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Abstract

The goal of this thesis is to review the foundations of double field

theory. In order to achieve this, we begin by presenting a self-contained

introduction into generalized geometry. More specifically, we study the

symmetries of the generalized tangent bundle T M ⊕ T ∗M , the structures

that arise related to the natural Courant bracket on T M ⊕T ∗M , as well as

the generalized complex structures, which provide a unified framework for

studying complex and symplectic geometry. We end the presentation by

introducing the concept of the generalized metric. Next, after a short dis-

cussion of some fundamental ideas of string theory, we explore T-duality

in a toroidally compactified spacetime. Finally, we introduce double field

theory, by first motivating our constructions, and then presenting the way

it was founded, from the cubic action to the background independent and

the generalized metric formulation. We also discuss its gauge algebra and

we end our work with a short account of some open questions on double

geometry.
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1 Introduction

String theory was first introduced in the late 60’s in order to model strong in-

teractions. Although it was soon replaced by quantum chromodynamics, string

theory was found to contain a massless spin-2 particle and it was known that the

only such particle possible is the graviton [1]. Since it naturally included general

relativity, people started thinking of it as a unified theory of all interactions.

However, it also contained a tachyon, i.e. a particle with negative (mass)2 and

it was consistent only in 26 spacetime dimensions. The best way to get rid of

the tachyon is to introduce fermionic degrees of freedom for the string and make

it supersymmetric. Many versions of superstring theories existed until the “first

superstring revolution” in 1985, when the requirement of anomaly cancellation

left only 5 consistent theories in 10 dimensions: Type I, Type IIA, Type IIB,

Heterotic SO(32) and Heterotic E8 × E8. During the next decade they were

shown to be related by a web of dualities and so it was proposed that all of

them are different limits of a fundamental theory, called M-theory, living in 11

dimensions and whose low energy limit is 11-dimensional supergravity.

In fact, supergravity was developed independently around the seventies, based

on the idea of gauging the superPoincaré algebra, in analogy with the gauging

of the Poincaré algebra, which produces general relativity. However, with the

first superstring revolution, the different supergravity theories, in different di-

mensions, were realized to be the low energy limits of the corresponding string

theories. In this work there is no need to explore supergravity; we will just keep

in mind that supersymmetry is a very powerful symmetry between bosons and

fermions and so it puts very rigid constraints on the possible field content of

a theory. We will be interested only in a small subset of these fields, namely

the metric g, the Kalb-Ramond B-field and the dilaton φ, which appears as

a universal massless sector in all superstring and supergravity theories, and is

generally considered to be the background field content of spacetime.
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The idea of duality was not new in physics during the second superstring rev-

olution, but it is at least as old as Maxwell theory, where the duality between

electric and magnetic charges was studied. Roughly, two theories are said to

be dual to each other if both describe exactly the same physics. These two

theories may contain different degrees of freedom, in which case there should

be an (invertible, of course) transformation relating them. A field theory can

even be self-dual in the sense that there may be transformations relating the

expansions of the theory around different points in parameter space. In string

theory, a web of dualities was found, relating all of the five consistent theories,

and that was what motivated the idea that there is a more fundamental theory,

M-theory, with its various limits corresponding to the superstring theories.

T-duality was one of the first dualities to be discovered in string theory, one

reason being the fact that it is a perturbative weak-weak duality, i.e. it relates

expansions around weakly coupled points in the parameter space of the theo-

ries, where perturbation theory can be trusted. It identifies the physics around

different backgrounds, something that is strange from the field theory point of

view. T-duality can be precisely formulated in toroidally compactified back-

grounds, i.e. backgrounds with some of the directions forming circles. Even the

simplest, bosonic case is particularly interesting: T-duality roughly states that

the physics of a string on a circle of radius R is the same as the physics on a

circle of radius 1/R. This stems from the fact that a (closed) string can have

both momentum modes as well as winding modes in the compactified directions

(we call them “modes” because they will take discrete values due to quantum

mechanics and topology respectively-more on this later). An exchange of mo-

mentum and winding modes, together with the inversion of the radius leaves

the physics invariant. Actually, if more than one dimensions are compactified,

the Kalb-Ramond background field comes into play and, apart from affecting

the mass spectrum, it also gets changed under T-duality. As we will see, the
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T-duality group gets richer as the number of compactified dimensions increases.

T-duality has a very deep meaning, which will not be completely clarified until

the formulation of M-theory. However, it is apparent that strings see a different

geometry from the usual one: for them, a very small radius of a spacetime

direction is equivalent to a very large one.

Additionally, if we explore the superstring theories, we see that the inversion of

the radius interchanges Type IIA and Type IIB theories, by interchanging the

various solitonic (non-perturbative) objects of the two theories, called branes.

There is also a strong-weak superstring duality, called S-duality, relating strongly

coupled regimes to weakly coupled ones. S-duality does not commute with T-

duality, so their combination, called U-duality, is nontrivial. U-duality is sup-

posed to contain all the information about the symmetries of string theory.

T-duality is not at all obvious by simply observing the string action, on the con-

trary, naively, it is very surprising. So, even from the beginning, there has been

an interest in making T-duality a manifest symmetry of string theory, see [2] and

[3], quickly followed by the first concrete works with doubled coordinates, [4],

[5]. In order to understand what this doubling of coordinates means, we should

note that, even in first quantised string theory, we can introduce coordinates x̃

dual to x, which physical correspond to coordinates conjugate to the winding

modes, in analogy with the fact that the usual coordinates x are conjugate to

the momentum modes. However, the idea of making the x̃ dependence explicit

is nontrivial, even though the dual coordinates were necessary for the formula-

tion of closed string field theory, as they represent physical degrees of freedom

(see [6]).

These first ideas were not developed for quite some time, until the interest in the

double coordinates revived. This happened partially due to the will for a deeper

understanding of non-geometric backgrounds which were introduced in the pre-
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vious decade (see [7] and [8]). Heuristically, these are backgrounds that cannot

be defined as ordinary riemannian manifolds, since a change of coordinates can

also include a string duality transformation. In this way we are trying to make

the dualities a property of the geometry of spacetime, which can give us a deep

insight into the mathematics of string theory. In particular, such backgrounds

involving T-duality, called T-folds, can be studied if we formulate string theory

as a sigma-model with a doubled space as target space, which is parameterised

by both the x and the x̃ coordinates. T-duality is then equivalent to a change

of the subset of the doubled space on which the string coordinates depend.

Then, the foundations of double field theory were laid ([9], [10], [11] and [12]).

Double field theory is a (generally successful) attempt to formulate a field the-

ory which is manifestly invariant under the T-duality group O(D,D). In order

for this to be achieved, we must find a consistent truncation of string field the-

ory which is not a low energy limit, since we have to keep all the momentum

and winding modes for T-duality to hold. These four foundational papers were

only concerned with the bosonic supergravity fields g, b and φ, which were now

allowed to depend on the coordinates of the doubled spacetime. However, this

doubling of degrees of freedom must come with a constraint to reduce them

again. This constraint can be seen to originate from an analogous one in string

field theory, called the level matching constraint. As we will see explicitly, these

considerations are enough to construct an action to cubic order in the fields,

which can be seen to have the correct supergravity limit ([9]). In particular, the

gauge transformations of double field theory should reproduce those of super-

gravity, namely the diffeomorphisms and B-field gauge transformations, which

indeed is the case.

A more complete investigation of the gauge algebra of double field theory was

carried out in [10], where it was seen that the gauge parameters do not sat-

isfy the usual diffeomorphism algebra, but the so called C-algebra, determined
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by the C-bracket. We should note that in general the algebra is much more

complicated, but the work was carried out assuming a stronger version of the

constraint described before. This strong constraint implies that all fields and

gauge parameters depend on the same null subspace of the doubled space and

so, there is always a T-duality transformation that can eliminate the x̃ depen-

dence. This means that the theory is not a fundamentally double field theory,

yet a doubled formalism can be developed, since we need not make the choice

of subspace explicit from the beginning.

In fact, this strong constraint is very helpful: it was used in [11] to construct a

complete to all orders background independent action and in [12] to finally con-

struct an action which is manifestly invariant under T-duality transformations,

with all the objects transforming linearly under O(D,D). Specifically, the coor-

dinates are organised in XM and the Einstein metric and Kalb-Ramond B-field

give rise to a generalized metric HMN , with both objects belonging to repre-

sentations of O(D,D) (M,N, . . . are vector O(D,D) indices).The dilaton d is a

scalar under O(D,D) and thus the tensor density e−2d provides an integration

measure. This dependence on the dilaton is also consistent with a string theory

theorem which states that the dilaton should determine the string coupling.

In [12] it was also shown that the Lagrangian of the action can acquire the

form of a “generalized Ricci scalar”. We then arrive at a situation analogous

to having the Einstein-Hilbert action. A very important question is if there is

a “generalized” analogue of the Riemann curvature tensor. If this is the case,

then most likely double geometry has a deeper, rigorous mathematical formula-

tion. This must mean that the O(D,D) tensor algebra derived from the gauge

transformations has an invariant, geometric formulation. In the final subsection

we will discuss the current state of this area of research.

A very interesting area of mathematics was developed independently a while
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ago, called generalized geometry. It was based on ideas introduced in [13] and

formulated in [14]. Generalized geometry studies structures on the “generalized

tangent space” TM ⊕ T ∗M of a manifold M and it can be thought of as con-

taining complex and symplectic geometry as two extremal cases. What makes

it interesting from a physical point of view is that the symmetries of the gener-

alized tangent bundle are precisely the symmetries of the Einstein plus B-field

supergravity theory. In fact, there are attempts to formulate supergravity en-

tirely in terms of generalized geometry, see for example [15]. In addition, it

provides a very convenient setting for the study of flux compactifications (see

[16] for a review). We are interested in it because, imposing the strong con-

straint in double field theory means that we half the coordinate dependence,

leaving a tangent space identical to the one considered in generalized geometry

and all the structures defined there are inherited, with the additional property

of having a rigorous mathematical formulation. In that sense double field the-

ory is more general than generalized geometry, but both areas have striking

similarities.
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2 Generalized Geometry

2.1 Preliminaries

We begin our exposition of generalized geometry by explaining some general

concepts on fibre bundles and complex geometry that will be required as we

move on. The discussion of this subsection is based on [17], [18] and [19].

Roughly speaking, a vector bundle is a family of vector spaces Ex, parametrized

by a smooth manifold M (i.e. by points x such that x ∈M). More precisely,

Definition 2.1.1 (Vector Bundle of rank n) Let M be a smooth manifold.

A vector bundle of rank n is a manifold E, together with a projection π : E →M

such that:

1. The fibre Ex at each point x ∈M , defined by Ex := π−1(x), is a

n-dimensional real vector space.

2. (Local Triviality) For every x ∈M there exists an open neighbourhood U

of x and a diffeomorphism ψU : π−1(U)→ U × Rn whose restriction to

Ey is a vector space isomorphism (i.e. a linear map) onto {y} × Rn for

every y ∈ U .

Note that for a point x ∈ Uα∩Uβ there are two such diffeomorphisms ψα and ψβ .

Then, for every x ∈ Uα∩Uβ , the map ψα◦ψ−1
β : (Uα∩Uβ)×Rn → (Uα∩Uβ)×Rn

is a linear map, taking a vector vi ∈ Rn to another vector wj ∈ Rn. Thus, it

can be represented by a n × n matrix (m)ij ∈ GL(n,R) acting as wi = mi
jv
j

and we can write

ψα ◦ ψ−1
β : (x, vi)→ (x,mαβ(x)ijvj).

The maps mαβ : Uα ∩ Uβ → GL(n,R) are called transition functions and they

contain all the information about the topology of the bundle. More intuitively,

they determine how the fibres are patched together to form the bundle.

We can easily check that consistency requires:
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• mαα = I on Uα

• mαβ = m−1
αβ on Uα ∩ Uβ

• mαβ ·mβγ = mαγ on Uα ∩ Uβ ∩ Uγ .

We note that given a local trivialization (Uα, ψα) and the transition functions

mαβ , the bundle E is determined up to bundle isomorphism (see definition

2.1.2).

We can view the above construction as the free and transitive action of a Lie

group G on the fibres of the bundle E. We will call G the structure group of

E. For a general vector bundle of rank n, G = GL(n,R) but, as we will see, we

can also consider reductions to subgroups G ⊂ GL(n,R).

This point of view induces the following natural generalisation: if the fibres Ex

at each point x of M are general manifolds (of the same dimension), then we

get the notion of a general fibre bundle, requiring also that there exists a Lie

group G acting freely and transitively on the fibres.

We proceed by giving some more definitions.

Definition 2.1.2 (Bundle Isomorphism) Let E and Ẽ be two vector bun-

dles over M. A vector bundle isomorphism is an invertible smooth map f : E →

Ẽ which takes the fiber Ex of E over x to the fiber Ẽx of Ẽ over x (restricting

to a linear map on them, fx : Ex → Ẽx) and induces a diffeomorphism when

restricted to M .

Definition 2.1.3 (Subbundle) Let E be a vector bundle over M. A subbundle

(also called distribution) of E is a vector bundle F over M map such that Fx is

a vector subspace of Ex for every x ∈M .

Definition 2.1.4 (Section) A section of a fibre bundle (E, π) is a smooth map

σ : M → E such that π ◦ σ = IdM . The space of all sections of E is denoted by

C∞(E).
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If E and Ẽ are two vector bundles over M , we can naturally construct the dual

vector bundle E∗, the complexification EC (see definition 2.1.5), the (Whitney)

sum bundle E ⊕ Ẽ, the direct product bundle E ⊗ Ẽ and other tensor powers

such as
⊗k

E, SymkE, and
∧k

E, by performing the corresponding operations

on the fibres, while keeping the same base space M .

The archetypal example of a vector bundle is the tangent bundle TM of a

manifold M . The fibre at each point x ∈ M is the tangent space at that point

TxM and the structure group is GL(n,R), where n is the dimension of the

manifold. We see that the dimension of TM is 2n.

Then, we can regard the various tensor fields on M as sections of the appropri-

ate vector bundles, e.g. if ω is a k-form we have ω ∈
∧k(T ∗M) and, for g a

riemannian metric, we have g ∈ Sym2(T ∗M).

We also introduce the concept of the frame bundle, which consists of a manifold

M , with fibres at each point the set of ordered bases of the tangent space at that

point, i.e., locally it is of the form (x, eα), where x ∈M and eα, α = 1, 2, ..., n is a

set of vectors that form a basis of TxM . The structure group is again GL(n,R),

acting naturally on eα. Actually, the fibres are isomorphic to the structure group

GL(n,R) and we have constructed a GL(n,R)-principal bundle. Conversely,

given a G-principal bundle and a particular representation of G on a vector

space V , we can construct its associated vector bundle identifying the fibres

with V and assuming the natural action of G on V induced by the particular

representation.

Now, a reduction of the structure group G can be described by globally defined,

nondegenerate tensors. If we have one such tensor S, we can choose frames eα

at each patch such that S has the same form everywhere, and then require that

the action of a transition function leaves this form invariant. Thus, in general,

we will only allow actions by a subgroup G′ ⊆ G. The most interesting examples

are provided by an orientation, reducing the structure group to SL(n,R) and

9



a riemannian metric g, reducing it to O(n,R). If we consider both g and its

natural volume form, the structure group reduces to SO(n,R).

More concretely, we can introduce a basis of vector fields orthonormal with

respect to the metric g (“frames”), such that g = eeT or g = gµν dxµ ⊗ dxν =

δαβe
α
µe
β
ν dxµ⊗ dxν , using the vielbein eµα and the inverse vielbein e∗αµ (sometimes

we may omit the ‘*’ and write it as e−1). Similarly we can write any tensor

with “flat” indices α, β, . . . instead of “curved” µ, ν, . . .. Then, GL(n,R) acts

naturally on the flat indices as a transformation of basis, and tensors can be

thought of as representations of GL(n,R).

If the metric is defined in an overlap region U(1) ∩ U(2) and we require that it

has the same form in both coordinate systems we can write

g = δαβe
α
(1)µe

β
(1)ν dxµ ⊗ dxν = δαβe

α
(2)µe

β
(2)ν dxµ ⊗ dxν .

Then, the existence of transition functions imply that, at each point in U(1) ∩

U(2), eα(1)µ = Λαβe
β
(2)µ for Λαβ ∈ GL(n,R). Thus, switching to matrix notation,

we find that

ΛΛT = I,

i.e. Λ ∈ SO(n,R).

The above considerations show that in general, a riemannian metric g parame-

terises the coset space GL(n,R)/O(n,R), since every transformation in O(n,R)

preserves its form.

Finally, the generalisation to complex vector bundles is immediate if we replace

R with C everywhere in the above.

Next, we proceed to introduce the basics of complex linear algebra and complex

differential geometry.

Let V be a finite dimensional real vector space.
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Definition 2.1.5 (Complexification) The complexification of the real vector

space V is V ⊗ C and it will be denoted by VC.

Definition 2.1.6 (Almost Complex Structure (on vector spaces)) An en-

domorphism J : V → V with J2 = −I is called an almost complex structure on

V .

We can easily see that if V is the real vector space underlying a complex vector

space, then J(v) = i · v,∀v ∈ V defines an almost complex structure on V .

Conversely, by defining (a + ib) · v = a · v + b · J(v), we see that V admits

the structure of a complex vector space, i.e. for vector spaces almost complex

structures are equivalent to complex structures, while, as we will mention later,

this is not the case for the analogous structures on manifolds. This equivalence

implies that V must be even-dimensional, since V ∼= Cn for some n ∈ N.1 In

the following, we will also denote by J the C-linear extension J : VC → VC of

the almost complex structure J .

Next we mention some results that can be easily verified.

Lemma 2.1.7 If V 1,0 and V 0,1 are the ±i-eigenspaces of J , V 1,0 = {v ∈

VC|J(v) = i · v} and similarly for V 0,1, then

VC = V 1,0 ⊕ V 0,1

and V 1,0 ∼= V 0,1.

