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Abstract

In the last decades, we have witnessed an astonishing progress in our under-

standing of the Early Universe and its evolution into the actual con�guration we

observe. General Relativity has been a key ingredient for this achievement, and

it certainly provides the correct way to couple matter �elds to gravity. How-

ever, in other fundamental theories (string theory, for example), we can �nd an

immense number of degrees of freedom, and some of them are specially relevant

in order to analyze cosmic evolution. Then a question arises: Is this the only

way to couple these modes to gravity and matter?

This dissertation takes the opportunity to explore Bimetric Models of Gravity

as theories of modi�ed gravity motivated by cosmological purposes. Such as the

solutions of the issues presented on standard Big Bang Cosmology, the Horizon

and the �atness problem on the matter sector. The starting point for this ideas

takes into account the possibility of modi�ed dynamics for the matter �elds,

and how this modi�cations translate into new geometrical features.

In this dissertation, we explore models based on the idea that there are two met-

rics in spacetime: One describes the standard gravity, and the other provides a

geometry in which matter �elds propagate. In order to do that, we provide the

essentials of Finsler geometry and the rules to induce a metric for the propaga-

tion of matter. Such a description will cover some of the most critical features

related to the �eld necessary to do the induction, these will arise in an attempt

to build an action for this �eld. And �nally, we provide an example to study the

homogeneous limit of background FLRW equations for the cosmological model

and the role of Lorentz symmetry breaking to provide a graceful exit.
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1 Introduction

In standard General Relativity (GR) we �nd the correct way to couple gravity to mat-

ter �elds. However, there are not convincing arguments to think that the equations of

motion for gravity do not present couplings to other �elds. Many contemporary ap-

proaches predict an immense number of degrees of freedom which might be specially

relevant at high energy scales, playing a major role in the early stages of the universe.

Of course, the e�ect of such additional degrees of freedom should be supressed at the

current scales (of energy and length) in which GR has been tested successfully.

In the last 30 years, the literature presents a plethora of alternatives for modi�ed

gravity [1]. Most of them are conceived as deviations from GR, motivated by the

emphasis of certain physical phenomena; or in the contrary, as attempts to rule out

some results that became essential in our current understanding. GR has shedded

many lights on our knowledge of the actual structure of the Universe and its evolu-

tion. And it is natural to think about cosmological issues as motivations to modify

gravity.

In this essay, we explore Bimetric Gravity, highlighting the features we can use to

solve the pathologies found in the Early Universe Cosmology. As the name suggests,

this model is based on the idea that there are two metrics in spacetime: One is used

to describe gravitational vacuum, and the other provides a geometry in which matter

�elds propagate. The latter is a metric induced from the gravitational metric by

introducing additional degrees of freedom coupled to gravity. According to [2], [3]

this model exhibits a variable speed of light. In the last few years, intense discussions

around [2] and [4] proof that it is worthwhile to consider these propsals as alternatives

to solve the issues of Big Bang Cosmology.

To do so, �rst, we must describe an inducted geometry in which matter �elds interact.

And for that purpose, the essentials of Finsler geometries will satisfy naturally our

need to generate a matter geometry from superluminal dispersion relations. Our

approach for these modi�cations is conservative, following the results of J. Bekenstein

in [5]: the metric emerges from a modi�ed dispersion relation that is still quadratic,

and is parametrized by external degrees of freedom.
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In advance, we should be aware that the notions of Finsler Geometry exhibit a general

procedure: these motivate many other candidates for the matter dynamics since it is

always possible to modify the dispersion relations at our free will. And in consequence,

some assumptions are necessary to �t in the objectives of this project. Considering

causal propagation of all degrees of freedom, and requiring a natural setup to write

the equations of motion. An adequate set of constraints will clarify the geometrical

features of this model.

Then we propose an action, which includes terms for extra �elds used to induce the

matter geometry. If we want to be consistent with the idea of an a�ordable superlu-

minal propagation for all �elds in the matter sector, the assignment of a functional

for these extra degrees of freedom is not a trivial task. By considering the case of

a scalar �eld, we explore super�cially the consequences of introducing a canonical

Klein-Gordon action just by analyzing its equations of motion and its prospective

matter couplings. This Klein-Gordon action is a natural limit for a generic k-essence

�eld. A preliminar analysis will lead us to brie�y discuss the arising of Chameleon

screening e�ect from the motion laws.

In addition to that, we explore the possibility of having a Cuscuton playing the role

of an inducing �eld. The solutions and speci�c properties of this entity provide fertile

soil for physical interpretations. We discuss the dynamics and other peculiarities of

this proposal.

Knowing the constraints, the mechanisms of induction and the motion equations for

the �elds involved, we are able to explore the cosmological scenario proposed in this

setup. In order to proceed, we write the Raychaudhuri equation for a congruence of

timelike curves propagating in the matter geometry. We �nd that it is not compulsory

to consider violations of the strong energy condition in the matter sector to achieve

an expanding cosmology. Nevertheless, the result certainly con�rms that matter con-

tributions will become subdominant and irrelevant for structure formation.

Knowing this, we translate these results into the simplest modi�cation of an FLRW

(Friedmann-Lemaitre-Robertson-Walker) model, �nding an in�ationary phase irre-

spective of the species in the matter sector. Leading us to a direct solution of the

Horizon and �atness problems. This is followed by a short discussion about the

consequences of the remnants of an inexact Lorentz symmetry for particle physics.
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This provides a natural solution to the Horizon and homogeneity problems of standard

Big Bang Cosmology. Therefore, we are obliged to test a graceful exit scenario for

this proposal. Specially since this case is signi�cantly di�erent from the standard

in�ationary paradigm [6], which is nicely designed to �t well with current observations.

Disformal relations between the gravitational and the induced metric imply Lorentz

symmetry breaking when we refer to a Minkowski background, and there is no general

consensus about the way in which one must deal with these pathologies. In this

project, we make an explicit approach to this issue and its implications by pointing

out that small Lorentz violations can lead to unacceptable large e�ects. We will

mention recent approaches to face these objections.

The plan of the dissertation is as follows. In Section 2 we review the method to

build the induced metric and provide a general description of the geometry for the

matter sector. In this way, each relevant modi�ed dispersion relation can be (possibly)

linked with an induced metric. This geometry presents a widened lightcone due to

a dynamic speed of light. In Section 3 we set up an action and the corresponding

motion equations for the �elds inducing this geometry. In here, we intend to connect

the dynamics of the gravitational sector with matter by a generic k-essence �eld

describing two kinetic regimes: A standard Klein-Gordon Lagrangian in the lower

bound and a Cuscuton action in the opposite extremal case. In addition to this, we

�nd a speci�c k-essence �eld which has appropriate limits on both kinetic bounds.

The Chameleon e�ect is a key component of our discussion, since the coupling to

matter generates an e�ective potential with properly de�ned equilibrium points.

In Section 4, we use this model to analyze the Early Universe Cosmology from a

perspective di�erent from in�ation. With real expectations on the possibilities to

reproduce Particle Physics at low energies.

In the �nal section we discuss the results and conclude.
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2 The Induced Metric

In this section we introduce an induced geometry to describe the dynamics in the

matter sector. The concepts and tools of Finsler Geometry have been intensively

mentioned in the literature [5], [8] since these respond to our call for a change in the

dispersion relations obeyed by matter. This technology is crucial in order to connect

each modi�ed dispersion relation with an induced metric.

2.1 Preliminaries

In [7] we �nd a concise de�nition of a Finsler Geometry:

Finsler Geometry Is Just Riemannian Geometry without the Quadratic Restriction

S.S. Chern

Originally, Riemann was the �rst to approach these concepts as natural extensions

of his own work. But the name �Finsler Geometry� came from Finsler's thesis in

Gottingen in 1918.

Meanwhile we should ask: what is this good for? The answer for this question relies on

the fact that most of the kinematic properties we know depend on standard dispersion

relations. In [8], we learn that it is possible to relate a modi�ed dispersion relation

with(out) non-quadratic terms with an induced metric. And it is convenient in order

to consider a wider spectrum of new possibilities to study particle dynamics.

To see this, we write the arc length:

I = m

b∫
a

F (x, ẋ)dτ (2.1)

With ẋ = dx/dτ . At �rst sight, we identify the Finsler function F to be �velocity

dependant�. Then, the metric is de�ned by:

gαβ(x, ẋ) ≡ 1

2

∂2F 2

∂ẋα∂ẋβ
(2.2)

And the inverse is de�ned by gαβ(x, ẋ)gαγ(x, ẋ) = δγβ .

