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Abstract

We address the issue of the origins of the primordial fluctuations is the Cosmic Mi-
crowave Background spectrum, the “seeds” of the Universe. We review the history of the
discovery and the origins of the CMB and explain the questions surrounding it. We move
on to consider famous cosmological “puzzles”, which served as an inspiration for the theory
of Inflation, reviewed subsequently. We discuss the mechanism and predictions of the the-
ory and move on to discuss some less famous but equally successful alternatives. We next
move on to consider the theory of Hořava - Lifshitz gravity together with its predictions,
issues and di↵erent versions. We discuss importance of three-point correlation functions in
the investigation of primordial fluctuations and attempt calculation of such for the theory
in question. We conclude with directions for future work.

1



Contents

1 Introduction - Standard Model of Cosmology 3

2 The Cosmic Microwave Background 4

3 Inflation 6
3.1 Motivations - Cosmological Puzzles . . . . . . . . . . . . . . . . . . . . . . 6
3.2 The Theory of Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Experimental evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Alternatives 10
4.1 Variable Speed of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Variable Speed of Sound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Modified On-Shellness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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1 Introduction - Standard Model of Cosmology

We begin the discussion by laying out the “Standard Model of Cosmology”, a framework
within which the rest of the work will be embedded [1]. We work under the axioms of
the Cosmological Principle - a homogeneous, isotropic, adiabatically expanding spacetime
governed by the Robertson - Friedman - Walker metric of the form

ds2 = dt2 � a2(t)

✓

dr2

1�Kr2
+ r2d⌦2

◆

, (1)

where d⌦2 = (d✓2+sin2 ✓d�2), a(t) is the scale factor representing the relative expansion of
the Universe, r is the comoving distance, which does not change in time due to the expan-
sion of space itself and the parameter K dictates the following three possible geometrical
scenarios:

K =

8

>

<

>

:

�1 negative curvature, open Universe,

0 zero curvature, flat Universe,

+1 positive curvature, closed Universe.

(2)

The evolution of the scale factor is governed by the Einstein equations:

1

a(t)

d2a(t)

dt2
= �4⇡

3
G(⇢+ 3p) , (3)

H2 +
K

a2(t)
=

8⇡

3
G⇢ , (4)

where H(t) ⌘ ȧ(t)/a(t) is the Hubble “constant”, p is the pressure and ⇢ the energy density
of the Universe. After some simple manipulation, we obtain the fundamental Friedman
equation, governing the expansion of the Universe [2]:

ȧ2(t) +K =
8⇡G⇢a2(t)

3
. (5)

A bit of further derivation leaves us with a piece of additional information - a conservation
law of the form

⇢̇ = �3ȧ(t)

a
(⇢+ p) . (6)

This can in turn be solved to give an equation of state of the form

p = w⇢ , (7)

with w a time-independent function. In the present case, we obtain:
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⇢ / a(t)�3(1+w) . (8)

We also define the concept of a “cosmological horizon”. Theory of Special Relativity limits
the possible speed of particle propagation to a speed of light. Since we assume the “Big
Bang” origin of the Universe, and hence its finite age, the distance which we can see is
limited by the maximum distance photon could have travelled throughout the lifetime of
the Universe. This is the so-called “Particle Horizon”, given by

dp = a(t0)

Z t0

ti

dt

a(t)
(9)

where t0 is a time at a particular point in the expansion and ti is the initial singularity
time.

The purpose of this work is a full investigation into the origins of the “seeds” of our
observed Universe - primordial anisotropies and non-Gaussianities in the spectrum of the
Cosmic Microwave Background. Understanding of the origins of this structure is of fun-
damental importance - these small variations in density of the very early Universe have
grown to become what is now known as galaxies, stars, planets and people. We are hence
aiming to answer the ambitious question about our own origins.

The work here is organised as follows. In section 2 we discuss the discovery, origins
and spectrum of the Cosmic Microwave Background and the meaning of all these features.
In section 3 we review the famous three “cosmological puzzles” which partially inspired
the development of the theory of Inflation, descibed next. We briefly discuss the recent
observational evidence in support of Inflation and in section 4 we ponder over alterna-
tive scenarios. In section 5 we introduce the theory of Hořava-Lifshitz gravity, a popular
proposal developed in 2009. Finally in section 6 we present original work completed for
the purpose of this project and attempt a direct application of Hořava-Lifshitz gravity to
the problem of near scale-invariance of the Cosmic Microwave Background spectrum. We
conclude with directions for further work and discussion in section 7.

2 The Cosmic Microwave Background

The 1965 discovery of a nearly isotropic Cosmic Microwave Background radiation by Arno
Penzias and Robert Wilson can be considered to be one of the greatest breakthroughts
in modern Cosmology, which has provided us with a wealth of previously unrealised data
and as many answers as new questions. In this section we briefly review the origins of the
background radiation, consider some of the implications of its existence and discuss the
anisotropies observed in its spectrum.

The Universe is expanding - hence, in accordance with classical thermodynamics of
an expanding fluid, we expect for it to have been denser and hence hotter in the past.
Following the expansion backwards in time, we reach the point where the temperature was
too high for electrons to be bound into atoms - we call this the recombination epoch. If we
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travel even further back in time we reach a point of temperature at which rapid collisions of
photons with free electrons would have kept radiation in thermal equilibrium with matter.
The black - body spectrum accurately describes the number density of photons in thermal
equilibrium with matter at hight temperature T and at frequency between ⌫ and ⌫ + d⌫
[1]

nT (⌫)d⌫ =
8⇡⌫2d⌫

exp(h⌫/kBT )� 1
, (10)

where h is the Planck’s constant and kB is the Bolzmann’s constant. As time went by,
the matter became cooler and less dense, but it can be shown that the spectrum remained
unchanged. For, suppose there exist a certain time, tL say, at which radiation went from
being in thermal equilibrium with matter to a free expansion. A photon of frequency ⌫ at
a later time t would have a frequency of ⌫a(t)/a(tL) at the time tL. The number density
of photons between frequency ⌫ and ⌫ + d⌫ at time t would be

n(⌫, t)d⌫ =

✓

a(tL)

a(t)

◆3

nT (tL)

✓

⌫
a(t)

a(tL)

◆

d

✓

⌫
a(t)

a(tL)

◆

, (11)

where the cubic factor arises from the dilution of photons due to the cosmic expansion.
Using this expression in (10) we see that the factors of a(t)/a(tL) cancell out everywhere
except for the exponential, such that

n(⌫, t)d⌫ =
8⇡⌫2d⌫

exp(h⌫/kBT (t))� 1
= nT (t)(⌫)d⌫ . (12)

The photon density retains the black - body spectrum, with the redshifted temperature
T (t) = T (tL)a(tL)/a(t). The fact that the Universe should be filled with black-body radi-
ation had been first realised in 1940s by George Gamov [3] and collaborators [4] and the
temperature of the radiation had been calculated to be around 3 K. Famous 1965 discov-
ery and subsequent measurements have confirmed this prediction, and Cosmic Microwave
Background is currently the most precisely measured black body spectrum observed in
nature [5].

