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1. Introduction

Cosmology is one of the most vast and fascinating areas of research in
theoretical physics. It studies the origin, evolution and fate of the whole
Universe. This thesis will focus on two aspects of the early Universe; the
first part will discuss the epoch of reheating of the Universe and the sec-
ond part will account for its phenomenological consequence of gravitational
wave production. In this way, I will be able to provide both a theoretical
understanding of the process of reheating and a prediction on observational
signatures produced by it.

In this chapter, I will provide the necessary theoretical background and
motivations for my research. I will briefly review the history of the Universe,
the theory of inflation and the process of reheating in an introductory form. I
will also define the nature of gravitational waves and discuss the importance
of studying primordial gravitational waves produced during reheating.

1.1 Brief History of the Universe

In recent decades, physicists’ understanding of the Universe has developed
extraordinarily fast. The Universe was created around 13.7 billion years ago
by a violent explosion known as the Big Bang. The hot Big Bang theory is
the most successful theory to date describing the evolution of the Universe
starting from t ∼ 10−33 seconds after the Big Bang [1].

At that time, the Universe was dense, hot, energetic and no particles yet
existed. Gradually the Universe cooled down, entering the radiation era in
which the radiation components of the Universe, principally photons and
neutrinos, set the dynamics of the Universe. This era allowed for symmetry
breaking to occur and the first particles to form. Most importantly, at
around 100 seconds after the Big Bang, the Universe underwent the process
of nucleosynthesis, where the first complex nuclei were formed [2]. Subsequent
to the radiation era is the matter era in which the density of matter exceeds
that of radiation at around t ∼ 100, 000 years after the Big Bang. This
transition occurs since matter and radiation evolve differently as the Universe
expands [3].

During the matter era, around t ∼ 380, 000 years after the Big Bang,
photons decoupled and started free streaming at a time known as recombi-
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nation. These photons are still present in the Universe today and create a
quasi-isotropic radiation background which we call the Cosmic Microwave
Background (CMB) (see figure 1.1.1) [4]. The CMB is of fundamental im-
portance to cosmologists since it is a direct picture of the Universe during
recombination. It was discovered accidentally by A. Penzias and R.W. Wilson
in 1964 when they noticed a low and persistent noise while experimenting
with a horn antenna built to detect radio waves [5]. The CMB carries direct
information regarding the history of the Universe before and after the start
of its radiation. Thanks to space-based observatories its features have been
deeply studied, intially by COBE (Cosmic Background Explorer) in 1992 [6],
WMAP (Wilkinson Microwave Anisotropy Probe) in 2003 [7] and PLANCK
in 2012 [8]. In particular, over the past years these satellites have been mostly
measuring the tiny fluctuations of the CMB.

Figure 1.1.1: CMB fluctuations from 9 years of WMAP
data showing a temperature of ± 200 microKelvin

Today, the Universe is dark-energy dominated and at a temperature of
around 2.7 Kelvin, a state unchanged since 109 years after the Big Bang.

1.2 Inflation

What is not as well understood yet is what happened in these fleeting
moments following the Big Bang. The hot Big Bang theory is enormously
successful with the CMB and for instance primordial nucleosynthesis. How-
ever, some facts remain unavoidably unexplained in the hot Big Bang model
and the need of a larger framework seems necessary. In particular, why does
the Universe result so homogenous? Why is it so close to flatness? And
finally, why does the CMB result quasi homogenous and isotropic? The hot
Big Bang model cannot explain these observational facts about the Universe.

The main theoretical model which was invented to account for these is
that of an inflationary epoch [9]. Inflation consists of an extremely rapid
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expansion of the Universe which occurred within 10−36 seconds after the Big
Bang. The expansion occurred at exponential rate which blew apart the
whole Universe. Inflation is the only model which has survived thirty years
of cosmological data. The CMB fluctuations were created during inflation
and can therefore provide essential information on the inflationary model
driving the early Universe. However, many theories on the Universe’s origin
and evolution have been formulated and then tested by observations. Planck
is a space-based observatory which measures fluctuations on the CMB and
provides constraints on cosmological parameters and hence on the possible
inflationary models. Many models have been ruled out, revised or improved
based on Planck’s data [10]. So far, there is still a broad range of inflationary
models which predict today’s data of the CMB. In the future, we hope to
achieve more and more accuracy in the data in order to further restrict the
number of possible inflationary theories.

In most modern inflationary models, all the energy of the Universe is
carried by a scalar field, called the inflaton [11]. The effective potential of
the system drives the evolution of the scalar field and hence the dynamics
of inflation. The main constraint on the potential for inflation to occur
in the first place is that it must be very flat. This allows the inflaton to
live in a slow-roll regime during inflation, or in other words to slowly roll
on the flat curve of the potential. It is this slow-roll regime which allows
the Universe to expand exponentially [12]. Inflation ends once the inflaton
reaches a steeper slope and it rolls down the slope to reach the minimum of
the effective potential. Another necessary requirement is for inflation to last
for a finite amount of time in order for the hot Big Bang model to preserve
its success in the later stages[9]. Hence, inflation does not replace the hot
Big Bang theory but it simply describes the Universe prior to when the Big
Bang theory is valid.

1.3 Reheating

If the Universe went through an inflationary era, then Reheating must
have followed it before the Universe enters the radiation era [11]. The
inflationary model specifies the dynamics of inflation and it therefore also
affects the phenomenology of the reheating process. Reheating sets the
post-inflationary conditions of the Universe before it enters the radiation era.
Once the Universe enters the radiation era, its evolution is described by the
physics of the hot Big Bang model.

Essentially, all elementary particles are produced during reheating. This
makes reheating one of the most fundamental phases predicted by inflationary
models. However, the theory of reheating was the last part to be developed
and understood of inflationary theory. Many different, and sometimes con-
tradictory, papers were published to develop theories of reheating in different
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inflationary scenarios. Two of the main reviews were published in 1997 by
L.Kofman et.al. [13], [14] which cover in depth the main aspects of reheating
and on which my review will mainly be based on.

The main idea is that reheating occurs once the slow-roll regime ends and
the inflaton starts oscillating around the minimum of its effective potential.
Recall that during inflation, all the energy is stored in one scalar field
which we call inflaton. Elementary particles are produced by the inflaton’s
oscillations since during this process, the energy of the inflaton is transferred
to the thermal energy of the particles [13]. These particles interact and will
eventually thermalise to equilibrium at a reheating temperature, Tr, which
varies according to the inflationary model [15]. Once all the energy of the
inflaton is transferred to the particles, reheating ends and the Universe starts
its well known radiation era. The details of reheating are very complicated
and very sensitive to its inflationary background, choice of parameters and
initial conditions. In most inflationary models, it was found that reheating is
made of distinct stages that have extremely different features, the first called
preheating and the second of thermalization.

As mentioned above, reheating very much depends on the choice of the
inflationary scenario. The model I am interested to study in this thesis is a
model in which matter is non-minimally coupled to gravity [16]. First of all,
what is non-minimal coupling? Consider a general theory described by the
action [17],

S =

∫
d4x
√
−g
[

1

2κ
R+ Lm

]
, (1.3.1)

where κ ≡ 8πG, R is the Ricci scalar and g ≡ det(gµν). The first term is
the Einstein-Hilbert term which yields the gravitational field equations and it
therefore describes the gravitational part [18], while Lm describes the matter
sector of the system. These two parts do not interact and are said to be
minimally coupled. However, there is nothing preventing gravity and matter
to interact and it seems rather natural for them to be coupled [19]. Therefore,
I chose to study a more realistic model in which the gravitational sector and
the matter sector are not two distinct parts of the action but are instead
coupled in a non-minimal manner. In particular, I chose the non-minimal
coupling term between curvature and the inflaton φ to be of the form, ξRφ2.
I will study the effect of this term on the reheating process by comparing two
systems driven by the same potential, one minimally-coupled and the other
non-minimally coupled to gravity.

1.4 Gravitational Waves

The second part of this thesis focuses on the production of gravitational
waves during reheating. Gravitational waves are ripples in the curvature of
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space-time that travel at the speed of light [20]. Generally, they are formed
due to accelerating massive objects which deform the spacetime. Spacetime
then must change in order to adapt to its new position. In fact, as the
physicist John Wheeler said, "Matter tells space how to curve, space tells
matter how to move". These distortions of spacetime which propagate as
waves at the speed of light are what we call gravitational waves.

They were predicted by Einstein in 1916 [21] and were one of the greatest
achievements of his theory of General Relativity. In 1918, he presented for
the first time a full calculation of its effects, using his famous "quadrupole
formula" [22]. One may tempt to draw an analogy between electromagnetic
waves and gravitational waves. However, their nature is significantly different.
In fact, electromagnetic waves propagate through spacetime oscillating, while
gravitational waves are propagating distortions of the spacetime itself.

Gravitational waves are generated by distortions in spacetime of astro-
physical and cosmological origin [4]. The nature of gravitational waves varies
with the process which generated it. This results in distinct gravitational
backgrounds being formed depending on the conditions of their origin [23].
In this thesis, I will restrict my interest to the gravitational wave background
produced during reheating after chaotic inflation. Unfortunately, today’s
gravitational wave observatories such as LIGO or (future) LISA are only sen-
sible to certain astrophysical gravitational waves since those of cosmological
origins are well below their frequency range [24].

Since the CMB fluctuations were detected, cosmologists have been able
to study primordial perturbations. During inflation gravitational waves are
generated from tensor perturbations of the metric, while scalar perturbations
generate density perturbations (and hence the whole structure of the Universe).
These perturbations are being detected on the CMB by observatories such as
Planck and they provide constraints on inflationary models [25]. However,
CMB measurements are not enough to rule out a single inflationary model
in agreement with the data. Recently, direct detection of B-Modes by
the BICEP2 observatory based on the South Pole may have given further
constraints on inflation but its reliability is questionable due to ground dust
inconsideration [26].

Instead, how much would we know of the early Universe if gravitational
waves were to be detected directly? One feature that makes gravitational
waves particularly interesting is that once they are formed they immediately
decouple [27]. This means that the gravitational waves filling our Universe
have been freely propagating since the instant they were formed. This is a
unique feature of these kind of waves. In this way, they carry direct and
unperturbed information about their origin and the dynamical process which
generated them. This is the reason why if gravitational waves of cosmological
origin were to be detected, they would provide an enormous contribution to
our understanding of the early Universe.

In particular, the detection of gravitational waves produced during re-
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heating would allow us to have a direct signature of the inflationary potential,
the particle’s couplings and the inflaton’s nature. In other words, it would be
a most reliable tool to study Inflation and recover further constraints on the
model responsible for it. One may even think that gravitational waves may
be the only way for cosmologists to finally solve the mysteries of the early
Universe.

For this reason I chose to analyse both the theoretical aspect of the theory
of reheating itself aswell as its gravitational wave imprint. Via numerical
lattice simulations, I will be predicting the gravitational wave spectra gener-
ated during reheating by the quartic chaotic model non-minimally coupled
to gravity, on which I am concentrating my whole discussion on.

1.5 Outline of the thesis

In Chapter 2, I will focus on inflation and show how it originated in order
to solve three cosmological puzzles. I will review its phenomenology and
discuss how quantum inhomogeneities arise from this era. This discussion
sets the mathematical and theoretical basis for the next chapter.

Chapter 3 will focus on one of the main subjects of this thesis; the reheating
era of the Universe. I will discuss the Universe’s transition from inflation to
reheating and derive in detail the phenomenological process of preheating.
To study its non-linear dynamics, I will perform numerical lattice simulations
using a modified version of the publicly available C++ LatticeEasy package.
I will focus on a quartic chaotic inflationary model involving an inflaton
interacting with another light scalar field. I will compare the dynamics of
reheating in this model for both cases of minimal and non-minimal coupling
between the fields and gravity.

In chapter 4, I will discuss the production of gravitational waves during
reheating. At first I will discuss how gravitational waves can be detected and
their role in our understanding of the Universe. I will derive the equation for
the energy specrum analytically and give numerical results using a further
modified version of LatticeEasy. Again, I will focus on the same chaotic
model in both cases of minimal and non-minimally coupling to gravity.

In chapter 5 I will present some ideas on how my work can be improved
in the future and how this could both increase the accuracy of my results
and further analyse its implications.

Finally in chapter 6, I will draw conclusions on the results that I found from
both my analytical and numerical computations and discuss the significance
of these for the development of this area of research.
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2. Inflation

In this chapter, we review the key theoretical concepts of inflation required
to study the following stage of reheating. We first review the main concepts
of the hot Big Bang theory and the historical origin of inflation. Next, we will
briefly show how inflation theory solves the horizon, flatness and magnetic
monopole problems arising from the hot Big Bang model.

I wil present the dynamics of the Universe (seen as homogenous and
isotropic) at the very beginning of its life as described by the theory of
inflation. For completeness, I will take into account its non-isotropic nature
and show perturbations of the metric decompose into scalar, vector and tensor
components.

2.1 From the Hot Big Bang to Inflation

Before inflation was even ever mentioned, the origin of the Universe was
described by the hot Big Bang theory. The hot Big Bang theory relies on
the Cosmological Principle, which states that the properties of Universe at
sufficiently large scale are the same for all observers [3]. In other words, the
distribution of matter in the Universe is homogeneous and isotropic when
viewed on a large enough scale.

The metric which describes such a spacetime is the Friedmann–Lemaître–
Robertson–Walker(FLRW) metric [28],

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)]
, (2.1.1)

where a(t) is the scale factor, which describes its physical size and k
measures the spatial curvature (k = −1, 0, 1 if spacetime is open, flat or
closed respectively). For the purposes of this thesis, we will be mainly dealing
with flat FLRW spacetime metric, ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2], in
Cartesian comoving coordinates.

General Relativity was the first theory to dictate a strict correlation
between gravity and the geometry of spacetime [17]. This relationship is
described by the Einstein equations [21],
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Gµν = 8πGTµν , (2.1.2)

where Gµν ≡ Rµν − 1
2gµνR, Rµν is the Ricci tensor, R is the Ricci

scalar and Tµν is the stress energy-momentum tensor. The assumption of a
homogenous and isotropic Universe yields a stress energy-momentum tensor
of the form [29],

Tµ
ν = diag[−ρ(t), P (t), P (t), P (t)], (2.1.3)

where ρ is the energy density and P is the pressure. The main equations
describing the expansion of the Universe can be derived by the 00 and ij
components of the Einstein equations, which imply the so called Friedmann
equations,

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρ− k2

a2
, (2.1.4)

ä

a
=Ḣ +H2 = −4πG

3
(ρ+ 3P ). (2.1.5)

They can be combined to give a third equation, known as the continuity
equation,

ρ̇+ 3H(ρ+ P ) = 0. (2.1.6)

The standard hot Big Bang theory describes those epochs of the Universe
where it is cool enough and all the physical processes are fairly understandable
via experiments. Unfortunately, it does not cover the first moments after the
Universe was created.

Inflation is the most accepted theory of the very early Universe. Inflation
is a general term for models which predict a phase of accelerated expansion,
blowing the size of the Universe up from a region smaller than a proton in
only a few fractions of a second. From the Friedmann equation (2.1.5), one
can see that ä > 0 requires [30],

ρ+ 3P > 0 =⇒ P < −ρ
3
. (2.1.7)

Thus, the type of matter driving inflation must have negative pressure.
This seems quite unusual; what kind of matter can satisfy this? The cos-
mological constant is a first example which would satisfy such an equation
of state. The cosmological constant, Λ, was first introduced by Einstein in
1917 and it is associated with the vacuum energy density of the Universe. Its
equation of state satisfies the relation P = −ρ [4]. For this reason, it seemed
as a plausible candidate for inflation.

However, if inflation was led by a cosmological constant, inflation would
be lasting forever and the Universe would never be entering the radiation
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era. This option can therefore be excluded quite straightforwardly. A more
plausible explanation is that responsible for this enormous expansion is some
scalar field, the inflaton, which carries all the energy of the Universe during
inflation [9]. The behaviour of the inflaton driving the expansion depends
on the details of the inflationary model. So far, physicists do not agree on a
unique model which can describe every aspect of inflation and its successive
eras.

The first realistic and physical model of inflation was developed by Alan
Guth in 1981 [31]. His model, known as old inflation, predicted a Universe in
a supercooled false vacuum state which underwent an exponential expansion
making it very big and flat. A false vacuum state is a state of large energy
density in which no matter is present. The false vacuum would then decay
and the Universe would become hot. Even though the physics of his model
turned out to be incorrect, it was the first theory which was able to solve the
standard Big Bang theory problems.

In 1981-1982, new inflationary theory was developed. The difference with
old inflation is that the Universe could have started in a false vacuum or in
an unstable state at the top of a very flat potential [9]. The inflaton field,
the field carrying all the energy, slowly rolls away from the false vacuum
on the flat potential until it falls down to its minimum. This is why this
theory is also called slow-roll inflation. Again the physics of it implied initial
conditions which were not quite correct. For instance, in this theory there
was still the assumption that the Universe must have started in thermal
equilibrium. Hence, both old and new inflation resulted to be incomplete
theories. However, they played a fundamental role in the development of
Cosmology thanks to the new revolutionary ideas they scattered amongst
cosmologists.