As a consistency check, we can use F =
√
gαβ(x)ẋαẋβ when gαβ only depends on the

spacetime coordinates to recover the components of the metric tensor as usual.
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From this check, we notice a curious property of the F function:

F (x, λẋ) = |λ|F (x, ẋ) (2.3)

This means that F is an homogeneous function of �rst degree, which implies the

independence of velocities and spacetime coordinates. In such a case the Euler's

Theorem states:

ẋα
∂F (x, ẋ)

∂ẋα
= F (x, ẋ) (2.4)

Using [2.2] and [2.4] we �nd a general solution for F :

F =
√
gαβ(x, ẋ)ẋαẋβ (2.5)

From [2.5], we notice that if F is an homogeneous function of �rst degree, then

gαβ(x, λẋ) = gαβ(x, ẋ). This means that the degree of homogeneity for the metric is

zero.

The equivalent to [2.4] for the metric reads:

ẋα
∂gγβ(x, ẋ)

∂ẋα
= 0 (2.6)

Using this fact, the variations of the action [2.1] with respect to the velocities do not

contribute at all. And the geodesic equation is:

ẍα + Γαβγ(x, ẋ)ẋβẋγ = 0 (2.7)

The Christo�el symbols are:

Γ̂αβγ(x, ẋ) =
gακ(x, ẋ)

2
(gβκ(x, ẋ),α + gακ(x, ẋ),β − gβα(x, ẋ),κ) (2.8)

And in the same way, the geodesic equation can be rewritten in terms of a covariant

derivative:

∇̂µv
ν ≡ vν,µ + Γ̂ναµ(x, ẋ)vα

vα∇̂αv
β = 0 (2.9)

With φ,α ≡ ∂φ/∂xα. These are not so di�erent from the expressions we normally use

in GR1, the di�erence comes from the velocity dependence of the metric.

1In [9] we can �nd a nice revision of other geometrical entities in Finsler Geometries relevant to

be compared.
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Now, our task reduces to �nd F for a given on-shell dispersion relationM(p) = m2.2

We must de�ne the conjugate momentum as follows:

pµ = m
∂F

∂ẋµ
= m

gµν(x, ẋ)ẋν

F
(2.10)

Using this de�nition, we notice that H = ẋµpµ −
√
gαβ(x, ẋ)pαpβ = 0. Thus we are

forced to introduce a Lagrange multiplier (κ):

H = ẋµpµ − κ
(
M(p)−m2

)
(2.11)

From the last expression, �rst Hamilton's equation reads:

ẋα = κ
∂M(p)

∂pα
(2.12)

Inverting these equations we �nd pα = f(ẋβ, κ), and using the inverse Legendre

transformations we �nd the Lagrangian. With the equations of motion for κ the

Lagrangian becomes an expression purely dependant on coordinates and velocities.

Thus, the action can be written as:

I =

∫
L(x, ẋ)dτ

Comparing with [2.1] we �nd:

L(x, ẋ) = mF (x, ẋ) (2.13)

The last result allows us to �nd a Finsler function F (and a metric by using [2.2]) for

a given a dispersion relation. Let us emphasize that in the case in which the modi�ed

dispersion relation does not depend on aquadratic terms, we just need [2.2] to �nd

an induced metric. However, we will test the connection between Finsler functions

and modi�ed dispersion relations in the �worst-case scenario�. To do so, we present

an example to clarify this procedure. Let us consider the following 1-D dispersion

relation with an aquadratic term:

M(p) = −p2
0

(
1 + α

p0

M

)
+ p2

1 (2.14)

Now we write the corresponding action as a function of the Lagrange multiplier κ

I =

∫
dτ
(
ṫp0 + ẋp1 − κ

(
M(p)−m2

))
(2.15)

2The extension we consider is still metric, non-metric structures are not part of this analysis.
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Varying the action with respect to pµ, we get:

ṫ = −κ
(

2p0 + 3
α

M
p2

0

)
ẋ = 2κp1 (2.16)

Hence, the conjugate momenta are:

p0 =
M

3α

[
−1 +

√
1− 3α

Mκ
ṫ

]
(2.17)

p1 =
ẋ

2κ

Where we picked a regular solution in the limit α→ 0. Replacing in [2.15] we �nd:

I =

∫
dτ

(
−ṫ2 + ẋ2

4κ
+

αṫ3

8κ2M
+ κm2 +O(α2)

)
(2.18)

The variation of [2.18] respect to the Lagrange multiplier gives an approximate solu-

tion for κ:

κ(ṫ, ẋ) u
√
−ṫ2 + ẋ2

2m
+

α

2M

ṫ3

−ṫ2 + ẋ2

The full Lagrangian now reads:

L(x, ẋ) = m
√
−ṫ2 + ẋ2 +

αm2

2M

ṫ3

−ṫ2 + ẋ2

By [2.13], the Finsler function is:

F (x, ẋ) =
√
−ṫ2 + ẋ2 +

αm

2M

ṫ3

−ṫ2 + ẋ2

And �nally [2.2] provides the metric components at �rst order in α3:

g00(x, ẋ) = −1 +

(
αmṫ

2M

)
2ṫ4 + 6ẋ4 − 5ẋ2ṫ2(
−ṫ2 + ẋ2

)5/2

g11(x, ẋ) = 1 +

(
αmṫ3

M

)
ṫ6 − 3ẋ4ẋ4ṫ2 + 2ṫ6(
−ṫ2 + ẋ2

)9/2

g10(x, ẋ) = g01(x, ẋ) = − 3αmṫ2ẋ3

M
(
−ṫ2 + ẋ2

)5/2
(2.19)

In the limit α→ 0, these are the components of the Minkowski metric with signature

(−+ ++), which will be followed from now on.

3Being rigorous, the Finsler function fails to ful�ll [2.3] for negative values of λ. These cases are

considered by [8] as positively homogeneous.
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2.2 Constraining the model

In the previous subsection, we learned to identify each dispersion relation with a

Finsler function. Knowing this, our interest sets into a speci�c set of Finsler func-

tions to describe the dynamics of the matter sector.

From now on, we follow [5] in a more conservative perspective than the one we devel-

oped in the last example. We will use this technology to aim for a modi�ed dynamics

without non-quadratic terms.

Considering [2.5], we may rewrite the di�erential line element in [2.1] as follows:

ds2 = gαβ(x)ẋαẋβG(x, dx1/dx0, dx2/dx0, dx3/dx0)dτ 2 (2.20)

This is still the most general way to write the line element by identifying gαβ(x)ẋαẋβG ≡
F 2(x, ẋ), and m = 1. The di�erence relies on G(x, dxi/dx0), which carries all possible

powers of ẋ and is an homogeneous function of degree zero with respect to them. The

function is written in terms of the frame dependent ratios dxi/dx0 to keep the degree

of homogeneity. gαβ is just the standard gravitational metric. But there is something

wrong with this expression: it becomes extremely hard to build a coordinate invariant

G out of three independent variables. And the fact that we just count on three (and

not four) of them implies a violation of the spirit of covariance for the theory.

To solve these issues, we draw our attention to a metric we can write from [2.20] by

using [2.2] and does not depend on the velocities. Moreover, we are obliged to

write G in terms of coordinate invariants. So far, we have written the only choice we

have: gαβẋ
αẋβ. 4 We need additional �elds with contracting vector indices to write

more of these expressions:

Xφ = −1

2
gαβφ,αφ,β

H = − (φ,µẋ
µ)2

gαβẋαẋβ
(2.21)

Another option is to use a vector �eld Aα in the same fashion. Both are invariant

quantities with degree zero of homogeneity and depending on four velocities. The

introduction of more degrees of freedom is not logically excluded, such an addition is

not considered just to preclude the theory from higher order contributions.

4Excluding εαβγδẋ
αẋβ ẋγ ẋδ to hold linear equations of motion.
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Now the line element built from invariants is:

ds2 = gαβẋ
αẋβG(Xφ, H, φ)dτ 2 (2.22)

After these considerations for the Finsler function, we use [2.2] to �nd the metric

g̃αβ =
1

2

∂2F 2

∂ẋα∂ẋβ

= (G−HG′) gαβ − (G′ + 2HG′′)φ,αφ,β − 2H2G′′
[
φ,(αgβµ)ẋ

µ

φν ẋν
− ẋαẋβ
ẋαẋα

]
where G′ ≡ dG/dH and ẋα ≡ gαβẋβ. If G is a linear function in H, then g̃αβ is

completely independent from ẋα:

G(Xφ, H, φ) = A(Xφ, φ) +B(Xφ, φ)H (2.23)

By replacing in [2.22] we generate an induced metric:

g̃αβ = A(Xφ, φ)gαβ −B(Xφ, φ)φ,αφ,β (2.24)

The relation is analogous when we pick a vector to generate the invariants. Not

surprisingly, the metric is just modi�ed by the symmetric product of the extra degrees

of freedom. From [2.24], notice that the relation between g̃αβ and gαβ is not necessarily

conformal. Writing the corresponding expression for the inverse metric:

g̃αβ = A−1(Xφ, φ)

[
gαβ +

B(Xφ, φ)

A(Xφ, φ) + 2B(Xφ, φ)Xφ

φ,αφ,β
]

(2.25)

With φ,α ≡ gαβφ,β. Extensive studies have been performed when B = 0, in the so-

called Brans-Dicke Gravity (and its cosmological implications in [10]). Prescribing

that gµν ẋ
µẋν = 0 is not a solution of the equation

F (Xφ, H, φ)gµν ẋ
µẋν = 0

means that a surface which is null for gravitons is not for other species.

