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“Oh, Kitty! how nice it would be if we could only get through into
Looking- glass House! I’m sure it’s got, oh! such beautiful things in
it! Let’s pretend there’s a way of getting through into it, somehow,
Kitty. Let’s pretend the glass has got all soft like gauze, so that we
can get through. Why, it’s turning into a sort of mist now, I declare!

It’ll be easy enough to get through.”
L. Carrol, Through the Looking Glass



Abstract

An introduction to studies of moduli spaces of vacua for the purposes of
mirror symmetry in 3dN = 4 supersymmetric gauge theories is presented.
We first consider the established techniques of calculating the Hilbert se-
ries, which is the partition function counting gauge invariant BPS oper-
ators at all orders in the fields, as they are applied to the Higgs branch
of quiver gauge theories. The Higgs branch does not receive quantum
corrections and computations of the partition function can be approached
classically by considering F-terms and D-terms of the superpotential for
the N = 2 theory. Unlike the Higgs branch, the Coulomb branch re-
ceives quantum corrections and it’s notoriously difficult to characterise.
We introduce a new technique which exploits monopole operators in or-
der to compute the Hilbert series on the Coulomb branch of quiver gauge
theories. We are then able to test mirror symmetry by comparing the
partition functions of the Higgs branch and Coulomb branch of predicted
dual theories.
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5.3.4 Coulomb branch for the Ê6 quiver gauge theory . . . . . . . . 50
5.3.5 Coulomb branch for G2 with N flavours . . . . . . . . . . . . 52
5.3.6 Coulomb branch for SU(2) with N flavours . . . . . . . . . . 54

6 Mirror Symmetry for N = 4 gauge theories in 3d 56
6.1 The Kronheimer gauge theories . . . . . . . . . . . . . . . . . . . . . 56
6.2 Mirror Symmetry KSU(n) . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Mirror Symmetry KSO(2N) . . . . . . . . . . . . . . . . . . . . . . . . 59
6.4 Mirror Symmetry KE6 . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Brane realisation of mirror symmetry 63
7.1 Brane Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Field Theory on the branes . . . . . . . . . . . . . . . . . . . . . . . . 66

7.2.1 Effective 3d gauge theory on the D3-brane . . . . . . . . . . . 66
7.3 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.3.1 Singularity of the first kind . . . . . . . . . . . . . . . . . . . 67
7.3.2 Singularity of the second kind . . . . . . . . . . . . . . . . . . 68
7.3.3 From branes to quivers . . . . . . . . . . . . . . . . . . . . . . 68

7.4 Hanany-Witten transition . . . . . . . . . . . . . . . . . . . . . . . . 70
7.5 Constructing mirror pairs . . . . . . . . . . . . . . . . . . . . . . . . 71

8 Conclusion and outlook 75

References 77

A HyperKähler manifolds 80

ii



Chapter 1

Introduction

1.1 In the web of dualities: mirror symmetry
Although the path towards a construction of a fundamental and encompassing the-
ory seems to some to have only accidentally come across string theory, one cannot
say the same for the peculiar and unique feature that string theory displays: the
phenomenon of dualities. These seem to pervade every aspect of modern superstring
theory; they can not be avoided and should not be. Reporting, even briefly, on the
set and subsets of dualities in string theory is not for an introduction, nor for a whole
dissertation. Here we limit ourselves to dealing with one particular duality which was
suggested about fifteen years ago and has recently seen a revival. This duality has an
unfortunate name: mirror symmetry. It is unfortunate because another, much more
known, investigated and longer-lived duality exists which also bear the name mirror
symmetry. Tis second type of mirror symmetry relates two geometrically different
Calabi Yau 3-folds which turn out to yield the same theory when they serve as the
compactified space of string theory. Let us be clear that this second type of mirror
symmetry is not the topic of this dissertation. Even though connections are known
to arise between our mirror symmetry and this one, we will ignore these as well.

In order to avoid confusion the duality at hand is always addressed in the literature
as 3d mirror symmetry. It relates pairs of supersymmetric gauge theories in three
dimensions. A sufficient amount of supersymmetry is required: it was first proposed
for N = 4 by Seiberg and Intriligator in their 1996 paper [25] and then argued for
N = 2 by [1] and [12]. Here we focus exclusively on the former. 3d mirror symmetry
predicts the existence of pairs of theories that flow to the same conformal theory
in the infrared. Since the gauge coupling in three dimensions has positive scaling
with mass, the theory is strongly coupled in the infrared and a perturbative analysis
is not appropriate. Like for many other dualities in field theory and string theory,
systematic proofs are absent. Signs of the conjectures can nonetheless be observed
by studying the so called moduli spaces of the dual gauge theories. With the term
moduli spaces, or sometimes moduli, one refers to the geometrical space parametrised
by the expectation value of the scalar fields present in the theory. In light of this the
moduli space of vacua is sometimes called the scalar manifold. The key feature of the
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moduli space is its dimension, since this enumerates the various scalars that can take
non-zero expectation value in the theory. As a very simple example one can consider
a theory which contains only one scalar. Let this scalar take only positive values, for
example by being expressed as an exponential. Then the manifold that this scalar
field parametrises is just R+.

Moduli spaces of vacua in gauge theories arise when the scalar potential vanishes.
The vacuum expectation values of the scalars are precisely the parameters or “moduli”
of the space. Usually these scalar manifolds are constructed by means of disconnected
pieces which intersect at a point or at a submanifold. In particular for 3d supersym-
metric gauge theories, the scalar manifold is made up of two pieces which join at the
origin. Mirror symmetry arguments imply that the two pieces of the moduli space of
dual theories effectively swap roles. We explain this in what follows.

Consider a string theory background with 8 supercharges. Massless states arise
which saturate 4 bosonic and 4 fermionic degrees of freedom (d.o.f). The maximal
spacetime dimension allowed is 5+1 and such an amount of supersymmetry implies,
excluding a gravity multiplet, the existence of a vector multiplet and a hypermultiplet.

The vector multiplet in 5+1 d with 8 supercharges contains a gauge field Aµ(4
bosonic d.o.f.) and a spinor field (4 fermionic d.o.f). Hypermultiplets always consists
of just scalar fields and fermions: they are the matter sector of the theory. Since the
bosonic degrees of freedom come only from the scalars, the hypermultiplet in 5+1 d
will have: 4 scalars (4 bosonic d.o.f.) and again a spinor field.

Dimensional reduction is successively performed on both multiplets in order to
write down the two multiplets in 2+1 dimensions. Since dimensional reduction of
fermions never yields scalars, these are uninteresting here and one can focus on the
bosonic sector. The 2+1 d vector multiplet with 8 supercharges contains 4 bosonic
d.o.f. coming from the 5+1 d vector Aµ which reduces to

• a gauge field aµ, which in 3d is dual to a compact scalar field

• three non-compact scalars

The vector multiplet now contributes four scalars to the moduli space. The space of
vacua parametrised by the scalar fields in the vector multiplet is called the Coulomb
branch.

The 2+1 d bosonic sector of the hypermultiplet reduces to 4 scalar fields. The
space of vacua parametrised by these scalars is known as the Higgs branch. One
should notice that the present Coulomb and Higgs branches are both 4 dimensional
spaces and that the Coulomb branch should display one compact dimension S1 to
account for the parametrisation of the compact scalar. Moreover the scalars are
usually combined into complex ones, so that effectively the spaces will be complex
manifolds, with other features that specify the geometry further.

Mirror symmetry predicts that the Coulomb branch of a certain gauge theory
corresponds to the Higgs branch of a dual theory and vice versa. For a theory with a
given gauge group, the vector multiplet always transforms in the adjoint representa-
tion, whereas the hypermultiplet can be in any representation. Like all couplings, the
gauge coupling can be thought of as a background field and, as such, this field will
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transform in the vector multiplet. By means of a 3d non-renormalisation theorem,
which applies when extended supersymmetry is present, the vector multiplet and the
hyper multiplet don’t mix. Since the gauge coupling dictates quantum corrections,
the vector multiplet moduli space is affected by these whereas the Higgs branch is
not. The power of mirror symmetry lies precisely in the fact that when the Coulomb
branch of a given theory is difficult to compute because of quantum corrections, one
can appeal to the dual theory and compute its Higgs branch which is classically fully
determined and in so doing obtain an exact answer for the original, hard to compute
Coulomb branch. In light of this, one should recognise the surprising predictions of
mirror symmetry.

Our discussion of mirror symmetry will focus on comparing the Higgs branch and
the Coulomb branch of mirror theories, thus the reader should get acquainted with
how moduli spaces are analysed. We provide a gentle introduction in the following
subsection.

1.2 A simple example of moduli space
Consider a manifold M acted upon by a finite group G. This means that a point
p∈ M will be subject to the action of a finite group. Under such an action p will be
mapped to a point p′. The orbit of each point p under G is the set of points p′ that
p can reach when acted upon by G. An orbifold is a space constructed by “folding
along orbits” of G, i.e. it is constructed as a quotient M

G
of the manifold M by a

smooth action of the finite group G . The singularities of the orbifold arise precisely
by identifying points in the orbit of G. In algebraic geometry the study of such spaces
has often the aim of classifying and resolving the singularities so as to map singular
spaces to smooth ones. In string theory the study of orbifolds arises in the context of
moduli spaces of vacua. Moduli spaces that are orbifolds allow for a richer structure
than moduli spaces which are simply manifolds since the singularities of the orbifolds
correspond physically to points where extra massless states arise. Identifying moduli
spaces of supersymmetric gauge theories as orbifolds is not usually easy. It might
thus be easier to identify them algebraically rather than geometrically. As a simple
example consider a supersymmetric theory in 4d as in [37] with a superpotential given
simply by the product of three complex uncharged chiral superfields X, Y , Z, each of
which contains a complex scalar field, a Weyl fermion and a complex auxiliary field,
e.g. x, ψX , FX respectively for X, and similarly labelled for the other two.

