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You need a different way of looking at them than starting from single particle

descriptions.You don’t try to explain the ocean in terms of individual water molecules

Sean Hartnoll [1]
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Chapter 1

Holographic and Condensed

Matter Preliminary

1.1 Introduction : The duality

The duality is the far reaching theoretical physics concept, ranging from the quantum Hall

fluid to string theory. It is often made out by some theorist to be a branch of higher mathematics

but in fact it derives from an entirely physical idea. The two theories are said to be dual once

there exist a set of dictionary rules that we can map one theory to the other. It is one of the key

concept that leads to the revolution in string theory when people realise that six different string

theories can be linked to each others by several kinds of dualities as illustrated in FIGURE 1.1

Figure 1.1: The duality web representing the way six string theories are linked together.
This figure is taken from [2]

The holographic principle, AdS/CFT correspondence, gauge/gravity duality are the names

that were given to the particularly interesting duality. In short, it is the map between semiclas-

sical theory of gravity to the quantum field theory in one lower dimensions, as if the quantum

theory is the hologram of the gravity theory. The quantum field theories that are applicable

have been found in various systems, for example the quark-gluon plasma and quantum critical

point.

1



Chapter 1. Holographic and Condensed Matter Preliminary 2

The physics of the quantum critical point has been the main theme of the condensed matter

study for some times. One of the reasons is because it seems to underly the physics of the

high temperature superconductor. Aside from the technological applications, these strongly

interacting systems are particularly interesting since they cannot be explained using the currently

understood quantum field theory for weakly interacting systems. It seems that we need a new

way to formulate the quantum field theory that gives the strongly interacting system from the

start. The fact that the gauge/gravity duality gives us an accessibility to strongly correlated

field theory as a starting point raises hope for understanding these classes of quantum systems.

The plan of this dissertation is the following. For chapter 2, the dictionary rules for the

condensed matter are introduced together with the outline for calculate some quantities, which

are more complicated to do in the standard field theory approach. The main theme of this

dissertation is in chapter 3, where I will fully focus on the popular holographic models of fermions.

These models includes the semi-local quantum liquid, electron star, hard wall fermi liquid and

the holographic fractional fermi liquid. At the end of this review, I will discuss about recent

promising works that may link together the physics of black hole, condensed matter and quantum

information.

For the rest of chapter 1, I will introduce two seemingly uncorrelated physics. Firstly, I will

outline the AdS/CFT correspondence from string theory point of view and explain why it can

be useful. Then, a very condensed matter inclined introduction to the theory of electrons will

be discussed. The aim of this section is to give motivations why some of the condensed matter

systems are so hard to deal with. The second part of the condensed matter introduction is about

the quantum critical point, which is the first arena of the Ads/CFT in condensed matter physics.

At the end of this chapter, I will outline some features that might link these two areas together.

1.2 Decoupling argument : AdS/CFT correspondence

1.2.1 Same Physics with Two Points of Views : Baby Problem

Before starting the discussion on string theory, let’s look at the problem of an electron

interacting with a proton (or a chunk of quarks). If one wants to study the dynamics of this

electron, they can do it in two following ways.

1. Draw Feynman diagrams including interaction vertices between quarks and the electron

2. Calculate the background electric potential created by the proton

These two methods should give the same physics with the accuracy depending on how

careful we calculate the background potential. Note that we will only take into account the

presence of the proton in the first picture while we only look at the background potential in the

other. Moreover, when we do the calculation, we only use only one of these two pictures. Not

both.
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I am introducing this baby problem since it is conceptually similar to the decoupling argu-

ment I will discuss in a few lines. With this picture in your head, hopefully, I can convince you

that the AdS/CFT correspondence is not some random esoteric statement from string theorists.

1.2.2 Brane and open string

Let’s move from the baby QED to string theory. The role of electron in the baby problem

is now played by the closed fundamental string, which looks like a very thin rubber bandThe

main difference(other than the fact that closed F1 is a 1-dimensional object) is that the string

F1 also interacts with graviton and other gauge field [3]. Therefore, its trajectory in spacetime

forms a world sheet which spans in the time direction instead of a world line of a particle.

In perturbative string theory, people study normal modes of this world sheet and quantise it

into states with different masses and spins [4, 5]. Moreover, the spectrum of a closed string not

only contains one type of particle but also several types depending on the supersymmetry of the

theory[3].

The other object in this setup is called “Dp- Brane” which extend in p spatial directions

and 1 time direction. We say that the p+1 dimensional space spanned by Dp-brane is the brane’s

World Volume. The D-brane is special because it allows the fundamental strings F1 to end

on it. When the two end-points of the F1 are on the brane, we can say that the string has no

tension(since it is not stretched) and hence massless. The string with this boundary condition is

called open string. Similar to the closed string case, the open string states also represent several

kinds of particles. In fact, the supercharge of the theories living on a brane is reduced from the

theories in the background without a brane by half. However, I will not discuss about this in

detail.

Figure 1.2: The illustration of two parallel D2 branes with an open string on each brane and
one open string stretching between two branes. Note that the arrows represent the “chirality”

of the string and different direction means different states.
This picture is taken from [6]



Chapter 1. Holographic and Condensed Matter Preliminary 4

Now, we are going to see a bit more interesting setup from branes and string. Imagine two

branes parallel to each other. There can be strings ending on each brane and strings that stretch

between two branes as illustrated in FIGURE 1.2. In this figure, only the strings stretching

between two branes have a tension and therefore are massive. Therefore, fields that live on each

brane are massless. There are also two additional massive multiplets from two strings stretching

between branes. These massless open string states include a 1-form gauge field that lives only on

the brane and interacts with the end point of the massless multiplet. This interaction is similar

to the U(1) gauge field coupling to the point charge particle.

Figure 1.3: LEFT: The world sheet of a closed string emitted from the brane. The graviton
is contained in the supermultiplet represented by the closed string

RIGHT: The flat 9+1d Minknowski spacetime deformed into AdS5×S5 near the brane which
lives down the “throat” of this spacetime. These figures are taken from [7]

Something interesting happens when we move these two branes so that they coincide. It

can be shown that the mass of the strings stretching between branes vanish (see e.g. Ref[6] ).

Now the massless gauge field came from 4 open strings in FIGURE 1.2. We can pack these 4

gauge fields together into U(2) gauge group. By separating the branes we break the gauge group

from U(2) to U(1)×U(1), which mimicks the Higgs mechanism! This is clearly a beautiful insight

from string theory. However, the feature I want to emphasise is that we can form an U(N) gauge

group with large N by stacking N Dp-branes together. The stack of N Dp-branes is essential to

the decoupling argument discussed in the next section.

Final comment before moving to the famous Madacena’s decoupling argument is that,

similar to the closed string, the Dp-brane also has mass. Thus a large number of stacked

branes (which are heavy enough) can deform the spacetime it lives. This process is called a

“backreaction”. This can be interpret as a brane acting as source that emit gravitons as shown

in FIGURE1.3.

The things I emphasise above are common knowledge from master level string theory course.

Readers can find out more about these topics in e.g. [3–6]
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1.2.3 Decoupling argument

Let me return to the situation similar to the baby problem discussed earlier. However, we

will consider the system of a closed string and N D3-branes instead of an electron and quarks.

The background spacetime of this setup becomes more exotic. Instead of working in 3+1 d

Minkowski spacetime, I will consider the 9+1 d Minkowski with 32 supercharges. The string

theory in this setup is called the Type IIB string theory. Similar to the baby problem, we can

look at this situation from two perspectives as shown in FIGURE 1.4, namely

1. Brane perspective: String moves toward the stack of branes, interact, then bounces off.

2. Spacetime perspective: String moves in a non-trivial spacetime background(resulting

from the branes’ backreaction)

The world sheet of the string ending on branes has two interpretation (see FIGURE 1.4

LEFT). In the brane perspective, We can think of the ingoing closed string acting as a source

of the open string living on the branes. The open string then propagates along the branes and

vanished once the closed string bounced away. The role of a closed string as a source/sink of

the open string on the brane will become an important concept when I introduce the dictionary

rules next chapter.

(a) String interacts with brane in brane perspective (b) String interacts with the spacetime deformed by branes
in spacetime perspective

Figure 1.4: LEFT: The closed string (red) moving toward the brane lying on the AB plane.
The open string(blue), sourced by the incoming string propagating along the brane. RIGHT:

The string propagating in the non-trivial geometry background (black shaded area).

The way to obtain the other perspective is to consider the emitted closed string that interacts

with the incoming one. As mentioned earlier, the closed strings also represent the graviton and

others particles due to the supersymmetry. Hence, we can say that the incoming closed string

interact with the graviton emitted from the branes. This is equivalent to the situation where

the incoming closed string move in non-zero gravitational potential background, which is exact

the spacetime perspective defined earlier.

In order to proceed to the decoupling argument, we are interested in the massless modes

which survive in a low energy limit. The action of the massless mode in brane perspective has
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the form[8]

S = Sbulk + Sbrane + Sint (1.1)

Sbrane is the action of the field living on the brane. Sbulk is the action of the closed string in

the R9+1 background. If we only consider the string’s low energy excitation, these actions will

become the N = 4 super Yang-Mills action and the Type IIB supergravity action respectively.

The theory with higher energy will require higher order derivative terms as a correction to the

N = 4 and Type IIB action. Note that the N = 4 super Yang-Mills theory is special in the

sense that it is the field theory that preserves conformal symmetry (thus called conformal field

theory or CFT). More details and definitions of CFT can be found in[8, 9] or [10]

On the other hand, with the spacetime perspective, the closed string at low energy is also

described by the supergravity action. The difference from the branes perspective is that, here,

we no longer ‘see’ the branes but have the supergravity in the curved background, which formed

by the stack of D3-branes. This spacetime is depicted in FIGURE1.3 and described by the

metric[7, 8, 11]

ds2 =
1√
H(u)

(
−dt2 + dxidxi

)︸ ︷︷ ︸
R3+1

+
√
H(u)

(
du2 + u2dΩ2

5

)︸ ︷︷ ︸
R6

(1.2)

with

H(u) = 1 +
L4

u4
; L4 = dp l

4
s (gsN)

where dp is some numerical factor and gs is the string coupling (which is inversely proportional

to the amplitude for the closed string from D-brane) [7, 8]. We can see that when u → ∞, the

metric become Minkowski space R9+1. While in r � L, the metric will have the form

ds2 =
u2

L2
(−dt2 + dxidxi) +

L2

u2
du2 + L2dΩ2

5 (1.3)

The last term on the right-hand side describe the 5-dimensional sphere S5 with the radius L as

labelled in FIGURE1.3. The first two term is the spacetime called 5-dimensional Anti de-Sitter

space (AdS5). This is exactly where the AdS part in the AdS/CFT came from. The picture of

this spacetime is the part down the “throat” in FIGURE1.3 -RIGHT.

We are now very close to the decoupling argument story. Let’s compare what we have in

both brane and spacetime pictures.

Brane Perspective Spacetime Perspective
Open string lives on the branes Closed string propagating in ’throat’

described by Sbrane part at u� L
+ +

Closed string lives in the flat background Closed string lives in the flat background
described by Sbulk part at u� L

I have to emphasise that both brane/spacetime perspective describe the same physical

system. The situation here is very similar to what we discussed the baby problem, despite a lot

more enigmatic buzzwords. Here we can see that there are something peculiar. Both pictures
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have two sectors. One of the sectors in both picture is closed string in the flat background.

These two sectors are not separated, of course. Their interaction indicated by the presences of

Sint in the brane perspective action and, in the spacetime perspective, the fact that the closed

string can propagate back and forth between u� L and u� L regions.

But it is known that AdS spacetime is the solution of the Einstein field equation with

negative gravitational constant [7, 12]. So there is a possibility that the string at u� L propa-

gating toward u � L is unable to reaches the region u � L due to the pressure created by the

gravitational constant term. This statement can be made more explicit in [8] and the references

therein, which consider the low energy absorption crossection. The form of this crosssection is

∼ E3L8. The small absorption at low energy mode (with small E) indicate that the low energy

string in asymptotically flat background at u � L hardly reaches the u � L. Furthermore,

we notice that the factor u2/L2 in the metric (1.3) where u/L → 0 cause an infinite redshift

as if u = 0 is an event horizon. This type of horizon is called the Cauchy horizon or the

Poincaré horizon. Hence, the string excitations near the Poincaré horizon, which can be high

energy excitations, suffer from the redshifted and become low energy excitations to the observer

at large u. For the observers in the asymptotically flat region, the local high energy excitations

near the Poincaré horizon become infinitely redshifted and are unable to interact with the closed

strings in the region u/L→∞.

What does this means! It means that we may tune parameters in the theory such that

the two string sectors not “talk” to each other. Since we can ignore the interaction between

the two sectors, we say that the string in AdS5 × S5 (u � L) and the string in R9+1 (u � L)

are decoupled. It is natural to suspect that, in the brane perspective, the open string and the

closed string sectors may decoupled as well. And indeed, it is. [7, 8, 11]

Back in 1997, Maldacena proposed this insightful conjecture that we can then ignore the

closed string part that living in flat spacetime in both perspectives [13]. Thus what

we have left is the physical physical situation that can be described by the two different physics.

The field theory describing the open string living on the brane world volume corresponds to the

supergravity describing closed string propagating in AdS5×S5! In short, we say that these two

theories are dual of each others. It is definitely not so obvious but both pictures indeed

represent the same physics!

1.2.4 Do they really decoupled ?

We just finished a section of handwaving introduction of the AdS/CFT correspondence.

Now I will examine what limits we are working on and explain what do they mean.This is a

standard discussion which I include for completeness of the dissertation. Similar materials can

be found from standard AdS/CFT review articles e.g. [7, 8, 11] or, for brave, [9].

In the spacetime perspective, we have the Type IIB supergravity action with metric gMN ,

the 2-form field strength Fµν , which lives on the branes’ world volume, and the dilaton φ, which
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φ→ 0 at large u. The action has the following form.

S =
1

2κ2

∫
d9+1x

√
−g
[
R− 1

2
(∂φ)2

]
︸ ︷︷ ︸

whole spacetime

−1

4

∫
d3+1x

[
e−φTrF 2

]
︸ ︷︷ ︸
D3-brane world volume

+ . . . (1.4)

At low energy limit, we don’t want the string to oscillate too much. Therefore, the string

tension, which is inversely proportional to the string length scale ls (or sometimes written as
√
α′) has to be very large compare to the other energy scales in the theory. However, there is

only one other length scale namely the radius L of the sphere S5. Therefore, we have

L� ls ; L4 ∝ O(gsN) (1.5)

The stack of branes must be heavy to ensure that a stack of branes is heavy enough to

backreact the spacetime into AdS5 × S5. Let us consider the equation of motion

RMN ∼ κ2F̃MABCDF̃
ABCD
N (1.6)

The constant κ2 = g2
s l

8
s plays the role of Newton’s gravitational constant in 9+1 dimension[7, 8].

We can read off the number of branes by looking at the flux of the field strength 5-form F̃ABCDE

that sources the branes. This is in fact similar to Guass law, which the electric field E ∝ the

charge Q. The field strength is therefore proportional to the number of branes F̃ ∝ N . We

also know that the The Ricci tensor RMN ∝ L8 by either dimensional analysis, or plugging in

the solution (1.2) into the Einstein equation (1.6). Putting all these together the equation (1.6)

becomes

L4

l4s
= gsN ≡ λ � 1 (1.7)

The parameter λ is usually referred to as the ’t Hooft coupling. Now, let’s see what will happen

if we take these limits.

1. The higher derivative terms in both Sbulk and Sbrane in both perspectives must be di-

mensionless. Thus they must proportional to the string scale ls and suppressed in the

low energy limit [11]. Therefore all the fields in the bulk are massless and the theory on

brane/bulk becomes N = 4 super Yang-Mills/ Type IIB supergravity.

