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Abstract

Quantum steering, the ability of one party to perform a measurement on
their side of an entangled system with different outcomes leading to different
sets of states for another part of the entangled system arbitrarily far away,
is a purely quantum phenomena with no classical analogue. However, it is
closely related (and indeed equivalent for pure states) to entanglement and
Bell nonlocality.

This work reviews the connections between steering, entanglement and Bell
nonlocality, and both the theoretical background and recent practical
applications of steering.
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1 Introduction

Anyone who is not shocked by quantum theory has not understood
it.
Niels Bohr

Quantum steering, a deeply disturbing idea from the viewpoint of classical
physics, whereby one party can perform a measurement on their side of an
entangled system with different outcomes leading to different sets of states
for another part of the system that is arbitrarily far away, has been known of
since the 1930s. However, it is only in the last 25 years that it was realised
that for mixed states entanglement, steering, and Bell nonlocality were in-
equivalent. This realisation has led to increased interest in quantum steering,
both for its own sake and because of its close links to entanglement and Bell
nonlocality.

We begin by briefly reviewing the underlying mathematical ideas of the pos-
tulates of quantum theory. The concepts of entanglement and Bell nonlocal-
ity are covered in the following chapters before we turn our attention towards
quantum steering. The final chapter deals with how quantum steering is re-
lated to entanglement and Bell non-locality for both pure and mixed states,
and the recently discovered practical applications of quantum steering in the
field of quantum key distribution.

1.1 Mathematical Preliminaries
The most incomprehensible thing about the world is that it is
comprehensible.

Albert Einstein

In this section we briefly review the core mathematical elements of linear
algebra needed to understand quantum mechanics. We begin with the defi-
nition of a complex vector space.



Definition

A complex vector space, V, is a set that is closed under both vector addition
(denoted by +) and scalar multiplication (denoted by -) and satisfies the
following properties:

LYZ,YeV: T+y eV

2LVT, yeV: T+y=y+7
3.VZ, Y, Z7eV: (T+yN+Z2=7+Y+7)
4. 370 €V such that VT eV, ?+6>:?

5.V T €V 3(=7) such that T+ (-%) = 0

Scalar multiplication obeys:
l.YaeC, TeV: a
2.VezeV: 1.2=7
3.Va,BeC, T eV
4. YVaeC, 7, yeV: a- (T+y)=a-T+a -7

V.

5.Va,3e€C, T €

Broadly speaking the underlying reason for representing quantum mechanics
using a vector space framework is to remain consistent with the superposition
principle.

Using this framework we can define the complex scalar product by

Definition
A complex scalar product on a vector space space is a function that assigns
to every set of two vectors T,y €V a complex number (x',7y) satisfying:

LYT, 7, 7€V, a,eC: (Z,aT+87)=a(T,7)+B(F,7)
2.NT, Y eV: (Z.7)=(¥,7)

3.v7eV: (7, 7)>0

4.7 €eV: (¥, 7)=0&7 =0



Complex vector spaces which have been assigned a scalar product are known
as unitary vector spaces. We can now use the scalar product to define the
norm (‘length’) of a vector and the concept of orthogonal vectors.

Definition
The norm of a vector @ €V is given by ||Z|| = (@, 7).

Definition
The vectors @',y €V are said to be orthogonal if (', ) =0.

Finally we can now define Hilbert spaces for the final dimensional cases we
are primarily concerned with:

Definition
A complex vector space, H, is a Hilbert space if:

1. 'H is an unitary vector space.

2. 'H s complete.

Completeness here refers to a property of a vector space whereby the limit of
any convergent (Cauchy) sequence of elements from the vector space is itself
a member of the vector space.

We can now understand why the Hilbert space is the mathematical structure
used to represent quantum mechanics. First, it is a vector space, and so is
consistent with the superposition principle. Second it is a complete vector
space so the limit of any convergent sequence of physical states will also be a
physical state in the Hilbert space, as our physical intuition would suggest.

Having very briefly outlined the mathematical foundations we now turn our
attention to the fundamental postulates of quantum mechanics.



1.2 The Postulates of Quantum Mechanics

If we look at the way the universe behaves, quantum mechanics
gives us fundamental, unavoidable indeterminacy, so that alter-
native histories of the universe can be assigned probability.

Murray Gell-Mann

We now consider the postulates of quantum mechanics?®, and their significance.
The first postulate describes the mathematical structure we use to represent
quantum mechanical systems.

Postulate 1:

Associated to any isolated physical system is a complex vector space with inner
product (that is, a Hilbert space) known as the state space of the system. The
system is completely described by its state vector, 1), which is a unit vector
in the system’s state space.

As mentioned before, Hilbert space is a natural mathematical choice as it is
consistent with both the superposition principle and our physical intuition
that the limit of any convergent sequence of physical states should also be a
physical state.

The definition leaves open the question of what the state space and state
vector of the system is for any given physical system. In this work, the
systems we will be primarily concerned with are simply the quantum bit (or
qubit) and its generalisations.

The second postulate deals with the issue of how a quantum mechanical
state, |1), evolves with time.

Postulate 2:

The evolution of a closed quantum system is described by a unitary transfor-
mation. That is, the state of the system at time ty is related to the state of
the system at time ty by a unitary operator, U, which depends only on the
times t1 and ty:

[¢) = Ul)

IThese are quoted almost verbatim from Nielsen and Chuang’s textbook on ‘Quantum
Computation and Quantum Information’ [1].
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Here an unitary operator, U, is defined as an operator satisfying the condi-
tion UTU = UUT = I where I being the identity matrix.

This postulate is, of course, an idealisation as apart for the entire Universe
there is no such thing as a truly closed system. From an experimental point
of view we can we can consider a closed system as one for which any outside
influences are negligible. Given our subject matter is somewhat ironic, as
one of the major issues in practical applications such as quantum computing
is being able to interact with the system enough to precisely control it while
at the same time making it resilient to unwanted outside influences.

Another idealisation inherent in this postulate is that it only deals with
the quantum state of a system at two different times. Consequently for
continuous time systems we have

Postulate 2a:
The (continuous) time evolution of the state of a closed quantum system is
described by the Schrodinger equation,
d[)

h——- =H

L = Hiy)
where h is a physical constant known as Planck’s constant, and H s a fizved
Hermitian (i.e. obeying H = H') operator known as the Hamiltonian of the
closed system.

Having postulated the time evolution of a quantum system we now consider
how to describe what happens when we actually interact with it. This is
covered by:

Postulate 3:

Quantum measurements are described by a collection {M,,} of measurement
operators. These are operators acting on the state space of the system being
measured. The index m refers to the measurement outcomes that may occur
in the experiment. If the state of the quantum system is |¢) immediately
before the measurement then the probability that result m occurs is given by

p(m) = (| M, My, )
and the state of the system after the measurement is
My, |9)
(| MM, 0)

11



The measurement operators satisfy the completeness equation,

> MM, =1

m

The intuitive justification behind this postulate is that if we measure a
quantum system twice with the second measurement being immediately after
the first we would expect to obtain the same result. Moreover the complete-
ness equation ensures that the probability of the various outcomes sum to
one. Interestingly, as was proved by Andrew Gleason [2] in 1957, it turns out
that the the choice of the probability measure is essentially unique given the
Hilbert space structure of quantum mechanics.