The moduli space M of this theory is a complex space of which we seek to find
the algebraic description, i.e we seek a complex function f(x, y, z) = 0. Let the
holomorphic superpotential be W(X, Y, Z) = XY Z. Supersymmetry dictates that
the potential for the scalar fields x, y, z be:

V (x, y, z) =

∣∣∣∣ ∂W (X, Y, Z)

∂X

∣∣∣∣
X→x

∣∣∣∣2 +

∣∣∣∣∣ ∂W (X, Y, Z)

∂Y

∣∣∣∣
Y→y

∣∣∣∣∣
2

+

∣∣∣∣ ∂W (X, Y, Z)

∂Z

∣∣∣∣
Z→z

∣∣∣∣2
(1.1)
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The vacuum conditions V = 0, i.e. ∂X→x,Y→y,Z→zW = 0 yield three equations on the
three complex variables x, y, z :

yz = 0; xz = 0; yx = 0 (1.2)

They are satisfied in the three regions where the scalar fields vanish in pairs:

〈x〉 6= 0; y = z = 0

〈y〉 6= 0; x = z = 0 (1.3)
〈z〉 6= 0; y = x = 0

The expectation values of the scalar fields are called moduli, or parameters for the
vacuum space. The moduli spaceM is then a space made of three pieces and described
exactly by (1.3). In Fig. 1.1 each nonvanishing complex line is represented as a cone,
so that, visually, this is a faithful representation of the algebraic description (1.3).
Note that the three pieces are connected at the point where the expectation value of
all three of the scalar fields vanish. Here extra massless states arise by construction.
This moduli space is a singular space with a singularity arising at its origin.

Figure 1.1: The moduli space for the XYZ model is made of three pieces which join
at the origin

The XYZ moduli space displays two peculiar aspects that will be encountered
again for other spaces: it is made of pieces that join at the origin and it has a
singularity. These two elements alone give rise to a wealth of interesting features
underlying the theories that have such moduli spaces. Our study is heavily focussed
on disquisitions of such matters.

1.3 Thesis Overview
Mirror symmetry will be introduced in steps, each section providing a necessary
background for a check of the duality. In particular this work is organised as follows:
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• In section 2, we equip ourselves with some algebraic tools needed to analyse the
moduli space of certain gauge theories. We succinctly introduce the concepts
that are used for the definition and computation of the Hilbert series as the
generating function for the chiral ring of gauge invariant operators. Further-
more, we exploit the power of algebraic methods to describe orbifolds. A class of
gauge theories found on the worldvolume of branes plays a fundamental role in
mirror symmetry: they are known as quiver gauge theories. We lay the details
of their construction and show a map from a quiver theory with N = 2 super-
symmetry to the corresponding theory with N = 1, by modifying the quiver
and introducing a superpotential. This allows us to describe the Higgs branch
of the quiver gauge theory by means of a Hilbert series. The calculations in this
section are mostly taken from the work found in [4, 17, 5, 23] with some minor
editing.

• In section 3, supersymmetric gauge theories in three dimensions are introduced.
We present the symmetries of the theory and analyse the field content in terms of
N = 4 and N = 2 multiplets. Their transformation under the global symmetry
and gauge symmetry are made explicit and tabulated for clarity. It is then
explained how the gauge field in the vector multiplet has the unusual feature
of being dual to a scalar. Thereon we move to the most important method of
this section, which is how to count dimensions for the Coulomb branch and the
Higgs branch. It is stressed in this section how mirror symmetry is a duality, like
most, which arises at low energies. Moreover we introduce the idea of hidden
symmetries in the gauge theory, an important ingredient in the development of
mirror symmetry.

• Before analysing and demonstrating some of the statements of mirror symme-
try, we take a little and very pleasurable mathematical detour on the McKay
correspondence in section 4. This is an ingenious equivalence between the ADE
Dynkin diagrams and graphs which encode information about representations
of finite subgroups of SU(2). The McKay correspondence elucidates and an-
ticipates some “duality” features that are of interest to us. This section will
give some slightly more formal statements about the idea of algebraic curves
for rings of invariants. At the end it is noted how the ADE classification is
ubiquitous in string theory.

• Section 5 is dedicated to the original work of this thesis. The technique imple-
mented to analyse the algebraic form of the Coulomb branch by means of Hilbert
series is presented. The calculations are performed by the author, although in-
tensive collaboration with A. Zaffaroni, S. Cremonesi and especially A. Hanany
are profusely acknowledged: extensive checks of these calculations have been
performed by comparing with their more comprehensive results. Monopole op-
erators are the mediators of this new technique. An introduction to the nature
of these operators that don’t appear in the Lagrangian is provided, although
this will mainly occur as a tool to set the scene. Most interest will be taken to
write a formula that captures the conformal dimension of these operators, which
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depends among other things on a set of hidden symmetries which we specify.
Using this conformal dimension the Coulomb branch for certain abelian quiver
gauge theories can be encoded in a generating function. We then move on to non
abelian examples where care has to be taken to account for the Weyl group of
symmetry of the gauge group. We introduce the concept of the classical dressing
function, which mods out terms which are not invariant under the Weyl group.
Some extra features, like explicit symmetry enhancement, that arise from this
approach are presented.

• Finally, after all the hard work has been done by computing the Higgs branch
and the Coulomb branch, mirror symmetry takes the stage in section 6. It
is stated in its original form as it was presented by [25]. However the often
laconic language of that paper should have received plenty of footnotes and
elucidations in the form of the previous sections of this work. Mirror dual
theories are stated and the cross matching of the Higgs branch and Coulomb
branch are made explicit by means of the Hilbert series. This will amount to a
check of mirror symmetry in the context of matching moduli spaces.

• The last chapter before the concluding remarks is dedicated to the string theory
description of mirror symmetry. We give detail of the NS5 − D5 − D3 brane
constructions which reproduce a mirror transformation. The material is taken
from [24] and should constitute a fun exercise in the brane realisation of super-
symmetric gauge theories. We also hope to make some of the diagrams in the
original paper clearer.

The work of this dissertation is, apart from some computations in chapter 5, not an
original contribution. To the author’s knowledge, a review of 3d mirror symmetry
doesn’t not exist; although this makes sourcing the information harder, we have
strived to provide all the references which were drawn upon.
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Chapter 2

Higgs Branch

2.1 Algebraic description of moduli spaces
Let us commence by constructing the simplest two complex dimensional orbifold. We
take the complex plane C2 and construct the quotient of this by the central symmetry
of the origin. The orbifold is thus C2

Z2
. Note that this space is not a Riemannian

manifold and is homeomorphic to a cone in CP1, the cone point failing to have a
neighbourhood that locally looks like C2.To identify the algebraic description of this
quotient orbifold let z1 and z2 be coordinates of C2 and the action of the parity group
Z2 be:

(z1, z2)←→ (−z1,−z2)

In matrix notation, the (diagonal) action of Z2 is simply(
z
′
1

z
′
2

)
=

(
−1 0
0 −1

)(
z1

z2

)
(2.1)

Let us identify all the monomial functions of z1 and z2 that are invariant under the
action of parity. In this case these are very easy to find:

f(z1, z2) = zi1z
j
2

i− j = 0 mod 2
(2.2)

The three Z2 invariant monomials of degree two are

X ≡ z2
1

Y ≡ z2
2

Z ≡ z1z2

(2.3)

X, Y, Z are three complex variables which we use to describe the orbifold C2

Z2
alge-

braically. They are called generators of the (infinitely many) Z2 invariant polynomials
and they are related to each other by the constraint

XY = Z2 (2.4)
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This relation is just an algebraic curve in C3 and fully encapsulates the description of
the orbifold. Note that if one regards the variables X,Y ,Z as real coordinates (2.4) is
simply the equation of a cone. The orbifold C2

Z2
is often called a “complex cone” and

the singularity of this space is referred to as a conical singularity.
Let us consider the next natural example of C2

Z3
. The action of Z3 on C2 can be

identified1 through a generator ω, which obeys the usual condition ω3 = 1. Powers
of ω are irreducible representations of Z3. The two dimensional (reducible) diagonal
representation can be written:(

ωa1 0
0 ωa2

)
, ωa1 = 1, ωa2 = 1 (2.5)

The action of Z3 on (z1, z2) ∈ C2 is then(
z′1
z′2

)
=

(
ωa1 0
0 ωa2

)(
z1

z2

)
(2.6)

a1 + a2 = 0 mod 3 (2.7)

(2.7) can be rewritten as
a1 = −a2 mod 3 (2.8)

and we can choose a1 = 1, and thus a2 = −1. Then(
z′1
z′2

)
=

(
ω 0
0 ω−1

)(
z1

z2

)
(2.9)

and orbits of Z3 on C2 are (z1, z2) ∼ (ωz1, ω
−1z2), with ω3 = 1.

We now look for invariant polynomials under this action, in order to describe this
orbifold algebraically. By inspection

W ≡ z1z2 (2.10)
X ≡ z3

1 (2.11)
Y ≡ z3

2 (2.12)

W , X, Y are the lowest degree polynomials of order 2, 3 and 3 respectively - these are
the generators for this space and all other invariants can be built out of them. They
are constrained by one relation, since XY = W 3 . Hence we can write the algebraic
description of the space, also called defining equation as

C2

Z3

:=
{
X, Y,W ∈ C3 | XY = W 3

}
(2.13)

1The action of Z3 on C is implemented by a rotation of size ω, a cube root of unity; orbits of Z3

are points at 120° in the Argand diagram, thus C2

Z3
is constructed by identifying such points
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2.2 Hilbert series of Moduli Spaces
The two examples encountered so far highlight the key properties of moduli spaces
we are interested in: the dimension, the number of generators and the number and
the form of the constraining relations. By combining basic invariants one could then
construct infinitely many others, as can be seen by inspection in the previous exam-
ples. The next question is whether these infinitely many invariants can be collected
by a grading of the polynomial vector space and whether they could be nicely en-
capsulated in some function. Indeed this is what the so called Hilbert series does.
This is a generating function which counts the number of polynomial invariants under
the finite group action at a given degree. In gauge theories, the Hilbert series will
count the chiral gauge invariant operators at a given degree. We proceed to construct
simple Hilbert series by examples and introduce minimal mathematical machinery to
keep the present work as concise as possible. The definitions used here can be found
in a series of papers [4, 17, 23]. As extensive use of it will occur, we introduce here
a function that counts symmetric products of its arguments, called the plethystic
exponential (PE).