2. For a large but finite λ, we can see that κ2 ∝ 1/N2. This means that the gravity in the bulk

can be treated semiclassically for a large value of N (sometimes called Large N limit). In

this limit, the complicated quantum gravity effect can be ignored.[7, 8]

3. In the brane picture, we can expand the metric around the flat background (since the

spacetime is flat in this picture) as g ∼ η + κh. The interaction term Sint becomes [11]

Sint ∼ κ

∫
d4xTr

(
F 2
µν −

δµν
4
F 2

)
→ 0

in the large N limit, where F is the 2-form field strength. The string on the branes and

the string in the flat background have decoupled as advertised.
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Let me end this section by showing you a glimpse of how this duality might be useful. The

physics of the D3-brane tell us that the string coupling is related to the Yang-Mills coupling

in N = 4 super Yang-Mills as gs ∼ g2
YM . We know that in the limit of large N and gYM ,

the gravitate in the dual theory is semiclassical. This suggest that we might be able to

study the strongly interacting quantum theory with a weakly semiclassical theory

of gravity! Due to the correspondence between brane perspective and spacetime perspective, I

will refer to them as field theory side and gravity side respectively.

What kind of field theory we can study with this duality other than N = 4 super Yang-Mills

with SU(N) gauge group? The early application in 2001 found a surprisingly match between

experimental results of quark-gluon plasma and the AdS/CFT prediction [2, 14]. The result

from the AdS/CFT analysis and from the experimental are strikingly similar despite the fact

that the quark-gluon plasma is described by QCD, which only has SU(3) gauge group and no

supersymmetry. The applications in condensed matter system started to appear in 2007[15].

But what kind of condensed matter system is applicable? and why should we interested in such

system? I will illustrate these points in the following section.

1.3 The Landau Fermi liquid theory and Quantum Phases

Transitions

1.3.1 Robustness of the Fermi liquid theory

The Fermi liquid theory is essentially the theory of electrons in metal, which is mainly a

composition between electrons and a lattice. We have learned from the undergraduates physics

that N electrons in d dimensions fill the states with momentum lower than kF ∼ N1/d and only

the portion of electrons near kF (called the Fermi surface) contributes to the thermodynamics.

Surprisingly, a lot of features of the metal are obtained by the model of non-interacting electrons

in a box, called the Sommerfeld - Bloch model [16, 17]. It is very peculiar that this model works

so well since the electrons are strongly interacted, via Coulomb interaction. The resolution to

this problem is that the Coulomb interaction is screened when we have a dense electrons system

[16, 18]. Let’s consider the system with an electron density n = N/Ld. The Coulomb potential

is ∼ n1/d due to the fact that the electron spacing is 1/n1/d. The kinetic energy of the quantum

oscillation for an electron on the Fermi surface is ∼ ~2k2
F /2m ∼ n2/d. The ratio of these two

energies is
Coulomb energy

kinetic energy
∼ 1

n1/d

which goes to zero as n→∞. Further explicit field theory calculation showing that the electro-

static potential takes the form e−kF r/r can be found in [18]. This indicates that the electrostatic

interaction is subleading and can be treated as a perturbation to the free electrons.

The theory of the Landau-Fermi liquid is the following. Free electron parameters (e.g.

mass) are corrected by the quantum correction from the interaction terms. The excitation on

the Fermi surface are no longer electrons (and holes) but a new entity called quasi-particles
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given that states of quasi-particle have a one-to-one correspondence with the states of the non-

interacting Fermi gas[16]. To guarantee that behaviour of the quasi-particle is exactly the same

as in the non-interacting ones, we need all interactions to be irrelevant. We start with the free

nonrelativistic Dirac Lagrangian and then add the interaction terms order by order. If there is

no marginal or relevant term according to Wilsonian renormalisation scheme, our theory works.

In the absence of a lattice, it turns out that all the interaction terms are irrelevant. This can be

seen by writing the action with all possible interactions and scale the momentum by s > 11. We

can see that the action takes the form [2, 19]

SFermi Liquid =

∫
dt

∫
ddk

(2π)d

[
ψ†σ

(
i∂t − vF (k − kF ) +

α

s
ω2 +

β

s
(k − kF )2 + . . .

)
ψσ

+
∑ 1

sjd
(ψ†ψ)j+1

]
(1.8)

Here σ is the spinor index and s is the scale factor defined in[19]. We can see that the Lagrangian

is reduced to the Dirac Langrangian if we follow the RG flows to s→∞. Thus all added terms

are irrelevant. At finite s, the electron’s parameters are renormalised. In this case the field ψ is

no longer describing the free electron but the Landau quasi-particle.

According to [20], the Fermi liquid can be regarded as the fixed point where all the per-

turbations away this theory flow back to. This makes the Fermi liquid theory very robust since

none of the perturbation are relevant2 It seems that, with this starting point, we cannot build

any metallic states other than the Fermi liquid. This would be very boring since it means we

have found the theory of all metal. Fortunately, it is not true and a counter example is present

in the next section

1.3.2 Signature of the (non-)Fermi Liquids

The signature of the Fermi liquid theory (1.8) has a robust effect on the retarded Green

function and the metal’s transport properties. From (1.8), the form of the Green function is

restricted to be

G−1
R (ω,k→ kF) = ω − vF |(k− kF )|+ Σ(ω,k) (1.9)

with Σ ∼ ω2/M comes from the leading term in the expansion (1.8). The term Σ is interpreted

as the decay rate of the quasi particle. The ω2 dependence implies that the decay rate is very

low for the low energy excitation. Thus the quasi particle is long lived. This is a reasonable

prediction, otherwise there would be no charge carriers in the metal.

Knowing the form of the Green function, one can shows that the specific heat of the metal

is linear in temperature and the low temperature resistivity increases quadratically[2, 16, 21]

CV ∼ T ; ρ(T ) ∼ ρ0 +AT 2 (1.10)

1According to[19], t → t/s, k → sk and ψ → s−
1
2 ψ for 3+1 spacetime. Note that the momentum k parallel

to the Fermi surface is not scaled.
2Note that, with the lattice, the term (ψ†ψ)2become marginally relevant and we get the standard low-

temperature superconductor.



Chapter 1. Holographic and Condensed Matter Preliminary 11

Figure 1.5: LEFT The atomic structure of the Lanthanum cuprate. RIGHT (Top Left)
Electrons struck on the plane and their spins exhibit antiferromagnetic properties. They are
able to move around once we increase the doping (Top Right). (Bottom) The phase diagram
of the curprate. Even at zero temperature, the electrons can be driven into the states other
then metal i.e. antiferromagnet, spin glass (SG) and the superconductor. The strange metal
phase, called pseudo gap and non-Fermi liquid, are found at non-zero temperature. This
picture is adapted from [22] but the phase diagram is replaced by the updated one from [24]

If the Landau-Fermi liquid theory is the theory of all metals, then all of them should obey (1.10).

This is very easy to verify that it is not true.

The famous counter example is the copper oxide compound called “cuprate” shown in

FIGURE 1.5. In this material, free electrons are confined in 2-spatial dimensional layers. The

other atoms act as some sort of scaffolding keeping these layers apart. The pristine state of the

cuprate is the Mott insulator where the electrons are stuck in the plane and unable to move.

We can obtain the different phases by removing the electrons on the plane - a process called

doping [22]. As a result, many phases, including the Fermi liquid, are obtained by doping and

increasing temperature as shown in FIGURE1.5. This compound receives a lot of attention due

to the existence of the “superconducting dome” that extends to a much higher temperature

(about 150 K) than the well-understood superconductor, which only exist below about 30 K

[23]. The existence of the high temperature superconductor leads to the hope that we might

be able to obtain the superconductor at the room temperature! However, I will focus on a the

theoretical issue regarding how the Fermi liquid can be driven into so many different phases since

all perturbations are irrelevant.

The hint is actually in the RG analysis [20]. It is true that all perturbation theories flow

back to the Fermi liquid fixed point. But what about non-perturbative theories with strong

interactions? Since they don’t have to flow toward the Fermi liquid fixed point, they may

correspond to the exotic phases in the phase diagram of the cuprate. We might hope that we

will be able to extract some physics from non-perturbative methods like Monte-Carlo simulation

in lattice field theory.
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However, simulating fermions is not as simple as bosons, which is already difficult. The

problem is referred to as “the sign problem”. This can be illustrated by looking at how we

calculate the partition function.[25, 26]

Z = Tr e−βH ∼
∑

all possible path

e−S[path] (1.11)

This can be generalised to N-body problem by changing e−S → ρ(R; R) where R = (r1, . . . , rN)

denotes the positions of N particles and ρ(Rinitial; Rfinal) denotes the density matrix. For bosons,

it does not matter how many particles you have since we don’t have to simulate all permutations

R → PR. Fermions have a completely different story. The odd permutations will result of

negative density matrix, due to the quantum statistic. Such permutations are not allowed since

they are result in a negative probability that particles will follow these paths. Computers need

to simulate each path and each permutation one by one to figure out which one has a negative

probability. It turns out that the number of computational processes grows as non-deterministic

polynomial function of N [25]. This kind of simulations for a realistic number of electron cannot

be done by any classical computers since, even for only a few hundreds electrons. This is

because the numbers of computational processes of such simulations can be much larger than

the estimated number of atoms in the universe! [27]

So in order to obtain phases of strongly interacting fermions from our current understanding,

we need to somehow bypass the brick wall of the sign problem. This is a very challenging

theoretical problem since none of our existing tools works, both perturbation and computer

simulation.

My focus in this dissertation is the non-Fermi liquid region above the Fermi liquids. Intu-

itively, by heating up a piece of metal, we should simply get a hotter one and expect no phase

transition. However the transport properties of this region are significantly different from those

predicted by the Landau-Fermi liquid theory. Phenomenological studies indicate that transport

properties of this strange metal can be obtained if the decay rate Σ took the form [21, 28, 29]

Σ(ω,k = kF ) = ω (c logω + d) (1.12)

where c is real and d is complex. How could this form of decay rate appear ? People haven’t

figured it out yet. The other clue is that the phase boundary of non-Fermi liquid looks like some

kind of ‘chinese fan’ attached to the superconducting dome. This might have something to do

with the phase transition driven by quantum fluctuation at zero temperature.[30]

1.3.3 Quantum phases transition : a very short introduction

Recall that, in the phase transitions we learned in the standard quantum field theory course,

we assumed that the mass term m2|φ|2 in the complex scalar field theory is proportional to

a(T − Tc)|φ|2. For T < Tc, the mass term becomes negative and signals an instability. The

scalar field (e.g. Higgs field) therefore condensates i.e. 〈φ〉 6= 0. This non-zero expectation value

spontaneously break the U(1) symmetry, φ → eiθφ, where θ ∈ R. Thus the symmetry group of
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the condensate phase 〈φ〉 6= 0 has to be a subgroup of the unbroken symmetry phase 〈φ〉 = 0.

The scalar expectation value is usually called order parameter since it is non-zero in more

ordered phases (with less symmetry) and vanish in disorder phase (with more symmetry). This

treatment of phase transitions is normally referred to as Ginzburg-Landau formalism.

We will look at a model to which the above formalism cannot be applied. It is a simple

model of a repulsive bosons on the periodic potential well (referred to as the Hubbard model)

with the Hamiltonian [31–33]

H = −t
∑
〈ij〉

(b̂†i b̂j + b̂†j b̂i) + (U/2)
∑
i

n̂i(n̂i − 1) (1.13)

with b̂i is the annihilation operator, n̂i = b̂†i b̂i denotes the number operator of the bosons on

the site i, t measures the tunnelling amplitude for bosons from site i to j and U corresponds

to the repulsive potential between two bosons on the same site. By tuning the ratio g = U/t

we see that we can obtain two different ground states, even at zero temperature. For g � 1,

the tunnelling between sites dominates and the bosons becomes superfluid as if there was no

potential barrier. For g � 1, the tunnelling is suppressed and there is only a single boson stuck

at each site (so this state is a Mott insulator). There will is a critical value of g = gc where the

phase transition between the Mott insulator and the superfluid occurs. Since this transition has

nothing to do with the thermal fluctuation, unlike the Ginzburg-Landau formalism, it is called

a“quantum phase transition”. The phase diagram of this model is shown in FIGURE1.6.

Figure 1.6: The phase diagram of the Bose-Hubbard model. The critical value of g = gc
indicates the phase transition at zero temperature. This picture is taken from [17]

This phase transition has a lot of interesting features. First of all, unlike the thermal phase

transition, the symmetry of one phase is not a subgroup of the other phase. The superfluid com-

pletely breaks rotational symmetry but not translational symmetry while the insulator breaks

translational symmetry but does not completely break rotational symmetry. Also, the charac-

teristic length scale of this system diverges as g → gc. Hence the quantum critical point g = gc

is scale invariant. One can show that this critical point also has a conformal symmetry [33],

similar to N = 4 super Yang-Mills, except no supersymmetry.
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For the purpose of my dissertation, there are two additional key features I would like to empha-

sise. Namely :

1. We notice that the quantum critical region looks remarkably similar to the non-Fermi liquid

region in FIGURE 1.5. Further studies[17, 31] show that the relaxation time of quantum

critical fluid takes the form

τ ∝ ~/kBT (1.14)

The ~ dependence indicates that the quantum behaviour survives under a low thermal

fluctuation. Moreover, the peculiar ratio ~/kBT also appears in the semiclassical theory

of gravitational wave near black hole horizon[34] and the application of AdS/CFT in the

quark-gluon plasma[14]. Could it be that the theory of gravity also knows something about

quantum criticality?

2. Both quantum critical region and non-Fermi liquid ‘fan’ seems to emerge from the low

temperature phase. In the Hubbard model, we can identify that the critical ‘fan’ emerges

from the quantum critical point g = gc. Perhaps the origin of the quantum critical phase

is from the quantum behaviour that we are not quite understand at the quantum critical

point. This point will be discussed in a bit more details in the next section.

1.3.4 What could happen at quantum critical point?

At the time we studied quantum field theory, quantum behaviour is treated as a random

fluctuation, in the same way that the thermal fluctuation is treated in statistical mechanics.

The term quantum entanglement is rarely mentioned. However, quantum entanglement seems

to play a crucial role in the story of quantum phase transition [17]. Let us consider the model of

quantum phase transition where the entanglement is more apparent. The following Hamiltonian

describes spins sitting on a 2d triangular lattice where their nearest neighbours prefer to point

in opposite directions [17, 32].

H =
∑
〈ij〉

sJSzi S
z
j + J(Sxi S

x
j + Syi S

y
j ) (1.15)

Similar to the Hubbard model, we obtain the quantum phase transition by tuning the dimen-

sionless parameter s. For s � 1, the first term can be ignored and the interaction of spins in

xy-components dominates. The spins form the antiferromagnetic long-ranged ordered state as

shown in FIGURE 1.7 (LEFT). With s� 1, the interaction of the z-component dominates. The

spins in the nearest neighbour site form a singlet pair (| ↑〉± | ↓〉)/
√

2. This is a disordered state

since there is only short ranged correlation between two spins on the nearest neighbour sites.

Note that, once two spins form a singlet pair, they are entangled.

In order to understand what happens to the entangled pairs when we smoothly tune s→ sc

so that the system is scale invariant? I will discuss the quantity that can provide us some

information about quantum entanglement, namely entanglement entropy SE .
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Figure 1.7: The phase diagram of antiferromagnet model at zero temperature. The ordered
Ne el state occurs when s < sc while the quantum disorder state is located at s > sc. A dimer
on the quantum disordered state indicate the singlet pair (| ↑〉± | ↓〉)/

√
2 between two spins it

encircled.This figure is taken from the talk by Subir Sachdev at Imperial College in 2012 [35]

Given the wave function of the whole ground state, |Ψ〉, we can calculate SE from the

following procedures [17]. First, divide the system into two subsystems, A and B. Then trace

over the spin in region B to obtain the reduced density matrix ρA = TrB (|Ψ〉〈Ψ|). Hence, we

obtain the entanglement entropy through the formula SE = −Tr(ρA ln ρA). It is straightforward

to show that SE = 0 when there is no entanglement between regions A and B, i.e. when

|Ψ〉 = |ΨA〉 ⊗ |ΨB〉. This makes SE a good measurement for quantum entanglement although

the actual calculation is really difficult and there are very few constrained systems where analytic

calculation can be done [36, 37].

