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Chapter 1

Introduction

The Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence, otherwise known as the
gauge/gravity duality, is one of the major breakthroughs to arise from string theory in recent
years. The correspondence is significant from both a conceptual and practical point of view;
not only does it shed valuable physical insight into both sides of the correspondence, but it also
provides new ways of performing calculations where more conventional methods are intractable.

The correspondence, roughly speaking, states the equivalence between a string theory con-
taining gravity living in a certain geometry, and a gauge theory living on the boundary of that
geometry. More precisely, the strongest form of the original correspondence due to Maldacena
[MAL] states that the 10-dimensional Type IIB superstring theory on the product space AdS5×S5

(with 5-form flux N) is equivalent to N = 4 super Yang-Mills (SYM) theory with gauge group
SU(N), living on the flat 4-dimensional boundary of AdS5. What one means by ‘equivalence’ in
this context is something that will be clarified throughout this dissertation; essentially it means
that there is a one-to-one correspondence between all aspects of the theories including the global
symmetries, observables, and correlation functions. The theories are thus considered to be dual
descriptions of each other; this notion of duality is an interesting one because it turns out that
the regimes within which it is possible to perform calculations easily do not coincide on the
two sides of the correspondence. Indeed, the correspondence comes in several forms of different
strengths, related to which restrictions are imposed on the various parameters in the theories;
depending on the form of the correspondence, calculations on either side are possible to differing
extents. No form of the correspondence has been proven in a rigorous manner (leading it to be
known also as the AdS/CFT conjecture), though considerable evidence has been offered in their
support, some of which we shall discuss in the present dissertation.

As we shall see, the correspondence can be motivated by an argument which itself rests
fundamentally on a duality; namely, a dual interpretation of objects in string theory known as
D-branes. On the one hand, these objects are considered to be dynamical hyperplanes upon
which the endpoints of open strings are fixed (but are free to move parallel to the brane); such
objects arise naturally in the analysis of the open string as we shall see. On the other hand,
D-branes can be considered as background solutions (with particular symmetries) to the low
energy effective spacetime theory of string theory known as supergravity ; one can then consider
closed strings propagating in such a background. That these points of view are equivalent is of
great importance, since by considering a particular physical set-up from each in turn, we shall see
that (in certain limits) there are two decoupled theories in both interpretations; by recognising a
common theory present, we are then led to identify the other two theories as equivalent or dual
descriptions, which is exactly the AdS/CFT correspondence mentioned above. This decoupling
argument will be described in detail in chapter 6.

The fact that the information of the 10-dimensional dynamics (compactified onto a 5-
dimensional space) can somehow be encoded in a 4-dimensional theory has led to the conjecture
being known as the holographic principle, in analogy to the way in which conventional holograms
encode the information about a 3-dimensional object in a 2-dimensional surface. Indeed, the
question of whether holography may play a role in a theory of quantum gravity has been enter-
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CHAPTER 1. INTRODUCTION 6

tained for sometime, originating in the crucial result that black holes have an entropy proportional
to the area of their horizon [BEK]; this is in contrast to familiar thermodynamic systems for which
the entropy is an extensive property that scales with the volume of the system. Since the original
Maldacena conjecture the AdS/CFT correspondence has been extended to other cases, contain-
ing, for example, field theories with less supersymmetry or no conformal symmetry on the gauge
side, and different string theories and geometries on the gravity side; in all cases there remains
this holographic aspect, equating two theories in spacetimes of different dimensions. Further-
more, recently there has been considerable work into investigating a possible de Sitter/Conformal
Field Theory (dS/CFT) correspondence [STR], something that would perhaps attract even more
interest considering the positiveness of the experimentally observed cosmological constant.

In addition to these conceptual curiosities, the correspondence is computationally very pow-
erful by virtue of the fact that non-perturbative problems in super Yang-Mills theory can be
studied using perturbative string theory. In fact, in certain limits (to be discussed in more de-
tail later) Type IIB string theory reduces to a classical supergravity theory, and so one may
use the correspondence to study strongly-coupled gauge theories simply using classical gravity
theory. Although the gauge theories in question (e.g. N = 4 SYM with a large number of
colours N) are quite remote from those we believe to be realised in nature (e.g. QCD which
is neither supersymmetric nor conformal and has N = 3), the correspondence is continually
being extended to new cases, and valuable general properties of strongly-coupled gauge theories
are being learnt from these studies. The correspondence has also recently been greatly used
in the field of condensed matter physics, and has led to the creation of a subject now known
as the Anti-de Sitter/Condensed Matter Theory (AdS/CMT) correspondence (see [HAR]). We
shall not discuss such applications in the present dissertation however, and our focus shall be
predominantly on the original Maldacena correspondence; it is nevertheless interesting to note
that a correspondence that appears so fundamental has found application to the physics of large
systems.

The AdS/CFT correspondence brings together many areas of modern theoretical physics. For
example, on one side of the correspondence one has the N = 4 SYM theory; this is a supersym-
metric but also a conformal field theory, which in fact combine to form a larger superconformal
symmetry. On the other side of the correspondence one must study superstring and supergravity
theory (including the properties of D-branes), in addition to the properties of a maximally sym-
metric spacetime known as anti-de Sitter space. In Part 1 of this dissertation I will thus introduce
the different components of the correspondence, all of which must be adequately tackled in order
to understand the conjecture; considerable time will thus be devoted to this purpose, and the
relevance to the correspondence will be emphasised throughout. In Part 2 I will then motivate
(via two arguments) and state the original AdS/CFT conjecture in its different forms; I will then
describe the precise mapping between the observables on the two sides, and perform some simple
checks of the correspondence. Finally, in Part 3 I will briefly describe some extensions of the
correspondence to cases other than the original Maldacena conjecture.



Part I

Ingredients of the Correspondence
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Chapter 2

Conformal Field Theory

The study of conformal field theory (CFT) will be crucial in the following since, in addition to
the fact that string theory can be described as a 2-dimensional CFT, the gauge theory in the
correspondence (N = 4 SYM) exhibits conformal invariance. A CFT is simply a quantum field
theory (QFT) that has conformal invariance; however, this turns out to be a very strict condition,
greatly restricting the QFT and its correlation functions, and requiring the introduction of new
concepts not present in other field theories. In this chapter we will first introduce conformal
transformations and the conformal algebra, and then proceed to review the key features of CFT
relevant for the AdS/CFT correspondence.

2.1 Conformal Transformations

A conformal transformation in R1,d−1 is a local transformation xµ → x̃µ(x) such that the line
element changes by a scaling:

ηµνdx̃
µdx̃ν = Ω(x)2ηρσdx

ρdxσ (2.1)

for some function Ω(x) i.e. angles, but not necessarily distances, are preserved by the transfor-
mation. From the chain rule dx̃µ = (∂x̃µ/∂xσ)dxσ one then trivially derives:

ηµν
∂x̃µ

∂xσ
∂x̃ν

∂xρ
= Ω(x)2ηρσ (2.2)

and we see clearly that Poincaré transformations, for which Ω(x) = 1 (forming the isometry
group of R1,d−1), are a subset of conformal transformations. By considering infinitesimal trans-
formations of the form x̃µ = xµ + vµ(x) and Ω(x) = 1 +ω(x) it is easy to derive from (2.2), by
working to first order in vµ and ω, the equation:

∂µvν + ∂νvµ = 2ω(x)ηµν (2.3)

Taking the trace one finds that ω(x) = (∂ · v(x))/d and thus we obtain the conformal Killing
equation:

∂µvν + ∂νvµ =
2

d
(∂ · v)ηµν (2.4)

Note that in a general spacetime this equation changes by replacing ηµν → gµν and ∂ → ∇,
though our case of interest will be that of flat spacetime above.

One must solve (2.4) for v(x) to obtain the infinitesimal conformal transformations. For
d = 2, it is very easy to show by considering the different possible values of µ and ν that equation
(2.4) is equivalent to the Cauchy-Riemann equations, and thus conformal transformations are
generated by all holomorphic functions v(x) ≡ v1(x) + iv2(x). For d > 2 the general solution to
(2.4) is (see [GOM]):

vµ(x) = aµ + ωµνx
ν + λxµ + bµx

2 − 2(b · x)xµ (2.5)
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CHAPTER 2. CONFORMAL FIELD THEORY 9

where ωµν = −ωνµ but aµ, bµ and λ are arbitrary. The parameters aµ, ωµν , λ and bµ correspond
to translations, rotations, scale transformations (or dilatations), and special conformal transfor-
mations respectively, giving a total of d+ d(d− 1)/2 + 1 + d = (d+ 1)(d+ 2)/2 parameters.

In addition to the above continuous transformations generated by infinitesimal Killing vectors,
one can consider a discrete conformal transformation, known as inversion, defined by:

xµ → x̃µ = xµ/x2 (2.6)

which is clearly a conformal transformation with Ω(x) = 1/x2. Note that the term ‘conformal
transformations’ usually refers to the continuous transformations generated by infinitesimal con-
formal Killing vectors as in (2.5) and so does not include inversions (much in the same way that
the term ‘Lorentz transformations’ usually only refers to the proper (orthochronous) subgroup of
the Lorentz group). Importantly, the special conformal transformations can be constructed by
performing a translation, preceded and proceeded by an inversion:

xµ → xµ

x2
→ xµ

x2
+bµ →

xµ

x2 + bµ

(x
µ

x2 + bµ)2
=

xµ + bµx2

1 + b2x2 + 2b · x
=bµ→0 xµ+(bµx2−2 (b · x)xµ) (2.7)

which is exactly the infinitesimal form of a special conformal transformation as contained within
equation (2.5).

2.2 The Conformal Algebra

The conformal transformations form a group known as the conformal group. Denoting the
generators of translations, rotations, scale transformations, and special conformal transformations
respectively as Pµ,Mµν , D and Kµ, we may use the infinitesimal transformations contained in
(2.5) to easily find the following differential operator representations:

Pµ ≡ −i∂µ (2.8)

Mµν ≡ −i(xµ∂ν − xν∂µ) (2.9)

D ≡ ixµ∂µ (2.10)

Kµ ≡ −i(x2∂µ − 2xµx · ∂) (2.11)

We can then easily calculate the commutators, giving the conformal algebra as [GOM]:

[Kµ, Pν ] = 2i(ηµνD +Mµν) (2.12)

[Mµν , Pρ] = i(ηµρPν − ηνρPµ) (2.13)

[Mµν ,Kρ] = i(ηµρKν − ηνρKµ) (2.14)

[D,Pµ] = −iPµ (2.15)

[D,Kµ] = iKµ (2.16)

[Mµν , D] = 0 (2.17)

[Pµ, Pν ] = [Kµ,Kν ] = 0 (2.18)

[Mµν ,Mρσ] = i (ηµρMνσ − ηµσMνρ + ηνσMµρ − ηνρMµσ) (2.19)

There are several interesting observations to make regarding this algebra. First, the Poincaré
algebra is clearly contained within it (in (2.13), (2.18) and (2.19)), as expected. Second, equa-
tion (2.14) states that Kµ is a Lorentz vector, whilst (2.17) states that D is a Lorentz scalar.
Third, equation (2.12) shows that dilatations may be obtained simply from combining Poincaré
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transformations and special conformal transformations (and thus the entire conformal algebra
can be generated by Poincaré transformations and inversion alone, following the discussion at
the end of section 2.1). Finally, equations (2.15)-(2.16) show that Pµ and Kµ are raising and
lowering operators respectively for the dilatation operator D, which proceeds in direct analogy
with the algebra for the harmonic oscillator (and which we discuss further in section 2.3). One
can also interpret D as reading off the length dimension (not to be confused with its inverse,
the mass dimension) of the other operators (as is appropriate for a scaling operator) from (2.15-
2.17), since Pµ,Kµ and Mµν have length dimensions −1,+1 and 0 respectively, as is clear from
(2.8)-(2.11).

The algebra above turns out to be isomorphic to SO(2, d) (including inversions one in fact has
the full orthogonal group O(2, d)), the dimension of which agrees with the number of parameters
calculated in section 2.1. This can be seen more explicitly by defining antisymmetric generators
LMN (M = 0, 1...d + 1) as the following linear combinations of conformal generators (see
[GOM]):

Lµν ≡Mµν Ld,d+1 ≡ D Lµd ≡
1

2
(Pµ +Kµ) Lµ,d+1 ≡

1

2
(Pµ −Kµ) (2.20)

where µ = 0, 1, ...d− 1. Using the conformal algebra, one can then straightforwardly show that
the generators LMN do indeed satisfy the SO(2, d) algebra. This will be important later in the
AdS/CFT correspondence, where we shall see an identification between the conformal group in
4-dimensions and the isometry group of AdS5 (see section 6.4).

2.3 Aspects of Conformal Field Theory

One of the central premises of relativistic quantum field theory is that the field operators transform
under a representation of the Poincaré group. Under a Poincaré group transformation x→ x̃ =
g · x, a field operator φA(x) transforms as (following [GOM]):

φA(x)→ φ̃A(x̃) = RAB(g)φB(x) (2.21)

or equivalently:
φ̃A(x) = RAB(g)φB(g−1 · x) (2.22)

where RAB(g) is a representation of the group element g (for example, RAB(g) = 1 for all g for
a scalar field). We see that in addition to the transformation of the field argument, there is
additional information specified about how the internal or ‘spin’ index A of the field transforms;
this additional information is only relevant for Lorentz transformations, as the translations act
only on the argument of the field. For a conformal field theory, one must specify one further bit
of information, namely how a field operator transforms under a scale transformation. Under a
dilatation x→ x̃ = λx we have:

φ̃A∆(x) = λ−∆φA∆(λ−1x) (2.23)

where ∆ is known as the dimension of the operator φ∆. The dimension of φA∆ can be defined
equivalently as:

[D,φA∆] = −i∆φA∆ (2.24)

i.e. as an eigenvalue of the dilatation operator.
We define in general a primary operator [GOM] to be one that transforms as a tensor density

under general conformal transformations. For example, a scalar φ(x) transforms as:

φ̃(x) =

∣∣∣∣∂x∂x̃
∣∣∣∣∆/d φ(g−1 · x) (2.25)
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The descendants are then obtained from the primaries by taking derivatives; these do not trans-
form as tensor densities and so cannot be primaries. These concepts can also be introduced in an
alternative way. We mentioned previously that Pµ and Kµ act as raising and lowering operators
for the dilatation operator D. We can see this by considering an operator φ∆ of dimension ∆
and finding the dimension of [Pµ, φ∆]. Using the Jacobi identity we have;

[D, [Pµ, φ∆]] = −[Pµ, [φ∆, D]]− [φ∆, [D,Pµ]] (2.26)

and thus using the conformal algebra we find:

[D, [Pµ, φ∆]] = −i(∆ + 1)[Pµ, φ∆] (2.27)

showing that [Pµ, φ∆] has dimension ∆ + 1 as claimed. An analogous proof shows that [Kµ, φ∆]
has dimension ∆ − 1. For a representation to be unitary the conformal dimensions must be
positive, and thus there must be an operator in the representation of lowest dimension (i.e.
that is annihilated by Kµ), since otherwise one can continuously generate lower-dimensional
operators. These lowest-dimensional operators are the primary operators, now defined by the
condition [Kµ, φ

A] = 0. A unitary representation of the conformal group is then given by a
single primary operator φA, together with the set of descendants of this primary which are
obtained by application of the translation generator Pµ. We will see a generalisation of this
structure when we consider the superconformal algebra in section 3.3.