In 1983, chaotic inflation was developed [12]. The evolution of the inflaton
during inflation is described in the same way as in new inflation theory.
However, according to this theory, the slow-roll regime could have occurred
even if the Universe was not initially in thermal equilibrium, which was one
of the main limits of old and new inflation. Furthermore, chaotic inflation is a
theory which can be applied to any form of potential, as long as it is enough
flat to allow slow-roll to occur. Chaotic inflation theory was the first realistic
inflationary model which occurred under rather natural initial conditions. It
is based on chaotic initial conditions in the very early Universe which seems
as a natural assumption since there were no correlation between physical
processes in different regions of space. Under this assumption, at planck
time t ∼ tpl ∼ M−1pl , there exists a sufficiently isotropic and homogenous
spacetime of size larger than Mpl filled with a homogenous field φ & Mpl

[12]. The field φ has no a priori initial condition and may take any arbitrary
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value between −∞ and ∞ in different regions of the Universe. In particular,
values of φ�Mpl ∼ 1019 GeV are reasonably legitimate. The only possible
constraint on the field φ is that (∂µφ)2 �M4

pl. This condition is connected
to the condition V (φ) . M4

pl which should be satisfied since otherwise the
Universe would enter a pre-planckian era in which space and time are not
classically defined [9].

2.2 Cosmological puzzles

The idea of inflation arose to solve phenomena which the Big Bang theory
could not solve [32]. The Big Bang model implied certain initial conditions
for which three observations would be theoretically impossible.

The Horizon problem
The first involves observations of the Cosmic Microwave Background (CMB).
As mentioned in the introduction, the CMB is a radiation background filling
the Universe which originated in the recombination era at the time of photon
decoupling. A soon as photons decoupled, they started to free-stream from
the so called surface of last scattering. The temperature of this radiation,
T ∼ 2.7K is isotropic to better than 1 part in 105. This could be naturally
explained if different regions of the Universe have been able to interact and
reached thermal equilibrium.

However, according to hot Big Bang cosmology, photons from different
regions of the universe should not have had sufficient time to have come in
contact with each other by the time they started free-streaming. In other
words, they were outside each other’s past lightcones, or they were causally
disconnected, and therefore had no way to communicate. However, the quasi
isotropic and homogenous nature of the CMB implies that there has been
exchange of information between those regions, which raises a contradiction
[30]. This is called the horizon problem; The problem of understanding
why causally disconnected regions in the cosmic microwave background have
effectively the same temperature.

In order to analyse this problem in more detail, let me introduce the
concept of comoving particle horizon [33]. The comoving particle horizon is the
maximum distance travelled by a photon from an initial time t = 0 to a final
time t. Since photons follow null geodesics, i.e. ds2 = 0 = −dt2 + a(t)2dr2,
the particle’s horizon is mathematically defined as,

RH(t) =

∫ t

0

dt′

a(t′)
. (2.2.1)

In general, for a ∼ a0 (t/t0)
p,
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RH(t) =
p

1− p

(
1

Ha

)∣∣∣∣
t

. (2.2.2)

The comoving particle horizon sets the causal size of a region in the
sense that points in space at a distance larger than the comoving horizon are
necessarily causally disconnected. This means that they have non-intersecting
past light cones and that they have never interchanged information.

The horizon problem arises since the comoving particle horizon at re-
combination, τ?, is smaller than the comoving radius of the last scattering
surface, rlss, i.e. the comoving distance light has travelled after recombination.
Assume that the Universe is matter dominated so that a = a0(t/t0)

2/3 and
H = 2

3 t
−1, where the subscript 0 denotes quantities to evaluate today and

we normalize a0 = 1. Thus, using (2.2.2), the comoving distance a photon
has travelled under these conditions at a scalar factor a is,

RH(t) =
2

H0

√
a. (2.2.3)

At the surface of last scattering, a ≈ 1100. Therefore, the comoving
particle horizon at recombination was

√
1100 times smaller than today’s. It

is therefore surprising that regions causally disconnected at recombination
happen to be nearly at the same temperature today.

Including a period of inflation can solve this contradiction [32]. It is useful
to rewrite the particle’s horizon as,

RH =

∫ a0

0
da

1

Ha2
=

∫ a0

0
d(ln a)

1

Ha
, (2.2.4)

where 1/Ha is known as the comoving Hubble radius. The comoving
Hubble radius is another way to measure whether particles are causally
connected to each other at a certain value of the scale factor a; if they
are separated by distances larger than the Hubble radius then they cannot
communicate with each other. The particle horizon instead, tells us if two
points have ever been in causal contact in the past.

During radiation or matter dominated era, the comoving Hubble radius
increases monotonically and it is proportional to RH . If there was a phase in
which the comoving Hubble radius decreased, the particle horizon could still
grow but the causally connected regions at the end of this phase would be
smaller than they were originally.

Furthermore, the particle horizon increases dramatically as the comoving
Hubble radius decreases. Therefore, at recombination, the particle horizon
is larger than the distance travelled by the photons since then. Hence, the
photons from the CMB come from a region which is within its physical
horizon and which allows them to reach thermal equilibrium.

In order to have a decreasing comoving Hubble radius, we must impose,
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d

dt
(aH) =

d

dt

(
a
da/dt

a

)
=
d2a

dt2
> 0. (2.2.5)

Hence, we found that such a phase require an accelerated expansion. The
second Friedmann equation,

ä

a
= −4πG

3
(ρ+ 3P ) , (2.2.6)

tells us that for ä > 0, one needs p < −ρ
3 , i.e. a form of matter with

negative pressure. Inflation satisfies these requirements and can therefore
solve the horizon problem.

The Flatness problem
The second cosmological puzzle is related to observations on the curvature
of the Universe today. The question simply is, why is the Universe today
so flat? The curvature of the Universe today results to be very small [29].
From general relativity, we know that spacetime can be open, closed or flat.
No constraint has been set for which our Universe has to be spatially flat.
Indeed if initially it was not, the fact that it is so close to flatness today
seems rather unnatural. In an expanding Universe, assuming conditions for
matter era, the curvature should be increasing; this implies that initially it
would have been even tinier than today. Let me define the critical density,
ρc, as the energy density of a flat FLRW spacetime,

ρc =
3H2

8πG
. (2.2.7)

We can give an estimate of the curvature by defining a density parameter
Ω such that [34],

Ω =
ρ

ρc
, (2.2.8)

where Ω = −1, 0, 1 corresponds to an open, flat and closed Universe,
respectively. From these definitions, notice that one can rewrite the first
Friedmann equation (2.1.4) in terms of the critical density as,

H2 = H2Ω− k2

a2
. (2.2.9)

Finally, this yields the useful relation,

Ωk = Ω− 1 =
k

a2H2
. (2.2.10)

We can see that if Ω = 1 then it will remain so but if Ω 6= 1, it will evolve
since the scale factor decreases with time. One can estimate that the density
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parameter today ΩK(t0) < 0.02 for t0 ' 1017 seconds and that at Planck’s
time tpl = 10−43 seconds, ΩK(tpl) < 10−61.

Inflation solves this problem since during inflation curvature decreases
drastically [31]. This is due to the rapid exponential expansion which flattens
out the Universe. During inflation the scalar factor increases exponentially
and hence, from equation (2.2.10) we see that Ωk decreases very rapidly and
Ω→ 1. Thus, it is the intrinsic nature of inflation which brings the Universe
to tend to flatness. In this way, the initial condition for the curvature needs
not to be unnaturally small and the problem is solved.

Monopole problem
A third observation was related to visible defects of our Universe today,
such as magnetic monopoles, domain walls and strings. Particles theories
predict the creation of topological defects due to phase transitions [4]. Phase
transitions are a consequence of symmetry breaking occurring in particle
models.

Magnetic monopoles are the most prevalent in particle theories. The
problem is that although theories predict a very large number of magnetic
monopoles produced for instance by electroweak symmetry breaking, we
do not see them. This problem can be explained by inflation. In the early
Universe, defects were created at a density of order ∼ 1 per Hubble volume, i.e.
one per each observable Universe. Inflation, due to its exponential expansion,
dilutes the density of the monopoles since it stretches all lengths by a factor
of ∼ 1026 [33]. Hence, one monopole per Hubble volume actually becomes
one every 1060 horizon volumes, explaining why magnetic monopoles have
not been detected in our observable Universe.

2.3 Slow-roll inflation

As mentioned before, inflation occurs under a slow-roll regime of the
inflaton. This means that during inflation, the inflaton slowly rolls on a very
flat potential and this drives the Universe to expand exponentially (figure
2.3.1) [9]. The slow-roll regime must last a finite amount of time during
which the Universe exponentially expands for long enough. At the end of
the slow-roll regime, the inflaton rolls down to the minimum of its potential
and inflation ends. At this stage, the inflaton starts oscillating around the
minimum and the process of reheating begins.

The action of a scalar field in flat FLRW spacetime is given by [35],

S = −
∫
dtd3x

√
−g
(

1

2
∂µφ∂

µφ+ V (φ)

)
, (2.3.1)

where g ≡ det(gµν) and V (φ) is the potential of the scalar field. By
varying the action with respect to δφ we can recover the equations of motion
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Figure 2.3.1: Graph of a typical potential of the inflaton field

of the scalar field in an FLRW spacetime given by the metric (2.1.1),

φ̈+ 3Hφ̇− 1

a2
∇2φ+ V ′(φ) = 0. (2.3.2)

Notice that the second term in the equation above, the Hubble damping,
is a new unusual term. It acts as a damping term which arises due to taking
into account the expansion of the Universe.

The stress-energy tensor for a scalar field is given by,

Tµν = ∂µφ∂νφ− gµν
(
∂σφ∂σφ

2
+ V (φ)

)
, (2.3.3)

where the 00 component T00 = ρ and the ij component Tij = a2Pδij .
Hence, we derive expressions for the energy density and pressure, respectively,

ρ =
φ̇2

2
+ V (φ), (2.3.4)

P =
φ̇2

2
− V (φ). (2.3.5)

Finally, the Friedmann equations (2.1.4) and (2.1.5) are given by,

H2 =
8πG

3

(
1

2
φ̇2 + V (φ)

)
, (2.3.6)

Ḣ =− 4πGφ̇2. (2.3.7)

The evolution of the scalar field is fully described by the Klein-Gordon
equation (2.3.2) and the Friedmann equations (2.3.6) and (2.3.7).

One necessary condition of inflation is that the inflaton must have negative
pressure, P < −ρ/3. Here, this is equivalent to the condition φ̇2 < V (φ).
Hence, during inflation the potential energy dominates the kinetic energy
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and the expansion is accelerated. Thus, in order for the energy density to
be dominated by the potential energy, inflation requires the first slow-roll
condition [9],

φ̇2 � V (φ). (2.3.8)

The second condition assures that the Hubble damping term dominates
the field equation of motion in order for the field φ to be rolling very slowly
on the flat solpe of the potential before reaching its minimum φ = 0. To
have this, in equation (2.3.2), the damping term must be dominating over
the double time derivative of the field. This condition is known as the second
slow-roll condition and it is given by [30],

|φ̈| � H|φ̇|. (2.3.9)

Applying the slow-roll conditions to the Friedmann equations, we recover
the approximate expression, H2 ≈ 8πG

3 V (φ) and 3Hφ̇ ≈ −V ′(φ). Further-
more, the second Friedmann equation (2.3.7) becomes Ḣ ' 0. This last
expression is easily solvable and it implies a ≈ AeHt, where A is a constant.
Here we have proved that in fact inflation is driven by an exponentially rapid
expansion and it is effectively a De Sitter phase.

A more convenient way to express the slow-roll conditions is via two
dimensionless slow-roll parameters conventionally defined as [34],

ε ≡ 1

16πG

(
V ′

V

)2

, η ≡ 1

8πG

(
V ′′

V

)
. (2.3.10)

Consider the two parameters to be small, i.e. ε� 1 and η � 1 [36]. From
the definitions of ε and η above, one obtains the following inequalities,

(
V ′

V

)2

� 16πG, (2.3.11)(
V ′′

V

)
� 8πG. (2.3.12)

Recall that following the slow roll conditions, we have derived the ap-
proximate Friedmann equation V ′(φ) ≈ −3Hφ̇. Thus, by substituting this in
equation (2.3.11), one obtains,

9H2φ̇2

V 2
� 16πG =⇒ 24πGV φ̇2

V 2
� 16πG =⇒ φ̇2 � V, (2.3.13)

where for the first implication I have used the second approximate Fried-
mann equation H2 ≈ 8πG

3 V (φ). Hence, we have derived the first slow-roll
condition (2.3.8) from the assumption ε� 1.
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Now consider the approximate Friedmann equation φ̇ ≈ −V ′(φ)
3H and

differentiate it with respect to time. One obtains,∣∣∣∣φ̈∣∣∣∣ ≈ ∣∣∣∣− V ′′φ̇

3H
+
V ′

3

(
Ḣ

H2

)∣∣∣∣ ≈ ∣∣∣∣− V ′′φ̇

3H

∣∣∣∣, (2.3.14)

since Ḣ/H2 ≈ −3φ̇2/2V � 1 from the first slow-roll condition derived in
(2.3.13). Now we divide both sides of the equation by H and obtain,∣∣∣∣ φ̈H

∣∣∣∣ ≈ ∣∣∣∣−V ′′φ̇3H2

∣∣∣∣ ≈ ∣∣∣∣− V ′′φ̇

8πGV

∣∣∣∣� ∣∣∣∣φ̇∣∣∣∣, (2.3.15)

where for the second equality I used again the Friedmann equation H2 ≈
8πG
3 V (φ) and for the last step I used the assumption η � 1. Thanks to this

assumption, we have recovered the second slow-roll condition of equation
(2.3.9).

In conclusion, the two slow-roll conditions can be summarized in the
simpler forms ε � 1 and η � 1. These expression can be interpreted as
requiring the curvature and the slope of the potential to be sufficiently small.

A useful quantity that one can measure is the "amount" of inflation
that the Universe underwent, the number of e-foldings. It is defined as the
logarithmic amount of expansion during the slow-roll regime. This quantity
depends strictly on the potential which drives the inflaton. The number of
e-foldings is defined as [33],

N = ln

(
a2
a1

)
=

∫ tend

t
Hdt = H

∫ φend

φ

1

φ̇
dφ ≈ −

∫ φend

φ
8πG

V (φ)

V ′(φ)
dφ,

(2.3.16)
where a2 and a1 are values of the scale factor at the end and at the

start of slow-roll inflation, respectively. By definition, N decreases during
inflation until it reaches zero at the end of inflation. The number of e-folds
is a constraint which assures that inflation lasts long enough. According to
observations, the largest scales observed today, the CMB scales, leave the
horizon Nstar ∼ 60 before the end of inflation.

Moreover, one can estimate the value of the field at the end of inflation,
which results to be the value for which either one of the slow roll parameters
ε or η equals to 1. Thus, e-folds can also be used to estimate the value of the
field φ? for which it leaves the horizon, after a sufficient number of e-folds.

For instance, take chaotic inflation with the potential V (φ) = 1
2m

2φ2.
The slow-roll parameters ε = η = 2M2

pl/φ
2 are small only for large values of

φ, i.e. φ >
√

2Mpl ≡ φend. Hence, inflation occurs for very large value of
the field and ends once ε ∼ 1 and φend ∼ 2Mpl. Observable scales leave the
horizon at N? ∼ 60, where N? is given by,
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N? =

∫ φ?

φend

φ

2
dφ ≈ φ2?

4M2
pl

. (2.3.17)

Hence, observable scales leave the horizon at φ? ≈
√

4× 60Mpl ≈ 15Mpl.

2.4 Inhomogeneities from inflation

So far, we have considered the Universe to be homogenous and isotropic.
This consideration is not complete to account for real cosmology. One must
must also study deviations from isotropy and homogeneity. Inflation was
firstly formulated in order to solve the cosmological problems mentioned in
section 2.2. Later on, cosmologists realised that as a theory itself it could
explain the origin of the inhomogeneities and hence the large structure of the
Universe [30].

Cosmological inhomogeneities are a consequence of quantum fluctuations
of matter and metric perturbations during inflation. The most relevant matter
fluctuation is that of the inflaton, which sources both the CMB temperature
fluctuations and structure formation. Thus, for simplicity, I will assume
matter is made up of a single real scalar field.

Consider a perturbed inflaton field living in a perturbed spacetime ge-
ometry. Einstein’s equations tell us that field perturbations and metric
perturbations must coexists. Thus, expand the inflaton field and the metric
such that,

φ(t,x) = φ̄(t) + δφ(t,x), gµν(t,x) = ḡµν(t) + δgµν(t,x), (2.4.1)

where φ̄(t) and ḡµν drive the homogenous background and δφ(t,x) and
δgµν(t,x) generate the perturbations. The perturbation components must be
small, such that δgµν(t,x)� 1 and δφ(t,x)� φ̄(t).

In principle, the 4x4 symmetric tensor δgµν(t,x) carries ten degrees of
freedom [34]. These correspond to either scalar, vector or tensor perturbations
according to their properties with respect to spatial rotations.