At the time of initial discovery, Cosmic Microwave Background was thought to have
been perfectly isotropic. Indeed, this is the main reason lying behind its detection - Pen-
zias and Wilson recognised the radiation as “background” as it was independent of the
direction of observation. Of course, the spectrum of the Cosmic Microwave Background
does present small variations in direction and those deviations from isotropy provide some
of the most important pieces of information about the evolution of the Universe. We
divide the anisotropies into two categories, depending of their origins. Hence we talk
about the “late-time” or “secondary” anisotropies, arising as a result of Earth’s motion,
scattering of photons by intergalactic electrons, known as the Sunyaev-Zel’dovich e↵ect
and “primordial” anisotropies, which have their origins in the early Universe - at and
before the surface of last scattering. These primordial density fluctuations are consid-
ered to be the “seeds” of structure observed in today’s Universe. A quest for obtaining
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a satisfactory explanation for these early structures has motivated much of the modern
and most groundbreaking research in Cosmology. Any scenario aiming to achieve such
an explanation must however face an important problem: the spectrum of the Microwave
Background is nearly homogeneous. Moreover, any inhomogeneities must be predicted to
be nearly scale-invariant, meaning that the amplitude of primordial fluctuations is approx-
imately constant. If that was not enough to deter any attempts, observational evidence
provides us with an extremely well-defined amplitude measurement - accurate to one part
in 100,000. Any wannabe structure-formation scenario must essentially provide all those
details with a painstaking accuracy.

3 Inflation

One of the most acclaimed and popular proposals aiming to explain the early structure
formation mentioned in the previous section is the Theory of Inflation. In this section we
review motivations behind the original proposal of 1981, introduce the theory itself and
explain how it solves some of the most famous cosmological “puzzles”. Finally, we discuss
the recent experimental evidence for the proposal.

3.1 Motivations - Cosmological Puzzles

Grand Unified Theories of particle physics predict existence of a simple symmetry group
unifying all particle interactions, most famously that of SU(5) after Georgi and Glashow,
which, at a certain energy scale of orderM ⇡ 1016 GeV, is spontaneously broken to the well-
known symmetry group of the Standard Model, namely SU(3)⇥ SU(2)⇥ U(1). If proved
to be correct, such scenario would allow for the existence of scalar fields carrying non-zero
magnetic charge - magnetic monopoles. The argument is as follows [1]: the scalar fields
before the symmetry breaking would be causally disconnected, and hence uncorrelated at
distance larger than the horizon distance, which is the furthest away the light could travel
since the initial singularity. In the standard Big Bang Cosmology the horizon distance for
early times was of the order of

t ⇡ 1
q

G (kBT )
4
. (13)

The nuber density of monopoles produced at the time where the temperature dropped
down to M/kB is of the order of

t�3 ⇡ �GM4
�3/2

, (14)

which is smaller than the photon density of M3 by a factor of order (GM2)3/2. At the
Grand Unification Scale of 1016 GeV and with the Newton’s constant G ⇡ (1019 GeV)�2

this factor is of order 10�9. With at least 109 Cosmic Microwave Background photons per
nucleon today, this would mean the observable density of at least one magnetic monopole
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per nucleon today. As we cannot observe any at all, something must be wrong with our
reasoning. Some argue that this argument points towards the fact that the model of
Cosmology used here is not entirely correct. Others question the “reality” of this problem,
as it is based on the assumption of existence of the Grand Unification, which itself has not
yet been proven to exist beyond any doubt. As such, we deem this puzzle to be of least
severity, however still, significantly, exposing incompleteness in our understanding of the
early Universe.

The second puzzle is the so-called “flatness problem”. Observational evidence coming
from Type Ia supernovae points towards a vanishing spatial curvature parameter ⌦K , where

⌦K =
K

a20H
2
0

, (15)

which is also a value favoured by the data from the Cosmic Microwave Background. Al-
though oservationally there is still some room for a small, non-vanishing ⌦K , it is considered
safe to assume |⌦K | < 1. According to Hubble equation, ⌦K is just a present value of a
dimensionless, time-dependent curvature parameter

⌦K(t) =
K

a2H2
=

K

ȧ2
(16)

and we know that in the matter dominated universe, from the time the temperature
dropped to about 104 K until present a(t) has been increasing like t2/3, so ⌦K must also
have been increasing as t2/3 or as T�1. Thus if |⌦K | < 1 as observed, then at 104 K the
curvature parameter could not have been greater than 10�4. At earlier times, for exam-
ple in the radiation era, a(t) has been increasing as t1/2, leading to the conclusion that
the curvature parameter was at most about 10�16 at the temperature of 1010 K and even
smaller at earlier times. The smallness of the curvature or the flatness of the Universe is
not in itself a problem or iconsistency, but nothing in the current model accounts for such
a small value of the curvature and the physical reasons behind it seem unclear.

The final, most ”serious” puzzle is the so-called Horizon Problem. The observations of
the Comsic Microwave Background show its high degree of homogeneity and isotropy. The
horizon size in matter- or radiation-dominated Universe is of order t, which, as the scale
factor a(t) has been increasing as t2/3 since the time of last scattering, at the time of last
scattering was of order of

dH ⇡ 1

H0 (1 + zL)
3/2

. (17)

This means that the horizon at the time of last scattering at present subtends an angle
of order

dH
dA

⇡ 1p
1 + zL

, (18)

where
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dA ⇡ 1

H0 (1 + zL)
(19)

is the anglular diameter distance to the surface of last scattering. With the current value
of the cosmological redshift of zL ⇡ 1100 this gives the angle of 1.6o. Hence in a matter
or radiation dominated Universe no physical influence could have smoothed out initial
inhomogeneities and brought points at a redshift zL that are separated by more than a few
degrees to the same temperature.This is in contradiction with our initial statement about
the isotropy of the Cosmic Microwave Background.

3.2 The Theory of Inflation

Proposed by Alan Guth in 1981 [6], the theory of Inflation provides a modification to
the “standard model” thus solving the aforementioned cosmological puzzles. The proposal
claims that in order to answer to the horizon and flatness problems, prior to radiation-
or matter-dominated periods, the early Universe has been dominated by slowly varying
vacuum energy and the scale factor a(t) must have undergone a rapid, exponential ex-
pansion by a factor eN . The particle physics details of the process have not yet been
entirely specified, but the hypothethical scalar field responsible for the inflation has been
dubbed as “inflaton”. The original model, as proposed by Guth, based on the idea of a
delayed first-order phase transition in which the scalar field was trapped in a local mini-
mum of a potential and then leaked through the potential barrier in order to slowly roll
down towards the true minumum of the potential. The energy of empty space would have
remained constant while the scalar field was trapped, which corresponded to a constant
rate of expansion and a(t) growing exponentially [1]. After leaking through the potential
barrier the roll of the scalar field towards the global minimum corresponds to the present
Universe. This concept, however, has soon encounteded some problems. The transition
from two phases could not have occured everywhere simultaneously but instead came in
small “bubbles” of the true vacuum, which have expanded into the background of the false
vacuum where the scalar field has been trapped. The latent heat released in this phase
transition would have been trapped in the bubble walls, leaving the interior of the bubble
empty and as a result leading to a high degree of inhomogeneity and anisotropy. Guth’s
suggestion that the bubbles could have merged has also been rejected on the basis of the
argument that the background false vacuum space must have continued to inflate so that
the bubble walls were moving away from each other too fast to have ever joint.