However, the fundamental issue of when exactly the reduction of the quantum
mechanical state (or ‘wavefunction’) takes place has always been a contentious
issue, despite the fact that the postulate describes the result of experiments
very well. Consequently taking our cue from Richard Feynman’s quip that,
the ‘paradoz’is only a conflict between reality and your feeling of what reality
‘ought to be’ we now move on to the final postulate that describes a composite
quantum system made up of two or more physical systems.

Postulate 4:

The state space of a composite physical system is the tensor product of the
state spaces of the component physical systems. Moreover, if we have systems
numbered 1 through n, and system number i is prepared in the state |1;), then
the joint state of the total system is [1h1) ® |[1e) @ ... & |U,).

where the symbol ® denotes the tensor product. From this we see if we have
a particle A with state [14) in Hilbert space H4 and particle B with state
|¢p) in Hilbert space Hp then the total state of the two-particle system can
be written as [14) ® |¢p), or even more succinctly as |1)4)|¢p), in the Hilbert
space Hap = Ha ® Hp of the combined system.

This definition also very naturally leads on to the idea of product and entan-
gled states which we will cover in the next chapter.

1.3 The Path Ahead

Having briefly reviewed the postulates of quantum theory and the underlying
mathematics, we now look at the ideas of entanglement, Bell nonlocality and
quantum steering, and their fascinating inter-relationships.

12



2 Entanglement

Isolated material particles are abstractions, their properties being
definable and observable only through their interaction with other
systems.

Niels Bohr

Quantum entanglement is the term given to the phenomena whereby particles
can be generated or interact in ways such that the quantum state of each
particle cannot be described independently. In such cases the system of
particles is said to be entangled and it is not correct to consider any of
the individual particles in isolation from the others, but only as a single,
entangled state.

The concept of entanglement is usually traced back to the famous 1935
paper [3] by Albert Einstein, Boris Podolsky and Nathan Rosen where they
presented what is now known as the EPR (Einstein-Podolsky-Rosen) paradox,
which attempted to show that quantum mechanics was incomplete. Indeed
Einstein later famously derided the idea of entanglement as “spukhafte
Fernwirkung” or “spooky action at a distance” as it seemed to violate the
local realist view of causality contrary to the spirit of his theory of relativity.

However as Hrvoje Nikoli¢ pointed out in his 2012 paper on ‘EPR before
EPR: a 1930 Einstein-Bohr thought experiment revisited’ [4], Einstein had
unknowingly stumbled across an equivalent problem in 1930 when he had
argued against consistency of the energy-time uncertainty relation with a
thought experiment involving a measurement of the mass of a box that had
emitted a photon. Even earlier, at the 1927 Solvay conference, Einstein’s
presentation focused on problems of interpretation associated with the
collapse of the wave function in a thought experiment during which electrons
pass through a small hole and were then uniformly dispersed in the direction
of a hemispherical photographic film-screen surrounding the hole. Einstein
mused that “the interpretation, according to which |)|* expresses the
probability that this particle is found at a given point, assumes an entirely
peculiar mechanism of action at a distance, which prevents the wave con-
tinuously distributed in space from producing an action in two places on the
screen.”
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Nonetheless it was Erwin Schrodinger who in a letter to Einstein about
the issues raised by EPR, first used the word “Verschrankung”, that he
later translated as “entanglement”, to “describe the correlations between two
particles that interact and then separate, as in the EPR experiment”. Shortly
thereafter, in a paper [5] where Schrédinger defined and discussed the notion
of entanglement he stated, “I would not call [entanglement] one but rather
the characteristic trait of quantum mechanics, the one that enforces its entire
departure from classical lines of thought”. Schrodinger also considered the
possibility that resolution of the EPR paradox might lie in quantum mechan-
ics breaking down for distant entangled systems via what is nowadays known
as quantum decoherence. However, this is now known not to be the case.

Despite these reservations by two of the people most intimately involved
with its genesis, entanglement has nevertheless been experimentally con-
firmed many times since their seminal papers including in photons, electrons,
small molecules [6], and recently even millimeter-sized diamonds [7].

We will continue the discussion about the EPR paradox in the following
chapter. For now, we investigate in detail the consequences of entanglement,
beginning with a discussion of entangled quantum bits.

2.1 Quantum Bits

Quantum bits (or qubits as they are frequently referred to) are a generaliza-
tion of the classical bit. Classically, information can be represented in the
form of bits denoted by the logical values of 0 and 1 which can be thought
of as representing, for example, a uncharged and charged transistor respec-
tively. As such macroscopic objects contain a huge number of elections this
description is satisfactory as the difference in the number of electrons in a
charged or uncharged transistor is very clear.

However, as we begin to deal with smaller and smaller systems, and especially
as we near the atomic level, the applicable laws become that of quantum
mechanics. In this scenario, not only is the system far more sensitive to
outside perturbations, but we are also forced to take into account the super-
position principle. Consequently, a quantum bit is represented in the form

[¥) = al0) + b[1)
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which [¢) is usually taken to be normalized so that (|i)) = 1, or equivalently
that |a? + [b]? = 1.

This has the distinctly non-classical feature that we can simultaneous repre-
sent two values using just a single bit. Similarly, we find that a system of
two qubits can be in a coherent superposition of four different states:

[¢) = al0}|0) +b]0)[1) + ¢[1)[0) + d[1)[1)

and that a n qubit system can be in a coherent superposition of 2" quantum
states.

Consequently by applying an unitary transformation to a n-qubit system we
can potentially manipulate 2" numbers simultaneously. This represents a
massive potential parallelism gain for our computational abilities, allowing
quantum computers to solve certain problems exponentially faster than their
classical rivals. Sadly, although perhaps not that unexpectedly, it is prov-
ing to be very difficult to build a quantum system so that we can control
its state very precisely while at the same time making it robust against the
effects of noise. A very comprehensive review of this subject can be found in
the textbook by Nielsen and Chaung [1], with an up-to-date timeline for the
development of quantum computing at [8]. For our part, however, we must
leave this fascinating topic to consider another consequence of the superpo-
sition principle of quantum mechanics in the next section.