Scalar perturbations are invariant under spatial rotations and they are
the principal source of anisotropies and inhomogeneities of the Universe.
Vector and tensor perturbations transform as vectors and tensors under
rotations. Vector perturbations arise from rotational velocity fields and
tensor perturbations generate gravitational waves. There are four scalar, four
vector and two tensor degrees of freedom. At first order in perturbation
theory, these degrees of freedom obey their own equation of motion and hence
can be treated separately [2]. This is called the SVT decomposition.

Expanding the first derivative of the potential, such that V ′(φ) = V ′(φcl)+
δφV ′′(φcl), and substituting it in the equation of motion (2.3.2) together with
the expansion of φ, one obtains the equation of motion for fluctuations δφ,
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δφ̈+ 3Hδφ̇− 1

a2
δij∂i∂jδφ+ V ′′(φcl)δφ = 0. (2.4.2)

The vector degrees of freedom describe gravito-magnetism and the have
only decaying solutions; its analysis is therefore neglectable. The scalar
degrees of freedom generalize Newtonian gravity and are coupled to the field
perturbation δφ. Tensor perturbations are instead decoupled from the field
and they describe gravitational waves.

One subtle point to make is that the metric perturbation has more degrees
of freedom than the true physical degrees of freedom of the system [37].This
fact is related to gauge transformations which create extra non-physical
degrees of freedom. Gauge transformations in general relativity are generic
coordinate transformations from one frame to another. The gauge abundance
comes from the fact that there is no preferred coordinate system and hence
there is freedom of choice. Thus, one must fix the gauge in order to choose
a coordinate system. Gauge transformations have 4 degrees of freedom and
hence we find that the physical degrees of freedom are 10− 4 = 6; two scalar,
two vector and two tensor degrees of freedom. For the purpose of this thesis,
I will focus on tensor perturbations. For discussions on scalar perturbations,
see [29], [35].

Power spectrum
Let me first define in general the notion of a power spectrum. It is defined as
the ensemble average over fluctuations and it describes the amplitude of the
k-modes of a field φ [35],

〈φkφk′〉 = (2π)3δ(k + k′)Pφ(k). (2.4.3)

One can also define a dimensionless power spectrum P, such that

P =
k3

2π2
Pφ(k). (2.4.4)

A statistical measure of primordial scalar fluctuations is the power spec-
trum of R, the comoving curvature perturbation which describes the spatial
curvature of comoving hypersurfaces. The power spectrum is given by,

〈RkRk′〉 = (2π)3δ(k + k′)PR(k) P =
k3

2π2
PR(k). (2.4.5)

Furthermore, once can quantise the scale-dependence of the power spec-
trum via the scalar spectral index ns, such that [29],

ns − 1 ≡ d lnPR
d ln k

. (2.4.6)
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Similarly for the tensor perturbations, the power spectrum of the two
polarization modes of gravitational waves (+, x), corresponding to the per-
turbations’ two degrees of freedom, is defined as [35],

〈hkhk′〉 = (2π)3δ(k + k′)Ph(k) Ph =
k3

2π2
Ph(k). (2.4.7)

Thus, the full power spectrum of the tensor perturbations is defined as
the sum of the contributions from each polarization mode, i.e. Pt = 2Ph. As
for scalar perturbations, one can define the tensor spectral index nt [29],

nt ≡
d lnPt
d ln k

. (2.4.8)

In the next section, I will show how quantum fluctuations during inflation
are the source of the scalar and tensor primordial power spectra, Ps(k),Pt(k).

2.4.1 Quantum fluctuations

Quantum fluctuations are generated on all length scales but we are
interested in subhorizon modes, i.e. those inside the Hubble radius where
k � aH. Recall that during inflation the comoving Hubble radius (aH)−1

shrinks but all other comoving scales such as k . Hence, fluctuations will
eventually exit the horizon, where k > aH. Once this happens, fluctuations
can be described by a classical probability distribution with variance given
by the power spectrum evaluated at the horizon crossing due to the De
Sitter expansion stretching modes to very large scales [3]. After inflation, the
comoving horizon will start growing again and eventually the fluctuations
will re-enter the horizon. We will not need to worry about their behaviour
while outside the horizon since in that scenario, no causal physics takes place.

In this section, I will briefly derive the power spectrum of tensor fluctua-
tions and state the main results derived in [35] on scalar perturbations and
spectral indices.

Tensor perturbations are gauge invariant, i.e. they don’t change un-
der gauge transformations. Gravitational waves are described by the two
independent components of the 3x3 transverse traceless tensor hij such that,

δgij = −a(η)2hij , (2.4.9)

where η is conformal time. Moreover, the tensor hij can be decomposed such
that,

hij = h1e
1
ij + h2e

2
ij , (2.4.10)

where h1 and h2 are the two degrees of polarization of gravitational
waves(+,x) and ε1ij and ε

2
ij are two orthogonal transverse traceless tensors.

By expanding the Einstein-Hilbert action, we obtain the action of the
gravitational waves in the linear approximation, given by
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S =
1

8κ2

∫
dτd3xa2

[(
∂h′ij

)2 − (∂lhij)
2
]
. (2.4.11)

To simplify calculations, I will define the following expansion [35],

hij =

∫
d3k

(2π)3

∑
s=+,x

εsij(k)hsk(τ)eikx, (2.4.12)

where εii = kiεij = 0 and εsij(k)εs
′
ij(k) = 2δss′ . Thus, the tensor action

becomes

S =
∑
s

∫
dτdk

a2

4κ2
[
hsk
′hsk
′ − k2hskhsk

]
. (2.4.13)

By making a further redefinition such that vsk ≡
a
2κh

s
k, we recover the

action in the simple form,

S =
∑
s

1

2

∫
dτd3k

[
(vsk
′)2 −

(
k2 − a′′

a

)
(vsk)2

]
. (2.4.14)

This yields the equation of motion for a massless field in De-Sitter space-
time. Thus, the two polarization of gravitational waves can be seen as
renormalized massless fields in De-Sitter space [35],

hsk =
2κ

a
ψk, with ψk =

vk
a
. (2.4.15)

The detailed calculation of the power spectrum of ψ is shown in [35].
From that, once can deduce the power spectrum of a single polarization of
tensor perturbations. The result in terms of dimensionless power spectrum is
given by,

Ph(k) = 4κ2
(
H?

2π

)2

, (2.4.16)

where H? is the value of H at the horizon crossing, i.e at k = aH. Thus,
the full power spectrum of tensor perturbations, summing over the two
polarization contributions, is given by

Pt(k) =
2κ2

π2
H2
? . (2.4.17)

If inflation was pure De Sitter, H would be a constant and the spectrum
would be the same for any mode k leaving the horizon at different times.
Instead, inflation generates a quasi-scale invariant spectrum. It acts as a
quasi-De Sitter space in which H is not exactly constant. Thus we have slight
differences in the spectrum for modes leaving the horizon at different times;
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modes leaving the horizon at earlier times will have a larger spectrum since
H shrinks.

For completeness, the power spectrum of scalar perturbations, is given by

Ps(k) =
κ2

8π2
H2

ε

∣∣∣∣
k=a

, (2.4.18)

where ε is the slow-roll parameter defined in (2.3.10).
From these expression, one can obtain the scalar and tensor spectral indices

defined in equations (2.4.6) and (2.4.8) in terms of slow-roll parameters in
the slow-roll approximation,

ns − 1 = 2η − 6ε, nt = −2ε. (2.4.19)

Scale invariance corresponds to ns = 1 and nt = 0. Since slow-roll
condition imply η, ε � 1, the expressions above show explicitly the nearly
scale invariance of the power spectra. Moreover, define the scalar-to-tensor
ratio as,

r ≡ Pt
Ps

= 16ε. (2.4.20)

Measurements of these quantities strongly depend on the potential driving
inflation. In fact, H depends on the potential, ε and η depend on the first
and second derivative of the potential respectively. Therefore, the amplitude
and the scale dependence of the perturbations encode information about
the model driving inflation. Thus, they are an essential ingredient for our
understanding of the early universe. Scalar perturbations have been deeply
studied through CMB temperatures and polarization measure. Instead, tensor
perturbations are much harder to detect.

Constraints on ns and r are used to rule out or agree with inflationary
models. The most reliable data we have up to date is that of the Planck
observatory, which found the constraints r < 0.11 and ns = 0.9603± 0.0073
[25]. Recently, BICEP2 experiment on the South Pole detected inflationary
gravitational waves in the B-mode of the power spectrum [26]. This predicted
a value of the scalar-to-tensor ratio of r = 0.2+0.07

−0.05. However, the contribution
of foreground dust was not taken into account sufficiently and therefore their
results may not be reliable.
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3. Reheating

In the previous chapter, we reviewed the inflationary epoch and the
behaviour and evolution of the inflaton φ. If the Universe went through
inflation, then it necessarily goes through a reheating process once inflation
has ended. In fact, inflation ends once the inflaton leaves the slow-roll regime
by rolling down to the minimum of the potential and starts oscillating.

In this section I will discuss the behaviour of the inflaton at the end of
inflation and the following stages of reheating, i.e. preheating and thermaliza-
tion, analytically. My discussion will focus on the chaotic inflationary model
of a massless scalar inflaton field φ interacting with another scalar field χ
with potential

V (φ, χ) =
1

4
λφ4 +

1

2
g2φ2χ2. (3.0.1)

I will then analyse in detail the same process but in the case of non-
minimal coupling between the two fields and gravity, presenting the possible
values for the non-minimal coupling parameter. I will study analytically the
evolution of the fields during preheating in the limit for small values of the
non-minimal coupling and for large values of the inflaton.

I will then compute numerical lattice simulations on the behaviour of the
fields during reheating for both the minimal and non-minimal coupling case
using a modified version of the publicly available C++ LatticeEasy package
[38]. This will allow me to observe the effects of the non-minimal coupling
between matter and gravity during reheating.

3.1 Introduction: The two Stages of Reheating

The Universe starts reheating while the inflaton is oscillating around
the minimum of the potential. The first phase of reheating is known as
preheating and it is driven by parametric resonance between the inflaton
field and the other scalar field χ [13]. The modes χk(t) are being amplified
due to the resonance with φ and an exponentially fast production of nχ-
particles is induced. This resonance is not influenced by the expansion of the
Universe but depends sensitively and non-monotonically on the values of the
parameters driving the resonance, such as the coupling parameters and the
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initial conditions of the field. The resonance occurs within certain resonance
bands which may strongly or weakly amplify the momentum modes of χ.
This results to be a very efficient stage of energy transfer between the two
fields.

Parametric resonance can occur in two very different regimes; broad
resonance and narrow resonance [13]. Narrow resonance occurs when the
width of the resonance band is very small, as the name suggests. This
usually implies a non-very effective resonance in which the modes are only
slightly amplified. Moreover, the modes can very easily be shifted outside
the resonance band and stop growing.

Broad resonance instead acts very differently to the narrow one and its
dynamics is more complex. First of all, broad resonance is very efficient
since the range of momenta which are amplified is significantly wide. The
amplitude of the modes of the field χ will increase only when the inflaton field
φ crosses zero during its oscillation. Meanwhile, for each inflaton oscillation,
χ oscillates many times but the occupation number remains constant [13].

The nature of the resonance, broad or narrow, depends on the parameters
setting the fields’ evolution. Thus, it will strongly depend on the background
inflationary model of the system. In any case, resonance ends once it becomes
narrow and inefficient.

At this point, reheating enters its second stage of decay of produced
particles. Here, it is important to remember to take into account the fields
and particles that have been produced during the stage of preheating. The
final stage of reheating involves a regime of semiclassical thermalization;
the elementary particles that have been produced reach equilibrium and a
thermalization temperature Tr [15].

Unfortunately not much evidence can be carried out from this stage,
making it very hard to make predictions on it. Furthermore, its behaviour is
highly influenced by the preceding model of inflation so results from reheating
would significantly help in understanding the inflationary regime too.

3.2 φ at the end of inflation

The evolution of the inflaton depends on the form of the potential driving
inflation. In this section, I will be studying the evolution of φ with quartic
potential V = λφ4.

The slow-roll initial conditions imply that inflation lasts while φ > mp,
where mp is the Planck mass [14]. In this phase, the dominant term (2.3.2)
is the Hubble term. As the inflaton decreases, the Hubble term becomes
less and less important until φ < mp, where inflation ends. At this stage,
the inflaton rolls rapidly down the potential and starts oscillating around its
minimum with initial amplitude Φ0 ∼ 0.1mp [14].

Consider the inflaton to be φ(t) satisfying,
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φ̈+ 3Hφ̇+ λφ3 = 0. (3.2.1)

For convenience, we can rescale the field φ such that ϕ = aφ. Rewriting
the Klein-Gordon equation above in terms of ϕ we obtain,

ϕ′′ + λϕ3 − a′′

a
ϕ = 0, (3.2.2)

where ′ indicates derivatives with respect to conformal time η ≡
∫ t
0

1
a(t′)dt

′.
This may be further simplified if one notices that after the end of inflation,
the term a′′

a ϕ may be ignored. This is because in this theory, the stress
energy tensor is traceless. This implies that R = 0, a(η) ∼ η and clearly
a′′ = 0. Thus we recover the equation of motion for a scalar field in Minkowski
spacetime,

ϕ′′ + λϕ3 = 0. (3.2.3)

One can explicitly show that the φ-oscillations are not simply sinusoidal
but given by elliptic functions. Again let’s make use of a mathematical
simplification by introducing a dimensionless conformal time variable τ ≡√
λϕiη where ϕi is the amplitude of the field. Rescaling the function ϕ =

ϕif(τ), we find that it is a solution to (3.2.3) with,

f(τ) = cn

(
τ − τo,

1√
2

)
. (3.2.4)

The function f(τ) is the Jacobi elliptic cosine function [39]. It satisfies
the relation f ′2 = 1

2

(
1− f4

)
and it is a periodic function with period T ≡

4K
(
1/
√

2
)
≈ 7.416, where K(m) is the complete elliptic integral of the first

kind. The effective frequency of oscillation is therefore 2π/T ≈ 0.8472. A
useful representation of the Jacobi elliptic cosine function is [39],

f(τ) =
8π
√

2

T

∞∑
n=1

e−π(n−1/2)

1 + e−π(n−1/2)
cos

2π (2n− 1) τ

T
. (3.2.5)

In this sum, the amplitude of the first oscillation is 0.9550. However,
we notice that just after one oscillation, the amplitude of the field drops
drastically to 0.04305 [14].

This elliptic cosine solution is a characteristic of φ4 theory. For quadratic
potentials, the oscillations of φ at the start of reheating are simply sinusoidal.
The fact that in φ4 theory they behave in this interesting manner will imply
interesting results in the evolution of φ and χ in the following stages of
reheating.
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3.3 Preheating

Let me now find the equations governing the evolution of the fields during
preheating. The evolution of χ-fluctuations is governed by the Klein-Gordon
equation in an expanding flat FRW Universe [14],

χ̈+ 3Hχ̇− 1

a2
∇2χ+ V ′(φ, χ) = 0, (3.3.1)

where H = ȧ
a and ′ denotes the first derivative with respect to χ of the

potential (3.0.1). Consider φ to be a classical scalar field interacting with a
massless quantum field χ. According to quantum field theory, we can expand
χ in Fourier space in terms of creation and annihilation operators in this
form,

χ̂(x, t) =
1

(2π)3/2

∫
d3k

(
âkχk(t)e

−ikx + âk
†χ∗k(t)e

−ikx
)
. (3.3.2)

Hence, the time-dependent part of χ satisfies the equation of motion,

χ̈k + 3Hχk +

(
k2

a2
+ g2φ2

)
χk = 0. (3.3.3)

Fluctuations of the φ field itself, φk, are also present in this model due
to the quartic term in the potential which leads to self-interactions of φ [13].
These satisfy a similar equation to (3.5.24) with a slight difference due to
taking the derivative of the potential with respect to φ instead of χ,

φ̈k + 3Hφ̇k +

(
k2

a2
+ 3λφ2

)
φk = 0. (3.3.4)

Since we have recovered the same form for the two equations of motion,
we can work with χ fluctuations and apply similar results to φ. Again for
convenience, let’s make use of conformal time η defined in the previous
section and conformal fields ϕ and Xk such that ϕ = a(t)φ and Xk = a(t)χk.
Applying this change of variables, (3.3.3) becomes

X ′′k + (k2 + g2ϕ2)Xk = 0. (3.3.5)

Now, in the same way as before, let’s make use of the dimensionless
conformal time τ ≡

√
λϕiη and rewrite the equation in terms of derivatives

of τ instead of η by applying the chain rule to the equation. Moreover, using
the solution of ϕ derived in section 3.2, the equation above becomes,

X ′′k +

(
κ2 +

g2

λ
cn2

(
τ,

1√
2

))
Xk = 0, (3.3.6)

25



where κ = k2

λϕ2
i
, ′ corresponds to derivatives with respect to τ and I have

dropped the initial value τ0 of the Jacobi cosine function.
The form of this expression is useful since we have removed any dependence

on the expansion of the Universe and we have reduced the problem to one
in Minkowski spacetime. This is only possible if the theory is conformally
invariant. In this case, the potential only involves dimensionless parameters
and hence they don’t carry any physical length scale. This allows to map the
model in an equivalent problem in Minkowski spacetime, which significantly
simplifies the calculations.

