2)
ij are the Killing vectors on the two spheres.

Then, the 4-indeces object

ÊijIJ :=
{
Ê

(1)
ij , Ê

(2)
ij

}
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provides a globally defined generalised frame, that is, a generalised parallelisation. More-

over, it satisfies also the so(4)⊕ so(4) algebra relations,

LÊαij
Êβkl = JÊαij , Ê

β
klK = δαβR−1

(
δikÊ

α
lj − δilÊαkj − δjkÊαli + δjlÊ

α
ki

)
. (3.12)

Where there is no sum on α = 1, 2.

To be very general, we could consider different radii for the spheres. The construction

is in fact the same, the only difference is that an index α will appear also on the radius

in the (3.12).

To conclude, we can also define two couples of self-dual and anti self-dual vectors(
Êαij

)±
:= Êαij ±

1

2
εijklÊ

α
kl

that makes the so(4) split into two su(2) ∼= so(3) algebras, and so define a generalised

metric.

The proof of these facts descends directly from what we have seen in the construction of

a Leibnitz parallelism for S3, and consequently, the (3.11) provides a Leibnitz parallelism

for S3 × S3.

3.3.4 Homogeneous spaces

We now want to look at some more exotic 3-dimensional spaces, H3, dS3, AdS3. All

of them are maximally symmetric and writable as coset spaces, thus we can generalise

the procedure we have seen for S3 to these spaces, construct some globally defined

generalised frames and verify that they satisfy the Leibnitz parallelisability condition

(3.2). These manifolds appear in several applications and, for various reasons, they are

largely studied in both mathematics and physics.

We can present them in a table,

Hyperbolic Space H3 ∼= SO(1,3)
SO(2,1)

de Sitter Space dS3
∼= SO(3,1)

SO(2,1)

Anti-de Sitter Space AdS3
∼= SO(2,2)

SO(2,1)

The key idea to study these manifolds is to embed them in the same space R4, endowed

in each case with a metric η
(p,q)
ij with signature (p, q) – meaning that p eigenvalues are

positive, q negatives – that may vary in each situation. In this way, the embedding

expressions will have the same form, written in terms of the metric η
(p,q)
ij xixj = R2,

the choice of the metric on R4, the embedding space, will lead to consider the different

manifolds with a single approach. Thus, we can show the explicit choices of the metric

to describe the various spaces,
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Space Embedding Signature (p, q)

S3 x2
1 + x2

2 + x2
3 + x2

4 = R2 (4, 0)

dS3 x2
1 + x2

2 + x2
3 − x2

4 = R2 (3, 1)

AdS3 x2
1 + x2

2 − x2
3 − x2

4 = R2 (2, 2)

H3 x2
1 + x2

2 + x2
3 − x2

4 = −R2 (1, 3)

Table 3.1: Different choices of η
(p,q)
ij for the various spaces.

As example, let us consider the dS3 manifold. We want to take advantage from the

costruction in 3.3.1 for S3 to write a generalised frame and, by calculating Dorfman

derivatives, showing that it satisfyes to a Lie algebra.

Geometrically dS3 can be seen as the quotient group SO(3, 1)/SO(2, 1), thus following

our previous example, we construct the globally defined frame as

Êij = Mij − iMijB + ∗
(
R2dyi ∧ dyj

)
. (3.13)

We indicated with Mij := 1/2 εijkl yk∂l the generators of SO(3, 1) whose form should

be familiar in physics, since they are the generators of the Lorentz algebra, i.e. the

4-angular momentum tensors. One can verify the frame (3.13) is globally defined – the

argument follows quite closely the one given for S3.

We can so calculate Dorfman derivatives (or Courant brackets) between the frame (3.13)

elements, obtaining an algebra formally analogous to (3.6), but slightly different because

of the different choice of the metric η
(p,q)
ij counting for the difference in the embedding

expression in 3.1. The algebra has a nice expression as follows

LÊij Êkl = R−1(η
(p,q)
ik Êlj − η

(p,q)
il Êkj − η

(p,q)
jk Êli + η

(p,q)
jl Êki) , (3.14)

where (p, q) ≡ (3, 1) in this case. The (3.14) provides actually the expression for the al-

gebras of all other cases indicated in 3.1, with an opportune choice of the signature (p, q).

We can also study the possibility of putting a generalised metric structures on these

spaces. In fact, not all of them admit a generalised metric since the algebras defining

them do not all admit a splitting.