There is an important result that one can derive immediately for field theories that have
(classical) conformal invariance. Noether’s theorem proves the existence and provides the con-
struction of a conserved current for every continuous symmetry of the action. In the case of
Poincaré invariance, one obtains the familiar currents given by the energy-momentum tensor Tµν

as (see [ERD]):
jµ ≡ Tµνvν (2.28)

where vν is a Killing vector generating Lorentz transformations or translations, and the currents
are conserved in the sense that ∂µj

µ = 0. From translation and Lorentz symmetry respectively
one finds the conditions ∂µT

µν = 0 and Tµν = Tνµ (sometimes after requiring ‘improvement’ of
the energy-momentum tensor). Interestingly, it is possible to show that the currents that arise
due to full conformal invariance have the same form as in (2.28), where now vµ can represent a
general conformal Killing vector. Conformal invariance means that the associated current should
be conserved and so we find:

∂µj
µ = 0 = ∂µT

µνvν + Tµν∂µvν = Tµν
1

2
(∂µvν + ∂νvµ) (2.29)

where in the last equality we used the conservation and symmetry of Tµν , and thus using the
conformal Killing equation (2.4) we find:

0 = Tµν
1

2

2

d
ηµν∂ · v = Tµµ

∂ · v
d

(2.30)

which implies that the energy-momentum tensor is traceless i.e. Tµµ = 0. Classically, a field theory
is conformally invariant if there are no dimensionful couplings in the action (e.g. mass terms); this
is intuitive, since a dimensionful coupling sets a scale, thereby breaking scale invariance. Upon
quantization however, conformal invariance may be broken in the form of anomalies arising from
loop corrections. The form of these anomalies is sometimes in the non-vanishing expectation
value of Tµµ , conflicting with the classical conformal invariance condition we derived in (2.30). In
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fact, a necessary condition for a theory to be conformally invariant quantum mechanically (see
[GOM] for a discussion) is the vanishing of the renormalisation-group beta functions [PES]:

βg(µs) ≡ µs
∂g

∂µs
(2.31)

where g is a coupling in the theory and µs is the renormalisation scale, since this quantity directly
measures the scale-dependence of the couplings in the theory. This fact will be very important
in chapter 4 when we discuss the effective spacetime actions for string theories.

The key observables that one wants to calculate in any quantum field theory are the n-point
correlation functions. Conformal invariance turns out to provide very strict conditions on the
forms of the n-point functions (for small values of n). The statement of conformal invariance for
the n-point correlation function of primary operators θAii (from which one can derive correlation
functions involving descendants) is:

〈θA1
1 (x1)...θAnn (xn)〉 = 〈θ̃A1

1 (x1)...θ̃Ann (xn)〉 (2.32)

where θ̃Aii are the transformed operators. We shall illustrate the power of the restrictions that
conformal invariance imposes for the simplest case of scalar primary operators, following [GOM].

• Consider the 1-point function of a scalar primary operator of dimension ∆. Translation
invariance clearly fixes:

〈θ∆(x)〉 = C (2.33)

for a constant C. Scale invariance under dilatations x̃ = λx then imposes 〈θ∆(x̃)〉 =
〈θ̃∆(x̃)〉 from (2.32), and since θ̃∆(x̃) = λ−∆θ∆(x) (from (2.23)) we have C = λ−∆C,
which forces C and thus the 1-point function to zero unless ∆ = 0 in which case the
operator is the identity. We thus have the result:

〈θ∆(x)〉 = δ∆,0 (2.34)

• A less trivial example is given by the 2-point function. Recall that in general quantum
field theories the 2-point functions can be very complicated, and are usually only accessible
via the machinery of perturbation theory. Here we shall see that their form is entirely
determined by conformal invariance. By translation and Lorentz invariance we see that the
2-point function of scalar primary operators must take the form:

〈θ∆1(x1)θ∆2(x2)〉 = f(|x1 − x2|) (2.35)

for some function f(x). Scale invariance then fixes 〈θ∆1(x̃1)θ∆2(x̃2)〉 = 〈θ̃∆1(x̃1)θ̃∆2(x̃2)〉
and thus using (2.35) together with x̃ = λx and θ̃∆(x̃) = λ−∆θ∆(x) we have:

f(λ|x1 − x2|) = λ−(∆1+∆2)f(|x1 − x2|) (2.36)

from which one can inspect the solution:

f(|x1 − x2|) =
C

|x1 − x2|∆1+∆2
(2.37)

for some constant C. We are not quite finished however, since we must still impose
invariance under special conformal transformations. Given the discussion at the end of
section 2.1, it is much easier to achieve this by instead imposing invariance under inversion.
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Under inversion x̃µ = xµ/x2 we have θ̃∆(x̃) = θ∆(x)/(x̃2∆) and thus using (2.32) and
(2.37) we see that inversion invariance imposes:

1

|x̃1 − x̃2|∆1+∆2
=

1

x̃2∆1
1

1

x̃2∆2
2

1

|x1 − x2|∆1+∆2
(2.38)

Using the definition of inversion x̃µ = xµ/x2, straightforward algebra shows that:

x̃2
1x̃

2
2

|x̃1 − x̃2|2
=

1

|x1 − x2|2
(2.39)

and thus combining this with (2.38) we obtain the equality:

x̃2∆1
1 x̃2∆2

2

|x̃1 − x̃2|∆1+∆2
=

[
x̃2

1x̃
2
2

|x̃1 − x̃2|2

]∆1+∆2
2

(2.40)

from which we can infer the condition ∆1 = ∆2. The form of the 2-point function is thus
fixed as:

〈θ∆1(x1)θ∆2(x2)〉 =
Cδ∆1,∆2

|x1 − x2|2∆1
(2.41)

for some constant C (which can be set to 1 with appropriate field redefinition). We see
that the 2-point functions in a conformal field theory are thus entirely determined by the
spectrum {∆}.

• One can proceed in a similar fashion to the 2-point function above to see what conditions
conformal invariance places on higher-point functions. We shall not repeat the analysis
here, but we state that the 3-point function of scalar primary operators is restricted to take
the form:

〈θ∆1(x1)θ∆2(x2)θ∆3(x3)〉 =
C

|x1 − x2|∆1+∆2−∆3 |x1 − x3|∆1+∆3−∆2 |x2 − x3|∆2+∆3−∆1

(2.42)
where C is a constant that, unlike the 2-point function case, cannot be removed by field
redefinition and is in fact theory-dependent. We see that, although the overall normalisation
is not, the spacetime dependence of the 3-point function is still entirely fixed by conformal
invariance.

• For n-point functions with n ≥ 4 the spacetime dependence is no longer entirely fixed
either. This is due to the existence of conformally invariant cross-ratios of coordinates
which the correlation function can thus depend on arbitrarily. We shall not need to discuss
n-point functions with n ≥ 4 any further in the following however.

Although the above analysis was for scalar primary operators, similar results follow through for
higher-rank tensor operators. For example, the 2-point function of two vector primary operators
can be derived in an analogous (and only slightly more complicated) way to the scalar case and
is given by (see [GOM]):

〈V µ
∆1

(x1)V ν
∆2

(x2)〉 =
Vµν(x1 − x2)δ∆1,∆2

|x1 − x2|2∆1
(2.43)

where Vµν(x) ≡ ηµν − 2xµxν/x2. We thus see that conformal invariance imposes great restric-
tions on the correlation functions in the field theory, and CFTs are thus considerably simpler than
generic field theories. We shall mention these structures again in chapter 7 when we discuss the
prescription for mapping correlation functions in the AdS/CFT correspondence.



Chapter 3

Supersymmetry and N = 4 Super Yang-Mills

On the gauge theory side of the correspondence one finds N = 4 super Yang-Mills which,
in addition to exhibiting conformal symmetry as described in the previous chapter, is also a
maximally supersymmetric theory. In this chapter, the notion of supersymmetry (SUSY) is
first introduced, followed by a review of the essential features of N = 4 SYM, including its
superconformal symmetry which arises from the non-trivial combination of supersymmetry and
conformal symmetry.

3.1 The Super-Poincaré Algebra and its Representations

The familiar Poincaré algebra may be extended (in a way that circumvents the famous Coleman-
Mandula theorem [COL]) by promoting it to a graded Lie algebra or superalgebra, and including
spinor supercharges Qiα where α is the spinor index (which may be Weyl, Majorana or both
depending on the spacetime dimension) and i = 1....N , with N being known as the degree of
supersymmetry. The supercharges transform under a spinor representation of the Lorentz group
and commute with translations, and in 3+1 dimensions they further obey the structure relations
[BAL]:

{Qiα, Q̄β̇j} = 2δijσ
µ

αβ̇
Pµ (3.1)

{Qiα, Q
j
β} = 2εαβZ

ij (3.2)

where Pµ is the translation generator as in chapter 2, we define Q̄β̇j ≡ (Qβj)
†, σµ are the usual

Van-der Waerden matrices, and Zij are the antisymmetric central charges which commute with
all generators. The central charges automatically vanish for N = 1 but may be non-zero for
N > 1. There is an automorphism symmetry group of the supersymmetry algebra known as
the R-symmetry [FRE]. Indeed, the algebra is invariant under a global U(1)R symmetry which
causes the supercharges to change by a phase rotation (the subscript R is simply notational).
Furthermore, for N > 1 there is in fact a non-abelian SU(N )R symmetry, rotating the different
supercharges into one another. Thus, for N = 4 the R-symmetry group is SU(4), which
will be important later (see section 6.4) as it corresponds to the isometry group of S5 since
SU(4) ∼= SO(6) (see [ZHO]).

To construct representations of the supersymmetry algebra one proceeds in a similar fashion
to the Poincaré case, by first transforming to a particularly simple Lorentz frame (see [BAL] for a
discussion). One must distinguish the massless and massive cases separately (for non-zero central
charges the unitary representations are necessarily massive), and representations are then again
labelled by the helicity or spin respectively (and, of course, the number of supersymmetries N );
one finds that there are an equal number of bosonic and fermionic states in a given representation,
and that the masses of all states in a representation must be the same. In accordance with CPT
invariance, representations (or so-called supermultiplets) that are not self-conjugate are taken
together with the direct sum of their conjugate. Let us consider, for example, a pure gauge

14
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theory that contains helicities ±1 but no higher; in the process of constructing supermultipets,
one finds (schematically) that each non-zero supercharge Q̄i raises the helicity by 1/2, and thus
the maximal supersymmetry must be N = 4 (as can be seen by starting from the minimum
helicity state −1, and acting with the 4 different non-zero conjugated supercharges to reach the
maximum helicity +1). The N = 4 theory that appears in the AdS/CFT correspondence (see
section 3.2) is thus a maximally supersymmetric gauge theory.

Let us as an example briefly discuss the specific case of massive representations with non-
zero central charges, since this introduces an important concept that is later generalised in the
superconformal case. To study massive representations we transform to the Lorentz rest frame
defined by Pµ = (M, 0, 0, 0) which one can easily show reduces the structure relation (3.1) to:

{Qiα, (Q
j
β)†} = 2Mδijδαβ (3.3)

since σ0 is the identity matrix. Since Z is an antisymmetric matrix it can be brought to block
diagonal form consisting of 2 × 2 antisymmetric matrices. The real, positive skew eigenvalues
are then denoted by Zā where ā = 1...r and r is defined by N = 2r or N = 2r+1 depending on
whether N is even or odd. Defining a particular linear combinations of supercharges (see [KIR]
for details) denoted by Qāα±, one finds that the only non-vanishing structure relations are then
given by:

{Qāα±, (Qb̄β±)†} = δāb̄ δ
β
α(M ± Zā) (3.4)

where the ± are correlated throughout. Clearly, for a unitary representation the operator on the
LHS must be positive-definite, and so one derives the following bound on the mass:

M ≥ |Zā| (3.5)

for each value of ā, which is known as the BPS bound. There will be partial saturation of the
bound whenever M = |Zā| for a particular value of ā; we then see from (3.4) that Qāα± must
vanish for either + or −. Since one or more of the supercharges vanishes, the representation
will be smaller than a generic representation (since there will be fewer creation operators), and
the shortened multiplet is known as a BPS multiplet. If the bound is saturated for ro < r of
the ā, then the representation is known as a 1/2ro BPS multiplet and its dimension is reduced
to 22N−2ro . We will describe a generalisation of this concept in section 3.3, which plays an
important role in the AdS/CFT correspondence.

3.2 The N = 4 Super Yang-Mills Theory

For any 1 ≤ N ≤ 4 there exists a gauge multiplet which transforms under the adjoint represen-
tation of a gauge group. It turns out that for N = 1, 2 there exist other multiplets which can
be considered as matter multiplets, whereas for N = 4 the gauge multiplet is the only possible
multiplet. This N = 4 gauge multiplet is given by [BAL]:

(Aµ, λ
a
α, X

i) (3.6)

where Aµ is a spin-1 gauge field, λaα (a = 1, ...4) are Weyl spinors, and Xi (i = 1, ...6) are
real scalars. Under the R-symmetry group these transform as a singlet, a vector, and a rank-2
antisymmetric tensor respectively; the a and i indices on the spinors and scalars respectively are
these R-symmetry indices.

For N = 4 one unfortunately cannot appeal to the power of the off-shell superfield formalism
that is so valuable for N = 1 (see [BAL]). Nevertheless, one can work in terms of components,
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and the Lagrangian for the so-called N = 4 super Yang-Mills theory (with field content (3.6))
is given by [FRE]:

L = Tr

(
− 1

2g2
YM

FµνF
µν +

θI
8π2

FµνF̃
µν − i

∑
a

λ̄aσ̄µDµλa −
∑
i

DµX
iDµXi

+ gYM
∑
a,b,i

Cabi λa[X
i, λb] + gYM

∑
a,b,i

C̄iabλ̄
a[Xi, λ̄b] +

g2
YM

2

∑
i,j

[Xi, Xj ]2
)(3.7)

where gYM is the coupling constant, θI is the so-called instanton angle, Fµν is the usual field-
strength of the gauge field, Dµ is the usual gauge-covariant derivative, F̃ is the Hodge dual of F ,
and Cabi are the structure constants of SU(4)R. The trace is over the gauge indices (which are
suppressed in (3.7)) and is to ensure gauge invariance of the action. The action given by (3.7)
is invariant under the supersymmetry transformations (where, for clarity, we write the indices
explicitly) given by [ERD]:

(δXi)aα = [Qaα, X
i] = Ciabλαb (3.8)

(δλβb)
a
α = {Qaα, λβb} = F+

µν(σµν)αβδ
a
b + [Xi, Xj ]εαβ(Cij)

a
b (3.9)

(δλ̄b
β̇
)aα = {Qaα, λ̄bβ̇} = Cabi σ

µ

αβ̇
DµX

i (3.10)

(δAµ)aα = [Qaα, A
µ] = σµ

αβ̇
λ̄β̇α (3.11)

where F+ is the self-dual part of the field-strength, and the constants (Cij)
a
b are related to

bilinears in Clifford Dirac matrices of SO(6)R.
This theory is classically conformally invariant; indeed, with the standard mass-dimensions of

the fields given by [Aµ] = [Xi] = 1 and [λaα] = 3/2, it is easy to see from (3.7) that the single
coupling constant has dimension [gYM ] = 0 (and [θI ] = 0) since the Lagrangian must have
[L] = 4 in natural units and in 4-dimensions. The theory is thus scale invariant, which together
with Poincaré invariance forms full conformal invariance. More strikingly, upon quantisation one
finds that the theory is UV finite; since no renormalisation scale is introduced one thus finds that
the β-function vanishes to all orders of perturbation theory (or at least is believed to), and thus
the theory remains conformally invariant at the quantum level as discussed in [FRE].