Mathematically, equation (3.3.6) belongs to the family of Lamè equations
[40]. It describes the oscillations of the field Xk with frequency

w2
k = κ2 +

g2

λ
cn2

(
τ,

1√
2

)
. (3.3.7)

Using the same steps, we find that similarly the oscillatory field ϕ satisfies
a Lamè equation of the form,

ϕ′′ +

(
κ2 + 3cn2

(
τ,

1√
2

))
ϕ = 0. (3.3.8)

Stability/Instability chart for the Lamè equation
Equation (3.3.6) involves two parameters; the first one is κ, the momentum
band and the second one is g2/λ which gives the strength of the resonance.
Moreover, notice that its coefficients are periodic functions since, as mentioned
before, the Jacobi elliptic cosine is in fact a periodic function. Differential
equations with periodic coefficients such as the Lamè equation (3.3.6) are
studied in Floquet theory [41]. According to Floquet’s theorem, the Lamè
equation admits solutions of the form,

Xk = f(τ)exp[(µ(k2, g2/λ))τ ], (3.3.9)

where µ(k2, g2/λ) is the Floquet characteristic exponent which gives the
strength of the resonance and f(τ) is a periodic function. The Floquet
exponent is a function of the parameters k2 and g2/λ. When the Floquet
exponent is complex, the solutions constitute stable-solutions. However, if
it is real the solutions are no longer bounded and they are called unstable.
Parametric resonance occurs only within instability bands, corresponding to
real values of the Floquet exponent. Once µk is complex, χ simply oscillates
and no resonance occurs [42]

The exponential growth of the modes Xk implies an exponential growth
in the occupation number nk, such that,

nk ∼ |Xk|2 ∼ exp (2µkτ) . (3.3.10)
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We expect fluctuations of X to grow exponentially in specific bands of
momentum κ for some value of g2/λ as the inflaton field oscillates. What
we’re interested to find is for what values of the parameters the resonance is
mostly amplified.

As we will see, the values of g2/λ will sensitively affect the strength of
interaction between the two fields for specific bands of momentum in a non-
trivial manner [14]. This is a very important point. If the fields underwent
broad or narrow or stochastic resonance, the whole physics of the reheating
process would change significantly. It would also affect, for instance, the
production of gravitational waves during this era. Therefore, it is fundamental
to discover the details of the parametric resonance and consequently, the
behaviour of the fields.

The resonant modes for specific values of g2/λ was studied numerically in
[14] by solving equation (3.3.6). The authors plotted a stability/instability
chart of momentum modes against values of g2/λ. It was found that the
resonance bands stretch diagonally in the (g2/λ,κ2) plane, implying some
resonant structure for any value of g2/λ (see Figure 3.3.1).

Figure 3.3.1: Stability/instability chart for the fluctuations Xk obtained by solving
numerically equation (3.3.6). Shaded(unshaded) areas are areas of instability(stability).

The darker shade corresponds to a higher Floquet exponent. Figure taken by [14]

The shaded regions in figure 3.3.1 correspond to areas of instability in
which the darker the shade, the higher is the Floquet exponent. The unshaded
areas instead correspond to stable solutions. Therefore, parametric resonance
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only occurs within shaded areas of figure 3.3.1. One can immediately notice
that the largest characteristic exponent will occur for κ2 = 0 between values
g2

λ = n(n+1)
2 , with n integer. For instance, κ2 = 0 corresponds to the highest

characteristic exponent for some value of g2/λ between g2/λ = 1 and g2/λ = 3
and between g2/λ = 6 and g2/λ = 10. A characteristic feature of the Lamè
equation is that occasionally, some of the instability bands may shrink to a
point. This implies that for instance for the values g2/λ = 1 and g2/λ = 3,
there is a unique instability band.

More generally, there are a finite number of instability bands for g2/λ =
n(n+1)

2 and positive κ2. However, all other values of g2/λ have an infinite
number of instability bands. This a peculiar feature of this model, which
differs very much from the quadratic model V (φ) = 1

2mφ
2.

In the quadratic model, fluctuations obey the Mathieu equation instead
of the Lamè equation [13]. Lamè equation’s stability/instability chart results
very similar to the Mathieu equation’s one. The main difference is that its
solutions have an infinite number of instability bands for each parameter q,
analogous to our parameter g2/λ. We will find that in the limit g2/λ� 1,
the Lamè equation may transform into a Mathieu equation of a particular
form and the two stability/instability charts will coincide.

Analytic Discussion of the Lamè Equation
Earlier we found a solution to the Lamè equation in terms of transcendental
Jacobi functions. Calculations involving these functions can be very compli-
cated. Solutions to the Lamè equation for g2

λ = n(n+1)
2 turn out to be simple,

closed form solutions. Thus, I will focus on this case and rewrite the Lamè
equation (3.3.6) in its algebraic form [14].

Let me introduce the time variable z instead of x, such that,

z(x) = cn2
(
x,

1√
2

)
, and

d

dx
=
√

2z(1− z2) d
dz
. (3.3.11)

The equation for fluctuations Xk then becomes,

2z(1− z2)d
2Xk

dz2
+ (1− 3z2)

dXk

dz
+

(
κ2 +

g2

λ
z

)
Xk = 0. (3.3.12)

Let X1(z) and X2(z) be two independent solutions of the equation above.
One will be growing exponentially and the other will be decreasing expo-
nentially. Now consider the three bilinear combinations X2

1 , X2
2 and X1X2,

which I will denote by M(z), which obey a third equation, following from
equation (3.3.12) [14],
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2z
(
z2 − 1

) d3M
dz3

+
(
9z2 − 3

) d2M
dz2
−2

[(
2
g2

λ
− 3

)
z + 2κ2

]
dM

dz
−2

g2

λ
M = 0.

(3.3.13)
Restricting to solutions for values of g2

λ = n(n+1)
2 , the solutions are of

polynomial form of degree n.
For the purposes of this thesis, I will analyse in full details the interesting

case g2/λ = 1. The solution to (3.3.13) is M1(z) = z− 2κ2 [14]. Here, M1(z)
is clearly the product of an exponential growing function and an exponential
decreasing one, i.e M1(z) = X1(z)X2(z). Thus, we recover the expression,

X1(z)X2(z) = z − 2κ2. (3.3.14)

Furthermore, I will be using the notion of the Wronskian of a function
[43]. The Wronskian of a set of n-1 times differentiable functions f1, .., fn over
an interval is defined as the determinant of the square matrix constructed by
placing the functions in the first row, the first derivatives on the second row,
and so on til the (n-1) derivative. In our cause, from equation (3.3.12), we
can easily recover the Wronskian for X(z),

W (X1, X2) ≡ X1
dX2

dz
−X2

dX1

dz
=

A√
z(1− z2)

, (3.3.15)

where A is some constant. The two equations (3.3.14) and (3.3.15) form
two simultaneous equations from which one can recover the closed form
solutions,

X1,2(z) =
√
|M1(z)|exp

(
±A

2

∫
dz√

z(1− z2)M1(z)

)
. (3.3.16)

The constant A can be found by substituting this solution back into
(3.3.12), from which one finds A =

√
2κ2(1− 4κ4). Recall that the two

solutions describe one an exponentially growing function and one an expo-
nentially decreasing one. For the exponentially growing one, one must set the
constraint for A to be real. As a result, the growing solutions (for κ2 > 0)
occur in the range 0 < κ2 < 1

2 . Moreover, we have discussed that the growing
solution must be of the form X(x) = P [z(x)]eµkx. Thus, using (3.3.16), one
can find the Floquet exponent µk as a function of κ for g2/λ = 1. Therefore,
the Floquet exponent is [14],

µk(κ) =
2

T

√
2κ2(1− 4κ4)

∫ π/2

0
dθ

sin1/2θ

1 + 2κ2sinθ
, (3.3.17)

where T is the period of oscillations, T ≈ 7.416. The maximum value
for the characteristic exponent for the case g2/λ = 1 is µmax ≈ 0.1470 at
κ2 ≈ 0.228, in agreement with Figure 3.3.1.
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Similarly, the same procedure can be applied for the φ-oscillations, cor-
responding to the case g2/λ = 3, for which it is found thatµmax ≈ 0.03598
at κ2 = 1.615. In Greene’s et al. paper [14], solutions for the two cases
g2/λ� 1 and g2/λ� 1 are also widely explained. Here, I will only state its
main results.

As mentioned before, in the limit g2/λ � 1, the equation for Xk(x)
becomes the Mathieu equation,

d2Xk

dτ2
+ (A+ 2qcos2τ)Xk = 0, (3.3.18)

where τ = 2πx
T , A =

(
Tk
2π

)2
and q = 0.4570 × g2

2λ

(
T
2π

)2. Thus, in
this limit, the parametric resonance corresponds to that described by the
Mathieu equation. It predicts narrow instability bands around κ2 = 2πm

T
with m = 1, 2, .. and a maximum characteristic exponent of the exponentially
growing solution Xk ∝ eµkx with value µmax ≈ 0.1467× g2

λ . In conclusion, in
this regime the parametric resonance is that of narrow resonance with very
small resonance bands width.

In the limit g2/λ� 1, the system behaves like in broad resonance regime.
Firstly, we observe that the evolution of the modes Xk is adiabatic. Moreover,
the number density of particles nk(x) changes only when at x = xj the
inflaton’s amplitude crosses zero, i.e. when φ(x = xj) = 0, and is constant
otherwise. Thus, one can simply consider the evolution of Xk where φ2 is
small and it is ∝ (x− xj)2, resembling a quadratic potential. Then, one can
combine the effects of all subsequent parabolic potentials to find the overall
particle creation number. Using this method, one finds that in this limit the
Lamè equation can be reduced to the simpler form,

d2Xk

dx2
+

(
κ2 +

g2

2λ
(x− xj)2

)
Xk = 0. (3.3.19)

The resonance in this regime will be efficient for κ2 ≤
√

g2

2π2λ
. It was found

that for a given value of g2/λ, there will be a sequence of stability/instability
bands as a function of κ and the width of the instability bands where the

resonance is efficient is ∆κ2 '
√

g2

2λ . Like in the other cases, the characteristic
exponent results to be a non-monotonic function of g2/λ. However, an
interesting result is that for g2/λ→∞, the function µmax(g2/λ) approaches
asymptotically the value 0.2377. Thus, we find that in this regime the
resonance is stronger both in terms of the characteristic exponent µmax and
the width κ2.

In conclusion, we have proved that the χ-particle production depends non-
monotonically on g2/λ. It is less efficient for g2 � λ than in all other regimes.
Furthermore, the χ-particle production is generally more efficient than the
production of φ-particles, except for regimes where χ-particle production
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is inefficient. An interesting point is that the particles which are mostly
produced during reheating are those with the greatest characteristic exponent
µ and not those most strongly coupled to the inflaton, as one may naively
think.

3.4 Thermalization

When does the resonance end? Since the theory is a conformally invariant
theory, we showed that it is possible to eliminate the scale factor from the
equations governing the system. Hence, the expansion of the Universe doesn’t
affect the resonance structure, nor the end of the resonance. The only effect
which determines the end of the resonance in this theory is the backreaction
of created particles which restructures the resonance band [13]. When the
resonance band is very narrow, this occurs at 〈ϕ2〉 � ϕ2. All it is needed is
a small shift in the position of the resonance band in momentum space. In
this way, resonance modes which were growing will not grow anymore.

Preheating is only the first stage of reheating and it doesn’t lead to a
complete decay of the inflaton. During the second stage of reheating, created
particles interact with each other and the inflaton field until semiclassical
equilibrium is reached. It is believed that the last stages of the inflaton decay
occur in a perturbative regime, opposite to the non-perturbative regime of
preheating. After this perturbative regime, the decay products have energies
higher than the thermal energy and number density lower than the thermal
number density [15]. Thus, thermalization occur once interactions are at
equilibrium. It is shown that the process of decay is the dominant interaction
leading to thermalization. The study of thermalization is important in order
to estimate the reheating temperature and the possibility of out-of-equilibrium
states [44].

3.5 Non-minimal coupling to gravity

So far, I have considered reheating in a chaotic inflationary model involving
two interacting scalar fields. Many chaotic inflationary models have been
modified and extended over the years. Extensions are made in order to
explore the effects of adding certain terms to a certain system. These
additions may provide more accurate models or, as importantly, discard
others. This approach consists of adding terms which act as sources, to the
Einstein-Hilbert action..

I chose to study a model which contains in addition an interaction term
between gravity and matter. This model has not been studied before in the
cases I will be discussing in this thesis and I hope it will provide further help
in the probe of a unique inflationary theory.
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It was realised before that there is nothing preventing interactions between
matter and gravity. In General Relativity, gravity is a consequence of the
geometry of spacetime. Therefore, interactions between gravity and matter
are described by an interaction term involving the fields (matter part) and the
Ricci scalar (gravitational part), which I chose to be of the form ξφ2R+ξχ2R.

Cosmologists have been studying inflationary models containing this kind
of interaction term in the action for theories such as Higgs inflation and pure
λφ4 theory [45], [46], [47]. In addition, since the coupling ξ is dimensionless,
it is a marginal operator and hence it corresponds to a renormalisable term.
According to renormalisation theory, this suggests that such a term should
be included in the action.

As mentioned in the introduction, an interaction term of the form ξRφ2

is called a non-minimal coupling term. In general, it is called a non-minimal
coupling term if it differs from the standard Einstein-Hilbert term of the
form

√
−gR/κ2. Therefore, minimal coupling corresponds to ξ = 0. Actions

including non-minimally coupled terms are said to be in the Jordan Frame.
On the other hand, an action in the Einstein frame is one including only
minimally coupled terms. However, an action in the Jordan frame can
be rewritten in the Einstein frame via a conformal transformation [48]. A
conformal transformation consists essentially of variable and field redefinitions
and therefore the two frames are mathematically equivalent. This equivalence
should also appear for any physical quantity in the two frames [46].

In this section, I will analyse how the addition of this type of term will
affect the dynamics of reheating both analytically and numerically. I chose
the non-minimal coupling parameter, ξ, to be the same for both fields. This
was my particular choice, but there is nothing preventing the two fields from
having different non-minimal coupling.

The action of this system in the Jordan frame is,

S =

∫
d4x
√
−g
(

1

2κ2
R− 1

2
∂µφ∂

µφ− 1

2
∂µχ∂

µχ− 1

2
ξRφ2 − 1

2
ξRχ2 − V (φ, χ)

)
,

(3.5.1)
where g = det(gµν), φ and χ are light scalar fields, R is the Ricci scalar,

κ2 = 8πG, ξ is the coupling between the scalar fields and curvature and
V (φ, χ) = 1

4λφ
4 + 1

2g
2φ2χ2.

The inflaton field φ and χ obey respectively the following Klein-Gordon
equations,

2φ− ξRφ+
dV

dφ
= 0,

2χ− ξRχ+
dV

dχ
= 0,

(3.5.2)
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where the terms ξRφ and ξRχ describe the explicit interaction between
the fields and the curvature, i.e. between the matter and gravitational sector.

3.5.1 Values of ξ

Originally, Futamase and Maeda [45] added a non-minimal coupling term
to the action since it seemed to alleviate the fine tuning problem of the self
coupling constant λ in φ4 potential.

For chaotic inflation with quartic potential, V (φ) = λφ4 minimally coupled
to gravity (ξ = 0), λ ∼ 10−14 which is smaller than the expected natural
value of a coupling in particle physics. This is known as the fine-tuning
problem of the coupling λ in this theory. This is one of the main reasons
why φ4 theory was ruled out of possible inflationary models. Adding the
non-minimal coupling between the inflaton and gravity, partially solves this
problem since the constraint on λ is relaxed by several orders of magnitude.

Fakir and Unruh proposed a strong nonminimal coupling, ξ > 1 [49]; since
the coupling ξ is essentially free, if one takes ξ = O(104) then the correct
amplitude of density perturbations can be achieved with λ = (10−1). This is
because in this model, the amplitude of density perturbations will depend on
the ratio λ

ξ2
instead of λ. Hence, choosing an appropriate value for ξ allows

any value of λ desired. This was originally what brought cosmologists to
investigate the effects of non-minimal coupling to gravity.

There are many reasons why we should expect an interacting term between
gravity and matter. First of all, when describing the evolution of an interacting
quantum scalar field in spacetime with large curvature, such a term arises
naturally. This leads to the so called ξ-problem [50]: Should physics imply a
unique value of ξ?

There are some specific values of ξ which arise quite naturally and which
seems to suggest that not only the non minimal coupling is unavoidable but
also that ξ is not a free parameter. The value of ξ must depend on the theory
of gravity and on the properties of the scalar field φ.

It was proven that if gravity is described by a metric theory and φ has
non-gravitational origin, then ξ takes the value ξ = 1/6 [51]. This specific
case is called of conformal coupling. This result arises by imposing the
Einstein Equivalence Principle(EEP) on the physics of the field φ. The
Einstein Equivalence principle is an extension of the Weak Equivalence
Principle(WEP); it states that WEP holds and that the outcome of any local
non-gravitational test experiment is independent of the velocity of the freely
falling apparatus (Local Lorentz Invariance, LLI) and of where and when in
the universe it is performed (Local Position Invariance, LPI). According to
this, calculations show that ξ must take the value 1/6. If not, we would allow
a massive field to propagate along the light cone, which we know it is only
possible for massless objects.