Lemma 2.1.8 The dual space V ∗ has a natural almost complex structure given

by J(f)(v) = f(J(v)) ∀f ∈ V ∗. In addition, we have that

(V ∗)1,0 = (V 1,0)∗

(V ∗)0,1 = (V 0,1)∗

1This can also be seen by: 0 ≤ (det J)2 = det J2 = det(−1) = (−1)k ⇒ k ∈ 2N.
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We can define similar gradings of
∧k

V ∗, but we will not analyse this point

further.

Next, we transfer the almost complex structure to manifolds.

Definition 2.1.9 (Almost Complex Structure (on manifolds)) An almost

complex structure J on a manifold M is an endomorphism J : TM → TM , or

equivalently a section J ∈ C∞(TM ⊗ T ∗M) squaring to the identity J2 = −I

and respecting the bundle structure, i.e. such that π(Jv) = π(v), ∀v ∈ TM .

We understand that at each point x of the n-dimensional manifold M we can

apply the above results for the linear spaces. Specifically, the manifold M must

be even-dimensional and the complexified tangent bundle TM ⊗C decomposes

as TM ⊗C = T (1,0)⊕ T (0,1), where T (1,0) and T (0,1) are the ±i eigenbundles of

J . Then, the structure group reduces to GL(n2 ,C).

At any point x of an even-dimensional manifold M , we can find two bases

of vector fields { ∂

∂zα
} and { ∂

∂z̄α
}, α = 1, 2, ..., n2 spanning T (1,0)

x and T
(0,1)
x

respectively. These will generally not be defined in a neighbourhood of x. If they

can be defined in a local neighbourhood of any point in M , the almost complex

structure J can be made to have the canonical form

 i 0

0 −i

 with respect

to the above basis. Then we say that the distributions T (1,0) and T (0,1) are

integrable (the integrability of T (1,0) implies the integrability of T (0,1), as they

are related by complex conjugation) or equivalently that J is integrable and, in

that case, M admits a complex structure and becomes a complex manifold in

the usual sense. A classic theorem of Frobenius states that:

Theorem 2.1.10 (Frobenius) A distribution L is integrable if and only if it

is invlolutive, i.e. [X,Y ] ∈ C∞(L), ∀X,Y ∈ C∞(L), where [·, ·] is the Lie

bracket.

The Newlander-Nirenberg theorem states that:
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Theorem 2.1.11 (Newlander-Nirenberg) J is integrable if and only if the

Nijenhuis tensor NJ = J [JX, Y ] +J [X, JY ]− [JX, JY ]−J2[X,Y ] vanishes for

all X,Y ∈ C∞(TM).

We note here that elements of
∧k

T ∗M are called complex differential forms.

As we noted in the introduction, generalized geometry unifies complex and

symplectic geometry, so we also need to introduce the latter concept.

Definition 2.1.12 (Symplectic Manifold) A manifoldM is called symplec-

tic if it is equipped with a nondegenerate, closed 2-form ω.

This in particular implies that M is even-dimensional. A very important theo-

rem holds for symplectic manifolds:

Theorem 2.1.13 (Darboux) Let (M,ω) be a symplectic manifold of dimen-

sion 2n. Then it is locally diffeomorphic to the symplectic manifold (R2n, ω0),

with ω0 =
∑n
i=1 dx

i ∧ dyi, with (xi, yi), i = 1, . . . , n the canonical coordinates

on R2n ∼= Cn.

Finally, we introduce some more concepts that will lead us to the definition of

a Kähler manifold.

Definition 2.1.14 (Almost Hermitian Manifold) An almost hermitian man-

ifold is an almost complex manifold equipped with a hermitian metric, i.e. a rie-

mannian metric g invariant under the almost complex structure J in the sense

that

g(Jv, Ju) = g(v, u), ∀v, u ∈ TM.

We observe that every almost complex riemannian manifold with riemannian

metric g admits the hermitian metric h(v, u) = g(v, u)+g(Jv, Ju), ∀v, u ∈ TM .

Definition 2.1.15 (Fundamental 2-form) Let (M,J, g) be an almost hermi-
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tian manifold. The fundamental 2-form is defined by

ω(v, u) = g(v, Ju),

which is also invariant under J and nondegenerate.

Definition 2.1.16 (Kähler Manifold) If the fundamental 2-form ω of an al-

most hermitian manifold (M,J, g) is closed, i.e. it is a symplectic structure on

M , the hermitian metric g is called Kähler metric and the manifold M is called

almost Kähler. If in addition J is integrable, M is a Kähler manifold.

Then, the structures (J, g, ω) form a compatible triple, since any two of them

determine the third, if we also require that the relevant compatibility conditions

(such as those in the definitions above) hold.

2.2 Fundamentals of Generalized Geometry

In the rest of this section, we will closely follow the presentation of [14]. Another

useful reference for generalized geometry and applications is [20].

We begin our analysis of generalized geometry by studying the structures on

the direct sum V ⊕ V ∗ of an m-dimensional vector space V and its dual V ∗.

Any element belonging in V ⊕ V ∗ can be written as v = X + ξ, with X ∈ V

and ξ ∈ V ∗. We can define a natural inner product 〈·, ·〉 in V ⊕ V ∗ by

〈X + ξ, Y + η〉 = 1
2(ξ(Y ) + η(X)), (2.1)

where X,Y ∈ V and ξ, η ∈ V ∗. If we introduce a matrix notation by setting

v =

 X

ξ



14



we can write the left-hand side of (2.1) as

〈X + ξ, Y + η〉 = (X ξ)

 0 1

1 0


 Y

η

 (2.2)

and we can easily see that 〈·, ·〉 is nondegenerate, symmetric and has signature

(m,m). Thus, the linear transformations in GL(2m,R) preserving the inner

product actually belong to O(m,m).2 V ⊕ V ∗ is obviously orientable and pos-

sesses a canonical orientation which reduces the Lie group of symmetries to

SO(m,m). We also note here that SO(m,m) has two connected components,

contrary to the usual orthogonal groups O(m) (heuristically speaking, you can

reverse the orientation of both V and V ∗ or of none and you still keep the same

orientation of V ⊕ V ∗).

We move on to examine the Lie algebra so(m,m), using the splitting V ⊕ V ∗.

We can easily check that it contains elements T of the form

T =

 A β

B −A∗

 (2.3)

where A ∈ End(V), B : V → V ∗, β : V ∗ → V with B and β skew, i.e.

B∗ = −B and β∗ = −β (recall that the transpose of a map B : V → V ∗ is the

map B∗ : V → V ∗ such that Bv(w) = Bw(v) ∀v, w ∈ V ). If we consider the

maps as matrices, these relations become BT = −B and βT = −β. Equivalently,

by viewing the actions of B and β as B(X) ≡ iXB ∈ V ∗ and β(ξ) ≡ iξβ ∈ V

we can regard B as a 2-form in ∧2V ∗ and β as a bivector in ∧2V . Thus, we find

the decomposition so(m,m) = End(V)⊕ ∧2V ∗ ⊕ ∧2V .

By exponentiating the above infinitesimal elements we can find the correspond-

ing group transformations:
2It would be more accurate to write GL(V ), O(V ⊕V ∗)... instead of GL(m), O(m,m)...,

but there are natural isomorphism between the corresponding groups, so we will not distin-
guish them in the following.
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GL(m) action:

gA =

 1 0

0 1

+

 A 0

0 −A∗

+ ... =

 expA 0

0 (expA∗)−1

 (2.4)

Since det expA > 0 and det gA = (det expA)2 > 0, this defines is an

embedding of the identity component GL+(m) = {g ∈ GL(m)|det g > 0}

of GL(m) into the identity component of SO(m,m). We can see that, by

extending the above mapping according to

T →

 T 0

0 (T ∗)−1

 (2.5)

for all T ∈ GL(m), we can map GL−(m) to the second connected compo-

nent of SO(m,m). Its action on elements X + ξ of V ⊕ V ∗ is: X + ξ →

G(X) + (G∗)−1ξ.

B-transform: Following the same steps for the B-transformations, we find:

gB =

 1 0

0 1

+

 0 0

B 0

 =

 1 0

B 1

 (2.6)

Its action on elements X + ξ of V ⊕ V ∗ is: X + ξ → X + ξ + iXB. In the

bibliography, this transformation is usually denoted by eB and is called

B-transformation.

β-transform: Similarly we compute:

gβ =

 1 0

0 1

+

 0 β

0 0

 =

 1 β

0 1

 (2.7)

This β-transform acts on elements X+ξ of V ⊕V ∗ as: X+ξ → X+iξβ+ξ.

Having completed the presentation of the symmetries of V ⊕ V ∗ equipped with

the inner product 〈·, ·〉, we move on to introduce the concept of isotropic sub-
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spaces.

Definition 2.2.1 (Isotropic Subspace) A subspace L < V ⊕ V ∗ is called

isotropic when 〈v, w〉 = 0, ∀v, w ∈ L. In particular, setting w = v, we see that

every element of L has zero norm with respect to 〈·, ·〉. Since the metric has

signature (m,m), the maximal possible dimension of an isotropic subspace is m

and we call such subspaces maximal isotropic subspaces.

The most trivial examples of maximal isotropics are V and V ∗. More generally,

any subspace of the form L(E, ε) ≡ {X+ξ ∈ E⊕V ∗| ξ|E = ε(X)}, where E < V

and ε ∈
∧2

E∗, is a maximal isotropic subspace, as can be easily verified. A little

less trivial is to prove that every maximal isotropic L can be written in the form

L(E, ε). E is of course the projection E = π(L) with π the natural projection

π : V ⊕V ∗ → V and the appropriate 2-form ε on E∗ can be constructed uniquely.

It is a simple matter now to extend the above constructions to the complexified

space (V ⊕ V ∗) ⊗ C. The inner product 〈·, ·〉 can be naturally extended and a

maximal isotropic is now a complex subspace L < (V ⊕ V ∗)⊗C, isotropic with

respect to 〈·, ·〉 and characterised by a complex subspace E < V ⊗ C together

with a complex 2-form ε ∈
∧2

E∗.

We also need to define the real index:

Definition 2.2.2 (Real Index) Let L < (V ⊕V ∗)⊗C be a maximal isotropic

subspace. Then L ∩ L̄ is real, i.e. the complexification of a real space: L ∩ L̄ =

K ⊗ C, for K < V ⊕ V ∗.3 The real index r of L is defined by

r = dimC L ∩ L̄ = dimRK.

Now, we can transfer the above structures to a general differentiable manifold

M of dimensionm. If TM is the tangent bundle and T ∗M is the cotangent bun-

dle, we can construct the sum TM ⊕ T ∗M . Then all the above considerations
3This can be easily proven as follows: a general vector in L has the form z ≡ (a1 + ia2)(v+

iw), for a1, a2 ∈ R and v, w ∈ (V ⊕ V ∗). Requiring that it also belongs in L̄ we find that
a2v + a1w = 0, so z = cv, where C 3 c = (a2

1 + (a2
2)/a1 + i(a1a2 − (a2

2)/a1)).
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hold at each point x ∈M . The bundle TM ⊕ T ∗M has the same inner product

〈·, ·〉 and natural orientation as V ⊕ V ∗. So, we can consider as structure group

the group O(m,m) or SO(m,m), acting naturally on the fibres while preserving

the inner product.

Before we conclude this subsection, we should note that we can define the Clif-

ford algebra CL(V ⊕V ∗) and the spin group Spin(V ⊕V ∗) in the usual way and

they can be represented on the space of polyforms
∧•

V ∗ :=
∑
k∈N

∧k
V ∗. In

addition, we can always lift the structure group SO(m,m) of TM ⊕ T ∗M to a

Spin(m,m) structure. Then we can prove the very interesting fact that a max-

imal isotropic subbundle of TM ⊕T ∗M can be represented by a line subbundle

of
∧•

V ∗ and we can translate most of the results in generalized geometry in

corresponding statements about these line subbundles. However, this interest-

ing analogy will not be developed here, as it is not directly relevant to the rest

of the thesis.

2.3 The Courant Bracket

We continue our presentation with a few important definitions. A Lie algebroid

can be seen as a generalisation of the tangent bundle:

Definition 2.3.1 (Lie Algebroid) A Lie Algebroid is a vector bundle (L,M, π)

equipped with a Lie bracket [·, ·] on C∞(L) and a smooth bundle map a : L →

TM called the anchor. The anchor must induce a Lie algebra homomorphism

a : C∞(L)→ C∞(TM), i.e.

a([X,Y ]) = [a(X), a(Y )], ∀X,Y ∈ C∞(L),

such that the following Leibnitz rule is satisfied:

[X, fY ] = f [X,Y ] + (a(X)f)Y, ∀X,Y ∈ C∞(L), f ∈ C∞(M). (2.8)
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Note that the condition (2.8) corresponds to the similar property for vector

fields: [X, fY ] = f [X,Y ] +X[f ]Y, ∀X,Y ∈ C∞(TM), f ∈ C∞(M).

A complex Lie algebroid is defined analogously, with L a complex vector bundle

and a : L → T ⊗ C a complex map, satisfying the analogous complexified

conditions. A simple example of a complex Lie Algebroid is the +i subbundle

T1,0 of the complexified tangent bundle TM ⊗C of a manifold M endowed with

a complex structure J (from theorem (2.1.11) we see that an almost structure

is not enough, since T1,0 is closed under the Lie bracket if and only if J is an

actual complex structure), with a the inclusion map.

We can construct an analogue of the exterior derivative and the Lie derivative

on Lie algebroids:

Definition 2.3.2 (Schouten Bracket) The Schouten bracket acting on sec-

tions X1 ∧ . . . ∧Xp ∈ C∞(
∧p

L), Y1 ∧ . . . ∧ Yq ∈ C∞(
∧q

L) of a Lie algebroid

L is

[X1∧. . .∧Xp, Y1∧. . .∧Yq] =
∑
i,j

(−1)i+j [Xi, Yj ]∧X1∧. . . X̂i . . . Ŷj . . .∧Yq, (2.9)

where, on the right-hand side, [·, ·] is the Lie bracket on L and the hat indicates

a term missing from the exterior product. The Schouten bracket can be extended

to act on functions f on M as

[X, f ] = −[f,X] = a(X)f, (2.10)

where X ∈ C∞(L) and f ∈ C∞(M).

Definition 2.3.3 (Lie Algebroid Derivative) The Lie algebroid derivative

is a linear operator dL : C∞(
∧k

L∗)→ C∞(
∧k+1

L∗) defined by:

dLσ(X0, . . . , Xk) =
∑
i

(−1)ia(Xi)σ(X0, . . . , X̂i, . . . , Xk)

+
∑
i<j

(−1)i+jσ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)
(2.11)
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where σ ∈ C∞(
∧k

L∗) and Xi ∈ C∞(L).

The Jacobi identity for [·, ·] implies that d2
L = 0. Then, if we define the interior

product iX as a -1 degree derivation on C∞(
∧•

L∗) by iXσ = σ(X, . . .), we can

also define a Lie derivative LLX by

LLX = dLiX + iXdL, (2.12)

similarly to the form of the usual Lie derivative when acting on exterior forms.

Another concept that we will use later on is the Lie bialgebroid, which is a

special pair of Lie algebroids:

Definition 2.3.4 A Lie algebroid L and its dual bundle L∗ form a Lie bialge-

broid (L,L∗) if L∗ is also a Lie algebroid and they are “compatible” with the

exterior derivative dL in the sense that:

dL[X,Y ] = [dLX,Y ] + [X, dLY ].

If we consider the tangent bundle TM of a manifold M with the usual Lie

bracket and the identity anchor, and the cotangent bundle T ∗M with the zero

bracket and anchor, we can easily check that the pair (TM, T ∗M) forms a Lie

bialgebroid.

Now, we move on to the main definitions of this subsection.

Definition 2.3.5 (Dorfman Bracket) The Dorfman bracket ◦ is defined on

sections X + ξ, Y + η of TM ⊕ T ∗M by:

(X + ξ) ◦ (Y + η) = LX(Y + η)− iY dξ (2.13)

A simple calculation shows that the Dorfman bracket is not skew-symmetric,

but it satisfies a Leibnitz rule similar to the Jacobi identity:

A ◦ (B ◦ C) = (A ◦B) ◦ C +B ◦ (A ◦ C), (2.14)
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for all A,B,C ∈ C∞(TM⊕T ∗M). Thus, it is also termed “Dorfman derivative”.

The symmetrisation of the Dorfman bracket is an exact form,

((A,B)) ≡ 1
2(A ◦B +B ◦A) = d〈A,B〉 (2.15)

for all A,B ∈ C∞(TM ⊕ T ∗M). This fact will be useful later on.

Definition 2.3.6 (Courant Bracket) The antisymmetrisation of the Dorf-

man bracket is called the Courant bracket:

[[A,B]] ≡ 1
2(A ◦B −B ◦A) = [X + ξ, Y + η]C

= [X,Y ] + LXη + LY ξ −
1
2d(iXη − iY ξ)

(2.16)

for all A = X+ ξ,B = Y +η ∈ C∞(TM ⊕T ∗M). We will usually omit the “C”

when denoting the Courant bracket. It should be clear from the context whether

it is the Courant or the Lie bracket (generally no confusion will be caused, since,

when acting on vector fields, the Courant bracket reduces to the Lie bracket).

The Courant bracket is not a Lie bracket despite being skew-symmetric, because

it does not satisfy the Jacobi identity. However, it fails to do so in a interesting

way:

Proposition 2.3.7

Jac(A,B,C) = d(Nij(A,B,C)), (2.17)

for all A,B,C ∈ C∞(TM ⊕ T ∗M), where we have defined the Jacobiator by

Jac(A,B,C) = [[A,B], C] + cyclic permutations (2.18)

and the Nijenhuis operator by

Nij(A,B,C) = 1
3(〈[A,B], C〉+ cyclic permutations). (2.19)
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This proposition can be proved by brute force computation, using equation

(2.15) and the relations LX = iXd + diX (when acting on forms), L[X,Y ] =

[LX ,LY ], i[X,Y ] = [LX , iY ].