Our interest is focused in the disformal version of [2.24], and explicitly when B >

0, A > 0. Recalling our choice for the signature, we evaluate the null condition for

the new metric:

0 = g̃µνv
µvν = A(Xφ, φ)gµνv

µvν −B(Xφ, φ)(φ,αv
α)2
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Which implies:

gµνv
µvν =

B

A
(φ,αv

α)2 ≥ 0 (2.26)

For B,A > 0, according to the induced metric the vector v is null, but it is spacelike in

g. This means that the speed of light de�ned in the matter sector (for particles using

g̃µν to describe dynamics) is faster than �the speed of light� ruling the gravitational

sector. The following picture illustrates our point:

Figure 1: Two features of the lightcone generated by the induced metric (B > 0, A ≥ 0):

(a) It is wider that the original considered in the gravitational sector. This is a hint to solve

the horizon problem in cosmology. (b) It is wiggled to represent the variation of speed of

light with time. Space homogeneity can be easily removed by imposing anisotropic solutions

for φ.

Highlighting the fact that a di�erent choice of signs for A and B might not lead us

to the same results. For example, Modi�ed Newtonian Dynamics (MOND) theories

were not conceived originally to be superluminal [5]. And for instance, A and B have

di�erent signs.

The idea of an enlarged causal area is a crucial point in this model. But if our un-

derstanding is based solely in our notions of GR, we may �nd reasonable objections

related to noncausal propagation of superluminal degrees of freedom.
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However, the arguments used in [[11],[12]] are useful in order to clarify some of these

concerns. Here we have a classical paradox as an example:

Figure 2: A superluminal signal sent to a moving spaceship: The response arrives before

the signal was emmited

This �gure makes reference to the well-known �tachyonic antitelephone� in which an

observer at rest sends a signal with an arbitrarily large speed to a moving spaceship,

then someone inside the vehicle responds the signal. If the velocity of the spacecraft

is large enough, the returning signal is received by the observer at rest before it was

emitted. The �nal result is that the observer at rest sent a signal to its own past.
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In the next �gure (See Figure [2]), we see a way in which this conundrum is remediated

is by considering a deformed lightcone just a bit simpler than the one we depicted in

Figure [1], in which the signal is still sent with a speed larger than c. But it is now

received in the future, with no causal violations.

Figure 3: The paradox is avoided by considering a wider lightcone (in a simplest case,

generated by a nearly constant �eld), signals are emitted by the observer in the spaceship,

and received in the future by the observer at rest. The emmited signal is inside the extended

future lightcone for O, and the received signal is inside the extended past lightcone of R.

When the signal is retransmitted, it is emmited in the extended future lightcone of R and

is directed towards the causal future of O.

In [12], the authors refer to the scalar �eld used in the induction as an aether picking

the �right� lightcone. The geometric construction we made in this section makes

reference to an additional degree of freedom useful to reparametrize. From now on,

we refer to it as a �gravitational scalar� (or vector, depending on the choice made to

generate the invariants in [2.21]).
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2.3 Other induction method

In addition to the induction technique described in previous parts, let us compare our

results with another alternative in the existing literature [12]. Consider the k-essence

�eld action:

Iφ ≡
∫
d4x
√
−gL(X,φ)

X ≡ −1

2
gµν∇µφ∇νφ (2.27)

Where gµν is the gravitational metric. Comparing this to the action of a perfect �uid,

we de�ne:

ρ = 2XL,X − L

p = L, (2.28)

where L does not depend on higher derivatives of the inducing �eld. There is nothing

misterious about these de�nitions, such expressions make perfect sense in the case

L = X−V which is just the usual analogy between the energy-momentum tensor for

a �uid and a canonical scalar �eld. And hence we can associate a speed of sound :

c2
s =

∂p

∂ρ
=
p,X
ρ,X

=

(
1 + 2X

L,XX
L,X

)−1

(2.29)

Varying this action with respect to the �eld we �nd the equations of motion:

δIφ
δφ

= Gµν∇µ∇νφ− 2XL,Xφ + L,φ

Gµν ≡ L,Xgµν − L,XX∇µφ∇νφ (2.30)

In here we notice the presence of Gµν as an induced metric. Which in the case

L = X − V just returns Gµν = gµν . Now, the inverse metric is:

Gµν = L−1
,X

(
gµν +

L,XX
L,X + 2XL,XX

∇µφ∇νφ

)
(2.31)

Where:

T (φ)
µν n

µnν > 0→ L,X > 0 −→ (Null energy condition)

1 + 2X
L,XX
L,X

> 0 −→ (Hyperbolicity condition for [2.30])
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Thus, by recalling [2.24] we can match the conditions B,A > 0 assumed in order to

have an expanded lightcone in [2.26] with [2.31], we �nd:

A > 0 −→ L,X > 0 (2.32)

B > 0 −→ 1 + 2X
L,XX
L,X

> 0, L,XX < 0 (2.33)

This comparison not only has shown an obvious analogy with our previous results; but

also it provides consistence with our assumptions of superluminosity. As a method of

induction, it shares many similarities with the example used in the �rst subsection. In

[2.32], the prescription A > 0 agrees with the null energy condition, which prevents us

from energy values unbounded below. And [2.33] allows us to reproduce the so-called

hyperbolicity condition to solve the equations of motion in 2.30. In the context of

�uid mechanics, the same statement allows the propagation of �sound waves� with c2
s

being positive.

In the Appendix A, we can �nd a suitable description of the dynamics for the per-

turbations of φ in a geometry conformally related with Gµν .

Also, we should notice that a generalization of the k-essence �eld containing higher

derivative contributions is consistent with the description in Section 2.1. Such a case

will not be discussed in the rest of this dissertation, but it is sensible in the context

of more profound modi�cations.

At this stage, it is important to mention that this is just a good motivation to �nd

a suitable mapping of possible inductions of k-essence �elds into bimetric theories.

We cannot neglect that both modi�ed dispersion relations and generalized k-essence

lagrangian densities have been used as generating functions of these induced geome-

tries. Later in this manuscript, we describe an alternative to identify certain k-essence

theories which lead us into the simplest disformal bimetric models.
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3 Action and motion equations

3.1 General structure and matter coupling conditions

Our study focuses in a generic action as the one that follows:

I = Ig + Iφ + Im (3.1)

=

∫
d4x
√
−gR(gµν) +

∫
d4x
√
−gLφ(X,φ) +

∫
d4x
√
−g̃ [Lm(Ψm, g̃µν)]

WhereR(gµν) is the Ricci scalar with the classical aspect it inherits from GR. Lφ(X,φ)

is the k-essence Lagrangian for the gravitational scalar5 analogous to the expressed

in [2.27. And Lm(Ψm, g̃µν) is the matter Lagrangian, which purely depends on the

induced metric [2.24]. In principle, the construction developed in Section [2] is not

imposing any speci�c choice of Lφ. On the other hand, in addition to all other rigid

and local symmetries in the matter sector, the presence of a di�erent lightcone lead

us to think about the symmetries in [3.1]. And following the spirit of GR, we modify

the preexisting Lorentz symmetry by doubling it:

gµν = gαβΛα
µΛβ

ν

g̃µν = g̃αβL
α
µL

β
ν (3.2)

The modi�cation responds minimally to what is described in Figure [3]: the change

in the speed of light de�nes another scale for the parameters involved in the transfor-

mations of objects with Lorentz indices in the matter sector:

Λα
µ = exp[iθk

(
T k
)α
µ
]

Lαµ = exp[iβ(xµ)θk
(
T k
)α
µ
] (3.3)

Where
(
T k
)α
µ
are the generators of the Lorentz algebra so(3, 1), these are the same

for the two transformations. For the scale β(xµ), a Taylor expansion shows that the

transformations of spacetime dependent vectors remain linear just in a region around

a point. Moreover, observing the lightcones in Figure [1], our intuition suggests an

explicit relation between β and the inducting �eld φ.

5This �eld is also called a �bi-scalar� in the literature, since it transforms like a scalar in the two

frames.
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An example of this expression will be described later in the discussions.

In the previous sections, we achieved a brief description of a geometry for the matter

sector with an expanded lightcone. We proceed with our endeavours by asking if

ordinary matter �elds can propagate superluminally. To give a justi�ed answer, we are

motivated by the discussions in [16]. In here, the authors analyze the interaction of a

k-essence �eld called Cuscuton with a massive scalar �eld in a Minkowski background.

Our calculation shares essentially the same spirit: it is a dynamical sketch of the way

in which the perturbations of the matter �eld propagate. But it certainly di�ers in

the application of the induced geometry for the matter sector. For simplicity, we have

considered the geometry as emergent from a �at Minkowski background.