If this is the case, the whole perception of inflation in this theory must be
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revisited. In fact, so far we have treated ξ as a free parameter which we could
freely choose in order to alleviate the fine tuning problem of λ. However, if
ξ = 1/6 is the value of the parameter a priori, then we need to find out if
inflation is still a possible scenario of the early Universe. Moreover, if inflation
is possible, what are the consequences of this induced inflationary scenario.

Futamase and Maeda [45] found out that actually inflation is not possible
at all in φ4 theory if the inflaton is conformally coupled to gravity. This was
quite straightforward to prove. The potential V (φ) = λφ4 is conformally
invariant due to the parameter being scale invariant. Consequently, the
whole system is scale invariant and the trace of the energy-momentum tensor
vanishes. Therefore, the Einstein equations yield

Ḣ − 2H2 +
k2

a
= 0. (3.5.3)

Solving this equation, we find that for k = 0, a ∝ t1/2 and for k = −1,
a ∝ t asymptotically. Neither of these are inflationary solutions since during
inflation a evolves quasi-exponentially. This means that according to this
theory, inflation doesn’t take place at all. In conclusion, chaotic inflation
cannot exist in a quartic potential theory conformally coupled to gravity.

In my discussion, I will consider cases of both weak and strong coupling.
According to observational constraints, the most reliable data is given by the
Planck observatory’s 2013 results, which found ξ < −0.0019 for λφ4 theory
[25]. Thus, we can rule out the possibility of ξ > 0 and concentrate on values
of ξ which agree with Planck’s constraint.

3.5.2 From the Jordan frame to the Einstein frame

In order to study the behaviour of the system, both analytically and
numerically, it is easier to conformally transform the action to the Einstein
frame. In this way, we will recover an action without the non-minimal coupling
term and its dependence will be incorporated in the potential. Therefore all
the information on the evolution of the system can be found by studying
the behaviour of the potential only. The new action will be mathematically
equivalent to the original one but it will have removed the non-minimally
coupled term, making calculations simpler. A conformal transformation is a
change of coordinates, such that the metric changes by [48],

g̃µν(x) = Ω2gµν(x). (3.5.4)

Consequently, the inverse metric will transform as g̃µν(x) = Ω−2gµν(x)
and its determinant as

√
−g̃ = Ω4√−g. The Ricci scalar R arises from the

contraction of the metric to the Ricci tensor, i.e. R = gµνR
µν , and hence

it will also be affected by the transformed metric. In fact the conformally
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transformed Ricci scalar, in 4 dimensions, takes the form [48],

R̃ =
1

Ω2

(
R− 6

Ω
2Ω

)
, (3.5.5)

where 2 = gµν∇µ∇νΩ. Rewriting the action (3.5.1) in terms of the trans-
formed metric g̃µν(x) and Ricci scalar R̃, we obtain the action,

S =

∫
d4x

√
−g̃

Ω4

[
1

2κ2

(
Ω2R̃+

6

Ω
2Ω

)
− 1

2
g̃µνΩ2(∂µφ∂νφ+ ∂µχ∂νχ)−

− 1

2
ξ (φ2 + χ2

)(
Ω2R̃+

6

Ω
2Ω

)
− V (φ, χ)

] (3.5.6)

=

∫
d4x
√
−g̃
[

1

2

(
1− κ2ξ(φ2 + χ2)

κ2Ω2

)
R̃+ 3

(
1− κ2ξ(φ2 + χ2)

κ2Ω5

)
2Ω

−1

2

g̃µν

Ω2
(∂µφ∂νφ+ ∂µχ∂νχ)− V (φ, χ)

Ω4

]
.

(3.5.7)

It is easy to see that the appropriate transformation in order for the first term
to be in the Einstein-Hilbert form,

√
−gR/2κ2, is Ω2 = 1 − κ2ξ(φ2 + χ2).

Furthermore, the second term of (3.5.7) can be absorbed by a rescaling of
the fields φ and χ. We introduce the rescaled fields φ̃(φ, χ) and χ̃(φ, χ) such
that,

1

2

(
∂̃µφ̃∂̃µφ̃+ ∂̃µχ̃∂̃µχ̃

)
=

1

2Ω2

(
∂̃µφ∂̃µφ+ ∂̃µχ∂̃µχ

)
+3

(
1− κ2ξ

(
φ2 + χ2

)
κ2Ω5

)
2Ω.

(3.5.8)

In principle, one should also include a cross term of the form ∂µφ̃∂
µχ̃ in

the LHS of equation (3.5.8) since φ̃ and χ̃ are functions of both φ and χ and
would therefore generate the cross term. By including such a term, we would
recover non-separable and not canonically normalizable kinetic terms due to
their coefficient being mixed functions of both φ and χ. In order to make the
calculations simpler, I will restrict my interest to canonically normalizable
fields and therefore ignore the cross term.

Let me expand the term involving 2Ω in a simpler form. Consider,
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∫
d4x

(
1− κ2ξ

(
φ2 + χ2

)
Ω5

)
2Ω (3.5.9)

=

∫
d4x

2Ω

Ω3
, (3.5.10)

=

∫
d4x

Ωgµν∇µ∇νΩ

Ω4
, (3.5.11)

=

∫
d4x

1

Ω4
[−gµν∇µΩ∇νΩ + gµν∇µ (Ω∇νΩ)], (3.5.12)

= −
∫
d4x

1

Ω4

[
gµν∇µ

(
1− κ2ξ(φ2 + χ2)

)1/2∇ν (1− κ2ξ(φ2 + χ2)
)1/2]

,

(3.5.13)

= −
∫
d4x

κ4ξ2

Ω6

(
φ2(∂φ)2 + χ2(∂χ)2

)
, (3.5.14)

where in the third line I have integrated by parts and assumed that the
term gµν∇µ (Ω∇νΩ) vanishes.

Thus, using the result of equation (3.5.14), equation (3.5.8) can be rewrit-
ten in the simpler form,

1

2
∂̃µφ̃∂̃µφ̃+

1

2
∂̃µχ̃∂̃µχ̃ =

1

2Ω2

(
∂̃µφ∂̃µφ+ ∂̃µχ∂̃µχ

)
+

3κ2ξ2

Ω4

(
φ2∂̃µφ∂̃

µφ+ χ2∂̃µχ∂̃
µχ
)
.

(3.5.15)
Since both φ̃ and χ̃ are both functions of φ and χ, using the chain rule

we have,

∂µφ̃ =
∂φ̃

∂φ
∂µφ+

∂φ̃

∂χ
∂µχ, (3.5.16)

∂µχ̃ =
∂χ̃

∂φ
∂µφ+

∂χ̃

∂χ
∂µχ. (3.5.17)

Using these expressions for ∂µφ̃ and ∂µχ̃ one can expand the LHS of
equation (3.5.15), to obtain,

1

2

(∂φ̃
∂φ

)2

+

(
∂χ̃

∂φ

)2
 ∂̃µφ∂̃µφ+

[(
∂φ̃

∂φ

)(
∂φ̃

∂χ

)
+

(
∂χ̃

∂φ

)(
∂χ̃

∂χ

)]
∂̃µχ∂̃

µφ

+
1

2

(∂φ̃
∂χ

)2

+

(
∂χ̃

∂χ

)2
 ∂̃µχ∂̃µχ =

Ω2 + 6κ2ξ2φ2

2Ω4
∂̃µφ∂̃

µφ+
Ω2 + 6κ2ξ2χ2

2Ω4
∂̃µχ∂̃

µχ.

(3.5.18)
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By equating coefficients in the equation above, we obtain the following
relations between the rescaled fields and the old fields,

(
∂φ̃

∂φ

)2

+

(
∂χ̃

∂φ

)2

=
Ω2 + 6κ2ξ2φ2

Ω4
,(

∂φ̃

∂χ

)2

+

(
∂χ̃

∂χ

)2

=
Ω2 + 6κ2ξ2χ2

Ω4
,(

∂φ̃

∂φ

)(
∂φ̃

∂χ

)
+

(
∂χ̃

∂φ

)(
∂χ̃

∂χ

)
= 0.

(3.5.19)

This system of PDEs does not have an exact solution for φ̃(φ, χ) and
χ̃(φ, χ). I have tried to simplify and solve this system analytically in many
ways but each time it would lead to a system of contradictory equations.
I have tried solving this on Mathematica, which also could not solve it.
Moreover, I tried by writing the fields in terms of polar coordinates, i.e.
φ = ρ sin θ and χ = ρ cos θ, in order for the non-minimal coupling term
in the action (3.5.1) to be a function of just ρ, but this also did not lead
to any solvable system. We can therefore conclude that an exact rescaling
under these assumptions is not possible and I will need to make a further
approximation. The reason could be that I have neglected the possibility of
a non-zero cross term between ∂µφ̃ and ∂µχ̃ in the LHS of equation (3.5.8).
Moreover, the prolem is that we are trying to reduce it to a problem in flat
FLRW spacetime by ignoring its curvature. However, a rotation that allows
us to do this cannot be done and hence we find that an exact solution to the
system does not exist.

Most of the literature which encounters this same problem simplifies the
system by assuming Ω to be a function of only φ and rescales χ such that
χ̃ = χ [52]. However, in this way, the system is reduced to a model in which
only the inflaton results to be non-minimally coupled to gravity. In order
to take into account interactions of both the fields with gravity, I chose a
different approximation, such that,

∂χ̃

∂φ
=
∂φ̃

∂χ
� 1, (3.5.20)

in order to have φ̃ being dominated by φ and χ̃ being dominated by χ.
By making this assumption, the system (3.5.19) reduces to,

(
∂̃φ̃

∂̃φ

)2

=
Ω2 + 6κ2ξ2φ2

Ω4
and

(
∂̃χ̃

∂̃χ

)2

=
Ω2 + 6κ2ξ2χ2

Ω4
.

(3.5.21)
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Due to the the way we have constructed the fields φ̃ and χ̃, i.e. by
equation (3.5.8), the action (3.5.7) in terms of the rescaled fields φ̃ and χ̃
takes the form,

SE =

∫
d4x
√
−g̃
(
− 1

2κ2
R̃+

1

2
∂̃µφ̃∂̃

µφ̃+
1

2
∂̃µχ̃∂̃

µχ̃− Ṽ (φ̃, χ̃)

)
. (3.5.22)

where ∂̃µ∂̃µ = g̃µν∂µ∂ν . The potential in the Einstein frame takes the
form,

Ṽ (φ̃, χ̃) =
1

(1− κ2ξ(φ2 + χ2))2

[
1

4
λφ4 +

1

2
g2φ2χ2

]
. (3.5.23)

The action (3.5.22) is clearly in the Einstein frame since it is given by
a gravitational part, which takes the Einstein-Hilbert form

√
−gR/κ2, and

a matter sector. We notice that the potential is non-renormalizable, as
a potential in 4 dimensions with terms of higher power than 4 are non-
renormalizable. It therefore seems to be unphysical and one may think
that something went wrong. However, this argument is irrelevant for our
purposes since we are using this form of the action only to be able to study
the system in the simplest form possible. We in fact know that the physical
action we are describing is the original one in the Jordan frame which is a
renormalisable theory. Hence, we can interpret the conformal transformation
to the action (3.5.22) as a mathematical tool in order to study the system in
a more convenient frame. The action (3.5.22) yields the following equations
of motion for φ and χ (after relabelling φ̃ to φ ,χ̃ to χ, etc.),

φ̈+ 3
ȧ

a
φ̇− 1

a2
∇2φ+

∂V

∂φ
= 0,

χ̈+ 3
ȧ

a
χ̇− 1

a2
∇2χ+

∂V

∂χ
= 0.

(3.5.24)

Clearly, the explicit non-minimal coupling term in equations (3.5.2) has
disappeared. This is because it is implicitly part of the term involving the
derivative of the potential. This is the reason why it is easier to study a
system in the Einstein frame; its evolution is determined by its potential only.
However, the potential in equation (3.5.23) is still in terms of the old fields
φ and χ. In order to find its explicit dependence on R we must rewrite it
in terms of the rescaled fields φ̃ and χ̃ or equivalently, in its Einstein frame
form. In order to do this, the first step is to solve equations (3.5.21) and find
the explicit form of φ and χ in terms of φ̃ and χ̃. Using those expression, one
can then rewrite the potential in the Einstein form.

Solving (3.5.21) exactly is rather complicated. An easier way to deal
with this is to again make use of approximations. This will allow me to deal
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with simpler forms of the potential which are valid within specific ranges of
either ξ or φ, according to the choice of approximation. I chose to take the
limit for small value of ξ, small values of the inflaton field φ and large values
of the field φ. I will then focus on computing numerical simulations in the
small ξ approximation which will hopefully be able to reveal the effect of the
non-minimal coupling term on the reheating process.

3.5.3 Small ξ approximation

Let me first consider the small ξ regime. In this limit, I can Taylor expand
the expressions in powers of ξ. By Taylor expanding (3.5.21) about ξ = 0 up
to first order in ξ, I obtain,

∂φ̃

∂φ
=

(
Ω2 + 6κ2ξ2φ2

Ω4

)1/2

,

=

(
1− κ2ξ(φ2 + χ2) + 6κ2ξ2φ2

)1/2
1− κ2ξ(φ2 + χ2)

,

' 1 +
1

2
κ2ξ(φ2 + χ2) +O(ξ2).

(3.5.25)

Similarly for χ̃,

∂χ̃

∂χ
=

(
Ω2 + 6κ2ξ2χ2

Ω4

)1/2

,

=

(
1− κ2ξ(φ2 + χ2) + 6κ2ξ2χ2

)1/2
1− κ2ξ(φ2 + χ2)

,

' 1 +
1

2
κ2ξ(φ2 + χ2) +O(ξ2).

(3.5.26)

Since we are assuming ∂φ̃/∂χ and ∂χ̃/∂φ to be negligible, equations
(3.5.25) and (3.5.26) can be integrated to obtain,

φ̃ ' φ+
1

2
ξκ2χ2φ+

1

6
ξκ2φ3 +O(ξ2),

χ̃ ' χ+
1

2
ξκ2φ2χ+

1

6
ξκ2χ3 +O(ξ2),

(3.5.27)

Notice that these expressions are consistent with the assumption made
in equation (3.5.20). We have that ∂φ̃

∂χ = ∂χ̃
∂φ ≈ κ2ξχφ. We know that

initially this definitely holds since we have χ0 = 0 and ξ is always very small.
Moreover, at later times, φ also decreases and χ never increases too much to
make this assumption invalid.
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Recall that what we need in order to write the potential in the Einstein
form is an expression for φ(φ̃, χ̃) and χ(φ̃, χ̃). Thus we need to invert equations
(3.5.27). One can do this by writing φ and χ as an expansion in terms of
powers of ξ up to order ξ2, i.e.

φ(φ̃, χ̃) = A+ ξB +O(ξ2), χ(φ̃, χ̃) = C + ξD +O(ξ2). (3.5.28)

By substituting this in equations (3.5.27), one can easily recover expres-
sions for the coefficients A,B,C,D by equating coefficients of similar terms
on the LHS and RHS of the equation. In particular, we find,

φ(φ̃, χ̃) ' φ̃− ξ
(

1

2
κ2χ̃2φ̃+

1

6
κ2φ̃3

)
+O(ξ2),

χ(φ̃, χ̃) ' χ̃− ξ
(

1

2
κ2φ̃2χ̃+

1

6
κ2χ̃3

)
+O(ξ2).

(3.5.29)

The potential in the Einstein frame takes the form,

Ṽ (φ̃, χ̃) =
1

Ω4
V [φ(φ̃, χ̃), χ(φ̃, χ̃)],

=
1

(1− κ2ξ(φ2 + χ2))2

[
1

4
λφ4 +

1

2
g2φ2χ2

]
,

'
(
1 + 2κ2ξ(φ2 + χ2)

)(1

4
λφ4 +

1

2
g2φ2χ2

)
+O(ξ2),

' 1

4
λφ4 +

1

2
g2φ2χ2 + ξ

[
1

2
κ2φ6 +

(
1

2
λ+ g2

)
κ2χ2φ4 + g2κ2φ2χ4

]
+O(ξ2),

' 1

4
λφ̃4 +

1

2
g2φ̃2χ̃2 +

1

3
ξ
[
g2κ2χ̃2φ̃4 + g2κ2χ̃4φ̃2 + λκ2φ̃6

]
+O(ξ2),

(3.5.30)

where in the last line I have used the expressions for φ and χ in equation
(3.5.29). Again the above form of Ṽ is the approximation of the effective
potential in the limit for small ξ. It is taken up to first order in ξ since it
would not add any information to take it up to any further order once we’ve
taken all other expressions up to first order in ξ. From this expression, it is
now trivial to obtain the form of the derivatives of Ṽ with respect to φ̃ and
χ̃ needed to solve the equations of motion (3.5.24),

∂Ṽ

∂φ̃
' λφ̃3 + g2φ̃χ̃2 + ξ

[
2

3
κ2g2φ̃χ̃4 +

4

3
g2κ2φ̃3χ̃2 + 2λκ2φ̃5

]
+O(ξ2)

∂Ṽ

∂χ̃
' g2φ̃2χ̃+ ξ

[
2

3
κ2g2φ̃4χ̃+

4

3
κ2g2φ̃2χ̃3

]
+O(ξ2)

(3.5.31)
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Small φ approximation
Here I apply the same procedure I used for the small ξ approximation. This
time, instead of Taylor expanding about ξ = 0, I Taylor expanded the
expressions (3.5.21) about φ = 0. As before, I obtained an expression for
the derivative of φ̃ with respect to φ in polynomial form, which is easily
integrable. Furthermore, rearranging I finally found an expression for φ in
terms of φ̃.

