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Abstract

Quantum Entanglement lies at the heart of some of the strangest phenomena
physics has to offer and finds possible applications for example in Quantum Com-
munication and Computation. Yet, a rigorous mathematical formalism that can
robustly quantify entanglement beyond the two and three-qubit cases is elusive.
In the present text we review a rigorous classification of three-qubit entangle-
ment using the formalism of covariant and invariant quantities under the SLOCC
equivalence group. This classification is then attempted to be generalised to the
case of four-qubit states of nilpotent SLOCC orbits, building on previous work
on a subset of these states, and partial success of this ongoing work is presented.
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1 Introduction

Quantum Entanglement enables us to observe some of the most fascinating, and
counter-intuitive (to the classically-minded observer) phenomena physics has to
offer. We can use Quantum Entanglement as a resource that allows us to per-
form classically impossible tasks, such as Quantum Teleportation, Quantum Key
Distribution and Quantum Computation.

A lot of progress has been made recently in formalising the mathematical founda-
tions of Quantum Entanglement, enabling more precise definitions of the notions
of the quantity and the quality of entanglement. The deeper questions, rooted in
the philosophy of science, of how Nature implements entanglement still lack any
answer at all.

In this report the rigorous classification of entangled states of four-qubit systems
is the main focus.

After introducing the necessary preliminaries, we will look at one of the examples
of the kind of strange behaviour Quantum Entanglement enables, in a discussion
of Non-Local Games in section 2

These are games in which the players can make use of entangled states to improve
their chances of winning beyond what is classically possible. Crucially for our
discussion, we will also see that there are different ways in which states can be
entangled. Not just that qubits in a subset of a given state can be entangled
among themselves while leaving another subset separable, even completely non-
separable states can be entangled in different ways.

This suggests the need for a classification quantifying the amount and the kind
of entanglement contained in a state.

In order to give such a classification, we examine what it means for states to share
equivalent entanglement properties or an equivalent amount of entanglement,
introducing the notions of LOCC and SLOCC equivalence in section [3

For two and three-qubit states an entanglement classification exists, and we will
review it in section [d, However, for larger systems it is still lacking. Attempting
to systematically quantify the entanglement of nilpotent four-qubit systems under
the paradigm of SLOCC equivalence using invariant and covariant quantities is
the main subject of the present text and is done in section 5| In order to do
so, we review the three-qubit classification using SLOCC' covariant and invariant
quantities, before turning our attention to the four-qubit case. Our focus will lie
on four-qubit states living on nilpotent orbits of the SLOCC' equivalence group, a
subset of which has been previously classified in the literature |1]. Generalising
the classification of this subset to the complete set of nilpotent four-qubit states
is the main purpose of the present text. For separable, tri-separable and bi-
separable states this can be done successfully, while for completely non-separable
states this work in ongoing.

In the following we will briefly introduce some of the necessary concepts and
notations, as well as give some mathematical background information.



1.1 Quantum Bits

In this report we are interested in the study of Quantum Bits, Qubits. They
are the fundamental unit when considering Quantum Information, Computation,
and Communication, just like the Classical Bit is in the Classical counterparts
of these fields. As the name suggests, these are two-level systems which can
thus model Spin—% particles. It is important to note, however, that the physical
interpretation of a qubit is not a prerequisite to studying the above topics. The
mathematical formalism can stand on its own. The analogy to a physical spin—%
system facilitates the introduction of the necessary concepts.

Such a system can adopt two possible values, a spin of :I:%. These can be denoted
in various ways, where a spin-up state and a spin-down state as can be written

i w=m=(3). m=1w=(y). (L.L1)

respectively. The generalisation of the concept of a Qubit to a system with more
than two levels is often referred to as a Qudit, where the system has d levels. For
the case of d = 3 one speaks of a Quitrit.

The discussion that follows will largely be limited to Qubits.

1.2 The Quantum State
1.2.1 The Single Qubit State

The general unnormalised state of a system consisting of a single qubit can be
written

) = al0) + B11) . (1.2.1)

where «, 5 are complex numbers. When describing physical states, it is important
that the sum of all possible outcomes of measurements of these states will be equal
to one. This constrains the individual coefficients, such that

lal? + (8" = 1. (1.2.2)

Hence, the normalised state in equation [1.2.1| can be written as

) = e (cosg 0) + e'® sing |1>> : (1.2.3)

where 6, ¢ are real numbers [2].

Note, moreover, that multiplication by an overall complex phase makes no ob-
servable, physical difference, and can be disregarded. Consequently, in (1.2.3)
one can ignore the overall complex phase €. This allows for an interpretation
of 0, ¢ as angles in polar coordinates. The state can thus be plotted on a sphere,
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Figure 1: 2d representation of the Bloch Sphere

the so-called Bloch Sphere. A two-dimensional representation of a Bloch Sphere
can be seen in figure (1| where the state |+) = % (|0) +]1)). The third, omitted

direction on the Bloch Sphere contains the states |i) = % (|0y £4]1)).
Notice that a general state in the two-dimensional representation of the Bloch
Sphere can be written [3]

|po) = cos <Z> |0) + sin (Z) 1) ‘gzgo> = sin (Z) |0) — cos (Z) 1),

|$1) = cos <§> |0) — sin (g) 1) ‘gz_51> = sin (g) |0) + cos (g) 1) .
(1.2.4)

This will become important in due course, when we discuss the two-player CHSH
game in section [2.1.3]

The Bloch Sphere can be a very helpful representation when considering Quan-
tum Games and Quantum Communication protocols. Using the Bloch Sphere, it
can be very easy to identify the overlap of given states and to choose states with
a certain overlap to other states, which is advantageous in certain applications
where Quantum Entanglement is used as a resource, such as Quantum Telepor-
tation. Examples of these applications are discussed in the following section on
Quantum Entanglement.

To summarise, the unnormalised single qubit state introduced in equation (|1.2.1])
describes systems with two complex degrees of freedom, and as such lives in a
complex vector space, a Hilbert Space J# = C2.

The set of physical single qubit states is the set of undirected (complex) lines



through the origin, or rays in # = C2, since we normalise and disregard overall
phases. More precisely, we introduce the equivalence relation (zy, z2) ~ (721, 722)
where 7 € C\ {0} and (21, z2) € C?\ {0}, which defines the complex projective
space CP!. Note, CP! ~ S? and hence it can be represented conveniently on the

Bloch Sphere.

1.2.2 Multi-Qubit States

The discussion in the previous subsection focused on states of a single qubit. In
order to consider larger systems, featuring multiple qubits, the Tensor Product
formalism is introduced here. As an example, combining two qubits using the
tensor product proceeds as

- ()-)-[
o))
|

(1.2.5)

w=()+0)-|..
= ()=0)-|..

More generally, the state of an n-qubit system can be written

RO RO OO+, PO, O OFr O
—_ OO0 OFrRr OO0 OO oo o

) = nggmm )+ o 1) ”i ANy (1.2.6)

where W denotes the decimal value of w written in blnary, and we have introduced
the shorthand notation

®|A = [A0) ® A1) ® - ® [An 1) = [A) A1) .. [An 1) = | AoAr .. Any ),

n times n times n times

(1.2.7)



where A; € {0,1}.
For example,

|0) ® [1) ® [0) = |0)|1) |0) = |010) . (1.2.8)

The normalisation condition on then becomes ¥ ' [7.|* = 1.
Extending the discussion from the previous subsection, an n-qubit state lives in
the Hilbert Space
H=C""=C’».. C2. (1.2.9)
n—times
Physical states, that is rays in %, belong to the complex projective space
P(C*") ~ CP¥" 1.

1.2.3 Mixed Quantum States

In general, Quantum States cannot always be written in terms of a state vector
|1b). This is the case, for example, when a system is prepared with some uncer-
tainty, where with some probability it was prepared in one state, and with some
probability in another. We refer to such a system as being in a mized Quantum
State, as opposed to a pure one.

The formalism used to express these more general Quantum States is that of the
Density Matriz or Density Operator, and it becomes especially important when
talking about these non-pure states.

Suppose a Quantum System is prepared in a certain state probabilistically, for
whatever reason, where it is prepared in the state |¢);) with probability p;, and
{1, p;i} is an ensemble of pure states.

Then its state is described by a density operator of the form [4]

pP= sz' Vi) (il - (1.2.10)

All other notions that apply to state vectors, such as measurement, unitary evo-
lution, expected values and the post-measurement state also generalise to the
density operator. More details are provided in the section on Unitary Evolution
and Measurement [1.3]

In fact, the density matrix formalism is the more general formalism, and does
not rely on the notion of a state vector for interpretation.

The density operator is a positive operator, for which Trp = 1.

The density matrix of a pure state is simply given by equation (|1.2.10) where
only one i is non-zero, and p; = 1, in which case p? = p, otherwise the state is
mixed.

The formalism of density operators also allows us to consider states that feature
classical correlations. A state is classically correlated if the density matrix can
be written as



p=2_pi i) (il ®15) (I, (1.2.11)

where p;; is a joint probability distribution for 4, j. [5]

1.3 Unitary Evolution and Quantum Measurement

The systems described by the above states , contain their individual
qubits in a superposition of the states |0) and |1). Which of these outcomes is
obtained when these systems are measured is of course entirely probabilistic. The
respective probabilities are dependent on the coefficients a, and 3, due to the
probabilistic collapse of the wavefunction upon measurement. This uncertainty,
being a defining property of Quantum Mechanics, lies at the very heart of Quan-
tum Information, Computation, and Communication. It is intimately related to
Quantum Entanglement, which will be discussed in due course.

The tools we have at our disposal to manipulate these states, apart from perform-
ing measurements, are unitary transformations. These are invertible operations
acting on the qubits which preserve probabilities, represented by unitary matri-
ces. Some very commonly used unitary transformations acting on a single qubit
are often referred to as Quantum Gates in the context of Quantum Computing.
There are four unitary and hermitian matrices which play a very important role
in performing fundamental operations on single qubits, the three Pauli matrices
04,0y,0, and the Hadamard matrix H. They are given by

() ol ol el
(1.3.1)

These matrices represent basic operations on single qubits, making them a rep-
resentation of single qubit Quantum Gates.

In order to analyse the action of the unitaries given in , first notice that
each of the matrices has eigenvalues +1, —1. The corresponding eigenvectors of

o, are <(1)> and <?> , which correspond to the states |0) and |1). We therefore
+1 -1

say that a state written in a basis of |0) and |1) is in the Pauli Z basis, simply
Z basis, or computational basis. We see immediately that a Pauli Z acting on
a state maps |0) — |0) and |1) — —[1), implying that it leaves a state in its
eigenbasis invariant (up to a global phase).

1 1
: . 1 1 :
Given that the eigenvectors of o, are 7% <1> B and 7 <_1> 1, a state written

in terms of |[4) = % (10) + 1)) and |—) = % (|0) — |1)) is said to be in the X,

Pauli X, or Hadamard basis, and is left invariant by the Pauli X operation (up
to a global phase).



1 1
. . 1 1
Similarly, one notes the eigenvectors of o, to be 7 (z) B and 7 ( 2) _1. States

of the form |i) = % (|0) £¢|1)) are then in the Y or Pauli Y basis, and left

invariant under the Pauli Y operation (up to a global phase).

In a two dimensional plot of the Bloch Sphere, these states are represented as
being orthogonal, as can be seen from figure [1}

Generally, the Pauli matrices act as

o {10) = ), )= 0, e =l [ i)
oy {10y =il1), 1) —=il0), ) e—il=), =) e il ) (13.2)
R e e T e e s P [ T N A O

and the Hadamard is responsible for H |0) = |+), H |1) = |—) and vice versa,

where the inverse operation follows immediately from the unitarity condition
HH' =1.