Figure 1.8: LEFT: Subsystems A and B in the quantum disordered state. The red dimers
represent the entangled pairs between spins in the region A and B. RIGHT: The illustration
of long-ranged entangled pairs at the quantum critical point.These figures are taken from [38]

and [32] respectively

The form of SE for our spin model is expected to obey the boundary law that is

SE = αL− γ (1.16)
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where L is the diameter of the boundary between region A and B, α is some constant and γ

is a universal constant. In the disordered state SE = αL is is proportional to the perimeter of

the region A. Thus, we can say this SE counts the number of entangled pairs between A and B

(see FIGURE 1.8 - LEFT). However, at g = gc, the constant γ turns out to be non-zero. This

indicates that there are long-ranged entangled pairs between spins in the deep interior of A and

B. The illustration of this situation is shown on the RHS of FIGURE 1.8. More details about

obtaining (1.16) can be found in [17, 36] and the reference therein.

Before ending this preliminary chapter, I want to emphasise that doing a strongly correlated

electron system is hard. The quantum criticality, which seems to underly the physics of the

cuprate, is complicated and has a lot to do with the quantum entanglement. It will be very

exciting if there is a gravity dual, not only for the N = 4 SYM, but also the quantum critical

point. The calculations in the dual theory, which is a semiclassical theory of gravity, are much

less complicated than in the strongly interacting and highly entangled many-body systems.

This excitement actually happened about six years ago. The Harvard group leaded by Subir

Sachdev3 considered the dyonic blackhole as a dual theory of the quantum critical fluid in the

perpendicular magnetic field background. The system exhibits the electric current when the

temperature gradient is applied. This phenomena is called the Nernst effect. Surprisingly, the

theories from both sides yielded almost the same transport properties! [39] Since then, features

of the condensed matter’s exotic phases, not just the quantum critical fluid, have been repro-

duced by dual gravity theories. These works have become substantial evidences that AdS/CFT

conjecture is also applicable in many field theories. It is really a mind-blowing to see that the

complicated structures of quantum systems are encoded in the geometry of the spacetime and

to see that there are so many things we don’t know.

3together with Markus Műller, on condensed matter side, Pavel Kovtun and Sean Hartnoll, on string theory
side
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Holographic dictionary

In this chapter, I will introduce the essential ingredient of the gauge/gravity duality, the

dictionary rules. There are two approaches to construct these rules namely top-down approach

and bottom-up approach. The top-down approach starts from the gravity embedded string

theory whose the dual field theory is known. The great advantage of this approach is that we

will know for sure which field theory is dual to which theory of gravity. However, there are

two main downsides. First of all, the string theories, where the desired gravity theories are

embedded, are much more complicated than those obtained from the bottom-up constructions.

Secondly, there exist too many ground states and setups in string theory. Different ground state

of different setup corresponds to the different theory of gravity. These ground states are often

referred to as the string landscape [2, 40]. Since the string landscape is too big, it is very

difficult to pin point the string theory set up that gives the vacuum which corresponds to the

field theory we are interested in. Nevertheless, there are a lot of top-down models that are able

to capture the physics of condensed matter system and quark-gluon plasma. The interested

reader can find out more about some famous top-down model such as superconductor state in

[41–43], fermionic response in [44, 45], quantum hall effect in [46] and spatial modulated phase

in [47, 48]. The review about the top-down constructions using Dp/Dq branes intersection can

be found in[49].

In this review, I focus on the bottom-up approach where we start from AdS spacetime

without any other fields. Then try to modify the theory of gravity by adding a few contents

until we see the properties that agree with or resemble the results from experiments. This might

sounds a bit vague but one can argue that bottom-up gravity theories are somewhere in the string

landscape as ground states of the some string theory setups. The bottom-up theories of gravity

are relatively simple compare to those obtained from top-down and a number of interesting

condensed matter systems can be realised by adding a few field contents to the asymptotic AdS

space.

The plan of this chapter is the following. Firstly in section 2.1, I show the match the

symmetry of AdS5×S5 space and superconformal field theory. Then, in section 2.2, the mapping

between fields in the gravity side and gauge invariant operators in the field theory side are

discusses. In section 2.3, I will show how to calculate the correlation functions for the bottom-up

17
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model with only the graviton and the scalar field . The correlation functions discussed here are

essential to the bottom-up approach since we can compare them to the experimental results.

Then, I outline how to turn on the temperature, density, electric field and magnetic field in

section 2.4 and 2.5. Finally, I will discuss the notion of confining/deconfined phase transition

and the entanglement entropy in the dual gravity theory.

2.1 Matching Symmetries

For the two theories to be equivalent, there must be a map between the symmetry group

from one theory to the other. Here, we start with the symmetry of the N = 4 super Yang-Mills,

which is a conformal field theory. By definition, the conformal group consists of translation,

Lorentz tranformation, scaling or dilatation and special conformal transformation [7–10]. The

generators correspond to these transformations are

Translation : Pµ = −i∂µ (2.1)

Lorentz : Mµν = i(xµ∂ν − xν∂µ) (2.2)

Dilatation : D = ixµ∂µ (2.3)

Special Conformal : Kµ = −i(x2∂µ − 2xµx
ν∂ν) (2.4)

We can compute the commutation relations between these generators and see that for conformal

algebra in Rp+q is equivalent to SO(q+1,p+1) algebra [7]. Thus, for the theory lives on D3

branes, we have SO(2,4) as a conformal group. Also, we note that the vacuum of supersymmetric

field theory on a D3 brane is degenerated and described by six scalar fields denoted by Xi where

i = 1, . . . , 6. These scalar field can transform into each other under the group SO(6). The

symmetry between Xi’s is normally called R-symmetry.

The AdS5 spacetime can be considered from two points of view. The global AdS5 is defined

as a hyperboloid embedded in R4+2 namely

Y 2
−1 + Y 2

0 −
4∑
a=1

Y 2
a = 1 (2.5)

We can clearly see that this surface is invariant under SO(2,4) transformations [7–9]. Note that

the AdS solution in (1.3) or the Poincaré patch can be obtained from the global AdS by taking

a map

Y−1 + Y4 = L/r > 0 ; Y µ = (L/r)xµ (2.6)

with r ≡ L2/u in the original metric (1.3) [7]. On the other hand, the sphere S5, in AdS5 × S5,

is invariant under the SO(6) group. In a more formal language, we say that SO(2,4) and SO(6)

are the isometries of the AdS5 and S5 respectively. We can now see that both sides have exactly

the same symmetry. Therefore, the first dictionary rule is established as following
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SO(2,4) as CFT global symmetry ⇔ SO(2,4) as Isometry of AdS5

SO(6) as global symmetry between Xi’s ⇔ SO(6) as Isometry of S5

The special conformal transformation will be neglected from this point onward since it can

be obtained from the combination between inversion and translation. To identify the generators

of Poincaré group and dilatation, we should look at the metric of the Poincaré patch i.e.

ds2 =
L2

r2

(
dr2 + dxµdxµ

)
(2.7)

It is not difficult to see that the Poincaré patch looks like a tower of copies of Minkowski spaces

with a characteristic length of each copy scaled by
(
L/r

)

Figure 2.1: Comparison between tower of copies of Minkowski space at different values of r
and the AdS5 spacetime. This figure is adapt from [50]

These copies of Minkowski space are invariant under the Poincaré group transformations but

not the dilatation. Thus, the isometry of a hypersurface r = const corresponds to the Poincaré

symmetry on the CFT side. To obtain the isometry corresponds to the dilatation, we use the

fact that the AdS5 spacetime is invariant under the dilatation. This require r to transform as

r → λr for xµ → λxµ

These maps between generators gives the second dictionary rule

Poincaé group in CFT ⇔ Isometry of z = const hyper surface

Dilatation xµ → λxµ in CFT ⇔ Traslantion from r → λr

If we regulate each Minkowski slice into a lattice, we will see that the Minkowski slices at small

r have a small lattice size (see FIGURE 2.1). The field theory that lives on these slices are able

to probe the small structure and is said to have high energy. On the other hand, the field on

the slices at large r can only probe the large structure and so have lower energy. Therefore, the

AdS space has been thought of as a geometric realisation of the renormalisation group(RG) flow

between UV and IR region [51, 52]. The extra dimension r is interpreted as length scale of the

system.

From now on, the capital indices M,N denote the bulk spacetime (r, xµ) and the greek

indices µ, ν denote the boundary spacetime.
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2.2 Matching Representations

Once we know the dictionary for the symmetry group, we are able to map Type IIB fields

into operators in N = 4 SYM and vice versa. The rule here is that the fields and operators must

be the the same representations of SO(2,4)×SO(6) group and SU(N) gauge group[8, 9]. First

we notice that the fields on the gravity side must be SU(N) singlet since we can not see stack of

branes in the spacetime perspective. The gauge invariant operators on CFT side are denoted by

Tr(ϕ1 . . . ϕk) where ϕi are the operators in SYM and ‘Tr’ denotes the trace over SU(N) colour

indices[7, 8]. I will consider the simplest single trace operator namely Oi1...ill ≡ Tr(X{i1 . . . Xil})

where i is the R-symmetry index labelling the scalar field Xi [9]. We say that this Oi1...ill has a

scaling dimension [O] = l since O → λlO under the transformation xµ → λxµ.

This simplest single trace operator is assumed to be dual to a scalar field in the gravity side

since they both are singlet representations of the Poincaré group. To be more quantitative, we

consider the harmonic expansion of the scalar field in AdS5 × S5 background [7, 8]

Φ(x, y) =
∑
l

Φl(x)Y l(y) (2.8)

Here, Y l(y) = ci1...ily
i1 . . . yil are the spherical harmonic function of S5 and the ci1...il is the

symmetric traceless tensor of rank l. In this section, x = (r, xµ) and y denote the coordinates

on AdS5 and S5 respectively. Now we can see that both yi1 . . . yil and Oi1...ill are the symmetric

traceless representation of the R-symmetry SO(6) and have the scaling dimension [O] = [Y l] = l.

This indicates that we made the right assumption. In order to see the role of the scaling dimension

in the gravity side, we plug in Φ(x, y) into the AdS5 × S5 Klein-Gordon equation i.e.

�Φ(x, y) =
∑
l

(
� Φl(x)Y l(y)

)
= 0 (2.9)

Let us consider a term with l = ∆ in the Φ(x, y) expansion. We can obtain the mass term for the

field Φ∆(x) by compactify the S5 subspace. In this case, the Klein-Gordon equation becomes(
�(AdS) −m2

∆

)
Φ∆(x) ; m2

∆L
2 = ∆(∆− 4) (2.10)

where �(AdS) is the Laplacian operator in AdS5. The more complicated representations can also

be matched using similar procedures [8, 9] and two more rules are added to our dictionary.

Bosonic/Fermionic gauge invariant operators ⇔ Bosonic/Fermionic fields

Bosonic scaling dimension ∆ ⇔ mass as a function of ∆

Note that we can add the source to our CFT by including an extra term like
∫
Oφ0 to the action.

The brane perspective in FIGURE 1.4 tells us that the open string that lives near the branes

is sourced by the ingoing closed string far away from the branes. Since the open string mode

corresponds the the operator O(xµ), the source φ0(xµ) should be associated to the supergravity

field Φ(r, xµ). Since the distance from the brane is u = L2/r, we might guess that Φ(r = 0, xµ) is

associated to the source φ(xµ). This is almost right but we need to remember that the spacetime
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in the gravity side is no longer AdS5×S5 when L2/r is too large. We need to put a short distance

cutoff at r = ε to guarantee that the ingoing string is not too far away.

Source φ(xµ) of the operator O(xµ) ⇔ Ingoing supergravity field Φ(r, xµ)

living on the branes located at r = ε→ 0

2.3 Perturbation & response function

From now on, the discussions will depart from the top-down formalism. Supersymmetry

will be dropped and the sphere S5 will be ignored. In this section, we study how to extract basic

physical quantities from the semiclassical theory of gravity in an asymptotic AdS5 spacetime1,

which is believed to be dual to the conformal field theory of quantum critical point. The gravity

side will be referred to as bulk and the field theory side will be referred to as boundary. These

abbreviation came from the fact that the sources of the CFT operators are associated to Φ(ε, xµ)

and, intuitively, the current O flows from the spacetime point we inject the source. Since we take

r = ε→ 0 to be the boundary of the AdS, we may think that the CFT lives on the boundary of

AdS [50] although it is not a direct implication from the decoupling argument. Note that, I only

discuss about the scalar field here for the concreteness. The similar but a bit more complicated

analysis for the fermions can be found in the Appendix A.

We should start by extracting the most basic physical quantities in the field theories which

are correlation functions. From the field theory side, we can obtain the 1-point function, for

example, from the partition function by taking the functional derivative

〈O(tE ,x)〉 =
1

Z[0]

δ lnZ[φ0]

δφ0(xµ)

∣∣∣∣
φ0=0

; Z[φ0] =

〈
exp

[∫
d4xOφ0

]〉
CFT

(2.11)

where d4x is the volume element in R4. The correlation functions obtained from this formalism

are the function of the Euclidean time tE = it. The Euclidean time formalism is using here since

it gives the weight in the path integral, eiS , the same interpretation as the Boltzmann factor,

e−βH. The real-time correlation function can be obtained by do the analytic continuation back

to the real time.

First of all, for the gravity side and field theory side to gives the same physics through

the correlation functions, We need the generating function from the CFT side and the partition

function from the gravity side to be equal [2, 8, 9, 30, 50].〈
exp

[∫
d4xOφ0

]〉
CFT

= e−SE [Φ(r,tE ,x)] (2.12)

This is the famous GKPW formula2 that allows us to extract physical quantities without even

know the explicit form of the CFT action. The right hand side came from the saddle point

approximation as the weight e−SE from the classical gravity configuration dominates. This is

1Note that duality still holds for AdS4 × S7 [9]
2stands for Gubser - Klebanov - Polyakov - Witten
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the benefit of taking the large ’t Hooft coupling limit λ → ∞. The action on the gravity side

SE [Φ] is Einstein-Hilbert action plus the action of scalar field in the Euclidean time [30]

SE =

∫
dd+1x

√
|g|
[

1

2κ2

(
R+

d(d− 1)

L2

)
+

1

2
(∇Φ)2 − 1

2
m2Φ2

]
(2.13)

evaluated at its extremum with the ingoing boundary condition on Φ. The equation of motion

we have to solve is [50]

[
r2k2 − r5∂r(r

−3∂r) +m2L2
]

Φ(r, k) = 0 (2.14)

given that Φ(r, k) ≡ Φ(r, ωE ,k) is the Fourier transform of Φ(r, tE ,x). However, we cannot

simply varying the action and naively solve the equation of motion due to the fact that AdS

space has a boundary. The following are the conditions we have to impose.

• Dirichlet boundary condition : An additional boundary action S
(1)
bnd need to be added

so that the variational principle is well-define [30, 50, 53]. Without this term, we will not

be able to get the equation of motion from varying the action.

• Ingoing boundary condition : This condition state that there is no stuff coming out

of the Poncaré horizon at r → ∞. In the case of scalar field, this means that we pick

only the solution Φ(r, t) ∼ e−i(ωt−kr) near the boundary [8]. This solution implies that the

“wavefront of the field Φ” moves to larger r as t grows [50].