The initial idea has soon become replaced by the so-called “new inflation” as devised by
Linde, Albrecht and Steinhardt in 1982. In this modification, the phase transition occurs
forming bubbles again, but the potential is modified such that for low temperature the
potential barrier is very small and hence the scalar field in the interior of the bubble starts
near the zero point. The field rolls down slowly in the potential as the Universe undergoes
expansion. The field energy is eventually converted into ordinary particles filling the bubble
and our observable Universe is supposed to fill in one small part of such bubble.
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We can now look into how the theory of Inflation resolves each of the three cosmological
puzzles. As for the monopoles problem, the period of exponential expansion occuring before
the time the monopoles were produced would have greatly extended the horizon and the
expansion occuring after the monopole production, but before photon creation in reheating,
would have reduced the monopole to photon ratio. The observational limit on numer
of magnetic monopoles per photon is currently of order of 10�39 which provides a good
indication for the number of inflation e-foldings to be N = 23. As for the flatness problem,
during the expansionH = ȧ/a would have been roughly constant, hence ⌦K(t) = |K| /a2H2

would have been decreasing roughly like a�2. If ⌦K(t) was of order of unity at the beginning
of inflation, then ⌦K(tI) at the end of inflation would have been of order e�2N and hence
today we would have

⌦K(t0) = ⌦K =
|K|
a20H

2
0

= e�2N
✓

aIHI

a0H0

◆2

. (20)

Hence the flatness problem is solved completely if the inflation has the lower bound of

eN >
aIHI

a0H0
(21)

and calculations involving the observed density of the Universe locate that value atN > 62.
Finally, the horizon problem finds its solution in the theory of Inflation as well. During the
inflationary period the observable part of the Universe would have occupied a tiny space
and there would have been enough time for everything in this space to be homogenised.
To quantify what it means for Inflation again, recall that the size of the horizon at the
time tL of last scattering is

dH(tL) = a(tL)

Z tL

t⇤

dt

a(t)
(22)

with t⇤ being the time of the beginning of Inflation. We assume that during inflation a(t)
increased exponentially at a rate HI so that

a(t) = a(t⇤)exp (HI(t� t⇤)) = a(tI)exp (�HI(tI � t)) (23)

where tI is the time at the end of Inflation. Using N = HI(tI � t⇤) and noting that
to observe the hight degree of isotropy in the Cosmic Microwave Background we need
dH(tL) > dA(tL) we obtain the same condition again:

eN >
aIHI

a0H0
. (24)

3.3 Experimental evidence

The already-famous and slightly controversial announcement of the BICEP2 experiment’s
results in March of 2014 [7] left the entire community buzzing about confirmation of one

9



of the most important theories in modern physics - Inflation. The experiment, running on
the South Pole between 2010 and 2012 aimed to detect signs of inflationary gravitational
waves in the B-mode power spectrum. Theory of Inflation predicts production of primor-
dial background of stochastic gravitational waves of a characterisctic spectral shape which
are believed to have imprinted a tracable polarization pattern on the Cosmic Microwave
Background. This polarization was predicted to contain a “curl” or a “B-mode” at angu-
lar scales that are not accessible via primordial density perturbations. The amplitude of
the signal depends directly on the energy scale of inflation, hence its detection provides
a unique confirmation both for the theory and the associated energy scale. The group
behind BICEP2 has announced detection of inflationary B-modes to accuracty of about
5�, which is ranked within “discovery” range. Some doubt has been cast upon the result
almost immediately, however. Amongst other publications, Flauger, Hill and Spergel have
questioned the validity of the result, sugesting the signal might have been a consequence of
combined Galactic foreground noise and lensed E-mode signals [8]. The current consensus
is that more data is needed - that includes both further BICEP experiments as well as
additional information gathered by Planck Satelite, amongst others. As such, Inflation has
escaped the “discovery” certainity range and yet remains an open problem.

4 Alternatives

However promising it may be, until proven correct beyond all doubt, the theory of Inflation
leaves space for theoretical alternatives. There exist a few competing scenarios which aim
to explain the early structure formation without the need for inflationary expansion and
possibly solve some of the other outstanding problems along the way. In this section, we
review several of these alternative theories and discuss their consequences and predictions.

4.1 Variable Speed of Light

Dubbed as controversial and heretic, Variable Speed of Light theories base on abandoning
the special-relativistic postulate of constancy of speed of light c in vacuum [9]. There
exist several di↵erent ways of obtaining this e↵ect. First, the so-called hard breaking of
Lorentz symmetry claims existence of a preferred frame in physics and speed of light which
is variable in time, usually in the very early Universe. Both the matter content of the
Universe and the laws of physics evolve in time, while the dynamical postulate claims that
the Einstein’s field equations remain valid. The second type are the Bimetric VSL theories,
postulating existence of two independent metrics - one for gravity and one for matter, such
that the speed of graviton is di↵erent from the speed of massless matter particles. Other
proposals include color-dependent speed of light or space-time varying c aiming to preserve
Lorentz invariance. In any case, those theories not only successfully explain some of the
cosmological puzzles, make contact with quantum gravity, but are also able to reproduce
the required Harrison-Zeldovich spectrum of Gaussian fluctuations.

Let’s consider the mechanism for production of the primordial fluctuation spectrum
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from a scalar-tensor bimetric gravity theory, as outlined in [9] and [10]. We consider a
scalar field � minimally coupled to the gravitational field described by the space-time
metric gµ⌫ via the matter metric

ĝµ⌫ = gµ⌫ +B@µ�@⌫� , (25)

such that the total action reads S = Sg + S� + ŜM . Sg is the usual gravitational Einstein-
Hilbert action while the scalar action reads

S� =
c4

16⇡G

Z

d4x
p�g

✓

1

2
gµ⌫@µ�@⌫�� V (�)

◆

. (26)

In a frame where a fixed speed of light is chosen, one observes dynamically-determined
speed of gravitational disturbances vg. In a scenario where vg ⇡ 0, the fluctuations in � have
been calculated and a spectral index of ns ⇡ 0.98 has been found. The tensor fluctuations
have been calculated with nt = �0.027 and the tensor to scalar ratio can be shown to satisfy
r � 0.014. The value of these parameters can be an important distinguisher between the
bimetric theory and the theory of Inflation.

4.2 Variable Speed of Sound

As discussed in [11], a theory with a varying speed of sound can act as a proxy for a
varying speed of light theory. A theory containing two metrics - one for massless particles
and one for gravity, distinguishes the speeds of the two. In such setup, a frame in which
gravity is una↵ected can be defined, forcing “light” to travel much faster in such frame.
A new mechanism for producing scale-invariant fluctuations has been proposed basing on
the varying speed of sound hypothesis. We consider here unmodified Einstein gravity with
w > �1/3 and assume that the speed of sound is density-dependent and diverging with
conformal time like

cs / ⌘�↵ . (27)

The density fluctuations are described by a modified harmonic oscillator equations. In
therms of the curvature perturbations ⇣, the equation for the related variable v = a⇣ is
that of Einstein gravity:

v00 +



c2sk
2 � z00

z

�

= 0 , (28)

where z / a/cs. This equation can be exactly solved after employment of Bessel functions,
but a WKB approximation helps to establish initial conditions of the problem and it gives

v ⇠ eik
R
csd⌘

p
csk

⇠ e��csk⌘

p
csk

, (29)

with � = 1/(↵ � 1) and up to a phase. Equation (28) can be transformed into a Bessel
equation, yielding a result
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v =
p

�⌘ (AJ⌫(�csk⌘) + BJ�nu(�csk⌘)) (30)

with A and B k-independent numbers of order 1 and

⌫ = �

✓

↵� 3(1� w)

2(1 + 3w)

◆

. (31)

Now it is easy to derive that the scale-invariance requirement of

k3⇣2 = const. (32)

translates to ⌫ = 3/2, i.e.