At this point it should be noted that the Pauli Matrices are also the generators
of the Lie Algebra su(2), such that we see from the actions of the Pauli matrices
in that SU(2) acts transitively on CP'. This follows from the interpreta-
tion of SU(2) as the double cover of SO(3), the group manifold of which is S,
such that we have CP! ~ Us(j) o~ SUU((f)).

In terms of the density matrix formalism introduced above, unitary evolution acts
on the density operator straight-forwardly as p — UpUT, where U is a unitary

matrix.

In Quantum Computing contexts one routinely also encounters unitary operations
that act on more than one qubit, such as operations that act on one qubit con-
trolled on the value of another. However, for our purposes single qubit operations
are sufficient to have been introduced here.

POVMs

As mentioned at the beginning of this subsection, the other important
concept in dealing with Quantum States is Measurement. The most
general way of representing Quantum Measurements is by means of the
concept of Positive Operator Valued Measures (POVMs). A POVM is
defined as a set of operators K, such that 377", K;TLK = 1 for some
m, with the probability of a specific measurement outcome being p, =

Tr (K MpK;Q), and upon observing outcome g the initial state becomes
K.pK}
p— %. 6]

Considering only the case where K, is a 1-dimensional projector over a
vector |u), and the set {|u) ,u = 1,...,d} form an orthonormal basis, one



recovers the formalism of projective (“von Neumann”) measurements,
for which p, = Tr () (u| p|p) (]) = (ul plp), and post-measurement

p s Ll )y (1

1.4 Spin-Flip Operation

In this section a concept necessary for some of the following, the Spin-Flip Op-
eration, is introduced, closely following the treatment of Sakurai in [7].

In order to define the spin-flip of a state, we first define a general time rever-
sal operator by its property of reversing the direction of angular momentum
0JO !l =—J.

In order to look at the spin-flip, we are interested in applying this operator to
a spin—% system. Applying the time-reversal operator to the state vector of a
spin-up state with spin in the 7 direction (the direction of 71 being given by the
azimuthal angle o and polar angle /3), we obtain

O |, +) = e 1% e 100 |4) = |, —) | (1.4.1)
where 7 is a phase factor and S; are the rotation operators given by gai where o;
are the Pauli matrices.
Sakurai continues by noticing that

o~ 5550 5= 18y (B+) +) = [A, =), (1.4.2)

which can be visualised by thinking of a representation of these vectors on a
Bloch Sphere.

O is an antiunitary operator, as can be seen from the Schrodinger equation. Thus
it can be written in terms of a unitary operator U and the complex conjugate
operator K as © = UK.

We find

; 2
O =ne ™ = —mgyK (1.4.3)

and see that this indeed corresponds to a spin-flip operation

eTHS |4y = =)y eES o) = — |4 (1.44)

1.5 Quantum Entanglement

Having introduced the necessary preliminaries, this subsection will briefly look
at what is arguably one of the most interesting and counter-intuitive aspects of
Quantum Theory.

In the discussion of Quantum Entanglement, the concept of separability of a
Quantum State is fundamental. What is meant by a state being separable is



a state which can be written in terms of tensor products of single qubit states

6) = lo) @ |X).
As an example, the state

|¢) = ;(|00> +[01) + [10) + [11)) = 12 (1) +11)) ® \}5 (10) +11))  (1.5.1)
is clearly separable, whereas the state
®) = - (j00) + [11)) (15.2)

V2

is non-separable. In fact, it is a mazimally entangled state, often referred to as
a Bell State. What’s special about this state is that, if one were to measure one
of the qubits in the Pauli Z basis, the result obtained would lock-in the result of
a similar measurement on the other qubit by collapsing its wavefunction. This
process happens instantaneously, even if the two qubits are spatially separated.
Importantly, though, this phenomenon does not allow for the superluminal trans-
mission of information. We say that it is non-signalling. In this non-relativistic
theory of Quantum Mechanics, the laws of Special Relativity are still observed.
This is a remarkable fact.

The discussion of entanglement in larger systems, and especially the notion of
what it means for a state to be mazimally entangled, i.e. classifying the amount
of entanglement present in a Quantum state, will be one of the main points mo-
tivating the discussions in subsequent sections.

We will frequently be regarding Quantum Entanglement as a resource that can be
used to achieve things that would not otherwise be achievable, such as Quantum
Teleportation, or to gain an advantage in a game that would not classically be
possible to gain. The latter will be discussed at length in the present text.

In the context of entanglement as a resource, one often considers a system con-
sisting of multiple qubits that are spatially separated, and operations that are
being performed on the individual qubits. It is common to then consider the in-
dividual qubits as being held by different experimenters, commonly named Alice,
Bob, Charlie and so forth, holding the A, B and C qubits respectively.

When two parties share an entangled state that is not maximally entangled,
potentially due to noise or other imperfections having been introduced, they
can perform one of a group of procedures known as Entanglement Distillation to
probabilistically restore a maximally entangled state from their (ensemble of) less
than maximally entangled state(s). Specifically, if the two parties know which
(non-maximally entangled) state they are sharing, including the coefficients to
the individual terms, and are allowed classical communication, they can distil
their single (non-maximally entangled) state probabilistically into a maximally
entangled state. This procedure is known as Procrustean Distillation, and stands
in contrast to Parity Distillation, where the shared state can be unknown and
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no communication is necessary, but at least two copies of the initial state are
required for the procedure to succeed, with the probability of success increasing
when a larger number of copies of the state is available. [3]

Thus, probabilistically, a normalised, physical two-qubit state that is not maxi-
mally entangled provides the same resources as a state that is maximally entan-
gled. This will play an important role when discussing how to quantify entangle-
ment, and will be addressed in more detail throughout the present text.

The discussion above about entanglement distillation is generally also valid for
larger than two-qubit systems, however, as one considers larger systems, the
mathematical details of the necessary procedures become less clearly defined.

2 Non-Local Games

Quantum Entanglement enables some remarkable, and counter-intuitive to the
classical mindset, effects to be observed. To illustrate one example of this be-
haviour, so-called Non-Local Games are discussed in this section. We will intro-
duce some basic two and three-qubit Non-Local Games, or Psychics’ Challenges.
The idea of Non-Local Games is to construct games involving players and a
referee, where the players are spatially separated such that they cannot commu-
nicate after the game commences. The players are then asked questions by the
referee, who decides based on their answers whether the players have won or lost.
The players are allowed to share a Quantum State, and can agree on a strategy
for each game before its commencement.

The games are non-local as they are set-up in such a way that the players can
exploit non-local properties of their shared Quantum State to perform better
than if they weren’t sharing the state. An appropriately designed game can thus
be used to make the non-local properties of entangled Quantum States apparent,
and is intricately related to the violation of Bell type inequalities by such states.
The term Psychichs’ Challenge is borrowed from [3], to stress the fact that the
results achievable in a non-local game using an appropriate entangled state are
not classically reproducible (unless the players were psychic). In addition, the
term challenge can be used so as to avoid a possible confusion when using the
term game. The games one usually means in this context are cooperative games,
in which the players conspire to win a challenge set by the referee, rather than
conspiring (and/or cheating) to win against each other in a competitive game, as
the terms game or game theory may suggest.

2.1 Two Player CHSH Game

In this section the two player CHSH (Clauser-Horne-Shimony-Holt) Game will
be introduced. In order to do so, some necessary concepts, such as the EPR
Paradox, Bell and CHSH inequalities are briefly discussed.
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2.1.1 Preliminaries, The EPR(B) Paradox

In order to understand what is meant by the EPR(B) paradox, it is helpful to
consider the state

1
o) = \/5(101) 110)) . (2.1.1)
An important feature of this state is that, if both Alice and Bob measure the spin
of their respective qubit in the same direction, they will obtain opposite outcomes.
What this means is that, given the spin of one qubit in a certain direction, the spin
of the other qubit in that same direction becomes predictable with certainty. This
predictability is precisely the requirement for an “Element of Reality” as defined
by Einstein, Podolsky and Rosen (EPR) [8]. As this element of reality is not
represented in the Quantum Mechanical Theory, EPR concluded that Quantum
Mechanics is not a complete theory, and that there must be “hidden variables”
(in a classical theory) in which this information is encoded. EPR require such an
element of reality to explain the fact that the direction of the spin of one of the
qubits could be determined just before the other qubit was measured, such that no
information can propagate between the two measurement events. David Bohm [9)
later added that a similar paradox arises from the uncertainty when measuring
other spin directions, leading to the combined term EPRB Paradox. A Bell type
inequality puts a limit on the correlations that can be achieved classically with
any local hidden-variable theory, such that a violation thereof implies that the
requirements of local realism and completeness cannot hold.

2.1.2 CHSH Inequality

We will discuss here the CHSH inequality from which the CHSH Game takes
its name, a generalisation of Bell’s original inequality, as introduced by Clauser,
Horne, Shimony and Holt [10]. A Bell type inequality, so named as it was first
written down by John Bell [11], is an inequality that puts a classical limit on the
probabilities of a thought experiment under the assumption of Local Realism.

Local Realism

What is meant by local realism is the requirement of Locality and Re-
alism. The assumption of Realism says that physical properties should
exist in nature independently of observation, while the assumption of
Locality says that a measurement performed by one party does not in-
fluence another measurement made by another party elsewhere, even if
the measurements are made on qubits that belong to the same state. [12]
Local Realism will be discussed in more detail at the end of this section,

in paragraph [2.1.2.1
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This brief introduction of the CHSH inequality is following the discussion by
Nielsen and Chuang in [12].

First, a classical thought experiment is considered. Two players, Alice and Bob,
are given a particle each from a set prepared in some way. Each of them performs
one of two measurements (the set of two measurements to choose from is not
necessarily the same for the two parties), randomly chosen, on her /his respective
particle, and obtains one of two possible outcomes (1 or —1) associated with
each measurement. Say Alice either measures the physical properties Q or R,
while Bob measures some physical properties S or T. The outcome of all of these
measurements is then either +1 or —1, and they associate the outcome of the
measurement with the respective property. Considering all possible combinations
of outcomes +1 associated with Q,R,S, T, it then always holds that

QS+ RS+ RT — QT| =2 . (2.1.2)

Defining as p(q,r, s,t) the probability that the measured quantities take the spe-
cific values Q = ¢, R=r, S =s, T =t, leads, using (2.1.2)), to

E(QS+ RS+ RT —QT) = Z p(q,r,s,t)(qgs +rs+rt — qt)

qi/r’s?t

< > plg,rs,t) x2 (2.1.3)

q’/r7s’t

=2,

where E denotes the mean value.
The Bell inequality (or CHSH inequality, to be more precise), then follows from
the fact that

> plgr, s, t)gs+rs+rt—qt)= > plg,r,s,t)gs+ Y plg,r,s,t)rs

q,r,s,t q,r,s,t q,r,s,t
+ > plg s, t)rt— > plg,r, s, t)qt
q,7,8,t q,7,8,t
=E(QS) + E(RS)+ E(RT) - E(QT)
(2.1.4)
from which it is seen that
E(QS)+ E(RS)+E(RT) - E(QT) <2. (2.1.5)

This is the CHSH inequality, a Bell type inequality. The particles used in this
thought experiment, and the measurements performed by the participants, were
described in very general terms. It should thus apply to any classical theory,
featuring any number of variables, hidden or otherwise. The idea is now to show
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that in a Quantum Theory this inequality can be violated, thus showing that
the features of the Quantum Theory cannot be accounted for by any classical
analogue, and invalidating EPR’s claim that the Quantum Effects ought to be
accounted for by some hidden variable theory.

For this, now Quantum, thought experiment, two players, Alice and Bob, are
considered. They are each being given a qubit from a pair which was prepared
in the Bell state , on which they then act with local unitary operations in
a specific way, and measure their qubit in the Pauli Z basis. This happens in a
causally disconnected fashion, meaning that there is no means for Alice and Bob
to communicate and that the operations performed by the players take place in
such a way that no information can propagate between them (assuming the laws
of Special Relativity).