2.2 Entanglement and Product States

The idea of entanglement was first explicitly mentioned by Erwin Schrédinger
in a letter to Einstein about the issues raised by the EPR paper, and is
perhaps best known with regard to his famous thought experiment involving
an unfortunate (yet also simultaneously not) cat which Schrédinger describes
[9] as follows;

One can even set up quite ridiculous cases. A cat is penned up
in a steel chamber, along with the following device (which must
be secured against direct interference by the cat): in a Geiger
counter, there is a tiny bit of radioactive substance, so small,
that perhaps in the course of the hour one of the atoms decays,
but also, with equal probability, perhaps none; if it happens, the
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counter tube discharges and through a relay releases a hammer
that shatters a small flask of hydrocyanic acid. If one has left
this entire system to itself for an hour, one would say that the cat
still lives if meanwhile no atom has decayed. The psi-function of
the entire system would express this by having in it the liing and
dead cat (pardon the expression) mized or smeared out in equal
parts.

It is typical of these cases that an indeterminacy originally
restricted to the atomic domain becomes transformed into macro-
scopic indeterminacy, which can then be resolved by direct ob-
servation. That prevents us from so naively accepting as valid
a “blurred model” for representing reality. In itself, it would not
embody anything unclear or contradictory. There is a difference
between a shaky or out-of-focus photograph and a snapshot of
clouds and fog banks.

This thought experiment deals with the extremely thorny issue of when the
translations occur between a quantum system existing as a superposition of
states and a classical system with (at least in the ideal world of Laplace) an
unique and completely knowable state. Without delving into the metaphys-
ical and philosophical arguments raised by this thought experiment, this ar-
gument nonetheless makes it very clear that there are distinctly non-classical
features involved with quantum states.

Mathematically speaking, we see that entanglement arises from the combi-
nation of the superposition principle and the tensor product structure of the
Hilbert space for quantum mechanics. We can best understand this idea by
means of an example. Consider the following state of a two particle system:

¥) = % (10) + 1)) ® (10) + [1))

States such as this are known as product, separable or disentangled states
since the result of a measurement on the first system is completely indepen-
dent of the result of a measurement on the second system.

However, states such as

(10) ®0) + 1) @ [1))

1
|¢>=§

16



are called entangled or non-separable states since if we measure |0) for the
first system we know that the second system must also be in state |0), while
if our measurement for the first system is |1) we know that the second system
must be also be in state |1).

Up to this point there is nothing that is not reproducible in a classical setting.
For example we can produce the same correlations classically using a system
with two coins that is prepared in such a way that both always show either
heads or tails. The fundamental difference, however, lies in the fact that for
quantum mechanical systems we can measure in a basis other than {|0),|1)}
such as {|+),]|—)} defined by |+) (J0y +1]1)) and |-) = = - (10) — 1))
The importance of this difference Wlllge apparent when we c0n81der the EPR
nonlocality paradox later on.

Determining how entangled a particular state is can be extremely compli-
cated, and to do this we first need to introduce the concepts of a density
operator and pure and mixed states. The density operator, p describes a
quantum system that is in one of a number of states [¢;) with probability p;,
so that

= ZPzWJJ

The density operator is then given by
P = ZPzW%)WJ

If we know the exact state of a quantum system then it is known as a pure
state, and the density operator is p = [¢;)(¢;|. Otherwise the quantum
system is said to be in a mixed state. A simple criterion for differentiating
between them is given by taking the trace of the square of the density matrix,
Tr(p*). For a pure state this will always be one while a mixed state will have
a value of less than one.

We can now define a common measure for pure states called the entanglement
entropy that is given by the the von Neumann entropy of the reduced density
operator of the state. For a pure state pap = [¢)(¢| this is:

E(par) = S(pa) = S(ps)

where Tr denotes the trace for px = Trg(pap) and pg = Tra(pap), and S is
the von Neumann entropy defined by:

17



S =—-Tr(plnp)

where p is the density matrix of the quantum mechanical system.

In two dimensions a specific set of maximally entangled quantum states are
given by the Bell states:

1

| Boo) = 7 (100) +[11))
1

|Bo1) = 7 (101) +[10))
1

|B10) = 7 (100) — [11))
1

6u) = —= (/01) = [10))

&

while for three dimensions a natural candidate is the Greenberger-Horne-
Zeilinger (GHZ) state:

[Veuz) = (1000) + [111))

Sl

2

2.3 Superdense Coding

A striking example of the fundamental difference between classical and quan-
tum systems is provided by superdense coding. Suppose we have two par-
ties, who in deference to convention we name Alice and Bob. Alice wishes
to transmit two bits of classical information to Bob but can only send one
qubit. Since non-orthogonal quantum states cannot be reliably distinguished,
it would appear that this should not be possible, and indeed just as for the
classical case we find that only one classical bit of information can be trans-
mitted. However, if Alice and Bob are allowed to also share a maximally
entangled state it turns out that two classical bits of information per qubit
can be transmitted thus giving rise to the term superdense coding.

We assume that Alice and Bob initially share a pair of qubits in the maximally
entangled state

18



1
V2
that could have been sent to Alice and Bob by a third party far in advance.

Here, for clarity, the first qubit is denoted with an A and the second with a
B to emphasise that they are held by Alice and Bob respectively.

1B00) = —= (10)4|0) + [1) 4[1) )

Alice can now communicate two bits of classical information to Bob by send-
ing him the single (unentangled) qubit in her possession:

To send the bit string ‘00" to Bob she simply sends her qubit as it is.

1 0

To send ‘01’ she performs the Z = (0 1

) Pauli matrix operation on her

qubit before sending it.

0

To send ‘10’ she performs the X = (1 0

) Pauli matrix operation on her

qubit before sending it.

Finally, if she wants to send ‘11’ she performs the Y =7 - <(Z) _02> Pauli

matrix operation on her qubit before sending it.

The resulting state of her qubit is then given by a Bell state:

Bit String | Final state of B’s qubit.
00 ?5 (J00) 4 [11))
01 =z (00) —[11))
10 ?5 (|01) + |10))
11 % (|01) — |10))

which since the Bell states form an orthonormal basis can be unambiguously
distinguished by an appropriate quantum measurement. Consequently Bob
upon receiving Alice’s qubit can by performing a measurement in the Bell
basis determine which of the four bit strings Alice had sent. Interestingly it
also turns out that the two classical bits of information that we have seen
it is possible to send using this method is actually the maximum amount of
classical information that can be sent in this fashion.
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3 Bell Nonlocality

God does not play dice with the universe.

Albert Einstein

If the price of avoiding non-locality is to make an intuitive explanation
impossible, one has to ask whether the cost is too great.

David Bohm

After the intentionally ironic quote by Einstein, who despite contributing
to the creation of quantum mechanics by his work on the photo-electric
effect even to his dying day never truly accepted it, we now consider the
ideas underlying Bell non-locality. These ideas can, as was the case for
entanglement, be traced back to the 1935 paper [3] by Albert Einstein and his
postdoctoral research associates Boris Podolsky and Nathan Rosen. However,
unlike entanglement, a proper appreciation of the concept of Bell non-locality
requires it to be placed in the appropriate historical context, which we now
set out to do.