• Finiteness condition : There two types of solutions of the equation (2.14) namely

non-normalisable and normalisable modes. As ε → 0, the contributions of the non-

normalisable modes lead to the divergence in the on-shell action [50]. This is the usual UV

divergence in field theory and can be removed by adding the counter terms S
(2)
bnd living at

r = ε. These counter terms are required to keep Sgravity < ∞ and ensure that the field Φ

is able to propagate [50, 54, 55]

For example, the boundary terms for the pure AdS (means without any other field) is3

Sbnd =
1

κ2

∫
r=ε

d4x
√
|γ|
(
γµν∇µnν +

3

L

)
where γµν is the induced metric on the boundary r = ε and nM is an outward unit vector normal

to the boundary. In the probe limit, where the field does not back react the spacetime, The

scalar field is found to have the asymptotic form [2, 30, 50, 56]

Φ(r, k) =
( r
L

)4−∆

φ0(k) +
( r
L

)∆

φ1(k) + . . . as r � L (2.15)

where ∆ satisfy the relation ∆(∆ − 4) = m2. Here, I shamelessly write down the coefficient

of (r/L)4−∆ as the source φ0(k), due to several reasons. First of all, the first term in (2.15)

is a non-normalisable mode define earlier. This mode costs infinite amount of energy to

propagates so it has no dynamics and should be fixed as the source field. Moreover, the scaling

3This term is often called the Gibbons-Hawking term [50]
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dimension of φ0 is also the same the source in (2.12). This is because Φ(r, k) is scale invariant

under r → λr as there is no global conformal symmetry on the gravity side. Therefore, φ0(k) is

scaled as φ0 → λ∆−4φ0 [30]. We finally obtain

Source φ(tE ,x) of the operator O(tE ,x) ⇔ coefficient φ0 in the solution of Φ

living on the branes φ0(tE ,x) = (ε/L)∆−4Φ(ε, tE ,x)

On the other hand, a mode that is allowed to propagate is called normalisable mode, which

is the second term in (2.15). With this identification, we can write the one point function for

any d-dimensional boundary as

〈O(tE ,x)〉 = − δ

δφ0
Sgravity[φ0]

∣∣∣
φo→0

= − lim
r→0

rd−∆ΠE(r, tE ,x) (2.16)

where ΠE(r, k) is the canonical momentum defined as δSE [Φ]/δΦ(r, k). The 1-point function

〈O〉 is essentially the response of the system to the external perturbation at the boundary,

δS =
∫
r=ε

Oφ0. To evaluate this response, we plug in the solution (2.15) into Sgravity and find

that it is diverged. Using prescriptions in [50, 56], we found that [30]

Sbnd[Φ] =


d−∆
2L

∫
r=ε

ddx
√
|γ|Φ2 if d−∆ < ∆

−
∫
r=ε

ddx
√
|γ|
(
ΦnM∇MΦ + ∆

2LΦ2
)

if d/2 ≥ ∆ ≥ (d− 2)/2

(2.17)

In any allowed range of ∆, the 1-point function can be evaluated by using (2.16)

〈O〉 =
2∆− d
L

φ1 (2.18)

There is a small caveat when we choose the value of ∆. First of all, we can see that when ∆ > 4,

the field Φ(r, k) diverges in the UV i.e. when r → 0. Turning on the operator dual to this

field will destroy the asymptotic AdS region of the spacetime and therefore not allowed. The

operator O dual to Φ is said to be irrelevant since it becomes less important in the IR region.

On the other hand, we are allowed to turn on the operator with ∆ ≤ 4 so that both components

in Φk(r) do not diverge at r → 0 and the metric of AdS boundary remains unchanged. The

deformation with ∆ < 4 is relevant as it grows in the large r limit while the one with ∆ = 4 is

called marginal. We may see that this gives m2 ≤ 0 but the negative mass does not signal the

instability as long as it does not violate the BF bound i.e. ∆ > (d− 2)/2 (sometimes called the

unitary bound) [30, 50].

Now, we can move on to the 2-point function. Instead of giving just the definition. I will

try to give some intuition about this 2-point function. For a regular QFT (not necessary the one

we just discussed), adding a source term
∫
ddxO(x)δφ0(x), means we “kick” the system with a

source δφ0. The response δ〈O〉 is found to be [30, 53, 57]

δ〈O(ωE ,k)〉 = lim
δφ0→0

GE(ωE ,k) δφ0(ωE ,k) (2.19)
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where O(ωE ,k) is the Fourier transform of O(tE ,x). The Euclidean Green function GE(ωE ,k)

is defined as a Fourier transform of

GE(tE ,x) = 〈TEO(tE ,x)O(0,0)〉 (2.20)

where TE denotes the Euclidean time ordering. If 〈O〉 → 0 as φ0 → 0 and 〈O〉 remains small,

we can drop δ from δ〈O〉 and write (2.19) as

〈O(ωE ,k)〉 = lim
φ0→0

GE(ωE ,k) φ0(ωE ,k) (2.21)

Then compare the 1-point function in (2.19) and (2.18), we will see that the Euclidean Green

function can be written as

GE(ωE ,k) = − lim
r→0

r2(d−∆) ΠE(r, ωE ,k)

Φ(r, ωE ,k)
=

2∆− d
L

φ1

φ0
(2.22)

After solving the equation of motion one obtain φ0 and φ1, we find that the GE(t,x) ∼ (t2 +

|x|2)−∆ [2, 8]. This form Green function is exactly the same as the one we obtain from the

conformal scalar field theory [10].

Why do we care about this Green function? Let’s imagine when we kick a system, a piece

of metal for example, with an electric field. The system will generate a response, which is an

electric current. This is, in fact, the more general form of Ohm’s law.

〈J〉 = σE (2.23)

The current 〈J〉 is analogous to our response 〈O〉 and the source E is analogous to the source φ0.

We now see that the conductivity can be extracted almost directly from the Green function. The

other transport coefficients such as shear viscosity can also be extracted from the field theory

using similar methods [2, 30, 50].

If we want to study the real-time response function instead of the thermodynamic (which

is the Euclidean time formalism discussed above). The following are the recipe from [53] to do

the analytic continuation back to the realtime

τ → it ; ωE → −iω ; SE → −iS (2.24)

and the key recipe to obtain the retarded Green function.

GR(ω,k) = GE(ωE ,k)
∣∣∣
−i(ω+iε)

(2.25)

Here, the definition for the retarded Green function is GR(t,x) = iΘ(t)〈[O(t,x), O(0,0)]〉 where

Θ(t) is the step function. The Green functions GR and GE can be used to find more complicated

transport properties other than viscosity and conductivity. See more details in [30, 57, 58].
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2.4 Finite temperature

In the standard field theory approach, the way to study the field theory at finite temperature

is to use the Euclidean time formalism. It is due to the close relationship between quantum

mechanics and thermodynamics partition function namely

Zquantum = 〈0| eiT Ĥ/~ |0〉 ; Zthermal =
∑

all config

e−βE (2.26)

The thermal field theory can be formulated by changing t → iτ and the topology of our space

from Rd+1 to Rd × S1. Here, S1 is called the thermal cycle with the period β = 1/kBT .

The behaviour at different temperature can be studied by varying the size of this thermal cycle

[16, 25]. The “motion” of a particle in the Euclidean time with a finite size thermal cycle is

illustrated in FIGURE 2.2.

Figure 2.2: LEFT: A world line of a particle travelling from τ = 0→ 3β which is equivalent
to the world line wrapping on the cylinder of diameter β (RIGHT). These two figures are

taken from [25]

In order to study the real-time correlation functions, we can do the analytic continuation

from the Euclidean correlation functions as outlined in the previous section. However, by doing

that, we simply lose the information about temperature. The standard way to include the

temperature is to change the definition of the expectation value from averaging over the pure

quantum state to mixed states. This redefinition can be written as

〈O1(t1)O2(t2) . . .〉 ≡
∑
λ

〈λ|e−βH̄O1(t1)O2(t2) . . . |λ〉

where 1 =
∑
λ |λ〉〈λ| and e−βH̄ is the density matrix operator [16]. The operator Ĥ is the

Hamiltonian of the system. This approach works very well when the Hamiltonian Ĥ is diago-

nalisable i.e. it can be written as Ĥ =
∑
iEiâ

†â + const. However, this method does not work

in the strongly correlated systems such as conformal field theory, where the Hamiltonian is not

diagonalisable [33].

It turns out that approaching the problem using the holographic principle provides an ele-

gant way to deal with the field theory at finite temperature temperature. Since the temperature

is encoded in the size of thermal cycle, we need the spacetime in the bulk which is periodic in τ
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Figure 2.3: LEFT: The Euclidean AdS Schwarzschild solution, the thermal cycle S1

smoothly shrink as r → r0 RIGHT The real time version of the metric on the LEFT. The
hyperspace at r0 becomes a black brane i.e. black hole with a flat topology.These two figures

are taken from[2] and [33]

direction. The periodicity in τ implies that ∂
∂τ is the Killing vector. Once we take into account

the translation symmetry x → x + c, the Birkhoff’s theorem indicates that there is only one

metric solution with all the symmetries i.e.

ds2 =
L2

r2

(
f(r)dτ2 + f(r)−1dr2 + dxidxi

)
; f(r) = 1−

(
r

r0

)d
(2.27)

for d-dimensional boundary theory. This solution is referred to as “AdS Schwarzschild solu-

tion”. In the Appendix B, I show that this solution indeed satisfies the Einstein-Hilbert action

with the negative cosmological constant and τ has a period 4πr0/d. The real time can be ob-

tained from τ → it. We see that, as gtt(r0) = 0, the hyper surface r = r0 is infinitely redshifted

with respect to the observer at the boundary. This is the definition of the black hole despite

the fact that the object at r = r0 has a topology of a plane depicted in FIGURE 2.3(RIGHT).

The temperature can be varied simply by sliding the black brane along the r−direction as

kT ∝ 1/r0. As r0 → ∞, the black brane becomes the Poincaré horizon and we are back to the

conformal field theory at T = 0.

Temperature T of the field theory ⇔ “Black brane” at r0 = d/4πkBT in the bulk

By introducing the temperature, we can then study the thermodynamics of this system

from the free energy F = −kT lnZ. One of the most remarkable features is that, the entropy

calculated from the statistical physics formula

S = −∂F
∂T

=
(4π)dLd−1

2κ2dd−1
Vd−1T

d−1 (2.28)

is scaled with the spatial volume Vd−1 of the boundary. This spatial volume can be thought

of as an “Area” in d spatial dimensions. The entropy calculated this way is essentially the

same as calculating the area of the horizon and put into the Bekenstein-Hawking entropy S =

8πAhorizon/κ
2. This makes the holographic duality very peculiar since we will be obtain the

entropy of the field theory without actually evaluating the partition function. It is hard to

prove whether the entropy evaluated using Bekenstein-Hawking formula is actually equal to the
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entropy of the field theory or not since the calculation on the field theory side is terribly difficult4.

Although, there are not many supporting evidences, we still assume that the below statement is

true.

Entropy of the field theory ⇔ Black Hole entropy stored by the horizon

Using similar methods, the other thermodynamics quantities, such as heat capacity, can also

be extracted from the free energy F [2, 30]. We can then compare these quantities with the

experimental results to check whether our bottom-up model works or not.

This black brane solution also offers a lot easier way to study the real time response of the

system. In the case of scalar field, for example, we just have to solve for e.g. φ0 and φ1 in this

bulk instead of AdSd+1. We also need to specify the asymptotic boundary condition near the

horizon which the detail can be found in [53]. We now see that the problem of diagonalising the

Hamiltonian, which may not doable, boils down into the problem of solving differential equations.

Note, we are unable to probe the physics in the interior deeper than r0 since it is blocked by

the event horizon. This agrees with the fact that the thermal fluctuation creates noises, which

destroy our ability to probe the energy lower much lower than kBT

We may also think of this black brane as a natural heat bath that heat up the boundary

CFT by the Hawking radiation. Note that, the scale r0 set by the position of the black brane

breaks the scale invariant of the field theory. This may deviate from the original top-down set

up but it is ok as long as the boundary r → 0 remains asymptotic AdS.

2.5 Finite Density

The finite density is normally referred to as “internal symmetry” in a standard field theory

course. It is because the conserved charge
∫
dVd−1J

t is the number of particles, where Jµ is

the Noether current associated to the U(1) global symmetry. The finite density effect can be

manifested by adding the source term
∫
ddx JµAµ and the Lagrange multiplider

∫
ddx Λ∂µJ

µ,

which leads to the constraint ∂µJ
µ = 0. This second term can be absorbed in the source Aµ by

demanding that Aµ transforms as Aµ → Aµ+∂µΛ. According to our dictionary rules, the source

term Aµ at the boundary becomes the classical field in the bulk. The freedom of choosing the

Lagrange multiplier, Λ, turns into the U(1) gauge symmetry.

The internal U(1) symmetry at the boundary ⇔ U(1) gauge field in the bulk

The action of the fields in the bulk has to includes the Mexwell term. This Einstein-Maxwell

action in the Lorentzian signature has the form [21]

SEM =

∫
dd+1x

√
|g|
[

1

2κ2

(
R+

d(d− 1)

L2

)
+

1

4q2
FMNF

MN

]
+ Sbnd (2.29)

4Nevertheless, there is a famous field theory setup called D1-D5-P system that the entropy calculated from
field theory side and gravity side are equal [59]
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In the equilibrium thermal system, there are two components of the gauge field we can turn on

namely

A = At(r)dt+B(r)x dy (2.30)

The non-zero At(r = ε) is resulting the extra boundary term
∫
ddxJ tAt, which is equivalent

to adding the chemical potential to the boundary field theory. The language of the chemical

potential might be a bit unusual for non-condensed matter people but, actually, we have seen

a term like this in the complex scalar field theory. The chemical potential term plays the role

of a mass2 i.e it is the term like
∫
ddx µ (ϕ?ϕ). The term ϕ?ϕ, which is the J t component of

the Noether current, plays the role of the local number density. By comparing the action at the

boundary in both pictures, we can identify that

µ = At(r = ε) ; 〈J t〉 = F rt(z = ε) (2.31)

Similarly, the term B(r = ε) can be identified as a magnetic field [30] but I will turn it off for

the rest of this dissertation.

There is a subtlett I have to mention here. Although, the term
∫
ddx JµAµ is acting as

a source, it is different from
∫
ddx Oφ0 in the previous discussion. The source φ0 acts as a

probe that generates the small response 〈O〉 with no backreaction to the spacetime. However,

the source Aµ is a gauge field in the bulk generated from the electrically/magnetically charged

objects in the bulk. The expectation value 〈J t〉 and 〈B〉 can be arbitrarily large depending on

the amount of charges in the interior of the asymptotic AdS spacetime.

The charged matter can be either hidden behind the black brane horizon or floating in the

bulk [33, 52] (or both [60]). In either cases, the space times are no longer AdS4. In this chapter,

I will focus on the first case where the black brane itself is the source of all the electric field.

Figure 2.4: The AdS Reissner-Nordstrőm (AdS RN) black brane acts as both source of
temperature and charge. The electric flux from the black brane propagate through the bulk
and induce the charge at the boundary. Note that, at T = 0K, the geometry in the IR region

becomes AdS2 ×R2 while the UV region remains AdS4. The figure is taken from [33]

In order to extract the physical quantities, we need to look at the equation of motion derived

from the Einstein-Maxwell action. With an appropriate boundary terms, the equation of motions
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looks like the following.