As before, we should find a splitting, by taking what we called “self-dual” and “antiself-

dual” combinations of the frame elements. The only algebra for which this procedure is

possible is the so(2, 2) defining the anti-de Sitter space. It splits into

so(2, 2) ∼= so(2, 1)⊕ so(2, 1) . (3.15)
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This fact implies that we can find a generalised metric G by looking at a combination

of our frame elements forming a quantity transforming in the vector representation of

the two sub-algebras.

However, in the other cases, the 3-hyperboloid H3 and the de Sitter space dS3, for

the algebras so(3, 1) and so(1, 3) a natural split as the (3.15) does not exist. Although

this, one can consider complexified algebras and studying their relations by the chain of

isomorphisms

so(3, 1)C
∼= so(1, 3)C

∼= su(2)C ⊕ su(2)C
∼= sl(2,C)⊕ sl(2,C) .

The last two of these define a splitting by the (complex) linear combination

Ê±ij := Êij ±
i

2
εijklÊkl .

This does not define a generalised metric G as in 1.3, but a slightly different object that

still encodes g and B fields. This object is a generalised tensor J defining a generalised

complex structure [17, 19]. These kinds of structures are very interesting from a math-

ematical point of view, indeed these are structure originally studied by Gualtieri and

Hitchin in their works.

We would believe that the emerging of these kind of more general structures could give

a possible suggestion to extend the approach of generalised geometry to the study of

physical theories with a description in terms of these generalised complex structures

J , which could be thought as the generalised analogous of the symplectic structure.

Or more simply, it could indicate a deeper connection between theoretical physics and

mathematics that would need further investigations, to better understand both subjects.

To conclude, we may suggest as a further development of these procedures, an analogous

generalisation of the construction of general Leibnitz parallelisations for spheres Sd in

[41] to the corresponding homegeneous spaces Hd, AdSd and dSd like the ones in the

table 3.1, but in d dimensions, using the generalised geometries TM ⊕ Λd−2T ∗M as for

the spheres.

3.4 Dimensional reduction and gauge groups

In this section we are going to present an important result of this work. We give a

proof of a theorem relating to the dimensional reduction of a supergravity theory on a

manifold M , reduced on another (lower dimensional) manifold M, compactifying on a

(local) group manifold G.
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This result is an example of how the generalised geometry approach, developed by

Hitchin, Gualtieri et al. in mathematics, and then brought to physics by the work of

Hull, Waldram, Petrini et al., is not just an elegant reformulation of the supergravity

theories and a geometrisation of some field theories we already knew, but it establishes

an useful way to achieve new knowledge about theoretical physics.

Hence, we state the following theorem, firstly considered in [42],

Theorem 3.6. Given a supergravity theory in 10 dimensions, on a manifold M10, af-

ter dimensional reduction on a (local) group manifold G, the theory in the reduced-

dimensional manifold M admits a gauge group G×G.

This result may appear surprising, due to the presence of the double product of the

group G. We will see, how this arises quite naturally once we make use of generalised

geometry tools. The two factors correspond to the right and left invariant vector fields

forming the algebras of G, and so sometimes the product group may be denoted by

GL ×GR.

This comes from the fact that a consistent truncation is always possible on a group

manifold. Moreover any G can be seen as the coset (G × G)/G and this is exactly the

condition to admit a general Leibnitz parallelism, related to the algebra g⊕g. For these

reasons, we have the hint to analyse the topic making use of our generalised geometric

tools.

A further analysis of the theorem

We are going to prove the theorem 3.6 following a construction that leads us to write

down explicitly the algebra relations for the Lie algebra of the group G×G.

Consider a supergravity theory on M10 and perform a dimensional reduction on a group

manifold G,

M10 M×G

Cosider the base manifold G, and a generalised geometry defined on it by the short exact

sequence

0 T ∗G E TG 0 ,
ι π

as seen in chapter 1.

In addition, take into account the generalised frame that provides a General Leibnitz

Parallelisation, {E+
a } and {E−ā }, defined from the left and right-invariant vector fields

of the group G, as follows E+
a = ra + ρa − iraB

E−ā = lā − λā − ilāB
(3.16)
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Where the forms ρa and lā are defined as the dual basis with respect to ra and lā, left

and right-invariant vector fields. In other words

iraρ
b = δ b

a , ilāλ
b̄ = δ b̄

ā , (3.17)

and we use the Cartan-Killing form to raise and lower indeces,

g = gab ρ
a ⊗ ρb = gāb̄ λ

ā ⊗ λb̄. (3.18)

Recall the General Liebenitz Parallelisation conditions are

LE+
a
E+
b = F c

ab E
+
c (3.19a)

LE−ā
E−
b̄

= F c̄
āb̄ E

−
c̄ (3.19b)

LE−ā
E+
b = 0 (3.19c)

One can now impose (3.19) in order to find some conditions on the B field, or better its

field strength H = dB, defined globally.