↵ = ↵0 = 6
1 + w

1 + 3w
. (33)

If we wish to rephrase this requirement, we discover that it leads to cs / ⇢ for all w. We
can also derive the size of the amplitude of fluctuations for near scale-invariant spectrum.
Considering a curvature fluctuation ⇣ which is time independent outside of the horizon,
one obtains [12]

k3⇣2 ⇠ (5 + 3w)2

1 + w

⇢

M4
P lcs

. (34)

If we rephrase this requirement in terms of characteristic density rho⇤ which triggers the
divergence of cs, we discover that

k3⇣2 ⇠ (5 + 3w)2

1 + w

⇢⇤
M4

P l

⇠ 10�10 . (35)

4.3 Modified On-Shellness

As reviewed in [13], using a class of theories with higher order spatial derivatives it may be
possible to obtain deviation from strict scale invariance of primodial density fluctuations.
Under assumption that the gravitational equations are those of Einstein as laid out in
equations (3) and (4), the most important equation governing cosmological perturbations
is:

v00 +



c2k2 � a00

a

�

v = 0 . (36)

The curvature perturbation is then given by ⇣ = �v/a while the modes are labelled by
a comoving k, the conserved charge associated with translational invariance. The physical
wave-number of the mode, however, is given by p = k/a. Since we are considered a general
class of higher-derivative theories, the dispersion relation associated to the theory has
neccesarily been modified as well, and is of form

E2 = p2
�

1 + (�p)2�
�

. (37)
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The speed c can be found from the above as

c =
E

p
/
✓

�k

a

◆�

, (38)

and hence, considering a fixed comoving mode we see that the frequancy dependent speed
of light translates into a time-dependent speed of light.

The dispersion relation of the type (37) has long been known to be able to produce a
scale-invariant spectrum of primordial fluctuations without need for Inflation [14]. Perhaps
more intestring is the perspective of embarking on a concrete higher-derivative theory
streaming from di↵erent motivations completely and taking a closer look at how it tests in
the context of primordial non-Gaussianities. This is what we move on to next.

5 Hořava-Lifshitz gravity

This section introduces the theory of Hořava-Lifshitz gravity and it is based on authors
original publication of [15] and references [16] and [17]. One must distinguish between
canonical approach to the theory, which involves a classical split of space-time into space
and time components, as discussed in this section, and covariant approach, aiming to
preserve four-dimensional covariance of General Relativity, which we do not discuss within
the scope of the present work.

5.1 Motivations

General Relativity is an extremely successful and celebrated framework which together
with the quantum theories of electrodynamics, chromodynamics and flavordynamics suc-
cessfully explains a great majority of phenomena observed in nature. However, there exist
several motivations for unifying the two, yet incompatible, ways of describing interactions
into one complete framework, which would provide a consistent description of all known
processes. The first, probably most obvious motivation is the striving of scientific commu-
nity to obtain the unification of existing theories into so-called “Theory of Everything”.
Since all the remaining interactions have already been unified by the way of the Standard
Model of particle physics, it is not unreasonable to expect gravity to follow suit. All the
attempts to construct a coherent “semiclassical” theory, where gravity is ruled by clas-
sical theory and all the other fundamental forces are viewed in the quantum framework
have failed so far. The second motivation may seem more solid, since it derives from
experimental results and observations. Despite its acclaim, General Relativity fails to ex-
plain gravitational behaviour near singularities, the Big Bang being one of them. In the
small-scale, high-density limit of the Big Bang, the frameworks of General Relativity and
Quantum Mechanics need to be simultaneously applicable. Quantum e↵ects remain most
relevant in such an environment due to the small scale involved while gravitational e↵ects
become significant as a result of high mass density. It this context, the theory is shown to
be incomplete.
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In order to achieve unification between the two theories, one would require for gravity
to be quantized (accommodated within the mathematical and conceptual frameworks of
quantum theory). It is here, that the struggle begins; General Relativity seems to resist
all know quantization techniques, yielding non-informative divergences and infinities as a
result of the process. Indeed, if we consider the general relativistic action of Einstein and
Hilbert

SEH =
2

2

Z

d4x
p
gR , (39)

and analyse the mass dimensions of its constituents we note that

2 = 8⇡G = (MP l)
�2 . (40)

is not only a mass-dimensionful quantity, but has negative mass dimension. The stan-
dard argument involving the computation of the superficial degree of divergence tells us
that the theory is non-renormalisable and hence computations will yield infinite results.

The only two possible steps from this discovery is either giving up the idea of quantum
gravity altogether or modifying the original theory in order to allow for quantization. Since
either way a change of an approach is necessary, considered in this work is a proposed
theory, known as Hořava-Lifshitz gravity, stated by Prof. Petr Hořava in 2009.
The central topic of this report is the theory of Hořava-Lifshitz gravity and the work
herein has been organised as follows. In section 2 a brief introduction to the concept of
renormalization is presented, followed by the explanation of why General Relativity is not
renormalizable. Hořava’s theory is then discussed, together with all its assumptions and
consequences and its power-counting renormalizability is shown. The section concludes
with a worked example of an application of the theory, used in obtaining rotationally
invariant black hole solutions. In section 3 the covariant extension of Hořava-Lifshitz
gravity is presented and its applications to spherically symmetric, static solutions are
discussed. In section 4 the application of covariant Hořava-Lifshitz gravity to modelling
galaxy rotation curves is presented, the results of which lead to paper [33]. Section 5
contains the discussion of results obtained and section 6 contains conclusions of the work,
the summary of obtained results and proposed areas for further study.

5.2 The action

We begin with the famous Einstein-Hilbert action in the units of c = ~ = 1

SEH =
1

16⇡GN

Z

d4xR
p�g (41)

with GN Newton’s gravitational constant, R Ricci curvature scalar and g = detgij the de-
terminant of the metric tensor and by noting that it contains only the lowest order terms in
curvature expansion [16]. The natural first step towards extending the theory would be to
add higher order terms to the expression and investigate properties and renormalizability
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of such an action. As summarised by S. Weinberg in reference [17], there exist three known
approaches towards constructing a renormalizable, higher derivative theory of gravitation.
The first approach includes adding matter fields and imposing further symmetries on the
theory, in the hope of obtaining cancellation of divergences. The second includes renor-
malization through rearrangement of the perturbation series and comes under the name of
“resummation”. The final approach discusses existence of composite gravitons.

The discussion below focuses on the second approach, that of resummation. By adding
terms of higher order in curvature to Einstein-Hilbert action of equation (41), one modifies
the Lagrangian density to the form of [17]

L = � 1

16⇡G

p
gR� g1

p
gR2 � g2

p
gRµ⌫R

µ⌫ , (42)

where g1, g2 are coupling constants and where the metric in question is treated under a
decomposition into a flat “background” Minkowski metric plus fluctuations quanta

gµ⌫ = ⌘µ⌫ +
p
32⇡Ghµ⌫ . (43)

Instead of treating the last two terms of equation (42) as perturbations and expanding
in powers of g1 and g2, upon which the standard divergences would appear, one sums
up the contributions to the quadratic curvature terms which in turn are quadratic in the
gravitational field hµ⌫ .