The Heisenberg uncertainty principle, a cornerstone of quantum mechanics,
states that there is a fundamental limit to the precision to which the physical
properties of certain pairs of complementary variables, such as position and
momentum, can be simultaneously known. In addition, the standard Copen-
hagen interpretation of quantum mechanics takes literally the quote by
Ludwig Wittgenstein that ‘ ‘Whereof One Cannot Speak, Thereof One Must
Be Silent”, so that it is only when we measure a value of a property of a
particle that the property gains physical reality whilst before the measurement
the particle must be considered to be in a superposition state. Finally,
quantum mechanics allows a description by a single wave function of an
entangled pair of quantum systems that encodes the probabilities of the out-
comes of individual or joint experiments performed on the two sub-systems.

The crux of the the EPR paper lies in the fact that if we consider two
such entangled particles, A and B, then in quantum mechanics measuring
a certain property of particle A can cause the complimentary property of
particle B to become uncertain, even if there was no possible classical inter-
action between them. Of course, in classical physics there is no such paradox
since it is implicitly assumed that all the properties of a particles have a
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definite value at all times, and the act of measurement only reveals these
pre-existing values. However, in quantum mechanics this is not the case.

To make their argument EPR gave an operational definition of an ‘element
of reality’® :

If, without in any way disturbing a system, we can predict with
certainty the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical quantity.

Consequently, if a physical property of an object can be definitely known
without it being observed, then to agree with this definition of physical
reality, the property cannot have been created by the observation and must
have possessed a prior physical reality.

EPR also took for granted the principle of locality, namely that a physical
processes occurring at one location cannot have an instantaneous effect on
elements of reality at another location. This appeared to them to be a
natural consequence of special relativity in which information transmission
faster than the speed of light would lead to causality violation, and the
consequential paradoxes.

For such locally realistic theories®, EPR considered what would happen
to two particles, A and B, which interacted briefly and then moved off in
opposite directions. As it is possible to measure arbitrarily accurately the
exact position of particle A, then by calculation we can also know with
certainty the exact position of particle B. However, it would equally be
possible to measure the exact momentum of particle A and so determine the
exact momentum of particle B.

Consequently EPR argued that, using their definition of realism, particle B
must have definite values for both position and momentum simultaneously,
contrary to what was expected from quantum mechanics. EPR considered

2 Nowadays EPR’s definition of reality has been somewhat superseded by the idea of
counterfactual definiteness, namely that outcomes of measurements that were not actually
performed are viewed as being just as much part of reality as those that were actually made.

3 Also implicit is the freedom-of-choice principle, which concerns the independence of
the choice of measurements and the internal state of the physical system being measured.
This is not covered in any detail here as while certain variants of this principle can be
experimentally tested, it is hard to see how it could ever be possible to rule out all versions
of this principle.
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two possible explanations for this contradiction. The first was that there
could be an interaction between the particles even though they were separated.
This would, however, seem to contradict the spirit of relativity. The second
was that the information about the outcome of all possible measurements
was already present in both particles which is at variance with the quantum
mechanical interpretation. As EPR took for granted the principle of locality
they therefore concluded that ‘ ‘the quantum-mechanical description of phys-
tcal reality given by wave functions is not complete”. By this they meant
that quantum mechanics is actually an incomplete theory and that there
was a still deeper theory of nature of which quantum mechanics is merely
a statistical approximation. Such a deeper theory would contain variables
corresponding to all the ‘elements of reality’ and is referred to as a hidden
variable theory.

The EPR paper generated a great deal of interest, not to mention controversy,
about the foundations of quantum mechanics and hidden variable models.
However, it still took almost 30 years for the pivotal breakthrough in this
field to take place, and it was only in 1964 that John Bell proved [10], as we
shall see in the following section, that EPR’s key assumption of locality was
not consistent with a hidden variables interpretation of quantum theory.
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3.1 Bell’s Theorem

What is proved, by impossibility proofs, is lack of imagination.
John Bell

Bells theorem is the most profound discovery of science.

Henry P. Stapp

Bell’s theorem is is the collective name for a family of results that draw a clear
distinction between quantum mechanics and local hidden variable theories.
It was originally? proved by the eponymous John Bell in his 1964 paper [10],
building on earlier work by David Bohm [11], who in turn had investigated
the issues raised by Einstein, Podolsky and Rosen in their 1935 paper [3]. By
considering spin measurements on pairs of entangled electrons Bell managed
to derive a testable inequality that all local hidden variable theories must
obey. Equally importantly, he also gave specific cases where these prediction
were different to that of quantum mechanics, thereby making it possible to
determine experimentally what actually occurs in nature.

We now provide one of the most straightforward derivations of Bell’s Theo-
rem, following very closely the proof given in [12].

We begin by considering the state

1
¥) = NG (100) + [11))

when it used to describe a system of two spin—% particles in a local hidden
variable theory. We measure the orientation of the spin of the first particle
along direction E, and the orientation of the spin of the second particle
along direction b, with each measurement having only two outcomes, either
parallel or anti-parallel. If the result of the measurement for the first particle
is parallel we take the value of a to be one and if anti-parallel we set a to minus
one, and similarly for the second particle with the variable b. By repeating
this experiment N times we can then define the correlation between the two
measurements by:

4While the mathematician von Neumann had presented a proof in 1932 that hidden
variable theories of the type later considered by EPR were impossible he had made an
incorrect assumption, leaving the issue still unresolved.
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Our assumption that the theories under consideration are locally realistic
has two main consequences. First locality ensures that a measurement on
the first particle can have no effect on the measurement of the second particle
if they are space-like separated so there is no time for light to travel from the
particle measured first to the other particle before that is measured. This
means that the joint probabilities being considered will simply reduce to the
probability of the outcome for the first particle multiplied by the probability
of the outcome for the second particle. Second, the hidden variables influence
the probabilities we measure, so that all such probabilities can be written in
the form Pa(a, ) or Pa(b, ), where A represents the hidden variables.

Undg these assumptions we find that measurements along the four directions
— I

— —
a,a, b and V' obey the Bell® inequality
— — —
(T, D)+ C(T, V) +C(d, b)) —C(d V)| <2 (1)
We can see this by writing

@) = /d)\ p(A) [Pa(1, ) Ps(1,A) + Pa(—1, \) Pa(—1, \)
CPA(LA)Py(—1,A) — Pa(—1, \) (1, V)]

- /d)\ p(A) [Pa(1,A) = Pa(=1,A)] [P5(1,A) = Pp(=1,))]
= / ax p(N) Qu(@,N) Qa(D.N)

and by using the fact that

| (bn + b;z) + a/n(bn - b%)’ <2

_)—>

for all @, a’,?, Ve [—1, 1] we find that, as required

This is also known as the CHSH inequality [13] after the initials of its four discoverers:
John Clauser, Michael Horne, Abner Shimony and Richard Holt.
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< 2
By comparison in quantum mechanics the correlation value is given by
H A A
C(d, b)=@|(d0)® (adad)|)

B N NN NN : EN :
where 0" = 0,e, +0y,¢e, + 0. e, for Pauli operators o;, which we can rewrite

ﬁ
in terms of the angle 6, between the vectors @ and b as
ﬁ
C(a, b)=—cosby

= = — N
We now choose the vectors o', a’, b and b to be all coplanar, with ‘@ and
7 parallel and facing in the same direction, while Z and ? lie at the same
angle 1, but on opposite sides of @ and D Inserting these values into Bell’s
inequality, equation [1] becomes:

|1+ 2cosf —cos26| <2

which is found to be violated for certain values of 6, with a maximum value
of 2.5 occurring for § = /3. This result marked a historic breakthrough as it
meant that experiments could finally be used to determine whether quantum
mechanics or a hidden variable model was the correct description of nature.