For convenience one can points out Lie derivatives of quantites that are involved in later

calculations,

Lrarb = F c
ab rc algebra transformation

Lraρb = Fabcρ
c adjoint transformation

Now, consider (3.19a) first and recall definition of Dorfman derivative (1.5),

LE+
a
E+
b = [ra, rb] + Lraρb − LrairbB − irbdρ

a + irbLraB + irairbH =

= F c
ab rc + Lraρb − i[ra,rb]B − irbdρ

a + irairbH =

= F c
ab rc + Fabcρ

c − FabcircB − irb (dρa + iraH)

This is equal to F c
ab E

+
c if and only if

iraH = F abc ρ
b ∧ ρc (3.20)

since in this basis dρa = −F abc ρb ∧ ρc. We can prove the last statement by a simple

application of definition of exterior derivative of a 1-form. Consider a 1-form ω, then dω

is a 2-form and acts on two vector fields to give a scalar function,

dω (X,Y ) = X [ω (Y )]− Y [ω (X)]− ω
(
[X,Y ]

)
.
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Now, applying the last expression to the form ρa and vector fields rb and rc, also recalling

that ρa(rb) = δab we find

dρa (rb, rc) = rb [δac]− rc [δab]− ρa
(
[rb, rc]

)
after substituting the algebra relation for ra. Then, using linearity of the actions and

the fact that a vector acting on a constant function gives zero, we get

dρa (rb, rc) = −F abc (3.21)

this implies

dρa = −F abc ρb ∧ ρc. (3.22)

With an analogous calculation we get a condition for H in the basis of forms {λā}. This

condition can be written as

ilāH = −Fāb̄c̄ λb̄ ∧ λc̄ (3.23)

Recostructing the 3-form we get

H =
1

3!
Fabc ρ

a ∧ ρb ∧ ρc = − 1

3!
Fāb̄c̄ λ

ā ∧ λb̄ ∧ λc̄. (3.24)

The minus sign is there since the different sign of the form part between left-invariant

and right-invariant generalised frames (3.16).

The reason to define frames with this sign is that we want frames to be compatibles with

the O(d) × O(d)-structure defined by the generalised metric. Moreover, we can prove

that the mutual orthogonality condition between the “plus” and the “minus” frames,

〈E+
a , E

−
ā 〉 = 0 (3.25)

comes from only from the nature of right and left-invariant vector fields and the Cartan-

Killing metric they induce. This is an issue of consistency, infact we have two relations

(the O(d) conditions on the two frames) and two dregrees of freedom (the actions of

basis vectors on forms, we set this in (3.17)), and a further relation like (3.25) cannot

be independent.

From direct calculations indeed, we can prove the condition (3.25) is equivalent to

iraλā = ilāρa (3.26)

that, in turn, can be proved as follows: consider the Cartan-Killing metric form (3.18)

acting on the two vectors rc and lc̄, in other words take into account the contraction
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ircilc̄g,

ircilc̄g = gabδ
a
c ilc̄ρ

b = gāb̄δ
ā
c̄ ircλ

b̄ =

= ircλc̄ = ilc̄ρc,

where we have used the property of raising and lowering indeces by the metric contrac-

tion.

The last line is exactly the condition (3.26), and this also proves the (3.25).

To sum up, we have proved the consistency of relations defining the algebras with the

fact that the frame constructed by left and right invariant vector fields is a general

Leibnitz parallelisation, and so it could provide consistent truncations according to the

conjecture expressed above.

Moreover, we have constructed a generalised frame globally defined whose elements form

the algebra gR ⊕ gL by relations (3.19), here rewritten,

LE+
a
E+
b = F c

ab E
+
c LE−ā

E−
b̄

= F c̄āb̄E
−
c̄ . (3.27)

Hence, we can state the group related to this algebra is GL×GR and therefore the man-

ifold admits a general Leibnitz parallelism. This, according to the conjecture we stated

above, may prove that the theorem 3.6 provides a way to relate consistent truncations

in the frame of generalised geometry, and the gauge group of reduced theories.