The operations that can be performed by Alice, given by Q and R, and Bob,
given by S and T, are

0=2 s =5z-0-5(3 1)

R=X T:\}E(Z—X) :é(_ﬂ j)

Q,R,S and T are Quantum Mechanical Observables, and one can compute their
expectation value. The violation of the inequality then arises when one considers
those expectation values as corresponding to the classical values in (2.1.5)), which
leads to

(2.1.6)

(QS) + (RS) + (RT) — (QT) = 22 . (2.1.7)

The violation of Bell inequalities has been experimentally verified, notably in [13],
and many times since. From this, it can be deduced that the assumption of local
realism made above cannot hold in a Quantum Theory of nature.

2.1.2.1 More on Local Realism

Having shown that the assumption of local realism is to be rejected in
Quantum Theory by Bell’s Theorem, a question that arises is whether
it is Locality or Realism that should be abandoned. Agreeing with the
summary in [14], arguably, they both should be. Statements that can be
interpreted as identifying Realism as contradictory to Quantum predic-
tions are made by the Kochen-Specker Theorem |15] and, more recently
and more generally, by the PBR-Theorem [16]. The non-local properties
of Quantum Entanglement, which we will meet in due course, suggest
that Locality cannot hold.
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2.1.3 The CHSH Game

The fact that Quantum Mechanics, under some circumstances, violates the CHSH
inequality, can be used in different physical settings. In this section we introduce a
game commonly used to illustrate the power of entangled Quantum States which
are capable of violating Bell type inequalities. In this game the two players
will share an entangled Quantum State, and use it to outperform their classical
counterparts.

Let the players, Alice and Bob, share a Bell state between them, for example

1
V2

A referee sends the players each one classical bit as part of the question, let them
be denoted r and s, chosen uniformly at random from the set

|®) (J00) + |11)) . (2.1.8)

Q = {00,01,10,11} . (2.1.9)

The players win whenever their answers, denote them by a and b, fulfil the prop-
erty

rVs=a®b, (2.1.10)

where V denotes the disjunction and & denotes the sum modulo 2.

(Classically, this game can be won by the players at most % of the time. A classi-
cal strategy that achieves this outcome, for example, would be for the players to
always give opposite answers, irrespective of the question.

A Quantum Strategy, making use of the shared Bell pair, that the players can
use to perform better than they did classically is laid out in the following.

If Alice is sent a 0 by the referee she performs a measurement on her part of the
system in the computational (the Pauli Z) basis, and reports the outcome as her
answer.

If Alice is sent a 1 by the referee she performs a measurement of her qubit in the
Pauli X (or Hadamard) basis. If she obtains the |+) outcome she responds 0, if
she obtains the |—) outcome she responds 1. This is equivalent to her applying
a rotation (using a Hadamard Gate) on her qubit first, and then measuring it in
the computational basis.

Recall that a generic pair of orthogonal states in the Bloch sphere can e.g. be
written

|\If>:cos((;> |o>+sin(‘;‘)|1> : \\Iz>:sm(2‘> |o>—cos(3‘)|1> L (2.1.11)

where the angle « is chosen by Bob depending on the question he received from
the referee.
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If Bob receives a 0 from the referee he measures half-way between the x and z
direction in the Bloch sphere, which corresponds to an angle of 7. If he receives
a 1 from the referee he measures half-way between the negative x and positive z
direction, which corresponds to an angle of ‘%r. When Bob obtains |¥) he answers

0, when he obtains ’\i/> he answers 1.

It is most easily seen from the Bloch sphere that this is the ideal strategy for Bob
to pursue.

Using this strategy we can see that the players will win the game with a proba-
bility of cos? (g) ~ 0.8536, thus beating the classical strategy.

As an example, consider the case rs = 00. Alice measures in the computational
basis, and with a probability of 3 each obtains either the |0) or |1) outcome, and
collapses Bob’s state to the same. Bob then measures half way between the x and
z direction, and they win the game if both Alice and Bob give the same answer
(i.e. 0@ 0or 1@ 1). If Alice obtained the |0) outcome, Bob obtains |¥), which
is the winning outcome, as Bob will answer 0 on this outcome as Alice did, with

a probability of cos? (%), as required. Similarly for the other outcomes.

2.2 Three-Player Games

If one considers three parties in a similar game as above, more interesting facets
of Quantum Entanglement come to light. In this case the notion of maximal
entanglement needs further specification and definition. In the two qubit case we
used a Bell state to play the cooperative Quantum Game. Bell states are states
commonly accepted as being mazimally entangled.

However, in the three-qubit case, this notion is not as obvious, as will be discussed
in section [£.I There are, in fact, two ways in which three-qubit states can be
considered maximally entangled.

Representatives of the two states which can be considered maximally, genuinely
tripartite entangled are

1
V2

the so-called GHZ (after Greenberger, Horne and Zeilinger) or sometimes cat-
state, and

IGHZ) = — (|000) + |111)) | (2.2.1)

1
V3

the so-called W-state. These two types of states feature very different entangle-
ment properties, as we will learn in due course when we play a Quantum Game
with them. In short, the GHZ-state features genuine three-way entangle-
ment between all qubits. The W-state (2.2.2)), on the other hand, instead features
maximal two-way entanglement between all constituent two-qubit pairs. In fact,

W) (J001) + |010) + 100)) | (2.2.2)
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upon tracing out one of the qubits from the GHZ-state the resulting state is un-
entangled, while tracing out one of the qubits from a W-state leads to a mixed
state containing maximal bipartite entanglement. [17]

The resulting mixed state will be a mixture of a Bell state and a separable com-
ponent. We will see this again in section [4.1]

Given the existence of these inequivalently entangled states, as will be shown
below, a game and matching strategy can be devised that lets the players win
with certainty when sharing a GHZ state. However, when the state they share is
a W-state, they will not be equally successful.

2.2.1 GHZ Game

In this section we will lay out a game and strategy which can be won classically
only 75% of the time, but can be won all of the time by the players if they share
a GHZ-state. This game appears in many places in the literature, see e.g. [1§]
and references therein.

As we are considering a game involving three players, the set of questions the
referee can ask is given by

Q = {000,001, 010,100,011, 101,110, 111} . (2.2.3)

As in the previous case of the CHSH game, we again require that the players win
the game if the condition

rvsVt=a®dbdc, (2.2.4)

is satisfied, where r,s,t are the questions sent to Alice, Bob and Charlie, and
a, b, c are their respective answers, & denotes addition modulo 2 and V denotes
the disjunction.

We limit the set of questions rst the referee will send to

Q = {000, 011,101,110} . (2.2.5)

In order to evaluate how well the players can do classically in this game, we denote
their answers as functions of the respective questions, such that a = a(r),b =
b(s),c = ¢(t). For the question set in the conditions that the players are
successful are then given by the set of equations

a(0) ® b(0) & ¢(0) = 0,
a(0) ®b(1) & c(1) =1,
a(1) ®b(0) @ (1) = 1, (2.2.6)
a(1) ®b(1) ®c(0) =1.

Adding all of these equations together modulo 2 leads to
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2(a(0) ® b(0) ® ¢(0) ® a(1) B b(1) ® ¢(1)) =1, (2.2.7)

which cannot be satisfied. This shows that we cannot classically win this game
with certainty, and we can convince ourselves that the best classical players can
do in this game is win 2 of the time.

In the quantum version the players share a GHZ-state (2.2.1)), which it is however
convenient to rewrite as

1
IGHZY=H® HQ HIGHZ) = 5 (|000) + [011) + |101) + |110))
2.2.8)
1 (
—|GHZ"Y=P® P® P|GHZ') = 3 (|000) — |011) — |101) — |110)) .
e 1 0
Here P denotes the phase-gate, which is given by P = 0 &%)

The strategy for the players to always win this game is as follows. When any of
the players receives 0 from the referee she measures in the computational basis
and reports the outcome back as her answer. In the case of the referee sending a 1
to the player she measures in the Pauli X basis, which is equivalent to performing
a Hadamard rotation on her respective qubit and then measuring it in the Pauli
Z basis. The outcome will again be reported as the answer.

As an example, in the case that the question sent by the referee is rst = 000, all
players measure their respective qubit of in the Z basis, and we can see that
they always obtain an even number of 1 outcomes, and the requirement
is always satisfied.

For the other three possible questions in the set it is enough to consider one
question, as they are all related by a permutation symmetry, which, importantly,
is also true for the state shared between the parties .

Considering the case rst = 011, this corresponds to the players performing

1o HeH|GHZ") — ; (001) + [010) — |100) + [111)) (2.2.9)

on the state and subsequently each measuring their qubit in the Z basis and
reporting the outcome as their answer.

We can immediately see that they will always report back an odd number of 1
outcomes, such that they are successful.

Thus, in this scenario, the players sharing a GHZ-state will win 100% of the time.
An easy to understand Gedankenexperiment to illustrate this behaviour is given
by Mermin in [19].

2.2.1.1 W Performance in The GHZ Game
As was very briefly pointed out at the beginning of this section, both the GHZ
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and the W-state feature some notion of mazimal entanglement. But we also
noted that these states are entangled in very different ways. So the question that
naturally arises is whether or not the players in above GHZ Game are equally at
an advantage if the state they share is of the W-type instead of the GHZ-type.
In order to answer this question, consider the state

1
V3
which is locally equivalent to the W-state, as shown. If our players share this
state and play the same game as above, looking at the two different scenarios
rst = 000,011 is again sufficient due to the permutation symmetry in the state,
as well as the rest of the question set.

If the referee sends rst = 000 to the players, none of them perform any local
operations on their qubit and measure it in the Pauli Z basis, leading to an
outcome that always features an even number of 1’s, and thus they always win
when this question is being asked.

If the referee sends rst = 011 to the players, they perform the operation

W'y = —= (|011) 4 |101) +[110)) = X © X @ X [W) , (2.2.10)

1
19 H®H|W) = Ve (1000 + [011) — [001) — [010) + 2]100) — 2[111))
(2.2.11)

and, in this case, will win if their answers satisfy a &b ® ¢ = 1, which means that
they lose for the outcomes |000) and |011), which are obtained with a probability
5

of %. Thus, the winning probability in this case is ¢, and the same is true for the

questions @ = 101,110. The total probability for the players sharing a W-type
state to win this game is then p;, = i (1 + % + % + %) = %.

We see that the players cannot achieve the same performance they did sharing a
GHZ-state while sharing a W-state. It can be shown that there is no strategy,
using the the W-state, which wins this game with certainty |20]. This makes the
difference in entanglement between GHZ and W-type states manifest. We will
encounter a situation in which the W-state outperforms the GHZ-state in section

2.2.2

2.2.1.2 Bi-Separable Performance in GHZ Game

Another state to consider in the above scenario is a state which features only two-
qubit entanglement between two constituent qubits, and hence is not maximally
entangled. Such a state is known as Bi-Separable, and will highlight once more
the need for an accurate classification of the amount and kind of entanglement
contained in a state, which is the subject of section

If we play the exact same GHZ Game with the players sharing a Bi-Separable
State, say
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1
V2
in which the A-qubit is completely separable, while the B and C qubit are max-
imally entangled (being part of a Bell pair), it can be seen that employing the
same strategy will not lead to an advantage over the classical case. In partic-
ular, we can see that for the questions Q = {000,011} the players can win all
of the time, whilst for the questions @ = {101,110} they only win half of the
time, such that the overall probability of winning the game for these players is
%, as it was in the classical case. However, notice that, since the A-qubit is sep-
arable, upon ignoring the question the referee sends to Alice (say Alice always
answers 0 regardless of what question she received), the question set reduces to
@ = {00,01,10,11}, which is precisely the set of questions encountered in the
CHSH Game in section 2.1.3
Thus, if the players in this case change their strategy to that of the CHSH Game,
they can also achieve the same winning probability of 0.8536. Looking, for exam-
ple, at the case rst = 110, following the strategy from section [2.1.3] the players
apply local operations to the state such that

|4 = BC) = —— (j000) — |011)) = 12\0) (J00) = [11)) (2.2.12)

A - BCY = {\m (0) + 1)) (cosg 0) +sin & \1))

+10) (J0) — (1) (—sing 0) + cos y1>)} . (2.2.13)

DN | —

2
The winning probability is thus % (sin g +cos g) ~ 0.8536, as in the CHSH case.
Similarly for the other possible questions.