Thus, the Courant bracket does not make the vector bundle TM ⊕ T ∗M into a

Lie algebroid. Additionally, axiom (2.8) is not satisfied, but instead

[A, fB] = f [A,B] + (π(A)f)B − 〈A,B〉df, (2.20)

where A,B ∈ C∞(TM ⊕ T ∗M), f ∈ C∞(M) and π is the natural projection

to the tangent bundle π : TM ⊕ T ∗M → TM . A similar direct computation

shows that

π(A)〈B,C〉 = 〈[A,B] + d〈A,B〉, C〉+ 〈B, [A,C] + d〈A,C〉〉. (2.21)

We can define a generalisation of a Lie algebroid, called Courant algebroid, by

relaxing some of the defining conditions in definition 2.3.1 as follows:

Definition 2.3.8 (Courant Algebroid) A Courant algebroid (E, 〈, 〉, [, ], π)

is a vector bundle E over M with an inner product 〈·, ·〉, a skew-symmetric

bracket [·, ·] and an anchor π : E → TM if the following conditions hold:

• π([A,B]) = [π(A), π(B)]

• Jac(A,B,C) = D(Nij(A,B,C))

• π(A)〈B,C〉 = 〈[A,B] +D〈A,B〉, C〉+ 〈B, [A,C] +D〈A,C〉〉

for all A,B,C ∈ C∞(E). Here we denote by D the differential operator D :

C∞(M)→ C∞(E) defined by 〈Df,A〉 = 1
2π(A)f, ∀f ∈ C∞(M), A ∈ C∞(E).

If we set E = TM⊕T ∗M and [·, ·] the Courant bracket, we can see that D is just

the differential d of functions on the manifoldM and then (TM⊕T ∗M, 〈, 〉, [, ], π)

is a Courant algebroid.
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Next, we are interested in finding the symmetries of the Courant bracket. First

of all, we can compute the effect of a B-transformation (see equation (2.6)) on

the Courant bracket:

[eB(X + ξ), eB(Y + η)] = [X + ξ + iXB, Y + η + iYB] = . . .

= eB([X + ξ, Y + η]) + iY iXdB

(2.22)

for all X + ξ, Y + η ∈ C∞(TM ⊕ T ∗M), B ∈ C∞(
∧2

T ∗M). Thus, we get the

lemma:

Lemma 2.3.9 The B-transformation eB is an automorphism of the Courant

bracket if and only if B is closed. In that case, we refer to the transformation

as a B-field transformation.

The B-field transformation is important because of the two following proposi-

tions:

Proposition 2.3.10 Let F be an automorphism of the tangent bundle TM (see

definition (2.1.2)), restricting to the diffeomorphism f on M . If F is a sym-

metry of the Lie bracket in the sense that F ([X,Y ]) = [F (X), F (Y )], ∀X,Y ∈

C∞(TM), then F must be the pushforward of f , i.e. F = f∗. So, the group of

Lie automorphisms of TM is just Diff (M ).

Proposition 2.3.11 Let F be an orthogonal (i.e. preserving the inner prod-

uct 〈, 〉) automorphism of TM ⊕ T ∗M , restricting to the diffeomorphism f on

M . If F is a symmetry of the Courant bracket in the sense that F ([A,B]) =

[F (A), F (B)], ∀A,B ∈ C∞(TM⊕T ∗M), then F must be the composition of the

“pushforward” of f and a closed B-field transformation. The group of Courant

automorphisms of TM ⊕ T ∗M is Diff (M ) o Ω2
closed(M).

Here, by “pushforward” we actually mean the orthogonal transformation fC = f∗ 0

0 (f∗)−1

, which obviously preserves the Courant bracket.

The next key concept we will introduce is that of a Dirac structure:
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Definition 2.3.12 (Dirac Structure) A real, maximal isotropic subbundle L

of a Courant algebroid (E, 〈, 〉, [, ], π) is called an almost Dirac structure. We

will say that an almost Dirac structure is integrable to a Dirac structure if L

is involutive, i.e. closed under the Courant bracket. Similarly we define the

complex Dirac structure.

The following proposition is particularly useful, as it connects some properties

of L < TM ⊕ T ∗M with its involutivity.

Proposition 2.3.13 Let L be a (possibly complex) almost Dirac structure in

TM ⊕ T ∗M . Then the following conditions are equivalent:

L is involutive⇔ Nij|L = 0⇔ Jac|L = 0. (2.23)

We saw previously that a Courant algebroid failed to be a Lie one due to some

terms involving the inner product 〈, 〉. Then, for a Dirac subbundle L < TM ⊕

T ∗M these terms vanish and (L, [, ], π) is a proper Lie algebroid. Also, any

transformation of L in Diff (M ) o Ω2
closed(M) will still be a Lie algebroid, since

both 〈, 〉 and [, ] will be preserved.

The above definitions enable us to understand a deeper connection between Lie

bialgebroids and Courant algebroids, first noted in [21], where the next two

theorems were proven.

Theorem 2.3.14 Let (L,L∗) be a Lie bialgebroid. Then we can define the

inner product 〈, 〉 on L⊕ L∗:

〈A+ α,B + β〉 = 1
2(α(B) + β(A)), ∀A,B ∈ L, α, β ∈ L∗

and the skew-symmetric bracket

[A+ α,B + β] = [A,B] + LαB − LβA−
1
2dL

∗(iAβ − iBα)

+ [α, β] + LAβ − LBα+ 1
2dL(iAβ − iBα),

(2.24)
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with the exterior and Lie derivatives defined on Lie algebroids as in definition

(2.3.3) and equation (2.12). If we also define the map

π = a+ a∗ : L⊕ L∗ → TM,

where a and a∗ are the anchors of L and L∗ respectively, we see that (L ⊕

L∗, [, ], 〈, 〉, π) is a Courant algebroid. Then we also have D = dL + d∗L.

The following theorem describes the converse construction:

Theorem 2.3.15 Let (E, [, ], 〈, 〉, π) be a Courant algebroid and L,L′ < E be

Dirac subbundles such that L ⊕ L′ = E. Then, using the inner product 〈, 〉 we

can identify L′ = L∗ and (L,L′) is a Lie algebroid.

We note that theorem (2.3.14) treats L and L∗ symmetrically. However, in the

Courant algebroid TM ⊕ T ∗M we studied above, the Courant bracket is very

asymmetric in sections of TM and T ∗M . We now see that this is because the

Lie algebroid structure of TM and T ∗M is very different: TM has the usual

exterior and Lie derivative, but the corresponding operations in T ∗M vanish

(see definition (2.3.4) and the following discussion). Then the bracket (2.24)

reduces to the Courant bracket (2.16).

Finally, we can define a twisted Courant bracket on TM ⊕T ∗M by a 3-form H

as:

[X + ξ, Y + η]H = [X + ξ, Y + η] + iY iXH (2.25)

Then, if we set A = X+ξ, B = Y +η, C = Z+ζ, the corresponding Jacobiator

and Nijenhuis tensor are

NijH(A,B,C) = Nij(A,B,C) +H(X,Y, Z) (2.26)

and

JacH(A,B,C) = d(NijH(A,B,C)) + iZiY iXdH. (2.27)
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Thus, we see that [, ]H defines a Courant algebroid structure on TM ⊕ T ∗M

(using the same inner product and anchor) if and only if dH = 0. In addition,

an easy computation shows that:

[eb(A), eb(B)]H = bb([A,B])H+db, (2.28)

for all A,B ∈ C∞(TM ⊕ T ∗M) and b ∈
∧2(T ∗M). So, eb is a symmetry of the

H-twisted Courant bracket [, ]H if and only if db = 0, i.e. b must be a B-field

transformation.

Using equation (2.28) we can see that a subbundle L is involutive for [, ]H if and

only if e−b is involutive for [, ]H+db and so the twist actually depends only the

cohomology class [H] ∈ H3(M,R) of the closed 3-form H.4

2.4 Generalized Complex Structures

In order to study the main concept of generalized geometry, namely generalized

complex structures, we need to return to studying structures in vector spaces

and first introduce the linear generalized complex structure.

Recall that a complex structure J on a real vector space V is an endomorphism

such that J2 = −1, while a symplectic structure is a nondegenerate skew form

ω ∈
∧2

V ∗. ω induces an isomorphism ω : V → V ∗ by

ω : v → ivω, ∀v ∈ V.

Then iu(ω(v)) = iuivω = −iviuω = −iv(ω(u)), i.e. ω∗ = −ω, where ω∗ maps V

to V ∗.

Naturally, we consider the sum of V and V ∗ and define the generalized complex

structure on V as:

Definition 2.4.1 (Generalized Complex Structure (on V )) A generalized
4If 1

2πi [H] is integral, we can interpret geometrically the twist as a nontrivial topological
twist of the bundle (TM ⊕ T ∗M), by using the language of gerbes (see for example [15]), but
we will not use this approach.
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complex structure J on V is an endomorphism of V ⊕V ∗ which is both complex

and symplectic, i.e. such that

J 2 = −1 and J ∗ = −J . (2.29)

We also find that J ∗J = 1.

Actually, the above definition is equivalent to the following statement:

Proposition 2.4.2 A generalized complex structure J on V is equivalent to

the specification of a maximal isotropic complex subspace L < (V ⊕ V ∗)⊗ C of

real index zero, i.e. such that L ∩ L̄ = {0}.

We can easily see that L is (conventionally) the +i eigenspace of J .

In analogy with the complex structure on V , a generalized complex structure

exists if and only if the dimensional m of V is even and defines a reduction of

the symmetries (structure) to U(m2 ,
m
2 ) = O(m,m) ∩ GL(m,C). That means

that the space of inequivalent generalized complex structures on V is SJ =

O(m,m)/U(m2 ,
m
2 ). Thus we can apply a transformation g ∈ O(m,m) on J as

J → gJ g−1, (2.30)

with the corresponding maximal isotropic subspace mapped to L→ g(L).

The usual complex J and symplectic ω structures are special cases of generalized

complex structures, since we can define

JJ =

 J 0

0 −J∗

 (2.31)

and

Jω =

 0 −ω−1

ω 0

 (2.32)
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and we can check that JJ and Jω indeed satisfy the conditions of definition

(2.4.1). This is the first strong indication that generalized geometry, “interpo-

lates” in a sense between complex and symplectic geometry. The corresponding

maximal isotropics are Lω = {X − iω(X)|X ∈ V ⊗ C} and LJ = V1,0 ⊕ V ∗0,1.

We move on to transfer these structures to a manifold M . The definition of a

generalized almost complex structure is natural:

Definition 2.4.3 (Generalized Complex Structure (on M)) A generalized

almost complex structure on an m-dimensional manifold M is an almost com-

plex structure J on (T ⊕ T ∗)M , orthogonal with respect to the inner product

〈, 〉, or in other words, a reduction of the structure group of (T ⊕ T ∗M) from

O(m,m) to U(m2 ,
m
2 ). Equivalently, it is determined by a maximal isotropic

subbundle L < (T ⊕ T ∗M)⊗ C of real index zero, L ∩ L̄ = 0.

This means that we have the decomposition (TM ⊕ T ∗M)⊗C = L∩ L̄, with L

being the +i-eigenbundle of J and L̄ identified as the vector bundle dual to L,

i.e. L̄ = L∗.

It can be seen that a generalized almost complex structure exists on M if and

only if an almost complex structure exists.

We would like to define an integrability condition, analogous to the one for the

almost complex structure (see subsection 2.1). Now, the appropriate notion is

that of Courant involutivity, in the sense of subsection 2.3.

Definition 2.4.4 (Integrable Generalized Almost Complex Structure)

We say that the generalized almost complex structure J on a manifold M is in-

tegrable to a generalized complex structure if its +i-eigenbundle L < (TM ⊕

T ∗M)⊗ C is a complex Dirac structure of real index zero.

In that case, the pair (L, L̄) forms a Lie bialgebroid and L⊕L̄ = (TM⊕T ∗M)⊗C

is naturally a Courant algebroid.
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Suppose now thatM is a hyperkähler manifold, i.e. it is equipped with 3 distinct

complex structures I, J,K, each with its own fundamental 2-form ωI , ωJ , ωK ,

such that IJ = K = −JI etc. Then, it can be shown that

Jt = sin tJI + cos tJωJ , ∀t ∈ [0, π2 ] (2.33)

is a generalized complex structure that interpolates between a complex and a

symplectic one.

We can also prove a generalized version of the Darboux theorem (2.1.13):

Theorem 2.4.5 (Generalized Darboux) A generalized complex manifoldM

is locally equivalent, by a diffeomorphism and a B-field transformation, to A×B,

where A is an open set A ⊂ Ck and B is an open set B ⊂ (R2n−2k, ω0).

Finally, we mention that we can define the twisted version of a generalized

complex structure:

Definition 2.4.6 A generalized almost complex structure JH is said to be H-

twisted if its +i-eigenbundle L < (TM ⊕ T ∗M) ⊗ C is involutive with respect

to the H-twisted Courant bracket.

Note that a similar analysis to that at the end of the previous subsection shows

that JH depends only on the cohomology class [H] ∈ H3(M,R).

2.5 The Generalized Metric

It is obvious that the O(m,m) structure of TM ⊕ T ∗M can be reduced to

O(m)×O(m) by an appropriate transformation, which will change the form of

the inner product matrix η =

 0 I

I 0

 to η′ =

 I 0

0 −I

. Then TM ⊕

T ∗M can be written as TM ⊕ T ∗M = C+ ⊕C−, with C+ and C− positive and

negative definite with respect to the inner product, respectively. Now, we can
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define a positive definite metric on TM ⊕ T ∗M as:

G = 〈, 〉|C+ − 〈, 〉|C− . (2.34)

G can be seen as a symmetric automorphism of TM ⊕ T ∗M such that G2 = 1,

or in other words a symmetric almost real structure and it always exists on

TM ⊕ T ∗M .

We can check that

Proposition 2.5.1 A further reduction of the structure group to U(m/2) ×

U(m/2) is equivalent to the existence of an generalized almost complex structure

J1 which commutes with G, i.e. GJ1 = J1G. This implies that J2 ≡ GJ1 is a

generalized almost complex structure, too.

In fact, any two of the objects G,J1,J2, together with an appropriate compat-

ibility condition similar to J2 = GJ1, determines the third.

Definition 2.5.2 (Generalized Kähler Structure) If J1 and J2 are inte-

grable and the condition G = −J1J2 holds, we call the pair (J1,J2) generalized

Kähler structure.

The prototypical example is that of a Kähler manifold (M,J, g) such that ω = gJ

is closed (see definition (2.1.16)). Then, as we have seen, JJ and Jω are general-

ized complex structures (the integrability conditions hold due to corresponding

conditions for J and ω) and

G = −JJJω =

 J 0

0 −J∗


 0 −ω−1

ω 0

 =

 0 g−1

g 0

 (2.35)

is indeed a positive definite metric on TM ⊕ T ∗M , so (JJ ,Jω) defines a gener-

alized Kähler structure.
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Now, any B-field transformation of the generalized complex structures (JJ ,Jω)

in the sense of subsection 2.4 defines again a generalized Kähler structure

(gBJJg−1
B , gBJωg−1

B ), since all the required properties remain invariant. In

that case, G becomes:

GB =

 −g−1B g−1

g −Bg−1B Bg−1

 . (2.36)

This example is very important because a slight generalisation gives the most

general form of the metric G:

It can be seen that a riemannian metric g and a (not necessarily closed) 2-form

b fully determine G by

G =

 −g−1b g−1

g − bg−1b bg−1

 =

 1 0

b 0


 0 g−1

g 0


 1 0

−b 0

 . (2.37)

This can also be stated as the fact that C± is the graph of b± g : TM → T ∗M .

We end our discussion of generalized geometry by defining the object H, which

will be called the generalized metric in double field theory:

H = ηG =

 g − bg−1b bg−1

−g−1b g−1

 , (2.38)

As can be seen, mH has very similar properties with G.
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3 String Theory and T-duality

3.1 String Theory Basics

In order to study double field theory, we first introduce some fundamental con-

cepts of string theory which will be necessary later on. We will mostly follow

references [22], [23], [24], [25] and [26], but more details can be found in any

string theory textbook or review.

The general idea of the perturbative approach to string theory is to quantise a

relativistic string, which is an object with one spatial dimension, tracing a 2-

dimensional surface in spacetime, called the worldsheet. We first suppose that

the string lives in the Minkowski spacetime R1,D−1.5 The correct relativistic

action for the string is

SP [X, γ] = − 1
4πα′

∫
d2σ
√
−γγαβ∂αXµ∂βX

νηµν , (3.1)

where Xµ(τ, σ) are the coordinates of the string in spacetime (treated as bosonic

fields from the point of view of the worldsheet), γαβ is an auxiliary metric on the

worldsheet, α′ is the universal Regge slope (related to the fundamental string

length by α′ = l2s and d2σ = dσ dτ , with σ and τ parameterising the worldsheet.

The above “Polyakov action” enjoys 3 different kind of symmetries (we denote

σ and τ collectively by σ):

• (Global) D-dimensional Poincaré invariance:

X ′µ(σ) = ΛµνXν(σ) + aµ, γ′αβ(σ) = γαβ(σ)
5In this thesis we will freely Wick rotate to Euclidean time, so that the spacetime becomes

RD. In particular, we will talk of the Lorentz group as being O(1, D − 1) or (D) and we will
write the volume elements as √g dx or

√
−g dx, without stating clearly the difference, as no

subtleties will arise if we replace the Euclidean metric with the Minkowski one and vice versa
anywhere in the following.
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• Reparameterization invariance: :

X ′µ(σ′) = Xµ(σ, ), γ′αβ(σ′) = ∂σγ

∂σ′α
∂σδ

∂σ′β
γγδ(σ)

• (Local) Weyl invariance:

X ′µ(σ) = Xµ(σ, ), γ′αβ(σ) = W (σ)γαβ(σ).