In this case, the action for the system is6

I =

∫
d4x

(
µ2
√

2Xφ −
1

2
m2
φφ

2

)
+

∫
d4x
√
−η̃
[
−1

2
η̃αβψ,αψ,β −

1

2
m2
ψψ

2

]
(3.4)

By neglecting all conformal modi�cacions (A = 1), we use [2.25] to build an induced

metric

η̃αβ ≈ ηαβ +Bφ,αφ,β

det(η̃αβ) = 1 + 2BXφ (3.5)

Where Xφ = −1/2 ηαβφ,αφ,β and Xψ = −1/2 ηαβψ,αψ,β.

And thus, we write the full action with respect to the Einstein frame, and by quoting

this we mean that is written in terms of the original metric (in this case ηαβ). Keeping

only �rst order terms in B, we �nd:

I =

∫
d4x

[
µ2
√

2Xφ +Xψ +BXφXψ −
1

2
B
(
ηαβφ,αψ,β

)2 − 1

2
m2
ψψ

2 − 1

2
m2
φφ

2

]
(3.6)

6Warning: we suggest the reader to be extremely careful about the metric used to raise and

lower indices, since g̃µνA
µ 6= gµνA

µ, and in a similar way for the contravariant components. The

transformation laws between these two objects are found just by direct application of the induced

metric on a vector (or covector). So far, we have only used the gravitational metric to raise and

lower indices. We will explicitly mention the cases in which we need [2.24] and [2.25] to do so.
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Now we draw our attention to the last three terms in the action, if we decompose the

�elds as follows:

φ(x, t) = φ(t) + δφ(x, t)

ψ(x, t) = ψ(t) + δψ(x, t)

At the lowest nontrivial order in perturbations, those terms are combined in a single

expression:

V (δφ, δψ) = −2Bφ̇2Xδψ − 2Bψ̇2Xδφ −
B

2
ψ̇φ̇δψ,αδφ,α +

1

2
m2
ψδψ

2 +
1

2
m2
φδφ

2

Considering the Fourier transformed perturbations and (k2 − ω2) ∼ k2, rearranging

the terms of the last expression:

V (δφk, δψk) = −Bk2φ̇2(δψk)2 −Bk2ψ̇2(δφk)2 +
B

2
k2ψ̇φ̇δψkδφk

+
1

2
m2
ψ(δψk)2 +

1

2
m2
φ(δφk)2

=
V,φφ

2
δφ2

k +
V,ψψ

2
δψ2

k + 2V,φψδφkδψk. (3.7)

Thus, the action is now

I =

∫
d4x

[
µ2
√

2Xφ +Xψ − V (φ, ψ)
]

(3.8)

And we just simply go through the calculations made by the authors in [16], writing

the perturbations for the Cuscuton and the matter �eld:

δφk = −
(

V,φψ
k2 + V,φφ

)
δφk

(ω2 − k2)δψk = V,φψδφk + V,ψψδψk

The dispersion relation is:

ω2 =
k4 + (V,φφ + V,ψψ)k2 + V,φφV,ψψ − V 2

,φψ

k2 + V,φφ
(3.9)

In the short-wavelength regime, we can verify that:

vg =
dω

dk
= 1− V,ψψ

2k2
+O

(
V 2
,φψ

k4

)
(3.10)
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By replacing V,ψψ from [3.7] we �nd:

vg = 1 +Bφ̇2 −
m2
ψ

2k2
+O

(
φ̇4, φ̇2ψ̇2

)
(3.11)

Superluminal dispersion (vg > 1) demands dominance of the coupling over the mass

term.

So now this nice example gives us the basis we needed to put superluminal propa-

gation of �elds under the spotlight: it relies on these tachyonic coupling terms, and

is precisely the condition B > 0 which provides that unique feature. The tachyonic

terms in the potential arise many concerns related to instability, this is a sensible

concern at the interaction level in the matter sector, and at this moment is when we

must remember that this procedure follows in the Einstein frame. We can also argue

that the existence of such a minima that allows a controlled expansion is controver-

sial. However, seen in this frame or in the matter frame, the presence of (meta)stable

con�gurations of the potential is a mild requirement for the validity of this last state-

ment. In the next section we clarify some ideas related to this issue.

The argument developed lines above works straightforwardly for a canonical Klein-

Gordon Lagrangian density instead of a Cuscuton. And in fact, the result holds for

any k-essence �eld in which the kinetic term is proportional to k2δφ2
k at �rst order in

perturbations.

3.2 Exploring the basics: Lφ = X − V

Based in [17], [18], here we consider a standard Klein-Gordon Lagrangian density

(Lφ = Xφ − V (φ)) as an option to explore the dynamics of the gravitational scalar

used to induce the matter geometry. We are specially interested in this case since

it is a prudent lower limit for a generic k-essence action. Hence, the appropriate

expression for [3.1] is:

I ≡ IE+Im =

∫
d4x
√
−g [R(gµν) +Xφ − V (φ)]+

∫
d4x
√
−g̃ [Lm(Ψm, g̃µν)] . (3.12)

If we recall [2.24], there is an explicit dependence of A and B in the �eld and its

derivatives. This is why the results obtained by Noller in [18] are relevant in our

discussion.
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In addition to the symmetries mentioned in the last subsection [3.1], the �elds in the

matter sector preserve the action invariant under traslations in the induced geometry

∇̃µ(
√
−g̃T̃ µν) = 0 (3.13)

Where ∇̃ is the covariant derivative in the induced metric. The conserved current

can be found as:

T̃ µν =
2√
−g̃

δIm
δg̃µν

(3.14)

The conserved energy-momentum tensor in [3.13] does not include any contributions

from Iφ. If we decide to map all the expressions in the matter action to the Einstein

frame and de�ne:

T µν =
2√
−g

δ

δgµν
(Im + Iφ) (3.15)

We see that by varying the total action with respect to the gravitational metric we

recover Einstein's equations. Bianchi identities are trivially ful�lled. But if we stay

with the de�nition given in [3.14] and include the action for the scalar �eld we �nd

Gµν = 8πG
√
g̃/g T̃µν . The consistency Bianchi identities is not a trivial statement to

proof.

Now, we calculate the equations of motion for the inducing �eld by using the chain

rule:

δI

δφ
=
δIE
δφ

+
δIm
δg̃µν

δg̃µν
δφ

=
δ

δφ
(Xφ − V (φ)) +

δg̃µν
δφ

δ

δg̃µν

(
Im√
−g

)
= 0

Which in the Einstein frame leads us to:

∇µ∇µφ− V,φ =
1

2

∂g̃µν
∂φ,α
∇α

(√
g̃

g
T̃ µν

)
+

1

2

√
g̃

g
T̃ µν∇α

(
∂g̃µν
∂φ,α

)
− 1

2

∂g̃µν
∂φ

(√
g̃

g
T̃ µν

)
.

(3.16)

With no speci�c assumptions neither about the induced metric nor rely on any pecu-

liar form of T̃ µν . It is not hard to generalize such a result for other speci�c k-essence

�elds. As our next step, it is convenient to discuss the role of A(Xφ, φ) in the whole

framework. To see the relevance of this parameter, we will just assume a �rst order

expansion in Xφ from the conformal part of the induced metric:

A(Xφ, φ) = A(0) + A(1)Xφ +O(X2
φ).
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In a generic scenario we must also add the terms corresponding to the disformal part.

From the results in [18] we �nd that [3.16] can be generally written in the Einstein

frame as:

∇µ∇µφ = Veff,φ + friction terms (3.17)

Veff,φ =
V,φ + A

(0)
,φ ρ̂

1− A(1)ρ̂
. (3.18)

Where ρ̂ is the energy density that corresponds to the energy-momentum tensor

conserved in the Einstein frame T̂ µν = A(Xφ, φ)T̃ µν . The last result quotes a peculiar

feature of this e�ective potential: it depends on the environment (ρ̂). The position

of the minimum is given by:

V,φ(φmin) + A
(0)
,φ (φmin)ρ̂ = 0

And the e�ective mass of the �eld is:

m2
eff = Veff,φφ(φmin) =

V,φφ(φmin) + A
(0)
,φφ(φmin)ρ̂

1− A(1)ρ̂

This quantity is clearly shifted (or screened) from the bare mass parameter V,φφ(φc).

We can naively give an interpretation of such a screening from the perspective of an

interactive theory: the mass was expected to change because of the interaction of the

�eld with its surroundings. It is not necessary to consider a minimum in V (φ) in order

to �nd a lower bound in the e�ective potential, and consequently an environmentally

dependent mass for the �eld. To see this, let us consider a simpler case in which

A(1)(φ) = 0, A(0)(φ) = αφ and V (φ) = β/φn, n > 0. Thus, we �nd an expression for

the e�ective potential:

Veff (φ) =
β

φn
+ ρ̂αφ (3.19)

In the next �gure, we illustrate the e�ect of the conformal factor by giving a sketch

of the e�ective potential:

23



Figure 4: E�ective potential (solid blue) built from a potential without minima (dashed

black) and the conformal contribution at a �xed spacetime event (dotted red). Even when

there is no bounded value of φ for an equilibrium con�guration of V (φ), we can still �nd

φmin for the e�ective potential.