2.2.2 Advantage W

In the previous section it was shown that three players sharing a GHZ-type state
are able to win a special type of non-local game 100% of the time that classically
could only be won 75% of the time. However, sharing a W-type state in the
same game did not result in the same advantage. In order to let the W-state be
advantageous over the GHZ-state, the game needs to be modified.

As was pointed out, the W-state features maximal entanglement between the
individual two-qubit pairs, whereas the GHZ-state features genuine three-way
entanglement, and in fact becomes separable upon the tracing out one of its
constituent qubits.

This suggests that a game in which the referee starts with the same question set
as in the GHZ-game, Q = {000, 011,101,110}, but randomly chooses to ignore
one of the players, thus really playing a CHSH-game with two of the three players
randomly chosen, will be won by players sharing a W-type state with the same
probability that a CHSH Game can be won, namely 85.36%. The players simply



20

ignore the player to which no question is sent, effectively playing a two player
game. This amounts to tracing out the player that (as randomly chosen by the
referee) does not participate, leaving the two players that do with a mixed, but
maximally entangled state between them. Noting again that, upon tracing out
one of the players the GHZ-state offers no residual entanglement, players sharing
a GHZ-type state in the same scenario will have no advantage over the classical
case.

The analysis above relies on two of the players who initially shared a three-qubit
W-state to share a maximally entangled Bell pair after one qubit is traced out.
However, we saw previously that the state shared by the parties after tracing
out one qubit is, in fact, mixed. So to justify the assumption of the players
sharing a pure Bell pair, a very important observation needs to be made. The
mixed two-qubit state obtained when tracing out one qubit from the three-qubit
W-state can be transformed into a state arbitrarily close to a pure Bell state
using local filtering operations. [17, 21] One can think of this as akin to the
distillation procedures discussed previously. Although this may be a probabilistic
process, that does not fundamentally change the result of this game. Depending
on protocol, it may be possible for the success rate of the filtering operation
to be increased arbitrarily close to unity by allowing the parties to share an
arbitrary number of copies of the state. This would not improve the chances of
winning when the players share a GHZ-state. But even assuming that the filtering
operation will always be probabilistic and cannot be improved by sharing multiple
copies of the state, after a sufficiently large number of rounds of the game being
played, sharing a W-state would still be advantageous. The probability of winning
would in this case be less than the 85.36% from above, but would still exceed
the classical 75%, which is also the maximum players sharing a GHZ-state could
achieve.

In the game discussed here a Bi-Separable State will offer an advantage over the
classical case in % of the runs of the game, whenever the referee chooses to not
send a question to the player whose qubit is separable in the shared state. In all
other cases, holding the Bi-Separable State is not advantageous to the players,
leading to a probability of winning of p,, &~ 0.7759.

Although we have seen that the W-state will outperform the GHZ-state in this
type of game, it is a rather contrived game testing residual two-qubit entan-
glement, rather than testing genuine tripartite entanglement. A game in which
the W-state has an advantage over the GHZ-state that involves all three players
rather than choosing a subset would be very desirable to have, as it may enable
one to make a more clear statement as to the differentiation of the two notions
of maximal entanglement present in these two types of states. Similar is true for
a game in which the W-state gains a 100% advantage and the GHZ-state does
not.
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3 Quantifying Quantum Entanglement

In the previous section on Quantum Games we saw that there are two three-qubit
states, completely non-separable, which can both be considered maximally en-
tangled, and yet feature some very different properties. The GHZ-state and the
W-state. As one considers even larger systems, one encounters even larger num-
bers of non-separable states with vastly different properties. This underlines the
need for a more fine-grained classification of entangled states beyond separability
criteria.

In order to facilitate these discussions, one needs to introduce a notion of equiva-
lence between different Quantum States based on their entanglement properties,
which is the subject of this section.

3.1 LOCC

The term LOCC stands for Local Operations and Classical Communication, and
represents the combination of local operations performed in combination with a
classical means of communication between the parties involved. In the study of
Quantum Entanglement LOCC operations are important, as they define classical
correlations as those which can be created using LOCC operations. [22] To make
the connection to Quantum Mechanical Correlations, it is important to define the
notion of Local Operations, which is also necessary in order to define a consistent
notion of equivalence between states.

A natural way of defining Local Operations is by allowing only operations given by
Local Unitary Operators. |23] These Operators can notably not create or destroy
Quantum Mechanical Correlations. In order to account for all possible classical
correlations under the paradigm of LOCC, in addition to Local Unitary Operators,
one includes Local General Measurements, which also enables the destruction of
Quantum Mechanical Correlations, but not their creation. [24] As an example,
one can think of two players sharing a Bell state % (|00) + |11)), where upon,
say, Alice measuring her qubit in the Pauli Z basis, depending on outcome the
state collapses to |00) or |11), both of which have become separable.

In summary, we include in the class of LOCC Operations Local Operations to-
gether with Classical Communication. Local Operations include all possible oper-
ations that can be performed by a party on their individual system, including [25,
26]

Local Unitary Operations

Adding Local Systems (Ancillae)

Deleting (tracing out) Local Systems

Local Measurements
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and in LOCC Classical Communication is allowed in all directions. Note once
more that these operations allow for the destruction of Quantum Entanglement,
but cannot create Quantum Entanglement between the constituent qubits (lo-
cally Quantum Entanglement could be created between e.g. an Ancilla Qubit
introduced by one party and their original qubit).

3.2 LOCC Equivalence

We noted above that LOCC Operations can destroy, but not create any new
Quantum Entanglement between the constituent qubits of the state. A state
that has been acted on with an LOCC Operation is thus equally or less entangled
than the original state. It follows that two states that can be interrelated de-
terministically using LOCC Operations will necessarily contain the same amount
of entanglement. This observation is what we use to define LOCC' Equivalence.
Two states are LOCC equivalent if they can be interrelated with certainty, using
LOCC Operations. LOCC equivalent states feature the same amount of entan-
glement.

Defining any valid Quantum Operation as a Superoperator £ acting on the Quan-
tum System (given in terms of a density matrix p), it follows from the discussion
on POVMs in section that the probability of this transformation occurring is
given by Tr&(p).

The state will then transform as

£(p)

p— T(E() | (3.2.1)
so as to make sure the result is still a valid density operator with unit trace.
Recall that LOCC equivalence was defined as a deterministic interrelation be-
tween states, such that Tr(E(p)) = 1. [27]

This is a more restrictive set than that of all LOCC Operations as defined above,
and in short one can define equivalent states under LOCC' as those which can be
reversibly interrelated with certainty, i.e. using Local Unitary Operators aided by
Classical Communication [23].

The group of Local Unitaries (now considering a general system of n qudits) is
[U(d)]*", which, upon noting that this includes the multiplication by an overall
factor, reduces to U(1) x [SU(d)]*". [28]

We can use this to define orbits of states equivalent under Local Unitaries as

cden
U(1) x [SU()]"

which, as explained in section if we only care about physical states, simplifies
to

(3.2.2)
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cp!
[SU@)]™

where in both equations for a qubit we have d = 2.

However, recall from the discussion on Entanglement in section that, when
considering entanglement as a resource, we considered a state or ensemble of
states which could be distilled to be maximally entangled as equivalent to a
maximally entangled state. The distillation procedures were probabilistic, so it
becomes obvious that limiting ourselves to deterministic LOCC equivalence when
discussing the amount of entanglement a state contains is too restrictive.

(3.2.3)

3.3 SLOCC Equivalence

In order to define a less restrictive notion of equivalence of states in terms of
the amount of entanglement they contain, it is thus useful to include operations
which can only stochastically interrelate quantum states. States are then defined
as SLOCC equivalent similarly to LOCC equivalence defined earlier, only now
including operations that will only stochastically (with a probability 0 < p < 1)
interrelate states.

This criterion will include distillation procedures, such as the ones introduced
previously, and find states to be equivalent if the same operations, which use
entanglement as a resource, can be performed with them with some non-zero
probability.

The name Stochastic Local Operations and Classical Communication (SLOCC)
has been established for this paradigm. Formally, easing the restriction on the
success rate of the operations to allow it to be less than unity is represented by
letting the map £ be not necessarily trace preserving, such that [27]

Tr(E(p) < 1. (3.3.1)

SLOCC equivalence is a coarse graining of the LOCC equivalence defined in
section [3.1] in that states equivalent under LOCC' are naturally also equivalent
under SLOCC, and we have that two states can be regarded as equivalent under
SLOCC operations if they are related by Invertible Local Operators. |29)

In analogy to the discussion of LOCC equivalence in section [3.2] the group of
Invertible Local Operations making up the SLOCC equivalence group (for n qu-
dits) is [SL(d, C)]*" and includes the multiplication by an overall complex factor,
such that the orbit of SLOCC equivalent states becomes [17]

cae"

LT (3.3.2)
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Note again that we have considered the Hilbert Space of all states rather than
the complex projective space, as SL(d, C) does not preserve the norm. The case
for a qubit is again recovered for d = 2.

In order to classify the different ways in which Quantum States of a certain
number of qubits can be entangled, one approach is to classify the different orbits
in equation using quantities that are invariant or covariant under the
SLOCC group action, and observing whether or not they vanish for a given
orbit. We will make use of this approach in section [f

3.4 Entanglement Measures

Having defined the notion of equivalently entangled states lets us define mathe-
matical quantities to measure the amount of entanglement contained in two and
three-qubit quantum states. For the case of mixed three qubit states evaluat-
ing these quantities becomes an involved numerical issue, and is not completely
settled. These measures can be used to distinguish entangled states using the
notion of SLOCC equivalence, but are not manifestly SLOCC covariant, which
will become important later on in the discussion.

There are several requirements a quantity should fulfil in order to be considered
a valid entanglement measure.

e The measure is a map from the state to a real number. [22]

e The measure should be monotonically decreasing under LOCC Opera-
tions [30, 24], as we know that these can destroy entanglement by the
extended definition above.

e Consequently, the measure should be invariant under ILO, as they are a
subset of the LOCC Operations.

A measure which satisfies these conditions will generally be referred to as an
Entanglement Monotone. [22] While it is clear that an entanglement monotone
must be invariant under /L O, perhaps more surprisingly the converse is also true.
Any (linearly homogeneous) ILO invariant function of a pure (unnormalised)
state is also an entanglement monotone. [31]

In the following we will discuss some entanglement measures that can be used in
different contexts and are important for the discussions to follow.

3.4.1 Positivity of Partial Transpose

The Positivity of the Partial Transpose (also the Peres, or Peres-Horodecki crite-
rion, see [32] and [33]) is a necessary criterion for a (potentially mixed) bipartite
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quantum state to be separable, and in some cases, namely the two-qubit and
qubit-qutrit case, is also sufficient.
A Positive Map ® acting on one qubit is defined such that [6]

d (,OA> > 0 \V/pA 5 (3.4.1)
and a Completely Positive (CP) Map such that

1,Q &g (pAB) >0 VPAB . (342)

A Not Completely Positive (NCP) Map is then defined such that the Map is pos-
itive, implying that equation holds, but not completely positive, implying
that equation does not hold.