However, it turned out that such experimental tests were quite difficult in
the case of electrons as Bell had originally considered, but it was found that
entangled photons also obeyed similar Bell inequalities and were easier to
work with. Such experiments were carried out by John Clauser and Stuart
Freedman [14] in 1972, and Alain Aspect, Philippe Grangier, and Gérard
Rogeret [15] in 1981, and are generally believed to rule out hidden variable
theories in favour of quantum mechanics.

Unfortunately, although the outcome of every single experiment so far carried
out has been in favour of quantum mechanics as opposed to locally realistic
theories, it has not been possible to simultaneously close three potential
loopholes. The first of these is the locality, or communication, loophole
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which requires that there be no causal way for a measurement of one particle
to affect the other. To avoid this the experimenter must ensure that the
particles have travelled far enough apart before being measured, and that the
measurement process is also rapid enough, that light does not have time to
travel between the start of either detection and the finish of the other. The
second loophole is the detection, or unfair sampling, loophole which deals
with the fact that only a certain percentage of the photons are detected.
With a less than perfect detection rate the value of the right-hand side of
the CHSH inequality

— e — — —
b

C(T. D) +C(T, V) +C(d, b)—C(d V)| <2

is increased and below 2(v/2 — 1) = 83% efficiency it is not possible to say
with certainty that the violation is due to quantum mechanics being correct
as opposed to detection inefficiency. As optical tests of Bell’s theorem tend to
have relatively low efficiencies this poses a serious potential issue. The final
loophole is the freedom-of-choice loophole, which deals with possibility that
the source of the entangled particles can somehow communicate classically
with the detectors and thereby affect the measurements being made.

Despite these obstacles, there has been notable recent advances in this area.
In 2001 Rowe et al. [16] by using Be™ ions rather than photons achieved a
high enough efficiency to close the detection loophole. This was followed in
2010 by a team led by Anton Zeilinger managing to close both the locality
and the freedom-of-choice loophole simultaneously for photons, and the same
group [17] last year also managing to close the detection assumption for pho-
tons (although not simultaneously with the other loopholes). Finally this
year, Erven et al. [18] demonstrated three-party quantum nonlocality using
a three-photon entangled GHZ state whilst simultaneously closing both the
locality and freedom-of-choice loopholes.

Nonetheless while no loophole-free Bell test has yet been performed, the vast
majority of scientists regard the current evidence as being overwhelmingly
in favour of quantum mechanics and against local hidden variable theories.
Consequently it would appear that one of the classical concepts of locality or
realism (or perhaps even freedom-of-choice) is untenable. Having described
the theoretical and experimental work that lead to this startling conclusion,
we now consider a practical application of Bell states.
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3.2 Quantum Teleportation

Quantum teleportation, or quantum state teleportation, as it might be more
appropriately be described is the process by which the exact quantum state
of a particle can be transmitted from one location to another. This idea
might seem at first sight to be paradoxical given the uncertainty principle in
quantum mechanics since we cannot determine the precise state of an arbi-
trary quantum system. However, the existence of entangled states enables
us to conduct the teleportation protocol without ever needing to determine
the exact state of the test system.

We now describe quantum teleportation® in the form proposed by the seminal
paper [19] by Bennett et al. published in 1993. Our two observers Alice and
Bob are currently distant from each other, but share a maximally mixed Bell
state

ag) = —= (1004100 + [1)4]1)5)

V2

where, as before, the first qubit is denoted with an A and the second with a
B to emphasise that they are held by Alice and Bob respectively. Alice also
holds a qubit whose exact state is unknown to her,

|¢) = al0)| + b[1)
that she wishes to teleport to Bob.

Note that if Alice knew the exact state of her state she could simply pass this
information classically to Bob who could then replicate it without needing to
use their shared entangled state. However even in this case, given that one
can sometimes need an infinite amount of classical information to precisely
describe the state of a system, quantum teleportation would still retain cer-
tain theoretical advantages.

The combined state of the three qubit system can be written as:

1
|0a8) = [0)[¢aB) = NG (al0) + 1)) (]00) +[11))

which we can rewrite in the Bell state basis as

6Tt seems more appropriate to discuss this topic here, rather than in the chapter on
entanglement as the nature of quantum teleportation raises the issue of nonlocality.
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6ap) = (a]000) + a]011) + b|100) + b|111))

Sl

[ 1600} (al0) + b[1)) + [Br0)(al0) — b[1))
+ [Bo1)(a|1) 4 b|0)) + [Br1)(al1) — ]0)) ]

where |5o0), |B01), |B10) and |B11) are the maximally entangled quantum Bell
states given by:

N | —

on) = —5 (100 + 1)
or) = —5 (01 +110))
o) = —5 (100) — 1)
) = 5 (101) = |10)

The teleportation protocol is now implemented by Alice performing projec-
tive measurements using the Bell basis on the two qubits she holds. She will
then obtain one of the four Bell states with equal probability. If she obtains,
say |fBo1), then the combined state of all three qubits has been collapsed to

[Bo1) 4 (a|1)B + 0]0)5)

and she must now classically communicate that she has obtained the Bell
state |5o1) to Bob.

After Bob receives this information he can complete the teleportation pro-

0
10
his qubit thereby obtaining the state a|0) + b|1) which is identical to the one
that Alice originally held.

cedure by performing the unitary X = Pauli matrix operation on

Similarly if Alice had found the state of her two qubits to have been |Gy),

|B10) or |fB11) then by performing the unitary I = (é (1)>, 7 = ((1) _01)
0 —1

ortY =i- ; operation on his qubit Bob can again obtain the state

0
al0) + b[1).
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As all the operations carried out have been local in nature this implies that
the above protocol does in fact correspond to a proper quantum teleportation
of the unknown state from Alice to Bob.

It is however important to realise that this process cannot be used for super-
luminal communication since a vital requirement is that Alice must transmit
her measurement result to Bob using classical communication, and that this
communication is limited to the speed of light. In fact it can be shown (see
section 2.4.3 of [1]) that without this classical communication, the use of
quantum teleportation conveys no information gain whatsoever.