The modified graviton propagator dressed in quantum loop corrections can now be
expressed as a resummation of terms corresponding to one - loop Feynman diagrams.
If each graviton propagator corresponds to a term of 1/k2 and each loop to a term of
↵g1Gk4 (where ↵ is some dimensionless function of the ratio g2/g1), one can construct a
full expression for graviton propagation,

1

k2
+

1

k2
↵g1Gk4 1

k2
+

1

k2
↵g1Gk4 1

k2
↵g1Gk4 1

k2
+ ... =

1

k2 � ↵g1Gk4
, (44)

where the summation is obtained by using the geometric series. The cost of this modifica-
tion, however, cannot be overlooked. The modified graviton propagator can be decomposed
as

1

k2 � ↵g1Gk4
=

1

k2
� 1

k2 � 1/↵g1G
. (45)

The expression is dominated by the 1/k4 term in high energy regimes but at the same time
clearly exhibits an additional pole at k2 = 1/↵g1G. This corresponds to a new massive
degree of freedom which is forbidden by the theory due to the requirement for a graviton to
be massless, which in turns results from the scale of gravitational interaction being infinite.
Those so called ghost excitations cause violation of unitarity of the theory and hence such
a straightforward extension of General Relativity must be abandoned in favour of a more
sophisticated approach, as discussed next.

As observed above, a naive addition of higher derivatives to the action evokes ghost
propagation. It ought to be noted however, that it is solely due to inclusion of higher
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order derivatives in time coordinate; these constitute additional kinetic terms, and hence
are the truly problematic elements. In the classical theory of General Relativity, space
and time are di↵eomorphic (transition maps between coordinate patches on space-time
manifold are di↵erentiable isomorphisms), it is impossible to include additional spatial
derivatives without including the temporal ones. Hořava’s proposition includes breaking of
four-dimensional di↵eomorphism of General Relativity, where time and space coordinates
mix, in favour of a model exhibiting anisotropy between space and time. The way of
inducing space and time anisotropy is through defining an ultraviolet fixed “Lifshitz” point
of renormalization group transformations which is invariant under the scaling �!x ! b�!x
and t ! bzt, where z is the critical exponent. [18] In this new choice of scaling, the mass
dimensions of time and space change to

[time]=�z and [space]=�1 .

With such a choice, it is possible to add higher order spatial derivatives to the action,
hence making it renormalizable, without adding higher order time derivatives and evoking
ghost degrees of freedom.

The natural metric to impose on such a system will be the one which separates time as
a preferred direction. The metric complying with those conditions comes under the name
of Arnowitt-Deser-Misner (ADM) decomposition of space-time [19],

ds2 = �c2N2dt2 + gij(dx
i +N idt)(dxj +N jdt) , (46)

where N is the lapse function, N i is the shift function and gij is the three-dimensional
spatial metric of signature (+++). In this decomposition and with z = 1, Einstein-Hilbert
action of general relativity takes the form of

SEH =
2

2

Z

dtd3x
p

g(3)N
�

KijK
ij �K2 +R(3)

�

, (47)

where the extrinsic curvature,

Kij =
1

2N
(ġij �riNj �rjNi) , (48)

g(3) is the determinant of the spatial metric, dot represents time derivative and R(3) is the
curvature scalar in three dimensions representing potential for graviton.

The action proposed by Hořava in his paper of [15] is build basing on symmetry principle
and taking care of keeping the dimensions correct. Keeping the dynamical critical exponent
z arbitrary, the most general action takes the form of [16]

SHL =
2

2

Z

dtd3x
p

g(3)N(KijK
ij � �K2 � V (gij, N)) , (49)

where V is the potential containing higher order spatial derivatives and can be expressed
in terms of the Riemann tensor and its derivatives.
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In the expression above, � is a new free coupling of the theory, which needs to be equal
to 1 if General Relativity is to be exactly recovered in the infrared limit. Various studies
on the possible constraints on the value of this parameter both from the mathematical
point of view [20] and the experimental perspective [21], [22] have been done up to now,
although there is no symmetry in the theory which would impose this value to be exactly
1. Throughout the majority of this work, the value of � = 1 is assumed, unless explicitly
kept unspecified in the formulas.

Focusing for a moment on the specific case of z = 3, one notes the mass dimension
[V ] = 6 and the fact that the mass dimension of the Riemann tensor [R] = 2. As a result,
one needs to introduce all possible terms of mass-dimension 6 into the potential. Keeping
in mind that in three dimensions the Weyl tensor vanishes automatically and the Riemann
tensor can be decomposed into the Ricci tensor, Ricci scalar and the metric, allows one to
arrive at the following list of possible summands in the potential:

�

(Ricci)3 , [r (Ricci)]2 , (Ricci)r2 (Ricci) ,r4 (Ricci)
 

.

Clearly, there exist a number of possible terms that include the above and hence could be
added on to the potential, generating di↵erent versions of the theory. In what follows, the
discussion in reference [16] is followed and two possible versions of the theory are discussed.

5.3 Detailed balance

One of the proposed symmetries V could exhibit comes under the name of “detailed bal-
ance” and originates from condensed matter systems. It requires for V to be derivable
from a superpotential W

V = EijGijklE
kl

Eij =
1p
g

�W

�gij

Gijkl =
1

2
(gikgjl + gilgjk)� �

1� 3�
gijgkl (50)

where W is a Euclidean action in D spatial dimensions. Such a requirement provides a
way of obtaining a (D + 1)-dimensional action from a D-dimensional one, and essentially
imposes the potential to be of the form [16]:

V =
4

w4
CijC

ij � 4µ

w2
✏ijkRijrjR

l
k + µ2RijR

ij � µ2

(1� 3�)

✓

1� 4�

4
R2 + ⇤WR� 3⇤2

W

◆

,

(51)
with the Cotton tensor C ij playing the role of the Weyl tensor in three dimensions and
defined as
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C ij =
✏iklp
g
rk

✓

Rj
l � 1

4
R�j l

◆

, (52)

and w, µ and ⇤W couplings of suitable dimensions.
This restriction significantly reduces the number of terms one needs to include in the

action and greatly simplifies quantization. The potential (??) however, is not parity in-
variant and furthermore the last term of expression, which acts as a cosmological constant
exhibits a wrong sign in comparison with observations. The assumption of detailed balance
is arbitrary and strictly simplifying. It does not possess a physical motivation, and hence
it is often abandoned it in favour of the “projectability condition”, described next.

5.4 Projectability condition

Another condition one can impose onto the theory in question is that of “projectability”,
which essentially means assuming that the lapse is a function of time only, N = N(t). Un-
der this assumption, one can rescale the time variable in such a way that dtN(t) = dt0. As
remarked in [23], the projectability condition can always be enforced onto standard Gen-
eral Relativity locally, as a gauge choice. In the action under consideration, the condition
greatly reduces the number of independent terms in the potential V . Since N is a function
of time only there are no invariant terms to be build out of it, which would contain spatial
derivatives only. One can thus conclude that V should contain all the curvature invariants
one can construct out of gij, which for previously considered case of z = 3 means including
up to six spatial derivatives. Since we are in process of searching for an e↵ective theory in
three spatial dimensions, we can simplify further by noting that the Cotton tensor vanishes
identically, the Riemann tensor can be expressed in terms of the Ricci tensor and by using
Bianchi identities, commutator identities and integration by parts [23].
As a result, for z = 3, the derivative expansion of V becomes:

�V = ↵ R(3) + �1(R
(3))2 + �2R

(3)
ij R(3)ij + �1(R

(3))3 + �2R
(3)R

(3)
ij R(3)ij

+ �3R
(3)i

jR
(3)j

kR
(3)k

i + �4R
(3)r2R(3) + �5riR

(3)
jk riR(3)jk , (53)

where ↵, �1, ..., �5 are couplings to be fixed by experiment and of mass dimensions

[↵] = 4

[�1] = [�2] = 2

[�1] = [�2] = [�3] = [�4] = [�5] = 0 (54)