The Partial Transpose is a positive, but not completely positive map. It holds
that any NCP map ® preserves the positivity of a quantum state if it is separable
when one considers the partial action [33, (6]

1a®®p(pap) 20 Vpup - (3.4.3)

Thus this can be used as a necessary criterion for separability.

The action of the Partial Transposition is defined as the Transposition on one
of the subsystems of the state. For the two qubit case in which this criterion is
particularly useful, one may look at the Partial Transpose with respect to e.g.
the first subsystem

111) (00] — |01) (10] . (3.4.4)

If the density matrix after the Partial Transposition (where it is not important
with respect to which subsystem the Partial Transposition is carried out) is pos-
itive (i.e. has no negative eigenvalues), the state is separable. For two-qubit and
qubit-qutrit systems it also holds that, if the system after Partial Transposition
is not positive, it is entangled.

3.4.2 Von Neumann Entropy

The von Neumann Entropy is defined as [34]

S(p) = —Tr(plogy(p)) (3.4.5)
or in terms of eigenvalues \; of p

The von Neumann Entropy can be used as a measure of the purity of a (single
qubit) Quantum State, with a pure state having S = 0 and a maximally mixed
state having S = 1. [34}, 6]
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When considering a pure two qubit state, it is entangled iff the state of either
of the two subsystems (after tracing out the other subsystem) is mixed. This is
proven by proving the converse, that if the state of the subsystem is pure, the
original two qubit state is separable, following [6].

For a separable, pure two qubit state, we have that |Wp) = |V4) ® |¥p), and
hence pg = [Wa) (V4l.

In terms of a basis [Wap) = >, Wir |ik), from which it follows that

S Uy 5 (Lik )R Z|\Ifzk| i) ('] . (3.4.7)

ik, K

Then, defining ¢; = >, |\I/ik|2, leads, when imposing purity of the state p% = pa,
to i =i and ¢? = ¢;, from which it follows that either ¢; = 1 or ¢; = 0. Noting
the general requirement of a density operator that it has unit trace, it follows
that >, ¢; =1, and thusc; =1, ¢=0 Vi# 1.

It follows then that >, |\I/1;€|2 =1and Y, |\I/“y€|2 =0 Vi # 1, which leads to

(Wap) = Z Uy |ik) = Z Uy 1K) (3.4.8)
ik k
which is separable, such that the claim is proven.

3.4.3 Local Rank

The Local Rank is an important concept in the discussion of the pure state entan-
glement of two qubits. The rank of a reduced (local) density matrix (r(pa), r(ps)),
which coincides with the Schmidt Number of that matrix given by n, in the
Schmidt Decomposition

Use Usli) =3/l @i (3.49)

is invariant under SLOCC Operations, leading to the conclusion that given
p € C"®C™, where ny, < n < m, there are at most n different ways of en-
tangling the states. [17] Dur et al. note further that the local rank provides a
hierarchical entanglement classification since states with n, = 1 are separable,
and non-invertible LOCC Operations can project out terms from the Schmidt
Decomposition and hence diminish n,, as required.

This measure thus bears a close similarity to the local entropy introduced earlier.

3.4.4 Entanglement of Formation

The “Entanglement of Formation” is a measure of entanglement defined in terms
of the decomposition of the density operator into state vectors. Presumably, it
takes its name from the fact that it is a measure of the entanglement contained
in the state vectors that form the density operator, and hence the total Quantum
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State. As such, it is also defined for mixed Quantum States. Given a mixed state
written in terms of a pure state decomposition

p=2_pilv) (il , (3.4.10)

for some ensemble {p;,1;}, the Entanglement of Formation is defined as the
minimum of the average amount of entanglement of each such decomposition of
the given mixed state, where the minimum is taken over all possible decomposi-
tions [30]. Formally, we have [35]

E(p) = mianiE(\I/i) , (3.4.11)

where E(V;) = E(|¢;) (¢4]) is the entanglement of the i-th bipartite pure state
in the decomposition , given by the local von Neumann Entropy of either
subsystem.

This measure also reduces to the von Neumann Entropy of either subsystem in
the case of a bipartite pure state, and to the average thereof if applied to an
ensemble of bipartite pure states. [30]

As is shown in the respective references, the Entanglement of Formation is an
entanglement monotone, which follows from the fact that the von Neumann En-
tropy is. Thus, the Entanglement of Formation is an appropriate measure of
entanglement for the cases considered.

However, as this measure includes an extremisation problem, one can define other,
more convenient measures of entanglement of mixed states.

3.4.5 Concurrence

The goal in defining the Concurrence is to find an explicit expression (for specific
cases) for the Entanglement of Formation, so as to avoid having to evaluate
the extremisation problem. This is done in [36] and [35], the most important
definitions and arguments of which we will lay out in this subsection.

Defining the spin-flipped state ‘z/;> = 0, [1)", consistent with the definition given
in section [I.4] the Concurrence is given by

Cw) =|(v[)| - (3.4.12)

The amount of entanglement, given by the von Neumann Entropy E (7)), can then
be written in terms of the Concurrence as

E()) =E&(C([)) , (3.4.13)
where the function &£ = —1+V;_C2 log, 1+*/;_C2 — 1_\/;_02 log, 2= 5_02.

The Concurrence can be generalised to mixed states. To this end, note that the
spin-flipped density matrix (for a 2-qubit system) is given by
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p=(oy®0y)p*(oy, ®0y) . (3.4.14)

The Concurrence is then given by

C(p) = Imax {0, ()\1 — )\2 — )\3 — )\4)} s (3415)

where the \; are the eigenvalues of the matrix R = /,/pp,/p or, equivalently,
the square roots of the eigenvalues of the matrix R = pj in decreasing order with
respect to the labels i [36, [35].

3.4.6 Tangles

Having introduced the concept of the Concurrence enables us to treat of another
very important concept when quantifying entanglement, the Tangles.

We follow the treatment in [37], adding additional detail and clarification where
necessary.

The authors begin by defining the Tangle as the square of the Concurrence, in
terms of the eigenvalues of the matrix R as given in , and note that for
the case of a pure state of systems A and B, the matrix R only has one non-zero
eigenvalue, leading to the expression for the tangle 745 = 4 det pa4.

In order to generalise to the case of a pure state of three qubits, they note further
that in this case, the density matrix for each respective pair of qubits has two
non-zero eigenvalues, as each pair of qubits is only entangled with one other qubit.
This observation leads to the expression

Tap = (M — A2)® = Tr (pappap) — 2\ X2 < Tr (papfag) , (3.4.16)

which enables one to write

TaB + Tac < Tr (pappas) + Tr (pacpac) - (3.4.17)
Then, noting the definition of the spin flip in (3.4.14) and writing papc =
Dk Lmnp Qijk oy, [17K) (mnp|, we find

ﬁABC = €mm/€nn/€pp/€ii/€jj/5kk/amnpaz(jk |m'n'p'> <i/j,]€/| s (3418)
where we have omitted the summation symbol, making it implicit using the
Einstein summation convention.

To find the quantity we are interested in, pagpap, it is noted that after tracing
out the C qubit, one has pap = aijray,,, 0k | ij)(mn|, where § is the Kronecker
Delta symbol. Using this result, we have

~ * * . - 11/ /N
PABPAB — 8(m’gfbb’gcc’grr’gss’51515’aijkamnpaabcamt(Skp(sdif’ ’7'] ><mn |CL b ><T S |

* * . . )
= ECLa’gbIJ’Ec¢:’€r7”’555’Ett’aijkamnpaabcamt(sk:p(sc’t’5777,(1/5nb’ |Zj ><’l“ S | )
(3.4.19)
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and noting that e,.6,. = dap, and taking the overall trace, this leads to

Tr (PABPAB) = Qijky s Qabt Qg EamEbnEri€s) - (3.4.20)

The authors then use the fact that c,p€pp = dapdarpy — dapdary tO nOte that, con-
tinuing from the above,

* * * *
Wijk Wk Orjt Qi EmrEai — Wik O i1 Qast Qs EmrEai (3.4.21)

(%) (%)

for which we can see, using €,,,€4i = 0madri — Omilar

* * *
(%) = Wik QantQije ik Qi Aant Qg it

. .a*
[aisaf;] ., laanainl o

=Tr (p%) —Tr <p23> (3.4.22)
(**) - = (pA)zm (pA)ar Emrai
=2det py .
In total, noting that det A = 1 (Tr A)? — Tr (A?) and Trp, = 1

Tr (pappap) = 2det pg — Tt (p%) +Tr (p%)

(3.4.23)
=2det ps + 2det pgp — 2det pc .
It follows, using (|3.4.17]), that
TABTAC S 4 det PA - (3424)

The authors note further that, as pgc only has two non-zero eigenvalues, it can
be treated as effectively two dimensional when expressing a state of the three
qubits ABC. Thus, it is valid to consider the tangle between A and the pair of
qubits BC, and one finds 74(pcy = 4 det py4, such that

TAB + Tac < TA(BC) 5 (3.4.25)

which also makes sense intuitively.

At this point the authors observe that the tangle 74(pc) is not defined for mixed
states. This is a problem that we will face again when talking about four-qubit
entanglement, as the residual three-qubit states after tracing out one qubit can
be mixed, and the tangle for three qubits (3-tangle) is also not defined for mixed
states.
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A generalisation of 74pc) to mixed states can be achieved similarly to the defi-
nition of the entanglement of formation in section [3.4.4] The idea is to maximise
the tangle for each of the possible pure state decompositions of the mixed state,
which is the same way the entanglement of formation is defined. However, that
is a non-trivial problem which may be difficult to solve analytically.

It is further shown by the authors that there exist no other function of 7 that
provides a stricter bound than that given in equation (3.4.25).

The above discussion can be used to define a tangle that measures the genuine
tripartite entanglement of ABC. This quantity will be referred to as the 3-tangle
throughout, denoted here by 74gc. The key idea is to consider the difference
between the LHS and RHS in equation (3.4.25)) which will account for the entan-
glement present between A and the BC pair which cannot be accounted for by
the individual entanglement of A with B and A with C.

As shown by the authors, the 3-tangle is given by

T3 = TABC = 2 |aijkai’j’manpk’an’p’m’sii’gjj’gkk”gmm’gnn’gpp’| s (3426)

a quantity that is also known (up to pre-factors) as Cayley’s Hyperdeterminant
as noted in [27].

The tangle, as written in equation , is manifestly SLOCC covariant, which
is not true of the other measures introduced. Apart from the Concurrence, these
other measures are invariant under the LOCC equivalence relation and hence
under the action of Local Unitaries.

3.4.7 Four-Qubit Measures

For quadripartite and larger systems, defining unambiguous, simple measures of
entanglement remains an open problem. Similarly, it is difficult to analyse the
behaviour of four-qubit states when they are reduced to three-qubit states (by
tracing out one of the qubits), as the resulting states are potentially mixed, and
the 3-tangle is only defined for pure states.

A generalisation of the Concurrence and the 3-tangle to four qubits is constructed
in [31].

The authors in [31] conclude that a total of 6 independent entanglement measures
can be constructed for the four-qubit case. Among them a generalisation of the
Concurrence to 4 qubits

C4 - |az‘1j1k1l1ai2j2k2125i1i25j1j25k1k2511l2| ) (3427>

and a generalisation of the 3-tangle to 4 qubits

1
T = V2 @iy ks i jokenls Qi ksl Qinabals Eivis Cigia ClanElsly €1 s E jnjaEhr ks Ehaka |2

(3.4.28)
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where a,, for w = 4,5, k,l, Kk = 1,2,3,4, w, = 0,1 are the coefficients to the
respective ket vectors |wywewswy) and ¢ is the totally anti-symmetric Levi-Civita
Tensor.