RMN −
1

2
gMNR−

d(d− 1)

L2
gMN =

κ2

q2

(
2gPQFMPFNQ −

1

4
gMNFPQF

PQ

)
(2.32)

∇MFMN = 0 (2.33)

The solution of these equations that gives the nonzero At(ε) and asymptotic AdS boundary is

the charged black brane solution or the “AdS Reissner-Nordstrőm (AdS RN) solution”

[21].

ds2 =
L2

r2

(
−f(r)dt2 + dxidxi +

dr2

f(r)

)
(2.34)

with

At = µ

(
1−

(
r

r0

)d−2
)

; f(r) = 1−
(
r

r0

)d
+

(d− 1)κ2µ2(rd−2 − rd−2
0 )

(d− 1)q2L2r2d−2
0

(2.35)

We can work out the temperature using the thermal cycle method and obtain

T =
d

4πr0

(
1− (d− 2)2

d(d− 1)

κ2µ2r2
0

q2L2

)
≡ d

4πr0

(
1− r2d−2

0

r2d−2
∗

)
(2.36)

We see that the temperature no longer depends only on a single length scale r0 but also the

other scale r∗ sets by κµ/qL. We observe that if r0 � r∗ i.e. kBT � µ, the metric returns to

the AdS Schwarzschild and the spacetime contains a naked singularity when r0 > r∗ [21]. The

most interesting situation is when r0 → r∗ since it is dual to the finite density field theory at a

low temperature, where the quantum effect dominates.

Let’s consider the region near the horizon r0 = r∗. We found that f(r) has a double zero

as r → r0 that is f(r → r0) ≈ (r0 − r)2 + . . .. Consequently, the near-horizon metric can be

repackaged into AdS2 ×Rd−1 [21]

ds2 =
L2

2

ζ2
(−dt2 + dζ2) +

L2

r2
∗
dxidxi ; At =

qL2

κζ
(2.37)

where

ζ ≡ r2
∗

d(d− 1)(r∗ − r)
; L2 ≡

L√
d(d− 1)

We can see that, the “area” of the horizon is non-zero even at the zero temperature due to the R2

subspace. We know from our previous dictionary rule that the area of the horizon is proportional

to the thermal entropy of the boundary theory. This means that the ground state has non-zero

entropy at zero temperature and hence degenerated. In the absence of the supersymmetry or

others symmetries to protect this degeneracy, this state is believed to be an intermediate state

that gives rise to the other exotic states such as non-Fermi liquid, superconductor, insulator etc.

as depicted in FIGURE 2.5 [61].
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Figure 2.5: The illustration of of the RG flows from the SLQL to the other exotic states [61]
.

This AdS2 × Rd−1, or sometimes called semi-local quantum liquid (SLQL) [61, 62], is

actually a key player in the game of applied AdS/CFT. The first AdS/condensed matter appli-

cation [39] use almost the same bulk theory as we discussed above, but with the magnetic charge

added to the black brane. If we put a charge bosonrs to the bulk, we find the superconductor

phenomena [63–65]. If we put the charge spinor in the bulk we find the fermi surface [66–68].

The fact that the theory of spinors in the bulk is dual the strongly interact spinors (fermions)

in the boundary, gives hope that we might be able bypass the sign-problem brick wall and get

our hand on the non-Fermi liquid theory!

I would like to present one of landmark of the holographic principle achieved by the studies

of AdS RN. The optical conductivity can be obtained by considering the response from the small

electric field in the boundary direction such that 1-form gauge field becomes A = (At, δAx, 0, 0)

[30]. In FIGURE 2.6, the optical conductivity of AdS RN is presented and compared with the

results from graphene experiment [69]. The two results are strikingly similar. Further studies of

the holographic models with broken translational symmetry [70–73] also found the peak of the

real part of the optical conductivity at small ω (Drude peak) that is not visible in the AdS RN

result.

The tutorial on calculating the optical conductivity can be found in [30]. The full mathemat-

ica code that is used to obtain the plot on the LHS of FIGURE 2.6 is adapted from the exercise

in 2nd Mathematica summer school in theoretical physics. The exercises and the mathematica

notebook can be found in http://msstp.org/?q=node/254.

2.6 Geometry and Phase Transition

Let us come back to the story of N = 4 SYM and the type IIB supergravity again to discuss

the role of the black hole event horizon in the story of the phase transition.

Prior to the discovery of the AdS/CFT, Hawking and Page [74] found the black hole phase

transition in the global AdS space (defined in Section 2.1). It can be shown that the boundary

of the global AdSp+2 can be confomally mapped into half of the manifold R × Sp [8] as shown

in FIGURE 2.7. Here R represent the time direction. We can do the analytic continuation from

http://msstp.org/?q=node/254
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Figure 2.6: The caparison between the optical conductivity from AdS/CFT (LEFT) and the
grapheme experiment (RIGHT). The top two figures represents the real part of the conduc-
tivity while the bottom two represent the imaginary part. Different colours on the AdS/CFT
results denote different value of the chemical potential µ. The colours on experimental results

denote values of gate voltage, which plays the role of chemical potential [69] .

the real time to the Euclidean time. The time domain R is compactify into a thermal cycle.

Hence, the boundary of the Penrose diagram can be conformally mapped inbto S1 × Sp

Figure 2.7: LEFT : The map between global AdS3 and R × S2. The shaded face of the
cylinder is mapped into half of the sphere S2 [8]. RIGHT : The Poincaré patch embedded in

the global AdS is represented by the wedgeABC.

It turns out that there are two solutions of the Einstein equation with this boundary con-

dition. Both solutions are shown in FIGURE 2.8. The first solution has a decreasing Euclidean

thermal cycle’s radius as the radial direction r increases. This is the AdS Schwarzschild solu-

tion. The second one is when the sphere Sp is shrinking instead of S1. We call this solution the

thermal AdS [7]
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Figure 2.8: Evolution of the two solutions along AdS radial direction, r, for p = 3.
LEFT : The thermal AdS solution with the topology S1 × B4. RIGHT : The AdS
Schwarzschild solution with the topology B2 × S3. Bn is the n-dimensional ball with the

boundary Sn−1 This figure is taken from [7].

In order to find out which solution is more preferable, one needs to compare the on-shell

actions between these two configurations and see which solution gives the smallest action. It

turns out that the thermal AdS is more preferable when the temperature (obtained from the

thermal cycle’s period) is less than Tc = p/2πL and vice versa. This thermal phase transition

is known as the Hawking-Page transition. The mathematical verification of the statement

above can be found in [2, 7] or [74] for brave.

It was Witten [75] who pointed out that the global AdS spacetime is dual to the SU(N)

N = 4 SYM with a finite volume. The thermal AdS phase is dual to the confining phase

involving only SU(N) singlets. The AdS Schwarzschild is dual to the deconfined phases

corresponds to the state with the gauge degree of freedom such as free quarks and gluons. This

matching can be shown explicitly by calculating the Wilson loop similar to what we do in the

quark confinement case, see e.g. [76]. One can also argue that, in the deconfining phase, the

black hole entropy ∼ 1/κ2 is of order N2. This means that the degree of freedom of the boundary

theory is ∝ N2. This N2 dependence can be obtained from the field theory side by considering

the dimensions of SU(N) gauge group. On the other hand, in the confining phase, the black hole

in the bulk theory vanishes. This means that the entropy is of order N0. It is expected that, in

the confining phase, the N2 gauge degree of freedoms combine in a single gauge singlet.

Field theory where all gauged degree of freedom ⇔ Gravity theory with confining geometry

confined into the gauge singlet i.e. no event horizon

Phase transition in the boundary theory ⇔ Deformation from one spacetime to the other

Other than the Wilson loop, the Polyakov loop and the entanglement entropy are also

proposed to be quantities which can distinguish the confining and deconfined phase [2, 77]. All

of these non-local measurements are beautifully realised in the dual gravity theory as certain

surfaces in the bulk geometry [77]. I will focus on the entanglement entropy in particular.

The proposed holographic prescription for calculating entanglement entropy is the the following.

Consider the d-2 dimensional surface Σ dividng the region A and B in d dimensional AdS

boundary. The entanglement entropy is proportional to the area of the minimal surface Γ

extended in the bulk, given that the surface Γ ends on Σ i.e. ∂Γ = Σ. This statement can be
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made more precise by writing the famous Ryu-Takayanagi formula [37].

SE =
AΓ

4GN
(2.38)

where GN is the Newton’s constant in d+1 dimensions. The illustrations of Σ and Γ are shown in

FIGURE 2.9. This nice and simple formula enhances our ability to calculate the entanglement

entropy and provides an access to the quantum information aspects of both black hole and

condensed matter systems.

Figure 2.9: LEFT: The surface Σ separate the region A and B on the AdS boundary where
the field theory lives. RIGHT : The minimal surface Γ extended in the interior of the AdS

space.These two figures are adapted taken from [78]

So how can we distinguish the confining/deconfined phase using entanglement entropy?

Let’s consider the case where the hypersurface Σ is the two infinite spatial hyperplane separated

by the distance R. The minimal surface Γ in confining and deconfined phase are different as

depicted in FIGURE 2.10. The entanglement entropy in the confining phase is proportional to

the disconnected hypersurface Γ and takes the form

SE ∼ Vol(Σ)

εd−2
+
(

const×Vol(Σ)
)

(2.39)

where Vol(Σ) is the volume of the hypersurface Σ and ε is the short distant cutoff [77]. There is

no R-dependent term at the leading order in this phase. On the other hand, in the deconfined

phase, the entanglement entropy becomes

SE ∼ Vol(Σ)

εd−2
+R

(
const×Vol(Σ)

)
(2.40)

The R-dependence in the second term came from the fact that the spacetime has to be smooth

near the horizon. Hence, Γ is connected [77]. This R-dependence can be used to distinguish

confining and deconfined phase.

So far, we have discussed the recipe to make the theory of gravity that is dual to several

field theories. It turns out to be quite simple in the bottom-up approach. We know how to

turn on the temperature, finite density, magnetic field and confine or deconfine the SU(N) gauge

degree of freedom. Our ability to calculate things is also enhanced by the holographic dictionary.

We see that the Green function of the strongly correlated system can be obtained by solving
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Figure 2.10: LEFT : The minimal surface Γ in the confining phase where the deep IR
geometry is truncated. RIGHT : The minimal surface in the deconfined phase. The surface
Γ has to be connected since the black brane require the geometry to be smooth at the horizon.

These figures are taken from [77].

differential equations instead of calculating many loop-corrections. Moreover, the complicated

quantity such as the entanglement entropy is turns out to be the minimal area in asymptotic

AdS spacetime.

It is probably a good place to stop giving a general dictionary rules and start to see what

can holographic duality tell us about the real systems, especially systems of fermions.



Chapter 3

Holographic (non-)Fermi liquid :

models with fermions

In the previous section, we see that the gravity dual provide a powerful way to calculate

the retarded Green function of the strongly interacting quantum field theory. It is interesting

to know what the Green function looks like if the boundary field theory is a system of strongly

correlated fermions.

We know that, from the Pauli exclusion principle, the states of Fermions form a “sphere”

in the momentum space. The surface of this sphere at k = kF is called the Fermi surface.

Therefore, the Green function should be something like

G−1
R (ω,k→ kF ) = ω − vF |k− kF |+ . . . (3.1)

where kF 6= 0 indicates the existence of the Fermi surface. The (. . . ) part is the electron’s

self-energy ∼ ω2 for the Landau-Fermi liquid theory. Hence, for the field theory with Fermi

surface(s), the inverse Green function is expected to be zero at some k 6= 0 and ω = 0. This

property is easy to see once we obtain the Green function from the gravity side.

Other than the presence of the Fermi surface, the theory of the fermions has to satisfies the

Luttinger count. In a case of non-interacting Fermi gas, it simply states that the size of Fermi

surface kF is constrained by the number of the fermions Q, namely Q ∝ kd−1
F for a Fermi gas

in d − 1 spatial dimensions. However, it has been proven that this relation remains valid to all

orders in the fermion-fermion interaction. We can also have a system with N different fermionic

operator ψl, each with different global U(1)l symmetry ψl → eiqlθψl. In this configuration, the

Luttinger count is generalised into

〈Q〉 =

N∑
l=1

qlVl (3.2)

35



Chapter 3. Holographic (non-) Fermi liquid : models with fermion 36

where ql is the U(1)l charge of the spinor field and Vl is the volume of the Fermi surface in

momentum space. The relation remains invariant as long as none of the U(1)l symmetry is

broken [79].

With the holographic principle, we found a nice and elucidative interpretation that the

relation is actually the “Gauss law”. Recall that the volume of the Fermi surface(s) corresponds

number of fermonic states on the boundary. This “Gauss law” is simply stating that the number

of the states is equal to the electric flux generated by the charged object(s) in the bulk. This

relation can be violated, for example, when the electric flux is generated from behind the horizon

and when one of the global U(1)l symmetry is broken, as I will discuss later.

In this chapter, I will discuss various model which the Fermi surface is found. Firstly, I will

summarise the discovery of the non-Fermi liquid zoo in the AdS RN metric and hence explain

why this is not the end of the story. Next, I will introduce, probably, the most popular model

where the fermions are treated as a fluid in bulk. This model is called the electron star due to

its similarity to the Tolman-Oppenheimer-Volkov neutron star. We will then move away from

the fluid approximation and explore the gravity model with the dilaton and the nice features we

can obtain of this model. Finally, I will give an example where the physics of the black hole,

system of electrons and entanglement entropy come into the same physical problem.

3.1 Probing AdS2 ×R2 with fermions

The starting assumption is that, we are in the probe limit, which means the probe fermion is

unable to signal the backreaction. The charge q in this limit are restricted to be small to avoid

the backreaction i.e. mL � 1 and q � 〈Q〉. As outlined in Appendix A, the spinor correlation

function in the AdS RN background.

GR(ω,k→ kF ) = D(ω,k)A−1(ω,k) (3.3)

where A and D is define is the the solution near AdS4 boundary i.e. [53]

Ψ(r → 0) =

(
Ar

3
2−mL

Dr
3
2 +mL

)
+ . . . (3.4)

In the Appendix A, I showed that the retarded Green function in the AdS2 ×R2 has the form

Gk = c(νk)(−iω)2νk (3.5)

I denote the retarded Green function in AdS2×R2 as G to distinguish it from the Green function

G in full asymptotic AdS4 spacetime. The scaling exponent νk is defined as

νk =

√
1

6

(
m2L2 − q2L2

κ2
+ k2r2

∗

)
(3.6)
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By incorporating the region r → 0 and r → r∗, one can show that at small ω the retarded Green

function becomes[62]

GR(ω,k) =
D

(0)
+ + ωD

(1)
+ + Gk(ω)(D0

− + ωD
(1)
− )

A
(0)
+ + ωA

(1)
+ + Gk(ω)(A0

− + ωA
(1)
− )

(3.7)

However, we know that Gk ∼ ω2νk . Hence, when G−1
R (ω = 0,kF ) vanish, we can expand A

(0)
+

around kF and obtain the celebrated formula

GR(ω → 0,k→ kF ) '
D

(0)
+

|k− kF |∂kA(0)
+ + ωD

(1)
+ + c(νkF )A

(0)
− ω2νkF

(3.8)

and hence can be rearranged in to a very peculiar form

G−1
R ' Z

−1

(
− ω

vF
+ |k− kF | − hω2νkF

)
(3.9)

This form of the Green function is almost the same in the one from Landau-Fermi liquid

theory. The difference are that Σ(ω) is no longer restricted to be ∼ ω2. There might also be

several Fermionic modes in the bulk that gives the G−1
R = 0 but with different values of vF and

kF . Consequently, this implies that there can be more than one Fermi surface in the boundary

theory. Therefore, the Green function of the AdS RN shows us the signature of the non-Fermi

liquid! The parameter νkF can be tuned by varying free parameters in our gravity theory and

we found four different regions namely

(i) 2νkF > 1 : The decay rate ∼ ω2νkF is very small and the field theory is expected to have a

long-lived low energy excitation. Note that at νkF = 1, we have the usual Landau-Fermi

liquid

(ii) 2νkF < 1 : The decay rate diverge and the system represents the fermionic states with no

long-lived excitation.