We can use the reparameterization and Weyl invariance to gauge away 2 out

of the 3 degrees of freedom of the auxiliary metric γ by requiring it to be

conformally flat. Then we can change to worldsheet light-cone coordinates σ± =

τ ± σ and find the equations of motion for the bosonic fields Xµ:

∂+∂−X
µ = 0. (3.2)

Now, there are 2 different kinds of strings, closed ones and open. In this thesis

we will only consider closed strings, whose boundary conditions are

Xµ(τ, σ) = Xµ(τ, σ + 2π). (3.3)

The open strings obey the corresponding Neumann or Dirichlet boundary con-

ditions. For the closed string, the solution of equation (3.2) can be written

as:
Xµ(τ, σ) = Xµ

L(σ+) +Xµ
R(σ−),

Xµ
L(σ+) = 1

2X
µ
0 + α′pµ0σ

+ + i

√
α′

2
∑
n 6=0

α̃µn
n
e−inσ

+
,

Xµ
R(σ−) = 1

2X
µ
0 + α′pµ0σ

− + i

√
α′

2
∑
n 6=0

αµn
n
e−inσ

−
.

(3.4)

In the above, Xµ
L and Xµ

R correspond physically to left-moving and right-moving

waves on the string. α̃µn and αµn are the oscillatory excitation modes, while Xµ
0

and pµ0 are the center of mass position and momentum of the closed string.
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The equations of motion with respect to γαβ give rise to the constraints L̃n =

Ln = 0, where

L̃n = 1
2

∞∑
m=−∞

α̃n−m · α̃m,

Ln = 1
2

∞∑
m=−∞

αn−m · αm

(3.5)

become the “Virasoro operators” in the quantum theory and we have defined

α̃µ0 = αµ0 =
√

α′

2 p
µ
0 .

These constraints give an infinite number of conserved currents of the 1+1

dimensional theory, corresponding to the conformal field theory living on the

worldsheet.

The quantisation of this classical theory is more subtle than expected because

there is a residual gauge symmetry even after the choice of the conformally flat

worldsheet metric. A careful analysis produces the following results that we will

just mention without going into much depth.

The canonical commutation relations [Xµ, Pν ] = iδµν give rise to

[xµ0 , pν0 ] = iηµν , [αµm, ανn] = [α̃µm, α̃νn] = mδm,−nη
µν , (3.6)

while all other commutators vanish. Thus we can treat α̃µ−n and αµn as (multiples

of) raising and lowering operators and build the Hilbert space of states in the

usual way, by acting on a vacuum |k; 0〉, which is an eigenstate of the operator

pµ0 with eigenvalue kµ. In addition, the Virasoro operators L0 and L̃0:

L0 = 1
2α

2
0 +

∞∑
n=1

α−n · αn ≡
1
2α

2
0 +N

L̃0 = 1
2 α̃

2
0 +

∞∑
n=1

α̃−n · α̃n ≡
1
2 α̃

2
0 + Ñ

(3.7)

need to be replaced by L0−1 and L̃0−1 respectively when quantising any classi-

cal expression, due to normal ordering effects. Then the (quantum) Hamiltonian
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of the Polyakov action (for closed strings) can be written as

H = 1
2

∞∑
n=−∞

(α̃−n · α̃n + α−n · αn) = L̃0 + L0 − 2 (3.8)

The classical constraints L0 = L̃0 = 0 now become:

(L0 − 1)|phys〉 = 0,

Ln|phys〉 = 0, ∀n ∈ N+
(3.9)

for all physical states |phys〉 of the Hilbert space, and similar for the tilde

operators. The conditions involving L0 and L̃0 can be written as:

(L0 + L̃0 − 2)|phys〉 = 0,

(L0 − L̃0)|phys〉 = 0.
(3.10)

From the first one we can deduce the mass-shell relation

m2 = 2
α′

(N + Ñ − 2) (3.11)

and from the second the only equation relating the left-moving and the right-

moving oscillators:

N − Ñ = 0. (3.12)

Actually, it can be shown that the worldsheet momentum generating translation

of the σ coordinate is proportional to L0 − L̃0, so the latter statement reflects

the very important fact that the string has no special point. This constraint,

usually called “level-matching condition”, will play a major role in this thesis.

If we go ahead and examine the spectrum of the closed bosonic string, we find

(apart from the ground state N = 0 tachyon that will no longer exist in the

superstring theories) in the first excited level N = Ñ = 1, (D − 2)2 massless

states, transforming in the symmetric, antisymmetric and trivial representations
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of the little group SO(D − 2) in D-dimensions. These correspond to the spin-

2 graviton gµν , antisymmetric spin-2 “Kalb-Ramond B-field” bµν and spin-0

“dilaton” φ.

We should note here that, since string theory is supposed to be a theory of

quantum gravity, the next mass level contains states of mass m2 ∼ 1
α′ ≈ m2

p,

where mp is the Planck mass. These states are so heavy that they are not of

direct phenomenological significance and so we are mostly concerned with the

massless states.

Finally, requiring that no negative norm states (“ghosts”) exist in our Hilbert

space restricts the spacetime dimension of the bosonic string theory to D = 26.

Superstring theories are not directly relevant to our subject, so we will just

mention here that all five of them have a common massless sector with bosonic

string theory (the universal gravitational sector), i.e. they contain the graviton,

B-field and the dilaton, as well as other fermionic and bosonic fields. Another

important difference is that they are defined in 10 spacetime dimensions. In

the present work, we will only deal with this particular sector, so, while we

will examine the bosonic string, everything will remain almost identical if we

want to examine superstrings, apart from the spacetime dimensionality. Thus,

in general, we will consider an arbitrary number of dimensions D.

Now, if we wish to consider string interactions, the best way to proceed is to

define the Feynman path integral

Z =
∫
DgDX e−SP [X,g], (3.13)

where SP is the action (3.1).Here we integrate over all worldsheet metrics gαβ

and embedding coordinates Xµ, and we also have to perform a Fadeev-Popov

gauge fixing. Actually, in order to include possible interactions, we should also

integrate over metrics describing worldsheets with non-trivial topology. The
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correct weighting of the perturbation expansion in riemannian surfaces is done

by adding to SP the term

Φ0 · χ = Φ0 ·
1

4π

∫
d2σ
√
gR(2) = Φ0 · (2− 2h− k), (3.14)

where Φ0 ∈ R, R(2) is the worldsheet curvature scalar and χ is the Euler number

of the Riemann surface with h handles and k boundaries, which is a topological

invariant of the surface. Then, the string coupling constant is given by

gs = eΦ0 (3.15)

and we see that as we go to higher loop orders, the weight of the relevant terms

is proportional to g2
s . Thus, for gs � 1, we can trust the perturbation expansion

and only keep worldsheets of low genus.

Next, we are going to generalise the Polyakov action to the following one:

S = 1
4πα′

∫
d2σ [

√
−γγαβ∂αXµ∂βX

νGµν(X) + εαβBµν(X)∂αXµ∂βX
ν

− α′

2
√
−γΦ(X)R(2)]

(3.16)

The first term in the action describes a string in a general curved background

(called non-linear sigma model for historical reasons), with Gµν(X) being the

target space metric. However, we know that Gµν(X) should be constructed out

of the gravitons that we encountered before, when we quantised the string on

a flat spacetime and the gravitons were small perturbations around the back-

ground. Indeed, using the graviton vertex operator, we can see that the two

pictures are consistent and Gµν(X) is a coherent state of gravitons. In other

words, the massless graviton that we found before can be thought of as a fluc-

tuation around a classical value (or the expectation value of the operator):

Gµν = Ĝµν + gµν

Similarly, the B-field and the dilaton can form classical condensates and give

rise to the other terms in the action (3.16). Now, the B-field is regarded
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as an analogue of the Maxwell potential Aµ for the electric charge and it

describes the coupling of the string to B(X). This is apparent if we write

the relevant term as the pullback of the 2-form field Bµν on the worldsheet:∫
d2σ εαβBµν(X)∂αXµ∂βX

ν ≡
∫
w.sheet

B. In this form, it is also clear that the

action is invariant under gauge transformations of B:B → B + dΛ, where Λ is

a one-form. In the context of string theory, we will call these transformations

B-field gauge transformations, but note that they are not exactly the same as

those discussed in section 2, as the previous ones did not have to be exact.

The dilaton Φ(X) is a function of spacetime, so we take its asymptotic value

as the constant mode which defines the string coupling: Φ0 = limX→∞Φ(X),

and we can only trust perturbation theory in the appropriate spacetime regions.

Note that the theory defined by the action (3.16) is an interacting quantum

field theory. This can be seen if we perform the α′-expansion by writing

Xµ(σ) = xµ0 +
√
α′Y µ(σ). Now the actual fields are Y µ(σ) and the theory has

an infinite number of coupling constants given by derivatives of Gµν . We can see

that each Gµν derivative comes with a factor of
√
α′ and thus the field theory

is weakly coupled if the radius of curvature r of the metric, where r ∼ Gµν,ρ,

is large compared to
√
α′ (so it is actually an expansion in

√
α′/r). This is

equivalent to looking at low-energy physics because, if the wavelength satisfies
√
α′/r � 1, there is not enough energy to create states of mass ∼ 1/(α′) and

we are effectively considering only the massless states.

Now, requiring that this theory respects conformal (Weyl) invariance, the β-

functions forG, B and Φ must vanish. If we compute these equations at one-loop

order, we can see that they are the equations predicted by (the corresponding

NS-NS sector of) supergravity, and thus we can write a low-energy effective

action for the fields G(X), B(X), Φ(X):

(2κ2)S∗ =
∫

dDx
√
−Ge−2Φ[R+ (4∂Φ)2 − 1

12H
2], (3.17)
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where R is the Ricci scalar constructed from G(X) and H is the field strength

of the 2-form field: H = dB.6 Thus, the equations of motion of G, B and Φ

coming from the variation of S∗

Rµν −
1
4H

κλ
µ Hνκλ + 2∇µ∇νΦ = 0

1
2∇

κHκµν −Hκµν∇κΦ = 0

R+ 4(∇κ∇κΦ− (∂Φ)2)− 1
12H

2 = 0

(3.18)

imply Weyl invariance at one loop quantum level. If we compute these equations

to next order, we find α′ corrections to the above equations.

Finally, we will explain the general ideas behind string field theory, but we will

not discuss any of its highly technical details.

Heuristically, in classical mechanics we examine the motion of a point particle

by writing an action for its coordinates xµ(τ), τ being the proper time. Then,

we can construct classical field theory by writing an action for fields φ(xµ),

without the need to make explicit reference to τ . Similarly, in string theory

we would like to go from the “first quantisation” of strings Xµ(σ, τ) to the

“second quantised” string fields Ψ(Xµ(σ)). So, for closed strings, Ψ(Xµ(σ)) is

actually a functional in a loop space. Roughly, this functional creates the loop

in consideration. Then, a formal path integral

Z =
∫
DΨ eiS[Ψ(Xµ(σ))]

should reproduce the perturbative string expansion and give insights into non-

perturbative effects.

A closed string field state |Ψ〉 in the bosonic case describes the functional

〈Xµ(σ)|Ψ〉 = (t(X) + hµ(X)αµ−1 + kµ(X)α̃µ−1 + lµν(X)αµ−1α̃
ν
−1 + . . .)Ψ0, where

6Actually, the (bosonic NS-NS) supergravity action does not have the form of (3.17) exactly,
but is related to it by field redefinitions. However, we will continue to refer to (3.17) as the
“standard Einstein plus B-field plus dilaton” action.

39



αµnΨ0 = α̃µnΨ0 = 0, ∀n ≥ 1. We need to impose the constraint (L0− L̃0)|Ψ〉 = 0

(as well as a similar one for the b-ghost field), which removes the hµ, kµ . . . fields

from the spectrum, leaving the physical ones, i.e. the tachyon t(X), lµν which

contains the graviton, B-field and the dilaton, and so on. We should also note

that string field theory encodes the dynamics of strings in a gauge invariant

way, since we impose the condition |Ψ〉 ∼ QB |Λ〉, with QB the BRST operator.

3.2 S1 Compactification

We are now ready to discuss some basic facts about compactification in string

theory, following the classic review [27], as well as [24] and [23]. We will also

use [28].

Mathematically, compactness of a metric space (such as a riemannian manifold)

is almost an almost identical notion with the finiteness of its volume. So, when

we compactify a spacetime dimension we actually make its length finite. This

can be done on the real axis by an equivalence relation of the form

x ∼ x+ 2πR · κ, ∀κ ∈ N (3.19)

Then, the real axis is diffeomorphic to a circle S1 with radius R.

The need to compactify some of the spacetime dimensions is apparent if we real-

ize that we live in a 4-dimensional space, while string theory in only consistent in

26 or 10 dimensions. The most obvious way to reconcile these two observations

is to suppose that our spacetime has some compact dimensions, making up a

compact manifold of such small volume that cannot be observed in current ex-

periments. The simplest case is the toroidal compactificationM = RD−d× T d,

where our spacetimeM is a product of a (D− d)-dimensional Euclidean space-

time RD−d (see footnote (5)) and a d-torus T d ≡

d times︷ ︸︸ ︷
S1 × S1 × . . .× S1. String

theory permits more general background solutions of equations (3.18), where

the compact space (also called “internal space”) is a Calabi-Yau manifold, i.e.

a complex, Ricci-flat manifold. Other choices of internal space are K3 surfaces,
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manifolds of G2 holonomy or orbifolds. Also, there has been a lot of work re-

cently in flux compactifications, i.e. cases with non-trivial p-form fields turned

on in the internal space. In this thesis we will always have in mind the toroidal

compactification, since T-duality is clear only in this case.

We should note here that, although later we will develop a formalism that will

not explicitly distinguish between compact and noncompact directions, we will

never consider compactifying the time direction, since this does not have a clear

physical meaning.

We begin by compactifying a usual field theory on a circle S1 of radius R. We

make XD periodic by setting XD ∼ XD+2πR. We also consider indices a, b, . . .

with range a, b, . . . = 1, 2, . . . , D − 1. Then the D-dimensional metric can be

written as

GDµν =

 Gab GaD

GDb GDD

 (3.20)

or, setting GaD = DDD ·Aa, we have that

ds2 = GabdX
adXb +GDD(dxD +AadX

a)2. (3.21)

We can easily see that Aa is a one-form and, letting GDµν depend only on the

noncompact coordinates Xa, we find that reparameterizations X ′D = XD +

λ(Xa) lead to the gauge transformations A′a = Aa − ∂aλ. This motivated

the so called Kaluza-Klein construction. If we consider now a general field φ

depending on all the coordinates (and choose the canonical metric GDD = 1),

requiring that the wavefunction is single-valued leads to the quantisation of the

momentum in the periodic dimension, i.e. pD = n
R . Then, we can expand in

Fourier modes:

φ(Xµ) = φ0(Xa) +
∑
n 6=0

φn(Xa)einX
D/R (3.22)
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The D-dimensional equation of motion for a massless field becomes:

∂µ∂
µφ = 0 ⇒ ∂a∂

aφn(Xb) = n2

R2φn(Xb), (3.23)

so, from the (D − 1)-dimensional point of view, a massless field gives rise to a

tower of massive modes, with mass inversely proportional to the radius R of the

circle, as well as a massless zero mode. By setting the fields to be independent

of XD, or equivalently by looking at energies small compared to the radius, we

can neglect all the massive modes. Then we say that we have dimensionally

reduced our theory.

The generalisation of the above considerations to compactification on a d-torus

T d is straightforward. The only thing that we should notice is that now the

dimensionally reduced theory will have a GL(d,R) global symmetry acting on

the “internal” indices of the resulting fields, which can be thought of as a “rem-

nant” of the higher dimensional diffeomorphisms. Similarly, the inclusion of

an antisymmetric B-field leads to a global shift symmetry Rd(d−1)/2. Now, it

can be shown that the Einstein plus B-field action reduced on T d has a global

O(d, d,R) symmetry (see [24] or the following subsections). So we see that only

the GL(d,R)nRd(d−1)/2 subgroup of O(d, d,R) has a geometrical interpretation.

The situation in string theory is different in one very important aspect: a string

can wind around a noncompact direction and this gives rise to massive “wind-

ing” modes with no analogue in field theory. Heuristically, we can think of a

closed string wrapped around the circle an integer number of times m, with

m ∈ N, and we can understand that its energy will be proportional to m, since

we need to “stretch” it in order to make it circle the compact dimension. More

mathematically, the topologically distinct ways a circle can wrap another circle

are counted by the fundamental group of S1. We know that π1(S1) = Z, show-

ing that the maps are characterized by an integer m, called the winding number.
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We first analyse the simplest situation, namely compactification on S1, i.e.

M = RD−1 × S1. In the noncompact directions nothing changes from the

previous analysis, so in the following we will drop the superscript D and we will

simply denote XD by X. Since we are studying strings at critical dimensions,

we can set γαβ(σ, τ) = ηαβ . The action is just

S = 1
4πα′

∫
d2σ ∂αX∂

αX. (3.24)

However, the boundary conditions change from (3.3) to

X(τ, σ + 2π) = X(τ, σ) + 2πRm, m ∈ N. (3.25)

The equations of motion are (3.2) as before, yet the solutions are not equations

(3.4), but

Xµ(τ, σ) = Xµ
L(σ+) +Xµ

R(σ−),

Xµ
L(σ+) = xL +

√
α′

2 pLσ
+ + i

√
α′

2
∑
k 6=0

α̃k
k
e−ikσ

+
,

Xµ
R(σ−) = xR +

√
α′

2 pRσ
− + i

√
α′

2
∑
k 6=0

αk
k
e−ikσ

−
,

(3.26)

where the center of mass is x = xL + xR and the (dimensionless) momenta are

now
pL = 1√

2
(
√
α′

R
n+ R√

α′
m),

pR = 1√
2

(
√
α′

R
n− R√

α′
m),

(3.27)

where, by a similar argument as in field theory compactification, the momentum

operator ∂
∂x has integer eigenvalues n ∈ N which enter in the above expressions.