These measures will be further explored in section [4.2] where the different ways in
which four-qubit states can be entangled are discussed. It will be noted then that
these two measures are insufficient to classify the entanglement of four qubits, and
a sufficient measure that does not amount to evaluating all covariant / invariant
quantities is still lacking.

4 SLOCC Entanglement Classification

How many different ways of entangling n-qubits exist in terms of SLOCC' equiva-
lence will be discussed for the cases of three and four qubit states in the following
sections.

However, this classification doesn’t easily generalise to larger systems, and hence
a more systematic, generalisable approach is desired, and one way of achieving
this is the subject of section [5

For systems smaller than four qubits a formalism to classify the amount of en-
tanglement contained in a state exists that is commonly used and accepted, so
long as one confines themselves to the case of pure states. This formalism will be
summarised in this section, and some of the problems that occur on attempting
to generalise it to four-qubit systems are pointed out. This ultimately results in
the pursuit of a different formalism for the classification of entanglement, which
is elaborated on in section [5

4.1 Three-Qubit Entanglement

We briefly summarise here the SLOCC' classification of pure three-qubit entan-
glement by Diir et al. in [17].

The concepts introduced in section will be of importance for this and the
following discussions.

Diir et al. found that there are two inequivalent ways of maximally entangling
three qubit states (referred to as the W and GHZ classes of states), along with
three equivalent ways of bipartite entangling only two of the three qubits. All
non-separable three-qubit states are either of the GHZ or W class. In detail, the
authors found the following different classes of entangled states of three qubits.

Separable
Product states which are completely separable. For these states it holds
that all the local ranks are equal to unity, r(pa) = r(pg) = r(pc) = 1, and
a representative state is

|A— B —C) = |000) . (4.1.1)
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Bipartite Ent.
States which feature entanglement between two of the constituent qubits,
with the third being separable. For example, consider the state with bipar-
tite entanglement between the B and C qubits, with the A qubit separable.
For this state it holds that r(pg) = r(pc) = 2 and (pa) = 1. A representa-
tive can be written as

|A— BC) = [0) (cs [00) + 54 [11)), 5> 55> 0. (4.1.2)

Similarly for the other two possible combinations |AB — C) and |AC — B).

Tripartite Ent.
States which feature genuine tripartite entanglement between all the con-
stituents. For these states, it holds that r(pa) = r(pg) = r(pc) = 2. There
are two inequivalent states for which this is true, the W class of states and
the GHZ class of states. The details of these two states are discussed in
what follows.

Recall that representatives of the two three-qubit states which can be consid-
ered maximally entangled are the so-called GHZ (after Greenberger, Horne and
Zeilinger) or sometimes cat-state, given in equation , and the so-called
W-state, given in equation (2.2.2). These two classes of states can be distin-
guished using the 3-tangle introduced in section [3.4.6] The 3-tangle vanishes for
GHZ-type states, but does not vanish for W-type states.

These two types of states possess some very different features. Upon tracing out
one of the constituent qubits of a GHZ-state, the remaining two qubits share a
(mixed but) unentangled state. Tracing out one qubit from a W-state, however,
the remaining two qubits will share an entangled state (Bell state). It is thus
said that the GHZ-state features genuine three-way entanglement between all
constituent qubits, while the W-state features two-way entanglement between
all the 2-1 qubit pairs. What we mean by saying the entanglement between a
2-1 qubit pair is the entanglement between e.g. the pair of qubits BC and the
individual qubit A, which can, despite the dimensional differences, be measured
by the tangle T4(pcy as explained in [37].

Notice that instead of using the local rank as a measure to determine the entan-
glement classes of the different states, we could just as well have used the local
entropies, as discussed earlier. A summary of three-qubit entanglement using the
local entropies can be found in table [T}



33

Table 1: Summary of entanglement of three qubits

. Measures
Class | Canonical Form S, S5 S.
A-B-C | |000) = =0 =0 =0
A-BC | ]0) (ce [00) + 54 [11)) = 20 #0 =
AB-C | (¢4 |00) + 54 [11)) |0) #0 #0 =0 =
ACB | (0[00) 4o + 56 [11) 4] [0); | £0 =0 £0 =
W =5 (|001) +[010) +[100)) |#0 #0 #0 =0
GHZ % (|001) + [010) + |100)) 20 #0 #0 #0

4.2 Four-Qubit Entanglement

Verstraete et al. analyse the different ways of entangling four-qubit states in [29],
and evaluate some entanglement measures (including numerical generalisations
of the 3-tangle to mixed states evaluated after one constituent qubit has been
traced out) for representative states.

In this section we will summarise and comment on the findings by Verstraete et
al. in [29).

What we consider here are Families of the orbits , where every state is
transformed into a unique normal form, and if the normal form depends on
SLOCC invariants it represents a family of orbits parametrised by the same. |3§]
It should be noted that this classification in terms of families of orbits is distinct
from the entanglement classes we used to distinguish states previously. In fact,
the different families cannot be used to distinguish the states according to their
entanglement, as a given family may contain both entangled and separable states.
In addition, there is no mechanism to easily find the family a given state belongs
to. A finer set of families that distinguish unambiguously between states based
on the amount of entanglement they contain, as well as an easy way to ascribe a
family to a given state, are desirable.

In detail, the 9 families obtained by Verstraete et al. for the four-qubit case ard]]

n this formula, the last two signs in the last term of L, have been changed, to correct for a
misprint in the set as given in [29], as pointed out by Chterental and Pokovié¢ in [39]. This
change also unifies this set with the one given in [38].



34

d —d
Glabed = C”Qr (10000) + [1111)) + “—-% (J0011) + [1100))
b h—
+ ;rc (|0101) + [1010)) + ?C (|0110) 4 [1001))
a+b a—">
Lape, = 5 (]0000) + [1111)) + 5 (|0011) + [1100)) + ¢ (|0101) + |1010)) + |0110)

Lays, = a(]0000) + [1111)) + b(]0101) 4 |0101) + |1010)) + [0110) + |0011)

Lotb
2

—b
Lap, = a (]0000) + [1111)) (10101) 4 |1010)) + aT (10110) + |1001))

+ — (|0001) + [0010) — |0111) — |1011))

i
ﬁ(
La, = a(]0000) + [0101) + |1010) + |1111)) + ]0001) + |0110) — 7 [1011)
Layo,.; = @ (J0000) + [1111)) + [0011) + [0101) + |0110)
Lo,., = |0000) + [0101) + [1000) + [0111)
Lo, ., = |0000) + [1011) + [1101) + [1110)
Lo,_;0,.; = |0000) + |0111) |

where the parameters a, b, ¢, d are the four SLOCC' invariants. The authors also
note the families some commonly seen states belong to. For example, a state that
is completely separable is part of the family L., if weset a =b=c=d =0, and
a state that is partially separable, consisting of an EPR pair combined with two
unentangled qubits belongs to the family L,,;, with the invariants a = b = 0. If we
combine two EPR pairs into a state, it is part of Gypeq witha=1;b=c=d =0
or a = b= c=d. Combining a 3-qubit GHZ-state with one separable qubit leads
to a state in the family Lo, ,o,.;, and similarly if one uses a 3-qubit W-state it
belongs to L with a = 0. The 4-qubit W-state given by

a20357

1
W), = 3 (/0001) 4 |0010) + [0100) + |1000)) , (4.2.1)

belongs to L, where a =b = 0.
When looking at the 4-qubit GHZ-state given by

1
V2
we see that this state belongs to the family Ggpeq if we let a = d,b=c =0. We
observe that the family L., contains both separable and maximally entangled
states, as also noted in [38]. As mentioned previously, this is the reason that
these families cannot be interpreted in the same way as the entanglement classes
previously used to distinguish inequivalently entangled states.

We will only be concerned with nilpotent orbits, i.e. orbits under the SLOCC
equivalence group, given by the quotient group as explained in section [3.3] for

IGHZ), = — (|0000) + [1111)) |, (4.2.2)
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which all invariants are equal to zero. For this special set, a hierarchy was pro-
posed in [38], which can be seen from figure

Looking at the values of the four-qubit generalisation of the 3-tangle and
the concurrence for these states, it is noted that both these quantities
are equal to zero for all states in the hierarchy in figure 2] In addition, this is
also true for the four-qubit W-state .

Interestingly, for the four-qubit GHZ-state (4.2.2), we find for the four-qubit
generalisation of the 3-tangle and the concurrence that 7, = Cy = 1. The tensor
product of two EPR pairs has 74 = % and Cy = 1, despite not containing any
genuine four-qubit entanglement, as was also observed in [31]. This suggests that
these two measures are insufficient to make a meaningful statement about the
entanglement of four-qubit states.

Additionally, we saw that the three-qubit classification necessitated the intro-
duction of the 3-tangle, which, apart from just being an entanglement monotone,
is also an SLOCC covariant. This is part of the motivation for the discussion
that follows, in which we attempt a classification of entanglement using SLOCC
invariants and covariants. For the three-qubit case this has previously been done
successfully, while the same for the case of four-qubit systems is an open problem.

5 Covariant SLOCC Classification of Quantum
Entanglement

In the previous section we have seen that, while for two and three qubit systems
the SLOCC classification is quite manageable, for four or more qubits it becomes
increasingly complicated. To go further, a more systematic, manifestly SLOCC
covariant treatment is required.

One approach is to consider the minimal set of algebraically independent SLOCC
invariant and covariant quantities, as mentioned in section [3.3]

The idea is then to analyse the conditions the vanishing of these quantities im-
poses on the states, and then to see which state in the hierarchy a general state
that fulfils these conditions is SLOCC equivalent to. This approach will be used
for a classification of three and four-qubit entanglement in this section. For three-
qubit systems this has previously been done successfully and is summarised in
section[5.1] In the four-qubit case this is an open problem, that has been partially
solved in the literature for a specific subset of states living in the nilpotent orbits
of the hierarchy shown in figure [2| with further constraints. Lifting these further
constraints, and generalising the classification to all states in the nilpotent orbits
is the subject of section

To achieve this, in general we are interested in quantities invariant or covariant
under the SLOCC group action. Invariants don’t change under the application
of an action of the group (or equivalently transform as the singlet representation
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Lo,,; = 0000) + [1011) + [1101) + [1110)

Lo, ,, = |0000) + [0101) + [1000) + |1110)

La, = ]0001) + [0110) — ]1011)

Lay, = 25 (10001) + [0010) — [0111) — [1011))

— |0000) + |0111)

03@103@1

L = 0110) + 0101) + [0011)

a20351

C) Lay, = |0110) + [0011)

Laje, = |0110)

Gabcd =0

Figure 2: Hierarchy of 4-qubit families with all invariants set to zero as given
in [38]. Note that normalisations have been omitted here.
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of that group), whereas covariants transform appropriately, according to one of
the representations of the group that is not the singlet.

5.1 Covariant Classification for Three Qubits

We have seen the conventional classification of three-qubit entanglement in sec-
tion 4.1 The quantities used there to classify three-qubit entanglement are not
manifestly SLOCC' invariant. While the three-tangle happens to, in fact, be
SLOCC invariant, the local entropies are only LOCC invariants. [40]

The classification of three-qubit entangled states can also be constructed ex-
plicitly using invariant and covariant quantities. This was done by the authors
in [40], and is summarised here as a prelude to the discussion on the four-qubit
entanglement classification, which is the main focus of this section.

Note that not all invariants that can be constructed for the SLOCC' group action
SL(2,C) x SL(2,C) x SL(2,C) are necessary for the entanglement classification.
First, it is useful to note that one of the SL(2,C) invariant tensors is €45, which
follows from e 4p — Sa™ Sp™eprn = det(S)eap (Where the summation is implicit )
by properties of the Levi-Civita Tensor, and det S = 1 as we are considering
S e SL(2,C).

In order to be consistent with the treatment of the four-qubit case in the following
section, we adopt the notation given in [41].