In addition to superconformal symmetry (to be described in section 3.3), N = 4 SYM exhibits
a further symmetry (see [FRE]), most easily expressed by first combining the coupling constant
and instanton angle as:

τ ≡ θI
2π

+
4πi

g2
YM

(3.12)

Although the quantised theory is already invariant under τ → τ + 1, the Montonen-Olive con-
jecture [MON] promotes this symmetry to a full SL(2,Z) symmetry group, known as S-duality
and realised as:

τ → aτ + b

cτ + d
(3.13)

where ad − bc = 1 and a, b, c, d ∈ Z. This symmetry will feature later in the AdS/CFT cor-
respondence in the context of mapping the global symmetries on the two sides (see section
6.4).

3.3 The Superconformal Group SU(2, 2|4) and its
Representations

The presence of both supersymmetry and conformal symmetry in N = 4 SYM in fact leads
to an even larger symmetry group of the theory, due to the fact that supersymmetry and
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special conformal transformations do not commute, and thus their commutator gives a new
symmetry generator. The full group is known as the superconformal group and is given by
the supergroup SU(2, 2|4), where the notation labels the components of the bosonic subgroup
SU(2, 2)× SU(4)R. We briefly sketch the different components leading to this full global con-
tinuous symmetry group of N = 4 SYM as in [FRE]:

• Conformal Symmetry: This forms the subgroup SO(2, 4) ∼= SU(2, 2) and is generated
by Pµ,Mµν , D and Kµ, with algebra given as in section 2.2.

• R-symmetry: This forms the subgroup SO(6)R ∼= SU(4)R and is generated by TA with
A = 1, 2..., 15. Note that this commutes with the conformal symmetry subgroup.

• Poincaré Supersymmetry: This is generated by the spinor supercharges Qaα and their
conjugates, with algebra given as in section 3.1. This does not commute with the entire
conformal symmetry subgroup.

• Conformal Supersymmetry: This is generated by Sαa and their conjugates S̄α̇a, which
arise because of the non-commutativity between supersymmetry and special conformal
transformations. They satisfy the following structure relations:

{Sαa, Sβb} = {Qaα, S̄bβ̇} = 0 (3.14)

{Sαa, S̄bβ̇} = 2σµ
αβ̇
Kµδ

b
a (3.15)

{Qaα, Sβb} = εαβ(δabD + T ab ) + 1
2δ
a
bMµν(σµν)αβ (3.16)

Representations of the superconformal algebra are built in a similar way to representations
of the conformal and supersymmetry algebras (c.f. sections 2.3 and 3.1). We wish to construct
gauge invariant operators which are polynomials in the elementary fields; the gauge invariance is
necessary for the operators to be physical observables, and the polynomial condition means that
the operators have a definite dimension as is required to form a representation of the conformal
group. One defines a superconformal primary operator O by:

[S,O} = 0 (3.17)

which means that O is the lowest dimensional operator in the representation, the existence
of which is again required by unitarity; the conformal supercharges S have dimension [S] =
−1/2 and so successive operation of these supercharges lowers the dimension. The notation
[, } denotes a commutator or anti-commutator for bosonic or fermionic O respectively. Note
that this definition encompasses (from the superconformal algebra relation (3.15)), but is not
equivalent to, the definition of a conformal primary operator, given previously in section 2.3 as
[Kµ,O] = 0. One can then define the other operators O′ in the superconformal multiplet as the
superconformal descendants of the superconformal primary operator:

O′ = [Q,O} (3.18)

where the scaling dimensions are clearly related by ∆O′ = ∆O+1/2 since [Q] = 1/2. In analogy
to the conformal multiplet case, a superconformal descendant is never a superconformal primary
operator, since there is always an operator of lower dimension. A superconformal multiplet then
consists of a single superconformal primary operator and its descendants.

With this condition in mind, one can show as described in [FRE] that the gauge invariant
superconformal primary operators in N = 4 SYM are given by the scalars only, albeit in a
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symmetrised manner; one shows this essentially by using the SUSY transformations (3.8)-(3.11)
and the fact that a superconformal primary can never be a Q-(anti)commutator of another
operator, since it would then be a superconformal descendant. The simplest such operators are
the so-called single trace operators (where the trace is to ensure the operator is gauge invariant)
defined as [FRE]:

On ≡ Tr[X(i1Xi2 ...Xin)] (3.19)

where we see that the SO(6)R indices are symmetrized in the trace. This is in fact generally a
reducible representation of the R-symmetry, and one may further decompose it into a trace and
a traceless symmetric part. As mentioned previously, all fields in the N = 4 gauge multiplet
transform in the adjoint representation of the gauge group, and are thus traceless hermitian
matrices. One thus has Tr[Xi] = 0 and so the simplest irreducible operators one can form are
given by [FRE]:

Konishi Multiplet: Tr[XiXi]

Supergravity Multiplet: Tr[X{iXj}]
(3.20)

where summation over i is implied in the first expression, and {ij} denotes the traceless part in
the second (with symmetrisation true automatically by virtue of the cyclic property of the trace).
The latter name is pre-emptive of the field/operator map in the AdS/CFT correspondence that
we will discuss in section 7.1.

The supergravity multiplet is the simplest example of a superconformal 1/2-BPS multiplet, so-
called because they are annihilated by half of the supercharges and thus are shortened multiplets,
in analogy with the supersymmetric BPS multiplets mentioned in section 3.1. BPS multiplets
play a very important role in testing the AdS/CFT correspondence and so it is worth unpacking
this analogy a bit. Representations of the superconformal algebra are labelled by their Lorentz
quantum numbers and scaling dimension, as for the conformal case, but are also labelled by the
Dynkin labels [r1, r2, r3] of the R-symmetry group SU(4)R discussed previously; they are thus
labelled fully by the quantum numbers of the bosonic subgroup. In the same way that unitarity
led to the BPS bound in section 3.1, unitarity here requires that the conformal dimension is
bounded from below by the spin and R-symmetry quantum numbers (see [FRE]); considering only
the primaries (since these have the lowest dimension anyway), we mentioned before that these
are scalars and hence have vanishing Lorentz quantum numbers, meaning that the conformal
dimension is bounded below by the R-symmetry charges only. When this bound is saturated
one again has shortened multiplets (i.e. the primary, known in this case as a chiral primary, is
annihilated by some of the supercharges), with the conformal dimension related directly to the
R-symmetry charges. These are known in this context as BPS multiplets and are very important
since the conformal dimension is protected by the representation theory and thus does not receive
quantum corrections; this is useful for testing the AdS/CFT correspondence since, as we shall
see, when one considers the classical supergravity regime on the string side (which is the easiest
for calculations) one simultaneously has the strong-coupling regime on the gauge theory side, for
which it is not possible to calculate quantum corrections using perturbation theory. Protected
or unrenormalised quantities are thus particularly important for testing the correspondence. We
illustrate these concepts by briefly summarising some properties of superconformal multiplets
below as in [FRE]:

Operator SU(4)R primary Dimension

1/2 BPS [0, k, 0], k ≥ 2 k

1/4 BPS [l, k, l], l ≥ 1 k + 2l

1/8 BPS [l, k, l + 2m] k + 2l + 3m, m ≥ 1

Non-BPS Any Unprotected



Chapter 4

Superstrings and Supergravity

The AdS/CFT correspondence states the equivalence between the N = 4 SYM theory described
in chapter 3, and Type IIB superstring or supergravity theory (depending on the regime) defined
on AdS5×S5. In this section we provide a brief review of string theory up to the point of being
able to discuss the essential features of Type IIB superstring theory (such as its field content
and symmetries), as well as its supergravity limit. Properties of D-branes will also be discussed,
which play a crucial role in the AdS/CFT correspondence.

4.1 Review of the Bosonic String

The bosonic string, although fundamentally incomplete, is important as many of its features
still play a role in superstring theory. It is thus worth devoting some time to understand its
analysis. The string action for bosonic string theory in d-dimensional flat spacetime is given by
the Polaykov action [POL]:

SP = − 1

4πα′

∫
d2σ
√
−hhαβ∂αXµ∂βX

νηµν (4.1)

Some clarifications of (4.1) are in order: the fields Xµ(τ, σ) are the embedding of the 2-
dimensional string worldsheet (with coordinates σα = (τ, σ)) in spacetime, hαβ is the worldsheet
metric, and α′ is a constant known as the slope parameter, related to the string tension by
T = 1/(2πα′). This is known as the first-order action, and varying with respect to hαβ and
using the resulting equations of motion gives the second-order Nambu-Goto action [POL]:

SNG = − 1

2πα′

∫
d2σ
√
−det[∂αXµ∂βXνηµν ] (4.2)

which is simply the proper area of the worldsheet (in analogy to the action for the relativistic
point particle which is given by the proper length of the worldline).

The Polyakov action is more desirable than the Nambu-Goto action for several reasons;
the lack of the square-root allows for quantisation more easily, but furthermore (4.1) exhibits
a symmetry not present in (4.2). Although both actions exhibit manifest spacetime Poincaré
invariance and worldsheet diffeomorphism invariance σα → σ̃α(σβ), (4.1) also has worldsheet
Weyl or conformal invariance (see [POL]):

hαβ(τ, σ)→ eω(τ,σ)hαβ(τ, σ) (4.3)

for any ω(τ, σ). Worldsheet diffeomorphism together with Weyl invariance allows us to fix the 3
independent components of the 2D worldsheet metric, and using the so-called conformal gauge,
where hαβ = ηαβ, the action (4.1) reduces to:

SC = − 1

4πα′

∫
d2σ(Ẋ2 −X ′2) (4.4)

19
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where Ẋ2 ≡ ∂τX
µ∂τXµ and X ′2 ≡ ∂σX

µ∂σXµ. The equations of motion for Xµ derived
from (4.4) are simply the 2D wave equations, but one must not forget that there are additional
constraints associated with the fact that there is a gauge symmetry (which was exploited in
deriving (4.4)). These Virasoro constraints [CAC] are simply given by the equations of motion
for the worldsheet metric, which can also be expressed as:

δSP
δhαβ

∝ Tαβ = 0 (4.5)

i.e. the worldsheet energy-momentum tensor must vanish. Altogether, one must then solve the
set of equations:

(∂2
τ − ∂2

σ)Xµ = 0

(X ′ ± Ẋ)2 = 0
(4.6)

In addition to the equations of motion (and the constraints), in the variation of (4.4) one
encounters a boundary term:

δSC |boundary ∝
∫ ∞
−∞

dτ
(
X ′ · δX|σ=π −X ′ · δX|σ=0

)
(4.7)

which must also vanish. There are multiple ways of ensuring (4.7) vanishes:

• Open String: If the endpoints of the string (σ = 0, π) are distinguished, then (4.7) may
be made to vanish by taking:

X ′µ(τ, σ∗) = 0 or Xµ(τ, σ∗) = xµσ∗ (4.8)

for some fixed xµσ∗ , and where σ∗ represents a string endpoint (σ = 0 or π). These are
known as Neumann and Dirichlet boundary conditions respectively. Dirichlet boundary
conditions (for which the endpoint is fixed) lead naturally to the concept of D-branes,
which are objects upon which open strings end; these will be discussed in greater detail in
section 4.4.

• Closed String: If the endpoints of the string are to be identified, then (4.7) will vanish
with the periodic boundary conditions:

Xµ(τ, π) = Xµ(τ, 0) (4.9)

One then proceeds in a similar way to standard QFT i.e. construct solutions to (4.6) via
mode expansions, ensuring that they are consistent with the boundary conditions chosen. As an
example, the mode expansion [CAC]:

Xµ(τ, σ) = xµ +
√

2α′αµ0τ + i
√

2α′
∑
m6=0

αµm
m
e−imτcos(mσ) (4.10)

is a solution for the open string with Neumann boundary conditions at both endpoints, where
xµ is some fixed number. One then quantises the theory in the usual way, by imposing the
equal-time commutation relations:

[Xµ(τ, σ), Xν(τ, σ′)] = 0 (4.11)

[Xµ(τ, σ), P ν(τ, σ′)] = ηµνδ(σ − σ′) (4.12)
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where Pµ ≡ ∂L/∂Ẋµ is the canonical momentum conjugate to the field Xµ. Using these together
with the mode expansion for Xµ, one can then find the implied commutation relations for the
expansion coefficients αµm, which are now operators in the quantum theory. One finds (see [ZWE])
an infinite set of harmonic oscillators for the rescaled expansion coefficients aµm ≡ αµm/

√
m and

their conjugates, which may thus be interpreted as creation and annihilation operators.
The spectrum can then be constructed in the usual way; define a vacuum state |0〉 by the

condition aµm |0〉 = 0 for all values of m, and then construct the rest of the spectrum as the states
aµmaνn... |0〉. The exact procedure is known as light-cone gauge quantisation and makes use of the
worldsheet symmetries to remove negative norm states which threaten unitarity (see [ZWE] for

details). The spectrum is built level-by-level in the number operator N ≡
∑∞

m=1

∑D−2
i=1 ma†imaim,

where the upper bound (D − 2) on the i-summation is a result of removing redundant gauge
degrees of freedom in the light-cone gauge quantization procedure. One finds the following
particle content (where M represents the mass of the state) in the lower levels of the open and
closed string spectra (see [ZWE]):

Open String Closed String

N = 0 (M2 < 0) T T

N = 1 (M = 0) Aµ gµν , Bµν , Φ

where the tachyon T has negative mass, Aµ is a vector, gµν is a 2nd-rank symmetric traceless
tensor (graviton), Bµν is a 2-form, and Φ is a scalar (dilaton). The higher level states are
all massive, and will generally be ignored throughout; we mention in passing however that the
masses depend inversely on α′ and thus become very large in the limit α′ → 0. Note also that,
although in principle problematic, the tachyons are in fact projected out in the full superstring
theory (to be discussed later), via the so-called GSO projection (see [POL]).