By following this procedure, we can �nd the value of the �eld which minimizes the

potential and the e�ective mass:

φmin =

(
βn

αρ̂

) 1
n+1

m2
eff = βn(n+ 1)

(
βn

αρ̂

)−n+2
n+1

Assuming α, β > 07. In this simple example, we can see the explicit dependence of

the two quantities with the energy density. The runaway potential V (φ) = β/φn is

the desirable for quintessence models. But in the context of this model, this is just

an example of a potential with no equilibrium points.

This is the essential feature of the so-called Chameleon e�ect. And it is signi�cant

in our model since we do not need to impose a speci�c form of the potential to

�nd an equilibrium point. Recalling [3.11], we can infer that the existence of such a

con�guration implies that slow oscillations around the minimum in a colder universe

enable subluminal propagation of matter in the Einstein frame. A more detailed

insight to other possible con�gurations for the conformal factor can be found in [18].

In here, the author analyzes the static solutions of the gravitational scalar.

7A popular choice is A(0)(φ) = exp (αφ). With α arbitrarily large for a generic non-minimal

coupling between the metric and the auxiliary �eld. In this case, the �nal e�ect is not substantially

di�erent from what we see in Figure [4]
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Neglecting the contribution of the disformal terms in [2.24] at non-relativistic energy

limits, and considering pressureless matter sources. The corresponding extra terms

in the equations of motion are proportional to φ,µT̃
µν , and these vanish under the

stated conditions. In addition to this, thin-shell mechanism limits the mass shifting

e�ects for large and massive bodies (≥ MS) by supressing the static solutions of the

�eld. These facts are consistent with our expectations for the system when is close

to the equilibrium.

3.3 An intrepid solution: A Cuscuton

In the next paragraphs, we show an explicit mapping between emergent geometries

and a speci�c type of bimetric model, by assuming a di�erent perspective from the

approach in the previous part. This is another option to describe the dynamics of the

geometry inducing �eld. To see this, we will assume A = 1 and B=constant to �nd

an easier map between bimetric theories and the induced geometries from subsection

2.3.

Firstly, by neglecting conformal factors, we can compare [2.24] and [2.31], which gives

us:
L,XX

L,X + 2XL,XX
= −B. (3.20)

The solution of this di�erential equation is

L(X) =
1

B

√
1 + 2BX − 1

B

If L,φ = L,φX = 0, this means that we are just dealing with the kinetic part of the

Lagrangian density. Moreover, we are interested to map certain k-essence models

into bimetric theories with geometries which only depend on the derivatives of the

inducing �eld, but not on the �eld itself. The full functional is:

L(X,φ) =
1

B

√
1 + 2BX − 1

B
− V (φ) (3.21)

And as we have corroborated from Appendix A, the perturbations of this k-essence

�eld map can be described by Klein-Gordon action which propagates in [2.24] (with

A=1).
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It is not hard to notice in the low kinetic limit (BX � 1) we recover L(X,φ) ≈ X−V .
But it is also important to consider the opposite regime (BX � 1):

L(X,φ) ≈
√

2

B

√
X +

1√
8B3
√
X
− V (φ) +O

(
1

X

)
(3.22)

The second term (and all the following orders not considered in this expansion) is

negligible compared to
√

2/B
√
X. The remaining action coincides with a Cuscuton

[16]. In Appendix B, we show the unique features of the Cuscuton solution. On the

other hand, we know the determinant of [2.24]:

g̃ = g(1 + 2BX).

And now, we suppose that the gravitational scalar is just driven by the cosmological

constant, thus, rewriting the action from [3.21], we �nd:∫
d4x
√
−gL =

∫
d4x
√
−g
(

1

B

√
1 + 2BX − 1

B

)
= −

∫
d4x
√
−g 1

B
+

∫
d4x
√
−g̃ 1

B
(3.23)

This is certainly a remarkable result, we only needed to add two positive constants,

which are �xed by setting
1

B
= 2Λ̂.

This provides the correct low energy limit for the theory. For instance, we can write

the full action:∫
d4x
√
−g
(
R(gµν)− 2Λ̂

)
+

∫
d4x

√
−g̃
(
Lm(g̃µν ,Ψm) + 2Λ̂

)
. (3.24)

And as an exercise, we will write all these terms in the matter frame by considering

gµν = g̃µν +Bφ,µφ,ν .

This is nothing but the reversed version of [2.24] and implies a contraction of the

speed of light with respect to the broadened lightcone. By replacing it in [3.24], we

get:∫
d4x

√
−g̃
(
Lm(g̃µν ,Ψm) + 2Λ̂− 2Λ̂

√
1− 2BX̂ +

√
1− 2BX̂ R(g̃µν)

)
. (3.25)
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Where X̂ = −1/2 g̃µνφ,µφ,ν . The �rst three terms in this expression look exactly

like an action of an existing model called DBI (Dirac-Born-Infeld) in�ation. It is not

hard to guess that it was based on the contraction of the speed of light. However,

the gravitational term is a complete mess: it does not look like the gravitational part

of that model at all. And is clearly di�erent from any frame dependent in�ationary

phase. Additionally, the presence of a cosmological constant partially alleviates the

perils of suggesting any speci�c shape of the potential. Because even when it imposes

a minimum energy scale, it is still necessary to add by hand a mechanism to roll-down

and oscillate. Our previous discussions (See subsection [3.2]) suggest that non-trivial

contributions from the conformal part of [2.24] might complete the analysis.

What have we achieved so far in this chapter? The action in [3.21] has the correct

features for the realization of a cosmological model with a sensible meaning in two

opposite kinetic regimes: At low kinetic contributions, the support of the Chameleon

e�ect allows us to �nd a stable minima regardless of the shape of a generic k-essence

potential, as long this is originally dependent of the �eld. This is precisely the case

of the quintessence �eld potential in the example. And also, the extremal case of

non-relativistic pressureless matter detailed in [18] seems to �t well in this scenario.

It is also important to recall [2.24], since the without the kinetic contribution, our

induced geometry is conformally related to the standard gravitational metric. This

lower kinetic bound implies slow oscillations around the minimum.

In the opposite case, we �nd a Cuscuton �eld with in�nite speed of light, free from

causality issues, which couples to matter �elds and enables them to propagate super-

luminally inside the extended lightcone.

Furthermore, supported by the results on Appendix A, we �nd the corresponding

Klein-Gordon action for perturbations of the inducing �eld in the matter frame.

Hence, the proposal is suitable for structure formation.
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4 Cosmological features

4.1 Geometric motivations

From the arguments exposed in Section 2, we clearly notice the expansion of the

matter lightcone. In addition to the results in 3.1, we have enough reasons to believe

that the expanded causal region solves the issues related with the Horizon and the

homogeneity problems. The objective in this subsection is to consider the additional

geometric e�ects on a timelike congruence using the induced metric of the matter

sector. As an outcome of these procedures, we �nd that it is not necessary to violate

the strong energy condition (characteristic of in�ationary models) for an expanding

area transversal to the congruence. In principle, this means we can reproduce the

results of an in�ationary model in a qualitatively di�erent way.

Consider a choice of induced metric simply proportional to gαβ (A=1) and with a

canonical kinetic contribution from the scalar φ (B=const). In that case, we can

relate the connections in both metrics by

Cαβγ ≡ Γ̃αβγ(g̃αβ)− Γαβγ(gαβ) =
−B

1− 2BXφ

∇̃αφ∇̃β∇̃γφ ≡ −B Cα
βγ. (4.1)

We use the standard de�nition of the Riemann tensor for the induced geometry

R̃ρ
σµν = Γ̃ρνσ,µ − Γ̃ρµσ,ν + Γ̃ρµλΓ̃

λ
νσ − Γ̃ρνλΓ̃

λ
µσ,

and after using [4.1], the curvature tensor of the induced metric can be written as

R̃ρ
σµν = Rρ

σµν +Rρ
σµν −BCρσµν . (4.2)

Where

Rρ
σµν = Cρνσ,µ − Cρµσ,ν + CρµλC

λ
νσ − C

ρ
νλC

λ
µσ

Cρσµν = Γρλ[µC
λ
ν]σ + Cρ

λ[µΓλν]σ (4.3)

Considering the action in [3.24], we �nd the �eld equations

Rµν −
1

2
gµνR + Λ̂gµν = 8πG

√
g̃

g
T̃µν , (4.4)
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where the cosmological constant in the matter sector has been absorbed by T̃µν . Using

the last expression, we write the Ricci tensor in terms of the energy-momentum tensor

as a conserved current in the matter frame:

Rµν = 8πG

√
g̃

g

[(
T̃µν −

T̃

2
g̃µν

)
− B

2
T̃ ∇̃µφ∇̃νφ−

B

1 + 2BX̃φ

(
T̃αβ∇̃αφ∇̃βφ

)
gµν

]
+ 2Λ̂gµν .