Here, I noticed that the result I obtained was exactly the same I recovered
from approximating in the small ξ regime. This is a very interesting point.
This means that the system obeys the same equations of motion and therefore
has the same behaviour in the limit for small ξ and in the limit for small
φ. However, in principle, the two approximations are very different. In
the former, one recovers a potential valid for all values of the fields if their
non-minimal coupling to gravity is relatively small. In the latter, one recovers
a potential which can describe the evolution of the small fields with any value
of the non-minimal coupling parameter. It is an interesting point which I
will further explain when dealing with numerical simulations.

3.5.4 Large φ approximation

In the large φ approximation, the procedure I adopted is slightly different.
In this regime, the two fields φ and χ behave very differently. This is because
we take the inflaton to be large but the same approximation is not possible
for the field χ. In fact, χ is necessarily light and small at the end of inflation.
Thus, we need to find a different way to treat χ. Especially in this regime,
since we are considering the inflaton to be large, it is clear that the dominant
term of the potential will be that including the inflaton.

Consequently, the effect of the non-minimal coupling between gravity and
matter will be prevalently from the coupling with the inflaton. The effect
of the non-minimal coupling between gravity and χ will be smaller and can
therefore be neglected in this approximation.

In order to do this, consider the action describing the system in the
Jordan frame (3.5.1) and let the two fields φ and χ have different non-
minimal couplings ξ and ζ respectively. Now impose ζ = 0 so that χ is
minimally coupled to gravity. Thus, the action (3.5.1) becomes,

S =

∫
d4x
√
−g
(

1

2κ2
R− 1

2
∂µφ∂

µφ− 1

2
∂µχ∂

µχ− 1

2
ξRφ2 − V (φ, χ)

)
.

(3.5.32)
Now, as I did before, I will rewrite the action in the Einstein frame using

conformal transformations. The steps are the same as when both the fields
were non-minimally coupled to gravity. However, the situation here is even
simpler. This time, the metric transforms as
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g̃µν = Ω2gµν , with Ω2 = 1− ξκ2φ2. (3.5.33)

.
By rewriting the action in terms of the conformally transformed metric and

Ricci scalar ( see section 3.5.2 for details on the Ricci scalar transformation),
one obtains

S =

∫
d4x
√
−g

[
1

2κ2
R̃− 3

κ2

(
κ4ξ2φ2(∂̃φ)2

Ω6

)
− 1

2Ω2

(
∂̃µφ∂̃

µφ+ ∂̃µχ∂̃
µχ
)
− 1

Ω4
V (φ, χ)

]
.

(3.5.34)
This action is clearly in the Einstein frame but it is useful to further

rewrite it in the standard form of equation (3.5.22). To do this, introduce new
fields φ̃ and χ̃ such that the second term in the equation above disappears.
Again, I will make the assumption,

∂χ̃

∂φ
=
∂φ̃

∂χ
� 1. (3.5.35)

In this way I can absorb the second term in equation (3.5.34) by defining
the rescaled fields φ̃ and χ̃ such that,

1

2
∂̃µφ̃∂̃

µφ̃ =
1

2Ω2
∂̃µφ∂̃µφ+ 3

κ2ξ2φ2

Ω4
(∂̃φ)2, =⇒

(
∂φ̃

∂φ

)2

=
Ω2 + 6κ2ξ2φ2

Ω4
,

(3.5.36)

1

2
∂̃µχ̃∂̃µχ̃ =

1

2Ω2
∂̃µχ∂̃

µχ, =⇒
(
∂χ̃

∂χ

)2

=
1

Ω2
. (3.5.37)

Since Ω is a function of φ only and ignoring ∂χ̃/∂φ by assumption,
equation (3.5.37) can be integrated to recover,

χ ' (1− κ2ξφ2)1/2χ̃. (3.5.38)

Again, under the assumption that ∂φ̃/∂χ is small enough to be neglected,
I have integrated (3.5.36) using Mathematica to recover the exact solution,

κ
√
−ξφ̃ =

√
1− 6ξ sinh−1

(√
1− 6ξκ

√
−ξφ

)
−
√
−6ξ sinh−1

(√
−6ξ

κ
√
−ξφ√

1− κ2ξφ2

)
.

(3.5.39)
This expression seems rather complicated. However, recall that we are

interested in the limit for large φ. More rigorously, the limit I am considering
is that of φ̃� Mp

ξ . Thus, I can approximate
√

1− 6ξ ≈
√
−6ξ and use the
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relation sinh−1 x = ln
(
x+
√
x2 + 1

)
, valid for any value of x. Using this,

my expression simplifies as,

κ
√
−ξφ̃ ≈

√
−6ξ

2
ln
(
1− κ2ξφ2

)1/2
=⇒ Ω2 = exp

(√
2

3
κφ̃

)
. (3.5.40)

Using Ω2 = 1− ξκ2φ2, we can rearrange the above expression in order to
find φ in terms of the new field φ̃. One obtains,

φ2 =
1

κ2ξ

(
1− exp

(√
2

3
κφ̃

))
. (3.5.41)

Using equation (3.5.41) and (3.5.38) we can find an explicit expression
for the potential Ṽ (φ̃, χ̃) in terms of the new fields φ̃ and χ̃ as we did for the
small ξ approximation. The potential in the Einstein frame for large values
of φ is,

Ṽ (φ̃, χ̃) =
1

Ω4
V [φ(φ̃, χ̃), χ(φ̃, χ̃)],

= exp

(
2

√
2

3
κφ̃

)(
λ

4
φ4 +

1

2
g2φ2χ2

)
,

' λ

4κ4ξ2

(
1− e−

√
2/3κφ̃

)2
− g2

2κ2ξ

(
1− e−

√
2/3κφ̃

)
χ̃2.

(3.5.42)

where in the last line I have used the expressions for φ(φ̃, χ̃) and χ(φ̃, χ̃)
of equations (3.5.38) and (3.5.41). From now on I will relabel any quantity
X̃ to X. Recall that in order to solve the equations of motion for χ and φ
we will need the derivatives of the potential with respect to φ and χ. These
can be easily deduced from the approximate form of the potential above,

dV

dφ
=

α

2κξ

(
λ

κ2ξ
− g2χ2

)
e−ακφ − αλ

2κ3ξ2
e−2ακφ, (3.5.43)

dV

dχ
=

g2

κ2ξ

(
e−ακφ − 1

)
χ, (3.5.44)

where α =
√

2/3.
I found that in the large φ approximation of my model, one can notice a

strong correlation with the Higgs-inflationary model [53].
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Figure 3.5.1: Graph of the potential in the large φ approximation

3.6 Numerical Simulations

The dynamics during preheating is highly non-linear and non-homogenous.
For this reason, we must solve the equations of motion of the fields numerically.
I used LatticeEasy, a C++ public program made available by Gary Felder
and Igor Tkachev [38]. In this section I will firstly give an overview on the
functioning of the program which will be mainly based on the available online
documentation [38].

LatticeEasy runs lattice simulations of the evolution of interacting scalar
fields in an expanding Universe. It is easily applicable to any inflationary
model with multiple interacting fields. More specifically, the main equations
that the program solves are the equations of motion of the scalar fields and
that of the evolution of the scale factor, i.e.

f̈ + 3
ȧ

a
ḟ − 1

a2
∇2f +

∂V

∂f
= 0,

ä+ 2
ȧ2

a
− 8π

a

(
1

3
| ∇fi |2 +a2V

)
= 0.

(3.6.1)

The program uses a staggered leapfrog algorithm to solve such equations.
It stores the values of the variables (and its first derivative) at each time
step and from those, it computes the value of the second derivative. It will
compute this process at each fixed time step, each time overwriting the old
values.

One important point is that the program variables are not the physical
variables. Firstly because it would be very hard to create a simulation able
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to deal with very small variables, as for instance λ which is of order 10−13.
Furthermore, rescalings make the equations simpler and hence the simulations
quicker. It is therefore important to remember that any result obtained by
the simulations will be in terms of the rescaled variables and not the physical
variables.

The variable rescalings can be written in the general form,

fpr ≡ Aarf ; xpr ≡ Bx; dtpr ≡ Basdt. (3.6.2)

The rescaling variables A,B,r and s are chosen depending on what is
most useful for a particular model. However, the LatticeEasy documentation
provides guidelines in setting these variables. The first is that it is useful to
rescale in order to eliminate the derivative term from the equations of motion.
The second is that it is convenient to set the scale of the field variables to
be of order unity at least initially. From these two conditions, it follows
immediately that,

s− 2r + 3 = 0, and A =
1

φ0
, (3.6.3)

where φ0 is the initial value fo the inflaton. Furthermore, the calculations
are simplified if the rescalings imply that the coefficient of the dominant
potential term to be of order unity and to include no powers of the scale
factor.

Assuming the dominant term of the potential is of the form V = cpl
β φ

β

and putting all these conditions together, we have the relations,

A =
1

φ0
; B =

√
cplφ

−1+β/2
0 ; r =

6

2 + β
; s = 3

2− β
2 + β

. (3.6.4)

Thus, if one simply sets β,cpl and φ0 then all other variables will be
automatically set by (3.6.4). For my particular potential, my choice of
rescaling was the same made by G.Felder and I.Tkachev in their default
model, i.e. cpl = λ and β = 4. This implies that the fields are rescaled such
that, φpr = a

φ0
φ and χpr = a

φ0
φ and the rescaled potential is Vpr = a4

λφ40
V .

Another important aspect of the simulations is choosing the appropriate
lattice parameters. The choice of the parameters that describe the lattice
very much depend on the physical features of the model. Two of the most
important parameters are the lattice size L and the number of points on
the lattice, N. Firstly, one must make sure that the volume of the lattice
L3 doesn’t exceed the Hubble horizon. This assures that approximating
spacetime as a flat FLRW spacetime is a valid assumption. Moreover, it
is important to make sure that the grid spacing L/N covers all typical
wavelengths of the fluctuations.

For my model, I chose λ = 9 × 10−14, in agreement with WMAP data
[7]. The initial value of a is set to 1 and the initial value of the inflaton φ0
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is set to be φ0 = 0.342M2
pl such that initially φ̇0 = −H?φ0, where H? is the

Hubble constant at the end of inflation, H2
? ' 2.6−15M2

pl. The initial value
of χi is more complex to choose. It sets the initial background of χ, which is
different for each Hubble volume since at the end of inflation the value of χ
varies on superhorizon scales due to its lightness. Thus, any quantity which
depends on χi will also vary between different horizon volumes. As I will
explain in more detail later, the amplitude of gravitational waves produced
during reheating, ΩGW , is a function of χi and it is therefore highly sensitive
to the choice of χi [54]. However, it is not the purpose of this thesis to study
the sensitivity of the system on the choice of χi. Therefore, for computational
convenience, I will choose the initial value of χ to be χi = 0.

LatticeEasy generates several outputs; Once it has calculated the evo-
lution of the fields, it also calculates many functions involving different
physical quantities about the fields. For instance, it calculates the means
and variances of all output fields. The means are the sum of the field at each
gridpoint divided by the total number of gripoints. The variance is given by
V ariance(f) = 〈f2〉 − 〈f〉2.

Another important quantity which the program calculates is the spectra of
all the fields. Within the spectra, most importantly it provides the occupation
number nk and the energy spectrum ρk. The occupation number nk is an
adiabatic invariant of the field evolution and its integral n ∼

∫
d3knk is the

classical number density (in the large amplitude limit). Mathematically, it is
given by

nk ≡
1

2

(
wk|F̃k,c|2 +

1

wk
|F̃ ′k,c|2

)
, (3.6.5)

where wk is the frequency of the oscillation and F̃k,c is a modified Fourier
transform of the field f in terms of conformal variables, such that F̃k =
1/L3/2Fk. Conformal variables are needed in order to take into account the
expansion of the Universe. As for the energy spectrum ρk, it shows the energy
spectrum of the field in different Fourier modes and it is given by,

ρk ≡ wknk =
1

2

(
w2
k|F̃k,c|2 + |F̃ ′k,c|2

)
. (3.6.6)

The default inflationary model considered in G.Felder and I.Tkachev’s
program is that of chaotic inflation with a λφ4 inflaton potential and another
massless light scalar field coupled to the inflaton. The potential is of the
form,

V =
1

4
λφ4 +

1

2
g2φ2χ2. (3.6.7)

I modified the LatticeEasy code in order to study the inflationary model
I am interested in, i.e. that of an inflaton and another scalar field coupled to
gravity, and compared it to the default model. This allowed me to analyse in
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detail what the effect of the non-minimal coupling term is on reheating and
later on, on the production of gravitational waves.

In this section, I will firstly compute lattice simulations and present the
results for the minimally coupled model with the potential (3.6.7). Then, I
will study the non-minimally coupled system with the same potential and
conclude on the effect of the non-minimally coupling term.

3.6.1 Minimal coupling case

First of all, let me analyse the behaviour of the fields during reheating
with the potential V = 1

4λφ
4 + 1

2g
2φ2χ2 for a system minimally coupled to

gravity, i.e. ξ = 0.

Figure 3.6.1: Graph of the rescaled potential V = 1
4
φ4 + 1

2
g2

λ
φ2χ2.

As mentioned above, this is the default model used by I.Tkachev and
G.Felder in LatticeEasy. In the previous sections, we studied the system
analytically up to its non-linear behaviour. A numerical analysis is necessary
in order to study the dynamics of its non-linear nature.

For the numerical simulations, I chose the coupling’s value to be g2/λ = 1.
As discussed, the initial values of the fields are φ0 = 0.342M2

pl and χ0 = 0,
which assures its lightness at the start of reheating. As for the parameters
which specify the lattice, I made several runs in order to find the appropriate
lattice volume V = L3 and number of lattice points, N . I found that the
choice N=64 and L=80 made sure that the lattice spacing included all relevant
modes amplified during the simulation.

Figures 3.6.2 and 3.6.3 show the evolution of the mean amplitude squared
a2φ2 and a2χ2. Recall that the functions that are being plotted are those
rescaled into program variables. Therefore, time t on the x-axis is actually
the rescaled conformal time, such that dtpr =

(√
λφ0/a

)
dt. These figures

are useful to describe the early times of preheating since it reproduces the
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evolution of the 0-mode. Initially, the inflaton is much larger than that of χ
and it oscillates with varying amplitude til t ∼ 120.
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Figure 3.6.2: Mean amplitude squared of the inflaton a2φ2.
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Figure 3.6.3: Mean amplitude squared of a2χ2.

These oscillations induce a resonant exponential growth in the fluctuations
χ. This can be clearly appreciated from figure 3.6.4. It shows the evolution
of the variances of φ and χ and it is more useful to describe later times of
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preheating since it includes all modes’ evolution. One can notice that the
variance in φ also increases due to its self coupling and interactions with χ
but only at t ∼ 150 when χ has already been amplified significantly.
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Figure 3.6.5: Occupation number nχ opposed to momentum modes in logarithmic scale

The exponential growth of χ arising from the parametric resonance with

49



φ also implies an increase in the χ-particles occupation number. This can
be clearly seen in figure 3.6.5. The modes which are being amplified during
the parametric resonance are those which induce the number occupation of
χ-particles to grow by many orders of magnitude.

Moreover, from figures 3.6.2 and 3.6.3 one can see that eventually they
will reach the same amplitude due to the energy transfer from φ to χ and
the resonance will terminate.

3.6.2 Non-minimal coupling case

Firstly, notice that the form of the equations of motion that the program
is built to solve (equation (3.6.1)) coincides with the form of the equations of
motion recovered by conformally transforming the action from the Jordan
frame to the Einstein frame(equations (3.5.24). Hence, LatticeEasy runs
simulations on the evolution of the fields in the Einstein frame. The potential
and its first derivative are the functions which encode all the information
needed to solve the scale factor equation and the fields equations of motion.
In this section, I will present numerical simulations made in the regime of
small values of the coupling ξ.

Small ξ regime
Recall that in section 3.4.1, under the assumption of small ξ, I derived the
following expressions for the potential, (and from that, expressions for its
derivatives with respect to φ and χ),

Ṽ (φ̃, χ̃) ' 1

4
λφ̃4 +

1

2
g2φ̃2χ̃2 +

1

3
ξ
[
g2κ2χ̃2φ̃4 + g2κ2χ̃4φ̃2 + λκ2φ̃6

]
+O(ξ2)

(3.6.8)
This must be rescaled into program variables in order to be able to run

the code. As discussed, my choice of rescalings are φpr = a
φ0
φ and χpr = a

φ0
χ

and the rescaled potential is Vpr = a4

λφ40
V . For convenience, I also defined a

new parameter ξpr, such that ξpr = ξφ20. Again, we will need to take into
account these rescalings when drawing conclusions on the outputs of the
program.