Writing the Quantum State as a trilinear form

|\I/> = Zaijkwixjyk s (511)
ijk

the invariants and covariants can be written as polynomials in the coefficients
a;jr and variables w;, x;,yx. The convention is to use a letter Xpgr tO denote
the covariants, where the X indicates the degree in the coefficients a;j; (where
A =1,B =2, ..) and the subscripts p,q,r indicate the degree in the variables
w, x,y. The superscript serves to distinguish covariants that otherwise have the
same properties and would be represented by the same symbol using the notation
introduced above.
The authors in [40] construct three covariants quadratic in the coefficients. To
this end, note that a covariant quantity quadratic in a;;, transforms as a repre-
sentation contained in

(2,2,2) % (2,2,2) = (3+1,3+1,3+1) , (5.1.2)

such that we have dim = 64 on both sides.

The right hand side (3 4+ 1,3 + 1,3 + 1) includes all combinations, e.g.
(3,1,1),(1,3,3),(1,1,1) and so forth.

The covariants quadratic in the coefficients constructed by the authors (in their
notation called 4~ ), expressed in the notation introduced above, are then
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B1By _CyC: A A A A A
Bago = €777 a4, B0y QA By W W = (7 >A1A2w tw?,

C1Co AL A Bi, B B B, B
By = 712" a4, 0,04, B, 1T = (7 )313256 tr, (5.1.3)

A1As _BiB Ci c C1. C
Booe = ™27 24, 8,0, Qs By MY TP = (7 )01029 Y

where v, v, 4% is the original notation used by the authors which will be useful

in constructing other covariants.

These transform as the (3,1,1) , (1,3,1) and (1,1, 3) respectively, and are di-
rectly related to the local entropies.

Also necessary for a classification is a covariant cubic in the coefficients. This co-
variant is the triple product, which maps a state into another, both transforming
as a (2,2,2), and is given by

T (U, ¥, ¥) = TypcwzByc . (5.1.4)

It can be defined in three equivalent ways in terms of the 7" given in equa-

tion ([5.1.3)) as

AlA A A3, .By,,,C As_ .By,,C
Clll =& 2aAlBlcl (7 )A2A3 wPx 13/ b= TASBlclw ‘x 1y !
B1B B Ay, B3, C A,,.Bs, C
=204, 5,¢y (’y )Bngw L7y c = Ty, pyoyw™ a3yt (5.1.5)
C1C C Ap,.B1,,C Ay, By, C
=3 2aA131C’1 (’)/ )020311) Ly 1y 3 :TAlB1Cg'LU Iy 1y 3 ,

where we have again adopted a different notation and related it to the Typc used
by the authors in [40].

Finally, the last covariant necessary to complete a classification of three-qubit
entanglement is actually an invariant. This is the quartic norm ¢(¥), which is
equivalent (up to pre-factors) to Cayley’s Hyperdeterminant (and the 3-tangle)
we’ve met earlier, as

q(\I/) = —2Det aABC - (516)

These are all the necessary ingredients for the covariant three-qubit classification,
which can be seen from table 2
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Table 2: Covariant Classification of Three-Qubit Entanglement

Class  Vanishing Non-Vanishing

A-B-C v v
A-BC  T(¥,V, ) A A
B-AC  T(W, ¥, ) ~B
C-AB  T(U,7,0) ~C

W q(U T(U, ¥, ¥)
GHZ — q(\0)

An important feature of this classification is the hierarchical relation between the
individual covariants. The vanishing of covariants as one moves up in the hierar-
chy (down in the table) implies the vanishing of all previous ones. For example,
the vanishing of T'(¥, W, ¥) implies the vanishing of ¢(V), and the vanishing of
all v implies the vanishing of T(¥, ¥, ¥). Note that we have to consider the
vanishing of all v simultaneously for this hierarchy to work, as the classes A-BC,
B-AC and C-AB can be considered of the same rank in the hierarchy, as they
contain the same entanglement up to permutations of A B,C.

We have seen that the covariant classification is indeed feasible for the case of
three qubits, and the generalisation to larger systems is the next step. In the
following section, the same classification for a four-qubit system is discussed.

5.2 Covariant Classification for Four Qubits

We briefly discussed the families of entangled states as introduced in [29] and the
difficulties that arise as each family could contain states with obviously different
amounts of entanglement. This makes a finer classification given by conditions
invariant under SLOCC / ILO desirable. Investigating which covariants of the
SLOCC equivalence group vanish and which do not is one way of classifying
different kinds of states. There are a minimum of 170 such covariants for the
four-qubit case, which have been found in [41], and 4 invariant quantities [29, 38|
as was pointed out previously.

As mentioned in section in the three-qubit case this classification was equiv-
alent to the classification using the local entropies and the 3-tangle. A logical
next step is to attempt to obtain a similar classification for the four-qubit case.
As per the arguments laid out previously about the SLOCC' orbits in this case
being parametrised continuously, this is more involved if one wishes to consider
the parameters, given by the invariants, being free. As a starting point we will
focus on nilpotent orbits, which are such that all invariants vanish. These states,
and the proposed hierarchy taken from the Black Hole / Qubit correspondence,
were given in figure For this nilpotent subset, above mentioned difficulties,
such as finding families containing states with manifestly different amounts of
entanglement, don’t arise at first sight. It should be noted that the states in the
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hierarchy as given in the figure are representatives of these nilpotent orbits only.
A classification will necessarily have to include all states that lie on nilpotent or-
bits, meaning that arbitrary coefficients in front of each term will be introduced.
This will be further elaborated on in comparison to previous work in section [5.2.3]

5.2.1 General SLOCC Transformation

In order to analyse the different classes of entangled states it is helpful introduce a
notation for the state coefficients and generating SLOCC' transformations which
is unaffected by permutations.

To this end, we adopt the notation introduced in [14] where

V) = @[¢) > © = {Ag, A, Aij, Aijr, Aijua} (5.2.1)
where 7,7, k,l = 1,...,4, such that

1000 0 aoo11 @oio1  Qotto ap111
0100 Qo011 0 1001 1010 i 1011
= apoon, A; = 7Az'j = 0 , A= ,AO = 1111 ¢
0010 Qp101  A1001 a1100 1101
0001 apii0 Qiot0 @100 0 a1110
(5.2.2)

and the raising / lowering of indices indicates a dualisation, i.e. 0 <> 1.
Using these definitions, the SLOCC generating transformations are 14}, 42]

Ay Ao
A; CiAy + A;
A | — dijlekCle + dijlekAl + Al
Al dijlejCkCle + dijlejCkAl + dijlejAkl + A’
Al dijleinCkCle + dijleiCjCkAl + dijleiCjAkl + dijleiAjkl + A°
(5.2.3a)
A dijuD'DID*D'A°  +  dyD'DIDFAY +  dijDIDIAM + dij DTATRE 4 Ag
A, dijD?DEDIAY  + dijuDIDF AL + dij DI AF + A,
Aij — d,‘jleleAO + dijlekAl + Aij
Al DAY + Al
A° A
(5.2.3b)

where d;ju = |€iju| and C;, D; are the elements of the specific SLOCC' transfor-
mation.

In the following section some examples of transformations using this notation are
given, which will make their usage more apparent.
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5.2.2 Covariant Classification of Four-Qubits

The covariants in the four-qubit case were found in [41]. We introduced the
naming conventions used by the authors previously for the three-qubit case for
sake of consistency, and recap it briefly here. Given that a four-qubit Quantum
State |W) can be written as a quadrilinear form

1

W) = Z QWi Y2 (5.2.4)
4,4,k ,l=0

the invariants and covariants can be written as polynomials in the coefficients

a;ji and variables w;, x;, Y, 2.

Having introduced a general representation of SLOCC' transformations for four-

qubits along with helpful notation in section we can once more give some

examples, where we use the same notation as previously, the covariants being

given by letters indicating their degree in the coefficients together with subscripts

indicating the degree in the variables w, x, y, 2.

We note that the group of orbits given by

c2
— (5.2.5)
[SL(2,C)]
is parametrised by 8 free parameters (C2®4 having 2* = 16 complex, 32 real

degrees of freedom and [SL(2, C)]** having (22—1)* = 12 complex, 24 real degrees
of freedom, leaving 8 free real parameters). Thus these 4 complex parameters are
the total of four algebraically independent invariants we can construct for this
case. Those invariants are [41]

{Booom Diooos Diooos Foooo} : (5.2.6)

There is, in fact, a third quartic invariant (call it D3) which is not linearly
independent of the other two. [43] This invariant will become important later-on,
when constructing manifestly permutation symmetric invariant quantities.

In order to construct an example of a covariant quantity, note that the product
of the coefficients aapcpay vk transforms as a (2,2, 2,2) x (2,2,2,2) under G,

for which

(2,2,2,2) % (2,2,2,2)=(3+1,3+1,3+1,3+1), (5.2.7)

where we have dim = 256 on both sides. The right hand side in equation
again includes all combinations, e.g. (3,1,1,1),(1,3,3,3),(1,1,1,1) and so
forth. Contracting all indices of a quantity of second degree in the coefficients
a;j leads to the construction of the invariant Byogo

AM _BN _CK _DL
Boooo = aapepamnkr €777 e e (5.2.8)
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which, up to pre-factors, is equivalent to the Hyperdeterminant discussed earlier,
and as an invariant transforms as the (1,1,1,1).
An example of a covariant quantity of second degree can be built similarly,

Booze = aapepyamnr) € e NyCyt P2 (5.2.9)

which corresponds to the representation (1,1,3,3), and the symmetrisation in
the indices is necessary as the 3 is a symmetric tensor. As the SLOCC group
action also contains a re-shuffling of the individual qubits (e.g. A <> B), we are
not normally interested to differentiate permutation symmetric states and treat
a collection of permutation symmetric covariants of the same type as a single
covariant.

5.2.3 Covariant Classification of The Nilpotent Orbits of Four-Qubits

Consulting the full list of covariants in [41], we note that we can use them to
impose conditions on our hierarchy of nilpotent states in figure [2|

A similar classification has already been performed for a subset of the states of
interest in the present work in |1]. There, the authors consider a total of 11662
states which are states in the nilpotent orbits for which the coefficients a;ji; as
in equation belong to the set {0,1}. This set essentially encompasses the
representative state for each orbit up to the actions of local unitaries. Overall
multiplication by complex factors does not change the states as they are consid-
ering the projective subset of all states in the Hilbert space. Knowing that all of
these 11662 states will belong to one of the 8 orbits considered (as they are re-
lated by local unitaries acting on the representatives), the authors in 1] evaluate
all covariants for each state and find patterns that uniquely identify which orbit
a state belongs to. The results of their search are presented in table

We aim to prove that this classification holds in general for all states in the
nilpotent hierarchy, not just the subset of 11662 states considered by the authors,
and the procedure to achieve this is outlined in this section.

As we are talking about nilpotent orbits, we impose that all invariants given
in ([5.2.6)) vanish for the states considered.

We have then for the covariants
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B = {Bs200, B2020, B20o2, Bo220, Bo202, Boo22 }

C = {Cs111, Ciz11, Ciazi, Cruas}

C' = {03111 X Cizi1 X Crizi X 01113}
C" = {0111117 C'12111}

D = {D4000; Doa00, Dooao;s Doooa }

D’ = {D3200, D020, D2002, Do220, Do220, Do202, Doo22 } (5.2.10)
E = {E§111aEi311:E1131’ Eing}, 1=1,2,3

F = {FIQQO, and permutations}

F' = {Fy200, and permutations}

F" = { Fy00, and permutations}
L = {Leooo, Losoo; Looso: Looos }

and the conditions the hierarchy imposes on these are given in table 3| It should
be noted that the authors in [1] do not utilise the covariants C”, E, F', F” in their
classification, and we have thus far not found it necessary to consider them in
this discussion either.