If the infrared regime is defined to be the region where �1
�

R(3)
�3 ⌧ �1

�

R(3)
�2 ⌧ ↵R(3),

one can immediately see that Hořava-Lifshitz action can be approximated as Einstein-
Hilbert action plus higher order terms. Starting from action in equation (49) and allowing
free couplings to be small and the bare cosmological constant to coincide with its General
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Relativistic value of � = 1, one needs to rescale time to t ! ⌧
M2 , such that dt ! d⌧ 1

M2 .
The mass dimensions [gij] = [N ] = 0, so these quantities stay invariant under the time
reparametrization. The mass dimension of extrinsic curvature [Kij] = z, which is an inverse
dimension to the dimension of time. This implies that each term of Kij should be rescaled
by M2 and consequently both KijK

ij and K2 are rescaled by M4, so that finally

SHL =

Z

1

M2
d⌧d3x

p

g(3)NM4



KijK
ij � �K2 � V

M2

�

= M2

Z

d⌧d3x
p

g(3)N



KijK
ij � �K2 � V

M2

�

= SEH +

Z

O
✓

R(3)

M2

◆

d⌧d3x , (55)

where one identifies M2 = [4⇡G]�1 = 2M2
P l and indeed in the infrared limit R(3) ⌧ M2

and SHL ' SEH .

5.5 Consequences

The first, desired consequence of employing space-time anisotropic model is the change of
mass dimensionality of the coupling constant of the theory. Consider the mass dimensions
of the Hořava-Lifshitz action in (41), where [SHL] = 0 as usual and [2] is to be determined.
One has

[dt] = �z [d3x] = �3 [gij] = [N ] = 0 [Kij] = [Kij] = z ,

so that one arrives at the equation for mass dimensions of coupling constant

0 =
⇥

2
⇤

+ (�z) + (�3) + 2z
⇥

2
⇤

= �z + 3 . (56)

In the specific case of z = 3, which is acceptable from the point of view of the theory, 2

is indeed mass dimensionless and the theory exhibits power-counting renormalizability, as
desired.

Another consequence of employing a Lifshitz-type model in the theory is the immediate
violation of Lorentz invariance, which comes as a cost of keeping the quantum field theory
finite. This can be shown as follows. Consider a scalar field action for a field ' with z = 2:

S =

Z

dtd3y



1

2
('̇(y))2 � 1

2

�!
@ '(y)

�

M2 ��
� ·�!@ '(y)� U ('(y))

�

(57)

Taking the field derivative of the action
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�S

�'(x)
=

Z

dtd3y
n

'̇(y)@0�
(4)(x� y)�M2�!@ '(y) ·�!@ �(4)(x� y) +

+
�!
@ �(4)(x� y)� ·�!@ '(y)� U 0('(y))�(4)(x� y)

o

= �'̈+M2�'��2'� U 0(') . (58)

If one now assumes that the field in question is free, i.e. U('(y)) = m2

2 ('(y))2 and considers
a plane wave solution ' = '0 exp (i (!t��!p ·�!r )) of equation (58), one arrives at

0 =
h

!2 �M2�!p 2 � ��!p 2
�2 �m4

i

' , (59)

!2 = M2�!p 2 +
��!p 2

�2
+m4 . (60)

In order for all terms to be of mass dimension one, one needs to rescale ! = M !̃ such that

M2!̃2 = M2�!p 2 +
��!p 2

�2
+m4 ,

!̃2 = �!p 2 + µ4 +
(�!p )4
M2

, (61)

where µ = m2/M . One identifies the first two terms with a relativistic, Lorentzian disper-
sion relation while the non-relativistic, third term is a consequence of the Lifshitz model.
One can now recognise that in the low energy (infrared) region where |�!p | ⌧ M , the
non-relativistic term is of negligible order. This region stays in agreement with Lorentz
invariance and the theory is compatible with observation. In the higher energy, ultraviolet
limit, however, this ratio cannot be ignored; in this “Lifshitz” region dispersion relation is
non-relativistic and Lorentz invariance is lost. In order for the theory to agree with the ob-
served Lorentz covariance at low energy scales, one can fix the value of the theory regulator
M as very large, for instance approaching the order of the Planck mass in equation (??).
Since no experiments have ever reached that region, the third term of (61) is considered to
be negligible and the theory stays in the Lorentz regime, at least as far as the experimental
procedure goes. Theoretically, the inconsistency remains in place; however there exists no
experimental evidence suggesting the theory should necessary exhibit Lorentz symmetry
in the ultraviolet regimes.

The third, fundamental and immediate consequence of the construction of the theory
is the breaking of the four-dimensional di↵eomorphism of space-time, one of the most
fundamental results of General Relativity. In Hořava-Lifshitz theory of gravity, the time is
given a preferred direction, which the theory provides for by the way of utilising the ADM
decomposition of space-time and equipping space-time manifold with a preferred structure
of a codimension-one foliation F , by slices of constant time. The transition functions of the
manifold become the foliation-preserving di↵eomorphisms, Di↵(M,F) and the generators
of the di↵eomorphism transform the fields of the theory as
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�gij = @i⇣
kgjk + @j⇣

kgik + ⇣k@kgij + f ġij , (62)

�Ni = @i⇣
jNj + ⇣j@jNi + ⇣̇jgij + ḟNi + fṄi , (63)

�N = ⇣j@jN + ḟN + fṄ . (64)

The result is limiting, as discussed in the paragraph below and one may hope to change
it by further modification of the theory, in order to reach experimental and conceptual
agreement with well tested General Relativity. Such a modification will be discussed in
section 3 on covariant Hořava-Lifshitz gravity.

Final consequence, resulting from breaking of the four-dimensional di↵eomorphism of
space-time to three-dimensional, foliation preserving di↵eomorphism is the emergence of
an additional degree of freedom and hence an additional scalar polarization of the graviton.
Hypothetical graviton is a massless particle (due to infinite-range interaction) spin 2 (due to
the requirement for the metric to be symmetric and gauging). One needs to turn attention
to Goldstone’s theorem [24], which predicts emergence of nonzero vacuum expectation value
of a boson field. In other words, due to symmetry breaking, Goldstone’s theorem requires
appearance of a new, massless scalar particle in the spectrum of possible excitations. This
result presents a big, initially omitted, problem to the new theory of gravity as no such
scalar modes are predicted otherwise and no such have been observed to exist. For that
reason we will turn to study the so-called covariant extension of Hořava-Lifshitz gravity,
discussed in section 3.

6 Cubic action

As explained in section 3, it is well known that some fluctuations in density would be
formed in the early universe as a result of a fast change in the speed of propagation. The
standard single field inflationary models predict a Gaussian spectrum of these primordial
fluctuations. The estimation of the size of the non-Gaussian corrections has been predicted
in [25], [26] and [27], while [28] discusses the importance of the prediction of this corrections
as a validator for any theory aiming to compete with the Inflationary model. Correlation
functions, subject to cosmological consistency relations such as the one relating a particular
geometrical limit of the three-point function of density perturbations to the spectrum and
tilt of the two-point function [29]

lim
k1!0

h⇣~1⇣~2⇣~3i = �(2⇡)3�3(
X

i

~ki)(ns � 1)Pk1Pk3 , (65)

provide an important gauge for validity of a given theory and its predictions of the pri-
mordial spectrum. Hence they are often a first stop in checking the rationale of the theory
as a claimant to the role of a substitute for Inflation. We attempt an estimation of the
size of non-Gaussianities deriving from the theory of Hořava - Lifshitz gravity. We hence
investigate the previously-performed computations of the quadratic action for the theory
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and we attempt a calculation of the cubic action and as a result a three-point correlation
function of Hořava - Lifshitz gravity, in hope to shed some light onto its predictions versus
those of the theory of Inflation.