Definition (Plethystic Exponential): For a multivariable function f(t1, ..., tn)
with f(0, .., 0) = 0, define:

PE [f (t1, ..., tn)] := exp

(
∞∑
r=1

f (tr1, ..., t
r
n)

r

)
(2.14)

E.g. for f (t) = t, the PE is:

PE [t] = exp(
∞∑
r=1

tr

r
) = exp(− ln(1− t)) =

1

1− t
(2.15)

and for a power series in t, f (t) =
∑

n ant
n

PE

[∑
n

ant
n

]
=

1∏
n(1− tn)an

(2.16)

where one notices that PE[f + g] = PE[f ]PE[g].
The plethystic exponential can of course be used for symmetric products of any

function, but for our purposes the functions at hand will be characters of representa-
tions Ri of Lie groups. These are expressed as polynomials in (x1, ..., xp) where p is
the rank of the group. Evaluation of the plethystic exponential yields a series whose
coefficients are symmetric products of these characters.

In order to count gauge invariant quantities, these representations must be re-
stricted to the subspace, or subrepresentation, which is invariant under the action of
the gauge group G. One can do so by integrating the series over the gauge group
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itself, with the integration measure the group Haar measure
∫
G
dµG∫

G

dµG =
1

(2πi)r

∮
|z1|=1

· · ·
∮
|zr|=1

dz1

z1

· · · dzr
zr

∏
α+

(
1−

r∏
j=1

zα
+

j

)
(2.17)

where r is the rank of G and α+ are the positive roots for the lie algebra g. The
projection over singlets of the gauge group is known as the Molien-Weyl formula and
it gives the Hilbert series for the algebra of group invariants:

IG =

∫
G

dµGPE[R1(x1, ..., xr) +R2(x1, ..., xr) + ...] (2.18)

2.2.1 Simple Hilbert series

Consider first the simple case of a moduli space Cn, with variables zi, i = 1, .., n .
A natural U(n) symmetry acts on Cn. The Cartan subgroup is U(1)n, the ith U(1)
acting on each zi. We now introduce a parameter ti for each U(1), which counts each
zi; these parameters are called fugacities. Since there is no group of symmetry to
quotient over, the Hilbert series just counts monomials of degree k in the variables zi:
ti11 t

i2
2 ...t

in
n , for any positive integer i1, i2, ..., in. The Hilbert series is then the generating

function:

HS(t1, t2, ..., tn;Cn) =
∞∑

i1,..,in=0

ti11 t
i2
2 ...t

in
n =

n∏
i=1

1

1− ti
(2.19)

= PE

[
n∑
i=1

ti

]
(2.20)

Let us now perform a change of variables from t1, ..., tn to y1, .., yn−1, t with map:

t1 = ty1, t2 = ty2
y1
, · · · , tn = t 1

yn−1
(2.21)

Then

HS(t1, t2, ..., tn;Cn) = PE

[
(y1 +

y2

y1

+ ...+
1

yn−1

)t

]
(2.22)

= PE
[
χ
(

[1, 0, ..0]SU(n)

)
t
]

(2.23)

=
∞∑
k=0

χ
(

[k, 0, .., 0]SU(n)

)
tk (2.24)

where we have used Dynkin label [n1, ..., nr] to denote representations of simple Lie
algebras and χ([n1, ..., nr]) the corresponding character. We see that the Hilbert series
for Cn corresponds to the function that generates kth rank symmetric products of the
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fundamental representation of SU(n). Set now ti = t in (2.20) to obtain the so called
unrefined Hilbert series:

HS(t;Cn) =
1

(1− t)n
(2.25)

=
∞∑
k=0

(
n+ k − 1
k − 1

)
tk (2.26)

=
∞∑
k=0

dim([k, 0, .., 0]SU(n))t
k (2.27)

(2.25) gives us information on the moduli space. Indeed the order of the pole of
the Hilbert series is the dimension of the underlying moduli space. Here the trivial
example of HS(t,Cn) displays a divergence of order n, signifying the dimension of
the space itself.

Let us go back to the orbifold C2

Z2
. The natural U(2) action on the parent space

C2, with Cartan subalgebra U(1)2, allows us to arrange coordinates zi as a doublet
[1] of SU(2) with charge +1 under U(1): zi → [1]+1. However the weights of the
doublet z1, z2 are not invariants under the symmetry so [1] cannot be a generator
for all Z2 invariant polynomials. The first invariant monomials were at order 2 and
they were 2-nd rank symmetric products of z1, z2. In group theoretic language this
is Sym2[1] = [2], i.e the second rank symmetric representation of SU(2), which has
dimension 3. These represent the three Z2 invariant monomials of (2.3). Notice that
there are no monomials with odd numbers of weights of [1]. Let us then redefine the
order of invariants by taking the monomials a, b, c in (2.3) to be order 1. All higher
order invariants will be symmetric products of these, e.g.

Sym2[2] = [4] + [0] (2.28)
Sym3[2] = [6] + [2] (2.29)

etc.

(2.28) and (2.29) also encapsulate the relations between the generators. We know
that the first relation among the generators is at order 2 in the products of genera-
tors from (2.4). This is precisely the role of the singlet in (2.28). Proceeding with
higher symmetric products, we will find more invariants (the highest weight [2k] in
the decomposition) and more relations (all the other representations in the decompo-
sition). The Hilbert series is then easy to write as a summation. Choosing fugacities
t1,t2:

HS(t1, t2;
C2

Z2

) =
∞∑

i,j=0
i−j=0 mod 2

ti1t
j
2 (2.30)

= 1 + t21 + t22 + t1t2 + ... (2.31)

11



Introduce the fugacity map t1 = tx and t2 = t
x
, then simple substitution2 shows that

HS(x, t2;
C2

Z2

) =
∞∑
k=0

χ ([2k]) t2k (2.32)

where the fugacity t2 rather than t reflects the degree of the generators. If we unrefine
the series by setting the fugacity x = 1, it follows that χ ([2k])→ dimχ ([2k]) = 2k+1
and (2.32) becomes

HS(t2;
C2

Z2

) =
∞∑
k=0

(2k + 1)t2k =
1− t4

(1− t2)3
(2.33)

= (1− t4)PE[3t2] (2.34)
= (1− t4)PE[dim(χ ([2]))t2] (2.35)

and since dimensions match we can now refine the series again and write

HS(x, t2;
C2

Z2

) =
∞∑
k=0

χ ([2k]) t2k (2.36)

= (1− t4)PE[(χ ([2]))t2] (2.37)

=
1− (t2)2

(1− x2t2) (1− t2)
(
1− t2

x2

) (2.38)

(2.38) is the closed formula for the Hilbert series that represents C2

Z2
. The three factors

in the denominator signify that the ring of monomials invariant under Z2 is generated
by three monomials. The numerator encodes the relation between these generators:
the power of t signifies that this relation is at order 4, or order 2 in the generators. As
mentioned above, the pole of the Hilbert series gives the dimension of the space. We
simplify (2.33), as much as possible and notice that there is a pole of order 2, i.e. the
moduli space has complex dimension 2, as expected from the parent space C2. Note
that the dimension of the space in this case is d = g − r, where g is the number of
generators and r is the number of relations. A moduli space whose dimension obeys
this relation is called a complete intersection3. Spaces that are complete intersections
enjoy some nice properties: there is a finite number of relations between the three
generators and these relations are indeed the defining equation of the underlying
algebraic space; the Hilbert series can be written simply and information about the
generators and their relations straightforwardly extracted. We refer the reader to [22]
for a classification of complete intersection spaces and their associated Hilbert series.
The majority of the moduli spaces encountered in this dissertation will be complete
intersections.

2The characters of representations [n](x) of SU(2) are χ ([n]) =
∑m=n

2

m=−n
2
x2m, where x2 = exp(iθ)

3If r=0, the moduli space is said to be freely generated
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2.3 Quiver gauge theories
In the next sections a special class of gauge theories will be investigated, called quiver
gauge theories. These are SYM theories whose gauge group and matter content can
be encoded in certain graphs. The amount of supersymmetry dictates the information
encoded in a given graph. The importance of quiver gauge theories was first noted
by Douglas and Moore in [15], where it was realised that these theories arise on the
worldvolume of Type II Dp-branes in a background of D(p + 4) branes probing a
certain singularity of the space.

2.3.1 Simple Quivers

In this subsection we review briefly N = 2 d = 4 quiver gauge theories. The structure
of these quiver diagrams applies without any change to N = 4 d = 3 theories, with
which we will be concerned later. Quiver diagrams consist of nodes, to which we
assign vector multiplets transforming in the gauge group, and links, to which we
assign hyper multiplets. Consider the quiver gauge theories as represented in Fig. 2.1
.

Figure 2.1: Some simple quiver gauge theories

The quiver shown in a) represents a theory with gauge group U(1) × U(1) with
one hypermultiplet transforming in the bifundamental (+1,−1) representation. The
quiver in b) has the same gauge group but two hyper multiplets, one in the bifun-
damental and one in the conjugate bifundamental, i.e (−1,+1). The quiver in c)
represents a theory with gauge group U(2) × U(3) × U(2) with 12 hypermultiplets
transforming in the representation (2, 3̄,1)⊕(1,3, 2̄) which is written more commonly
as (2, 3̄)⊕(3, 2̄), with the understanding that (p,q) is the representation for adjacent
gauge group factors. One can also introduce a different type of node to represent a
global flavour group. Typically this is done by means of a square node. For example
the theory with gauge group U(K) and N flavours, i.e. SU(N) flavour symmetry is
shown in Fig. 2.2.

Figure 2.2: The quiver U(k) with N flavours symmetry

The matter content is summarised by the link: N hypermultiplets, each in the
fundamental representation, k, of U(k), adding up to a total of kN hypermultiplets.
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2.3.2 From N = 2 to N = 1 quivers

In order to compute the partition function for the gauge invariant ring on the Higgs
branch of quiver theories, one needs to map from a 4d quiver with N = 2 to a
quiver with N = 1. Again this will apply unmodified to three dimensional theories
in going from an N = 4 to an N = 2 quiver. Theories with N = 1 supersymmetry
are specified by giving the gauge group, the hypermultiplets representations and in
addition a superpotential which encodes the interaction term.

A N = 2 vector multiplet decomposes into a N = 1 vector multiplet and a
chiral multiplet in the adjoint of the gauge group; hence a node translates to a node
with loop. A N = 2 hypermultiplet decomposes in two chiral multiplets which
are in complex conjugate representations of the gauge group; thus the line becomes
bidirectional. We show the map in Table 2.1.