Quantum teleportation also cannot be used to make copies of a system,
since after the process is complete the original state of the particle held
by Alice has been erased. This is an example of the no-cloning theorem
in quantum mechanics that forbids the creation of identical copies of an
arbitrary, unknown quantum state [20].

Nonetheless, ever since its inception the field of quantum teleportation has
attracted a great deal of interest. Recent experimental advances include one
research group managing to achieve quantum teleportation of photons over
a distance of 143 kilometers [21] and another group announcing a reliable
method of transferring data by quantum teleportation [22].
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4 Quantum Steering

It is rather discomforting that the theory should allow a system
to be steered or piloted into one or the other type of state at the
experimenter’s mercy in spite of his having no access to it.

Erwin Schrodinger

Quantum steering (which is also referred to in the literature as EPR-steering
or simply steering) is a deeply disturbing idea from the viewpoint of classical
physics whereby one party can perform a measurement on their side of an
entangled system with different outcomes leading to different sets of states
for another system arbitrarily far away.

The concept of steering had its origin in the 1935 EPR paper [3] where Ein-
stein and his collaborators considered the general unfactorisable pure state
of two systems:

W) = Z Coltn)[hn) = Zdnlvn>|¢n> (2)

where {|u,)} and {|v,)} are two different orthonormal basis for the first
system. By identifying the first set of basis as belonging to Alice and the
second to Bob, we can see that if Alice were to measure in the {|u,)} basis
she would, according to quantum mechanics, instantaneously cause Bob’s
system to collapse into one the [i,,) states. Alternatively if Alice instead
measured in the {|v,)} basis, quantum mechanics implies that Bob’s system
would instantaneously collapse into one of the |¢,) states.

The fact that {|¢,)} is different to {|¢,)} was problematic to EPR as the two
systems could be widely separated and they therefore felt that no real change
could take place. In his reply to the EPR paper, Schrédinger introduced the
terms ‘entangled’ to describe states such as (2), and ‘steering’ to describe
the ability of Alice to affect Bob’s state by her choice of measurement basis.
Soon thereafter he also proved [5] the quantum steering theorem?, for linearly
independent, although possibly non-orthogonal, ensembles of states:

"Note that we use the version given in [23].
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Theorem

Given an entangled state |ag) of two systems A and B, then a measurement
on system A can collapse system B to the set of states {|¢;)} with associated
probabilities p; if and only if

pB = sz|¢z><¢z|
where pp = Tra|ag)(Yap| is the reduced state of system B.

However, despite this proof and the conceptual issues raised by EPR, the
concept of steering (and steerable states) seems to have quietly slipped into
obscurity. The probable reason for this is that for the pure states that were
generally considered at the time the concepts of entanglement, steering and
Bell nonlocality coincide. This seems to have been implicity appreciated by
physicists of the time although never outright stated. Consequently, they
were more than happy to simply deal the more clearly defined concepts of
entanglement and Bell nonlocality.

It was not until 1989 that Werner [24] investigated the relationship between
entanglement and Bell-nonlocality for mixed states and discovered that not
all entangled states were Bell nonlocal. This naturally raised the issue of
what the exact relationship for mixed states was between steering, entan-
glement and Bell nonlocality. This was answered in two papers [25],[26] by
Wiseman, Jones and Doherty in 2006 and 2007. In these papers they pro-
vided operation definitions of entanglement, steering and Bell nonlocality and
used these to demonstrate that for mixed states, Bell nonlocality is strictly
stronger than steering which, in turn, is strictly stronger than entanglement.

A more geometric way to understand steering has been proposed in the form
of Quantum Steering Ellipsoids [27]. These correspond to a faithful generali-
sation of the Bloch sphere to a two qubit system, and has led to a geometric
definition of separability and provided insights into the structure of mixed
state entanglement.

In the last few years there has also been a growing interest in multipartite
steering. One of the first papers to consider this was the 2010 paper by Cav-
alcanti et al.[28] who attempted to build on the ideas originally proposed by
Wiseman, Jones and Doherty [25],[26]. However, a very recent paper by Reid
and He [29] has pointed out that the procedure used in [28] did not always
ensure that nonlocality was shared among all observers. Instead Reid and
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He proposed an inductive model which they used to verify n-partite steering
for the n-dimensional counterparts of the GHZ state in both discrete and
continuous variable Gaussian systems. Finally, another paper published this
year by Augusiak et al. [30] showed that entanglement is inequivalent to Bell
nonlocality and steering for any multipartite system.

4.1 Experimental evidence for Steering

The experimental demonstration of quantum steering has, perhaps, a surpris-
ingly long history considering that steering was only relatively recently given
an operational definition. The first paper to experimentally demonstrate
steering appears to have been Z. Ou et al. [31] in 1992 using continuous
variable optical beams. Since then there have been many other experiments
that have also provided experimental confirmation of steering. Of particular
interest is the work of Bowen et al. [32] who in 2003 demonstrated that
quantum steering in the Gaussian regime is more demanding than just es-
tablishing entanglement.

Recent confirmation of steering in the continuous variable regime includes
Samblowski et al. [33] in 2010, and Steinlechner et al. [34] in 2013. The
later work is of particular note as Steinlechner reported a sixfold increase of
the observed steering effect as quantified by the Reid criteria [35] compared
to any similar previous experiment and suggested that these results meant
that their work was ready for practical applications.

Work has also been carried out in a discrete setting with photons by several
groups including by Wittmann et al.[36] in 2011 and Bennet et al.[37] in
2012, with both papers being of considerable significance.

Wittmann’s group has the distinction of coming the closest to a truly loophole-
free test of EPR steering. They managed to close the fair-sampling loophole
by having high detection efficiency and using a form of the steering inequal-
ity that took account of null results. By having a large separation of the
detectors and using fast quantum random number generators they were also
able to close the locality loophole and a specific form of the freedom-of-choice
loophole. While significantly in itself this result would also seem to indicate
that a loophole-free test of the Bell inequality may not be that far away.
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Bennett’s group also managed to closed the detection loophole and in addi-
tion provided theoretical and experimental evidence that EPR-steering could
be rigorously performed even with arbitrarily high losses.

Finally, two recent important papers were Wagner et al.[38] in 2008 and
Héndchen et al. [39] in 2012, that helped resolve in the affirmative the ques-
tion of whether the asymmetry in the definition of steering led to any physi-
cal consequences. Wagner’s group were able to observe an asymmetry in the
steering strengths for two-way steering in spatially entangled laser beams.
Handchen’s group also used two entangled laser beams that they mixed with
two vacuum modes, and found that if the vacuum contribution was in a cer-
tain range, one-way steering was possible whereby one party could steer the
states of the other but not vice-versa.