It is worth noting that, as is clear from the stated form of the number operator N , manifest
Lorentz invariance is lost in the light-cone gauge quantization procedure (this is not so in the
more complicated covariant quantisation procedure [ZWE], but we will not discuss this further).
The requirement that Lorentz invariance be preserved actually leads to a remarkable prediction.
One can construct worldsheet currents associated with Lorentz transformations in the usual way,
and the associated conserved charges are given in the string theory by [CAC]:

Jµν =
1

2πα′

∫ π

0
dσ(ẊµXν − ẊνXµ)

= xµP ν − xνPµ + i
∑
m 6=0

1

m
(αµ−mα

ν
m − αν−mαµm)

(4.13)

Using the commutation relations for the oscillators αµm, one can then check whether the Jµν obey
the usual Lorentz algebra. It turns out that they do indeed satisfy the Lorentz algebra provided
that D = 26, known as the critical dimension; in this manner, the requirement that the theory be
Lorentz invariant essentially predicts the dimensionality of spacetime. Since we seem to observe
D = 4, we are led to the idea of Kaluza-Klein reduction [FRE], which involves compactifying
certain spatial dimensions on compact spaces such as circles or tori, and then letting the size of
these compactified dimensions go to zero. In this way, one can derive a lower dimensional theory
from a higher dimensional one. We shall mention this procedure again in chapter 7.
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4.2 Coupling the Bosonic String to a Background and Effective
Spacetime Actions

The natural generalisation of the previous section is to consider the string propagating in a
background of its own massless modes (for the graviton this corresponds to the string propagating
in a curved spacetime, for example). For the closed string this can be achieved via the action
(see [CAC]):

S = − 1

4πα′

∫
d2σ
√
−hhαβ∂αXµ∂βX

νgµν(X)

− 1

4πα′

∫
d2σ

(
εαβ∂αX

µ∂βX
νBµν(X)−

√
−hα′R(2)Φ(X)

) (4.14)

where R(2) is the Ricci scalar on the 2D worldsheet, and εαβ is the 2D antisymmetric symbol.
This is known as the non-linear sigma model ; note that the first term is just the Polyakov action
(4.1) but with a general target space metric gµν(X), and the other two terms are appropriate
generalisations to the other massless fields of the closed string spectrum. The quantity:

1

4π

∫
d2σ
√
−hR(2) = χ ≡ 2− 2g (4.15)

is a topological invariant known as the Euler characteristic [FRA], where g is the genus of the
worldsheet i.e. the number of holes. In string perturbation theory, one calculates amplitudes by
considering a path integral of the form (see [VIE]):

String amplitude =
∑
g

(gs)
2g−2

∫
Σg

DXe−S[X]V1...Vn (4.16)

where g is the genus as above, Σg represents all surfaces of genus g, gs is the string coupling
constant, and Vi are so-called vertex operators. The string coupling constant can be understood
as follows. If the dilaton acquires a non-zero vacuum expectation value, Φ → φ + Φ, then we
see from above that the path integral includes a multiplicative factor of e−χφ = eφ(2g−2). From
(4.16) we thus see that it is natural to identify the (closed) string coupling constant as gs = eφ;
increasing the genus by 1, and thus adding a hole to the worldsheet, then contributes a factor
of e2φ = g2

s . For the open string one has instead gs = eφ/2. These facts will be important when
we state the AdS/CFT correspondence in chapter 6.

In making the transition from the action (4.1) to (4.14), it is important that we maintain
worldsheet Weyl or conformal invariance. As mentioned in section 2.3, this can be expressed as
the vanishing of the renormalisation-group beta functions; there will be three independent beta
functions here, as gµν , Bµν and Φ can each be interpreted as a coupling in the string action
(4.14). To leading order in α′ (which corresponds to the low energy limit i.e. α′ → 0), one finds
the beta functions (see [CAC]):

β(g)
µν = α′

(
Rµν + 2∇µ∇νΦ− 1

4
HµλρH

λρ
ν

)
β(B)
µν = α′

(
−1

2
∇λHλµν +∇λΦHλµν

)
(4.17)

β(Φ) = α′
(
−1

2
∇2Φ +∇µΦ∇µΦ− 1

24
HµνλH

µνλ

)
where H3 ≡ dB3 is the 3-form field-strength associated with the 2-form B2, and Rµν is the
spacetime Ricci tensor associated with the graviton gµν . Clearly, the vanishing of the beta-
functions in (4.17) looks like a set of field equations for the massless spacetime fields of the
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string spectrum. The natural question arises as to whether these fields equations may be derived
from an action principle; this is a non-trivial statement since the existence of an associated action
in general depends on certain integrability conditions. Remarkably, the field equations can be
derived from the following spacetime action [CAC]:

Seff. =

∫
d26x

√
−detge−2Φ

(
R− 1

12
HµνλH

µνλ + 4∇µΦ∇µΦ

)
(4.18)

which is known as the effective spacetime action of the (closed) bosonic string theory. This
procedure of deriving an effective spacetime field theory by demanding conformal invariance of
the worldsheet theory is crucial, and in the superstring case leads to the derivation of supergravity
theory as the low energy approximation of string theory.

4.3 Superstrings and Type IIB Theory

The bosonic string, although illustrative, is incomplete for several reasons. Perhaps most im-
portantly, the spectrum does not contain any fermions, and so there is no hope of somehow
recovering the standard model of particle physics. Furthermore, both the open and closed string
spectra contain a problematic tachyon state, and the critical dimension D = 26 is somewhat far
from the 4-dimensions we appear to live in.

Following the RNS formalism, we thus consider a supersymmetric completion of the Polyakov
action by introducing worldsheet fermions (which, note, are still spacetime vectors) Ψµ via the
action (expressed in conformal gauge) [CAC]:

S = − 1

4πα′

∫
d2σ

(
∂αXµ∂

αXµ + iΨ̄µρα∂αΨµ

)
(4.19)

where {ρα, ρβ} = 2ηαβ and Ψ̄ ≡ iΨ†ρ0 (we use the notation ρα to emphasise that these are not
the familiar 4-dimensional γ-matrices). Decomposing the worldsheet fermion into Weyl spinors
Ψµ = (ψµ−, ψ

µ
+), choosing a particularly simple representation for ρα, and using worldsheet light-

cone coordinates σ± ≡ τ ± σ, the fermionic part of the action can then be written as [CAC]:

SΨ = − 1

2πα′

∫
d2σ

(
ψµ−∂+ψµ− + ψµ+∂−ψµ+

)
(4.20)

One can then vary this action to obtain the equations of motion:

∂−ψ
µ
+ = ∂+ψ

µ
− = 0 (4.21)

and so there are separate right and left-moving waves, as in the bosonic case (c.f. solutions to
the wave equation in (4.6)). There are again additional constraints associated with the gauge
invariance, which are still expressed as Tαβ = 0, though the introduction of the fermionic action
now changes the form of the worldsheet energy-momentum tensor.

Furthermore, in varying the action (4.20), one encounters a new boundary term:

δSΨ|boundary ∝
∫
dτ
(
ψµ−δψ−µ − ψ

µ
+δψ+µ

)
|σ=π
σ=0 (4.22)

which must be made to vanish (note that the first-order nature of the fermionic action has led to
there being no derivatives in this boundary term, in contrast to the bosonic sector). For the open
string (which has distinct endpoints and thus the σ = 0, π contributions must independently
vanish) this can be achieved in two ways:
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• Ramond Sector (R): ψµ+(τ, π) = +ψµ−(τ, π).

• Neveu-Schwarz Sector (NS): ψµ+(τ, π) = −ψµ−(τ, π).

where, note, there is also a freedom in choosing ψµ+(τ, 0) = ±ψµ−(τ, 0), but these are redundant
(i.e. not physically different) and so one imposes ψµ+(τ, 0) = +ψµ−(τ, 0) by convention (see
[CAC]). For the closed superstring, the vanishing of (4.22) must occur in a different manner
i.e. by cancelling the contribution ψµ±δψ±µ|σ=π with ψµ±δψ±µ|σ=0, where the ± are correlated
throughout. There are 4 different ways of achieving this:

ψµ+(τ, σ) = ±ψµ+(τ, σ + π)

ψµ−(τ, σ) = ±ψµ−(τ, σ + π)
(4.23)

leading to 4 sectors of the closed superstring theory: R-R, R-NS, NS-R, and NS-NS, where R
refers to periodic and NS to anti-periodic boundary conditions.

One then proceeds as in the bosonic string case, by considering mode expansion solutions
of the equations of motion consistent with the relevant boundary conditions, and quantizing
by promoting the fields to operators; the expansion coefficients of the worldsheet fermions now
become operators satisfying certain anti-commutation relations. One uses again the light-cone
gauge quantization procedure, now appealing to the superconformal symmetry of the theory to
remove negative-norm states and preserve unitarity. There is a different vacuum state for the R
and NS sectors; the NS vacuum state is a tachyon whereas the R vacuum state is a spacetime
spinor (we thus see that spacetime fermions have indeed arisen from the inclusion of a worldsheet
fermionic action). The GSO projection mentioned previously projects out the tachyon, as well
as one of the chiralities of the R vacuum. For the closed string (which, recall from above, is
like a tensor product of open strings), it turns out there are then only 2 inequivalent choices of
vacuum, which give rise to different closed superstring theories known as Type IIA/B, both with
critical dimension D = 10 (see [POL] for details). Our focus for the AdS/CFT correspondence
will be on Type IIB, which has the following massless spectrum [CAC]:

RR A0, A2, A
+
4

R-NS Ψ1
+, χ

1
−

NS-R Ψ2
+, χ

2
−

NS-NS Φ, B2, gµν

where An is an n-form (and A+
4 is self-dual), ΨI

+ (I = 1, 2) are right-handed dilatini, χI−
(I = 1, 2) are left-handed gravitini, and the NS-NS sector is just the massless sector of the
closed bosonic string spectrum that we have seen previously. We see that the theory is chiral
since the 2 dilatini and the 2 gravitini have the same chirality.

As in the bosonic string case, Type IIB string theory has a low energy effective spacetime
theory, which remarkably turns out to be a supergravity theory (i.e. a supersymmetric theory of
gravity, here with N = 2). It is not possible to write a complete action for the theory due to the
presence of the self-dual 4-form A+

4 , but one can write an action that includes both dualities, and
then supplement this with the self-duality condition ∗F5 = F5 where F5 is the 5-form F5 ≡ dA4

and ∗ is the Hodge dual. The bosonic part of this action then has the form [FRE]:

SIIB =
1

4κ2

∫
d10x

√
−detge−2Φ

(
2R+ 8∇µΦ∇µΦ− |H3|2

)
− 1

4κ2

∫
d10x

[√
−detg

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
+A+

4 ∧H3 ∧ F3

]
+ Sfermions

(4.24)
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where κ is the coupling constant, Fn ≡ dAn−1 is the n-form field-strength, H3 is the 3-form
H3 ≡ dB2, F̃3 ≡ F3−A0H3 and F̃5 ≡ F5− 1

2A2∧H3 + 1
2B2∧F3. The Type IIB action exhibits

a non-compact SU(1, 1) ∼= SL(2,R) symmetry (see [FRE]), most manifest in the Einstein frame
which is obtained from the string frame above as:

gµν → e−Φ/2gµν (4.25)

The Einstein frame is so-called because, as is clear, the Type IIB action then contains the usual
Einstein-Hilbert action familiar from general relativity. Combining the axion A0 and the dilaton
into a complex scalar τ ≡ A0 + ie−Φ, the symmetry transformation is then given by:

τ → aτ + b

cτ + d
(4.26)

where a, b, c, d ∈ R and ad − bc = 1. Note that in the quantum theory there is a quantization
condition τ ∼= τ + 1, and thus the symmetry group reduces to the subgroup SL(2,Z). This
symmetry will feature later in the AdS/CFT correspondence (see section 6.4).

4.4 Branes in Supergravity and Superstring Theory

We have seen previously that objects known as D-branes arise in string theory as hyperplanes
upon which open string endpoints with Dirichlet boundary conditions are fixed. D-branes can in
fact be seen to arise from a different point of view; indeed, this dual interpretation is of great
significance in motivating the AdS/CFT correspondence as we shall see in section 6.2. We now
discuss this alternative point of view by considering particular solutions to supergravity theory
following [FRE], and then mention how the two points of view converge. We will then briefly
discuss the important subject of gauge theories living on the worldvolumes of branes.

It is natural to consider a (p + 1)-form Ap+1 as coupling to an object Σp+1 of dimension
p+ 1 because one can construct the action:

Sp+1 ∝
∫

Σp+1

Ap+1 (4.27)

which is diffeomorphism invariant since the form is being integrated over a manifold of dimen-
sion equal to the form’s rank (see [NAK]). The action (4.27) is also invariant under the gauge
transformation Ap+1 → Ap+1 +dρp, and we note that the field-strength Fp+2 ≡ dAp+1 is clearly
gauge invariant since the exterior derivative is nilpotent (the field-strength also has a conserved
flux). We can then define a p-brane to be a solution of the supergravity field equations that has
a non-zero charge associated to the gauge field Ap+1. The possible brane solutions in a given
supergravity theory are thus limited by what p-forms are present in the field content. Type IIB
supergravity, for example, contains the following brane solutions:

Brane Couples to: Dual Brane
D(-1) τ D7

F1 B2 NS5

D1 A2 D5

D3 A+
4 D3

Some clarifications of nomenclature are in order:

• A p-brane associated with a gauge field Ap+1 that is in the R-R sector is known as a
Dp-brane. The similarity of name with the aforementioned D-branes is not an accident,
and will be explained later in this section.
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• The 1-brane that couples to the NS-NS field B2 is known as the fundamental string F1;
this is intuitive, given the coupling of the original string to this 2-form in the action (4.14).
The prefix ‘NS’ in NS5 simply labels the fact that the 2-form B2 is an NS-NS field.

• The D(-1) brane is localised not only in all spatial directions but also in time, and is thus
an instanton.

• The dual of a p-brane (coupled to a (p+ 1)-form) is the (D− 4− p)-brane coupled to the
(D − 3− p)-form that is the Poincaré dual of the (p+ 1)-form, defined by:

dAdualD−3−p ≡ ∗dAp+1 (4.28)

We will focus here on Dp-branes, and in particular D3-branes (which, note, are self-dual), since
these are of most relevance for the AdS/CFT correspondence.

In D = 10, a p-brane solution to supergravity theory has symmetry group Rp+1×SO(1, p)×
SO(9− p) i.e. the solution contains a flat hypersurface of dimension (p+ 1) which has Poincaré
invariance Rp+1×SO(1, p), and the (9−p)-dimensional transverse space has maximal rotational
invariance SO(9−p). Each brane solution breaks half of the supersymmetries of the supergravity
theory [FRE] i.e. it is an example of a 1/2 BPS solution (c.f. section 3.1). Denoting the
coordinates parallel to the brane as xµ and those perpendicular to the brane as yi, an ansatz
that has the above symmetry and satisfies the supergravity field equations is given by:

ds2 =
1√
H(~y)

ηµνdx
µdxν +

√
H(~y)d~y2 (4.29)

where, furthermore, eΦ = [H(~y)](3−p)/4 and H(~y) must be a harmonic function of ~y. Requiring
that flat space be recovered far away from the brane (i.e. in the limit y ≡

√
~y · ~y → ∞) fixes

the function H(~y) to take the form:

H(~y) = 1 +

(
L

y

)D−p−3

(4.30)

where L is some scale factor; we write D for generality, but recall that the case of interest is
D = 10. Of particular importance to the AdS/CFT correspondence will be the solution for a
stack of N coincident Dp-branes, for which one finds:

LD−p−3 = Ngs(4π)(5−p)/2Γ

(
7− p

2

)
α′(D−p−3)/2 (4.31)

where the factor of N comes from N units of 5-form flux sourced by the N branes. We will use
the solution (4.29)-(4.31) in chapter 6 when we discuss the decoupling argument.