We note that now pL 6= pR ⇒ α0 6= α̃0, since pL ≡ α0 and pR ≡ α̃0.

Of course the constraints (3.10) still hold, but they lead to the modified condi-
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tions:
m2 = 1

α′
(p2
L + p2

R) + 2
α′

(N + Ñ − 2)

= n2

R2 + R2m2

(α′)2 + 2
α′

(N + Ñ − 2)
(3.28)

and

Ñ −N =
√
α′

2 (p2
R − p2

L) = mn, (3.29)

where in the above equations m2 is the (D − 1)-dimensional mass, i.e. m2 =

−
∑D−1
a=1 pap

a andN, Ñ are the usual number operatorsN =
∑∞
n=1

∑D
µ=1 α

µ
−nαnµ

and similarly for Ñ . We thus see that both momentum and winding modes con-

tribute to the mass spectrum. If we go ahead and investigate the spectrum, we

find that, for m = n = 0 we have the following massless fields: a graviton, a

B-field, a dilaton, two one-forms and another scalar, as can be easily deduced

by performing dimensional reduction of the NS-NS sector. Thus, dimensional

reduction is equivalent to throwing away all momentum and winding modes.

The two vector fields generate the group U(1)L × U(1)R ⊃ O(1, 1,R). For the

special value R =
√
α′ we find additional massless fields: four vector fields and

four scalars and the gauge group gets enhanced to SU(2)L × SU(2)R, a purely

stringy phenomenon with no field theoretical analogue.

We can see now the simplest realisation of T-duality: suppose we make the

transformation:

X = XL +XR → X̃ ≡ XL −XR (3.30)

This transformation is equivalent to transforming:

R√
α′
→
√
α′

R
, m↔ n, αn → −αn, α̃n → α̃n, (3.31)

including the zero modes α0 = pL and α̃0 = pR (and ignoring xL and xR). We

can easily see that L0 and L̃0 remain invariant and thus the physical conditions

(3.28) and (3.29) remain invariant, too. This is an indication that the physics

is invariant under the above transformations, though not a proof. However, it

can actually be shown (see [27]) that the partition function does not change
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to all orders in loop expansion (if, at the same time, the dilaton transforms as

Φ → Φ + 2 log R√
α′
), so that the transformations are an actual duality of the

theory.

In order to explain roughly what a duality is, we should first note that, although

there is “only one” string theory, from the point of view of the 2d σ-model we

have different conformal field theories according to the expansion about different

backgrounds (see equation (3.16)). In that way we create a “space of theories”,

which may be spanned by a continuous group G. If G has a discrete subgroup

Gd that is an actual symmetry of the physical theory, we say that we have a

Gd-duality of our theory. In our case, we will treat Xµ(τ, σ) and Pµ(τ, σ) as

universal objects , with different representations according to the various possi-

ble backgrounds. Thus, the oscillators αn and α̃n will be background dependent.

The above T-duality R/
√
α′ →

√
α′/R has a deep physical meaning: a direction

forming a circle of radius R/
√
α′ � 1 is completely equivalent to one with radius

R/
√
α′ � 1 or, in other words, for every small radius (compared to the string

length
√
α′), there exists a large dual one. Thus, strings cannot really probe

distances smaller than
√
α′, indicating that this is a kind of physical “cutoff”

for spacetime. Stringy geometry is one of the most exciting aspects of string

theory!

Before we move on to general T d compactifications, we should observe that

X̃(τ, σ) is also a solution of the equations of motion (3.2), like X(τ, σ). However,

X satisfies the boundary condition (3.25), while X̃ satisfies the similar one

X(τ, σ + 2π) = X(τ, σ) + 2πα
′

R
n. (3.32)

We can interpret this as a coordinate on a circle of the dual radius α′/R. These

dual coordinates will be very important when we introduce double field theory.

Their necessity can also be understood as follows:
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In our analysis, the commutation relations [X,P ] = i give among others

[xL, pL] = [xR, pR] = i

√
α′

2 , (3.33)

the factor
√
α′/2 coming from the one in (3.26). This gives for the zero modes

x and p = 1√
2α′ (pL + pR):

[x, p] = i. (3.34)

The operator p is then realised as p = (−i)∂/∂x, with integer eigenvalues n.

Similarly, the integers m should correspond to an operator w = 1√
2α′ (pL − pR),

which is conjugate to x̃ = xL − xR. Now, x̃ is the zero mode of X̃, so that we

can write w = (−i)∂/∂x̃. x̃ is conjugate to w in the sense that:

[x̃, w] = i. (3.35)

In the following we will use interchangeably the quantised operators p, w and

their eigenvalues n,m, but the meaning will always be clear.

3.3 d-Dimensional Toroidal Compactification

In the rest of this section we will analyse T-duality in the most general setting

of compactification on T d, based on [27], [23], [24], [6] and [29].

The above T-duality is actually a Z2 symmetry, so naively one would expect

the corresponding group for the d-torus T d to be Zd2. Indeed, it is not hard to

extend the above formalism to the case of d compact dimensions. However, the

large diffeomorphisms of the torus enhance the Zd2 symmetry. We will discuss

these issues in the even more complex case of compactification is the presence

of a background involving the metric Gµν as well as the antisymmetric B-field

Bµν , both taking constant values in the compactified dimensions.

It is convenient to first lighten our notation by redefining the coordinates Xi →
Ri√
α′
Xi (no summation), where Ri is the radius of the ith direction and i, j, . . .

run over the d compact dimensions. Then the coordinates Xi as well as the
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metric Gij and the B-field Bij are all dimensionless and so Xi satisfy

Xi ∼ Xi + 2π. (3.36)

The periodicity conditions now become

Xi(τ, σ + 2π) = Xi(τ, σ) + 2πmi, (3.37)

with mi indicating the number of times that the string winds around the ith

circle. There is a deeper reason for the position of the index ‘i’ of mi than just

the simple observation that the two hand-sides of the periodicity conditions

should have the same structure; we will come to this shortly.

We restrict the action (3.16) to the compact dimensions, as we have seen what

happens in the noncompact ones in section (3.1). Ignoring the dilaton which

plays no role in the following analysis, we start with the action

S = 1
4π

∫
d2σ [

√
−γγαβ∂αXi∂βX

jGij(X) + εαβBij(X)∂αXi∂βX
j ]. (3.38)

The fields Gij and Bij depend nontrivially on the noncompact dimensions Xa,

but we take them to be constant in Xi. In fact, the metric Gij is constrained

to describe the geometry of a d-torus, but other than that it is arbitrary and

the B-field is a 2-form on T d. Note that the number of degrees of freedom

describing the geometry is d(d+1)
2 + d(d−1)

2 = d2 and we can combine them all in

the matrix Eij = Gij +Bij , which naturally encodes the full information about

the background.7

Now, we observe that the term with the B-field can be written as a total deriva-

tive

εαβBij(X)∂αXi∂βX
j = ∂α(εαβBij(X)Xi∂βX

j) (3.39)
7The role of the dilaton is different, as it determines the string coupling constant.
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and so it does not affect the equations of motion, whose solution is:

Xi(τ, σ) = xi +miσ + τGij(nj −Bjkmk)

+ i√
2
∑
k 6=0

1
k

[αk(E)e−ik(τ−σ) + α̃ik(E)e−ik(τ+σ)].
(3.40)

The zero mode oscillators can be found by the usual splitting of Xi in Xi
L and

Xi
R:

αi0 = 1√
2
Gij(nj −Bjkmk −Gjkmk) = 1√

2
Gij(nj − Ejkmk)

α̃i0 = 1√
2
Gij(nj −Bjkmk +Gjkm

k) = 1√
2
Gij(nj + Ekjm

k).
(3.41)

Note that ni and mj are the eigenvalues of the operators pi = ∂/∂xi and

wi = ∂/∂x̃i. Again notational consistency fixes the position of the index of the

(zero mode of) dual coordinates.

The actual dual coordinates are:

X̃i(τ, σ) = x̃i + niσ + τ [(Gij −BikGklBlj)mj +BikG
kjnj ]

+ i√
2
∑
k 6=0

1
k

[αk(E)e−ik(τ−σ) + α̃ik(E)e−ik(τ+σ)].
(3.42)

The non-zero commutation relations naturally read

[xi, pj ] = iδij , [x̃i, wj ] = iδji ,

[αin(E), αjm(E)] = [α̃in(E), α̃jm(E)] = mGijδm,−n,

(3.43)

coming from the more general ones

[Xi(0, σ), Pj(0, σ′)] = iδijδ(σ − σ′), (3.44)

where the canonical momentum Pi can be found from the Lagrangian density
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of the action (3.38):

2πPi(τ, σ) = GijẊ
j +BijX

j ′

= ni + 1√
2
∑
k 6=0

[Ejiαjk(E)e−ik(τ−σ) + Eijα̃
j
k(E)e−ik(τ+σ)].

(3.45)

Then, a short computation gives the Hamiltonian density

4πH = (ẊiẊj +Xi′Xj ′)Gij

= (2π)2PiG
ijPj +Xi′(Gij −BikGklBlj)Xj ′ + 4πXi′BikG

kjPj

≡
(
X ′ 2πP

)
H(E)

 X ′

2πP

 ,

(3.46)

where

H(E) =

 G−BG−1B BG−1

−G−1B G−1

 (3.47)

is the 2d × 2d (symmetric8) generalized metric, one of the fundamental con-

stituents of double field theory. We have seen this object in section 2, where it

originated from a seemingly completely different approach. In section ?? it will

have a somewhat different meaning once again. Some important ideas underly-

ing the unification of these approaches will hopefully be apparent by the end of

this work.

Yet another short computation gives the particularly useful form for H:

H = 1
2Z

TH(E)Z +N + Ñ , (3.48)

where we have set

Z =

 mi

ni

 , N =
∑
k>0

αi−k(E)Gijαjk(E) (3.49)

and similarly for Ñ .
8Recall that GT = G and BT = −B.
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The full Hamiltonian for noncompact and compact dimensions will enter in the

condition (L0 + L̃0 − 2)|ψ〉 = 0, giving the mass from the lower dimensional

point of view, i.e.

m2 =
D−d∑
k=1

pap
a = 1

α′
[ZTH(E)Z + 2(N + Ñ − 2)], (3.50)

with N and Ñ the full number operators.

Finally, in the same spirit we find that the constraint (L0 − L̃0)|ψ〉 = 0 gives

N − Ñ = nim
i ≡ 1

2Z
T ηZ, (3.51)

where we have defined the 2d× 2d matrix

η =

 0 I

I 0

 , (3.52)

which also plays a fundamental role in double field theory.

3.4 Narain Lattice and T-Duality

Since we have treated Xi(τ, σ) and Pi(τ, σ) as universal objects, we should

equate their expansions around different backgrounds E and E′. We then find

that they are related by

αk(E)− α̃k(E) = αk(E′)− α̃k(E′)

ETαk(E) + Eα̃k(E) = E′
T
αk(E′) + E′α̃k(E′)

(3.53)

In general these will not be physically equivalent theories. However, it may

happen that, for two backgrounds related by a transformation E′ = g(E), there

is a unitary operator Ug such that SE(Ug|Ψ〉) = Sg(E)(|Ψ〉) for all string field

states |Ψ〉. Then, the field redefinition |Ψ〉 → Ug|Ψ〉 shows that the two theories

are actually equivalent. We will see that Ug form a representation of the group

O(d, d,Z).
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In order to study the action of T-duality, we must define the Narain lattice, first

introduced in [30] and [31]. We start by recalling some basic facts about lattices

(see [32]).

Consider the vector space Rp+r equipped with a nondegenerate symmetric bi-

linear form represented by a matrix S, of signature (p, r), usually denoted

by Rp,r. A lattice Γp,r is defined by Γp,r = {
∑p+r
i=1 κ

i~e i| ∀κi ∈ Ni}, where

~e i, i = 1 . . . , p+ r, is a basis of Rp,r. Γp,r naturally inherits the inner product

S from Rp,r. We can also define a (p + r) × (p + r) matrix F whose columns

are the basis vectors and then, any vector W belonging to Γp,r can be written

as W = FZ, where Z is a (p+ r) column matrix with integer elements.

We say that Γp,r is even if WTSW ∈ 2Z, ∀W ∈ Γp,r. We say that Γp,r is

self-dual if Γp,r = (Γp,r)∗, where the dual lattice of Γp,r is (Γp,r)∗ = {x ∈

Rp,r| xTSy ∈ Z, ∀y ∈ Γp,r}. The basis matrix F̃ of the dual lattice satisfies

F̃TSF = I.

We can define two kinds of transformation of Γp,r, a left and a right GL(p+r,R)

action on F , i.e. F →MF and F →MF, M ∈ GL(p+ r,R). Thus, the vector

W will be mapped to W ′ = MFZ or W ′ = FMZ respectively, which in general

do not belong to Γp,r, but to different lattices. We will understand the signifi-

cance of these transformations when we apply our formalism in the specific case

that we are studying.

Let us now go back to the compactified string theory on T d. We define the

vielbein e ≡ eai for the metric Gij , i.e. we set G = eT e and thus for the inverse

vielbein e∗ ≡ eia we have that G−1 = (e∗)T e∗, denoting the “flat” indices of e
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by a, b, . . .. 9 We now introduce the momenta

(pR)a ≡ (e∗)iaα0i = 1√
2

(e∗)ia(ni − Eikmk)

(pL)a ≡ (e∗)iaα̃0i = 1√
2

(e∗)ia(ni + Ekim
k)

(3.54)

We can combine them in a single vector W

W =

 (pL)a

(pR)a

 = 1√
2
e∗

 ET I

−E I


 m

n

 ≡ FZ, (3.55)

where

F = 1√
2
e∗

 ET I

−E I

 . (3.56)

Note that (roughly) the first index of F is a flat a index but the second is a

“curved” i one.

We define the inner product of two such vectors W and W ′ to be

WTSW ′ =
(
pL pR

) I 0

0 −I


 p′L

p′R

 = pLp
′
L − pRp′R, (3.57)

so S =

 I 0

0 −I

 is the inner product of the underlying vector space Rd,d.

Since m and n are integers, we can treat the columns of the (2d× 2d) matrix F

as the basis vectors of a Γd,d lattice, called Narain lattice. We can easily verify

that FTSF = η, where η is defined in (3.52), so that

WTSW ′ = ZTFTSFZ ′ = ZT ηZ ′ = min′i +m′
i
ni. (3.58)

Specifically, setting W ′ = W , we see that Γd,d is even.

Similarly we can compute that F̃ = Fη, but η is integer valued and invertible
9Please do not confuse it with the background field eij = gij+bij , which will be extensively

used in the next section. The meaning should be clear by the context.
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(η−1 = η), so we understand that it actually describes the same lattice Γd,d.

This is because they are spanned by the same vectors. Thus Γd,d is also self-dual.

In [24] there is another derivation of these properties, relying on the modular

invariance of the partition function.

The relation FTSF = η has a very important implication: noting that S =

AT ηA, where A = 1√
2

 I −I

I I

 we find that

(FTAT )η(AF ) = η, (3.59)

which implies that AF ∈ O(d, d,R), or equivalently, since A is just a constant

matrix, F ∈ O(d, d,R).10

Thus, to each background E we can associate an element AF ∈ O(d, d,R),

where F is defined in (3.56). But not all elements of O(d, d,R) correspond to

different physical theories. We now move on to study transformations of the

basis matrix F .

A simple computations gives us

FTF = H(E). (3.60)

We can say that F is a “vielbein” for the generalized metric H(E) (or AF , it is

the same due to the fact that ATA = I).

Now we rewrite the conditions (3.50) and (3.51) as

α′m2 − 2(N + Ñ − 2) = ZTFTFZ = WTW

= (pL)2 + (pR)2
(3.61)

10Actually in section (2) we defined O(d, d,R) with respect to the metric
(
−I 0
0 I

)
.

However, all such groups defined by metrics of the same signature are naturally isomorphic,
so will will continue referring to both as O(d, d,R).
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and

N − Ñ = ZT ηZ = WT (FT )−1ηF−1W = WT (FηFT )−1W

= WT (S)−1W = WTSW = (pL)2 − (pR)2.

(3.62)

Let GL(2d,R) act on F from the left: F → MF ⇔ W → MW, M ∈

GL(2d,R). Requiring that (3.61) is preserved implies that M ∈ O(2d,R) and

requiring that (3.62) is preserved implies M ∈ O(d, d,R). Thus M ∈ O(2d,R)∩

O(d, d,R) = O(d,R) × O(d,R). This is obvious if we note that OL(d,R) ×

OR(d,R) rotates pL and pR independently and so is does not affect neither

(3.61) nor (3.62).

It is a simple matter to check that actually every F →MF transformation with

M ∈ O(d, d,R) preserves the conditions of evenness and self-duality, and so it

leads to a consistent string theory.

Let now GL(2d,R) act on F from the left: F → Fh, h ∈ GL(2d,R). Then

we find that Z → h−1Z and invariance of (3.62) implies that h ∈ O(d, d,R).

Observing (3.61) we see that H → hTHh 6= H. So, in order for the spectrum

given by (3.61) to be preserved, we should be able to redefine Z ′ = hZ ∈ N2d.

This holds if both h and its inverse are integer valued, i.e. h ∈ O(d, d,Z). In

that case we have just “reshuffled” the quantum numbers of the states. We

call O(d, d,Z) the T-duality group. The relation to the transformation found in

(3.2) will become apparent shortly.

The fact that the transformation Z → hZ ⇔ F → Fh, with h ∈ O(d, d,N)

actually leaves the lattice invariant was also used before, when we proved the

self-duality of the Narain lattice.