N = 2 N = 1 Summary

, Node Vector
Multiplet

,
Node+
Adjoint

Chiral Multiplet
V2 = V1 + χ1

, Line Hyper
Multiplet

,
Bidirectional line

two chiral
multiplets

H2 = χ1 + χ̃1

Table 2.1: Mapping of the elements of a N = 2 quiver to those of a N = 1 quiver.
The mapping should also include a superpotential

Superpotential
The superpotential can be read off from the N = 1 quiver. Let us consider

again the N = 2 quiver in Fig. 2.1a and map it to a N = 1 quiver using our
prescription as shown in Table 2.1. φ1 and φ2 are the chiral multiplets that arise
from decomposing each U(1) vector multiplet, whereas A, B are the chiral multiplets
arising from decomposing the bifundamental hypermultiplet. A line between two
nodes enters in two cubic terms of the superpotential with opposite sign contributions.

The superpotential for the quiver in Fig. 2.3a) is:

W = Bφ1A− Aφ2B

There are no indices since the fields are in this case abelian. If the nodes stand for
two non abelian groups with fundamental representations n1 and n2, the fields are
matrix valued in the bifundamental: A −→ An2×n1 and B −→ Bn1×n2 so that a trace
is always implicit in the superpotential terms. In Fig. 2.3b) we show how to map
the second quiver in Fig. 2.1 from N = 2 to N = 1 and read off the associated
superpotential.

14



Figure 2.3: TheN = 2 quivers of Fig. 2.1 a) and b) are mapped using the prescription
provided to N = 1 quivers, which must include a superpotential

2.4 Higgs branch
Equipped with the simple machinery of this chapter so far, we can now proceed to
evaluate the Higgs branch of certain quiver gauge theories. In the following subsec-
tions we follow [5] closely as the results found in this paper will be of use for nontrivial
checks of mirror symmetry.

2.4.1 1-SU(N) instanton

We consider a D2-brane probing a background of N D6-branes. The theory living on
the D2-brane is a N =4 3d supersymmetric theory with gauge group U(1). Strings
connecting the D6-branes to the D2-branes are interpreted as N massive hypermul-
tiplets, with mass proportional to the length of the strings. When the D6-branes are
stacked together, the hypermultiplets masses are all equal and can be set to zero by
a shift of the origin. This U(N) enhanced background gauge symmetry becomes a
global flavour symmetry on the worldvolume of the D2-brane. Moreover the centre
of U(N) can be absorbed by the U(1) gauge symmetry living on the D2-brane, hence
the theory becomes that of U(1) with SU(N) flavour symmetry shown in Fig. 2.2 for
k = 1.

Recall that the quivers introduced above describeN = 2 orN = 1 supersymmetric
gauge theory in 4d, but they apply for the same theories in 3d with respectivelyN = 4
and N = 2 supersymmetry. Consequently we can map from our N = 4 quiver to the
corresponding N = 2 one using the prescription of the previous subsection: this is
shown in Fig. 2.4.

The node U(1) becomes a node with an adjoint chiral multiplet Φ, whereas the
link between the gauge group and the flavour group, which signifies bifundamen-
tal hypermultiplets in the N = 4 quiver, becomes a bidirectional line representing
two N = 2 chiral multiplets χ and ξ, which transform in the bifundamental of the
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Figure 2.4: The N = 2 quiver obtained by mapping the quiver in Fig. 2.2 which has
N = 4 in 3d using the prescription of the previous subsection. This allows for the
superpotential to be easly written down.

U(1)gauge × SU(N)flavour and are complex conjugate representations. We show their
representation and associated fugacity in Table 2.2. The superpotential can be read
off the N = 2 quiver as

W = χiΦξ
i (2.39)

where the Latin indices label the gauge representation, the fundamental being an
upper index, and the conjugate fundamental a lower index.

Field U(1)gauge U(N)flavour
SU(N) U(1)

Fugacity z x1, ..., xN−1 q
Φ 0 [0, ..., 0] 0
χ 1 [0, ..., 0, 1] -1
ξ -1 [1, 0, ..., 0] 1

Table 2.2: Representation of fields for the U(1) theory with N flavours. The label
[n1, ..., nr] will always represent the Dynkin highest weight

The F-terms, obtained by letting the derivative of the superpotential with respect
to the field multiplets vanish, are

∂W
∂χi

= Φξi = 0 (2.40)

∂W
∂ξi

= χiΦ = 0 (2.41)

∂W
∂Φ

= χiξ
i = 0 (2.42)

So either χi, ξi = 0 and 〈Φ〉 = any, which would correspond to the Coulomb branch
where the expectation value of the scalars in the vector multiplet take non-zero value,
or Φ = 0, χi = any, ξi = any with χiξ

i = 0, which corresponds to the Higgs
branch where scalars in the hyper multiplet take non-zero expectation value. However
one cannot calculate the Coulomb branch in this manner since it receives quantum
corrections, i.e. the superpotential would need loop renormalisation and instanton
corrections. The Higgs branch on the other hand is not renormalised, hence this
classical computation is valid and gives an exact result. We will focus on this.

The space of solutions Φ = 0, χi, ξi = any with χiξi = 0 is called the F-flat space.
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We denote it by F b,

F b ≡
{

Φ = 0, 〈χi〉 6= 0,
〈
ξi
〉
6= 0 | χiξi = 0

}
(2.43)

We wish to select gauge invariant operators: since the group is abelian χi, ξi transform
just by a local phase. The first gauge invariant operator is to be found at order 2 and
it is Aij ≡ ξiχj. In group theoretic language we write

[1, 0, .., 0]SU(N) ⊗ [0, 0, .., 1]SU(N) = [1, 0, .., 0, 1]SU(N) ⊕ [0, .., 0]SU(N) (2.44)

but TrA = Aii = ξiχj = 0, hence the singlet above corresponds to a condition on
the generator Aij. Moreover one can notice that AijA

j
k = ξiχjξ

jχk = 0. Therefore
the restriction of the F-flat space F b to the gauge invariant operators MH can be
described algebraically as

MH =
{
A ∈ GL(N,C) | TrA = 0, A2 = 0

}
(2.45)

It is often impractical or cumbersome to find gauge invariant operators and their
relations by inspection especially if they occur at higher order. Moreover we would
like to characterise the space by means of the Hilbert series, as discussed above. We
present here the procedure, as it appeared in [5].

The generating function encoding the F-flat space F b, (2.43), is

gF
b

1,N (t, x1, ..., xN−1, q, z) =
(
1− t2

)
PE

(
[1, 0, ..., 0]SU(N)wt+ [0, ..., 1]SU(N)

1

w
t

)
(2.46)

where

1. w ≡ z
q
is the redefined fugacity to absorb the U(1) factor of U(N), with fugacity

q, into the gauge U(1) with fugacity z

2. PE
(

[1, 0, ..., 0]SU(N) wt
)
signifies the symmetric products of ξi and PE

(
[0, ..., 1] 1

w
t
)

the symmetric products of χi

3. the prefactor in front of the PE represents the relation for the generators oc-
curring at order 2

In the generating function (2.46) gauge invariance hasn’t yet been imposed. Let the
characters of the representations be

[1, 0, ..., 0] = x1 +
x2

x1

+ ...+
xN−1

xN−2

+
1

xN−1

= x1 +
1

xN−1

+
N−1∑
k=2

xk
xk−1

(2.47)

[0, ..., 0, 1] =
1

x1

+
x1

x2

+ ...+
xN−2

xN−1

+ xN−1 =
1

x1

+ xN−1 +
N−1∑
k=2

xk−1

xk
(2.48)
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then (2.46) can be written as a rational function

gF
b

1,N (t, x1, ..., xN−1, w) =
(1− t2)

(1− x1wt)
(

1− 1
xN−1

wt
)∏N−1

k=2

(
1− xk

xk−1
wt
) ×

1(
1− 1

x1
t
w

) (
1− xN−1

t
w

)∏N−1
k=2

(
1− xk−1

xk

t
w

) (2.49)

(2.49) can be projected out so as to extract only the gauge invariant part of the
series. This is performed by integrating gFb

1,N over the Haar measure for the gauge
group U(1). The contour integration over an appropriately closed path will pick up
contributions from the poles of the function. Using the Molien-Weyl formula

HSH1,SU(N) (t, x1, ..., xN−1) =
1

2πi

∫
|w|=1

dw

w
gF

b

1,N (t, x1, ..., xN−1, w) (2.50)

where we restrict to the circle | w |= 1 since the radius of convergence for t is 1 and
thus only poles within it must be considered:

w = t
1

x1

, t
x1

x2

, ..., t
xN−2

xN−1

, txN−1 (2.51)

After the contour integration (2.50) the following generating function is obtained

HSH1,SU(N) (t, x1, ..., xN−1) =
∞∑
p=0

[p, 0, ..., 0, p]SU(N) t
2p (2.52)

Recall that [p, 0, ..., 0, p]SU(N) stands for the character of the representation, hence a
function of (x1, ..., xN−1). By setting xi = 1, one obtains the dimension corresponding
to this representation and thus the unrefined Hilbert series which counts the gauge in-
variant operators at a given degree. After making use of the Weyl dimension formula,
we arrive at.

HSH1,SU(N) (t, x1, ..., xN−1) =

∑N−1
p=0

(
N − 1
p

)2

t2p

(1− t2)2(N−1)
(2.53)

Notice that the order of the pole at t = 1 is 2(N − 1) complex dimensional, i.e N − 1
in quaternionic units.

2.4.2 1− SO(2N) instanton

We proceed to analyse the quiver in Fig. 2.5.
Recall that the algebra associated to Sp(1) is isomorphic to the algebra associated

to SU(2): sp(1) ∼= su(2), thus we are effectively studying a gauge theory of SU(2)
with N quarks. The global symmetry arises as the orthogonal group SO(2N), since

18



Figure 2.5: The quiver gauge theory with gauge group Sp(1) and N flavours, which
arise as a global symmetry SO(2N)

the fundamental representation of SU(2) is pseudoreal. The brane picture behind
this quiver theory is similar to the one for the 1 − SU(N) theory. Consider a D2
brane in a background of N D6 branes and the N images about the orientifold O6−.
The presence of the orientifold has a two-fold effect:

• the background gauge group for the D6 becomes SO(2N)

• the gauge group on the D3 is projected to Sp(1) ∼= SU(2) ⊂ U(1)

Hence on the worldvolume of the D2-brane an observer will experience an SU(2)
gauge theory with SO(2N) flavour symmetry.