In addition to the supergravity limit of superstring theory (α′ → 0) discussed previously,
another well-defined limit of string theory is the weak coupling limit gs → 0, which is the string
perturbation theory regime (c.f. equation (4.16)). It turns out that Dp-branes also have a
gs → 0 limit, whereas other p-branes do not. Indeed, we see from (4.29)-(4.31) that in this
limit H(~y) → 1 and thus the metric becomes flat everywhere except at y = 0; on this (p + 1)-
dimensional hypersurface the metric is in fact singular. Thus we see that, in the weak coupling
limit, Dp-brane solutions to supergravity become localised defects in spacetime; as discussed
in [FRE], it turns out that the interaction with a string propagating in such a background is
described entirely by the boundary conditions of the string on the brane, which turn out to be
Neumann conditions parallel to the brane and Dirichlet conditions perpendicular to it. In this
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manner, we see that the Dp-branes introduced as solutions of supergravity are precisely the
D-branes introduced earlier in open string theory.

To conclude this chapter we discuss the important subject of how gauge theories arise on
the worldvolumes of D-branes; this is of utmost relevance to the AdS/CFT correspondence, and
so we shall review the topic but not discuss the exact details of open string quantization in the
presence of D-branes (see [ZWE] for details). Let us first consider an open string with both
endpoints fixed on a single D-brane. Clearly, the length of the string may become arbitrarily
short in which case there is no tension; the string mode must then be massless, and it is possible
to show that it is in fact a vector Aµ in the worldvolume i.e. there is a U(1) gauge theory on
the worldvolume of the brane. If we consider instead a stack of N coincident branes then we
must further label the string states by indices which denote which brane the endpoints lie on.
These are known as Chan-Patton factors [ZWE], and for N branes there will be N2−N possible
string configurations leading to N2−N massless modes [Aµ]ij on the worldvolume of the branes,
where i, j = 1...N . One then finds a U(N) gauge theory on the brane worldvolume; in fact, the
factor of U(1) = U(N)/SU(N) corresponds to the overall position of the branes in spacetime,
and thus is not relevant for considering the dynamics on the brane worldvolume itself, which is
then described by an SU(N) gauge theory (separating the branes would give the modes mass
and thus correspond to spontaneously breaking the gauge symmetry, but we shall not need such
mechanisms in the following). As mentioned previously, each brane solution breaks half of the
Poincaré superymmetries and so, in particular, for a stack of N D3-branes, the brane dynamics
is described by 4-dimensional N = 4 SYM theory with gauge group SU(N) (see [FRE]). This
fact will be very important in chapter 6 when we discuss the decoupling argument.



Chapter 5

Anti-de Sitter Space

The Type IIB theory on the gravity side of the correspondence is taken to be in an AdS5 × S5

background. In this chapter we define the anti-de Sitter space AdSd and discuss its essential
features including isometries, important coordinate systems and the conformal boundary.

5.1 Definition of Anti-de Sitter Space

Let us first define the concept of a maximally symmetric space of d-dimensions [ZEE], meaning
that it has the maximum number of Killing vectors possible for a d-dimensional manifold, namely
d(d + 1)/2 (corresponding locally to d translations and d(d − 1)/2 rotations). A maximally
symmetric space can be understood intuitively as one that is homogeneous and isotropic at some
(and thus every) point, meaning it looks the same in all directions and at all positions. Maximal
symmetry provides d(d − 1)/2 constraints on the Riemann curvature tensor, which turn out to
be enough to fix its form uniquely as (see [ZEE]):

Rµνρσ = C(gµρgνσ − gµσgνρ) (5.1)

for some constant C, and thus one finds by contracting that Rµν = (d − 1)Cgµν and R =
d(d− 1)C i.e. maximally symmetric spaces have constant curvature scalars.

The anti-de Sitter space (AdS) is a space of Lorentzian signature and (as we shall see)
constant negative curvature. In a similar fashion to other constant curvature spaces (e.g. the
sphere), AdS space may be defined as an embedding in a higher-dimensional space. If we consider
a flat embedding space R2,d−1 with coordinates Xa (a = 0...d) and metric:

ds2 = −dX2
0 − dX2

d +
d−1∑
i=1

dX2
i (5.2)

then we may define AdSd as the set of solutions of:

X2
0 +X2

d −
d−1∑
i=1

X2
i = L2 (5.3)

where L is known as the AdS radius. We also mention briefly that Euclidean AdSd may be
defined in an analogous way, but embedded instead in R1,d and with the defining equation:

X2
0 −X2

d −
d−1∑
i=1

X2
i = L2 (5.4)

Indeed, the Euclidean version of AdS will in fact be used later in chapter 7 when we discuss tests
of the correspondence, and the results discussed below translate simply.

It is obvious from the defining equations that the isometry group of AdSd is O(2, d− 1) (or
O(1, d) for the Euclidean case); restricting to our case of interest, AdS5, we thus see that the

28
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isometry group is O(2, 4), a group we encountered previously in section 2.2 as the (extended)
conformal group in 4-dimensional Minkowski space. The space AdSd can also be expressed as
the coset manifold SO(2, d − 1)/SO(2, d − 2) i.e. the isometry group minus (by quotient) the
subgroup that leaves a point in the space invariant (in the same way that S2 ∼= SO(3)/SO(2)).
Since the dimension of O(2, d−1) is d(d+1)/2 we see that AdSd is indeed a maximally symmetric
space, and thus should have constant curvature scalars.

By eliminating the final coordinate via (Xd)2 = L2 + ηµνX
µXν , where µ = (0, 1...d − 1)

and ηµν is the d-dimensional Minkowski metric, we may provide a set of coordinates for AdSd
and write the metric as:

ds2 =

(
ηµν −

ηµληνρX
λXρ

X ·X + L2

)
dXµdXν (5.5)

where in an obvious notation X ·X ≡ ηµνX
µXν . One can then calculate the Riemann tensor

from this (bearing in mind that, since this is a maximally symmetric space, only the constant C
in (5.1) needs to be fixed) and one finds [ZEE] that C = −1/L2. From the expressions for Rµν
and R underneath (5.1) we thus see that AdSd has constant negative curvature scalar and that:

Rµν −
1

2
gµνR =

(d− 1)(d− 2)

2L2
gµν (5.6)

meaning that (in d > 2) AdSd is a solution to the vacuum Einstein field equations with a negative
cosmological constant.

5.2 Coordinate Systems on AdSd

Let us for convenience now set L = 1 in (5.3). We may introduce a set of coordinates on AdSd
by writing:

X0 = r̃cost

Xd = r̃sint (5.7)

Xi = rxi

where
∑d−1

i=1 x
2
i = 1, and the other coordinates range over r̃, r > 0 and t ∈ [0, 2π). The

defining equation (5.3) then clearly implies r̃2 − r2 = 1. Finding the differentials dXµ of the
coordinates (5.7) and substituting into the metric (5.2) (together with the fact that

∑
i x

2
i =

1→
∑

i xidxi = 0) we thus find after simple algebra that:

ds2 = −dr̃2 − r̃2dt2 + dr2 + r2dΩ2
d−2 (5.8)

Using the constraint r̃2 − r2 = 1 we find that dr̃2 = r2

r̃2dr
2 and thus more simple algebra gives

the metric:

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dΩ2

d−2 (5.9)

We have thus eliminated r̃ and now have a set of d coordinates for AdSd. We see from (5.9) that
t acts as a time coordinate, yet from it’s definition in (5.7) this coordinate appears to be periodic.
As discussed in [ZEE], to avoid the existence of closed timelike curves and casual inconsistencies,
we thus unwrap the time coordinate (technically, we move to the universal cover) and simply
define the space AdSd by equation (5.9) (which is, after all, a solution to the Einstein field
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equations) for t ∈ R. Note interestingly that the metric (5.9) for AdSd has the same form as
the Schwarzchild metric:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−2 (5.10)

but here f(r) = 1+r2 > 0, and thus we see that the anti-de Sitter space does not have an event
horizon, unlike the Schwarzchild spacetime for which the horizon is defined by the coordinate
singularity when f(r) = 0.

We now make a further coordinate transformation in (5.9) given by r = sinhρ for ρ > 0.
Since dr = coshρdρ and 1 + r2 = cosh2ρ we easily find:

ds2 = −cosh2ρdt2 + dρ2 + sinh2ρdΩ2
d−2 (5.11)

These are known as global coordinates [ZEE] (so-called because they cover the entire AdS
space). We can make instead a different coordinate substitution in (5.9) given by r = tanβ for
β ∈ [0, π/2). Since dr = sec2βdβ and 1 + r2 = sec2β we easily find the metric:

ds2 =
1

cos2β

(
−dt2 + dβ2 + sin2βdΩ2

d−2

)
=

1

cos2β

(
−dt2 + dΩ2

d−1

)
(5.12)

where the second equality follows by the general relation dΩ2
p+1 = dβ2+sin2βdΩ2

p with β ∈ [0, π]
(we return to this matter in section 5.3). These are known as conformal coordinates [ZEE], so-
called because we see manifestly from (5.12) that AdSd is conformally equivalent to the cylinder
R × Sd−1 with metric ds2 = −dt2 + dΩ2

d−1 (note that flat space R1,d−1 is also conformally
equivalent to this cylinder; we return to this in section 5.4).

5.3 The Conformal Boundary of AdSd

We now introduce the important notion of the conformal boundary of AdSd space, a concept
that may be visualized in a number of ways. We introduce it as in [ZEE] by building on the
material in the previous section, and in particular the set of conformal coordinates that defined
the metric (5.12).

The coordinate β in the first half of (5.12) clearly plays the role of a latitude; strangely,
however, we saw from its definition that it ranges over the values β ∈ [0, π/2) rather than the
usual β ∈ [0, π]. Thus, identifying dΩ2

d−1 = dβ2 + sin2βdΩ2
d−2 in equation (5.12), although true

locally, is somewhat misleading since the spatial part of AdSd really only covers the northern
hemisphere of Sd−1 and not the full sphere. Thus, we really have a hemisphere (after a conformal
transformation, of course) for the spatial part of AdSd, with boundary at the equator; topolog-
ically this is equivalent to the ball Bd−1 (e.g. a hemisphere of S2 is topologically equivalent to
the disk B2, as seen via a direct projection onto the plane). We thus see that the spatial sections
Bd−1 of AdSd are bounded by Sd−2 (since ∂Bd = Sd−1), which we commonly associate with
Rd−2 with spatial infinity identified as a single point (c.f. the Riemann sphere [FRA]). Taking
the time coordinate into account we thus arrive at the important result that AdSd is bounded
by Minkowski space R1,d−2:

∂(AdSd) = R1,d−2 (5.13)

This result is of crucial importance in the AdS/CFT correspondence, and is at the heart of its
holographic nature.
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5.4 Poincaré Coordinates

It will be instructive to introduce one further set of coordinates for AdSd which are particularly
useful in the AdS/CFT correspondence. We will here restore L since we shall refer back to
the Poincaré form of the metric when we consider the decoupling argument in chapter 6. We
introduce for AdSd the coordinates y > 0 and (t,~x) ∈ Rd−1 via:

X0 =
1

2y
(1 + y2(L2 + ~x2 − t2))

Xd = Lyt

Xd−1 =
1

2y
(1− y2(L2 − ~x2 + t2))

Xi = Lyxi

(5.14)

where (i = 1...d − 2) and ~x2 =
∑d−2

i=1 x
2
i . It is simple to check that the coordinates in (5.14)

do indeed satisfy (5.3). Straightforward algebra then gives the metric in these coordinates as
[ERD]:

ds2 =
L2

y2
dy2 +

y2

L2
ηµνdx

µdxν (5.15)

where xµ = (t, ~x). We shall see this metric arise in section 6.2 as the near-horizon limit of a
stack of D-branes discussed in section 4.4.

Making the coordinate substitution u = L2/y we have dy2 = L4/u4du2 and L2/y2 = u2/L2

and thus we find:

ds2 =
L2

u2

(
du2 + ηµνdx

µdxν
)

(5.16)

which is the metric in Poincaré coordinates. From this form of the metric we see that AdSd is
conformally equivalent to Minkowski space R1,d−1; this is not surprising since we saw in section
5.2 that AdSd is conformally equivalent to the cylinder R×Sd−1, as is Minkowski space R1,d−1.
We also notice that the slices of constant u are copies of Minkowski space R1,d−2. In particular,
the conformal boundary discussed in section 5.3 is given by the slice u = 0 (i.e. y = ∞ in
(5.15)); this can be seen, for example, by recognising (5.16) as a Minkowski version of the
Poincaré half-plane [ZEE], with spatial boundary at u = 0. In Poincaré coordinates one can also
see the manifest isometry given by:

u→ λu

xµ → λxµ
(5.17)

for any λ ∈ R. We saw such transformations previously in section 2.1; they are conformal
transformations known as dilatations or scale transformations. That they form an isometry of
AdS space can be see trivially from the metric (5.16), since the scaling of the denominator u2

cancels any scaling in the numerator. This isometry will play an important role in section 7.1
when we discuss the field/operator map in the AdS/CFT correspondence.
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Chapter 6

Motivating the AdS/CFT Correspondence

In this chapter we motivate the AdS/CFT correspondence via two arguments. The first argument
suffers a shortcoming in that, although it motivates a duality between string theory and gauge
theories in a certain limit, it fails to provide more concrete information about the precise corre-
spondence. The second argument, due to Maldacena, is a more specific situation and directly
motivates the duality between N = 4 SYM and Type IIB string theory on AdS5 × S5. After
these motivations we will state the correspondence precisely, and perform the first basic check
by mapping the global symmetries on both sides of the correspondence, relying heavily on the
material discussed previously.

6.1 Motivation: The Large N Limit of Gauge Theories

We sketch here an illuminating argument to motivate the claim that string theory (as defined
by a perturbative expansion) can be considered a dual description of non-abelian gauge theories
when the number of ‘colours’ N is very large, following closely the logic of [VIE]. For simplicity
(and since it captures all the essential features) we consider a 0-dimensional quantum field
theory, otherwise known as a matrix model (the discussion can indeed be generalised to higher-
dimensional quantum field theories).

Consider a 0-dimensional non-abelian gauge theory of N×N hermitian matrices. The n-point
correlation functions of operators are defined by the usual expression:

〈O1O2...On〉 ≡
∫
DMe−S[M ]O1O2...On∫

DMe−S[M ]
(6.1)

where DM is the path integral measure, integrating over all N ×N hermitian matrices (which
have no spacetime dependence since we are in 0-dimensions), given explicitly as:

DM ≡
N∏
i=1

dMii

∏
i<j

d(Re[Mij ])
∏
i<j

d(Im[Mij ]) (6.2)

where we need only integrate over i ≤ j because the matrices are hermitian. The action S[M ]
takes the general form:

S[M ] = − 1

2g2
YM

Tr
[
M2 + V (M)

]
(6.3)

where Tr[M2] is the kinetic term, and V (M) =
∑

i>2 aiM
i gives the potential term for some

constants ai. We note that this theory has the non-abelian gauge symmetry given by M →
UMU−1 (for some group with representation matrices U) by virtue of the cyclic property of the
trace.