(4.5)

Again ∇̃α is the covariant derivative with respect to the new metric. It is relevant

to recall that we are evaluating the strong energy condition. As such, this is only

meaningful in the matter geometry because of the de�nition in [3.13]. The evolution

of a timelike congruence of curves is given by the Raychaudhuri equation:

θ̇ +
1

3
θ2 = −R̃µν ũ

µũν − 2
(
σ2 − ω2

)
(4.6)

Replacing [4.5] and the contracted [4.2], we have

θ̇ +
1

3
θ2 = −8πG

√
g̃

g

(
T̃µν −

T̃

2
g̃µν

)
ũµũν + 4πG

√
g̃

g
BT̃

(
∇̃µφũ

µ
)2

+
8πGB

1 + 2BX̃φ

√
g̃

g

(
T̃αβ∇̃αφ∇̃βφ

)
gµν ũ

µũν −Rµν ũ
µũν

+ BCρµρν ũµũν − 2Λ̂gµν ũ
µũν − 2

(
σ2 − ω2

)
. (4.7)

And in order to achieve an irrotational expanding congruence
(
θ̇ + 1/3 θ2 > 0

)
, the

latter expression leads us to the following condition(
T̃µν −

T̃

2
g̃µν

)
ũµũν <

B

2
T̃ (φ,µũ

µ)2 +
B

1 + 2BX̃φ

(
T̃αβ∇̃αφ∇̃βφ

)
gµν ũ

µũν (4.8)

− 1

8πG

√
g

g̃
Rµν ũ

µũν +
B

8πG

√
g

g̃
Cρµρν ũµũν −

Λ̂

4πG

√
g

g̃
gµν ũ

µũν

The limit in which [3.21] becomes a KG action implies that the cosmological constant

term in the RHS is balanced with the ground energy level absorbed by the terms in the

left. Additionally, Rµν ≈ 0 for spatially homogeneous solutions of φ, and gµν ũ
µũν > 0

for superluminal expansion. Thus, in contrast with the focusing theorem, we are not

obliged to break the strong energy condition to pursue an expanding behavior. The

last result agrees with most of the literature about the subject, specially with the

results in [2] and [9]. This is a key feature to understand the results coming in the

next chapter of this manuscript.
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4.2 Modi�ed FLRW cosmology

In this subsection, we reproduce the results in [17] and �nd them coherent with the

results in the last section. To be more concrete, spatial homogeneity is assumed for

the �eld. The results in [3.2] are useful to remember that in principle we do not need

pick a speci�c shape if we add a nontrivial contribution of the conformal factor A in

[2.24]. And because of that, to simplify our discussions, we will limit the action of

this conformal term just to assume an e�ective potential with a de�ned equilibrium

position. Leaving A = 1 for all other purposes.

Under these conditions, the modi�ed line element suggested is

ds2 = −
(

1 +Bφ̇2
)
dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (4.9)

where the gravitational metric is given by the standard FLRW coordinates. Further-

more, this expression for the metric is useful to �nd the scale β introduced in [3.3],

for the modi�ed Lorentz transformations in Section 3

β(t) =
1√

1 +Bφ̇2

.

And from here, we notice that this relation for β corresponds to a spatially homoge-

neous widening of the lightcone in the induced geometry.

From [4.9], we �nd √
−g̃ =

(
1 +Bφ̇2

)√
−g. (4.10)

As a simple model for matter, we consider a perfect �uid

T̃ µν = (ρ+ P )uµuν − pg̃µν (4.11)

with a vector �eld normalized by g̃µνu
µuν = −1 such that

u0 = 1/

√
1 +Bφ̇2.

We can also write the conservation equation from [3.14]

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (4.12)
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Knowing this, the �eld equation in [3.16] reduces to(
1− 16πGB

(1 +Bφ̇2)3/2
ρ

)
φ̈+ 3

ȧ

a
φ̇

1 +
16πGB√
1 +Bφ̇2

P

+ V,φ(φ) = 0.

From [3.1] in the limit case Lφ = X − V , we �nd the Friedmann equations for the

system: (
ȧ

a

)2

+
k

a2
=

Λ

3
+

1

6

[
φ̇2

2
+ V (φ)

]
+

8πG

3

ρ√
1 +Bφ̇2

(4.13)

(
ȧ

a

)2

+ 2
ä

a
+
k

a2
= Λ− 1

2

[
φ̇2

2
− V (φ)

]
− 8πG

√
1 +Bφ̇2P. (4.14)

Subtracting [4.13] from [4.14], we �nd

ä

a
=

Λ

3
+
V (φ)

3
− φ̇2

6
− 8πG

3

 ρ√
1 +Bφ̇2

+ 3

√
1 +Bφ̇2P

 .

Hence, we must write the last expression in the comoving time coordinate de�ned in

the matter frame

τ ≡
∫ (

1 +Bφ̇2
)1/2

dt,

using K = 1 +Bφ̇2 as an auxiliary variable, and with assignments of �energy density�

and �pressure� for the scalar �eld similar to [2.28], we �nd

a′′

H2a
=

K ′

2HK
− 1

2
(1 +KΩk)−

4πG

H2

(
pφ +

√
KP − Λ

8πG

)
. (4.15)

Where a′ ≡ da/dτ , H ≡ a′/a and Ωk ≡ k2/H2. The �rst Friedmann equation in

[4.13] can be rewritten as

1 +KΩk = KΩΛ + Ωφ +K3/2ΩM , (4.16)

de�ning 8πGρ/3H2 = ΩM , 8πGρφ/3H
2 = Ωφ and Λ/3H2 = ΩΛ.

The expression in [4.15] is fully compatible with the results of the previous part:

if we assume that the interactions of the scalar �eld are dominant over the matter

interactions (which is the �moral� of [4.8]) we achieve a regime of expansion. With

zero cosmological constant, we get

K ′

2HK
>

4πG

H2

(
pφ + 3ρφ + 3ρ+

√
KP

)
, (4.17)
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regardless of the content of the matter sector. However, from these expressions we

can also notice that if the matter sector is dominated by species that violate strong

energy condition, the in�ationary e�ect is enhanced.

Our next task is to describe the Horizon problem in the context of this model. Ac-

cording to [4.9], the formula for the comoving size of the particle horizon at the time

of last scattering t∗ is

dH(t∗) =

∫ t∗

0

√
1 +Bφ̇2

a(t)
dt. (4.18)

We can use a similar expression to estimate the distance to the last scattering surface

dLS =

∫ t0

t∗

√
1 +Bφ̇2

a(t)
dt, (4.19)

where t0 denotes the present epoch. To solve the horizon problem, we need the particle

horizon at t∗ to be larger than the distance between two opposite points in the sky,

which means

dH(t∗) ≥ 2dLS. (4.20)

An equivalent statement can be phrased by evaluating [4.18] at these days

dH(t0) = dH(t∗) + dLS ≤
3

2
dH(t∗).

This can be easily accomplished by just by considering 1 +Bφ̇2 � 1 while 0 ≤ t ≤ t∗,

this was deliberately intended in the model building developed in Section 2.

To get a more precise value of 1 +Bφ̇2, we learned from [14] that we can use the �rst

Friedmann equation [4.13] written in terms of relative abundances at the superlumi-

nary radiation era:

|Ω(10−43sec)− 1| ∼ O
((

1 +Bφ̇2
)
× 10−60

)
.

This is not signi�cantly di�erent from the usual �ne-tuning problem we face in stan-

dard cosmology, for 1 +Bφ̇2 ∼ 1058, we �nd

|Ω(10−43sec)− 1| ∼ O (1) ,

which implies much less �ne-tuning than the standard FLRW model.

Since we look to ful�ll the condition in [4.8] and [4.17], the roughest of all approx-

imations allows equate the right hand side of [4.15] to a positive constant (β2/H2).
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Thus, we have:

a(τ) ∼ exp (βτ) . (4.21)

And that implies a possible solution to the �atness problem. However, the transition

to low energy scales returning to standard Lorentz symmetry is not a trivial problem

faced by this model. We will discuss some of these issues in the next paragraphs.
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4.3 A graceful exit?

So far in this project, we have described a model which tries to be consistent at di�er-

ent energy scales. And also, we �nd logical connections with the process of structure

formation from perturbations of the scalar �eld, as depicted in Appendix A. Never-

theless, there is an additional fact that has been oblivious in the arguments used so

far: if we consider the gravitational frame in this model, a potential present con�g-

uration of the Universe still implies very small deviations from the exact dispersion

relations in Special Relativity. In addition to this, the results in [17] seem to suggest

that the theory might be extended well inside the electroweak symmetry breaking

regime. In the revision process of this project, we encountered several objections for

this statement.