Table 3: Conditions on Covariants in Nilpotent State Hierarchy

Family Canonical Form B C C/Covgr 1ant;)/ F I
Lape, A-B-C-D =0 =0 =0 =0 =0 =0 =0
Lo, A-B-EPR #0 =0 =0 =0 =0 =0 =0
Loy | AW A0 #0 =0 =0 =0 =0 =0
Lo,.10,.; | A-GHZ #0 #0 =0 #0 =0 =0 =0
Lus | L 0 #0 #0 =0 =0 =0 =0
L., Lo, 0 #£0 #0 £0 #0 =0 =
Los@g Los@g #0 #0 #0 #0 #0 #0 =
Lo.. | L., 0 £0 £0 £0 £0 £0 £0

Note further that the vanishing of lower order covariants implies the vanishing
of higher order covariants. For example, the vanishing of B also implies the
vanishing of C,D,.... Conversely, when going downwards in table which
corresponds to going upwards in the hierarchy, if a covariant was non-zero in the
previous case, it remains non-zero as one proceeds downwards in the table. For
example, for Ly, we still have that B # 0. Note that the exception to these
rules is C'.
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In order to verify that this classification also holds for a general state that is part
of the nilpotent hierarchy, evaluating the conditions the vanishing of a covariant
imposes on a general four-qubit state, and then checking that these conditions
imposed on a general expression for a higher order covariant make it vanish is
the first step. The second step is to find the conditions the vanishing of the
covariants imposes on a general state, and then showing that a general state
that satisfies these conditions is indeed SLOCC' equivalent to the corresponding
canonical representative state in the hierarchy.

The introduction of the product covariant C’, which is manifestly permutation
symmetric, suggests that one might also look at other manifestly permutation
symmetric quantities. In order to make the permutation symmetry of the invari-
ants manifest, one proceeds as described in [43], such that

Iz = BOOOO
16 = FOOOO
I® = M? + N? + P? (5.2.11)

I'2 = (M — N)(N — P)(P — M)
where M =D'-D2?, N=D2?-D® P=D*-D',

and we have omitted the subscript 0000 of D', D2, D3. 12,16 18 I'2 are the
manifestly permutation symmetric invariants.

To proceed with the proof of the covariant classification for the general case, yet
another notation needs to be introduced. Denoting the coefficients to the state
by aijri, such that

|0) = aiju |igkl) (5.2.12)

where the sum is implicit and ¢, 7, k,1 = 0,1, we can also denote the coefficients
by a decimal number, rather than binary, such that

Using this notation, it is first noted that a general four-qubit state can, without
loss of generality, be SLOCC' transformed into a Reduced State, for which
’\Ijred> = by — O, b1 — O, b13 — O, biy — 0, 1715 — 1 , (5214)

and all other b remain arbitrary.
The computations in what follows are most conveniently done using a computer
algebra system.
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A-B-C-D (Lup,) A#0,B=0

In the case of the separable state, we find immediately that the vanishing of B
imposes that the Reduced State be written as by3|1101) + |1111), which
is a separable state. More formally, it can be transformed into |1111) using the
transformation (D), given in equation (5.2.3b)), with D = (0,0, —b;3,0). The
vanishing of B also implies the vanishing of C as required.

A-B-EPR (L.,;,) B#0,C=0

Imposing the vanishing of C leads immediately to the condition on the reduced
state that by, be, by, bg = 0. Reapplying these conditions to the expression for C,
and ensuring the vanishing of I? and the non-vanishing of B, one then finds that
at least one of {bs, bs, bg, by, b1, b12} is not equal to zero. As the permutation
group acts transitively on this set, we can choose, say, b3 # 0 without loss of
generality. Making this choice then implies that the rest of the set vanish, leaving
the reduced state as b3 |0011) + [1111), which is indeed tri-separable as required.

A-W (La203@i) Ciz # 0, C3111 = 0, Ci311 = 0, C1131 =0, D =0

For this class we know that both B and C are non-vanishing, while C’ vanishes.
Notice, however, that both C and C’ are made up of the same components, added
together or multiplied together respectively. Thus, to satisfy these constraints, it
is enough to assume that one component of C is non-vanishing. Say we choose
C1113 to be non-vanishing. It is then helpful to notice that certain permutations
of the 7,7, k,l in the coefficients a;jp leave Cii13 invariant. It can be verified
that these permutations rotate the remaining components of C into each other,
but never into (113, such that we can apply these permutations without loss
of generality. It should also be noted that Dgggs is left invariant under these
permutations, while the other components of D are rotated into each other. From
the non-vanishing of Cj,13 and 12 it follows that by, by, by, bs = 0. We then find
that, bigbi2 = 0, where we can choose, say by = 0 since as part of our allowed
permutations we can rotate b1y and by5 into each other. Similarly, for bgbis = 0,
which we can also rotate into each other using allowed permutations that leave
b1 invariant, and choose, say bg = 0. Then from b3b;o = 0 both these possibilities
have to be considered. In the case of bjs = 0, the reduced state becomes

[rea) = b1 [0001) + b3 [0010) + b5 |0101) + by [1001) + [1111)
= (bl |000) + b3 [001) + b5 [010) + by |100) + [111) ) ®[1), (5.2.15)
(©)

which is bi-separable. Looking only at the A,B and C qubits, given in (o),
(regarding it as a three-qubit state), it is apparent that, up to normalisation,
this is a three-qubit GHZ-state added to a three-qubit W-state. To find out its
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entanglement properties, we evaluate the Hyperdeterminant or 3-tangle of (o),
which is given by

Det a = aja? + 4ayazasar; = b} + 4bsbsby . (5.2.16)

But we know the result of this, as this is exactly the expression we are left with
for Dggos, as all other components of D have vanished at this point. Hence we
know it must be zero, making the Hyperdeterminant equal to zero, making (o)
indeed a W-type state, such that the total reduced state is of the form W-D.
Considering the other case, choosing b3 = 0 rather than b5, implies from D
vanishing but 113 non-vanishing that by, = 0 and bs, by # 0, and the reduced
state then reads

|¥red) = bs |0101) + by [1001) + |1111)
= (51010 + by [100) + [111) ) ® [1) (5.2.17)

(00)

which is again clearly bi-separable, and (¢¢) is manifestly of the three-qubit W-
type, which can be seen more easily after bit-flipping the third qubit.

If one imposes that another one of the components of the C is non-vanishing
from the beginning, say (3111, one is indeed left with another state of the same
type, in this case A-W.

A-GHZ (L03@103@1) Dooos # 0, Daooo = 0, Dosoo = 0, Dooso = 0

This case proceeds nearly exactly as the A-W case discussed previously. At the
point where we arrive at the branching b3 = 0 or b;5 = 0, considering b1, = 0 we
arrive at the same reduced state

[¥red) = by [0001) + b3 [0010) + b5 [0101) + by [1001) + [1111)

(5.2.18)
= (b1 [000) + b3 [001) + b5 [010) + by [100) + [111) ) @ [1) .

The difference is that in this case D is non-vanishing rather than vanishing, from
which it follows that the Hyperdeterminant, given by

Det a = aja? + 4ayasasay = b3 + 4bsbsby, (5.2.19)

is non-vanishing rather than vanishing. The state is thus indeed of the GHZ-D
type.

Considering the other branch, where b3 = 0, we find from the non-vanishing of D
that b; # 0. It follows that b1 = 0 and b5, by # 0, and the reduced state becomes
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[¥rea) = by [0001) b5 [0101) + by [1001) + [1111)
= (b11000) + b5 [010) + by [100) + [111) ) @ |1) . (5.2.20)

(000)

The Hyperdeterminant evaluated for (¢ ¢ <) reduces further than in the previous
cases, to

Det a = ajaz = b7, (5.2.21)

which is non-zero, such that again the state is of the GHZ-W type.

Just as in the W-A case it also holds here that if one imposes that another one
of the components of the C is non-vanishing from the beginning, say C5111, one
is again left with another state of the same type, in this case A-GHZ.

Note that the choice of which component of the C is non-vanishing is also the
deciding factor in the end which single component of the D remains as non-
vanishing.

Continuing in The Hierarchy
The work on the rest of the classification is ongoing.

5.3 Experimental Verification of The Classification

In addition to the theoretical verification of the entanglement hierarchy of the
nilpotent four-qubit states as pursued in the previous section, it is desirable to
also verify this hierarchy of entangled states in an experiment. The idea of a
Quantum Games provides a possible approach to such an experiment that would
allow us to distinguish between them, as was done for the two and three-qubit
case in sections and 2.2l A game that reflects the hierarchy in terms of
improving the players’ chance of winning (collectively or individually) more the
higher up in the hierarchy their shared state is would be suited to that purpose.
Four-Player Quantum Games can be constructed in the same way we constructed
the Three-Player Games in section [2.2] if we consider the four-qubit equivalents
of the maximally entangled states, i.e. the W-type and the GHZ-type. However,
what we are interested in is constructing a game that reflects the hierarchy intro-
duced in figure 2] which proves more difficult. The standard strategies employed
to construct the three-player games do not lead to similar advantages using these
states, often even performing worse than a classical strategy. Changing the ques-
tion set, or the requirements on the answers alone does not solve this problem.
In fact, introducing larger question sets with more complicated requirements on
the answers given by the players leads to other complications, as it increases the
difficulty of obtaining and proving the optimal classical strategy and its perfor-
mance. There are other types of games to consider which serve well to establish
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the performance of the GHZ- and W-states in smaller systems, such as the Magic
Square Game or Kochen-Specker Game, see for example [44]. However, while
these games can be generalised to larger systems, they still remain geared to-
wards performing well when the parties share a GHZ-type state, and therefore
fail to distinguish the other forms of entanglement encountered in the SLOCC
classification. Another potential route to finding the desired games is to consider
not just the case of cooperative games as the examples above, but also com-
petitive games, opening up the area of Quantum Game Theory. Just as in the
games introduced above it can be advantageous in Quantum Game Theory for
the parties to share an appropriate entangled state, see [45] for a simple example
and [46| for a general explanation of the analogy between aspects of Game Theory
and Quantum Games. However, we face the same problem that these games, for
which a Quantum Advantage becomes apparent when a GHZ-state or combina-
tions of EPR pairs are utilised, are not straight-forwardly generalisable to show
similar behaviour when the parties share states from the nilpotent hierarchy.

6 Conclusion

We have reported on a first attempt at generalising the existing classification
of four-qubit states living on nilpotent orbits under the paradigm of SLOCC
Equivalence. This attempt was successful for the separable, bi-separable and tri-
separable cases, while the work on non-separable states is ongoing. The success
in those cases is very promising however, so that the approach of the SLOCC
covariant classification of entanglement, which has been proven to work well in
the three-qubit case, seems to indeed be generalisable to the four-qubit case, at
least for nilpotent orbits.

Of course, much more work on the topic is needed. The classification for the
nilpotent four-qubit states needs to be finalised. In addition, a scheme that can
be implemented experimentally to verify the hierarchy is highly desirable. It
is then still a long way from the classification of nilpotent orbits to a general
classification, valid for all possible four-qubit states. In this case, the structure
of entanglement classes is far more intricate. As an example, it has been shown
that there exists an ADFE-type correspondence between the SLOCC' orbits and
simple singularities of type Dy. [47] Looking further into the future, obtaining a
similar classification for even larger systems with more than four qubits is the
next step. This is likely to be a complicated undertaking, as the landscape of
SLOCC equivalence orbits and entangled states even with just five qubits will be
far richer than that of four qubits. Clearly, a more computationally efficient or
qualitative approach is needed for larger systems. However, as it stands we have
only one non-trivial data point, the three-qubit classification. In this regard a
complete understanding of the four-qubit case will provide much needed guidance
in any attempts to generalise the classification.
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