As mentioned in the previous chapter, the theory of Hořava - Lifshitz gravity in its
most general and hence least constrained form involves a potential with number of terms
of the order of 102. For the reason of limited time available for this project and tediousness
of calculation, we shall not attempt to derive a cubic action for this version of the theory.
Instead, we focus, in turn on the theory constrained by previously explained projectability
and detailed balance conditions.

6.1 Projectability

Following reference [30], we consider Hořava - Lifshitz gravity action with the assumption
of projectability, N = N(t):

S =
M2

P l

2

Z

dtd3xN
p�g

�

(Kij)K
ij � �K2) +(3) R� 2⇤+ V

�

, (66)

and in order to derive the cubic action we consider a metric perturbation of the form

N = 1 + ↵(t) , Ni = @iy , gij = e�ij + 2(�ij + k�2@i@j)⇣ � 2k�2@i@j� . (67)

Following the approach developed in [31] we find the momentum constraint - the equa-
tion of motion for the shift N i by varying the action of (66). We use the expression for the
extrinsic curvature from equation (48)

Kij =
1

2N
(ġij �riNj �rjNi) (68)

and after variation and integration by parts the momentum constraint reads

rjK
j
i � �riK = 0 . (69)

The three dimensional di↵eomorphism and time reparametrisation invariances allow us
to choose the following gauge in order to remove residual degree of freedom and simplify
calculation as a result:

hij = a(t)2e2⇣�ij , Ni = @iy , N(t) = 1 . (70)

Hence, to leading order, the momentum constraints solves as

@2y = �a2
1

c2⇣
⇣̇ , (71)

where we assume � 6= 1 and define the speed of sound

c2⇣ =
1� �

3�� 1
. (72)
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The three dimensional Ricci scalar can be computed to be

(3)R = �2a(t)�2e�2⇣(@i@
i + 2@2⇣) , (73)

and hence the quadratic action is found to be

S2 =

Z

dtd3x

 

�a3
1

c2⇣
⇣̇2 + a(@⇣)2

!

. (74)

We notice that for c2⇣ > 0 the action has a wrong sign - the kinetic term is negative and
hence the scalar graviton, whose propagation is described by the above action becomes a
ghost. The other possibility, avoiding ghost propagation, is that of c2⇣ < 0. But this is
the unstable case and the time scale of the instability goes like 1/ |c⇣ |M , where M is the
UV scale at which the higher derivative terms become important. In order to avoid the
instability within the age of the Universe, we need |c⇣ | ⇠ H0/M . Hence we either need
� ⇡ 1 or the UV scale M to be very low in order to avoid this instability. In order to
describe this problem more accurately, we need to consider higher order, cubic interactions.
Following the same steps as above but this time to third order, the cubic action is found
to be

S3 =

Z

dtd3x

(

a⇣@i⇣@
i⇣ � 3a3

c2⇣
⇣⇣̇2 +

3

2a
⇣
�

@i@jy@
i@jy � (@2y)2

�� 2

a
@2y@i⇣@

iy

)

. (75)

Using this action, we can discuss another problem of this version of the theory - that of
strong coupling. Restoring the Planck scale and normalising our variable as

⇣norm = MP lc
�1/2
⇣ ⇣ (76)

we see that in the c⇣ ⇡ 0, so � ⇡ 1 case the cubic interactions blow up, resulting in the
loss of predictability due to uncontrollable quantum cubic corrections. For this reason, we
abandon further analysis of the projectable version of Hořava - Lifshitz theory and brand
it as pathological. Instead, we take a closer look at the detailed balance condition.

6.2 Detailed balance

To begin with, we review a derivation of the quadratic action as presented in reference [32]
and hence begin with the with the action of Hořava - Lifshitz gravity without projectability
but with detailed balance condition imposed
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SH =
M2

pl

2

Z

dtd3x
p
gN

(

KijK
ij � �K2 + ⇠R� 2⇤+ ⌘ aiai � 1

M2
4

RijR
ij +

1� 4�

4(1� 3�)

1

M2
4

R2

+
2⌘

⇠M2
4



1� 4�

4(1� 3�)
Raiai �Rija

iaj
�

� ⌘2

4⇠2M2
4

3� 8�

1� 3�
(aiai)

2 +
2

M2
6M4

✏ijkRilrjR
l
k

+
2⌘

⇠M2
6M4

C ijaiaj � 1

M4
6

CijC
ij

)

, (77)

where we have used the redefinitions of some of the couplings in the detailed balance
potential of equation (51)

M2
P l =

4

k
, M2

6 =
w2

2
M2

P l , M2
4 =

M4
P l

µ2
, ⇠ =

⇤W

(1� 3�)M2
4

, (78)

and we perturb the metric as

N = 1 + ↵ , Ni = @iy , gij = e2⇣�ij . (79)

To second order, the Ricci scalar and tensor can be calculated as

Rij = �@i@j⇣ � �ij@
2⇣ + @i⇣@j⇣ � �ij@k⇣@

k⇣ (80)

R = �e�2⇣
�

4@2⇣ + 2(@⇣)2
�

(81)

For the quadratic action, we only need to calculate Kij and K to first order, as they appear
in the action quadratically. Hence we obtain

K
(1)
ij = ⇣̇�ij � @i@jy , (82)

K(1) = 3⇣̇ � @2y . (83)

After a straightforward substitution, we obtain the quadratic action as

S(2) =
M2

P l

2

Z

dtd3x
n

3(1� �)⇣̇2 � 2(1� 3�)⇣̇(@2y) + (1� �)(@2y)2 + 2⇠(@⇣)2

� 4⇠↵@2⇣ + ⌘(@i↵)(@
i↵)

2(1� �)

1� 3�

1

M2
4

(@2⇣)2
�

. (84)

As discussed in the reference [32], we have set ⇤ = 0 in action (77) by hand. This is
done as to establish whether the dynamics of the scalar mode in this version of the theory
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exhibits improved behavious compared to the projectability condition. The presence of a
large cosmological constant ⇤ disturbs this discussion as it has both phenomenological and
practical consequences, hence we work under the assumption that if a resolution to the
large cosmological constant problem was to be found, the scalar mode obey the following
dynamics. It is, however, an outstanding issue and must not be overlooked before reaching
the final conclusions.We next attempt to integrate out the non-dynamical degrees of free-
dom y and ↵ using their equations of motion. The variation of the quadratic action with
respect to y gives

(1� �)@2y � (1� 3�)@2⇣̇ = 0 , (85)

which solves to

@2y =
1� 3�

1� �
⇣̇ =

1

c2⇣
⇣̇ . (86)

Variation of the action with respect to ↵ in turn gives

⌘@2↵ + 2⇠@2⇣ = 0 (87)

and solves to

↵ = �2⇠

⌘
⇣ . (88)

After a direct substitution, the quadratic action, now expressed in terms of the dynamical
field ⇣ only, reads

S(2) =
M2

P l

2

Z

dtd3x

(

2
1

c2⇣
⇣̇2 + 2⇠

✓

2⇠

⌘
� 1

◆

⇣@2⇣ � 2c2⇣
1

M2
P l

(@2⇣)2
)

. (89)

We can now substitute a plane - wave solution of the form

⇣ = ⇣0e
i(p.x�!.t) . (90)

in order to obtain a dispersion relation for the scalar, which reads

!2 = ⇠

✓

2⇠

⌘
� 1

◆

c2⇣p
2 +

1

M2
P l

c4⇣p
4 . (91)

We can immediately see that we run into some problems, as the dispersion relation does
not have the expected p6-terms, as discussed in the previous section. In order to obtain
these, we would apparently need to add even higher order terms to the superpotential and
hence the action. We proceed nevertheless with the calculation of the cubic action.