In [19], [20] and others, it has been stated that such deviations can lead us into

unphysical e�ects, described by the percolation of Lorentz violating terms into low

energy scales. We can �nd a speci�c example in [19]. In this paper, the authors

calculate the self-energy diagram of a fermion in a Yukawa theory. Modifying the

free fermion propagator by a smooth factor f(|k|/Λ), with f(∞) = 0 and f(0) = 1.

Finding a non-negligible Lorentz violation parameter:

ξ =
g2

6π2

[
1 + 2

∫ ∞
0

xf ′(x)2dx

]
.

This correction corresponds to a �rst order modi�cation to the speed of light 8. There

have been many proposals trying to solve this pathology, including the insertion of

higher dimensional operators and custodial symmetries (SUSY has been proposed as

a candidate in [21] and [22]). And certainly, the residual oscillations of the inducing

�eld force us to quote that this model is not exempt from future analysis and similar

corrections. We did not use any other speci�c (local or rigid) symmetry than the

translational invariance in the matter frame. Nevertheless, when the action is rewrit-

ten in this frame (in analogy to [3.25]), these issues seem to be diluted in the matter

sector (g̃µν = ηµν), transferring the extra degrees of freedom to the gravitational side.

But in this project, we do not intend to provide a full discussion on these a�airs.

8A comment: we recall [3.11], where we have found quadratic deviations with repect to the

inducing �eld. Which are certainly weaker than the stated in the reference.
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5 Discussions

In this project, our approach to Bimetric Models of Gravity was utilitarian in a cos-

mological context. Nonetheless, the relevance of these models has been exploited in

the context of Massive Gravity [23]. And also, there are interesting attempts to think

on black holes in the context of these models in [24].

We discussed the e�ects of considering modi�ed dispersion relations which are still

quadratic. The mechanism of induction described in Section 2 made use of the essen-

tials of Finsler geometry. However, it is very clear from the example of Section 2.1

that the knowledge of these techniques extends these results to consider aquadratic

terms in the dispersion relations. Which motivate other interesting scenarios such as

[25] (f(p0 = E) = 1 + p0/M , M plays the role of the Planck scale). It is worthwhile

to mention the contribution made by the authors in [9], where we can �nd a cogent

discussion about the peculiar features of Finsler geometries. Many of these are spe-

cially relevant to cosmological models.

As we mentioned before, we just focused our attention in quadratic modi�cations. For

instance, a constrained application of the induction method used for a generic Finsler

geometry had as an outcome the disformal Riemannian metric found in [2.24]9. The

constraint appeared when we picked the invariants in [2.21] instead of other contracted

quantities. Naively, we can observe the analogy between the induction method used

in the example of 2.1 and the emergent geometry in Subsection 2.3. Behind this

analogy, it is not hard to notice that the equations of motion of a generic k-essence

�eld do not look like a typical Klein-Gordon equation: these are the ��eld version� of

a modi�ed dispersion relation. The quest for the inducted geometry is an attempt to

look for a frame in which the equations of motion of a k-essence �eld can be written

as a KG equation.

Once we found the induced metric, we looked for the right set of conditions to obtain

a broadened lightcone in both perspectives.

9Recently, a di�erent approach followed by Kothawala in [27] introduces the notion of a disformal

metric with results similar to [2.24].
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We give special attention to the fact that B > 0 since this is a crucial di�erence with

other existing models (such DBI In�ation or MOND).

The geometric description of the matter sector for this model is followed by a pro�le

of the dynamics of the inducing �elds in Section 3. It is important to mention that the

expansion if the matter lightcone is meaningless if the matter modes are not able to

propagate beyond the gravitational lightcone. And because of that, the e�ect of the

scalar is illustrated with an example in 3.1 in the gravitational frame, with the only

purpose to show that ordinary matter can travel superluminally inside the expanded

causal region. Nevertheless, the appearance of instabilities are expected in this frame,

casting doubts about frame dependence on many of the statements made so far.

The fact that measurements and experiments are conducted in the matter frame (us-

ing rods and clocks made of matter) is an argument commonly used to justify these

results. If the reader is still not convinced by this idea, we can �nd an interesting

insight to this issue in [11].

In this article, the author suggests that many of this issues are related to the im-

position of a preferred chronology of events in either of this frames. Proposing the

introduction of a global (mixed) chronology to avoid a biased choice.

Going further in this manuscript, we developed the case Lφ = X − V in order to

introduce the e�ects of the conformal factor in the model. This case is also important

since it is a natural lower kinetic limit for a generic k-essence Lagrangian density.

The Chameleon e�ect provides an alternative to �nd at least a minimum in the (en-

vironmentally dependent) e�ective potential, regardless of any preliminary choice of

a potential in the k-essence model. In addition to this, we present the ideas in [13]

in order to give a simple map between the two methods of induction described in

Section 2. In [3.25], we see the inverse of such a map describes a model di�erent than

any other in�ationary proposal. The expression in [3.21] considers a Klein-Gordon

action in the lower kinetic regime (BXφ � 1) and a Cuscuton action in the opposite

case (BXφ � 1). The solutions of the �eld in the last regime holds a vast spectrum

of conceptual details, super�cially reviewed in Appendix B.
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According to [13], φ is described by the KG equations in the matter frame when

this is driven just by the cosmological constant. We believe that the potential is

not naturally excluded: The presence of a conformal factor in the induced metric

plays a relevant role by transforming the ordinary �eld potential into an expression

with well-de�ned minima. However, the result remains valid for oscillations around

the minimum, or a nearly �at potential. In either of these cases, the action follows

straightforwardly from the results in Appendix A. Guilelessly, we believe that the

instability of the k-essence �eld in this scenario might not be seen as harmful.

In the last section of this paper, we developed a minimally modi�ed FLRW cosmology.

Firstly, we explored the conditions for an expanding congruence in the matter frame.

In this reference, we have evaluated the strong energy condition, �nding that the

violation of this is not mandatory for an accelerated phase. In contrast with the

results in [15], where the breaking of this condition is stated as mandatory. In this

article, the conserved currents and charges were de�ned in di�erent frames than the

assumed throughout this project. However, we can notice from [4.7] and [4.15] that

the imposition of such violations enhances an in�ationary phase. We have found

enough evidence in [4.8] to rea�rm the subdominance of matter interactions during

the expansion. The dominance comes from the interactions of the inducing �eld with

gravity, in our calculations this can be found in

Cgrav−φ =
B

8πG

√
g

g̃
Cρµρν ũµũν

at the right hand side of [4.8]. It is reasonable to expect a pronounced contribution

from this term in a regime of Quantum Gravity. Moreover, the condition found in

[4.17] remarks the dominance of the kinetic terms (time derivatives of the inducing

�eld) for the expansion. This is certainly opposite to the slow-roll behavior expected

from a standard in�aton.

In the last subsection of this chapter, we brie�y introduced some residual e�ects taken

into account generated by the breaking of Lorentz symmetry at low energy scales in

the gravitational frame. A survey of this violations and its implications is developed

in [26]. Where we can also �nd observational limits and tests which can be applied

for this model.
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A Action for perturbations

Here we discuss the properties of the motion equation in [2.30]. Our treatment follows

the ideas in [12] and [13] and aims to map the perturbations of a k-essence theory into

a Klein-Gordon picture in the matter frame. To do so, let us rewrite the equation as

follows:

Gµν∇µ∇νφ− ρ,φ = J (A.1)

Where the covariant derivatives are written in terms of the gravitational metric and

J comes from the coupling with other degrees of freedom in the full action. Now

we must consider the variation of this expression caused by the splitting of the �eld

solutions φ(x, t) = φ0 + δφ

Gµν∇µ∇νδφ− ρ,φφδφ− ρ,φX∇µφ0∇µδφ+

(
∂Gµν

∂φ
δφ+

∂Gµν

∂∇αφ
∇αδφ

)
∇µ∇νφ0 = δJ

(A.2)

This variation can be rearranged as

Gµν∇µ∇νδφ+ V µ∇µδφ− M̃2δφ = δJ, (A.3)

where

V µ ≡ ∂Gαβ

∂∇µφ
∇α∇βφ0 − ρ,φX∇µφ0

M̃2 ≡ ∂Gµν

∂φ
∇µ∇νφ0 − ρ,φφ (A.4)

We want to achieve a Klein-Gordon equation in a metric conformally related with

Gµν

G̃µνDµDνδφ−M2δφ = δJ̃, (A.5)

this implies a rede�ned covariant derivative

DµAν = ∇µAν − Cα
µνAα (A.6)

We express [A.5] in more familiar terms to compare it with [A.3]:

ΩGµν∇µ∇νδφ+ ΩV µ∇µδφ− ΩM̃2δφ = ΩδJ

G̃µν∇µ∇νδφ− G̃µνCα
µν∇αδφ−M2δφ = δJ̃ (A.7)
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Leading us to identify ΩGµν = G̃µν , ΩM̃2 = M2, ΩδJ = δJ̃ and ΩV α = −G̃µνCα
νµ.