Using the above arguments, and also conversing some lines of thought, we can

show that the moduli space of string theories on T d is the coset

Md,d = O(d, d,Z)\O(d, d,R)/O(d,R)×O(d,R), (3.63)
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showing the equivalence of the lattices with basis matrices F and MFh, M ∈

O(d,R)×O(d,R) and h ∈ O(d, d,Z). This is sometimes written as

Md,d = O(d, d,R)
O(d,R)×O(d,R)×O(d, d,Z) . (3.64)

We see that the dimension of the coset space O(d, d,R)/O(d,R) × O(d,R) is
2d(2d+1)

2 − 2d(d+1)
2 = d2, which matches exactly the actual degrees of freedom

of the background E. The quotient of the above space with O(d, d,R) does not

alter the dimension, since it is a discrete group. We should also note here that

there are special points of the moduli space corresponding to the self-dual radii

Ri = 1 or, restoring the dimensions, Ri =
√
α′, where there is an enhancement

of the gauge group. However, we will not deal with this case in this work.

From now on we will parameteriseMd,d by

AF =

 e 0

−e∗B e∗

 . (3.65)

If our analysis is not affected by whether we use an element of O(d, d,R) or

O(d, d,Z), we will simply write O(d, d).

There was another way to find the above moduli space of toroidal compactifi-

cation. After defining the Narain lattice, we could have used the fact that all

Lorentzian lattices (i.e. with inner product of indefinite signature) can be con-

structed by an O(d, d,R) transformation Λ of a specific one, say Γ0. However,

transformations Λ′ in O(d,R)×O(d,R) preserve the physical conditions, so we

get ΛΓ0 ∼ Λ′ΛΓ0. Similarly, actions Λ′′ of O(d, d,Z) are symmetries of the

lattice Γ0, so finally ΛΓ0 ∼ Λ′ΛΛ′′Γ0, and se we see that Md,d is indeed the

moduli space we were looking for.

Note here that if we restore the Ri dependence by setting mi → miRi and
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ni → ni/R
i (no summation here), and then look what happens when we take

the supergravity limit Ri → 0, we find that T-duality becomes an O(d, d,R)

symmetry of the lower dimensional supergravity theory. This can be understood

heuristically if we observe the action of O(d, d,N) on Z

Z =

 mjRj

nj/R
j

→ hZ =

 aij bij

cij d j
i


 mjRj

nj/R
j

 , (3.66)

where a, b, c, d are d×d matrices. Since we take the limit Ri → 0, it is irrelevant

whether a, b, c and d are integer valued or real valued matrices; we can as well

take h ∈ O(d, d,R).

The group O(d, d)11 has some useful properties. First of all, writing h as

h =

 a b

c d

 , (3.67)

we find the relations

aT c+ cTa = bT d+ dT b = 0, aT + cT d = 1 (3.68)

and so

h−1 =

 dT bT

cT aT

 . (3.69)

In addition it is easy to show that

h ∈ O(d, d)⇒ hT ∈ O(d, d). (3.70)

The element hT ∈ O(d, d) (we use the transpose of h just for notational conve-
11For the rest of this work, we will consider the definition of O(d, d) with respect to the

metric η =
(

0 I
I 0

)
.
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nience) induces the transformation of the generalized metric

H(E)→ hH(E)hT . (3.71)

Introducing O(d, d) indices M,N, . . . = 1, . . . , 2d we can write H = (H)MN and

h = (h)MN , giving

HMN → hM
PhN

QHPQ. (3.72)

This linear transformation of H can be thought as a non-linear transformation

of the background E, by

H(E′) = hH(E)hT . (3.73)

In [29] it is shown explicitly that

E′ ≡ h(E) = (aE + b)(cE + d)−1 (3.74)

is the required background transformation. The transformation of the metric

can be written in two different ways:

G = (d− cET )TG′(d− cET ) ≡MG′MT

G = (d+ cE)TG′(d+ cE) ≡ M̄G′M̄T .

(3.75)

Returning now to the oscillators, we recall the relations (3.53) holding under

a general transformation of the background E → E′. Now, if we want to find

a symmetry of the theory, the commutation relations for the oscillators α(E)

and α̃(E), given by (3.43), should be preserved. These are derived from the

canonical commutators (3.44), which are preserved if

 X ′

2πP

→
 a b

c d


 X ′

2πP

 , (3.76)
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with h =

 a b

c d

 ∈ O(d, d,R), as can be seen using (3.68). However, this

gives for the zero modes of X ′ and 2πP :

 m

n

→
 a b

c d


 m

n

 , (3.77)

which implies that actually h ∈ O(d, d,Z), since mi and ni should always be

integers. Then, the background transformation (3.74) simplifies the transfor-

mation of the oscillators (3.53) to

αk(E)→ (MT )−1αk(E′)

α̃k(E)→ (M̄T )−1α̃k(E′),
(3.78)

where M and M̄ are as in (3.75). We thus observe that the mode numbers of

the oscillators do not mix, and also that the number operators

N =
∑
k>0

αi−k(E)Gijαjk(E), Ñ =
∑
k>0

α̃i−k(E)Gijα̃jk(E) (3.79)

remain invariant. So, the physical constraints (3.61) and (3.62) are indeed in-

variant and we are consistent with the previous assumption of neglecting the N

and Ñ transformation.

Let us investigate what exactly the T-duality transformation of the background

E = G + B correspond to. It can be shown that O(d, d) is generated by the

following elements (see [23]):

B-field shift by Θij: These are elements of O(d, d) of the form

hΘ =

 I Θ

0 I

 , (3.80)

with Θ an antisymmetric d× d matrix, Θij = −Θji. The transformation
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of E (3.74) gives

E′ = E + Θ (3.81)

and since Θ is antisymmetric, this is a shift of the B-field: B → B + Θ.

Recalling that the B-term in the action (3.38) is a total derivative, we

understand that the shift of B by Θ gives only topological contributions.

In case hΘ ∈ O(d, d,Z), the entries of Θ are integers, thus the action is

changed by an integer multiple of 2π and finally the path integral Z ∼ eiS

remains invariant, giving us the same physical theory.

Basis change with A ∈ GL(d,R): These are elements of O(d, d) of the form

hA =

 A 0

0 (AT )−1

 , (3.82)

with A ∈ GL(d,R). The transformation of E (3.74) gives

E′ = AEAT . (3.83)

If we consider a lattice Γ̂d such that the spacetime torus T d is given by

T d = Rd/2πΓ̂d, the vielbein vectors e defined by G = eT e form a basis of

Γ̂d. Then the above transformation induces a transformation of the basis

of Γ̂d. If hA ∈ O(d, d,Z) ⇔ A ∈ GL(d,Z), then the lattice Γ̂d is mapped

to itself and so it induces the large diffeomorphisms of the torus T d, which

are indeed symmetries of T d. The change of the mass condition (3.61) can

be undone by a redefinition m′ = ATm and n′ = A−1, which of course is

allowed only when A ∈ GL(d,Z).

Factorized Duality Di: These are elements of O(d, d) of the form

hDi =

 I −Di Di

Di I −Di

 , (3.84)
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with Di = diag(0, . . . , 0, 1, 0, . . . , 0), the ‘1’ being in the ith slot. These

transformations are a generalisation of the R → α′/R duality we found

in subsection (3.2), as can be understood if we check how they act on

Z =

 m

n

. They reproduce the Buscher rules which were discovered

(from a worldsheet perspective) to be T-duality transformations acting on

isometric directions (see [33] and [34]).

In the above analysis we have completely ignored the dilaton. It can be shown

(see [27]) that it transforms according to

eΦ′(detG′)−1/4 = eΦ(detG)−1/4. (3.85)

This shows that T-duality relates a weak regime of the theory to another weak

regime of the same theory12 and so it can be analysed using string perturbation

tools, as opposed to say S-duality, which is a strong-weak duality.

We observe that it is convenient to define a T-duality invariant dilaton d by

e−2d =
√

detGe−2Φ, (3.86)

so that e−2d′ = e−2d.

Finally, there is one other symmetry of the action (3.38): invariance under

σ → −σ. (3.87)

This is equivalent to the transformation

B → −B ⇔ E → ET . (3.88)

It does not belong in the T-duality group O(d, d,Z), since it does not preserve
12This is true for the bosonic string. For superstrings, T-duality actually exchanges Type

IIA and Type IIB.
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the condition (3.62). Thus, there is an extra Z2 symmetry and, referring to the

discussion near the end of subsection (3.2), we identify the group Gd as

Gd = O(d, d,Z) n Z2. (3.89)
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4 Double Field Theory

4.1 Doubled Space and Notation

Having finally set the scene, we are ready to introduce double field theory. In

this section we are going to review the foundational papers [9], [10], [11], [12].

The recent reviews [35] and [36], as well as [29], will also be useful.

First, we are going to briefly discuss T-folds. More details can be found in [7]

and [8].

Let M be a manifold of dimension D with G a riemannian metric, B a 2-form

field and Φ a scalar field on M . The transition functions in the overlap of two

coordinate patches involve diffeomorphisms for G, B and Φ, as well as gauge

transformations of the B-field B′ = B+ dΛ, Λ being a one-form on M . We call

(M,G,B,Φ) a geometric background. However, the rich symmetries of string

theory seems to allow more general backgrounds, called non-geometric back-

grounds, as we can also consider string dualities relating the different fields in

the overlap, apart from the above transition functions. That means that, al-

though locally we will always have a usual spacetime picture for our theory, this

may not be the case globally.

Let us restrict our attention to the T-duality we studied in the previous section.

Allowing such transformation to play the role of transition functions, we can

construct what is called a T-fold. Now, supposing as before that M = N × T d,

we can consider M as a d-dimensional torus bundle over the base space N and

we can apply the analysis of section (3). If M is a geometric background, the

transition functions include the group GL(d,Z) of large diffeomorphisms of T d.

If M is a T-fold, GL(d,Z) combines with the other string symmetries as we saw

in subsection (3.4) resulting in the group O(d, d,Z).

Recall that in the case of a rectangular torus with coordinates Xi (i.e. having

chosen the canonical diagonal metric, whose entries are just the radii of the
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compact dimensions), we could define the dual coordinates X̃i, parameterising

circles of the inverse radius. The dual coordinates can be used to define a

doubled torus T 2d with coordinates Xi, X̃i. If T 2d are considered to be fibres

over N we are led to the bigger doubled space M̂ = N × T 2d. T 2d can be

thought of as the quotient of Rd,d by the Narain lattice Γd,d. T-duality is

now of a more “geometrical” nature, as T 2d contains the original spacetime

torus T d as well as all other tori related to it by T-duality transformations,

with the group O(d, d,Z) acting naturally on T 2d. So, in this section, we will

let all fields depend on the doubled coordinates. This is something genuinely

different from what we have been doing until now, but we will shortly give

convincing arguments for this approach. Thus, formally, all the objects we will

use will be different from the previous ones. However, the usual theory can be

regained by choosing a polarisation, i.e. a d-torus T̄ d ⊂ T 2d and so we will use

identical symbols for related objects; the distinction should always be clear.Now,

T-duality manifests itself as different choices of polarisation. If such a T̄ d fibre

can be chosen consistently over all of N , the background is actually a geometric

one, but this is not the general case.

It can actually be rigorously shown that such a doubled space is a consistent

sigma-model target space.

Double field theory originated as an attempt to understand better the T-folds.

An important thing to keep in mind is that the dual coordinates are necessary

in the string field theory for closed strings. More specifically, a state |Ψ〉 on a

d-torus background is of the form:

|Ψ〉 =
∑
I

∫
dk

∑
ni,mi

φI(ka, ni,mi)OI |ka, ni,mi〉, (4.1)

where OI are the appropriate matter and ghost operators, ka are the momenta

in the uncompactified dimensions, ni, mi are the usual momentum and winding

modes and φI are the physical (and ghost) fields. A simple Fourier transfor-
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mation will give the fields φI(xa, xi, x̃i), depending on the physical coordinates

(xa, xi) and the dual ones (x̃i). In string field theory, the dual coordinates cor-

respond to physical degrees of freedom, the conjugates of the winding modes,

and their existence is not a gauge redundancy.

In string field theory, the mass condition (3.50) comes from the equations of mo-

tion for the string field, but the level matching condition (3.51) must necessarily

be imposed on all fields as well as gauge parameters, since a gauge transforma-

tion should result in a consistent field, satisfying the condition.

Double field theory is, in a sense, an effective theory, a restriction of string field

theory to the fields that are massless from the full D-dimensional point of view.

Recall the general mass formula for a T d background (3.50)

M2 =
D−d∑
k=1

pap
a − 1

α′
ZTH(E)Z = m2 − 1

α′
ZTH(E)Z = 2

α′
(N + Ñ − 2).

Here M2 is the D-dimensional mass. M2 = 0 implies N = Ñ = 1. The case

(N, Ñ) = (2, 0) or (0, 2) is excluded because the condition (3.51)

N − Ñ = nim
i

would not be satisfied when ni = 0 or mi = 0. That means that we will be con-

cerned with the graviton hij(xa, xi, x̃i), the antisymmetric b-field bij(xa, xi, x̃i)

and the dilaton d(xa, xi, x̃i), depending on all coordinates xa, xi and x̃i. From

now on we will always assume N = Ñ = 1 and we will keep in mind that we

are considering a physical spacetimeM = RD−d × T d.

Keeping full coordinate dependence is equivalent to keeping all momentum and

winding modes, which are of course mixed under the action of T-duality sym-

metry. Thus, double field theory can also be thought of as an O(d, d,Z) covari-

antisation of supergravity (meaning the usual Einstein plus B-field plus dilaton
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action (3.17)). In order to find the T-duality action on the doubled coordinates,

we note that a transformation

Z → gTZ (4.2)

of the momentum and winding modes Z =

 mi

ni

 by an element g ∈ O(d, d,Z)

is equivalent to a transformation

X→ gX (4.3)

of the doubled coordinates X =

 x̃i

xi

, since Z and X are Fourier duals. As-

suming that g is of the form g =

 a 0

0 (aT )−1

, where a ∈ GL(d,Z), we see

that the position of the indices indicates the transformation under the GL(d,Z)

subgroup of O(d, d,Z). We say that the coordinates X form the vector repre-

sentation of O(d, d,Z).

In fact, we can move on to some further generalisations which result in a very

convenient notation. Firstly, we introduce dual coordinates x̃a for the uncom-

pactified dimensions xa, too. We can think that we begin with a spacetime

M = TD with the canonical coordinates, so that the doubled space is RD,D,

and then take the decompactification limit for the directions xa. Doing so, the

inverse radius goes to 0, so everything will be independent of x̃a, as could be

intuitively understood from the beginning.

Secondly, we observe that the doubled space RD,D has an O(D,D,R) global

symmetry. Compactification of 2d dimensions will result in the space RD−d,D−d×

T 2d, whose symmetries are O(D − d,D − d,R) × O(d, d,Z). Finally, indepen-

dence of x̃a will break this group to O(D)×O(d, d,Z), which is just the Lorentz

plus the T-duality symmetry.
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The above generalisations allow us to formulate double field in a O(D,D,R) co-

variant way, so that all the cases are covered. That means that our notation will

be manifestly O(D,D) covariant, but we understand that the different physical

situations will break this symmetry as described in the previous paragraph.

In order to proceed with the formulation, we should consider the D-dimensional

versions of the objects introduced in subsections (3.3) and (3.4). For instance,

we will work with the full background matrix Eµν , but will we remember that

if d dimensions are compactified, it will have the form:

Eµν =

 Eij 0

0 I

 (4.4)

and similarly, everything else that we used, such as the O(d, d) transformations

h and the matrices M , M̄ defined in (3.75), will formally be O(D,D) objects

but actually they will belong in the subgroup O(d, d) ⊂ O(D,D) preserving

the uncompactified directions xa. Then, the transformations (3.74) and all the

relations we found will have exactly the same form.

We now introduce some more formalism and notation, as a natural continuation

of subsections (3.3) and (3.4).

Recall that Xi ∼ Xi + 2π ⇒ xi ∼ xi + 2π, which in turn implies that ni ∈ Z,

and similar relations hold for the dual coordinates. We can rewrite the relations

(3.41) introducing the derivatives Di and D̄i:

α0i = − i√
2

( ∂

∂xi
− Eik

∂

∂x̃k
) ≡ −i

√
α′

2 Di

α̃0i = − i√
2

( ∂

∂xi
+ Eki

∂

∂x̃k
) ≡ −i

√
α′

2 D̄i.

(4.5)
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We will write D2 = DiDi and D̄2 = D̄iD̄
i.13 We also define the operator ∆ as

−α
′

2 ∆ = 1
2(αi0Gijα

j
0 − α̃i0Gijα̃

j
0). (4.6)

A short computation shows that

∆ = 1
2(D2 − D̃2) = − 2

α′

∑
i

∂

∂xi
∂

∂x̃i

=
(
∂̃i ∂i

) 0 δij

δij 0


 ∂̃j

∂j

 (4.7)

and the level matching condition (3.51) becomes (for N = Ñ = 1):

L0 − L̃0 = −α
′

2 ∆ = 0. (4.8)

Thus, all fields φI are constrained to satisfy

∆φI = 0⇔ ∂i∂̃
iφI = 0. (4.9)

Similarly we define the operator

� = 1
2(D2 + D̄2). (4.10)

We also denote the coordinates as

X =

 x̃µ

xµ

 (4.11)

and the measure

dX = dxa dxi dx̃i, (4.12)

since nothing depends on x̃a.
13Of course, until otherwise stated, every index is raised and lowered with the background

metric G and the inverse metric G−1.
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Let now Ξ =

 ξ̄µ

ξµ

 be an object transforming in the fundamental represen-

tation of O(D,D), i.e.