(iii) 2νkF = 1 : This region is called the “marginal Fermi liquid”. It turns out that h have poles

when νkF and vF simply vanished. These two infinity knock each other off and we are left

with

G−1
R ' Z

−1 (|k− kF |+ c̃1ω logω + c1ω) (3.10)

This form is exactly the same as the phenomenological model in (1.12)! The detailed

calculation toward this form can be seen in Section VI A and Appendix C of [62]

(iv) ν2
kF

< 0 : This region is called the “oscillatory region” [21] . This condition implies that

k2
F < r−1

∗ (q2L2/κ2 −m2L2). For the term k2
0 ≡ L2(q2/κ2 −m2) > 0, one can show that

the electric potential is able to produce pairs product of fermion/antifermion in the bulk

[80]. This pair product will create the finite density bulk fermions that will backreact the

bulk metric.

Although, this model exhibits the Fermi liquid and allows us to obtain classes of non-Fermi

liquids, it is not the end of the strongly interacting electrons’ story. Firstly, the entropy at zero
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temperature is nonzero thermal entropy which may leads to am instability [21]. Secondly, one

can test the Luttinger count of this system and finds that the relation is badly violated. This

is because only the small portion of the total charge 〈Q〉 forms the Fermi surface and a large

amount of flux came from the horizon [81]. Finally, in the case where k2
0 > 0, we can read off

the size kF of the Fermi surfaces at a given q from orange fringes in FIGURE 3.1. One finds

that there always exist the Fermi surface(s) in the oscillatory region ν2
kF

< 0. If there are a

finite number of fermions in the bulk, the modes in the oscillatory region are very likely to be

occupied and that leads to the instability.

Figure 3.1: The spectral density or ImGR(ω,k) as a function of q and k at ω = 0 when
k20 > 0.The orange fringes indicate the value of q and k where the Green function becomes
large. The location of the Fermi surfaces kF at a fixed q can be read off by look at the
intersections between the orange fringes and the line q = constant. We always find the Fermi

surface in the oscillatory region for any value of q. This plot is taken from [67]

Let’s look at this oscillatory region in a bit more detail and see what we can do when the

backreaction is taken into account.

3.2 Fermions pair production and backreacted spacetime

Let us start by looking at the electrostatic potential in the bulk generated by the AdS

RN black brane. The electrostatic potential, or sometimes called local chemical potential in

AdS2 ×R2, is given by [21]

µlocal(r) =
√
gttAt =

|q|
κ

(3.11)

If this potential energy is greater than the mass m of the bulk fermion, electron pair production

occurs. This condition is exactly the same as q2L2/κ2 − m2L2 > 0 discussed in the previous

section. Hence existence of the oscillatory region implies that the pair production is possible.

So, what will happen when there is a pair production in the bulk? It is illustrated by the

cartoon in FIGURE 3.2. The negative charged particle will falls back into the black brane and

reduces the total charge of the brane. The positive charge will be hovering in the bulk and form

a “Fermi surface” of the weakly interacting Fermi gas in the bulk. Eventually, the black brane

configuration will no longer be energetically favourable and we are left with fermions in a curved

background.
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Figure 3.2: The cartoon illustrates the pair production. The negative charge falls back to
the black brane while the positive charge form a bulk Fermi gas. The radial direction r in this

figure is L2/r in our notation. This plot is taken from [82]

Once the black brane vanishes, we will be back to the many-body fermions problem, which

is the problem we are trying to solve. In fact, it is even harder. The fermions interaction is

highly non-local since they know about each other’s wave function1 and, as a result, arrange

themselves such that they are not in the same state. This non-locality deform the metric in a

very complicated way. So one might think that doing the many fermions problem in flat space

is probably easier than solving the Einstein equation with non-local interactions.

Fortunately, the analogy between the RG flow and the AdS spacetime gives us a hint. Since

each value of r corresponds to the energy/length scale in the RG flow language, it does not make

sense if the fermions wave function is nonlocal in z. There are two proposed models associated

to this local approximation namely

Dirac Hair : By restricting the number of normalisable mode to be one, we can get rid of the

non locality in z. The field theory dual to this gravity has only a single Fermi surface [83].

However, the gravitational consistency properties are not fully understood [84].

Electron Star : By putting many fermions in the bulk, one can treat them as a fluid in a

similar way as the neutron star. The backreacted gravity solution is known in this case

but its dual field theory has infinitely many Fermi surfaces as a result [85–87].

I will review about the electron star in the next section since it is more settled and more literatures

have been done toward this direction.

3.3 Electron star

In this fluid approximation, the claim is that the total charge of the system is made up by

infinitely many electrons whose charge q is much smaller than the total charge 〈Q〉, q � 〈Q〉.
The gravity side is still restricted to be classical gravity limit i.e. κ2/L2 � 1. From the locality

in r, we demand that the Compton wavelength of the bulk spinor (∼ m−1) is much less than

1We can Fourier transform the bulk spinor field to get rid of the xµ dependence. The Dirac equation will then
becomes ODE’s with only r dependence. This is similar to solving Schrődinger equation in a weird potential.
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the AdS radius L i.e. mL� 1 [87]. The equations of motion of the gravity coupling to the fluid

are [85]

RAB −
1

2
gABR−

3

L2
gAB = κ2

(
1

q2

(
FACF

C
B −

1

4
gABFCDF

CD

)
+ TAB

)
(3.12)

and

∇AFAB = q2JB (3.13)

The energy-momentum tensor and the current can be expressed in the perfect fluid’s variables,

namely the four vector uA, energy density ρ, the pressure p and the number density σ as

TAB = (ρ+ p)uAuB + p gAB ; JA = σuA ; −p = ρ− µlocalσ (3.14)

We can do the coordinates transformation to the centre of mass frame and set uA = (ett̄, 0, 0, 0),

where eAa is the inverse veilbein defined in the appendix A. The fluid variables can be realted

to the spinor field by adding the Dirac action (A.1) to the Einstein-Maxwell action (2.29) then

calculate TAB and JA as shown explicitly in [83]. Using this procedure, we find that

ρ = K

∫ µ(z)

m

dE E2
√
E2 −m2 ; σ = K

∫ µ(z)

m

dE E
√
E2 −m2 (3.15)

where K is a proportional constant of order N0 and µ(z) is the µlocal defined in section 3.2.

A few more detail regarding how to obtain the equations of motion in terms of the fluid

variables can be found in the Appendix C. For now I will just present the results from [85, 88]

ds2 = L2

(
− 1

r2z
dt2 +

g∞
r2
dr2 +

1

r2
(dx2 + dy2)

)
; A =

h∞
rz

qL

κ
dt (3.16)

where the expressions for z, g∞ and h∞ in terms of the parameters in our theory is given in

[85]. By varying parameters in the gravity side, one found that the dynamical exponent z

diverges as β̂ ≡ q2L/κ → 0 and has an asymptotic value of order one when β̂ → ∞. The large

β̂ region is more interesting to this section since the backreaction can be neglected for small β̂

[85]. For a general z, this metric is called Lifshitz spacetime [89] illustrated in FIGURE 3.3.

These weakly interacting fermions are contained within the radius r > rs and stabilised under

the gravitational potential (see FIGURE 3.3 - RIGHT) in the same way as in the neutron star

case [90]. Also, the fact that the electrons fluid parameters vanish at a definite radius r = rs

means that it is not some kind of a gas that disperses all over the space. Therefore, we call it

an “electron star”.

However, the infinitely many electrons’ modes in the bulk implies the field theory with

infinitely many surfaces in the boundary. This feature is clearly unrealistic. Nevertheless, it

could still be a good starting point to develop more realistic models since the bulk gravity

theory is known. So let’s see what are the other properties this electron star have.

We should also look at the thermal entropy and use the Luttinger count to check that the

electron star does not have the same problem as the AdS RN. By fitting the numerical results,
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Figure 3.3: LEFT: The Lifshitz spacetime with the horizon at r →∞. All the electric flux
in the bulk is sourced by the fermion gas hovering in the bulk. RIGHT From bottom to top,
the pressure, energy and charge density distributions for an electron star. The position r = rs,
where all these fluid variables are all vanish, is interpreted as the “edge” of the star. These

two figures are taken from [33] and [85] respectively

Ref [91] found that the entropy of such system is ∼ T 2/z. The Luttinger count is also verified

as there is no electric flux emanating from the horizon [87]. This means that the electron star is

not degenerate and consists of fermions with the same symmetry as the Fermi liquid.

One can use the semiclassical analysis to see the behaviour of the decay rate of the electron

star as in Ref [87]. This could be done by writing the equation of motion of the rescaled Dirac

field χ = (|g|grr)
1
4 Ψ, where Ψ is the original bulk spinor field in (A.1), in the form

−d
2χ

dr2
+ V (r)χ = 0 (3.17)

Here the Dirac equation for χ took the same form as the Schrődinger equation with the “energy”

eigenvalue equals to zero. This allows us to use the semiclassical approximation such as the

WKB method. The potential at different values of k looks like the diagrams below.

Figure 3.4: The potential V (r) of the WKB Dirac equation as a function of 1/r with the
Lifshitz horizon r → ∞ located at the origin. The potentials in case I, II and III can be
obtained by tuning the boundary momentum k2. The thick green lines represent the location
of the zero “energy” state in (3.17). Note that stable zero “energy” bound states can be found

only in the r1 ≤ r ≤ r2 in case II This figure is taken from [87]

In the case I, there is no stable state at all. The zero energy state stuck in the region r > r3

and will eventually fall behind the horizon [60]. In case II, there will be many almost stable zero

energy state with an exponentially small amplitude of the tunnelling from r1 ≥ r ≥ r2 to the
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horizon. The negative “energy” bound states can occur in case III but no boundary with zero

“energy”. As a result, the retarded Green function has poles only in the parameters ranges of

case II. One can calculate the decay rate or the self-energy from the tunnelling rate and find

that it is an exponential function. [21, 87]

Σ ∝ exp
{
A (kzF /ω)

1
z−1 +B

}
(3.18)

where A and B are some constants that depend on parameters in our theory. This means that

the decay rate of the excitation with low ω is exponentially small. Hence the quasi-particle

excitations of the dual field theory are very long-lived, even longer then those of Landau-Fermi

liquid.

To sum up, the electron star is the well-understood gravity model of the fermions. However,

it does not represent any known metal due to the fact that it is dual to the field theory with too

many Fermi surface and too stable excitation.

3.4 Adding the Dilaton

The Lifshitz geometry, as a result of the backreaction in the electron star case, can be

mimicked when we include the dilaton into our gravity model. The action in the bulk then

becomes the Einstein-Maxwell-Dilaton action (EMD) which has the following form [52, 81, 92]

SEMD =

∫
dd+1

√
|g|
[

1

2κ2

(
R− 2|∇Φ|2 − V (Φ)

L2

)
− Z(Φ)

4q2
FABF

AB

]
(3.19)

where V (Φ) and Z(Φ) are functions of Φ that we can choose later. According to [92], we may

assume the exponential behaviour, V (Φ) = V0e
2βΦ and Z(Φ) = e2αΦ, in the IR region. In

general, the metric resulting from this action can be written as [52]

ds2 = L2r2δ

(
−dt

2

r2z
+
g∞
r2
dr2 +

1

r2
dxidxi

)
(3.20)

where α, β, δ are some constants.

In general, the dilaton Φ is not constant but grow logarithmically with r i.e. Φ ∝ log r

[52, 92]. This leads us to be concerned about the higher derivative corrections required to stabilise

the dialton at a constant value. However, in the presence of ideal fluid in the bulk (e.g. electron

star), there exist the IR solution where the dilaton is a constant [60]. The theory is said to be

a fixed point under the RG transformation r → λr in the r/L � 1 region. In this case, we are

back to the Lifshitz spacetime in (3.16) with δ = 1/2 and the critical exponent z identified as

z =
1

1− h2
∞Z(Φ)

where A =
h∞
rz

qL

κ
dt (3.21)

The different metric can be obtained when we move away from this fix point as illustrated in

FIGURE 3.6. This will be discussed in more detail in section 3.4.2.
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There are number of works studied the EMD theory over the past few years (see [92, 93]

for reviews and [94] especially for the fermion). However, I will only focus on two aspects of it

namely

(i) The dilaton is used to produce a “hard wall” that terminates the metric at some finite

r = r0. This can be done by forcing the dilaton Φ to be in the form Φ ∼ ln(Θ(r0 − r)),
where Θ(x) is a step function.

(ii) As outlined earlier, the different phases in the deep interior r → ∞ can be obtained by

adding the relevant perturbation to the EMD action. This will be discussed in the more

detail in section 3.4.2.

3.4.1 Hard wall : AdS4 with confining geometry

The confining geometry of this type was first introduced in the study of hardronic/mesonic

phase in AdS/QCD [95, 96]. Similar to the case of Hawking-Page transition we discussed in

section 2.6, all gauge degree of freedoms in the dual field theory are confined.

Let’s look at the some applications from the condensed matter side. In the holographic

study of the superfluid-insulator phase transition, the confining geometry is introduce to put

an energy gap that get rid of the low energy degree of freedom [97, 98]. In the context of the

fermi liquid, fermions in the confining bulk metric should corresponds to the weakly interacting

fermions in the boundary since they can no longer interact with each others via the massless

gauge field. The fermions in dual field have exactly the same properties as a weakly interacting

fermions in the Landau-Fermi liquid!

In this holographic model for Landau-Fermi liquid in 2+1dimensional boundary, the metric

is just a standard AdS4 that terminates at the hard wall, r = r0 [99]. By doing the Fourier

transform to get rid of the boundary spatial dependence, we can write down the Dirac equation

as a 1d problem as (
iσ2 d

dr
− σ1m

r
− kσ3 − qAt

)
χl,k(r) = El(k)χl,k(r) (3.22)

where χ(z) is the normalisable mode of the bulk spinor field rescaled by factor (|g|grr)
1
4 . The

hard wall at r = r0 requires a boundary condition

χ†1(r0)σ2χ2(r0) = 0 ; χ(z → 0) ∼ zm (3.23)

for any two Dirac spinors χ1, χ2. We can also normalise the spinor field by demanding that∫ r0

0

drχ†(r)χ(r) = 1 (3.24)

First thing to notice is that, in the absence of the background gauge field, one can solve this

eigenvalue equation exactly. There are many bulk solutions with many energy levels, similar to

the solution of the Schrődinger equation of a particle in the 1d box. One can then turn on the
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small flux At and increases the chemical potential so that it has a value between first and second

energy level as shown in FIGURE 3.5. The solutions χ in the non-zero flux has to be solved

self-consistently such that there is no flux passed through the hard wall. This procedure makes

the hard wall model obeys the Luttinger count by construction. The more details numerical

procedures can be found in [99]. We also notice that this set up has no event horizon which

means it is at zero temperature and has zero thermal entropy.

This model is extremely powerful in a sense that it requires neither the fluid approximation,

as for the electron star[85, 86, 91], nor fermion bilinear with a zero frequency contribution, as

in the Dirac hair [83]. Moreover, it really gives only one Fermi surface with a well-understood

gravity theory.

The fact that the structure of Landau-Fermi liquid theory is captured in a quite simple

gravity theory is indeed astonishing. However, the duality between the hard wall bulk and the

Landau-Fermi liquid is a weak to weak duality. If our aim is to study the strongly correlated

electron system, we need to modify this gravity in to something that gives the strongly interacting

boundary theory. There are number of developments from this model toward this direction. The

behaviour of the hard wall Fermi liquid state when the hard wall is taken away has been studied

in the model called “quantum electron star” [100]. The alternative confining metrics called

the AdS soliton have been applied in [101, 102]. The behaviour of this hardwall model and

the quantum electron star under a strong magnetic field has also been studied in [103] and found

the lowest Landau level as well as in the quantum hall experiment.