The last identity is a de�ning property of the connection:

G̃µνCα
µν = −Ω

(
∂Gµν

∂∇αφ
∇µ∇νφ0 − ρ,φX∇αφ0

)
(A.8)

Using the analogous of an identity well-known in GR

G̃µνCα
µν = − 1√

−G̃
∇β(

√
−G̃G̃αβ) (A.9)

we wish to �nd the precise value of Ω such that it satis�es the identi�cation made on

[A.7]. And to do so, we must calculate the determinant of Gµν . By the de�nition of

this induced metric [2.30], we �nd:

det (L,Xgµν − L,XXφ,µφ,ν) = det (L,Xgµν) det
(
δµα − L−1

,XL,XXφ
,µφ,νgαν

)
Using det

(
eA
)

= etrA we have:

det exp
[
ln
(
δµα − L−1

,XL,XXφ
,µφ,νgαν

)]
= exp

[
tr
(
ln
(
δµα − L−1

,XL,XXφ
,µφ,νgαν

))]
(A.10)

Expanding the logarithm in taylor series:

tr
[
ln
(
1− L−1

,XL,XX
(
φ,µφ,νg−1

))]
=

∑
k

(−1)k+1

k

[
L−1
,XL,XX

]k
tr
(
−φ,µφ,νg−1

)k
=

∑
k

(−1)k+1

k

[
2XL−1

,XL,XX
]k

= ln
(
1 + 2XL−1

,XL,XX
)

Replacing in [A.10] we �nally get:

det (Gµν) = L4
,Xc
−2
s det(gµν)

And the inverse is simply det (Gµν)−1. With respect to G̃:

det
(
G̃µν

)
= Ω4L4

,Xc
−2
s det(gµν) (A.11)

If we de�ne the auxiliary function F =
√
−G̃Ω/

√
−g and also consider [A.9], we can

rewrite [A.8] as follows:

∇λ

(
FGαλ

)
= F

(
∂Gµν

∂∇αφ
∇µ∇νφ0 − ρ,φX∇αφ0

)
(A.12)
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By applying the chain rule, this is equivalent to:

Gαλ∇λF = F

((
∂Gµν

∂∇αφ0

− ∂Gµα

∂∇νφ0

)
∇µ∇νφ0 −

(
∂Gλα

∂φ
+ ρ,φXg

αλ

)
∇λφ0

)
A careful derivation of all the terms in the right hand side of this equation allows us

to have as a �nal expression

Gαλ∇λF = 0.

The auxiliary function F is a constant, which can be chosen to be 1. And by using

its de�nition we �nd the �nal value Ω

Ω =
cs
L2
,X

(A.13)

This factor completely determines the geometry in which the dynamics of perturba-

tions can be described by the Klein-Gordon action:

Iδφ =

∫
d4x
√
−G̃

(
−1

2
G̃µνDµδφDνδφ−

M2

2
δφ2

)
G̃µν =

cs
L2
,X

(L,Xgµν − L,XXφ,µφ,ν)

Notice that the new covariant derivatives in [A.6] appear in the action. The con-

formal factor does not alter causal structure of the induced spacetime. In here, the

procedure is slightly more general than the one followed by [13]. We can get exactly

the same results by considering L,φ = L,φX = 0, leading us directly to a massless

Klein-Gordon system. This result is extremely important to understand how the per-

turbations of a k-essence �eld can be described using the induced geometry of the

matter frame. In principle it is not compulsory to have a Klein-Gordon picture of the

perturbations in the matter frame, but is undeniable that this is certainly convenient

to study structure formation. And therefore, present tangible evidence to compare

with another proposed models.
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B Standard features of a Cuscuton �eld

Motivated by [16], we discuss some peculiar aspects of the Cuscuton �eld provided

by the high energy limit of [3.22]. Firstly, we present the equations of motion for

the �eld. Then, we use a particular case to �nd a geometric interpretation of the

solutions, including the discrete nature of them. We also give consistent arguments

to show the absence of internal dynamics in the Cuscuton and the collapse of the

phase space. Concluding with a brief discussion about the in�nite group velocity of

the perturbations.

Just keeping the terms of [3.22] relevant to our analysis, we �nd

L(X,φ) =

√
2

B

√
X − V (φ). (B.1)

The equations of motion are simple:

∇µ

(
φ,µ√
−φ,µφ,µ

)
+
√
BV,φ(φ) = 0 (B.2)

We can de�ne a normalized vector

nµ ≡ φ,µ√
−φ,µφ,µ

(B.3)

and this can be interpreted as the normal vector of a constant �eld surface. This

interpretation simpli�es our understanding of [B.2], which is equivalent to

Kµ
µ = −

√
BV,φ(φ) (B.4)

where Kµ
ν is the extrinsic curvature tensor. And it means that hypersurfaces of con-

stant φ have constant mean curvature (CMC). Many features of the explicit solutions

for the �eld can be studied in 1+1 Minkowski spacetime, in this case the �eld equation

reduces to

(t− t0)2 − (x− x0)2 = K−2 =
1

BV,φ(φ)2
(B.5)

A euclidean version of this equation can be illustrated as a sphere (or a soap bubble).

With this result, we argue that we can only obtain a discrete set of possible solutions.
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Suppose we know φ0(t = 0, x) which is the initial condition for the �eld, �xing the

curvature for the initial hyperbola (See Figure [5]). And we also consider the boundary

conditions for the hyperbola at x = x1 and x = x2: every solution φ(t, x) must pass

through both points at t = 0, this just allows two possible hyperbolae to be considered

as an initial set up for the system. However, this is very far from a formal proof of

Figure 5: In this picture, we illustrate the only two possible con�gurations (in red and blue)

for φ0 under the imposed boundary conditions. Depending on the position of the centering

coordinates (t0, x0).

this conjecture. If we consider all space dimensions, the initial con�guration might

not be a sphere. In that case we will need a more general procedure.

Another interesting property of this �eld is that it has no local dynamics. Therefore,

a Cuscuton �uid carries zero entropy. To see this, we transform the phase space from

the Lagrangian (Dφ ∧Dφ̇) to the Hamiltonian measure (Dφ ∧Dp).
Firstly, we calculate the conjugate momentum:

p(φ̇) =
1√
B

∫
d3x
√
−g φ,0√

−φ,µφ,µ
(B.6)

The Jacobian for this transformation is

det

(
∂φ(x)p(x′)

∂φ(y)φ̇(y′)

)
= det

 δ3(x− y) 0

α (∇φ)2(√
−B

1
3 φ,µφ,µ

)3 δ3(y − y′)

 . (B.7)

It is always possible to rotate φ,µ in such a way that the spatial gradient vanishes

(∇φ)2 = 0 and cancels the Jacobian.
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The same argument works in the matter frame being specially careful with spacetime

dependence of the rotation parameters. Hence, the basics of statistical mechanics

point out that this theory has a collapsed phase space (zero volume, no accessible

states) and no internal dynamics. Notice that the discrete nature of the solutions are

best viewed as points in the phase space, implying a measure equal to zero.

Even under these conditions, there are no restrictions on the interactions of this �eld

with ordinary matter for exactly the same reason. If we remember the calculations

made in subsection [3.1], the potential adds nonvanishing o�-diagonal terms, and the

determinant of the 4×4 Jacobian matrix will not be zero. The argument of Lorentz

symmetry will not hold in this case: a transformation to the rest frame of the Cuscu-

ton will not have the same e�ect in a generic matter �eld since we proposed a change

of scale for the transformations in the matter frame.

The bottom line of these arguments is that Cuscuton �eld might not be used to send

information, but it can be seen as a vehicle for other �elds to propagate superlumi-

nally.

Besides, from [B.2] we �nd the corresponding equations of motion for perturbations:

δφ,µ,µ + nµnνδφ,µν +
√
B V ′′(φ0)

(√
−φ,µ0 φ0,µ

)
δφ

Analyzing the static solutions in the Fourier domain, we �nd:(
ω2 − k2

||
)
δφk +

√
B V ′′(φ0)

(√
−φ,µ0 φ0,µ

)
δφk = 0. (B.8)

Where k|| is the momentum component that remains parallel to the CMC surface.

Con�rming the idea of a propagation restricted to a 3-D surface, this is another evi-

dence of the lack of internal dynamics.

And �nally, considering [B.1], a direct application of [2.29] allows us to �nd a di-

verging speed of sound: (
1 + 2X

L,XX
L,X

)
= 0 −→ c2

s →∞ (B.9)

This is not seen as a problem since we already noticed that the trajectories followed

by a Cuscuton carry no information. Naively, these results suggest many motivations

to call the Cuscuton an aether �eld.
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