As example of the theorem 3.6, we have already considered in section 3.3.1 the case

of a general parallelisation S3. We found that the group associated to the Lie algebra

of the frames was SO(4) which is actually isomorphic to a product of the same group,

SU(2) × SU(2). In fact, we defined the self-dual combinations of frames Ê± in (3.7)

and these are precisely the left and right invariant vector fields under SU(2) ∼= SO(3),

as can be noted explicitly by the presence of the invariant tensor ε.

As showed in (3.8), we can see that in this case we have two separated algebras, satisfying

independent conditions, as stated in (3.27).





Conclusions

The first part of this thesis is focused on the concepts of generalised geometry. It is a de-

velopment of the tools we have used in the second part. We concentrated our attention,

following the recent literature, on the construction of the generalised tangent bundle,

defined as the extension of the tangent bundle by its dual, the cotangent bundle. This, as

seen, produces the arising of a new kind of structure. The O(d, d) group is the structure

group of the generalised bundle, and plays an analogous role of the GL(d) group in or-

dinary differential geometry. As consequence, we have a natural metric arising, defining

an O(d, d) inner product on the bundle. We gave definitions of the Dorfman derivative

and the Courant bracket, to encode both diffeomorphism and gauge symmetries. After

the introduction of the generalised metric as a splitting of bundles, we stated that the

structure group also splits into O(d) × O(d) and we showed how these objects encodes

completely the degrees of freedom of the two transformations g and B, representing the

fields in the supergravity bosonic spectrum. We went on in our study of the generalised

geometry, constructing the generalised connection and, after the definition of the gen-

eralised torsion, we stated the necessary conditions to have a generalised analogous of

the Levi-Civita connection, i.e. a torsion free, metric compatible connection structure.

After this, the natural prosecution was the construction of the Riemannian tensor and

the analysis of the notion of curvature in this context. We found that the generalised

analogous of the Riemannian curvature map fails to be a tensor. Although this, it is still

possible to define a unique generalised Ricci tensor and a well-defined (for our purposes)

notion of curvature. This led us to geometrise the fields g and B, in the sense that we

wrote their dynamics by an action composed by only geometrical objects, i.e. the gen-

eralised metric and the generalised Ricci tensor. Then, we showed how from the action

we wrote is possible to recover the type II supergravity action for the NS-NS sector.

Completed this first part of revision, we focused on the concept of parallelisability, in

particular on a more restrictive structure, the analogous of a local group manifold in

generalised geometry. This object are characterised by what is called a general Leibnitz

parallelisation condition, that is a condition on the generalised frame bundle. In the

67
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thesis we gave some examples and we found a remarkable fact, when we restrict this

kind of parallelisations to the Generalised Frame Bundle all the differential structures

we developed (i.e. Dorfman derivative, Courant Bracket) reduce to a Lie Algebra struc-

ture. This allows us to classify the spaces we studied by the correspond Lie algebras.

By this hint we generalised the work of Waldram in [41] to some other examples, like

S3 × S3 or S2 × S1 and the homegeneous spaces.

As seen in the main text, these arguments are closely related to the existence of consis-

tent truncations on manifolds in string and supergravity theories, and if the conjeture

we stated was actually true, this would lead to a reduction of a difficult geometrical

problem to a classification problem in the theory of Lie algebras.

Our examples show how is possible to find quite a large class of spaces admitting a

general Leibnitz parallelisation, and so with a coset space structure, the analogous of

local group manifold in this context.

Despite these results, many questions remain unaswered and many others arise. First of

all, a proof of the conjecture relating Leibnitz parallelisms and consistent truncation is

still missing. Related to this, other points are not clear, as a classification of the sufficient

conditions for a manifold to be Leibnitz parallelisable, or which are the 3-dimensional

manifolds that do not admit a Leibnitz parallelisation.

Less related to the parallelisability concept, but still very important there are other

obscure points, like how to include quantum aspects in generalised geometry, which is

the precise relation between supersymmetry and generalised geometry, or further, how

generalised geometry could help us to understand dualities and other still misterious

aspects of string theory.

These are just some examples of the aims for an eventual prosecution of the study of

generalised geometry, and already they seem to touch some very deep aspects of both

mathematics and physics.

To sum up, we have seen how generalised geometry can be analysed to understand better

supergravity, and how it seems to suggest also a way to deeper explore string theory.

It is also a recent construction in pure mathematics, related to various areas beyond

differential geometry, like algebraic topology, algebraic geometry and group theory. Thus

it provides an example of a topic that lies at the frontier between mathematics and

physics, on the one hand, receiving deep insights from both fields, but on the other hand

it could also give some useful tools to understand and answer questions in both areas.