Figure 3.5: The dispersion relation obtained from the fermion hard wall model [99]. The
blue line is the dispersion relation El(k) when At = 0. The value of El(k) received a small
correction when At(r = 0) = µ is turned on. We can now see an intersection between El(k)

and qµ at k = kF . This is indeed the momentum kF of the one and only Fermi surface.

3.4.2 Fractionalised phase and hidden fermi surface

In this section, we consider the gravity theory with the dilaton and the charge fluid. The

fluid’s parameter’s namely, the energy density E and the charge density Q are fixed. The metric
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of this system at the zero temperature can be written as

ds2 = L2

(
−f(r)dt2 + g(r)dr2 +

dx2 + dy2

r2

)
; A =

eL

κ
h(r)dt (3.25)

For the computational simplicity, one can set Z(Φ) ≈ 1 and V (Φ) ≈ −6 − 4Φ2. The near

boundary expansion takes the form

f(r) =
1

r2
+ . . . ; g(r) =

1

r2
+ . . . (3.26)

h(r) =
κ

eL
(µ−Qr + . . .) ; Φ(r) = φ0r +

〈O〉
2
r2 + . . .

where φ0 and 〈O〉 are the expectation values of the dilaton and the operator O dual to the bulk

dilaton Φ [60]. Thus, the theory near the bounder is characterised by the sources {φ0, µ̂} and

the responses {E,Q, 〈O〉}. The parameter µ̂ is the reduced chemical potential µ expressed in

the unit of eL/κ.

In the IR region, there are three possible scenarios depending on the ratio of φ0/µ̂. At

a certain “critical” value of φ and µ̂, the boundary theory undergoes the RG flow toward the

Lifshitz fixed point as mentioned at the beginning of section 3.4.

f(r) = 1/r2z ; g(r) = gL/r
2 (3.27)

h(r) = hL/r
2z ; Φ(r) = φL

In this metric, the temperature can be introduced by introducing the black brane. The metric

in the presence of the black brane is found to be [81]

fT (r) = f(r)
(

1− (r/r0)3(1+z)
)

; gT (r) = g(r)
(

1− (r/r0)3(1+z)
)−1

(3.28)

One can calculate the area of the horizon and see that the entropy S ∝ T 1/z. This implies that

the zero temperature state is not degenerate. Next, we can also use the Luttinger count to check

whether the total electric field in the bulk is sourced by the fluid or not. The mismatch in the

Luttinger count can be expressed in term of the electric flux that pass through the horizon i.e.∫
R2 ?[Z(Φ)F ]. At zero temperature, the horizon of this Lifshitz geometry is at r0 → ∞ as in

the AdS4 case. The flux in this case behaves like r−2
0 . Hence, there is no flux emanating from

the Lifshitz horizon and the total electric field is sourced by just the fluid. In [77], this phase is

called cohesive phase

To get away from this Lifshitz fix point, we perturb the Lifshitz fix point by a relevant

operator. The perturbed IR metric looks like

f(r) = 1/r2z
(
1 + δfrM

)
; g(r) = gL/r

2
(
1 + δgrM

)
(3.29)

h(r) = hL/r
2z
(
1 + δhrM

)
; Φ(r) = φL

(
1 + δφrM

)
with the scaling exponent M > 0. The boundary theory that has the ratio φ0/µ̂ different from

the value of the Lifshitz fixed point will be hit by this relevant deformation and flows away from
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the fixed point as illustrated in FIGURE 3.6. There are two extreme IR geometries characterised

by two dilaton profiles [60] namely

Figure 3.6: The three possible IR geometries as a result of the RG flow from the UV AdS4

metric. The fractionalised, partially fractionalised and cohesive(mesonic) phase is shown from
the right to left respectively. The term “mesonic” has been used in [60] where this picture is
taken from. However, it was realised in [77] that the name “mesonic” is misleading. Hence, I

will use the term cohesive phase for the “mesonic” phase in this figure.

Φ→∞ : The effective Maxwell coupling q/
√
Z(Φ) is negligible. The local chemical potential

defined in 3.11 becomes µlocal ∼ r−1 → 0. It follows that there will be no fluid in the large r

region. In contrast, the electric flux from the Lifshitz horizon,
∫
R2 ?[Z(Φ)F ]|r→∞ ∼ const,

indicates that there is a nonzero electric flux emanating from the horizon. For a reason

that will becomes clear later, this phase is called the fractionalised phase.

Φ→ −∞ : In this case, the effective Maxwell coupling becomes large. The local chemical

potential is constant at r →∞. The vanishing electric flux at large r,
∫
R2 ?[Z(Φ)F ]|r→∞ ∼

r−7/3 → 0, means all the electric field is generated from the fluid matter in the bulk. This

theory of gravity is therefore describing the cohesive phase as in the Lifshitz geometry.

A careful Luttinger count in [60] found that in the regime Φ → ∞ there is a range of φ0/µ̂ for

which the electric field is sourced by both bulk fluid and the Lifshitz horizon. This phase is

labelled as the partially fractionalised phase shown in FIGURE 3.6. We now see that the EMD

action can capture various zero temperature phases of the boundary field theory, similar to the

phase transitions in the cuprate shown in FIGURE 1.5.

Now, let’s see why the phase with the non-zero flux emitted from the horizon is called

the fractionalised phase. The name “fractionalisation” came from quantum phase transition

literatures where we can treat an elementary particle (e.g. electrons) as a composite particle.

For example, the electron can be thought of as a spin and charge particle glued together by some

emergent gauge field [22].

Let’s look at an example that is relevant to our discussion in FIGURE 3.7. Consider the

mixture between electrons that are stuck on the lattice sites and the free electrons, called the

Kondo lattice. The magnetic moment is formed by the electron in the f-orbital [16] and hence
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Figure 3.7: The zero temperature phase diagram of Kondo lattice. LEFT : The phase
with c-electron Fermi surface and antiferromagnetic order ϕ 6= 0 that breaks U(1) symmetry.
RIGHT : The f-electrons are no longer localised on the lattice. Both f and c electrons form
a Fermi surface. MIDDLE : An intermediate phase between LEFT and RIGHT. The f-
electrons deconfine into z-fermion and spin degree of freedom. The z-fermions also form a
Fermi surface but it was “hidden” and hence not shown in the above figure. This figure is

taken from [104]

we call these localised electrons f-electrons. The free electrons are said to be in the conducting

band and hence called c-electrons. The creation operator of the electron that are stuck at the

lattice site i can be written as

fi,α = e−iϑizi,α where e−iϑi ≡ bi (3.30)

We define fi,α, zi,α to be spinor operators and bi to be the bosonic operator describing the

direction of the spin through the angle ϑi. This decomposition implies that there is another

“emergent” local U(1) transformation other than fi,α → eiθifi,α, namely

bi → eiφibi ; zi,α → e−iφizi,α ; fi,α → fi,α (3.31)

One can associate this emergent U(1) local symmetry with the emergent U(1) gauge field that

glue bi and fi,α together. The interesting part of FIGURE 3.7 is the middle part, where the

parameters are tuned such that the field fi,α and bi are deconfined and behave as two separate

entities [105]. The spinor zi,α form a Fermi surface as well as the c-electrons. The difference

here is that the Fermi surface of the z fermions is charged under an emergent U(1) gauge field.

The Fermi surface of the c-fermions can be observed by reading off the pole of the Green

function of a probe particle. However, this type of probe can only detect the gauge invariant

operator. This type of probe cannot detect the Fermi surface of the z-electron and that causes

the mismatch in the Luttinger count. Thus, the Fermi surface of the z-electrons is said to be

hidden [79]. This phase with deconfined f-electrons is the non-Fermi liquid, since the Luttinger

count is violated, and is usually called fractionalised fermi liquid (FL∗)[106]
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We can see that the FL∗ phase in FIGURE 3.7and the partially fractionalised phase in

FIGURE 3.6 are remarkably similar. Both phases have two Fermi surfaces, one is detectable by

a probe fermion and the other is hidden. Hence, we can associate the charge behind the horizon

in EMD theory with the “hidden” z-fermion in the Kondo lattice.

Although the EMD theory does not have all exactly the same properties as the Kondo

lattice model, it gives us a hint of that we may interprete the charge matters behind the horizon

as hidden Fermi surfaces. Moreover, the further holographic studies [81] found the way to detect

the hidden Fermi surface using the entanglement entropy. The entanglement entropy, that we

discussed in section 1.3.4 and 2.6, for the system with hidden Fermi surface is found to be

SE ∝ Q2/3
hid Vol(Σ) ln

(
Q2/3

hid Vol(Σ)

)
(3.32)

for the 2+1d field theory [81]. Here, Qhid is the flux sourced by the hidden fermions and Vol(Σ)

defined in section 2.6 is the perimeter of the region B in FIGURE 2.9. The non-zero SE for

Qhid 6= 0 indicates that the quantum entanglement has some roles behind the existence of the

FL∗ phase. The entanglement here is also long ranged since it depends on Vol(Σ) ln Vol(Σ)

instead of Vol(Σ) alone.

3.5 Closing

Concluding the literature review of the topics that is developing at the rapid speed is

probably as difficult as writing the history of a war when it is still raging. I cannot end it by

suggesting all interesting work that could been done in a past few years. However, I can say

something about the interesting topics that I capable of learning and summarising over the past

few months. That is the following.

So far in this review, I discuss about basics AdS/CFT correspondence developed over a

decade ago up to the recent work on hidden Fermi surface in early 2012. In the first chapter

the heuristic arguments that, hopefully, will convince people that the N=4 super Yang-Mills

theory is dual to the semiclassical theory of gravity in AdS5 × S5. Then, the brief introduction

to the theory of fermions and quantum phase transitions are presented. The point of this

introduction is to explain why the quantum many-body problem is hard and interesting due to

its quantum nature. It turns out that the holographic duality might be able to give us some

insight about these many-body problem, as mentioned in the text. The holographic dictionary

rules for building the bottom-up gravity model and extracting physical quantities are discussed in

chapter 2. Finally, in chapter 3, one finds a superficially introduction of the popular bottom-up

models of fermions such as AdS Reissner-Nordstrőm, electron star, hard-wall and the Einstein-

Maxwell-Dilaton theory. In the appendices, I put the detailed calculation one can use to extract

correlation function from the gravity theory and the mathematica code that I use to play with

Einstein-Maxwell equations.

There are many other works along the direction of holographic (non-)Fermi liquid that

I cannot put in this dissertation. The quest for the understanding of the fermions system,
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especially the cuprate which is the main theme of this dissertation, is still on going. There

gravity dual of the different phases in the cuprate phase diagram proposed but the model that

unifies all these phases are still missing. There are models built to study the pairing mechanism

of the electrons using the the mixture between the electrons and bosons [107, 108]. The quantum

correction and the lattice, which should improve the accuracy of the AdS/CFT prediction, have

also been studied [70, 71, 100, 101]. I would also like to emphasis on the quantum information

aspects that are open up by the holographic realisation of the entanglement entropy. The recent

applications of the holographic principle to the non-equilibrium system would also be interesting

since we can use entanglement entropy to study the evolution of the quantum state, see e.g.

[109]. The Ryu-Takayanagi formula can be very powerful in the studies of such non-equilibrium

quantum system since it allows us to study the entanglement structure in higher dimensions

systems. The other most interesting arena for quantum information and condensed matter is

the gapped topological state such as quantum hall2 and topological insulator, which are one of

the candidates for quantum computation. As a result, there have a lot of quantum information

studies in these systems, see e.g. [110–112]. The recent holographic studies found the systems

that resemble the quantum hall state namely the model of intersecting branes [113–115] and the

electron star under the strong magnetic field [103]. These models open up the possibility that

there are theories of gravity dual to the candidates for quantum computer! It would be really

interesting to see either the physics of the black hole helps building the quantum computer or

the quantum simulator that can be used to study the black hole.

From the non-string perspective, there are a whole quantum world out there, which is largely

unexplored. This is because it is only now or in a last decades or so, that we are developing

the technological capability to scale up quantum system, to manipulate them, to test them in

the lab and try compare the data with the theory. Surely, this is the time when a lot of new

theories and ideas are flourishing. People are not exactly sure what are these quantum theories,

including AdS/CFT, going to be developed in to and I think that makes it so exciting.

2The quantum hall state can be realised by putting the 2d electrons under the strong magnetic field background
to the low temperature [110]
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Solving Dirac equation

I fill up some steps in the solving the Dirac equation outlined in [21, 62]. The correlation

function is calculated using the formalism in [53]. I will focus on the AdS4 and AdS2 × R2

spacetime for simplicity. The calculations presented here are collected from various papers

namely [53, 54, 62, 67, 68, 94].

A.1 Setup

Firstly, the spinor has more than one complex component, unlike the scalar. It is known

that, for any dimension, the dimension of the boundary fermionic operator is always half of that

of the bulk field[62]. The real-time action of the Dirac equation in the bulk is

SDirac = −
∫
d3+1x

√
|g|(Ψ̄ΓADAΨ−mΨ̄Ψ) + Sbnd (A.1)

where Sbnd is the term we need to add to make the variational principle well-defined and have

the appropriate boundary condition. Here, I denote Ψ for the bulk spinor and ψ for the spinor

operator in the boundary. The Dirac equation obtained from this action is

We need to be careful about the ΓA and DA. ΓA is not the standard Gamma matrices in

the flat space that we used in QFT course. We can related these matrices to the one we know

by the veilbein formalism. The idea of this formalism is simply write down the metric as [12]

gMN (x) = ηabe
a
M (x) ebN (x) (A.2)

where ηab is the flat spacetime metric. The object eMa (x) is called the veilbein. Sometimes,

like in [53, 54], the veilbein indices a, b is called the tangent spacetime indices. The objects in

the curved spacetime, e.g. the Gamma matrices, can be expressed in terms of the flat spacetime

expressions through the inverse veilbein.

ΓM = ΓaeMa ; {Γa,Γb} = 2ηab1 (A.3)

50
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The covariant derivative is also not as simple as in the scalar. For the vector in curve space, we

have to add the Christoffel symbols to the derivative to act as the connection. Similar procedure

is required for the spinor, but instead of the Christoffel symbols, one needs to add the spin

connection term i.e.

DM = ∂M +
1

4
ωM,abΓ

ab − iqAM (A.4)

where

Γab =
i

2
[Γa,Γb] ; dea = ωabeb

For now, let’s assume that we have the Sbnd which gives the Dirac equation and see how we can

solve it. The Dirac equation in curved space has the following form(
eMa Γa

(
∂M +

1

4
ωM,abΓ

ab − qAµ
)
−m

)
Ψ = 0 (A.5)

The spin connection can be removed by redefine [2]

Ψ = (|g|grr) 1
4

(
χ+

χ−

)
(A.6)

where χ± is the eigenvector of Γr with eigenvalues ±1. The Dirac equation is reduced into√
gxx
grr

(
iσ2∂r −

√
grrσ

1m
)
χ±(r, kµ) = −

(
± k −

√
−gxx
gtt

(ω + qAt)
)
χ± (A.7)

where we use the rotational symmetry of the boundary theory to choose kµ = (ω, k, 0, 0). The

choice of ΓM here follows from [2, 62] namely

Γr̄ = −σ3 ⊗ 1 ; Γt̄ = iσ1 ⊗ 1 ; Γx = −σ2 ⊗ σ1 (A.8)

A.2 The Solutions and Correlation Functions

For the spacetime with an asymptotic AdS boundary, the solution near the boundary is

found to be [53] (
χ+

χ−

)
=

(
A(k)r−mL

D(k)rmL

)
+

(
B(k)rmL+1

C(k)r−mL+1

)
+ . . . (A.9)

where A,B,C,D are 2-component vectors which are related to each others i.e. A ∝ C, B ∝ D.