Note that in the quiver of Fig.2.5 the matter is in so called half-hyper multi-
plets. They are still in the bifundamental of the two adjacent symmetry groups:
SU(2)gauge×SO(2N)flavour, which add up to a total of 2×2N half-hyper multiplets4
or alternatively 1

2
(2 × 2N) = 2N hypermultiplets. Consequently, in going to the

N = 2 quiver the link doesn’t become bidirectional, since one gets, not two, but one
chiral multiplet, which we call Q. We show the mapping in Fig. 2.6.

Figure 2.6: From the N = 4 to the N = 2 quiver. The field multiplets for N = 2
are: a vector multiplet, the node Sp(1) itself, a chiral multiplet S in the adjoint of
Sp(1), arising from the vector multiplet for N = 4, and one chiral multiplet Q in the
bifundamental of Sp(1)× SO(2N), whose indices have been suppressed, arising from
one bifundamental half-hypermultiplet.

The transformation for the N = 2 fields is:

• Sbc transforms in the adjoint representation [2] of SU(2) and we assign fugacity
z

• Qi
a, with i the flavour index and a the gauge index, transforms in the bifun-

damental
[
1SU(2); 1, 0, ..., 0SO(2N)

]
and we again assign fugacity z for the SU(2)

character and x1, ..., xN for the SO(2N) representation character.
4For Sp(n) the fundamental representation is 2n dimensional
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The superpotential can be read off the N = 2 quiver using the prescription explained
previously

W = Q · S ·Q (2.54)
= Qi

aε
abSbcε

cdQi
d (2.55)

where εab is the invariant tensor of SU(2).
The F-terms are obtained by taking derivatives with respect to the (scalars in the)

multiplets. The Higgs branch occurs when the scalars coming from the N = 4 vector
multiplet vanish whilst the ones from the hyper multiplet take nonzero value.

∂W

∂Qi
f

= 2εfbεcdSbcQ
i
d (2.56)

∂W

∂Sbc
= εabεcdQi

aQ
i
d (2.57)

= Qi
bQ

i
c +Qi

cQ
i
b (2.58)

where the last line comes about since the two ε’s make the expression symmetric in
(b, c). Hence the F-flat space F b1,SO(2N) is the space of solutions

F b1,SO(2N) ≡
{
S = 0,

〈
Qi
a

〉
6= 0, | Qi

aQ
i
b +Qi

bQ
i
a = 0

}
(2.59)

The condition on the Qi
a is that the 2nd symmetric product vanishes, i.e the relation

transforms as [2]SU(2), with the fugacity t to the power 2 to signify that the relation is
square in the fields. The character of this representation will appear as the prefactor
of the plethystic exponential. The argument of the latter is instead the character of
the bifundamental chiral multiplet Qi

a, hence

gF
b

1,SO(2N) (t, x1, ..., xN , z) =
(
1− z2t2

) (
1− t2

)(
1− t2

z2

)
PE

[
[1, 0, ..., 0]SO(2N)

(
z +

1

z

)
t

]
(2.60)

The character for the fundamental representation of SO(2N) can be written as

[1, 0, ..., 0] =
N∑
a=1

(
xa +

1

xa

)
(2.61)

and inserting this into (2.60) we can write the generating function gF
b

1,SO(2N) as a
rational function:

gF
b

1,SO(2N) =
(
1− z2t2

) (
1− t2

)(
1− t2

z2

)
PE

[(
z +

1

z

) N∑
a=1

(
xa +

1

xa

)
t

]
(2.62)

=
(1− z2t2) (1− t2)

(
1− t2

z2

)
∏N

a=1 (1− zxat)
(
1− xa

z
t
) (

1− z
xa
t
)(

1− 1
zxa
t
) (2.63)
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The Hilbert series, i.e. the projection of (2.63) onto the space of gauge invariant
operators, can be obtained by contour integrating with the SU(2) Haar measure

dµSU(2) =

∮
dz

1− z2

2πiz
(2.64)

Thus we evaluate the following integral and obtain the result

HSH1,SO(2N) (t, x1, ..., xN) =
1

2πi

∮
dz

(
1− z2

z

)
gF

b

1,SO(2N) (2.65)

=
∞∑
p=0

[0, p, ..., 0]SO(2N) t
2p (2.66)

recalling that [0, 1, ..., 0]SO(2N) is the adjoint representation of SO(2N).
For N = 4, the 1 − SO(8) instanton, the coefficient of (2.66) is just [0, p, 0, 0] as

a function of x1, x2, x3, x4. For example [0, 1, 0, 0] is the adjoint of SO(8) but also
happens to be the 2nd rank antisymmetric representation and the character can be
found by antisymmetrising the character for [1, 0, 0, 0] , thus giving

[0, 1, 0, 0] =
∑
a<b

xaxb + xax
−1
b + xbx

−1
a + x−1

a x−1
b (2.67)

Setting all the xi to one, we obtain the unrefined series, which just counts chiral
operators at a given degree

HSH1,SO(8) (t) =
∞∑
p=0

dim
(

[0, p, 0, 0]SO(8)

)
t2p (2.68)

=
(1 + t2) (1 + 17t2 + 48t4 + 17t6 + t8)

(1− t2)10 (2.69)

The pole at t = 1 is of order 10, hence the moduli space has 5 quaternionic dimensions.

2.4.3 The exceptional instantons

A Lagrangian description for a theory with E6 global symmetry is not known. It has
been argued in [20] that such a theory can be realised by means of three M5-branes
that wrap a sphere with three punctures. Each puncture with a wrapped M5 realises
an SU(3) global symmetry. The E6 global symmetry arises by enhancement of the
SU(3)3 symmetry.

Similarly unknown are the theories with E7 and E8 as flavour symmetries. We
sketch the quiver of such theories by means of a shaded circular node, which represents
the unknown theory and in particular its gauge symmetry, and a square En, n = 6, 7, 8
flavour node, in Fig. (2.7).

The conjectured Hilbert series are generalised from comparison with the 1−SU(N)
and 1−SO(2N) instanton moduli spaces whose Hilbert series have been demonstrated
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Figure 2.7: The quiver for the unknown theory that has one of the three E exceptional
groups as global symmetry

in the previous subsection to have the form

HSH1,G (t, x1, ..., xr) =
∞∑
p=0

χ[Adjp]Gt
2p (2.70)

where Adjk is the irreducible representation constructed by replacing the entries θ in
the Dynkin label of the adjoint representation of G by θk. Hence for the exceptional
groups E this generalises to

HSH1,E6
(t, x1, ..., x6) =

∞∑
p=0

[0, p, 0, 0, 0, 0]E6
t2p −→ 1 + 78t+ 2430t2 + .. (2.71)

HSH1,E7
(t, x1, ..., x7) =

∞∑
p=0

[p, 0, 0, 0, 0, 0, 0]E7
t2p −→ 1 + 133t+ 7371t2 + ..(2.72)

HSH1,E8
(t, x1, ..., x8) =

∞∑
p=0

[0, 0, 0, 0, 0, 0, 0, p]E8
t2p −→ 1 + 248t+ ... (2.73)

where the arrows show the terms in the unrefined series up to order two for E6 and E7

and order 1 for E8. In our subsequent check of mirror symmetry these terms will be
checked against, whilst the higher order ones require substantial computational effort.

The expressions for the Hilbert series for the 1−G instanton moduli space has been
dealt with in this section. The reader should bear in mind that this has not been
done for mere computational sake. The Higgs branch of the quiver theories studied
above is the 1−G instanton moduli space. This Higgs branch will be reappear again
in a new fashion: it will coincide with the Coulomb branch of a dual theory. In order
for us to reach the statement of mirror symmetry, we sketch the salient features of
supersymmetric theories in three dimensions.
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Chapter 3

N = 4 supersymmetric gauge theories
in 3d

3.1 Symmetries
Consider first a N = 1 supersymmetric gauge theory in six dimensions. The R-
symmetry group is SU(2)R which rotates the fermions. The 6d vector multiplet in
representations of SO(4)little×SU(2)R is made up of a gauge field [1; 1; 0], and a right
Weyl spinor field [1; 0; 1]. Performing dimensional reduction to 3d, one can obtain a
three dimensional supersymmetric gauge theory with 8 supercharges, i.e. N = 4.

The 3d vector multiplet is made up of a vector, 3 scalar fields φ1, φ2, φ3 and 4
fermionic d.o.f arranged in a way which we explain below. The appearance of an
extra symmetry group is disclosed by the multiplicity of the scalars: φ1, φ2, φ3 can be
arranged as a triplet of SO(3), this symmetry corresponding to rotations in the three
reduced dimensions. We denote this SO(3)L and its double cover SU(2)L. Hence
the R-symmetry of N = 4 3d gauge theories is SU(2)L × SU(2)R ∼= SO(4) 1 with
supercharges transforming in the [1; 1] representation.

3.2 Fields
N = 4 Super Yang-Mills (SYM) is a highly constrained theory. It is convenient to
work with N = 2 multiplets as these embody the building blocks for N = 4 ones.
Note that N = 2 3d multiplets can themselves be obtained by dimensional reduction
of N = 1 4d gauge and chiral multiplets.

The N = 2 vector multiplet is made up of a gauge field Aµ, a two-component
complex Dirac spinor λα and a real scalar η, which corresponds to the component of
the vector field in the reduced direction. There is also a so called half-hypermultiplet2
made up of a complex scalar and a Dirac fermion. This half-hypermultiplet is the
dimensional reduction of the 4d N = 1 hypermultiplet.