We wish to compute the propagator 〈MijMkl〉, which involves using (6.1) for the case of the
free action (i.e. Tr[M2] term only). Recall from quantum field theory that for a free theory with
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i l

j k

Figure 6.1: Double-line notation for the propagator 〈MijMkl〉 = gsδilδjk.

partition function:

Z[J ] ≡
∫
Dxe−

1
2
x·A·x+J ·x∫

Dxe−
1
2
x·A·x

= e
1
2
J ·A−1·J (6.4)

we have 〈xaxb〉 = A−1
ab and for higher-point functions we obtain Wick’s theorem, expressing them

as a sum over all pairings of 2-point functions [PES]. Since Tr[M2] =
∑

i(M
2)ii =

∑
ijMijMji,

for our case we have x ·A · x→ 1
g2
YM

Mijδ
ilδjkMkl (using the summation convention) and thus

we have:
〈MijMkl〉 = g2

YMδilδjk (6.5)

We may represent this diagrammatically with so-called double-line notation, as in Figure 6.1.
This notation will be important as, in a certain limit, it will in a sense begin to resemble string
perturbation theory.

Consider, for example, using Wick’s theorem to compute
〈

1
g2
YM

TrM4
〉

in the free theory.

We have: 〈
1

g2
YM

TrM4

〉
=

〈
1

g2
YM

∑
ijkl

MijMjkMklMli

〉
(6.6)

and since the trace is cyclic we see that contracting the first M with the 2nd or the 4th will
produce the same result (since they both involve contracting nearest neighbours), and thus using
Wick’s theorem we obtain:〈

1

g2
YM

TrM4

〉
=

1

g2
YM

∑
ijkl

(2〈MijMjk〉〈MklMli〉+ 〈MijMkl〉〈MjkMli〉) (6.7)

and so using (6.5) we get:〈
1

g2
YM

TrM4

〉
=

1

g2
YM

(g2
YM )2

∑
ijkl

(2δikδjjδkiδll + δilδjkδjiδkl) = g2
YM (2N3 +N) (6.8)

upon performing all delta index contractions. We notice that the first contribution is clearly
dominant in the large N limit. The interest arises when we start considering diagrammatic
expansions for these contributions using the double line notation. The operator we are considering
is given diagrammatically in Figure 6.2, and the two types of contraction we found can be drawn
as in the same figure. The first diagram (which, recall, is the dominant one in the limit of large
N) is known as a planar graph, so-called because it can be drawn on the sphere. The second
graph cannot be drawn on a sphere, though it can be drawn on a torus; it is an example of a
non-planar graph. Note that the first graph has 3 closed loops whereas the second has only 1,
corresponding to the powers of N3 and N that these two diagrams contribute. This example
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+contract

Figure 6.2: Vertex Tr[M4] and two different contractions

gives the first hint that, in the limit of large N , it may be possible to organise the perturbation
theory into a topological expansion based on the topology of the manifolds that the corresponding
diagrams can be embedded in.

With this example in mind, and considering now a general diagram in the full interacting
theory, we see that a general diagram will contribute a factor of (g2

YM )E−VNF where E is
the number of edges (number of propagators), V is the number of vertices (both internal and
external), and F is the number of faces (number of closed loops). Since E − V − F = 2g − 2
by Euler’s theorem [FRA], we see that a general diagram contributes (g2

YM )2g−2(g2
YMN)F , and

thus for a given genus g depends only on the t’Hooft coupling defined as λ ≡ g2
YMN . We thus

see that a general observable 〈...〉 is given as:

〈...〉 =
∑
g

(g2
YM )2g−2Fg(λ) =

∑
g

N2−2gF̃g(λ) (6.9)

where Fg(λ) is some function that represents the summation of all diagrams of a given genus g,
and F̃ is clearly a function that is simply related to F . In the t’Hooft limit:

N →∞ gYM → 0 λ ≡ g2
YMN fixed (6.10)

we thus see that the perturbation theory organises itself into a topological expansion in the
genus, with small coupling constant g2

YM ∼ 1/N , analogous to equation (4.16). It is thus
natural to associate the gauge theory and string theory coupling constants as g2

YM = gs, and
λ = g2

YMN = gsN with the string tension. We see that perturbation theory will be valid for
small values of the t’Hooft coupling λ.

We have thus seen that, in the t’Hooft limit of non-abelian gauge theories, perturbative
string theory seems to provide a dual description of the gauge theory’s perturbation expansion
(although we only considered the 0-dimensional case, the argument can be generalised to higher-
dimensional gauge theories). Although illustrative, this argument falls short in that it does not
provide a precise map between a particular gauge theory and a particular string theory, and
merely provides a hint of such a duality. Nevertheless, the ideas introduced here are important
and indeed we shall see that the t’Hooft limit will reappear when we state a particular form of
the AdS/CFT correspondence in the following.
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6.2 Motivation: The Decoupling Argument

The original argument providing direct motivation for the AdS/CFT correspondence (as opposed
to the mere hint towards a connection between gauge theory and string theory as in section 6.1)
is due to Maldacena [MAL] and is known as the decoupling argument. The argument does not
amount to a proof, but provides motivation which can then be tested using a variety of checks
(see for example chapter 7). As we shall see, the argument rests directly on the dual interpretation
of D-branes as discussed in section 4.4; by considering the branes in each interpretation, we find
(in certain limits) two decoupled theories in each point of view, and are led to identify N = 4
SYM in 4D Minkowski space with Type IIB string theory in AdS5×S5. In this section we follow
the form of the argument as portrayed in [VIE].

Before discussing the argument itself, it is illustrative to consider an analogy. Consider the
interaction of an electron and a heavy proton. Such an interaction may in fact be described
using two different interpretations, analogous to the brane case we will consider shortly. On the
one hand, one may sum up all Feynman diagrams contributing to such an interaction, including
the tree level diagram and the radiative corrections such as Bremsstrahlung, vertex corrections,
photon self-energy etc. On the other hand, one may think of these diagrams as providing
corrections to the familiar Coulomb potential that arises from the tree level diagram. In other
words, one may remove the heavy proton from the picture entirely, and instead consider the
electron moving freely (i.e. non-interacting) but now in some non-trivial background, represented
by the corrected potential.

Turning now to the decoupling argument, the set-up in question is a stack of N D3-branes,
as found in the Type IIB theory described in section 4.3. As discussed in section 4.4, we may
think of D-branes in two ways (just as we may for the physical situation described above) which
is fundamentally linked to an open/closed string duality; on the one hand they are hyperplanes
upon which open strings end (or dynamical walls with open string excitations), and on the other
hand they are solutions to the supergravity field equations, and thus deform the background
and can be considered to emit closed strings (e.g. gravitons). This already indicates that there
should be some correspondence between the theory of open string excitations on D-branes (i.e.
super Yang-Mills gauge theory) and the theory of closed strings in the bulk i.e. Type IIB string
theory. We now consider the set-up from these two points of view in turn.

D-Branes as Dynamical Walls with Open String Excitations

From the open string point of view, the action describing the physical set-up has the form:

Sbulk + Sint. + Sbranes (6.11)

where Sbulk is given by 10D supergravity plus massive modes (which scale as α′), Sint describes
the interaction between the branes and the bulk theory (and scales with Newton’s constant√
GN ∼ gsα

′2), and Sbranes is given by N = 4 SYM (with gauge group SU(N)) plus massive
modes (which scale as α′). In the low energy limit α′ → 0 we thus see that the interaction term
drops out, and the bulk and brane terms simplify, giving us two decoupled theories:

(N = 4 SYM in 4D)⊕ (Type IIB Supergravity in 10D) (6.12)

Note that, as mentioned in section 6.1, N = 4 SYM is a useful description in the regime λ << 1,
since in this regime perturbation theory is valid. We repeat for clarity the fact that gravity
becomes free at low energies or large distances; as is well known the coupling GN is dimensionful
and thus the effective dimensionless coupling scales with energy, causing it to vanish in the low
energy limit (see [VIE]).
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D-Branes as Supergravity Solutions

In parallel to the proton/electron analogy discussed previously, we now no longer think of the
branes as physical objects, and instead look for solutions to the supergravity field equations that
describe a charged ‘heavy body’ and create some non-trivial background which closed strings
propagate in. In fact, we already discussed such solutions in section 4.4, which are given by
equations (4.29)-(4.31). For convenience we express here the solution specifically for the case of
N D3-branes, focusing on the gravitational part which is given by:

ds2 =
1√

1 + L4

y4

ηµνdx
µdxν +

√
1 +

L4

y4
d~y2 (6.13)

where equation (4.31) gives L4 = gsN4πα′2. Note that the supergravity description is useful
when the curvature (which is set by the scale L) is large compared to the string length ls since
otherwise string effects are important and cannot be ignored. The useful regime is thus given by
L ∼

√
α′(gsN)

1
4 � ls ∼

√
α′ and thus we require λ ≡ gsN � 1. We thus see that this is the

opposite regime to which the gauge theory description is useful in.
As discussed in section 4.4, in the limit y � L (i.e. far away from the branes) the solution

becomes that of 10-dimensional flat Minkowski space, which is easy to see from (6.13) since√
1 + L4/y4 → 1. Another interesting limit however, considered by Maldacena, is the near-

horizon limit y � L (i.e. close to the branes). In this limit we have
√

1 + L4/y4 → L2/y2 and
thus the metric becomes:

ds2 → y2

L2
ηµνdx

µdxν +
L2

y2
d~y2 (6.14)

Writing the 6-dimensional Euclidean metric in spherical coordinates as d~y2 = dy2 + y2dΩ2
5 we

have in the near-horizon limit:

ds2
y→0 =

(
y2

L2
ηµνdx

µdxν +
L2

y2
dy2

)
+ L2dΩ2

5 (6.15)

We recognise, using (5.15), that this is nothing but the metric for the product geometry AdS5×
S5, where the corresponding radius for both parts of the geometry is L. The geometry near to
the branes is thus regular and highly symmetrical.

We saw that, from the open string point of view, there are two decoupled theories in the
low energy limit. As we shall see, a similar decoupling occurs in the present case. Note that,
as discussed above, the metric (6.13) becomes flat at y → ∞ and thus the coordinate t is the
proper time for an observer at infinity. In contrast, as is familiar from general relativity, the
proper time elapsed for an observer at some other spacetime point is given by ∆τ =

√
−gtt∆t,

and correspondingly the energies are related by E = 1/
√
−gttE∞. In particular, close to the

branes we have from (6.15) that E∞ = yE/L and thus, for fixed E, the energy as observed at
infinity goes to zero as y → 0. For an observer at infinity in this point of view, there are thus
two decoupled low energy regimes:

• 10-dimensional supergravity close to the observer, since gravity becomes free at low en-
ergies/large distances.

• Full Type IIB string theory close to the branes (i.e. in the geometry AdS5×S5); everything
(i.e. all strings) becomes a low energy effect close to the branes for an observer at infinity,
and thus there is no restriction to low energy massless modes.
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We thus have the two decoupled theories:

(Type IIB String theory on AdS5 × S5)⊕ (Type IIB Supergravity in 10D) (6.16)

Thus, we finally reach the celebrated AdS/CFT correspondence, by looking at (6.12) and
(6.16) and noticing that we can ‘cross off’ Type IIB supergravity on either side and thus identify:

(Type IIB String theory on AdS5 × S5) ≡ (N = 4 SYM in 4D) (6.17)

The fact that D-branes have a dual interpretation has led us to identify these two theories as dual
descriptions of each other. Although not generally regarded as a proof (because of, for example,
the subtleties to do with the various limits), the decoupling argument provides strong motivation
for the above correspondence.

6.3 Statement of the Correspondence

With the correspondence motivated we can now state it in its different forms; these differ in their
strengths based on the conditions they impose on the various relevant parameters that appear in
the theories. The precise form of the correspondence is given as:

Type IIB string theory on AdS5 × S5 (both with radius L) with 5-form flux N and string cou-
pling gs is equivalent/dual to 4-dimensional N = 4 SYM with gauge group SU(N) and coupling
constant gYM ,

where the couplings are identified in the following way:

gs = g2
YM L4 = 4πgsNα

′2 (6.18)

(and one further identifies the axion expectation value with the instanton angle as 〈C〉 = θI
[FRE]); the motivation for the second equation in (6.18) is clear from the previous section, and
the motivation for the first (in addition to the argument presented in section 6.1 concerning the
large N limit of gauge theories) comes from the fact that the closed string coupling constant
is the square of the open string coupling constant (see section 4.2). This is referred to as the
strong form of the correspondence as it is supposed to hold for all values of the coupling constant
gs = g2

YM and all values of N . The strong form is extremely difficult to check however, namely
because the theory of string quantization on general curved manifolds such as AdS5 × S5 is
not yet adequately developed. We will thus shortly state two progressively weaker forms of the
correspondence which admit more tangible checks.

Before doing so however, it is instructive to make contact with the holographic nature of the
correspondence alluded to previously. We saw in section 5.3 that AdS5 has a boundary given by
Minkowski space R1,3, and we have now seen that on one side of the correspondence we have
N = 4 SYM in R1,3. Indeed, it is in fact possible to consider this gauge theory as living on the
boundary of AdS5. We saw previously that rather than having branes at the origin, as in the open
string picture, we may replace them with AdS5×S5 space, whose Minkowski boundary will then
patch onto the full solution. Clearly, in the open string picture, it must be the information of the
branes themselves that provides the boundary conditions for patching onto the full solution. In
this manner it is then natural to identify the branes as being in some sense on the boundary of
AdS5, and thus the gauge theory (which lives on the branes) can be said to live on the boundary
of AdS5. This is the sense in which the correspondence is a holographic principle, since the
5-dimensional dynamics of Type IIB theory (after compactification on S5) can be encoded in a
gauge theory living on the 4-dimensional boundary.
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Returning now to stating the correspondence, we can state a slightly weaker form, which we
shall call the t’Hooft form, by going to the t’Hooft limit. Thus, in this form of the correspondence,
one claims the above equivalence with the added conditions that N → ∞, gYM → 0 and
λ ≡ g2

YMN is fixed. On the gauge theory side this then corresponds to a perturbation theory
topological expansion in 1/N as we saw in section 6.1, and on the string theory side one has
classical Type IIB string theory with small expansion parameter gs = λ/N , as we also described
in the same section; this form of the correspondence thus coincides (albeit in a more precise
manner) with that which the argument in section 6.1 pointed towards. Finally, we have the weak
form of the correspondence which, after taking the t’Hooft limit, involves taking the large λ
limit. On the gauge theory side we know from section 6.1 that this corresponds to the strong
coupling (i.e. non-perturbative) regime, whereas on the string theory side we have classical Type
IIB supergravity, with an expansion in small α′ (as is clear from (6.18)). Although the weakest
statement, this final form of the correspondence turns out to be extremely powerful, since one
may use classical gravity to perform calculations in non-perturbative gauge theory (see chapter
7).

6.4 First Check: Correspondence of the Global Symmetries

The first check of the correspondence that we may perform, which is simple but necessary, is
to map the global symmetries on the two sides of the correspondence. Luckily, we have already
done most of the work for this check in previous sections. We saw in section 3.3 that N = 4
SYM has a global symmetry group given by the superconformal group SU(2, 2|4) which arose
from the non-trivial combination of supersymmetry and conformal symmetry, together with the
R-symmetry group SO(6)R ∼= SU(4)R. The bosonic subgroup of this supergroup is given by
the product of the conformal group and the R-symmetry group i.e. SO(2, 4)×SO(6)R. On the
string theory side we recognise this bosonic subgroup as the isometry group of the spacetime
AdS5×S5, since we saw in section 5.1 that the isometry group of AdSd is SO(2, d− 1) (and of
course the isometry group of S5 is SO(6)). Furthermore, as discussed in [FRE] although the D3-
brane breaks precisely half of the Poincaré supersymmetries (i.e. 16 of the 32), in the AdS5×S5

near-horizon limit, these are in fact supplemented by a further 16 conformal supersymmetries,
enhancing the overall symmetry group to the full SU(2, 2|4) in correspondence with the field
theory side.