We might think that we can fix the first term
(
A,D

)
as a source and treat

(
B,C

)
as a response.

However, we cannot do that since B,C depend on A,D. Moreover, the boundary operator ψ

has only 2 components while Ψ has 4 components. This indicates that we can fix only one of A

or D to be a source.

In order to find out whether A and D are normalisable or non-normalisable, we have to see

if the energy for a given mode is finite or infinite. It turns out that the energy of this asymptotic
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solution takes the from [54]

E ∼
∫
dr

1

r4

[
C̄Ar4−2mL − B̄Dr4+2mL

]
(A.10)

From this, we can see that [53, 54]

(i) mL ≥ 1/2 : The term B̄D is normalisable while C̄A is non-normalisable. Hence, we should

fix A as a source i.e. χ+ = 0 at the boundary.

(ii) mL ≤ 1/2 : The story is inverses and we have to fix χ− = 0 at the boundary instead.

(iii) −1/2 < mL < 1/2 : both term are normalisable and we have a choice to choose either χ+

or χ− to be a source.

The two different boundary conditions in (i) and (ii) result in two different conformal field

theories. They are often referred to as standard and alternative quantisation respectively. The

scaling dimension of the conformal operator Oψ of the former case is ∆(i) = 3/2 +mL while the

latter is ∆(ii) = 3/2−mL. An intensive work on the case (iii) can be found in [54].

I will follow [53] and focus on the case (i). The Dirichlet boundary condition, δSbnd = 0

implies that the real-time canonical momentum conjugate to the source Ψ+ ≡ +ΓrΨ+ are

Π+ = −
√
|g|grrΨ̄− (A.11)

By setting χ+ = 0, the 1-point function can be found using the formalism outlined in section

2.3.1.

〈Ōψ〉 = lim
r→0

r3/2−mΠ+ i.e. 〈Ōψ〉 = D̄ (A.12)

and the retarded Green function GR(t,x) = iΘ(t)〈[O(t,x), O†(0,0)]〉 is

GR(ω,k) = DA−1 = iS(ω,k)Γt (A.13)

where AA−1 = iΓt and S(k) is a matrix that satisfies D = S(k)A [53]

A.3 Fixing Sbnd term

With out Sbnd term in (A.1), once we varying Ψ→ Ψ + δΨ, the change in action will be

δSDirac = bulk terms− δ
∫
d3+1x

√
|g|grr(Ψ̄−∂rΨ+ − Ψ̄+∂rΨ−)

⊃
∫
d2+1x

√
|g|grr(Ψ̄−δΨ+ − Ψ̄+δΨ−)

Thus, this means the action depends on both Ψ− and Ψ+. However,this is wrong as we cannot

freely choose δΨ+ or Ψ−, at least in case (i) and (ii). In case (i), Ψ− becomes the response to the

source Ψ+ and δSDirac should not depend on δΨ−. We can fix this Ψ− dependence by adding
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an extra boundary term namely

Sbnd = −
∫
r=ε

d2+1x
√
|g|grrΨ̄+Ψ− (A.14)

With this boundary term, the on-shell Dirac action becomes

δSDirac = −
∫
r=ε

d2+1x
√
|g|grr

(
Ψ̄−δΨ+ + δΨ̄+Ψ−

)
(A.15)

Now, δSDirac no longer has δΨ− dependence hence this boundary term fix the earlier conundrum.

A.4 AdS2 ×R2 Correlation Function

In the AdS2 ×R2, the Dirac action can be written as

(
eAa ΓaDA −m+ im̃Γ

)
Ψ = 0 (A.16)

where the metric background and the gauge field background is

ds2 =
R2

ζ2
(−dt2 + dζ2) ; At =

ed
ζ

(A.17)

where ed is defined in (2.37). We have the only non-zero spin connection ωt̄,tζ = 1
ζ from the

veilbein et̄ = (R/ζ)dt and eζ̄ = (R/ζ)dζ. Here, I define t̄ and ζ̄ to be the first and second

component of the tangent spacetime respectively.

For the gamma matrices, I use

Γt̄ = iσ1; Γζ̄ = σ3; Γ = −σ2 (A.18)

where the term m̃Γ came from the momentum in the R2 part of AdS2 × R2. This choice of

gamma matrices is compatible with the choice I made in (A.8). The Dirac equation become

0 =

[
ζ

R

(
σ1(ω + qAt) + σ3(

1

2ζ
+ ∂ζ)

)
−m− im̃σ2

]
Ψ (A.19)

We can simplify this equation a little bit by rescale Ψ = (|g|gζζ)1/4χ =
(√

R/ζ
)
χ multiply the

equation with σ1

0 = ∂ζχ+

[
iσ2(ω + qAt)−

R

ζ
(mσ3 + m̃σ1)

]
χ (A.20)

Near the black brane boundary ζ → 0, we have

ζ∂ζχ = Uχ ; U ≡

(
mR m̃R− qed

m̃R+ qed −mR

)
(A.21)
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The solution of this equation has the following form

χ = av−ζ
−ν + bv+ζ

ν (A.22)

where a, b are some functions of ν and v± are the eigenvector of U with eigenvalues ±ν respec-

tively. This eigenvalue ν can be found by taking det[U − ν1] = 0. We find that

ν = ±
√

(m̃2 +m2)R2 − q2e2
d (A.23)

If we reexpress m̃ in terms of R2 momentum k, we will obtain νk in (3.6). Moreover, one finds

very quickly that av− is a non-normalisable mode and therefor the retard Green function is

G =
b

a
(A.24)

Recall that χ is invariant under ζ → λζ, we can figure out the ω dependence in a and b namely

a ∼ ω−ν ; b ∼ ων (A.25)

and hence

G = c(ν)ω2ν (A.26)

as claimed in equation (3.5) in section 3.1
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AdS Schwarzschild and The Black

BraneTemperature

B.1 The AdS Schwarzschild Solution

In order to obtain the AdS metric, one need to look at the Einstein-Hilbert action with a

negative gravitational constant. The action for that gives the asymptotic AdS4 looks like

S =

∫
d4x
√
|g|
[

1

2κ2

(
R+

6

L2

)]
(B.1)

By varying the action, regardless the necessary boundary term, one should obtain the Einstein

field equation

RMN −
1

2
gMNR−

3

L2
gMN = 0 (B.2)

The solution of this equation is assumed to be

ds2 =
L2

r2

(
−f(r)dt2 + f(r)−1dr2 + dxidxi

)
(B.3)

where f(r) is an unknown function that can be determined after we solve the Einstein field

equation. Now, there are two ways one can see what f(r) can be, namely

• Use the veilbein method introduced in the Appendix A. The vielbein of this metric can be

listed as following

et̄ =
L
√
f

r
dt ; er̄ =

L

r
√
f
dr ; eī =

L

r
dxi (B.4)

There are not many non-zero spin connections, namely

ωt̄r̄ =

(√
f

L
− r

L

f ′√
f

)
; ωīr̄ =

√
f

L
(B.5)
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where f ′ ≡ d
drf and the vielbein index ī = {x, y}. The reason we need these vielbein and

spin connections is that, the Ricci tensor in the tangent space basis can be written as

Rab = dωab + ωacωcb = RabMNdx
M ∧ dxN (B.6)

and we can turn Rab back to RMN using the inverse vielbeins eMa [7, 12]. This method

might sounds complicated but I found that it is better than plug in the metric, calculating

Christoffel symbols and then calculating the Riemann tensor.

• Find a good mathematica package that can find the Ricci tensor and Ricci scalar. I found

the mathematica package call diffgeo.m extremely useful. One can find this package and

the manual from Matthew Headrick’s (the one who wrote this package) personal webpage

http://people.brandeis.edu/∼headrick/Mathematica/. The essential command line

and the simplified expression on the LHS of (B.2) are

In[7]:= display@eqnR1 = Simplify@RicciTensor - metric RicciScalar � 2 - 3 metric DD

Out[7]=

8r, r< -
3-3 f@rD+r f¢@rD

r2 f@rD

8t, t< f@rD I3-3 f@rD+r f¢@rDM

r2

8x, x<
8y, y<

-6+6 f@rD-4 r f¢@rD+r2 f¢¢ @rD
2 r2

Figure B.1: The table displaying non-zero {M,N} components of the LHS of (B.2).

Using either methods, one should find that the equation that f(r) has to satisfies is

0 = 3− 3f(r) + r
d

dr
f(r) (B.7)

For an asymptotic AdSd+1 spacetime, we can simply change 3 to d. With f(r) = 1, we obtain

the AdS4 metric but we also see that there is a solution of the form

f(r) = 1−
(
r

r0

)d
(B.8)

for any 0 < r0 ≤ ∞. This is the AdS Schwarzschild solution that describes the black brane.

B.2 Black Brane Temperature

The method that used to extract the black hole temperature here is the Gibbons-Hawking trick

[2]. Let’s start by writing the metric in (B.3) in the Euclidean signature as

ds2 = gττ (r)dτ2 +
dr2

g

rr

(r) + gii(r)dx
idxi (B.9)

http://people.brandeis.edu/~headrick/Mathematica/
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The black brane is located at r = r0 where gττ (r0) = grr(r0) = 0. Hence, we can expand the

metric component at r → r0 as following

gττ (r) = g′ττ (r0)(r0 − r) + . . . ; grr(r) = g′rr(r0)(r0 − r) + . . . (B.10)

where g′ττ , g
′rr are the derivatives of gττ , g

rr Then, substitute the re-parametrisation R =

2
√
r0 − r/

√
g′rr. We will see that the AdS Schwarzschild metric has the form

ds2 = dR2 +
1

4
R2g′ττ (r0)g′rr(r0)dτ2 (B.11)

which is similar to the metric of the cylinder, ds2 = dR2 + R2dθ2. We know that both θ and

τ are periodic variables under the transformation θ → θ + 2π and τ → τ + β. Hence, once we

demand that dθ = 1
2

√
g′ττ (r0)g′rr(r0)dτ , the periodic β is found to be

β =
4π√

g′ττ (r0)g′rr(r0)
(B.12)

Once we substitute the AdS Schwarzschild metric, g′ττ (r0) = L2f ′(r0)/r2
0 and g′rr = r2

0f
′(r0)/L2,

the inverse temperature β becomes

β =
4π

f ′(r0)
=

4πr0

d
(B.13)
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Playing with the

Einstein-Maxwell equation of the

electron star

The aim of this appendix is to clarify how one can solve the equations of motion, (3.12) and

(3.13), in the electron star setup. The equations of motion and the fluid variables are redefined

such that the constants q, κ are absorbed.

RAB −
1

2
gABR−

3

L2
gAB =

(
FACF

C
B −

1

4
gABFCDF

CD

)
+ TAB (C.1)

and

∇AFAB = JB (C.2)

This procedure has been used in the original electron star paper [85]. The fluid variables {ρ, p, σ}
are re-parametrised to the new ones {ρ̂, p̂, σ̂} as following

ρ =
1

L2κ2
ρ̂ ; p =

1

L2κ2
p̂ ; σ =

1

qL2κ
σ̂ (C.3)

In order to solve the backreacted metric resulting from the presence of the electrons in fluid

limit, the background metric and 1-form gauge field are assumed to have the form

ds2 = L2

(
−f(r)dt2 + g(r)dr2 +

dx2 + dy2

r2

)
; A =

qL

κ
h(r)dt (C.4)

It is not easy to find an equation of motions of these variables f(r), g(r), h(r) in terms of the

fluid variables that was presented in [85]. The rest of this section are essential pieces of the

mathematica code I used to derive the equations of motion.

The following is how to define the metric and fluid variables in the "diffgeo.m" language.
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In[1]:= coord = 8t, r, x, y<;

$Assumptions = And@t Î Reals, x Î Reals, y Î Reals, r > 0D;

metricsign = -1;

metric = 88-f@rD, 0, 0, 0<, 80, g@rD, 0, 0<, 80, 0, 1 � r ^ 2, 0<,

80, 0, 0, 1 � r ^ 2<<;

vA = 8h@rD, 0, 0, 0<
vF = partial@vAD - transpose@partial@vAD, 82, 1<D

In[13]:= u = : f@rD , 0, 0, 0>;

vT = Hp@rD + Ρ@rDL u ** u + Hp@rD metricL;

vJ = Σ@rD u;

Note that all matrixes and arrays in this package have lower indices. The fluid variables are all

written without a hat for simplicity. The Maxwell equation can be simplified as

In[16]:= eqnF = Simplify@contract@covariant@vFD, 81, 2<D - vJ D

Out[16]= :- f@rD Σ@rD +

J- 2

r
-

f¢@rD
2 f@rD

-
g¢@rD
2 g@rD

N h¢@rD + h¢¢@rD

g@rD
, 0, 0, 0>

By setting the first component of eqnF to be zero, we obtain the first equation of motion. The

next equation of motion is the conserved current which can be derived from the Bianchi identity.

This equation indicates that the gradient of the energy-momentum tensor in the presence of the

2-form field strength FAB has the following form

∇ATAB = gCDJ
CFDB (C.5)

The input and output in the mathematica should look like

In[16]:= contract@covariant@vTD, 81, 2<D - contract@vJ ** vF, 81, 2<D

Out[16]= :0,
Hp@rD + Ρ@rDL f¢@rD

2 f@rD
-

Σ@rD h¢@rD
f@rD

+ p¢@rD, 0, 0>

The simplest term, {r,r}=0, will be the second equation of motion. Lastly, one can substitute

the fluid variables and the metric ansatz (C.4) into the Einstein field equation. The (LHS)-(RHS)

of the equation (C.1) are presented below

In[42]:= eqnR = Simplify@RicciTensor - metric RicciScalar � 2 - 3 metric -

Hcontract@vF ** vF, 82, 4<D - metric � 4 Hcontract@vF ** vF , 81, 3<, 82, 4<DLL - vTD

Out[43]=

8t, t< -
2 f@rD J5 g@rD+r2 g@rD2 H-3+Ρ@rDL+r g¢@rDN+r2 g@rD h¢@rD2

2 r2 g@rD2

8r, r< -g@rD H3 + p@rDL +
2 f@rD-2 r f¢@rD+r2 h¢@rD2

2 r2 f@rD

8x, x<
8y, y< - 1

4 r4 f@rD2 g@rD2
Ir2 g@rD f¢@rD2 + 2 f@rD2 I-4 g@rD + 2 r2 g@rD2 H3 + p@rDL - r g¢@rDM +

r f@rD Ir f¢@rD g¢@rD + 2 g@rD If¢@rD + r h¢@rD2 - r f¢¢@rDMMM
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We pick the {r,r} component as the third equation. One should see that the other expres-

sions which should be equal to zero seem to be very complicated. However, we can combine the

{t,t} and {r,r} components and obtain the last equation

In[45]:= Simplify@HHeqnR@@1DD@@1DD * g@rD ^ 2L + HeqnR@@2DD@@2DD * f@rD * g@rDLL � f@rDD

Out[45]=

-r g@rD f¢@rD + f@rD I-4 g@rD + r2 g@rD2 Hp@rD + Ρ@rDL - r g¢@rDM
r2 f@rD

To sum up, the equations of motions of in terms of the fluid variables written in the same order

as we obtained from the above calculation are

h′
(
− f

′

2f
− g′

2g
− 2

r

)
+ h′′ −

√
fgσ̂ = 0 ; (C.6)

p̂′ +
(p̂+ ρ̂)f ′

2f
− σ̂h′√

f
= 0 ; (C.7)

f ′

rf
− h′2

2f
+ (3 + p̂)g − 1

r2
= 0 ; (C.8)

1

r

(
f ′

f
+
g′

g
+

4

r

)
+ (p̂+ ρ̂)g = 0 . (C.9)

One can show that the complicated expressions in eqnR are identically zero once these four

equations satisfied. These equations are the one that appears in [85]. The details about solving

these equations can be found in [85, 88]
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