1There is also a Lorentz symmetry SL(2,R), which we don’t write explicitly
2Sometimes we will call it a chiral multiplet
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We now construct aN = 4 vector multiplet by combining aN = 2 vector multiplet
V and a half-hypermultiplet Φ. Hence a N = 4 vector multiplet will consist of the
vector field Aµ, the Dirac spinor λα, the real scalar η, a complex scalar ϕ and finally
another Dirac spinor ξα. All of these fields will transform in the adjoint representation
of the gauge group. The N = 4 action is

Sgauge =
2π

e2

∫
d3xTr

{
−1

2
FµνF

µν +DµηD
µη + 2iλ /Dλ+ 2λ [η, λ]

+ 2Dµϕ
†Dµϕ+ 2iξ /Dξ +

∣∣[ϕ, ϕ†]∣∣2 + |[η, ϕ]|2

+ 2
√

2i
([
ϕ†, ξ

]
λ+ λ

[
ϕ, ξ
])

+ 2ξ [η, ξ]

}
(3.1)

where the first line is the N = 2 vector multiplet action and the remaining lines repre-
sent gauge couplings, Yukawa couplings and potential terms for the half-hypermultiplet
added to construct the N = 4 vector multiplet. The action (3.1) can be made more
compact by using superspace notation and superfields. Letting Σ be the linear mul-
tiplet that contains the field strength Fµν we rewrite (3.1) as:

Sgauge =
2π

e2

∫
d3xd2θd2θ̄

(
1

4
Σ2 − Φ†e2V Φ

)
(3.2)

Let us analyse the fields’ transformation under the global symmetry SU(2)L ×
SU(2)R. The fermions transform as a doublet of SU(2)L and SU(2)R, hence as a
vector of the global SO(4), [1; 1]. More importantly for our purposes we can now
take the scalars φ1, φ2, φ3 mentioned in the previous subsection to be φ3 ≡ η and

1√
2

(φ1 + iφ2) ≡ ϕ so that ~φ = (φ1, φ2, φ3) is the triplet of real scalars under SU(2)L.
We summarise the field content of the vector multiplet in Table 3.1 , which is similar
to the one in [28].

N = 4 N = 2 Field type Label SU(2)L × SU(2)R.

Vector
multiplet

Vector
multiplet

(V )
gauge

Dirac spinor
real scalar

Aµ
λα
η

(λα, ξα) −→ [1; 1]
(η,Reϕ, Imϕ) −→ [2; 0]

Chiral
multiplet

(Φ)
complex scalar
Dirac spinor

ϕ
ξα

Table 3.1: Field content for the N = 4 vector multiplet, obtained by combining
N = 2 multiplets. All of the fields are in the adjoint of the gauge group G

By rewriting the potential for the scalars in the action, which are the last two
terms in the second line of (3.1), in terms of φ1, φ2, φ3 we obtain the scalar potential

V =
2π

e2

∑
i<j

Tr
[
φi, φj

]2 (3.3)

where i, j = 1, 2, 3 . This potential indicates that a supersymmetric vacuum exists,
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since flat directions V = 0 can be achieved by a set of commuting φi. Therefore the
scalars must take values in the Cartan subalgebra of the gauge group. For a gauge
group G of rank r U(1)r ⊂ G is the Cartan subalgebra and hence fields which take
value in U(1)r can be written

φi = diag
(
x

(i)
1 , ..., x

(i)
r

)
(3.4)

This means that along flat directions the scalars acquire a nonzero vacuum expecta-
tion value (VEV): the gauge group G is broken by the adjoint Higgs mechanism to
its maximal torus U(1)r. We refer to this as complete Higgsing. The acquisition of
a VEV for the scalars is precisely the statement that there is moduli space for the
vector multiplet: the Coulomb branch.

The most crucial point for the discussion of SYM in 3d is related to the nature of
the vector field. Aµ transforms non linearly in the adjoint of G. However when the
gauge group is broken to its maximal torus U(1)r, and this occurs at a generic point
of the Coulomb branch by complete Higgsing, one is left with r U(1) massless3 gauge
fields (photons): A(j)

µ j = 1, ...r. In 3d only a gauge field is dual to a scalar field. Let
F

(j)
µν be the field strength associated to A(j)

µ and write:

F (j)
µν = εµνσ∂

σγ(j) (3.5)

where γ(j) are thus the scalars dual to A(j)
µ . Since A(j)

µ are one-forms, the γ(j) must be
zero-forms. Zero-forms are compact scalar fields which means take value in S1. Hence
a generic point of the Coulomb branch will be a parameter value of 3r non-compact
scalars φ(j)

i i = 1, 2, 3 and r compact scalars γ(j) j = 1, ..., r, which adds to a total of
4r scalars arising solely from the vector multiplet. The Coulomb branchMC has thus
real dimension 4r or 2r complex dimension or r in quaternionic units. We summarise
by writing

dim(MC) = r (3.6)

The Coulomb branch has the right dimension and indeed, because ofN = 4 supersym-
metry, the right structure to be a hyperKähler manifold (of quaternionic dimension
r). A simple definition of such a class of spaces is given in the Appendix. The classical
Coulomb branch is the moduli space

MC =
(
R3 × S1

)r (3.7)

where the φ(j)
i parametrise the non-compact space R3r and the dual photons γ(j)

parametrise the compact space S1. The metric describing this space is a flat hyper-
Kähler metric

ds2 =
r∑
i=1

(
1

e2
d~xi

2 + e2dθ2
i

)
(3.8)

where the vector ~xi is a triplet for each i = 1, ...r and θi are coordinates on the r
3The remaining gauge bosons acquire a mass
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sphere Sr . This metric has been written by purely classical considerations. Since the
Coulomb branch is quantum mechanically corrected by loop corrections and instanton
effects, the metric needs modifications to allow for this. A classical treatment of 3d
N = 4 theories with mathematical derivations of one-loop corrected metrics on the
Coulomb branch can be found in [34, 35].

3.3 The Higgs branch and an IR duality
Matter couplings can of course be provided to the pure N = 4 super yang Mills
described above; one does so by adding hypermultiplets to the theory. The N = 4
hypermultiplets are constructed by combining two N = 2 half-hypermultiplets, which
we name after the complex scalar they contain. Thus each N = 4 hypermultiplet con-
sists of two Dirac spinors ψα, ϑα, which transform as a doublet of SU(2)L and SU(2)R,
and two complex scalars A, B whose real and imaginary parts can be arranged as
doublets of one of the two SU(2) as shown in Table ??. The two half-hypermultiplets,
which together are used to make the N = 4 hypermultiplet, transform in conjugate
representations of the gauge group G.

N = 4 N = 2 Field type Label SU(2)L × SU(2)R. G
Hyper

multiplet
Chiral

multiplet
(A)

complex scalar
Dirac spinor

A
ψα

(ψα, ϑα) −→ [1; 1](
A,B†

)
−→ [1; 0](

A†, B
)
−→ [0; 1]

R

Chiral
multiplet

(B)
complex scalar
Dirac spinor

B
ϑα

R∗

Table 3.2: Field content for the N = 4 hypermultiplet, obtained by combining two
N = 2 chiral multiplets.

The action for the N = 4 hypermultiplet in superspace language is

Shyper = −
∫
d3xd2θd2θ̄

∑
hyper′s

(
A†e2VA+B†e2VB

)
(3.9)

There can also exist a holomorphic superpotential constrained by N = 4 to be

Ssp = −i
√

2

∫
d3xd2θd2θ

∑
hyper′s

BΦA+ c.c. (3.10)

where recall that Φ is the adjoint N = 2 chiral multiplet that enters the N = 4
vector multiplet. The sum is restricted to hypermultiplets which are charged under
the gauge group for which Φ is in the adjoint. Further there is a trace implicit for
the tensor product of R∗ ⊗ Adj ⊗R for the cubic terms in the superpotential.

The VEV of the scalars in the hypermultiplet also parametrise a hyperKähler
space, the Higgs branch. Note that non-zero VEV for the hypermultiplets means
the gauge group is broken completely. Consequently the dimension of this space is
given by the number of N = 4 hypermultiplets, dim(R), minus the number of gauge
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fields that become massive due to complete Higgsing. This is only valid when no
superpotential is present, that is, for N = 4 in 3d. If U(k) is the gauge group, all k2

generators are broken, i.e. k2 d.o.f. become massive and need to be subtracted from
the hyper d.o.f. For a general group G we have:

dim(MH) = dim(R)− |G| (3.11)

Since supersymmetry invariance dictates that no other cross terms between scalars in
the vector multiplet and scalars in hypermultiplet may show in the Lagrangian, the
total moduli space will be a productMC ×MH.

The Kähler form associated to the Higgs branch transforms in the adjoint of the
global symmetry of the Higgs branch and trivially under SU(2)L, which we can write
as[2; 0]SU(2)L×SU(2)R using Dynkin labels. Conversely the Kähler form associated to
the Coulomb branch transforms oppositely as [0; 2]SU(2)L×SU(2)R . The Higgs branch,
unlike the Coulomb branch, gets no quantum corrections: classical computations
suffice to describe it. This difference between these two sections of the moduli space
depends on the transformation properties of the gauge coupling constant.

All the coupling constants should really be thought of as VEV of non-dynamical
background superfields [33]. As such, one can identify their transformation proper-
ties under the global symmetry. In particular, after being promoted to superfield, the
gauge coupling constant transforms in the [2 + 0; 0]SU(2)L×SU(2)R . Since it transforms
trivially under the symmetry group of the Higgs branch, SU(2)R, the scalars in this
background superfield can only be moduli of the Coulomb branch. The gauge cou-
pling controls quantum loop corrections, so the Coulomb branch is subject to these
whilst the Higgs branch is exempt. This is an instance of non-renormalisation theo-
rem.

Extra terms can be added to the Lagrangian which preserve supersymmetry: mass
terms for the hypermultiplets and Fayet-Iliopoulos (FI) terms associated to the U(1)
vector fields. When such terms are included, the two types of couplings, mass and FI
parameters, can again be promoted to background superfields: after promotion, mass
parameters transform as a triplet of SU(2)L and are invariant under SU(2)R. Since
they transform in [2; 0]SU(2)L×SU(2)R , they can only affect the Coulomb branch (they
actually deform the Coulomb branch by resolving the singularities of the space); on
the other hand Fayet-Iliopoulos couplings transform in the [0; 2]SU(2)L×SU(2)R and, as
such, are a deformation parameter for the Higgs branch. 4

Supersymmetric gauge theories in 3d are super-renormalizable. The Lagrangian
description applies to finite energies and the the theory is free in the ultraviolet. It
is also known to flow in the infrared (IR) to a non-trivial superconformal fixed point.
It is here that mirror symmetric pairs flow to and become dual faces of one theory.