In addition to the global symmetry group SU(2, 2|4), we saw in section 3.2 that SYM also
has the (conjectured) S-duality symmetry group SL(2,Z). However, we also saw in section 4.3
that Type IIB string theory has an SL(2,R) symmetry that when quantized reduces to SL(2,Z),
in accordance with the field theory side. This agreement only holds in the strongest form of the
correspondence however, as it is only in this form that we have the full quantum Type IIB string
theory. We thus see that, at the level of the global symmetries at least, the correspondence in
its strongest form seems to be valid. We shall provide more thorough tests in the next chapter,
though for weaker forms of the correspondence as these are easier to check.



Chapter 7

The Field/Operator Map and the Witten Prescription

In the previous chapter we saw the motivation of the original AdS/CFT correspondence due to
Maldacena, as well as its statement in three forms of differing strength. We also saw a first basic
check of the correspondence, which involved mapping the global symmetries of the theories on
the two sides of the correspondence. In this chapter we shall investigate the subject of testing
the correspondence in more detail. In particular, if the two theories are supposed to be dual, then
there should be some mapping between the fundamental observables i.e. the fields/operators, as
well as the correlators. We shall thus provide such a field/operator map as well as a prescription,
due to Witten, for mapping the correlators between the two theories; we well then discuss some
simple checks of the correspondence. We will be working in the classical supergravity limit and
thus considering the weak form of the correspondence.

7.1 The Field/Operator Map

In section 6.4 we saw an agreement between the global symmetries on both sides of the cor-
respondence. In addition to this it is important that there exists a correspondence between
the specific representations of the symmetry group that the observables of the two theories lie
in. In particular, we would like a correspondence between the supergravity fields in AdS5 and
observables in N = 4 SYM (which are the local gauge invariant operators described briefly in
section 3.3). Consider a free massless scalar field φ in AdS5 × S5. The Kaluza-Klein procedure
of dimensional reduction involves decomposing this field into a basis of 5-dimensional spherical
harmonics on S5 as (see [FRE]):

φ(x, y) =
∑
n

φn(x)Yn(y) (7.1)

where x are the AdS5 coordinates and y are the S5 coordinates. The equation of motion
�10φ = 0 on AdS5 × S5 then implies (�5 + m2)φn = 0 for some mass m on AdS5. The 10-
dimensional massless scalar fields, when compactified on S5, thus becomes massive scalar fields
on AdS5, with particular masses determined by the original action. We will see now that this
mass is in fact related to the scaling dimension of the field, which allows for a correspondence
between the scalar fields and the SYM observables (similar arguments hold for higher-spin fields,
but we restrict the discussion to the simplest case of scalars).

We wish to study this 5-dimensional massive wave equation on AdS5. Let us in fact consider
general Euclidean AdSd+1 space with unit radius for convenience (there are subtleties with the
Minkowski case), in Poincaré coordinates x = (x0, ~x) with metric analogous to (5.16) given by:

ds2 =
dx2

0 + d~x2

x2
0

(7.2)

where d~x2 =
∑d

i=1 dx
2
i . The Laplacian for a spacetime of metric gµν is given by [ZEE]:

� = − 1
√
g
∂µ
√
ggµν∂ν (7.3)

40
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Using this together with the metric (7.2), for AdSd+1 one finds:

�d+1 = −x2
0∂

2
0 + (d− 1)x0∂0 − x2

0

d∑
i=1

∂2
i (7.4)

We thus have the wave equation (�d+1 +m2)φ = 0 with �d+1 as in (7.4). Let us in particular
assume solutions that asymptotically are eigenstates of dilatations in the x0-direction (this will
be important for the correspondence below); in other words, we assume solutions of the form
φ(x) ∼ xk0 for some k. The wave equation then becomes:

−x2
0k(k − 1)xk−2

0 + (d− 1)x0kx
k−1
0 − 0 +m2xk0 = 0 (7.5)

which implies the quadratic equation:

k2 − dk −m2 = 0 (7.6)

The solutions to this equation are found easily as:

k =
d

2
±

√(
d

2

)2

+m2 (7.7)

and so such solutions to the wave equation are given by x∆
0 and xd−∆

0 where:

∆ ≡ d

2
+

√(
d

2

)2

+m2 (7.8)

These are known as normalizable and non-normalizable modes respectively [FRE], so-called
because the latter are not square-integrable, whereas the former are. They are linearly indepen-
dent modes, and describe the asymptotics at the boundary x0 → 0 of a general solution to the
wave equation. A general solution then asymptotically has the form:

φ∆(x0, ~x) ∼ x∆
0 f(~x) + xd−∆

0 g(~x) (7.9)

Recall from section 5.4 that AdS space in Poincaré coordinates has a manifest dilatation isometry.
Indeed, the metric (7.2) is invariant under the simultaneous scalings x0 → λx0 and ~x → λ~x.
The scalar field φ∆ should be a representation of the isometry group and thus should be left
invariant by this transformation. Given the form (7.9), we thus see that under this dilatation we
must have:

f(~x)→ λ−∆f(~x)

g(~x)→ λ∆−dg(~x)
(7.10)

Recalling (2.23) we see that ∆ can thus be interpreted as a conformal dimension for the 4-
dimensional field f(~x), and that g(~x) has a related dimension. This observation is crucial in
forming a map between observables in the AdS/CFT correspondence as we now discuss. Plugging
d = 4 into (7.8) for our case AdS5 we find the following relationship between mass and conformal
dimension:

m2 = ∆(∆− 4) (7.11)

Since the representations (of the conformal group in SYM and the isometry group of AdS) on
both sides of the correspondence should match, we thus associate a field of mass m in AdS5 with
an operator in SYM of conformal dimension ∆, where m and ∆ are related as in (7.11). The
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correspondence is in fact more specific than this; as argued in [KRA], the non-normalizable modes
(or, more specifically, their coefficients g(~x) in the solution (7.9)) correspond to sources for the
associated SYM operators, whereas the normalizable modes correspond to vacuum expectation
values for the associated operators. Indeed, the normalizable modes define 4-dimensional fields
with conformal dimension ∆, whereas the non-normalisable modes define a field g(~x) which is
an appropriate source field for a CFT operator O of dimension ∆ since the coupling integral:∫

dd~xg(~x)O(~x) (7.12)

that appears in the exponent of the CFT generating functional is then invariant under dilatations:∫
dd~xg(~x)O(~x)→

∫
λddd~xλ∆−dg(~x)λ−∆O(~x) =

∫
dd~xg(~x)O(~x) (7.13)

In particular, the non-normalizable modes define associated boundary fields which we now denote
as [FRE]:

φ̄∆(~x) ≡ lim
x0→0

φ∆(x0, ~x)x∆−4
0 (7.14)

These will be important in the following section.
Although the above discussion has been for scalars, similar correspondences exist for higher-

spin fields. As discussed in [FRE], one finds that (7.11) also holds for spin-2 fields, and for other
spins one has the following relations between mass and conformal dimension:

Spin 1/2 and 3/2: |m| = ∆− 2

p-form: m2 = (∆− p)(∆ + p− 4)
(7.15)

As an example we briefly mention that the supergravity modes (which include both a 5-dimensional
supergravity multiplet plus an infinite tower of Kaluza-Klein modes obtained from compactifica-
tion) correspond to SYM operators given by chiral primaries (such as the SO(6)-traceless parts
of the single trace operators given in equation (3.19)) and their descendants; for example, the
supergravity multiplet defined by equation (3.20) is such a chiral primary (hence its name). The
massive Type IIB string modes however are given by non-chiral operators and their descendants,
such as the Konishi multiplet Tr[XiXi] also introduced in (3.20). A complete mapping between
SYM operators and the supergravity modes is provided in Table 7 of [FRE].

7.2 The Witten Prescription for Mapping Correlators

We saw in the previous section a correspondence between the fields on the supergravity side
and the operators on the SYM side of the correspondence. However, we would also like a
correspondence between the correlation functions on the two sides. Note that, since the field φ∆

has no gauge index, the associated operator O∆ should clearly be gauge invariant (the associated
operator must thus be composite since the elementary fields in SYM all have gauge indices; see
section 3.2). Considering what we said in section 7.1 regarding non-normalizable modes as
defining sources for the associated operator, the SYM generating functional for operators O∆

then has the form [NAS]:

ZO[φ̄∆] =

∫
D[SYM Fields]e−SSYM+

∫
d4~xO∆(~x)φ̄∆(~x) (7.16)

which, upon differentiation with respect to φ̄∆(~x), gives correlation functions for the operators
in the usual way:

〈O(~x1)...O(~xn)〉 =
δn

δφ̄(~x1)...δφ̄(~xn)
ZO[φ̄]|φ̄=0 (7.17)
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where we have temporarily dropped the subscript ∆ for notational convenience.
Since the correspondence states that SYM is dual to a string theory, there should be some way

of computing this correlation function on the string/gravity side. Clearly, the above generating
functional (7.16) should be equivalent to some string theory generating functional for the field
φ (after compactification on S5) with boundary value φ̄. If we are in the classical supergravity
limit however, this generating functional becomes particularly simple since the phase oscillations
cancel (i.e. the stationary phase approximation; see [ZEE2]) and thus the only contribution to
the path integral comes from the extremum i.e. the classical solution to the equations of motion.
Following [NAS], the Witten prescription [WIT] for mapping correlators in AdS/CFT (in the
classical supergravity limit) is then given as:

ZO[φ̄∆] =

∫
D[SYM Fields]e−SSYM+

∫
d4~xO∆(~x)φ̄∆(~x) = e−SSUGRA[φ[φ̄]] (7.18)

where SSUGRA[φ[φ̄]] is the supergravity action evaluated at the classical solution φ[φ̄] which
has boundary value φ̄ (note that this supergravity action is obtained by compactification of the
Type IIB action on the 5-sphere, and becomes a gauged supergravity theory since it is in an
AdS background (see [NAS])). Correlation functions in SYM can then be calculated in classical
gravity by using equations (7.17)-(7.18).

An important step in using equation (7.18) to computing correlation functions is to be able to
construct the classical bulk solution in AdS5 space, since this is substituted into the supergravity
action on the RHS. To this end, we may use the method of Green’s functions familiar from classical
field theory. Here there is in fact a slight generalisation since AdS space has a boundary (see
[FRE] for a detailed discussion of AdS propagators). We define the bulk-to-boundary propagator
by:

�5KB(~x, x0; ~x′) = δ(4)(~x− ~x′) (7.19)

where �5 is as in (7.4), and the RHS clearly represents a delta source on the boundary of AdS
space. We then construct the full bulk solution as:

φ(~x, x0) =

∫
d4~x′KB(~x, x0; ~x′)φ̄(~x′) (7.20)

From (7.19) (generalised to AdSd+1) and using (7.4) one finds the solution:

KB(~x, x0; ~x′) =
Cxd0

(x2
0 + |~x− ~x′|2)d

(7.21)

where C is a normalisation constant. We shall use these expressions in the example discussed in
the next section.

7.3 Example: Calculation of the 2-point Function for Scalars

One of the simplest checks we can provide is that of computing the 2-point correlation functions
of scalars. This is an illustrative example because we saw in section 2.3 that the 2-point functions
of scalars in a CFT are entirely fixed to have the form (2.41). If we are able to derive this form of
the correlation function (for an appropriate dimension ∆) from the associated supergravity theory,
using the Witten prescription (7.18), then we will have our first check of the correspondence. In
this section we follow closely the argument presented in [NAS].

Let us thus consider the 2-pt. function of a scalar CFT operator O corresponding to a
massless scalar φ in the gravity theory. From (7.17) and (7.18) we have:

〈O(~x1)O(~x2)〉 =
δ2

δφ̄(~x1)δφ̄(~x2)
e−SSUGRA[φ[φ̄]]|φ̄=0 (7.22)
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The 5-dimensional supergravity action, after using (7.20), has the following schematic scalar field
contribution:

SSUGRA[φ[φ̄]] ∼
∫
d5x
√
g

∫
d4~x′d4~y′∇µKB(~x, x0; ~x′)φ̄(~x′)∇µKB(~x, x0; ~y′)φ̄(~y′) +O(φ̄3)

(7.23)
where, schematically, ∇µ∇µ ≡ �5 is the kinetic operator. From (7.23) we see clearly that:

SSUGRA[φ[φ̄]]|φ̄=0 =
δSSUGRA[φ[φ̄]]

δφ̄
|φ̄=0 = 0 (7.24)

since all terms include at least two fields φ̄, and thus non-zero contributions begin at second
order derivatives, giving (abbreviating the action as S for convenience):

〈O(~x1)O(~x2)〉 =
δ

δφ̄(~x1)

(
− δS

δφ̄(~x2)
e−S

)
|φ̄=0 = − δ2S

δφ̄(~x1)δφ̄(~x2)
|φ̄=0 (7.25)

For the 2-point functions we may thus ignore the interaction terms implicit in (7.23), since we
take only 2 derivatives before setting φ0 = 0; this greatly simplifies the problem, and only applies
to the computation of the 2-point function (and not, for example, to the computation we shall
discuss in section 7.4). We can thus effectively consider a free massless scalar field with equation
of motion �5φ = 0 and action given by the usual expression:

S =
1

2

∫
d5x
√
g∂µφ∂

µφ (7.26)

which upon integration by parts and using the equation of motion to kill one term becomes:

S =
1

2

∫
d5x
√
g∂µ(φ∂µφ) =

1

2

∫
boundary

d4~x
√
h(φ~n · ∇φ) (7.27)

where h is the metric on the boundary, and ~n · ∇ is the component of the gradient normal to
the boundary.

Let us unpack each of the terms on the RHS of equation (7.27) individually before taking the
boundary limit x0 → 0 of the full expression. Since the boundary is defined by a slice of constant
x0, from (7.2) we thus have

√
h = x−d0 and ~n · ∇ = x0∂/∂x0. From (7.27), we see that we

also need to investigate φ~n · ∇φ = φx0∂φ/∂x0 at the boundary. Clearly, by construction, in this
limit we let the scalar field become its associated boundary value i.e. φ(~x, x0) → φ̄(~x). Note
that from (7.20) we have:

x0
∂φ

∂x0
(~x, x0) = x0

∫
dd~x′

∂KB

∂x0
(~x, x0; ~x′)φ̄(~x′) (7.28)

and furthermore from (7.21) we have:

∂KB

∂x0
(~x, x0; ~x′) =

dCxd−1
0

(x2
0 + |~x− ~x′|2)d

− dC2xd+1
0

(x2
0 + |~x− ~x′|2)d+1

(7.29)

In the limit x0 → 0, the factors of x0 in the denominators in (7.29) become negligible, and
furthermore xd+1

0 → 0 faster than xd−1
0 does. The first term is thus clearly dominant, and we

have:

x0
∂KB

∂x0
(~x, x0; ~x′)→x0→0

dCxd0
|~x− ~x′|2d

(7.30)
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and so using (7.28) we obtain:

x0
∂φ

∂x0
(~x, x0)→x0→0 dCxdo

∫
dd~x′

φ̄(~x′)

|~x− ~x′|2d
(7.31)

We are now in a position to compute the 2-point correlator. From (7.27) for a general d we
have:

S =
1

2

∫
boundary

dd~x
√
h(φ~n · ∇φ)

= lim
x0→0

1

2

∫
dd~xx−d0 φ(~x, x0)x0

∂φ

∂x0
(~x, x0)

=
dC

2

∫ ∫
dd~xdd~x′

φ̄(~x)φ̄(~x′)

|~x− ~x′|2d

(7.32)

From equations (7.25) and (7.32) we thus find by simple differentiation that the 2-point function
is given by:

〈O(~x1)O(~x2)〉 = −Cd
2

1

|~x− ~x′|2d
(7.33)

Comparing back to equation (2.41), we see that this is exactly the form we derived for a 2-
point correlation function of scalar primary operators of dimension ∆ = d in a CFT, which is
consistent with the fact that here the field in question is massless (c.f. equation (7.11) for general
d). We thus have our first check of the AdS/CFT correspondence, since we have derived a CFT
correlation function from classical supergravity, and confirmed that it is indeed of the correct
form.