For these reasons, generalised geometry seems to be worth of further efforts and studies,

since it may reveal something hidden so far and perhaps help us to understand the

geometrical nature of string theory.



Appendix A

A detailed calculation for the

Leibnitz parallelism of S2 × S1

In this appendix we explain the details of the calculation for the algebra given in the

example of a Leibnitz parallelisation of the product of spheres S2×S1 in section 3.3.2. On

the one hand, we will see that the calculation is much simplified because the coordinates

of the different factors do not mix. On the other hand, the fact that we are using

constrained coordinates in the S2 factor introduces some complications.

First, we construct the frames with some coefficients a, b, c to determine in order to find

the right normalisation,

Êi = vi − iviB + a yidψ ;

Ê′i = b(yi∂ψ − iyi∂ψB) + c εijky
jdyk ,

and then we impose the conditions to make them an O(d, d) frame

〈Êi, Êj〉 =
1

2
[ivi(a yjdψ) + ivj (a yidψ)] = 0

〈Ê′i, Ê′j〉 =
1

2
[ib yi∂ψ(c εjkly

kdyl) + ib yj∂ψ(c εikly
kdyl)] = 0

〈Êi, Ê′j〉 =
1

2
[ivi(c εjkly

kdyl) + ib yj∂ψ(a yidψ)]

=
1

2
(c εjkly

kividy
l + ab yjyii∂ψdψ) =

=
1

2
(c εljky

kεlisy
s + ab yjyi) =

=
1

2
(c (δjiδks − δjsδki)ykys + ab yjyi) =

=
1

2
(c δijy

sys − c yiyj + ab yjyi) =
1

2
c δji ,
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where in the last step we used that yiyi = 1.

Hence, imposing the condition on coefficients ab = c we find that this frame is indeed

an O(d, d) frame,

η
(
Êi, Êj

)
= 0 , η

(
Ê′i, Ê

′
j

)
= 0 , η

(
Êi, Ê

′
j

)
=

1

2
δij . (A.1)

Next, we define our flux form as proportional to the wedge product of the volume forms

of R2 and R3 projected onto the corresponding spheres,

H = h′ vol2 ∧ vol1 .

To construct it first we need to calculate these projections as follows,

vol1 = i∂rvolR2

∣∣
r=R1

=
yk

r
i∂k(

r2

2!
εijdy

i ∧ dyj)
∣∣
r=R1

=

=
r

2
εij(y

idyj − yjdyi)
∣∣
r=R1

= rεijy
idyj

∣∣
r=R1

= R1dψ ,

vol2 = i∂rvolR3

∣∣
r=R2

=
yl

r
i∂l(

r3

3!
εijkdy

i ∧ dyj ∧ dyk)
∣∣
r=R2

=

=
r2

3!
εijk(y

idyj ∧ dyk − yjdyi ∧ dyk + ykdyi ∧ dyj)
∣∣
r=R2

=

=
3r2

3!
εijky

idyj ∧ dyk
∣∣
r=R2

=
R2

2

2
εijky

idyj ∧ dyk .

Putting all together, and redefining the proportionality constant, we find

H = h′
R1R

2
2

2
εijky

i dyj ∧ dyk ∧ dψ =
h

2
εijky

i dyj ∧ dyk ∧ dψ . (A.2)

In order to compute the Dorfman Derivatives we need to calculate how each part of

the frames transforms under the action of all the others. We should so calculate the

expressions fo Lie derivatives. All these calculations are detailed in the following

[vi, vj ] = −εijkvk ;

ividyj = dyj(εiklyk∂l) = εiklykδjl = −εijkyk ;

Lviyj = ividyj = −εijkyk ;

Lvidyj = d(ividyj) = d(−εijlyl) = −εijldyl ;

Lviyj∂ψ = [vi, yj∂ψ] = (Lviyj)∂ψ = −εijkyk∂ψ ;

Lviεjklykdyl = −εijkεkrlyrdyl .
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Where the last is less immediate and follows from

Lviεjklykdyl = εjkl[(Lviyk)dyl + (Lvidyl)yk] = εjkl(−εikryrdyl − εilrykdyr) =

= −(εjklεikr + εjrkεikl)y
rdyl = −εijkεkrlyrdyl .