4The effect of these two terms on the underlying algebraic space is that of resolving the singular-
ities. In very rough terms, the singularity are smeared by for example decreasing the order of the
pole. We will not consider this in our work.
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Most importatnly the scaling dimension of the fields at the superconformal fixed point
is dictated by how they transform under the infrared superconformal R-symmetry,
which is Spin(4) ∼= SU(2) × SU(2). If this R-symmetry coincides, and it’s not al-
ways the case, with the Lagrangian R-symmetry, SU(2)V × SU(2)R, then the fields
conformal dimensions are well-defined: scalars in the hypermultiplet have IR scaling
dimension 1/2, while the scalars in the vector multiplet and the gauge field have IR
scaling dimension 1. We will always consider such theories.

This treatment serves as a background for the discussion of mirror symmetry. Let
us present qualitatively the claims of this duality for the case of U(1) with n + 1
electrons in light of what has been exposed. The flavour symmetry of the Lagrangian
is SU(n + 1) = An. The Higgs branch of this theory is the moduli space of An
instantons. The Coulomb branch is a one-dimensional hyperkähler manifold with an
An singularity. In [25] it is claimed that, when this theory flows in the IR to the
non-trivial superconformal fixed point, these two moduli spaces become respectively
the Coulomb branch and the Higgs branch of another abelian gauge theory. In order
for this to happen this duality must exchange the SU(2)L and SU(2)R R-symmetries,
and Fayet-Iliopoulos terms and mass terms if they are present. Again, surprisingly,
one-loop and instanton corrections on Coulomb branch arise classically in the Higgs
branch of the mirror theory.

3.4 Hidden Symmetries
A particular feature of gauge theories in 3d arises by virtue of the scalars γ(j) dual to
the photons. Suppose the gauge group is U(1). The field strength F (2) has a Hodge
dual ?2+1F

(2) = J (1), a current. Alternativelywe can write this in coordinates notation

Jµ =
1

4π
εµνρFνρ (3.12)

J (1) is a current in that it is topologically conserved by the Bianchi identity, d ?2+1

F (2) = 0. This topologically conserved current presupposes, by Noether theorem, the
existence of a global U(1)J symmetry which is not explicit in the Lagrangian. The
charge associated to this U(1)J is called vortex charge or topological charge. Funda-
mental fields in the theory have zero vortex charge but we will construct operators
with non-zero vortex charge; these are the so called monopole operators. For a general
gauge group G of rank r, the theories thus hide a global U(1)rJ , which is not explicit
in the Lagrangian.

By promoting mass and FI parameters to background superfield, N = 4 super-
symmetry constrains the mass terms, which transform in the adjoint of any global
flavor symmetry, to be in the Cartan subalgebra of the latter; the FI terms are on the
other hand free and not associated to any global symmetry. Since mirror symmetry
exchanges mass and FI parameters one imagines that a hidden global symmetry must
be arise by enhancement; in the dual theory the visible flavour symmetry of original
theory is exchanged with the hidden. What is this hidden global symmetry then?
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Here is where the U(1)rJ shows its nature. The conserved current J (1) can be coupled
to a background gauge field aµ via a ∧ F . We then let a become a vector superfield
and give VEV to the scalar in this vector multiplet. This is a FI term and its coupling
to a global symmetry U(1)J is now manifest. In fact the topological global U(1)rJ is
the maximal torus of a hidden, non abelian global symmetry of rank r.

Before further aspects of 3d N = 4 gauge theories, and in particular mirror
symmetry can be discussed, one must first take a detour on the so called ADE classi-
fication. We will return to analysing features that emerge from the above discussion
in section 5.
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Chapter 4

The ADE classification and the
McKay correpondence

The ADE classification refers to a subset of root systems such that roots can only
form angles of 90◦ or 120◦. The Dynkin diagrams are consequently simply laced, i.e.
there are no double links between nodes of the diagram. Such diagrams represent
the root systems An, Dn, E6, E7, E8, hence the name. These ADE root systems
represent classes of several objects in Mathematics. In particular they can be used
to classify ADE semisimple Lie algebras and binary polyhedral groups, which are
the finite subgroups of SU(2). There is an exact correspondence between these two,
known as McKay correspondence.

4.1 Finite subgroups of SU(2)
Let us begin with examining finite subgroups of SU(2). Take the usual homomor-
phism ρ : SU(2) � SO(3). Then ker(ρ) = {±1}, with −1 being the only element
with even order. Let G be a finite subgroup of SU(2). If G has even order, it is the
inverse image ρ−1(H) of a subgroup H of SO(3); if it has odd order it is isomorphic
to a subgroup of SO(3) of odd order, the only one of which is the cyclic group of
odd order. Since subgroups of SO(3) are classified, the following list of subgroups of
SU(2) is exhaustive1:

• The cyclic group of order n+ 1: Zn+1

• The binary dihedral group of order 4n: Dicn

• The binary tetrahedral group of order 24: BT

• The binary octahedral group of order 48: BO

• The binary icosahedral group of order 120: BI
1The symmetry group of tetrahedron (self-dual), the octahedron (and its dual the cube), the

dodecahedron (and its dual the icosahedron), also known as the Platonic solids, are, together with
Zn and Dicn, the symmetry groups of SO(3).
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4.1.1 Invariant theory for the subgroups of SU(2)

In discussing orbifolds as spaces constructed by quotients of manifolds over finite
groups, a prominent role is played by invariant polynomial functions under the action
of the group. This is the realm of invariant theory of finite groups. The interested
reader is referred to an accesible work by Stanley [36]. We discuss elementary results
for the subgroups of SU(2), ΓSU(2).

Take W to be a finite dimensional complex vector space. Let f be a polynomial
function in the coordinates of a given basis for W . Let C[W ] denote the ring of
polynomial functions in the coordinates {zi}ni=1with respect to a basis {ei}ni=1 of W .
The {zi} form the basis for the dual vector space W ?, defined so that zi(ej) = δij,
and the ring of polynomials is C[W ] = C[z1, .., zn].

A polynomial function f∈ C[W ] is said to be homogenous of degree d if f(αw) =
αdf(w) for all α ∈ C, w ∈ W . We then can write C[W ] as a graded C-ring. Let
C[W ]d be the subspace of homogeneous polynomial of degree d. Then

C[W ] =
⊕
d

C[W ]d (4.1)

The ring of polynomials of degree 1 corresponds to the dual space C[W ]1 = W ?.
More generally one can identify C[W ] with the symmetric algebra of W ?, S(W ?),
itself graded with degree d, i.e.

S(W ?) =
⊕
d

Sd(W
?) = C[W ] (4.2)

Now consider a subgroup G of GL(W ), the general linear group of linear trans-
formations on W , embedded by a suitable homomorphism. G acts on W in the usual
way: G×W → W , (g, w) 7−→ gw. We define invariants in two ways:

• A polynomial function f ∈ C[W ] is G-invariant if f(gw) = f(w) ∀g ∈ G and
w ∈ W . Alternatively f is G-invariant if it is constant along all orbits of G.
The G-invariant polynomial functions form a subalgebra, called the invariant
ring. This is labeled C[W ]G. It is by inheritance a graded algebra:

C[W ]G. =
⊕
d

C[W ]Gd (4.3)

• Consider the action of G on C[W ] and hence on the symmetric algebra S:
gf(w) = f(g−1w) with f ∈ S, w ∈ W . Then the subalgebra of S which is
G-invariant is defined by

SG = C[W ]G = {f ∈ S(W ?) |gf = f ∀g ∈ G} (4.4)

It is a theorem due to Hilbert that the invariant ring is finitely generated, i.e. one can
find elements in C[W ]G and relations among them from which the whole ring can be
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constructed. The question of what these generators and relations are is the subject
of classic invariant theory.

The invariant ring for ΓSU(2) is generated by three elements, X, Y, Z which obey
a single relation %(X, Y, Z) = 0, i.e.

C[W ]G = C[z1, z2] =
C[X, Y, Z]

〈ρ〉
⊂ C3 (4.5)

Moreover the isomorphism

χ : C2 → C3 (4.6)
(z1, z2) → (X(z1, z2), Y (z1, z2), Z(z1, z2)) (4.7)

preserves the quotient structure and we can write the algebraic ring in terms of the
quotient space constructed by letting C2 being acted upon by Γ .

C[X, Y, Z]

〈ρ〉
∼=

C2

Γ
(4.8)

In table 4.1 the algebraic relation between X, Y, Z for each of the five subgroups Γ of
SU(2) is listed.

Γ ρ(X, Y, Z) = 0
Zn+1 X2 + Y 2 + Zn+1

Dicn−2 X2 + Y 2Z + Zn−1

BT X2 + Y 3 + Z4

BO X2 + Y 3 + Y Z3

BI X2 + Y 3 + Z5

Table 4.1: Shows the relation between X, Y, Z ∈ C3, for each of the five finite sub-
groups Γ of SU(2). The Γ-invariant ring of polynomials is algebraically described by
C[W ]Γ = C[X,Y,Z]

〈ρ〉

We showed in section 1 how to obtain the algebraic description of the orbifold
C2

Z2
which were described by X, Y, Z subject to the relation (2.4). The extension to

C2

Zn
is straightforward: for three generators W , U , Z, the relation WU = Zn can be

obtained by identical computations that led to (2.4) and with a change of variables
W = X + iY and U = X − iY , one arrives at ρ(X, Y, Z) = 0 in the first line of Table
4.1. The remaining four defining equations can be worked out by similar, if slightly
more involved, means. The details of the calculations are found in the excellent notes
by [14].
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4.2 The McKay correspondence

Mckay graph

McKay graphs are oriented graphs that encode the irreducible representations of a
given finite groups G. Here we consider McKay graphs for the finite subgroups Γ of
SU(2). This graphs are unoriented, unlike more general groups.

Let R be the faithful representation obtained by the embedding Γ ↪→ SU(2) and
let χi , i = 1, ..., d be characters of the irreducible representations {Ri} of Γ . The
McKay graph for Γ is defined to be a quiver diagram with d vertices, one for each
Ri, and nij lines from Ri to Rj where nij is the number of times Rj appears in the
decomposition

R⊗Ri =
⊕
j

nijRj (4.9)

For the subgroups of SU(2),ΓSU(2), it holds that nij = nji and the graph is unoriented.

Mckay correspondence

There is a one-to-one correspondence between McKay graphs for subgroups of SU(2)
and the affine Dynkin diagrams of simply laced semisimple Lie groups.