4.2 Bell’s Theorem via Steering

Bell’s theorem was proved in 1964 by the aforementioned John Bell [10]
building on earlier work by David Bohm [11] and Einstein, Podolsky and
Rosen [3]. However, it has recently been pointed out [23] that there is a rela-
tively straightforward argument establishing the impossibility of a local hid-
den variable (LHV) description of quantum mechanics that would have been
available to Einstein and Schrodinger in 1936 inspired by their contemplation
of quantum steering and the incompleteness of quantum mechanics [40].

The following proof is taken almost verbatim from [23]. It involves a system
with two observers, A and B, and what A can infer about how the ‘real’
state of affairs at the remote system B is changed nonlocally or ‘steered’,
by different measurements made by A, assuming that the laws of quantum
mechanics can be taken as valid.

In this proof, system B is described by the two-dimensional maximally mixed®
state pp = I/2, in a local hidden variable theory with the actual physical
properties of system B being described by the complete set of variables .
Both possibilities of pure states either being ontic (corresponding to a def-

8The consequences of using a non-maximally mixed state are still to be properly
investigated. . .
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inite value of ) or epistemic (corresponding to a distribution over \), are
now shown to lead to a paradox.

If pure states are ontic, |z) corresponds to a definite value of A\, € S, (where
S, is the set of all A underlying pp) and consequently |z) is associated with
the delta function §(\,). Assuming that steering results in one of two pairs
of orthogonal states |z), | X) or |y), |[Y) with 0 < [(z]y)|* < 1 so that

i = loal + 3X)(X] = Sl ol + 5V

the assumption of locality ensures that S,, =5, U Sx =S, U Sy so one
of the outcomes |x) (x|, | X)(X|, |y){y|, |Y)(Y| will always be measured.

Moreover locality enforces preparation noncontextuality [41], so that for an
ontic interpretation of pure states to be consistent two different preparation
procedures leading to the same mixed state must be described by different
distributions over the hidden variables. Here we have

1 1

5 50y) + 5 60w)

where v and vy are both valid hidden variable descriptions of pg. Locality
also ensures that the initial distribution v(A) cannot be affected by the mea-
surement at A, so we must have vy = 1, which implies:

Vo =

1 1 1 1
v=50(A) + 5 0(Ax) =5 0(A) + 5 0(Ay)

However this is a contradiction given that the ontic interpretation requires

o # Ax # Ay # My

For the other possibility that pure quantum states are epistemic so that z(\)
is a distribution over S, for the state |z), locality still ensures that
V) = 5 2N + 5 XO) = 5 g0+ 5 YN
2 2 2 2
where the distributions z(\) and y(\) are non-distinct since if S, C Sx then
the probability of obtaining |z)({x| when the system was in state |y) would
be zero contrary to our previous assumption.
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In the region S; = S; N S, we must therefore have:

/ ax y(A) = /S ax y(\) = ()P = a 3)
and similarly for S; = S, N Sy, S5 = Sx NS, and Sy = Sx N Sy.

Defining

sz/dAx(A), j=1,...,4
S.

J

and integrating v(\) over these regions we find the following constraints:

1 1 1 1 .
v = §$]+§X] = §y]+§ 79 ]:1774 (4)

Using (3) and its sibling equations we now obtain
$1:y1:X4:m:a
rp=y3=Xz=Yo=1—-a
with all other values zero. Therefore from (4) we find that v; = vy = /2

and v, =13 = (1 —«)/2.

The contradiction is now obtained by considering a third set of orthogonal
states |z), |Z) which by the steering theorem can also be steered to via a
measurement on A and have equal overlap with the states |z) and |y) so that

[(22)? = [{=ly)|* = (Z|X)] = (Z]Y)P = B = %(1 +Va)
where the final term is the prediction from quantum mechanics. This implies
that
2+ zn=2n+z2=70
ot za=23+2,=1-p
W+ Zyo=71+Z3 =10
o+ Zy=Zs+ Zy=p

which has the solution 2o = 23 and Zy = Z3.

However we must also have

1 1 .
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but there is no way to solve these equations for non-negative values of z; and
Z;. An independent set of solutions is given by

Nt =ly+ 2y =3
22+Z4221+22:1—ﬁ
21+lea

This implies
Ii=a—zn=a—(f—z)=a—-0F+1-0—-2z)=1-20+a—2

which using 3 = 1(1 + /&) gives

lea—\/a—z4

which is negative for 0 < a, 24 < 1.

This contradiction shows the fundamental dichotomy between local realism
and quantum mechanics.

However the most interesting aspect about this proof is not that it provides
another way to demonstrate the tension between local realism and quantum
mechanics, which after all is now widely known. Instead its significance lies
in that it provides a striking example of how steering can be used to solve
problems regarding Bell non-locality while using no elements that were not
potentially available to Einstein and Schrodinger in 1935 and 1936 when they
were first corresponding about this issues.

4.3 Quantum Key Distribution

Bell’s theorem and the subsequent experimental evidence that nature pos-
sessed quantum correlations stronger than are classically allowed led to an
interest in using these correlations for the secure transmission of information
and the consequent discovery of quantum key distribution (QKD) protocols.
However, although QKD was initially associated purely with Bell nonlocality,

recent work has also highlighted the important role that steering plays in this
field.

36



The term, quantum key distribution, is used to describe a variety of protocols
that enable the provably secure distribution of private information, provided
only that principles of quantum mechanics are valid. Two parties can use
QKD over a public channel to generate a random key known only to them-
selves with the only requirement being that the qubits are communicated
with an error rate lower than a certain threshold. Once obtained, such a key
can then be used with any algorithm to encrypt a message. In particular,
if a QKD-generated key is used as a one-time pad where every bit of the
source file is encrypted by combining it using modular addition with the
corresponding bit from the QKD-generated key, then such procedure is known
to be provably secure [42].

The fundamental idea underlying QKD is that in quantum mechanics a
measurement of a quantum system will, in general, disturb the system. More
precisely (as shown in section 12.18 of [1]), given two non-orthogonal quantum
states, information can only gained at the cost of introducing a disturbance
in the signal. Consequently two parties, Alice and Bob, can take advantage
of this by transmitting non-orthogonal qubit states between themselves. By
measuring the disturbance in test qubits randomly scattered amongst their
data qubits they can establish an upper bound for any eavesdropping car-
ried out by any third party (whom we shall not so arbitrarily name Eve). In
general, of course, much or even all of the loss in fidelity may be due to noise,
but to be provably secure, they must assume that all the loss is a result of
eavesdropping.

The two best known QKD protocols are BB84 protocol [43] which was
developed in 1984 by Charles Bennet and Gilles Brassard, and the E91
protocol [44] developed by Artur Ekert in 1991. We briefly review the idea
behind the E91 protocol as it is more straightforward and also as its original
proof of security involved testing for a violation of Bell’s inequality to detect
eavesdropping. E91 uses entangled pairs of photons, with one photon from
each pair being held by Alice and the other by Bob, that are in the joint
state:

1
) = 7 (10)4[0)5 + [1)4]1)5)

so that photons’ polarization for A and B are perfectly correlated. This could
be arranged in many ways: Alice and Bob might have previously met and
stored the pairs till now, Alice could prepare the states and then send Bob
his photon or vice-versa, or the states could have been prepared and sent by
a trusted third party. To detect any eavesdropping, Alice and Bob simply
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use a random subset of their pairs to check if Bell’s inequality is violated.
From their measurements in jointly determined random bases, Alice and Bob
obtain the correlated classical bit strings from which they can generate a ran-
dom key known only to themselves.