Figure 3.6.6 is the plot of the (rescaled) potential of equation (3.6.8).
Here, I have chosen the particular value ξ = −0.002, just about in agreement
with the CMB according to Planck’s data.

One can notice that the plot shows that the potential drops at a certain
value of the inflaton. By plotting the potential with many different values of
ξ, I found that this happens for any choice of ξ within Planck’s constraint.
Thus, although the potential was constructed to be valid for small values
of ξ and all values of the inflaton, the potential is only applicable within a
certain range of φ. Once this limit is surpassed, the potential drops and any
simulation fails to run.
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Figure 3.6.6: Graph of the rescaled potential (3.5.23) with ξ = −0.002

Moreover, by performing various runs of the code and studying the
behaviour of the system in the different cases, I concluded that my approxi-
mation is only valid for values ξ such that ξ ≥ −0.2. Hence, I restricted my
analysis of the system in this approximation to values of ξ within the range
−0.2 ≤ ξ < −0.0019.

The simulations in this regime carried out interesting results. We found
that the behaviour of the fields in the case of non-minimal coupling to gravity
very similar to that in the minimal coupling case.

The mean amplitude squared of the inflaton field φ and the scalar field χ
are plotted in figure 3.6.7 and 3.6.8. As before, we see that the inflaton is
initially larger than χ and that it undergoes an oscillatory phase. In the same
way as in the minimal coupled case, these oscillations induce an exponential
growth in the fluctuations of χ which can be clearly seen in figure 3.6.9.

The strong amplification of χ-modes also induces a rapid increase on the
number of occupation nk, and hence on the production of χ-particles as one
can see from figure 3.6.10. It is interesting to notice that the values of the
modes which are being amplified via parametric resonance are the same for
both minimal and non-minimal coupling regimes.

If we compare very carefully these graphs to the corresponding ones in
the minimally coupled scenario then we can spot some slight difference. For
instance, the oscillations of φ at early times are greater than those in the
minimally coupled case and it seems to be decaying to a larger amplitude
at later times. However, the overall physical dynamics of the two systems
shows essentially the same behaviour.
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Figure 3.6.7: Mean amplitude of φ in small ξ approximation.
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Figure 3.6.8: Mean amplitude of χ in small ξ approximation.

Why does reheating occur in the same way for small values of ξ and
ξ = 0? Qualitatively, this may be explained by the fact that the inflaton
starts close to the Planck scale. Since its evolution 〈φ2〉 ∼ M2

pl/a
2 and a

grows by many order of magnitude, 〈φ2〉 is small at late times. Hence, the
non-minimal coupling to gravity will have an irrelevant effect.

Furthermore, these results can be confirmed by analysing the shape of
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Figure 3.6.10: Occupation number nχ opposed to momentum modes in logarithmic
scale in small ξ aproximation.

the approximate potential in figure 3.6.6 with the potential for ξ = 0 in figure
3.6.1. One can notice that for small values of φ or until the potential in
3.6.6 doesn’t drop, the form of the potential is very similar. Since we found
analytically that the small φ approximation and the small ξ approximation
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are equivalent, the range of ξ and φ in our simulations are in fact those in
which the potential 3.6.6 and 3.6.1 have the same shape. Thus, it is not a
surprise that in that range of the fields, the non-minimal coupling and the
minimal coupling regimes have no significant difference.

What is the implication of this result? In previous studies, the mini-
mal coupling quartic model was ruled out of realistic inflationary models.
Cosmologists agreed that a non-minimal coupling to gravity is necessary
where ξ must obey the constraint ξ < −0.0019 imposed by Planck’s data.
This result shows that all simulations and predictions carried out for the
minimal coupling case agree with the data of a model which includes a small
non-minimal coupling term and which is compatible with observations. Thus,
the results obtained from studying quartic potential in a minimal regime
need not to be ruled out, as opposed to its originating theory. In other words,
many years of work of an incorrect model do not result to be vain.
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4. Gravitational Waves

In the previous chapter we have discussed the process of reheating in
detail. Gravitational waves are a consequence of its phenomenology. In this
chapter I will firstly describe qualitatively gravitational waves, their origin,
their significance and the technology we have to detect them directly and
indirectly. I will then focus on gravitational wave production during reheating.
Finally, I will compute numerical lattice simulations using a further modified
MPI/C++ version of LatticeEasy which will simulate the production of
gravitational waves during reheating. Again, the aim will be to find how a
non-minimally coupling between matter and gravity affects this phenomenon.

4.1 The Origin of Gravitational Waves

We expect the Universe to be living in an anisotropic gravitational wave
background of either cosmological or astrophysical origin even though it hasn’t
been detected yet [23]. Astrophysical sources may be collapsing neutron stars
and supernovae, merging of galaxies and extreme mass ratio inspirals. As
for cosmological sources, we predict a gravitational wave background from
inflation, thermal phase transitions at the very early stages of the Universe
and for instance, the dynamics of cosmic strings and domain walls [20]. In
fact, each phase transition that the Universe undergoes produces a very
specific form of gravitational wave background.

One interesting point is that when the gravitational wave backgrounds
have been produced by different phenomena, they differ significantly between
each other in their spectral shape and frequency [55]. Therefore, if gravita-
tional waves were to be detected, their properties would allow cosmologists to
determine its origin precisely. In addition, gravitational waves decouple the
moment they are being produced [56]. This means that they don’t interact
or evolve in time, but they propagate freely and the information they carry
will propagate without being disturbed or lost.

Therefore, if we could observe them directly, they would also carry infor-
mation on the era in which they have been produced. In particular, this is
why the detection of primordial gravitational waves would give an enormous
contribution to our understanding of the early Universe. It would carry
faithful and clear information on the process which generated them and

55



therefore on the whole dynamics of that specific epoch [57]. Gravitational
waves which have been produced during reheating could be the only direct
proof of what truly happened during reheating and inflation and therefore
our only hope to find a unique theory of the very early Universe.

"Do Gravitational Waves exist?"
Einstein published a concrete theory of gravitational waves in 1918 [22] but
many physicists were sceptical about the existence of those. For a brief time,
Einstein himself changed his opinion; he published in 1937 a paper "Do
Gravitational Waves exist?", in which he (wrongly) disproved the existence
of gravitational waves [22].

Only in the 1970s, after years of discussions, physicists reached consensus
that gravitational waves do in fact exist. It was hard to believe in something
which is almost directly undetectable. However, many experiments have
indirectly proven the existence of gravitational waves, most famous the
discovery of the binary pulsar PSR B1913+16, or the "Hulse-Taylor binary
pulsar". The Hulse-Taylor binary pulsar was the very first indirect evidence
of the existence of gravitational waves [58]. In 1974, Russell Hulse and Joseph
Taylor discovered the signal of a pulsar at the Arecibo Observatory in Puerto
Rico. They observed periodic changes to the pulsar’s pulsation period which
implied it was part of a binary system. Observations showed that the orbit of
the pulsar is gradually decreasing; in fact the two objects are rotating faster
and faster around each other in a smaller and smaller orbit.

According to Einstein’s theory of relativity, masses moving relatively to
each other should be emitting energy in the form of gravitational waves.
The amount of energy loss predicted by Einstein’s theory resulted to be
in agreement with the decay of the pulsar’s orbit. Hence, the emission of
gravitational waves from the pulsar binary system was (indirectly) proved to
exist as Einstein predicted. Hulse and Taylor won the Nobel Prize in Physics
in 1993 for their outstanding discovery.

4.2 Gravitational Waves Detectors

It is quite unfortunate how on the one hand we discovered the importance
of gravitational waves and on the other we have no currently built observatory
able to detect them.

Why is it so hard to detect gravitational waves directly? First of all, as
mentioned before, gravity couples very weakly to matter, making it hard for
us to detect such low frequencies. Most of the gravitational waves produced
result to be very very weak. In order to have strong gravitational waves, one
needs massive objects moving very fast (close to the speed of light) [55]. This
can happen for instance if the source of the gravitational waves is a black
hole.
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However, even if gravitational waves are strong, the fractional strain at
Earth, i.e. the fractional distortion of an object, caused by a gravitational
wave of amplitude h, is of order h = ∆L/L ∼ 10−22, over 1km of length. Thus,
the fractional change is so small that detectors with very high sensitivity are
required.

The first gravitational waves detector was developed in 1960 by Joe Weber.
In 1969, he announced to have detected gravitational waves which soon after
resulted to be simply noise [59]. Direct observations of gravitational waves
have not been made so far. Modern gravitational wave detectors use the
technique of laser interferometry in order to try and detect such weak effect.
Interferometers are wide-band detectors which can detect frequencies within
the range of a few Hz up to a few kHz. The seismic noise dominates at low
frequencies and it sets the lower limit of the frequency bands.

The main interferometers that have been built are LIGO (Washington and
Louisiana), VIRGO (Pisa, Italy), GEO600 (Hannover) and TAMA300(Japan)
[60]. LIGO(Laser Interferometer Gravitational-wave Interferometer) is the
largest of gravitational wave detectors and it consists of two interferometers,
one in Washington and one in Louisiana [24]. When gravitational waves
interact with matter, they stretch and compress objects in one direction
and in the perpendicular direction, respectively. The detectors are made of
L-shaped 4 kms long arms and they measure the relative lengths of the arms
using interferometry. To do this, photons are sent in tubes which travel in the
two different arms and reflect several times. If a gravitational wave was to
slightly stretch or compress one of the arms of the detector, the interferometer
would output a light pattern encoding information on the length change of
the arms. Instead, if no gravitational wave is detected, the interferometer
will produce no signal since the photon beams in the two arms will cancel
each other.

An advanced version of the LIGO experiment, Advanced LIGO, with
advanced strain sensitivity and improvement in its isolation, is expected to
be replacing LIGO in 2015 [61] and will hopefully be able to detect a broader
range of gravitational waves frequencies.

In collaboration with LIGO, another ground based interferometer is
VIRGO, built in Cascina, near Pisa [62]. It is also formed by L-shaped 3
kms long arms. Its frequency range extends from 10 to 6000 Hz, which
corresponds to gravitational waves produced by supernovae and coalescence
of binary systems.

As for space-based gravitational waves, the eLISA( Evolved Laser Inter-
ferometer Space Antenna) in 2034 will be the first observatory in space to
detect gravitational waves [63]. eLISA should be able to directly observe
gravitational waves by measuring the changes of distance between massive
objects in a spacecraft. It will be formed by three spacecrafts orbiting the sun
forming a high precision interferometer. eLisa will measure how spacetime
stretches or compresses giving direct information on gravitational waves.
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The advantage of a space-based detector over ground-spaced detectors
such as LIGO and VIRGO, is that it will be able to cover the much wider
frequency range between 0.1mHz and 1Hz [63]. Moreover, the ground-based
detectors have armlength limitations and terrestrial noise. Instead, in space
eLISA avoids both seismic and gravity-gradient noise. Its best sensitivity
will although be between 3 and 30mHz. Furthermore, LISA will be sensitive
to changes in various directions. This will allow it to detect the isotropy
of the gravitational wave background and differentiate between a signal of
cosmological or astrophysical origin.

4.3 Gravitational Waves from Reheating

The source of gravitational waves I am interested in this thesis is that
of the decay of coherent oscillations of a field in the phase of reheating. I
will be considering the usual quartic model λφ4 with an interacting potential
g2φ2χ2/2. Then, I will extend such model to non-minimal coupling with
gravity and compare it to the previous model.

As discussed in the previous chapter, in the quartic model λφ4 with
an interacting potential g2φ2χ2/2, coherent oscillations of the scalar field
φ produce fluctuations of the scalar field χ via parametric resonance. The
fluctuations are amplified in a way such that they become classical. The
interaction between these fluctuations and the oscillating background, which
we call rescattering, produces gravitational radiation [57].

As discussed in chapter 3, parametric resonance occurs only within a
certain range of momentum modes ∆κ, depending on the choice of parameter
g2/λ. In position space, this corresponds to field inhomogeneities of size
∆L ∼ 1/∆k. Due to the inhomogeneous nature of the field, the stress tensor
develops an anisotropic nature in which it evolves. It is the transverse-traceless
part of the stress tensor which acts as a very efficient source of gravitational
waves [54]. More gravitational waves are produced once the inhomogeneous
configurations of size ∆L collide forming smaller inhomogeneities. The
production of gravitational waves ends once the field stops oscillating and
the GWs decouple from the matter fields and freely propagate towards us.

Mathematically, in order to take into account for inhomogeneities one
must consider the full metric of spacetime. The total metric consists of a
homogenous and isotropic part and the addition of a small perturbation [27],

ds2 = a2(t)(ηµν + hµν)dxµdxν , (4.3.1)

where ηµν = diag(−,+,+,+) and hµν is the perturbation. We are only
interested on the transverse and traceless part of the perturbations since they
act as a source of gravitational waves. Hence, we must impose the constraints
∂ihij = hii = 0 on the metric perturbation which guarantees transversality
and tracelessness (we can therefore neglect the TT superscript of hij).
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Considering the whole metric above and linearizing the Einstein equa-
tions, the transverse-traceless(TT) part yields the equation of motion for the
perturbations [54] ,

ḧij + 3Hḣij −
1

a2
∇2hij =

16π

M2
pla

2
ΠTT
ij (φ, χ). (4.3.2)

Assuming no gravitational production at the start of reheating t = ti, the
solution to the GW equation above is given by a causal convolution with
appropriate Green’s function [57],

hij(t,k) =
16π

M2
p

∫ t

ti

G(t, t′)ΠTT
ij (t′,k). (4.3.3)

Therefore, all there is to find is the corresponding Green’s function G(t, t′)
and ΠTT

ij , the traceless-transverse part of the spatial components of the
anisotropic stress tensor, the source of gravitational waves. Hence, the
conditions ∂iΠTT

ij = ΠTT
ii = 0 must also hold.

It is hard to give an explicit derivation of the anisotropic stress tensor
ΠTT
ij . Thus, we can think of the full stress energy tensor as the sum of the

anisotropic part Πij and the isotropic part, which is given by the pressure of
the homogenous background [64]. Hence we can define Πij as,

a2Πij = Tij − 〈P 〉gij , (4.3.4)

where P is the homogenous background pressure and the stress energy
tensor is given by the usual form,

Tµν = ∂µφ∂νφ− gµνL. (4.3.5)

Hence, by substituting in equation (4.3.4) expressions for Tij for both φ
and χ, one obtains the expression for the full anisotropic stress tensor,

Πij =
1

a2
[∂iφ∂jφ+ ∂iχ∂jχ− gij(L+ 〈P 〉)]. (4.3.6)

To find the TT projection of Πij and to study the fluctuations, I will use
the formalism introduced in [64]. This method works in Fourier space, so
firstly I will transform equation (4.3.2) in momentum space. I will use the
Fourier space convention,

f̃(t,k) =

∫
d3xf(t,x)e−ikx. (4.3.7)

The equation of motion for the fluctuations in momentum space becomes,

ḧij(t,k) + 3Hḣij(t,k)− k2

a2
hij(t,k) =

16π

Mpl
ΠTT
ij (t,k). (4.3.8)
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In momentum space, the TT projection of the anisotropic stress tensor
can be obtained using a projector operator such that [65],

ΠTT
ij (t,k) =Λij,kl(k̂)Πij(t,k)

=Λij,kl(k̂)

∫
dxe−ikx[∂lφ∂mφ+ ∂lχ∂mχ](t,x),

(4.3.9)

where,

Λij,kl(k̂) = PilPjm −
1

2
PijPlm,

Pij ≡ δij − kikj/k2.
(4.3.10)

The operator Λij,kl(k̂) projects onto the subspace orthogonal to k, such
that Pijki = PijPjl = 0, which indeed implies that it projects the TT
part of Πij . In other words, the conditions on Pij imply the conditions of
transversality and tracelessness on Πij , ΠTT

ij kj = ΠTT
ii = 0. Notice that

when taking the TT projection, the term proportional to the metric in (4.3.6)
disappeared. This is because that term turns out to be of second order in
hij , which we can neglect. Therefore, we find explicitly that the gradients of
the fields are the source of gravitational waves.

It is possible to use a method in which we can solve equation (4.3.2)
without having to compute the Green’s function. In fact, from a numerical
point of view, it would be highly inconvenient for the program to find the
TT projection of Πij , Fourier transform to momentum space and back to
configuration space, at each time step. This involves non-local operations
which are computationally very costly. Therefore, in section 4.4 I will present
a method which simplifies the numerical simulations, introduced for the first
time in [57].

The energy density ρGW is a physical quantity which carries information
on the amount of energy carried by the gravitational waves. The energy-
momentum tensor of the GW is given by [56],

tµν =
M2
p

32π
〈∂µhij∂νhij〉V , (4.3.11)

where the TT tensor perturbations hij satisfy equation (4.3.2) and the
expectation value 〈..〉V is taken over a volume V = L3 such that the measure
of GW energy-momentum tensor is gauge invariant. The gravitational density
is defined as the 00-component of the stress energy tensor, i.e. ρGW = t00.
Thus, the energy density averaged over a volume V = L3 is,

ρGW =
M2
p

32πL3

∫
d3xḣij(t,x)ḣ∗ij(t,x) =

M2
p

32πL3

∫
d3k

(2π)3
ḣij(t,k)ḣ∗ij(t,k).