Note that in the last calculation we used that the ε symbols are the structure constants

of so(3), and from the Jacobi identity they satisfy

εjlkεkir + εkjrεlik + εijkεklr = 0 .

Also, we need to calculate the inner products of the vector parts with the flux form,

since we will be using the Dorfman derivative coming from the twisted Courant bracket,

in the equation (1.24)

ibyi∂ψH =
bh

2
yiεlmny

li∂ψ(dyn ∧ dym ∧ dψ) =

=
bh

2
yiεlmny

ldyn ∧ dym =

=
bh

2
εimnyl y

ldyn ∧ dym =

=
bh

2
εlmndyn ∧ dym ,

where we used the following,

y[iεlmn] =
1

4!
(yiεlmn − ylεmni + ymεnli − ynεlm) = 0 ,

and again yiyi = 1.

For the vi contraction of H we have

iviH =
h

2
εlnmy

livi(dy
n ∧ dym ∧ dψ) =

=
h

2
εlnmy

l(dyn(vi)dy
m − dym(vi)dy

n) ∧ dψ =

=
h

2
εlnmy

l(−εinjyjdym + εimjy
jdyn) ∧ dψ =

=
h

2
εlmny

l(2εinjy
jdym) ∧ dψ =

= h εnlmεnjiy
lyjdym ∧ dψ =

= h(δljδmi − δliδmj)ylyjdym ∧ dψ =

= h(yjyjdyi − yiyjdyj) ∧ dψ =

= hdyi ∧ dψ .
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Exploiting again the fact that yiyi = 1, which implies dyiyi = 0.

Finally, we are ready to calculate the algebra relations using all these results,

LÊiÊj = [vi, vj ]− i[vi,vj ] + Lviayjdψ + ivj (iviH + d(ayidψ)) =

= −εijkvk − i−εijkvkB + a(Lviyj)dψ + ivj (hdyi ∧ dψ + adyi ∧ dψ) =

= −εijk(vk − ivkB + aεijkykdψ) + (a+ h)ivjdyi ∧ dψ =

= −εijkÊk + (a+ h)εijkykdψ =

= −εijkÊk ,

LÊ′i
Ê′j = [b yi∂ψ, b yj∂ψ]− i[byi∂ψ ,byj∂ψ ]B+

+ Lbyi∂ψ(c εjkly
kdyl) + ibyj∂ψ(ibyi∂ψH + d(c εikly

kdyl)) =

= 0− i0B + b c εjklLyj∂ψ(ykdyl) + ib yj∂ψ(
bh

2
εikldy

k ∧ dyl + c εikldy
k ∧ dyl) =

= (
bh

2
+ c)εiklb yji∂ψ(dyk ∧ dyl) = 0 ,

LÊiÊ
′
j = [vi, byj∂ψ]− i[vi,byj∂ψ ]B + Lvi(c εjlmyldym) + ibyj∂ψ(iviH + d(ayidψ)) =

= −b εijkyk∂ψ − i−bεijkyk∂ψB − c εijkεklm(yldym) + (a+ h)ibyj∂ψdyi ∧ dψ =

= −εijkÊ′k − b(a+ h)yjdyi = −εijkÊ′k .

So imposing the condition a = −h we find the iso(3) algebra relations, related to the

transformations of SO(3) n R3, the euclidean isometry group,

LÊiÊj = JÊi, ÊjK = −εijkÊk ; (A.3)

LÊiÊ
′
j = JÊi, Ê′jK = −εijkÊ′k ; (A.4)

LÊ′i
Ê′j = JÊ′i, Ê

′
jK = 0 . (A.5)

As a last step, we fix the remaining normalisation constants as a = b = c = −h = 1,

such that the frame assumes the usual form

Êi = vi − iviB + yidψ

Ê′i = yi∂ψ − iyi∂ψB + εijky
jdyk

and for the flux three-form we recover the (3.24),

H = −1

2
εijky

idyj ∧ dyk ∧ dψ .

In this way we obtained a globally defined generalised frame, defining a general Leibnitz

parallelisation of S2 × S1. Furthermore, we discovered that the algebra related to this



Appendix A. A detailed calculation for the Leibnitz parallelism of S2 × S1 73

parallelism is the iso(3), encoding the symmetries of the 3-dimensional euclidean space.

To conclude this appendix we just note that we used the δij to raise and lower indeces

on the coordinates yi, actually, the euclidean metric should be 1/R2δij since it should

come from the coordinate transformation xi = yi/R, but since the two tensor differs

just modulo a constant parameter R, we should ignore it for our purposes.
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