Ξ′ =

 ξ̄′

ξ′

 =

 a b

c d


 ξ̄

ξ

 =

 aξ̄ + bξ

cξ̄ + dξ

 , (4.13)

for g =

 a b

c d

 ∈ O(D,D). Then we can prove that

λµ ≡ −ξ̄µ + Eµνξ
ν

λ̄µ ≡ ξ̄µ + Eνµξ
ν

(4.14)

transform with the matrices M and M̄ as follows:

Ξµ = Mµ
νΞ′ν

Ξ̄µ̄ = M̄µ̄
ν̄Ξ′ν̄ .

(4.15)

or
Ξ = MΞ′

Ξ̄ = M̄Ξ′.
(4.16)

Then, if we raise the indices with G−1 and use the transformation of G (3.75),

we can show that
G−1Ξ = (MT )−1G′

−1Ξ′

G−1Ξ̄ = (M̄T )−1G′
−1Ξ′.

(4.17)

We also observe that, although M and M̄ multiply the transformed objects,

they depend on the background E.

Applying the above to the partial derivative ∂ ≡

 ∂µ

∂̃µ

 we find that the
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derivatives Dµ and D̄µ transform as:

Dµ = Mµ
νD′ν

D̄µ̄ = M̄µ̄
ν̄D̄′ν̄

(4.18)

and any background fluctuation δE as:

δEµν̄ = Mµ
ρM̄ν̄

σ̄δEρσ̄. (4.19)

Specifically, this applies to eµν = gµν + bµν , so we should consider the second

index as barred. However, we will make this distinction only when it is necessary.

Recall that, due to equations (3.75), the background metric G can be treated

as having two unbarred or two barred indices.

String field theory gives the following action for the fields eµν = gµν+bµν and d,

up to cubic order in the fields, where the background is described by the matrix

E (setting the constant (2κ)2 = 1):

S(E, e, d) =
∫

dXL[Dµ, D̄µ, G
−1, eµν(X), d(X)]

=
∫

dX[ 14eµν�e
µν + 1

4(D̄νeµν)2 + 1
4(Dµeµν)2 − 2dDµD̄νeµν − 4d�d

+ 1
4eµν((Dµeρσ)(D̄νeρσ)− (Dµeρσ)(D̄σeρν)− (Dρeµσ)(D̄νeρσ))

+ 1
2d((Dµeµν)2 + (D̄νeµν)2 + 1

2((Dρeµν)2 + 1
2((D̄ρeµν)2

+ 2eµν(DµD
ρeρν + D̄νD̄

ρeµρ)) + 4eµνdDµD̄νd+ 4d2�d].
(4.20)

String field theory has a gauge symmetry, which manifests itself in the action
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(4.20) as:

δλeµν = Dµλ̄ν + D̄νλµ

+ 1
2(λρDρ + λ̄ρD̄

ρ)eµν + 1
2(Dµλ

ρ −Dρλµ)eρν − eµρ
1
2(D̄ρλ̄ν − D̄ν λ̄

ρ)

δλd = −1
4(Dµλµ + D̄µλµ) + 1

2(λµDµ + λ̄µD̄
µ)d.

(4.21)

Here λµ(X) and λ̄µ(X) are independent gauge parameters.

The second line of the action (4.20) is the action to quadratic order

S(2) =
∫

dX[ 14eµν�e
µν + 1

4(D̄νeµν)2 + 1
4(Dµeµν)2 − 2dDµD̄νeµν − 4d�d],

(4.22)

with the gauge transformations

δλeµν = Dµλ̄ν + D̄νλµδλd = −1
4(Dµλµ + D̄µλµ). (4.23)

It is shown in [9] that if we set ∂̃ = 0 in (4.22), i.e. if every field is independent

of X̃, then we end up with the supergravity action (3.17).

S∗ =
∫

dDx
√
−G′e−2Φ′ [R+ (4∂Φ′)2 − 1

12H
2], (4.24)

the primes indicating that the above action actually contains the background

fields plus the first order fluctuations, for example G′ = G+ g etc.

The gauge transformations of this action are diffeomorphisms parameterised by

a vector field εµ and B-field gauge transformations parameterised by a one-form

ε̃µ

δG′ = LεG′

δB′ = LεB′ + dε̃

δΦ′ = LεΦ′,

(4.25)

which should be included in the double field theory gauge transformations (4.23).
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Indeed, by writing εµ ≡ 1
2 (λµ + λ̄µ) and ε̃µ ≡ 1

2 (λµ − λ̄µ), (4.23) imply that

δgµν = ∂µεν + ∂νεµ δ̃gµν = ∂̃µε̃ν + ∂̃ν ε̃µ

δbµν = −(∂̃µεν − ∂̃νεµ) δ̃bµν = −(∂µε̃ν − ∂ν ε̃µ)

δd = − 1
2∂ · ε δ̃d = 1

2 ∂̃ · ε̃.

(4.26)

We see that by setting ∂̃ = 0, we get the infinitesimal version of (4.25):

δgµν = ∂µεν + ∂νεµ δ̃gµν = 0

δbµν = 0 δ̃bµν = −(∂µε̃ν − ∂ν ε̃µ)

δd = − 1
2∂ · ε δ̃d = 0

(4.27)

with εµ the vector field parameterising the diffeomorphisms and ε̃µ the one-form

gauge parameter of the b-field. Note that all indices are still raised and lowered

with Gµν and Gµν .

Already by (4.25) the connection of supergravity with generalized geometry is

apparent, since we can collectively denote the parameters εµ and ε̃µ of as an

element of (T ⊕T ∗)M. We will return to this point in the following subsections.

Finally, we comment on T-duality transformations. (Closed) string field the-

ory is T-duality invariant, as proved in [6]. The fact that the action (4.20)

inherits this invariance (which is what we really wanted to achieve from the

beginning) can be proven if we check carefully the O(D,D) transformations of

the objects Dµ, D̄µ, G
−1, eµν , d and dX, which make up the Lagrangian den-

sity L. It can be seen that there are only consistent contraction of upper

barred-lowered barred and upper unbarred-lowered unbarred indices, so that

the transformations (4.18), (3.75) and (4.19), using (4.16) and (4.17), together

with d(X) = d′(X ′) and
∫

dX =
∫

dX ′, imply that the action (4.20) satisfties:

S(E, e(e′), d(d′)) = S(E′, e′, d′), (4.28)

so T-duality is indeed a symmetry of the cubic double field theory action.
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In [6] it was also proven that the Z2 symmetry (3.88)

E → ET (4.29)

discuss at the end of subsection (3.4) is also a symmetry of closed string field

theory. Noting that the above transformation implies the interchange of D and

D̄: D ↔ D̄ and redefining

X ′ =

 x̃′

x

 =

 −x̃
x

 , (4.30)

(which is a natural thing to do if we recall the expressions (3.87) and (3.42)) we

can also prove that

S(ET , e, d) = S(E, e, d). (4.31)

Thus, the Z2 is also inherited in the action (4.20).

4.2 Strong Constraint and Gauge Algebra

Recall that the constraint (4.9) must be imposed to all fields and gauge param-

eters. Let’s explore this a little more.

In the “generalized” momentum space the constraint (4.9) takes the form

mini = 0. (4.32)

A field f(xµ, x̃i) can be expanded in momentum modes in the compactified

directions by doing a Fourier transform

f(xµ, x̃i) =
∑
Z∈Z2d

f(xa, Z)eiZ
TX, (4.33)
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where we recall the definition Z =

 mi

ni

 and X =

 x̃i

xi

. The level

matching condition is now equivalent to the statement that the momentum

vector Z is null with respect to the metric η =

 0 I

I 0

, i.e.

ZT ηZ = 0. (4.34)

We can define the projector [[, ]] by to the null modes

[[A]] =
∑
Z∈Z2d

δZT ηZ,0f(xa, Z)eiZ
TX, (4.35)

so that

∆[[A]] = 0. (4.36)

Now, we can easily see that, while ∆A = 0 = ∆B ⇒ ∆(A+B) = 0, in general

∆A = 0 = ∆B ; ∆(AB) = 0, so, the level matching constraint implies that

we should use the projector [[, ]] to every product of fields or gauge parameters.

In particular, the second order terms of the gauge transformations (4.21), i.e

actually we should have written:

δλeµν = Dµλ̄ν + D̄νλµ

+ [[12(λρDρ + λ̄ρD̄
ρ)eµν + 1

2(Dµλ
ρ −Dρλµ)eρν − eµρ

1
2(D̄ρλ̄ν − D̄ν λ̄

ρ)]]

δλd = −1
4(Dµλµ + D̄µλµ) + [[12(λµDµ + λ̄µD̄

µ)d]].
(4.37)

One would expect that we should use the same projectors in the cubic action

(4.20), since all the terms are double or triple products of fields. However, the in-

tegration over xi, x̃i does automatically the projection: as can be easily checked

by using the corresponding Fourier expansions, ∆A = 0 ⇒
∫

dXA[[B]] =
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∫
dXAB, even if ∆B 6= 0. Thus, although we have ∆A = 0, ∆(BC) 6= 0

and so we should use the projection [[BC]] in the action, we can apply the

previous relation and get
∫

dXA[[BC]] =
∫

dXABC.

However, the analogous statement does not hold for the product of four fields or

more. So, it is very difficult to write the quartic terms of the action. There are

also some other subtleties, involving the cocycle induced factors, that we need

to take into account if we want to proceed (see [9] for further details).

In order to move on our analysis conveniently, we will impose a stronger con-

dition than (4.9): we will assume that all fields and gauge parameters and all

products of fields and gauge parameters are annihilated by ∆. This means that

∂i∂̃
i(AB) = 0 ⇔ ∂iA∂̃

iB + ∂iB∂̃
iA = 0 (4.38)

for all fields and gauge parameters A,B which satisfy the level matching condi-

tion (4.9).

We will call this new condition the strong constraint, while we will refer to (4.9)

as the weak constraint.

We will now understand better what the strong constraint implies.

As we just saw, the weak constraint implies that a momentum vector Z = mi

ni

 of a field A is null with respect to η. Then, the strong constraint

implies that ZTa ηZb = 0 for all momentum vectors of the same or of different

fields. In other words, all momentum vectors must lie in an isotropic subspace

of the lattice Zd,d, considered as a vector space with inner product defined by

the metric η.

Now we can use some of the tools developed in subsection (2.2). It can be

shown that any isotropic subspace is a subspace of a maximal isotropic one, i.e.

of dimension d. Then, we can consider coordinates yj , ỹj , j = 1, . . . , d with

yj conjugate to the momentum vectors and ỹj orthogonal to them, so that the
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fields depend only on yi. yj and ỹj are coordinated on the doubled torus T 2d. It

can also be proven that any maximal isotropic subspace is related by an O(d, d)

transformation to any other one. In particular, it is related to the space with

momenta of the form ZT =

 0

ni

, which is just the physical spacetime torus

T d, parameterised by xi.

Thus, imposing the strong constraint means that there is always a T-duality

transformation which will bring us back to the supergravity picture, i.e. to

dependence only on xi. Then, in this sense, the theory is not truly doubled.

The formalism is O(d, d) (and O(D,D)) covariant, but at the very end we should

make a choice of subspace, breaking this symmetry spontaneously.

The rest of the work will be carried out assuming the strong version of the con-

straint.

We now proceed to understand the gauge algebra of double field theory.

We have found the gauge transformations up to quadratic order (4.21) in the

fields. In general they will be very complicated, but, imposing the strong con-

straints simplifies significantly the situation: assuming some consistency con-

ditions (closure of the gauge algebra, O(D,D) covariance, correct supergravity

limit) we find that only one cubic term must be added to (4.21). The full

non-linear transformations are now

δλeµν = Dµλ̄ν + D̄νλµ

+ 1
2(λρDρ + λ̄ρD̄

ρ)eµν + 1
2(Dµλ

ρ −Dρλµ)eρν − eµρ
1
2(D̄ρλ̄ν − D̄ν λ̄

ρ)

− 1
4eµκ(Dρλ̄κ +Dκλ̄ρ)eρν

δλd = −1
4(Dµλµ + D̄µλµ) + 1

2(λµDµ + λ̄µD̄
µ)d

(4.39)

(see [10] for details). We observe here that in fact there is a gauge redundancy:

if the gauge parameters can be expressed as λµ = Dµχ, λ̄µ = −D̄µχ with χ a

scalar field on the doubled space, then the transformations are trivial.
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In general, if we have an algebra with generators TAtα, ta such that ta annihilate

the fields, it can be realised as classical infinitesimal symmetries on some fields

only if the action of the Jacobiator, defined in equation (2.18) of any three

generators on any field vanishes. This can happen not only when the Jacobiator

itself vanishes, but also when it can be expressed as a linear combination of ta

Jac(TA, TB , TC) = gaABCta. (4.40)

In case of the Einstein-Hilbert action

SEH =
∫

dDx
√
−gR (4.41)

the gauge symmetries of the action are diffeomorphisms of the metric field g

parameterised by vector fields:

δg = LV g. (4.42)

Then, the commutator of two such transformations is another transformation

with parameter the commutator of the vector fields

[δV1 , δV2 ]g = L[V1,V2]g, (4.43)

with “[,]” in the right-hand side being the Lie bracket, which satisfies the Jacobi

identity and produces the usual Lie algebra of diffeomorphisms.

The same considerations for the supergravity action (3.17), which includes an

antisymmetric 2-form field and a dilaton as well as the metric, lead to a gauge

algebra determined by the Courant bracket (2.16). Heuristically, this happens

because the parameters of diffeomorphisms (vector fields) and B-field gauge

transformations (one-forms) are naturally combined in elements of (T ⊕ T ∗)M .

The algebra bracket should be invariant under both xµ diffeomorphisms and
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B-field shifts by a closed 2-form14 (since they do not the physical field strength

H = dB → H = d(B + Θ) = dB). Indeed, we saw in section 2 that the

Courant bracket satisfies these properties. Then, the Jacobiator is an exact

one-form (see equation (2.17)), which are trivial B-field gauge transformations:

b→ b+ d(dN) = b. For more details see [29].

There has been interesting progress in trying to fully reformulate supergravity

in terms of generalized geometry, see for example [15] and [37].

We seek the analogous formulas for double field theory. First, we are going to

introduce for the last time a new notation, that will be important for the next

subsection, too.

We define M,N, . . . = 1, 2, . . . , 2D to be O(D,D) covariant indices in the fol-

lowing way: let

XM =

 x̃µ

xµ

 (4.44)

So, the first D values of M represent the coordinates x̃µ and the rest represent

xµ. The matrices h ∈ O(D,D) which act on the coordinatesXM can be denoted

as hMN . The O(D,D) metric η has naturally two lower indices, so that the

definition of the O(D,D) group is

ηNQh
M
Nh

P
Q = ηMP . (4.45)

The generalized metric H comes with two upper indices:

H =

 G−BG−1B BG−1

−G−1B G−1

 ≡ HMN . (4.46)

This is a very uniform notation, which makes mane formulas more elegant. For
14This is what we called “B-field transformations in section 2.
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example, we find that H satisfies the relation:

ηHη = H−1 ⇔ ηMP ηNQHMN = HPQ. (4.47)

We will always raise and lower the capitalised indices with the constant metric

ηMN and its inverse ηMN .

Of course the coordinates are conjugate to the momenta, so consistency requires

that we denote

∂M =

 ∂̃i

∂i

 ↔ ∂M =

 ∂i

∂̃i

 . (4.48)

Finally, the weak constraint can be written as

ηMN∂N∂MA = 0 ⇔ ∂M∂MA = 0 (4.49)

and the strong constraint as

∂M∂M (AB) = 0 ⇔ ∂MA∂MB = 0, (4.50)

for all fields an gauge parameters A,B.

The gauge algebra takes a convenient form if we redefine the parameters ac-

cording to

ΣM =

 ξ̃µ

ξµ

 = 1
2

 −Eνµλν + Eµν λ̄
ν

λµ + λ̄µ

 . (4.51)

The relations (4.39) imply that λµ, λ̄µ transform with the matrices M and M̄

under O(D,D), so, by (4.14), we see that ΣM transforms as a vector of O(D,D).

In addition, the parameters of the form ΣM = ηMN∂Nχ induce the gauge

redundancy described before.

Now, a straightforward computation of the commutator of the transformations

of eµν shows that the bracket satisfies by the double field theory gauge algebra
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is the so called C-bracket:

[δΣM1 , δΣM2 ] = δΣM12
(4.52)

with

ΣM12 = ΣN[2∂NΣM1] −
1
2ΣN[2∂MΣ1]N ≡ −[Σ1,Σ2]MC . (4.53)

The first term is the Lie bracket analogue for the doubled fields, but the second

one describes a correction which involves the metric η in raising and lowering

the indices of ∂M and Σ1N . This does not causes problems because η is constant

on all of the doubled space.

For the dilaton d the transformations are simpler. Then, the strong constraint

can be used to show that they are consistent with both diffeomorphisms and

C-algebra transformations.

If we write the C-bracket more analytically, it has a form very similar to the

Lie bialgebroid bracket of equation (2.24):

[A+ α,B + β] = [A,B] + LαB − LβA−
1
2 d̃(iAβ − iBα)

+ [α, β] + LAβ − LBα+ 1
2d(iAβ − iBα),

(4.54)

where the gauge parameters are defined by

Σ1 =

 αµ

Aµ

 , Σ2 =

 βµ

Bµ

 (4.55)
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and the definitions of the various objects of (4.54) are:

(LαA)µ = αν ∂̃
νAµ +Aν ∂̃µαν

(LAα)µ = Aµ∂µαν + αν∂µA
ν

(LAB)µ ≡ [A,B]µ = Aµ∂µαν + αν∂µA
ν

(Lαβ)µ ≡ ([α, β])µ = αν ∂̃
νβµ − βµ∂̃µαν

dχ =

 ∂µχ

0

 , d̃χ =

 0

∂̃µχ


iAα = αµA

µ,

(4.56)

where χ is a scalar function. We should not be deceived by the apparent sim-

ilarities with the conventional definitions of the Lie derivative etc. These are

all genuinely new objects, since they act on fields depending on the doubled

spacetime. However, they have the same form with the usual objects (or a very

similar one) and that is why we use the same notation. In the same way, we note

that the Lie bialgebroid bracket (2.24) consists of two vector bundles over the

same base space, while in (4.54) the fields formally depend on all of the doubled

coordinates. Thus, only at the very end, when we make a specific choice of a

D-dimensional (null) torus T̂D ⊂ T 2D on which the fields depend, the C-bracket

can be identified with the Lie bialgebroid bracket. If in particular we choose the

physical spacetime torus, i.e. set ∂̃ = 0, something that can always be done as

we have seen, then the C-bracket reduces precisely to the Courant bracket and

some of the above objects can be identified with the corresponding conventional

objects, for instance the Lie derivative. This is also obvious from the discussion

in subsection (2.3).