(4.3.12)
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The spectrum of gravitational waves per logarithmic frequency is then
given by [54],

dρGW

d log k
≡

k3M2
p

(4πL)3

∫
dΩk

4π
ḣij(t,k)ḣ∗ij(t,k). (4.3.13)

Thus, one can obtain the total energy density of gravitational waves
normalized by the critical density,

ΩGW(t) =
1

ρGW

∫ (
dρGW
d log k

)
d log k. (4.3.14)

4.4 Numerical Simulations

One of the main purposes of this thesis is to study the effects on gravita-
tional waves production of a reheating background where the scalar fields are
non-minimally coupled to gravity. I will be computing 3D lattice simulations
in order to give a numerical estimate on the gravitational wave spectrum
generated during reheating by the same chaotic model I have been discussing
throughout this thesis.

I made use of a further modified version of LatticeEasy which included a
code to reproduce the gravitational wave spectra at different time steps. It
is an MPI/C++ code which was firstly formulated by Daniel G. Figueroa
[66] and which was passed on to me by Laura B. Bethke [67]. An MPI code
is parallelised such that several CPUs run the code at the same time which
makes the simulation faster. The main change in this version of the code is
that it includes a function which calculates the normalised gravitational wave
spectrum of equation (4.3.13). This function is determined by the evolution of
the transverse traceless tensor perturbation given by equation (4.3.2) . Hence,
the code now involves the fields φ and χ and the six tensor perturbations
components hij producing the gravitational waves and acting as ’fields’.

As discussed when computing simulations on the dynamics of reheating,
the numerical algorithm used by the LatticeEasy package to solve the differ-
ential equations is a leapfrog integrator which stores the field values and its
derivatives at each time step.

In principle, the code would perform the TT projection of equation (4.3.8),
solve the equations in Fourier space and then transform back to coordinate
space. As one would expect, this is computationally very costly. The code I
will be using is instead based on a method which avoids this and which was
introduced in [57]. I will present their method in the following discussion.

We have seen that the solution to equation (4.3.2) can be written in terms
of a Green function as in equation (4.3.3). However, recall that one can write
the TT projection of the anisotropic stress tensor in terms of the projector
defined in (4.3.10), as in equation (4.3.9). Now, notice that the solution in
(4.3.3) is linear in ΠTT

ij and can therefore be written as [66],
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hij(k, t) = Λij,kl(k̂)
6π

M2
pl

∫ t

ti

G(t, t′)Πlm(t′,k). (4.4.1)

This allows us to redefine hij in terms of a function uij(k, t), such that
[66],

hij(k, t) = Λij,kl(k̂)uij(k, t), (4.4.2)

where uij(k, t) is given by,

uij(k, t) =
6π

M2
pl

∫ t

ti

G(t, t′)Πeff
lm(t′,k). (4.4.3)

Here, I have introduced the effective anisotropic stress tensor Πeff
ij (k, t′),

given by the Fourier transform of the unprojected source term [67],

Πeff
ij (x, t′) ≡ 1

a2
[∂iχ∂jχ+ ∂iφ∂jφ] (x, t). (4.4.4)

Hence, the function u(k, t) is simply the solution of the equation,

üij + 3Hu̇ij −
1

a2
∇2uij =

16π

M2
pl

Πeff
ij (φ, χ). (4.4.5)

Notice that the solution u(k, t) doesn’t involve the TT projection. Thus,
one can avoid to perform the TT projection explicitly at each time step by
letting the simulation solve the equation of motion for u(k, t) in (4.4.5).

In this way, we will only Fourier transform uij(x, t) to uij(k, t) and find
the corresponding hij(k, t) via equation (4.4.2) when we want to compute real
physical TT degrees of freedom hij . Thus, in any moment of the evolution,
we can obtain the gravitational wave spectrum which is determined by ḣij
via equation (4.3.13).

As mentioned before, LatticeEasy solves discretized versions of the equa-
tions. Therefore we will have to find a discretized version of equation (4.3.12)
which the program can solve. Using L3 = (Nδx)3, where N is the number of
lattice points and δx = L/N is the lattice spacing, and a discrete position
vector n = (n1, n2, n3), one can write equation (4.3.12) as [67],

ρGW =
M2
p

32πN3

∑
n

ḣij(t,n)ḣ∗ij(t,n). (4.4.6)

Using the discrete Fourier transform convention f(n) = 1/N3
∑
n

e−
2πi
N

ñ·nf̃(ñ)

and the discrete form of the delta function
∑

n e
− 2πi

N
(ñ−ñ′)·n = N3δ(ñ− ñ′),

one obtains an equivalent expression in Fourier space,
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ρGW =
M2
p

32πN6

∑
ñ

ḣij(t, ñ)ḣ∗ij(t, ñ). (4.4.7)

Numerical parameters

As for the simulations on the dynamics of reheating, in order to carry out
simulations on the gravitational wave production, one has to firstly choose
the appropriate numerical parameters.

The lattice size L must be determined by the infrared momentum kIR = 2π
L ,

corresponding to the largest wavelength that fits in the lattice box. A large
enough lattice spacing will ensure good IR coverage. However, a good UV
coverage is also needed. This improves with the number of lattice points
N, which sets the lattice spacing δx = L/N . This has to be smaller than
any relevant length scale in order for all the relevant physics to fit within
the lattice size. I will show how different choices of N and L influence the
reliability of the simulations. After multiple trials, I found that the choice of
N = 128 and L = 50 is the appropriate choice ot obtain valid simulations on
gravitational wave production in my model.

As in the previous chapter, I chose the value of the inflaton’s self coupling
to be λ = 9 × 10−14, consistent with WMAP data [7] and g2/λ = 1. The
initial condition of the scale factor is chosen to be ai = 1 and the amplitude
of the inflaton as φ0 = 0.342Mpl, just as in the previous simulations. Recall
that just as before, the program fields are given in units of φ0 and rescaled
by a factor of a.

To find the initial value of the field χ one must explore in more details its
properties. The lightness of χ implies that at the end of inflation and during
preheating it will vary on superhorizon scales. This means that each Hubble
volume will have its own non-zero background value of χi. This consideration
makes use of the so called separate universe approximation for non-linear
superhorizon perturbations [68]. Every quantity that depends on χi will vary
between the different Hubble volumes. It was found that the production of
gravitational waves depends sensitively on the initial value χi and numerical
simulations were done to study the dependence of ΩGW on χi[54]. Within
certain ranges of values of χi, ΩGW has a chaotic behaviour. In this scenario,
the production of GWs is highly sensitive to the particular value of χi. Even
though this results to be a more interesting scenario since it is a very efficient
regime of gravitational wave production, it is not in the interest of this thesis
to discuss the effect of χi on ΩGW. Therefore, I chose χi = 0, where ΩGW is
least sensitive to χi. Unfortunately, under this condition, the gravitational
waves produced have the smallest amplitude.
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4.4.1 Simulations on Gravitational Wave Production

Minimal-coupling case
Figure 4.4.1 shows the evolution of ΩGW during reheating. The gravitational
wave production starts as the field χ grows exponentially due to parametric
resonance with the field φ. The gravitational wave amplitude grows of many
orders of magnitude.

Figure 4.4.1 reproduces the GW spectra at different times for the choice
of lattice size L and number of lattice points N , such that L=60 and N=64.
One can notice that in the UV range (large wave number k) the amplitude at
late time is not highly suppressed since it only falls off to about 10−5. This
means that the plot cannot be fully trusted since we cannot assure that all
relevant physics is captured.

In order for the plot to not be dependent on the choice of lattice parameters,
one must make sure that the choice of N,L allows all relevant physics to be
reproduced.
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Figure 4.4.1: Gravitational wave spectra with N=64,L=60

I therefore chose to decrease L and increase N such that N = 128 and
L = 50 (figure 4.4.2) in order to increase the lattice spacing. In this case, one
can notice that in the UV range the spectrum falls off and it is therefore not
dominated by lattice effects.

Gravitational wave production becomes significant once the system be-
comes non-linear. This is because gravitational waves are sourced by the
field’s gradients and in this regime the gradients become larger corresponding
to higher GWs intensity. At the end of parametric resonance, when the fields
both have small amplitudes (and even if they’re still slightly oscillating), the
GW production ceases and the amplitude saturates. That final amplitude
is what we should find today if this kind of gravitational wave background
was to be observed. After parametric resonance, the fields enter a turbulent
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stage in which GWs are not being produced [57].
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Figure 4.4.2: Gravitational wave spectra with N=128,L=50

Non-minimal coupling case: small ξ approximation

Figure 4.4.3 shows the GW spectra at different time steps during reheating
for the non-minimally coupled model. I chose again values of the lattice
parameters L = 50 and N = 128 in order to assure that the UV range
would be highly suppressed. One can easily notice the strong similarities to
the minimal coupling case. The amplitude is increased by several orders of
magnitude during parametric resonance until it reaches saturation at the end
of parametric resonance.

This confirms the results obtained by simulating the evolution of the
non-minimally coupled fields during reheating. We saw that in the small
ξ approximation, the addition of the non-minimally coupled term had no
effect on their dynamics. Therefore, parametric resonance occurred in the
same way and the exponential growth of χ also occurred reasonably similarly.
From figure 4.4.3 we see that the gravitational wave production is also not
being affected by the non-minimal coupling between matter and gravity, at
least for the small ξ approximation. This was to be expected since if the
reheating process follows the same dynamics, then also the gravitational wave
production will occur in the same way.

What does this similarity imply? We found that the minimal regime
and the non-minimal one for small values of the coupling predict the same
gravitational radiation produced during reheating. Hence, we can conclude
that even if λφ4 theory has been ruled out by Planck’s constraints, it agrees
with a non-minimal coupling theory which is compatible with Planck’s data.
This is of strong physical significance because it implies that all predictions
from φ4 theory, that were considered wrong, are actually consistent with the
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Figure 4.4.3: Gravitational wave spectrum in small ξ approximation with N=128,L=50

predictions of a realistic and highly plausible model. This means that the
data from φ4 theory is still to be considered valid.
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5. Future Improvements

My work is based on several approximations in order to simplify calcu-
lations yet still presenting valid results. An improvement could be made
if for instance one was able to find the exact rescaling of the fields φ and
χ when conformally transforming the action from the Jordan to the Ein-
stein frame in section (3.5.2). In my case, this couldn not be found since I
assumed flat FRLW metric although realistically spacetime is curved. My
assumption of flat FRLW spacetime implied that the action in the Einstein
frame did not include a cross term of the form K∂µφ̃∂

µχ̃ where K is some
curvature-dependent function.

Instead, if a curved spacetime was to be considered, a non-zero cross term
would have to be considered in the action and one could obtain an exact
rescaling of the fields φ and χ. However, this would make calculations even
more complicated. Therefore, I tried to obtain a more accurate result by
including the cross term in the Einstein frame action even though assuming
flat spacetime but exact rescalings also failed to exist. In conclusion, the
only way to predict exact solutions would be to go the complicated way and
consider the curvature in the metric.

Note also that the equations of motion which LatticeEasy is built to solve
are those in equation (3.6.1), which are derived from an action which does
not include the cross term. Thus, if one was to include the cross term in the
action then it would be necessary to modify LatticeEasy in order for it to
solve the equations of motions yielded by such an action.

My work can be further improved even within the approximation I have
made. In my disussion of reheating in the small ξ approximation, I have
considered only first orders in ξ. It would be interesting to study the dynamics
of reheating up to higher orders in ξ and to see if this agrees with the first
order approximation I have made in my discussion. As found for the first
order approximation, we expect the effect of the non-minimal coupling in
this approximation to also be negligible for higher orders of ξ. However, the
results would be more accurate and hence more reliable.

Due to the limited amount of time I had to carry out this work, I did
not have time to numerically study reheating in the large φ approximation.
This can be done in a similar way to that in the small ξ approximation. The
major changes involve of course the potential and its derivatives with respect
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to φ and χ which set the evolution of the fields and of the scale factor and
which we found analytically to be given by equations (3.5.42) ,(3.5.43) and
(3.5.44), respectively. Just as in the small ξ approximation, one must rescale
the variables into program variables in a computationally convenient form.

In this regime the inflaton inflates for longer and its value when it ends
inflation and enters reheating will be smaller compared to that in the small ξ
approximation. This can be explictly seen in figure 3.5.1 where we notice the
longer flat slope of the potential and that the inflaton rolls down towards the
minimum much later than in the small ξ approximation (figure 3.6.6).

Since inflation ends when either one of the two slow-roll parameters ε and
η are of order 1, the value of the inflaton as it enters reheating is simply that
for which such condition is satisfied. In other words, we are looking for the
value of φ which satisfies,

ε ≡ 1

16πG

(
V ′

V

)2

' 1. (5.0.1)

Since we take the initial value χ0 = 0, the potential in equation (3.5.42)
can be simplified to the form,

V =
λ

4κ4ξ2

(
1− e−

√
2
3
κφ̃
)2

, (5.0.2)

where κ2 = 8πG. Using this potential V to recover ε, one finds that ε ' 1

when φ̃ '
√

3
2
1
κ ln

(
1 + 2√

3

)
. Setting this value (in program variables) as the

initial condition for the inflaton will assure that the program is simulating
the evolution fo the fields during their stage of reheating.

In my opinion, since the non-minimal coupling in this approximation
results to be strong, one should expect to find changes on the phenomenology
of reheating compared to the minimal coupling case. Consequently, the
production of graviational waves would also be affected since it strongly
depends on the dynamics of reheating.

Moreover, approximations in the small ξ regime and in the large φ regime
would allow us to make an educated guess on the form of the full potential.
Thus, using an ansatz, one could study the dynamics of reheating for any value
of the fields and the coupling ξ (always complying with the restrictions given
by the latest experimental results, which today are Planck’s 2013 results).

Last, but not least, my model could be generalised if one considers two
different coupling between gravity and the two fields. This would allow us to
choose independentely the strength of interaction between gravity and each
of the two fields.
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6. Conclusions

Throughout this thesis, I presented analytical and numerical discussions
on the theory of reheating and on its phenomenological consequence of
gravitational wave production. I chose to study these aspects of the early
Universe in a particular inflationary theory which had not been discussed
before. I chose a quartic chaotic model involving two interacting massless
scalar fields, both non-minimally coupled to gravity. Pure λφ4-theory had
been ruled out by Planck’s observations. I chose to generalise this theory to a
realistic model, compatible with observations, which accounts for interactions
between matter and gravity. This model turned out to have some very
interesting physical implications.

The aim of this discussion was to study the effect of the matter-gravity
interaction on reheating and on the production of gravitational waves during
that time. In order to study this effect I chose to compare such a model with
a minimally coupled one. I performed lattice simulations on the behaviour of
the fields during reheating which clearly showed the effects of the parametric
resonance. The oscillating nature of the inflaton induces the field χ to grow
exponentially. This corresponds to an increase in the number occupation
of χ-particles. Due to the significant amount of energy transfer from φ to
χ, χ will eventually reach an amplitude similar to φ and they will enter a
non-linear regime which sets the end of the parametric resonance.

Gravitational wave production starts due to field inhomogeneities arising
from χ’s growth and becomes significant once the system becomes non-linear.
Graviational waves intensity becomes larger in the non-linear regime due to
the field’s gradients being much larger and power being transferred to higher
momenta. Once gravitational wave production reaches an end, the amplitude
of gravitational wave saturates and that results to be the final gravitational
wave background we expect the Universe to be filled with today.

I focused on numerical 3D lattice simulations for small values of the
non-minimal coupling ξ. These simulations showed a strong correlation
with those of the minimally coupled case. The reheating process follows the
same dynamics and therefore would produce the same gravitational wave
background. As a consequence, even if λφ4-theory has been ruled out, we
have that its predictions can still be considered valid. This result is of strong
significance since it implies that all the data recovered from φ4- theory should

69



still be taken into account. How can two theories, one incompatible and one
compatible with observations, predict the same results? There is clearly still
much to discover from this model.

The answer will probably arise only with further improvements in our
tehnology. Currently, we are not able to detect this kind of gravitational wave
background directly. If measurements became possible, one could provide
further constraints to inflationary models and explain how the preheating
regime occurs. It is possibly the only direct information from the very early
Universe which is present in our Universe since it has been decoupled since
the moment of its production and therefore the information it carries has not
been disrupted by the evolution of the Universe. Its spectra provides a direct
picture of the reheating process of the Universe. It would therefore provide
an enormous contribution to the development of a theory of the very early
Universe.

However, our current gravitational wave detectors are not sensitive enough
to cover the frequency ranges of primordial gravitational waves. The BICEP2,
which studies the B-mode polarizations of the CMB, is the first attempt to
study primordial gravitational wave backgrounds and future developments
of it could improve our understanding of these perturbations [26]. We
hope that future planned observatories will be able to detect primordial
gravitational wave backgrounds. In particular, if inflation occured at low-
scales, observatories such as BBO may be able to detect the gravitational
wave background arising from preheating [69].

Finally, a quantum theory of gravity [70] together with observational
improvements will hopefully lead us to find a unique theory on the creation
and the events which followed in the first fractions of a second.
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