If the measured level of disturbance is above a certain threshold that depends
on the exact procedures and setup used, then Alice and Bob must begin this
process anew. If, however, the measured level of disturbance is below the
threshold, Alice and Bob now then perform two procedures known as infor-
mation reconciliation and privacy amplification to increase the correlation
between their keys while also decreasing Eve’s information about it to any
desired level.

Information reconciliation refers to an error-correction protocol conducted
over a public channel that attempts to create increasingly correlated shared
keys whilst minimizing the amount of information Eve can obtain about
these keys. One commonly used procedure is the cascade protocol [45] that
operates in an iterative fashion over several stages. Each stage begins with
Alice and Bob subdividing both their keys into blocks and then comparing
the parity of each of these blocks in turn. Should a difference in parity be
detected for a block then the error has to be found and reconciled using a
binary search. In the event that an error is found lying in a block from a
previous stage that had correct parity, then that block must have another
error which must also be found and reconciled. This process is then repeated
until every block has been compared, and all the detected errors have been
reconciled. For the next stage, Alice and Bob both rearrange their keys in
an identical random fashion, and repeat this procedure. By increasing the
number of stages Alice and Bob can increase the probability that their keys
are identical to arbitrarily close to one. Unfortunately in the process Eve
will now have additional information about the shared key from the parity
information that was exchanged over the public channel.

Consequently, Alice and Bob must now use a process called privacy amplifi-
cation to reduce Eve’s partial information about the shared key to arbitrarily
low levels. Privacy amplification uses the shared key obtained using infor-
mation reconciliation to to produce another shorter key that Eve will have
less information about. One way of doing this is by using a universal hash
function that is randomly chosen from a public set of such functions. This
takes as input a string equal to the length of the shared key and outputs a
string of a shorter chosen length. The value of the length of the shorter key
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must be determined by the maximum amount of information Eve could have
obtained from her eavesdropping on both the original key generation and the
information reconciliation procedures. The final result is that Alice and Bob
will now have a shared key that Eve has only vanishingly small knowledge
of, which they can use as the basis for secure private communication.

Having explained the basic ideas of quantum key distribution we can now
investigate recent advances in this field that have been made possible by the
use of quantum steering.

4.4 Device-Independent Quantum Key Distribution

We have shown that quantum key distribution allows two parties to generate
secret keys, provided only that the laws of quantum mechanics hold. However
in standard quantum key distribution, an implicit assumption in the proofs
of security for various protocols (such as BB84 and E91) is that both parties
can completely trust their preparation and measurement apparatuses. This
assumption has recently been shown to be a potential security flaw [46], and
consequently interest has grown in finding ways to guarantee security with
fewer assumptions.

It turns out that this is possible and moreover, that there is a minimum
set of assumptions which are those used in Device-Independent QKD (DI-
QKD). These assumptions allow two parties to guarantee the security of their
system based only on their observed violation of Bell inequalities. However,
this comes at the cost that the Bell inequality test requires a very high detec-
tion efficiency to ensure that the detection loophole is closed. Recent works
such as Branciard et al.[47] have therefore considered a scenario where only
one party can trust their measurement apparatus, which corresponds to one-
sided Device-Independent QKD (1sDI-QKD). A possible example of when
this type of scenario might occur in real life is that of a bank that wishes
to use QKD based encryption for communication with its customers. In this
case the bank’s detection equipment can be expected to be extremely accu-
rate whereas it is likely that the mass produced terminals for its customers
will be far less accurate.

The tests of security required for QKD, 1sDI-QKD and DI-QKD correspond
respectively to separability, a steering inequality [35], and a Bell inequal-
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ity. This follows, as expected, the hierarchy found by Wiseman, Jones and
Doherty [25]. In practical situations where data loss has to be taken into
account Branciard et al.[47] analysed these three scenarios and found that
the less strict theoretical assumptions of 1sDI-QKD, namely the requirement
for steering rather than Bell nonlocality, significantly lowered the required
detection efficiencies for secure transmissions to a level where they were at-
tainable by current technology.

Furthermore a paper this year by Kocsis et al.[48], using the recent discovery
by Wiseman, Cavalcanti and Hall [49] that quantum steering can be verified
even in the absence of trust in either party by the use of quantum-refereed
steering games, showed that it is possible to adapt this idea to produce a
DI-QKD protocol using only quantum steering. Taken together with the
evidence from Bennet et al.[37] that steering can be rigorously performed
even with arbitrarily high losses this represents a major step forward as it
allows the security that previously required Bell locality while only needing
the detection efficiencies associated with quantum steering.

This is therefore a good point to conclude, with these remarkable devel-
opments in the field of quantum key distribution impressively showcasing
both the growing theoretical usefulness and potential practical applications
of quantum steering.
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5 Conclusion

You were born together, and together you shall be forevermore
... but let there be spaces in your togetherness. And let the winds
of the heavens dance between.

Khalil Gibran

Quantum steering has long been the somewhat neglected member of the
triplet consisting of itself, entanglement and Bell nonlocality. While their
genesis arose from the same papers by Einstein, Podolsky, Rosen and
Schrodinger, for a long time interest in first entanglement and later Bell
nonlocality vastly overshadowed that in quantum steering.

This was due in no small measure to the fact that for pure bipartite states
and perfect detection, entanglement, steering and Bell nonlocality are equiv-
alent. It was not until it was shown by Werner that for mixed states Bell
nonlocality was strictly stronger than entanglement that the nature of the
exact role played by steering became relevant. The operation definition of
steering recently given by Wiseman, Jones and Doherty and their proof that
for mixed states Bell nonlocality is strictly stronger than steering, which in
turn is strictly stronger than entanglement, has lead to greatly increased in-
terest as to the exact role played by quantum steering.

Since then there has been numerous advances in this field, both theoretical
and practical, including work on multipartite steering and one-way steering.
In particular it appears that quantum steering is extremely useful in providing
simpler proofs and less experimentally demanding physical tests and applica-
tions of Bell-nonlocality, particularly in the area of quantum key distribution.

Nonetheless this is still early days for the field of quantum steering and while
it has at long last unmistakably differentiated itself from its close siblings,
entanglement and Bell non-locality, there is clearly a great deal of both
practical and theoretical interest remaining to be uncovered in this field.
Consequently it seems only appropriate to close with a quote by Avvaiyar:

What we have learned

Is like a handful of earth
What we have yet to learn
Is like the whole world.
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