7.4 Example: The 3-point Function for the R-Symmetry
Currents and its Anomaly

The example provided in the previous section, although illuminating, is somewhat restricted in
its scope as evidence for the correspondence, since the calculation was performed at the level
of the free theory i.e. the supergravity interaction terms did not contribute to the correlation
function. Indeed, notice further that the analysis was in fact entirely done for a general spacetime
dimension d, and was thus not specific to the original correspondence. We thus here provide
another example, again closely following [NAS]; this example is considerably more involved and
we by no means perform the calculation in full, instead being content with briefly highlighting the
general structure of the computation. The argument sketched will also illustrate some aspects of
the general method used (i.e. Witten diagrams) when calculating CFT correlation functions from
the associated supergravity theory (in general, as discussed in section 3.3, correlation functions of
BPS operators provide important checks since their conformal dimensions are protected against
quantum corrections; details of how to perform such calculations are provided in section 8 of
[FRE] and chapter 5 of [ERD]).

We introduced in section 3.1 the concept of R-symmetry; indeed, the N = 4 SYM theory
has an SU(4)R symmetry and thus will have conserved currents Jaµ (which are composite, gauge
invariant operators) arising from Noether’s theorem in the usual way. As mentioned in section
2.3, classical symmetries may sometimes be broken upon quantization giving rise to anomalies;
there is such an anomaly for the R-symmetry currents meaning that:

∂

∂xµ
〈Jaµ(~x)Jbν(~y)Jcρ(~z)〉 6= 0 (7.34)
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and this anomaly is antisymmetric in µ, ν, ρ and appears at 1-loop order only, meaning that it can
be calculated exactly i.e. it is an unrenormalised quantity. This is extremely useful as it allows
the computation of the anomaly from the AdS side to be directly compared to the known answer
computed using CFT (recall the importance of unrenormalised quantities, due to the fact that
the classical supergravity regime is the strong-coupling regime on the gauge side as discussed in
sections 6.2 and 6.3).

From the Witten prescription we know that the composite, gauge-invariant R-currents Jaµ
will couple to the non-renormalisable modes of some associated supergravity field, and from the
index structure this will have the form Aaµ, with associated boundary value Āaµ. We know that
a is an R-symmetry index in the algebra SU(4) ∼= SO(6); it turns out that on the supergravity
side the fields Aaµ are then the gauge fields of the 5-dimensional gauged supergravity obtained
by compactification of Type IIB supergravity on S5 (with isometry group SO(6)). The Witten
prescription, analogous to (7.18), then states the following:

ZJ [Ā] =

∫
D[SYM Fields]e−SSYM+

∫
d4~xJaµ(~x)Āaµ(~x) = e−SSUGRA[A[Ā]] (7.35)

where, again, on the RHS one substitutes the classical solution A[Ā] in SSUGRA with boundary
value Ā. In analogy to (7.22) and (7.25) one then has:

〈Jaµ(~x)Jbν(~y)Jcρ(~z)〉 =
δ3e−SSUGRA[A[Ā]]

δĀaµ(~x)δĀbν(~y)δĀcρ(~z)
|Ā=0 = − δ3SSUGRA[A[Ā]]

δĀaµ(~x)δĀbν(~y)δĀcρ(~z)
|Ā=0 (7.36)

The bulk solution is then given in terms of the boundary value via the bulk-to-boundary propagator
as in (7.20):

Aaµ(~x, x0) =

∫
d4~x′Gµα(~x, x0; ~x′)Āaα(~x′) (7.37)

except now the bulk-to-boundary propagator Gµα is gauge-dependent since Aaµ is (in actually
doing the calculations it is useful to choose a bulk-to-boundary propagator that is conformal on
the boundary).

Given (7.36)-(7.37), we see that for the 3-point function we are only interested in terms
in SSUGRA that are cubic in the gauge field. The 5-dimensional supergravity action has the
following schematic form for Aµ [NAS]:

SSUGRA|Aµ ∼
∫ [

(A)2 term + (AaµA
b
νA

c
ρ) term + ...

]
(7.38)

where the quadratic term determines the propagator, and one may then perform classical per-
turbation theory in the interaction terms using tree-level diagrams known as Witten diagrams
(the restriction to tree-level comes from the fact that we are in the classical limit; loops would
correspond to quantum corrections). Witten diagrams are essentially tree-level Feynman dia-
grams, but there is an extra feature present due to the fact that AdS space has a boundary;
the bulk of the spacetime is then represented as a disc, with the outer circle representing the
boundary of the space. Propagators are then represented as usual by lines (and may be either
bulk-to-bulk, bulk-to-boundary, or boundary-to-boundary), and the vertex factors are determined
in the usual way from the supergravity action. As an example, the only diagram that contributes
to the calculation of the 3-point function in question is given in Figure 7.1, which consists of 3
bulk-to-boundary propagators and a single 3-point vertex.

Let us consider specifically the anomaly of the 3-point function. In addition to a term that
is cubic in the gauge fields, the contribution from the action should also be antisymmetric in the
spacetime indices, since we mentioned previously that the anomaly has these properties. Such
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~x ~y

~z

Figure 7.1: Witten diagram contributing to the 3-point R-current function.

a term does appear in the 5-dimensional supergravity action and is known as the Chern-Simons
term which has the form:

SCS(A) =
iN2

16π2
Tr

∫
d5xεµνρστ (Aµ(∂νAρ)∂σAτ + ...) (7.39)

One can determine the R-current anomaly from the gravity side rather neatly in the following
way. Under a gauge transformation δAaµ = (DµΛ)a = ∂µΛa + gYMf

a
bcA

b
µΛc (where fabc are the

structure constants of the gauge group) one finds (see [NAS] for all details):

δΛSCS = − iN
2

16π2
dabc

∫
boundary

d4xεµνρσΛa∂µ

(
Abν∂ρA

c
σ +

1

4
f cdeA

b
νA

d
ρA

e
σ

)
(7.40)

where dabc = Tr(Ta{Tb, Tc}), and since the integral is performed on the boundary we may replace
A→ Ā throughout. However, from the Witten prescription (7.35) we also have:

δΛSSUGRA[A[Ā]] = δΛ(−lnZ[Ā]) =

∫
d4xδĀµa(x)Jaµ(x) = −

∫
d4xΛa(DµJµ)a (7.41)

and thus by comparison one finds the following operator equation for the covariant derivative of
the R-symmetry current:

(DµJµ)a(x) =
iN2

16π2
dabcε

µνρσ∂µ

(
Ābν∂ρĀ

c
σ +

1

4
f cdeĀ

b
νĀ

d
ρĀ

e
σ

)
(7.42)

It turns out that this agrees exactly with the CFT 1-loop anomaly computation (given via (7.34)),
thus confirming the validity of the correspondence in this case.

In addition to the anomalous part, one may proceed to compute the full 3-point function using
the method sketchily laid out in this section, and proceeding roughly in a similar fashion to the 2-
point function calculation done previously (though in the present case the supergravity interaction
terms cannot all be ignored). After some work (again see [NAS] for details), one finds that the
function has the correct spacetime dependence for a CFT 3-point function, and furthermore
agrees exactly with the result one obtains at 1-loop order in the CFT computation. This latter
result is perhaps somewhat surprising, since we mentioned previously that the supergravity limit
on the string theory side corresponds to the strong-coupling regime on the gauge theory side;
we would thus not expect the supergravity result to precisely agree with the result one obtains
from the lower orders of CFT perturbation theory. Clearly then, for the above to be true, there
must be a non-renormalisation theorem which means that the full 3-point function (not just the
anomaly) is in fact 1-loop exact; as discussed in [NAS], such a theorem was indeed proven, using
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the superconformal symmetry of the theory. We have thus seen another check of the AdS/CFT
correspondence, and indeed one that is more powerful than that in the previous section, since
the current check is performed at the level of the full interacting theory. There is, however,
a limit to how far the scope of these tests extends related to the fact that they are based on
unrenormalised quantities; we shall briefly discuss this issue in section 8.2.



Part III

Conclusion: Beyond the Original
Conjecture
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Chapter 8

Conclusion

8.1 Extensions of the Correspondence

In this dissertation we have been primarily concerned with the original AdS/CFT correspondence
due to Maldacena, relating Type IIB theory on AdS5 × S5 to N = 4 SYM. This required con-
siderable background since we saw, for example, that the gauge theory in the correspondence
is both supersymmetric and conformal, leading to a larger superconformal symmetry (which we
mentioned has special representations of particular importance in testing the correspondence).
These need not be general features of a gauge/gravity duality however. Indeed, the original
correspondence has been extended to other cases containing, for example, less supersymmetry
and/or no conformal symmetry on the gauge theory side. The original correspondence is par-
ticularly powerful since the high levels of symmetry available allow numerous computations to
be performed. Conceptually, however, it is fairly remote from the gauge theories we see in na-
ture, which seem to be neither supersymmetric nor conformal. These extensions of the original
correspondence are thus important, and are being continually studied in the field.

Before briefly mentioning such examples however, we note that there are in fact other cases
which relate a string theory in an AdS background to a gauge theory with conformal symmetry
and maximal supersymmetry, much like the original correspondence. The string theory in question
is now the somewhat elusive M-theory which, although not very well understood, is known to
have as its low energy limit the D = 11 supergravity theory. In the same way that AdS5×S5 arose
as the near-horizon limit to a stack of D3 branes, the maximally supersymmetric backgrounds
for D = 11 supergravity given by AdS4 × S7 and AdS7 × S4 can be seen to arise from brane
solutions known as M2 and M5-branes. Indeed, in a similar fashion to the decoupling argument
discussed in chapter 6, Maldacena motivated [MAL] that M-theory in these backgrounds is in
fact dual to particular conformal field theories in 3 and 6-dimensions respectively.

Furthermore, there is a class of correspondences relating a string theory in the background
AdSd+1×X (for some space X) to a gauge theory in d-dimensions with conformal symmetry but
less than maximal supersymmetry. Indeed, recall from section 6.4 that the presence of an AdS
background relates to the presence of conformal symmetry in the gauge theory, since the isometry
group of AdSd+1 is the conformal group in R1,d−1. Furthermore, we saw that for X = S5 the
isometry group was equivalent to the R-symmetry group of the gauge theory, which is directly
related to the degree of supersymmetry N (see section 3.1). We thus see that we can modify the
degree of supersymmetry by modifying this space X. For example, by starting with a maximally
supersymmetric theory, we may divide the corresponding space X by some discrete subgroup,
thereby reducing its isometry group and thus reducing the number of supersymmetries on the
gauge theory side (more details and an example of such a correspondence are provided in [NAS]).
In this manner we may produce correspondences with less supersymmetry on the gauge theory
side, as is important for the reasons mentioned previously. Such cases may be tested in similar
ways to those described in chapter 7 for the original correspondence, though generally fewer tests
are possible since the presence of less symmetry means that fewer quantities are protected against
quantum corrections. It is also possible to break the conformal invariance of the gauge theory,
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which is important for practical applications. This may be achieved, for example, by considering
the gauge theory at finite temperature; the introduction of a temperature sets an energy scale
and thus breaks the scale (and thus conformal) invariance of the theory. The energy scale of the
gauge theory then becomes significant since the theory is no longer conformal, and is identified
with the additional dimension on the gravity side (see [NAS]) e.g. the radial dimension x0 or r
for AdSd defined in section 5.4. It turns out that the UV regime of the gauge theory corresponds
to the IR (or large distances) regime of the gravity dual, leading to what is sometimes known as
the UV-IR correspondence.

We briefly summarise some general properties of gauge/gravity dualities relevant to the as-
pects we have discussed in the present dissertation (a more complete mapping is provided in
[NAS]). First, the gauge group (which in addition to SU(N) may be other groups such as
SO(N) or Sp(N)) has no analogue in the gravity theory (e.g. SU(N) in the original corre-
spondence does not appear on the gravity side); indeed, only gauge invariant observables can be
calculated, such as the correlation functions of gauge invariant operators discussed previously.
Second, the global symmetries of the gauge theory (e.g. the R-symmetry of N = 4 SYM) corre-
spond to gauge symmetries in the compactified gravity theory (e.g. the gauged supergravity one
obtains from compactifying Type IIB on S5); the Noether currents in the former then couple to
the gauge fields in the latter, as in the example we saw in section 7.4 (in general, the gravity
fields correspond and couple to some gauge invariant operators in the gauge theory, similar to
that in section 7.1). Finally, the couplings are always related by gs ≡ g2

g where gg is the gauge
theory coupling; this fundamentally arises from the fact that the closed string coupling constant
is the square of the open string coupling constant, as discussed in section 4.2. We see that there
are thus many structural similarities between different gauge/gravity dualities.

8.2 Closing Remarks

The AdS/CFT correspondence is a continuously growing field of active research. We have seen in
some detail how the original correspondence is motivated and formulated, and described how tests
of the correspondence are possible. There is however a subtle point worth mentioning regarding
these tests as alluded to at the end of chapter 7. The tests we have predominantly described
involve unrenormalised quantities on the gauge theory side, which are important since they allow
for computations in the CFT that can be compared with the results obtained from the associated
gravity theory. However, there is some debate concerning how deep the evidence that these tests
provide for the correspondence really runs, since the results are essentially consequences of the
symmetries (which we have already checked agree on the two sides) and so do not necessarily
prove that the dynamics of the two theories are equivalent in a non-trivial way. There has
however been much work in attempting to provide non-trivial checks of the correspondence at
the dynamical level, for example by studying integrability in AdS/CFT (see [INT]) and gauge-
invariant quantities known as Wilson loops (see [GRO] for example). Many such checks have
indeed been performed in the literature, providing strong evidence for the conjecture, even if it is
yet to be fully proven in a rigorous manner. We have also briefly seen how the correspondence can
be extended to other cases; some of these, for example, are of particular interest in applications
to condensed matter physics and the study of realistic gauge theories. In addition to these
applications, it is of course also of great conceptual interest that the bulk gravitational degrees
of freedom may be encoded in a boundary theory via holography; this is an idea that has captured
scientists and philosophers alike, and is likely to be one that will be investigated for sometime.
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