In the next subsection we will write the C-bracket in an even more symmetrical

form.
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4.3 Background Independence and Generalized Metric For-

mulation

Heuristically, background independence is the statement that the physics does

not depend on the splitting of the full metric g into a “background metric” G and

a (first order) “fluctuation” g. Actually, as we have discussed before, it is natural

to consider as “background” the whole field E = G + B, but not the dilaton.

Background independence is a very important property that the fundamental

theory of quantum gravity should have. It is believed that string theory has a

truly background independent formulation, although for the moment it is not

completely obvious.

It is particularly interesting to prove that this property is inherited from the full

string theory in the cubic action (4.20). More concretely, we should show that

any constant shift in the fluctuation field eµν → eµν + χµν can be “absorbed”

in the background Eµν , or that

S(Eµν , eµν + χµν) = S(Eµν + χµν , e
′
µν), (4.57)

where e′ is a redefinition of the fluctuation field e, depending on χ in general,

i.e. e′ = f(e, χ).

In [11] it is shown explicitly that this is the case. In fact, something even

more remarkable happens: We can write an action depending only on the full

background Eµν = Eµν + [(1− 1
2e)−1]µκeκν ≡ gµν + bµν and other background

independent objects, which is complete to all orders if we assume that the strong

constraint holds.

First, we need to generalise the notion introduced in this section to the corre-

sponding background independent ones. This can be done because we did not

use the fact that Eµν is independent of XM . In particular, we straightforwardly
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generalise:
Dµ = ∂µ − Eµν ∂̃ν → Dµ = ∂µ − Eµν ∂̃ν

M = (d− cET )T → M(X) = (d− cET )T ,
(4.58)

and similarly D̄µ → D̄µ, M̄ →M(X̄).

We can write a generalized metric without reference to any background field as:

H(E) =

 g− bg−1b bg−1

−g−1b g−1

 . (4.59)

The O(D,D) transformation

H(E ′(X ′)) = hH(E(X))hT (4.60)

induces the same form of the transformations of g, δE(X) etc as in equations

(3.74), (3.75), (4.19), (4.18), but now with M(X) and M̄(X) depending on X.

Thus, as long as there are no second derivatives such asD2 or D̄2 in the action, a

consistent contraction of indices will lead to an O(D,D) invariant action. Note

that now we will raise and lower the µ, ν, . . . indices with the full metric g and

its inverse g−1.

The action that correctly generalises (4.20) is

SE,d =
∫

dXe−2d[−1
4g

µλgνκDρEλκDρEµν

+ 1
4g

λκ(DνEµλDµEνκ + D̄νEλµD̄µEκν)

+ (DµdD̄νEµν + D̄µdD̄νEνµ) + 4DµdDµd].

(4.61)

This action can be seen to be O(D,D) invariant, since each term in it is. It

is completely fixed by the requirement of gauge invariance and of the correct

expansion to cubic order, which must be equation (4.20). It is also invariant
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under the Z2 symmetry

Eµν → Eνµ, D ↔ D, d→ d. (4.62)

The gauge transformations (4.39), with parameter Σ =

 αµ

Aµ

 can be written

in a more unified way if we supplement the definitions (4.56) with:

ĩαA = αµA
µ (4.63)

and define the Lie derivatives with respect to Aµ and αµ as:

LA = diA + iAd

L̃α = d̃ĩα + ĩαd̃.

(4.64)

Now the gauge transformations take the form:

δΣe
−2d = ∂M (ΣMe−2d),

δΣEµν = ∂µαν − ∂ναµ + LAEµν + L̃αEµν − Eµρ(∂̃ρAλ − ∂̃λAρ)Eλν .
(4.65)

We note in particular that e−2d transforms as a density (more on this in a while),

so it is consistent to set it as the integration measure.

By restricting the dependence to xµ, the E transformations give:

δAEµν = ∂µαν − ∂ναµ + LAEµν + L̃αEµν , (4.66)

which are exactly the diffeomorphisms and B-field gauge transformations of the

supergravity action. The rest of the terms in (4.65) make up for the O(D,D)

covariance of the gauge transformation (which is manifest in the transformation

of d).
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We can proceed even more and construct an action that makes O(D,D) in-

variance manifest. In order to do this, we will use the generalized metric

H, which transforms linearly under O(D,D). In fact, as we saw in subsec-

tion 3.4, the matrix AF =

 e 0

−e∗B e∗

 parameterises the coset space

O(D,D)/O(D)× O(D). However, due to equation (3.60), we noticed that AF

can be described as a “vielbein” for the generalized metric H, and so it contains

the same information (AF used the metric vielbein e and B while H used G

and B). For the rest of this work, almost every statement is true up to terms

that vanish under imposing the strong constraint and we will assume this is the

case.

We consider the background independent definition of the generalized metric

(4.59). We can easily check that H−1 = H and thus

H−1 = ηHη ⇔ (H−1)T ηH−1 = η, (4.67)

i.e. HMN ∈ O(D,D) (note that it has two upper indices, while the usual

O(D,D) parameters h ∈ O(D,D) were defined with one upper and one lower,

hMN ). In fact, H can be thought of

The linear transformation of the generalized metric can also be written as:

H′MN (X ′) = hMPh
N
QHPQ(X). (4.68)

Using this convenient notation, we can rewrite the gauge transformations of E ,

equation (4.65), as a transformation of H (we also include the dilaton transfor-
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mation for completeness):

δΣHMN = ΣP∂PHMN + (∂MΣP − ∂PΣM )HPN + (∂NΣP − ∂PΣN )HMP

≡ L̂ΣHMN

δΣe
−2d = ∂M (ΣMe−2d).

(4.69)

Here we have defined the very important concept of the generalized Lie derivative

acting on H. In general the generalized Lie derivative acts on a generalized

tensor AMN as

L̂ΣAM
N = ΣP∂PAMN+(∂MΣP−∂PΣM )APN+(∂NΣP−∂PΣN )AMP , (4.70)

with an obvious extension to tensors with more indices, as well as to gener-

alized scalars, which only contain the first term. Additionally, we can define

generalized tensor densities of weight κ by adding to the right-hand side the

term

κ∂PΣPAMN . (4.71)

We see again that there is a correction proportional to the tensor ηMNη
PQ.

This does not cause any problem due to the following properties satisfied by L̂:

• The usual Leibnitz rule:

L̂(AB) = L̂(A)B +AL̂(B). (4.72)

• ∂Mχ, for χ scalar, are trivial transformations:

L̂∂MχA = 0. (4.73)

• Constancy of the metric η with respect to the generalized Lie derivative

as well:

L̂ηMN = L̂ηMN = L̂δMN = 0 (4.74)
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• The gauge algebra (4.52) can now be written as:

[L̂Σ1 , L̂Σ2 ] = −L̂[Σ1,Σ2]C , (4.75)

where [, ]C is the Courant bracket of equation (4.53).

In fact, the generalized Lie derivative of two generalized vectors AM , BN can

be seen as a generalisation of the Dorfman bracket (defined in (2.13)), called D-

bracket, analogous to the generalisation of the Courant bracket to the C-bracket

[A,B]MD = (L̂AB)M = [A,B]MC + 1
2∂

M (BNAN ). (4.76)

The D-bracket satisfies some properties that the Dorfman bracket does; in par-

ticular, it is not skew-symmetric, but it satisfies the Jacobi identity (2.14),

contrary to the C-bracket. In addition, it reduces to the Dorfman bracket if we

restrict to a null (always with respect to η) subspace of the doubled torus, and

all the structures of subsection 2.3 are reproduced.

Now we can write the double field theory action in the generalized metric for-

mulation:

SH =
∫

dXe−2d(1
8H

MN∂MHKL∂NHKL −
1
2H

MN∂NHKL∂LHMK

− 2∂Md∂NHMN + 4HMN∂Md∂Nd).
(4.77)

In [12] it is shown that the above action has all the required properties, i.e. the

gauge symmetry (4.69), the Z2 symmetry b → −b and the correct limits, and

in fact it is uniquely determined by them.

4.4 Double Geometry

A very interesting active area of research is the attempt to understand and for-

mulate rigorously double geometry. In this subsection we will discuss some of
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ideas involved, mainly based on [35], [38] and [39].

Firstly, we note that in [12] the action (4.77) was also written in the following

form:

SR =
∫

dXe−2dR, (4.78)

where

R(H, d) = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd

+ 4∂MHMN∂M∂Nd+ 1
8H

MN∂MHKL∂NHKL

− 1
2H

MN∂NHKL∂LHMK .

(4.79)

In fact, this action takes the form of (4.77) up to total derivatives and terms

that vanish under the imposition of the strong constraint.

The remarkable thing about the object R is that it transforms as a general-

ized scalar under the action of the generalized Lie derivative (4.70), i.e. δΣR =

L̂ΣR = ΣM∂MR, apart from being manifestly O(D,D) invariant. Thus, recall-

ing that e−2d transforms as a generalized tensor density (see equations (4.69)

and (4.71)), it is obvious that the action (4.78) is gauge invariant.

Thus, we are tempted to interpret R as a generalized Ricci scalar. A gener-

alized Ricci tensor RMN can be obtained by direct analogy with conventional

geometry, as the equations of motion derived fromSR if we vary it with respect

to the generalized metric HMN :

δSR =
∫

dXe−2dδHMNKMN . (4.80)

This gives us KMN and then, using also the constraints that H satisfies, we can

find RMN (see [12] for the full expression). The equations of motion are the

“generalized Ricci flat” equations RMN = 0.

Then one would expect that, using the O(D,D) tensor calculus we have devel-
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oped, they could find a generalized Riemann tensor with four capital indices,

such that the contraction of two indices would give RMN . However, as we will

see, there has been only partial success in this quest.

Let us try to understand deeper the generalized (or O(D,D)) tensors.

The coordinates XM have been defined with an upper M index, like in the

usual riemannian geometry, although they contain “conventional” coordinates

with both upper and lower µ indices, depending on how they transform under

GL(d) ⊂ O(D,D). Now, the gauge parameters come also with an upper index:

ΣM =

 αµ

Aµ

 , (4.81)

with αµ and Aµ depending on the doubled coordinates XM =

 x̃µ

xµ

. We

know that, restricting the coordinate dependence on just xµ, Aµ(x) should give

the vector parameterising the diffeomorphisms and αµ(x) should give the one-

form parameterising the B-field gauge transformations of the conventional su-

pergravity action, see equations (3.17) and (4.27). This is strange; in rieman-

nian geometry, if we make a vector Tµ(xα, xa), xµ ≡ (xα, xa) independent of

the coordinates xa, it will decompose into a lower dimensional vector Tα(xα)

and a collection of scalar fields T a(xα). In addition, the gauge algebra (4.52),

(4.53), that is satisfied by the gauge parameters has a gauge redundancy, since

ΣM ∼ ΣM + λ∂Mχ, with λ and χ functions on the doubled manifold. Thus we

understand that, even if we correspond the generalized vector ∂M to each gen-

eralized direction XM , we cannot define the generalized vector by its action on

functions, since it is not unique. In fact, it is very difficult to find an invariant

definition of a generalized vector, similar to the one15 of riemannian geometry.

On the other side, assuming that such a definition exists, the generalized Lie
15Actually three, see [40].

88



derivative along with its properties (4.3), define completely the higher rank

tensor fields by their transformation under L̂. A finite form of the infinitesimal

generalized Lie derivative transformations was found in [41]: under a generalized

coordinate transformation X → X ′, a generalized vector transforms as

A′M (X ′) = FMNAN (X), (4.82)

where

FMN = 1
2( ∂X

P

∂X ′M
∂X ′P
∂XN

+ ∂X ′M
∂XP

∂XN

∂X ′P
). (4.83)

We recall here that all O(D,D) indices are raised and lowered with the constant

metric η, so there is no actual distinction between upper and lower indices.

The transformations of higher rank tensors can easily be found by using the

above matrix F . In [41] there was also found an analogue of the exponenti-

ated Lie derivative expL acting on vectors: the exponentiated generalized Lie

derivative exp L̂ acting on generalized vectors.

Before [39] there were two main approaches to double geometry: the vielbein

formalism, which originated in [4] and [5] and was further developed recently (see

for example [42]) and the coordinated basis formalism, which is what we have

been developing in this work. In [39] there was achieved a kind of unification,

since, by using a general basis of generalized vector fields ZA, the main results

of both approaches were reproduced.

We will continue working in the coordinate basis formalism.

We want to define a generalized connection analogous to the one in riemannian

geometry:

∇MV N = ∂MV
N + ΓMP

NV P , (4.84)

so that ∇MV N transforms as a generalized tensor.

In conventional geometry, requiring that the torsion of the above connection
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vanishes and that it is compatible with the riemannian metric g (i.e. ∇µg = 0),

fully determine the connection components in terms of derivatives of the metric

(we call it Levi-Civita connection). This is not the case in double geometry,

even though we actually require more conditions to hold.

A natural requirement is that the generalized torsion vanishes. The general-

ized torsion cannot be defined in the usual way, since this does not result in a

generalized tensor, so we use the alternative definition:

TMN
QΣMV N = (L∇Σ − LΣ)V Q, (4.85)

where by L∇Σ we mean that we replace the partial derivatives with covariant

derivatives in the definition of the generalized Lie derivative. Then we require

that

TMN
Q = 0. (4.86)

We also require that both the O(D,D) invariant metric η and the generalized

metric H are covariantly constant, i.e.

∇MηPQ = 0 = ∇MHPQ. (4.87)

Finally, in order to include the dilaton in the geometry in some way, we require

the compatibility condition

∫
e−2df∇MVM = −

∫
e−2dVM∇M , (4.88)

where f is a function.

These conditions do not determine the connection components in terms of the

physical fields, but only some projections (see [35]). Then, neither the general-

ized Riemann curvature tensor will be completely determined by the physical
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fields. A solution out of this has not yet been found up to now, so we still cannot

give a geometrical meaning to the action (4.77). Some interesting proposals in-

volve [43], where we impose a constraint on our geometric construction, but we

partly spoil O(D,D) covariance, and [38], where we can use the Weitzenböck

connection, which is flat and has a non vanishing torsion. In the latter case

a proper action can be constructed, but, due to the unusual properties of the

connection, the physical meaning is yet unclear.
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5 Conclusion

Hopefully, by now we have a clear overview of the foundations of double field.

We have also seen some interesting questions, mainly regarding the underlying

geometry of double field theory, that are still lacking a clear answer. Here, we

will briefly discuss some other related areas of research that we did not men-

tion in the thesis. For a much more complete analysis, see the recent review [44].

Recall that, in section 3.2 we saw that a particular subgroup of the O(d, d,R)

symmetries of the dimensionally reduced supergravity, namely the geometric

subgroup GL(d,R) n Rd(d−1)/2, can be interpreted as arising from the global

symmetries of the theory before the reduction. So, it was interesting to see

what happens in the context of double field theory and study the relation be-

tween T-duality and gauge symmetries. This was done in [11] (see also [28]),

where it was seen that O(d, d,R) is a remnant of the large diffeomorphisms of

the doubled torus only in the case when there is an isometry along the relevant

compactified directions. Of course this is not satisfactory, since there is no rea-

son why an isometry should have this result (note that, throughout this work,

an isometry was never assumed, in contrast to other T-duality approaches, such

as the worldsheet approaches, which can only be pursued only in that specific

case). This question is most likely related to the following ones.

Another important issue is whether we can include in double field theory α′ cor-

rections of supergravity, predicted by string theory (see subsection 3.1). They

contain terms involving the (conventional) Riemann curvature tensor which

cannot arise from the generalized metric formulation, so novel structures are

required. However, understanding the α′ corrections may solve the mystery

of the undetermined components of the generalized Riemann tensor, so it is a

promising area of research. For a first attempt at this direction, see [45].
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Additionally, one would naturally expect to go beyond bosonic string theory.

This means that we should also include fermionic fields and supersymmetry.

Note that this has partly been done in generalized geometry (spinor bundles are

discussed in [14]), but there is still way to go even there.

A similar generalisation would be to account for other dualities and specifically

for the U-dualities of M-theory. We need to create an extended field theory,

which makes manifest the invariance under the exceptional groups. Then, gen-

eralized geometry needs to be even more generalized, by adding to the “tangent

space” higher powers of the usual tangent and cotangent bundles. A lot of re-

search is carried out in this area. For a review of these approaches, see [36]

(original papers can be found therein).

Another very active area of research is concerned with flux compactifications

and gauged supergravities. It is believed that they can be naturally studied

in the context of double field theory. For more details see [35] and references

therein.

Finally, there is the question of foundational importance regarding the relax-

ation of the strong constraint. Although a constraint should necessarily be

imposed in order to restrict the degrees of freedom of the theory, it is clear that

the strong constraint is way too strong and a truly double field theory would

clarify most of the above questions. For more details on this issue, see [35].

Thus, we understand that double field theory is still young and has a lot more to

offer. Even at this stage it looks very promising and we can only believe that its

further development will shed light on the deep questions about the geometry

of the spacetime we live in.
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