Since Kij appears quadratically in the action of (77), for the cubic action we now need
to compute it up to second order:

K
(2)
ij = (1� ↵)

⇣

⇣̇�ij � @i@jy
⌘

+ 2⇣̇⇣�ij , (92)
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K(2) = (1� ↵)
⇣

3⇣̇ � @2y
⌘

� 2⇣@2y . (93)

Following the same procedure as for the quadratic action, we next expand to cubic
order each of the terms in the action, presented here term by term:

KijK
ij = (1� 2↵)

⇣

3⇣̇2 + (@2y)2 � 2⇣̇@2y
⌘

(94)

��K2 = ��
n

(1� 2↵)
⇣

9⇣̇2 � 6⇣̇@2y + (@2y)2
⌘

� 4
⇣

3⇣̇ � @2y
⌘

⇣@2y
o

(95)

⇠R = �⇠
�

2
�

2@2⇣(@⇣)2
�

+ 8⇣2@2⇣
 

(96)

⌘aiai = ⌘ (1� 2↵)
�

@i↵@
i↵
�

(97)

� 1

M2
4

RijR
ij = � 8

M2
4

@2⇣@k⇣@
k⇣ (98)

1� 4�

4(1� 3�)

1

M2
4

R2 =
1� 4�

4(1� 3�)

1

M2
4

�

16 (1� 4⇣) (@2⇣)2 + 16(@⇣)2@2⇣
 

(99)

1� 4�

4(1� 3�)
Raiai = � 1� 4�

4(1� 3�)
(100)

�Rija
iaj = @i@j⇣@

i↵@j↵ + @2@i↵@
i↵ (101)

3� 8�

1� 3�
(aiai)

2 = 0 (102)

✏ijkRilrjR
l
k = 0 (103)

C ijaiaj =

✓

@m@
2⇣ +

1

2
@m(@⇣)

2

◆

✏mij@i↵@j↵ = 0 (104)

CijC
ij = 0 . (105)

Finally,

p
gN = e3⇣(1 + ↵) (106)

such that after substitution into (77) the full cubic action, after some simplification, can
be written as:
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S3 =
M2

pl

2

Z

dtd3x

(

6(3�� 1)↵⇣̇2 + 2(�� 1)↵(@2y)2 � 4(3�� 1)↵⇣̇@2y

+4�
⇣

3⇣̇ � @2y
⌘

⇣@2y � 4⇠@2⇣
⇥

(@⇣)2 + 2⇣2
⇤� 2⌘↵

�

@i↵@
i↵
�� 8

M2
4

@2⇣@k⇣@
k⇣

+
1� 4�

(1� 3�)

4

M2
4

@2⇣
��4⇣@2⇣ + (@⇣)2

�

+
2⌘

⇠M2
4

�

@i@j⇣@
i↵@j↵

�

)

. (107)

We proceed with the variation of the action in order to integrate out the non-dynamical
fields y and ↵. Variations with respect to y and ↵ produced no informative results in the
course of this investigation, so in order to achieve a rough idea of leading and sub-leading
contributions to the action we take the liberty of substituting the previously-derived, first
order expressions for the non-dynamical variables, bearing in mind that from now on we
are working in approximation. We hence use

@2y =
1� 3�

1� �
⇣̇ =

1

c2⇣
⇣̇ , (108)

↵ = �2⇠

⌘
⇣ , (109)

and substitute into the cubic action to obtain

S3 =
M2

pl

2

Z

dtd3x

(

12⇠

⌘
(1� 3�)⇣⇣̇2 +

4⇠

⌘
(1� �)

1

c4⇣
⇣⇣̇2 +

8⇠

⌘
(3�� 1)

1

c2⇣
⇣⇣̇2

+4�

 

3� 1

c2⇣

!

1

c2⇣
⇣⇣̇2 � 4⇠@2⇣

⇥

(@⇣)2 + 2⇣2
⇤

+
16⇠3

⌘2
⇣@i⇣@

i⇣ � 8

M2
4

@2⇣@k⇣@
k⇣

+
1� 4�

(1� 3�)

4

M2
4

@2⇣
��4⇣@2⇣ + (@⇣)2

�

+
8⇠

⌘M2
4

@i@j⇣@
i⇣@j⇣

)

. (110)

Finally, we have obtained an expression for the cubic action in terms of the dynamical
field ⇣ only and can perform some analysis.

6.3 Discussion

We have performed here initial computation necessary for the estimation of deviations from
Gaussianity in the primordial spectrum of Cosmic Microwave Background fluctuations,
necessary for assertion whether the theory of Hořava-Lifshitz gravity, as a higher derivative
theory, stands a chance of explaining those e↵ects and hence serving as an alternative to
the theory of Inflation.
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Even at this initial stage, however, we have run into some severe problems. Firstly,
against our initial expectations, the most constrained version of the theory - that with the
projectability condition imposed - produced a pathological dynamics for the scalar graviton
mode. Having as a result rejected this option, we have moved on to the detailed balance
condition, which in turn appears to be haunted by the issue of a large cosmological constant
⇤. Following the advice of the authors of reference [32], we have fixed this problem by
hand and worked under a supposition that one day it may be solved. After a computation
of the quadratic action we have already spotted that the dispersion relation obtained as
a result does not contain the desired p6 terms, which are responsible for production of
non-Gaussian e↵ects, as discussed in [13]. At this stage we felt it appropriate to abandon
further derivation of the three-point correlation function and arrived at the conclusion
that if the desired e↵ect was to be achieved, one would need to add higher order terms to
the detailed balance superpotential W . Adding fourth order terms to W would result in
appearance of sixth and eight order terms in the potential V and hopefully p6 terms in the
dispersion relation, unless some cancellation occurs. The possible fourth order terms one
could add are R2, Rµ⌫R

µ⌫ , Rriai, Rijaiaj, Raia
i, (aiai)2, (riai)2 and aiajriaj. Addition

of these terms would render the calculation considerably more involved and hence we leave
it as an open end for future investigation.

7 Conclusions

A full investigation into the current status of our knowledge of the origins on primordial
non-Gaussianities in the Cosmic Microwave Background spectrum has been performed.
As a result, we have learned to appreciate the importance of the topic, reviewed the most
acclaimed and popular scenario of Inflation as well as a few interesting alternative theories,
which manage to arrive at similar predictions, such as Variable Speed of Light / Sound
theories. We have then moved on to consider the theory of Hořava - Lifshitz gravity,
which has been summarised and attempt to apply it to the topic in question. After failing
to achieve tangible results, mostly due to the time constraints of the project, we left
the question open for future work. We feel it is crucial that some of the most burning,
outstanding issues in modern physics are answered. Equally, we deem it eye-opening to be
able to review so many di↵erent angles of approaching the same, fundamental, question
and using drastically di↵erent means arrive at seemingly similar conclusions. We believe
it is a good indication of the fact that our current understanding of the Universe, however
hight esteem we may have of it, is by no means complete and consistent. This works as an
encouragement for future generations to study this fundamental problems.
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