Rigorous proofs of this statement exist. Otherwise one can inspect the claim on
a case by case basis. Here we show how the latter is done for the simplest case of
Γ = Zn. The faithful completely reducible 2 dimensional representation obtained by
embedding Zn ↪→ SU(2) is:

RZn : =

(
ω 0
0 ω−1

)
, ωn = 1 (4.10)

The one dimensional irreducible representations {Ri}, i = 0, ..n− 1 are ωi. Then the
tensor product decomposition (4.9) is

RZn ⊗ ωi =

(
ω 0
0 ω−1

)
⊗ ωi =

(
ωi+1 0

0 ωi−1

)
(4.11)

The McKay graph can thus be constructed straightforwardly. There are n nodes
representing the irreducible representations and the ith node is connected to the (i+
1)th and (i − 1)th, the 0th node being connected to the 1stand the (n − 1)th. It is
depicted in Fig. 4.1a .

The reader should recognise that this is precisely the affine Dynkin diagram for
the lie groups Ân−1 = SU(n), where the zero node corresponds to the extended node,
proving the McKay statement for the cyclic subgroup of SU(2).

Consider now Γ = Dicn. There are 4 one dimensional representations and (n− 1)
two dimensional representations2 . The McKay graph is shown in Fig. 4.1b . As the

2A quick check is always:
∑

i k
2
i = |G|. Here 4 + 4(n− 1) = 4n = |Dicn|.
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(a) McKay graph for Zn. All representations are one dimensional

(b) McKay graph for Dicn. There are 4 one dimensional representa-
tions and (n− 1) two dimensional ones.

(c) McKay graph for BT. The dimensions of the
irreducible representations are inside the nodes.

(d) McKay graph for BO

(e) McKay graph for BI

Figure 4.1: The McKay graphs for the subgroups of SU(2). Inside each node is the
dimension of the corresponding representation.
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reader will have noticed, this is equivalent to the affine Dynkin diagram of D̂n+2 =
SO(2n+ 4).

In Fig. 4.1c we show the Mckay graph for the binary tetrahedral group which is
identical to the affine Dynkin diagram of the exceptional Lie algebra associated to
Ê6; 4.1d is the McKay graph for the binary octahedral group, which corresponds to
the affine Dynkin diagram of Ê7 and finally 4.1e is the McKay graph for the binary
icosahedral group which corresponds to the affine Dynkin diagram of Ê8.

4.3 Hilbert series for du Val singularities
Eq. 4.8 relates the ring of ΓSU(2)-invariant polynomial to to the corresponding orbifold
C2

Γ
. The isolated singularity of this special class of quotient spaces is called du Val

singularity. The spaces themselves are instead known in the physics literature as
ALE spaces (Asymptotically Locally Euclidean).

The defining algebraic equations that characterizes ALE spaces of Table 4.1 con-
tains all the needed information to write down the unrefined Hilbert series. Let us
show how to this for the case of Z, Dicn, BT, the other two case being analogously
written.

Zn
The algebraic curve in C3 is %(X, Y, Z) = X2+Y 2+Zn+1 = 0. The three generators of
invariants X, Y, Z are found at different degrees. In order to have integers appearing
as powers of the fugacity t, let us choose Z to be of degree 2, and consequently, in
order for the polynomial relation to be homogeneous, choose X and Y to be of order
n+ 1. The relation occurs then at order 2n+ 2. The Hilbert series can be written at
once:

HS(t;
C2

Zn
) =

1− t2n+2

(1− tn+1)(1− tn+1)(1− t2)
(4.12)

Dicn−2

The algebraic curve in C3 is %(X, Y, Z) = X2 + Y 2Z + Zn−1 = 0. Choose Z to be of
degree 2, Y of degree n− 2 and thus X of degree n− 1. Then the relation is of order
2n− 2 and the Hilbert series is:

HS(t;
C2

Dicn−2

) =
1− t2n−2

(1− tn−2)(1− tn−1)(1− t2)
(4.13)

BT
The algebraic relation is %(X, Y, Z) = X2 + Y 3 + Z4 = 0. Choose X to be of degree
6, and consequently, Y of order 4 and Z of order 3. The relation occurs then at order
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12. The Hilbert series is:

HS(t;
C2

BT
) =

1− t12

(1− t3)(1− t4)(1− t6)
(4.14)

It is similarly straightforward to write the Hilbert HS(t2; C2

Γ
) for the other two sub-

groups of SU(2), and in general for any algebraic space once the defining equation of
the space is known.

4.4 ADE classification in string theory
In string theory ALE spaces appear when extra dimensions are compactified. For
example, one can have Type II theories on R1,5 × C2

Γ
. Dp-branes, where −1 ≤ p ≤ 5,

can exist in such a background. Moreover the gauge theory on such a Dp-brane will
no longer be a simple U(k) theory but instead will be an ADE-quiver gauge theory,
i.e a gauge theory where the gauge group is identified with the Dynkin diagram
corresponding to the choice of Γ. The gauge group will be simply a product of U(ki)
where ki is the dimension of the representation of the ith node. For example a Dp-
brane with −1 ≤ p ≤ 5 in a spacetime R1,5× C2

Zn
carries on its worldvolume the quiver

gauge theory shown in Fig. 4.1a where the gauge group is U(1)× ...×U(1) = U(1)n.
For the reasons aforementioned Dp-branes are often called spacetime probes.

This is another nuance of the correspondence: from the purely group theoretic
theorem we are able to identify a special class of gauge theories, known as ADE-
quiver gauge theories. Schematically the correspondence is on three levels:

McKay graph for SU(2) subgroups


ADE Affine Dynkin Diagram


ADE quiver gauge theories

This connection is fascinating and the results non trivial. As a further example
consider the theory whose quiver is 4.1a, where the gauge group at each node is U(1).
The moduli space of vacua of such a theory has two branches: a Higgs Branch whose
moduli space is the ALE space with An du Val singularity and a Coulomb branch
whose moduli space corresponds to the 1−An instantons. In principle such a quiver
gauge theory would have nothing to do at all with the Lie algebra su(n) and yet,
because of the McKay correspondence, the latter arises in different guises in both
spaces. Let us summarise this section with the following:

• ADE groups are algebro-geometrically deeply connected to du Val singularities.

• ADE-quiver gauge theories are the field-theoretic manifestation of the mathe-
matical correspondence.
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Chapter 5

Coulomb branch

5.1 Monopole operators in 3d
In order to understand the Coulomb branch we need to introduce the concept of
monopole operators. This is intrinsically tied to the existence of hidden symmetries
of the action. The work of Kapustin, Strassler, Witten, Gaiotto, Kim and collabo-
rators in [2, 3, 6, 7, 21, 27, 26, 29, 28, 30]has in the past decade shed light on the
crucial role of these objects on certain 3d gauge theories, including those with N = 4
supersymmetry.

As we have mentioned in section 3, a certain hidden symmetry arises in presence of
a gauge group that has U(1) factors. For each U(1), one can construct a current Jµ as
defined in 3.12 which is conserved topologically by Bianchi identity. This conserved
current presumes the the existence of a global symmetry U(1)J (not visible in the
action, hence hidden). Fields in the Lagrangian are neutral under this symmetry but
there exist special operators which carry non-zero charge under U(1)J . We call its
associated charge the topological charge and we label it using Latin letters from the
beginning of the alphabet a, b, c, ... .

The hidden global symmetry can be enhanced to a non abelian symmetry by means
of monopole operators which i. These are disorder operators which are inserted at
a certain spatial point such that the gauge field has a Dirac magnetic monopole
singularity there. This in turns introduces a non-zero magnetic flux through a sphere
surrounding the point. Consider for example a theory in R2,1 with gauge group U(1).
The gauge field with such a singularity at the origin, with m magnetic charge, is:

AN,S(~r) =
m

2
(±1− cos θ)dϕ (5.1)

where the opposite signs corresponds to opposite hemispheres of the S2 that surround
the insertion point. The magnetic charge m is subject to the usual Dirac quantisation
condition. In order for gauge fields to have such singularities, operators Vm, which
carry magnetic charge m must be inserted at the singularity point. If they carry
magnetic charge ±1 under U(1)J , they are called vortex creating operators. Note that
for theories with both abelian and nonabelian gauge group we will always talk about
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monopole operators. These also carry ’charges’, which in general are not conserved.
Strictly speaking vortex creating operators are different in nature from monopole
operators, since their charge is a globally conserved charge. However we will often
fall into the habit of naming them all monopole operators.

We state here and refer the reader to the literature that if these operators are to
be BPS operators and thus preserve supersymmetry, matter fields will also display a
singularity at the spatial intersection point. To obtain information about monopole
operators, authors resort to a technique known as radial quantization1: a supercon-
formal theory on R3 can be “radially quantized”, i.e written as a theory on R× S2.

Through this procedure local operators on R3are mapped to states on R × S2.
Thus monopole operators of the original theory carrying magnetic charge m are in a
one-to-one mapping to states on the radially quantized theory with flux m through
the sphere. Crucially the conformal dimension of the monopole operators corresponds
to the energy of the states.

The energy for the states in the energy spectrum for abelian and non abelian
gauge theories on R × S2 and thus of the vacuum state were calculated in [6]. It
depends only on the magnetic charge m. For example, for U(1) with Nf flavours they
show that E =

Nf

2
|m| for a vacuum state with given magnetic flux m. Moreover

since the vacuum is rotationally invariant, its spin is 0. It is also invariant under the
gauge transformation, i.e. it is a color singlet. By the operator-state correspondence
we have obtained monopole operators with conformal dimension ∆ = E which are
gauge invariant chiral scalars.

Non-abelian gauge groups For a non abelian group G of rank r one simply
embeds U(1) ↪→ G and the image of the U(1) monopole under this homomorphism
defines the G monopole charges: eim → eiH , where H = diag(m1, ...,mr), and the
mi are integers known as magnetic charges. Then the gauge field with a non-abelian
magnetic singularity is:

AN,S(~r) =
H

2
(±1− cos θ) (5.2)

In other words H is an element of the Cartan subalgebra of g. M must also obey a
generalised Dirac quantisation condition which, in group theoretic language, means
thatM can only take value in the weight lattice restricted to the Weyl chamber of the
gauge group2. We refer to [26] and to the last chapter of [19] for a general introduction
on the dual group and to

The energy of the flux carrying vacuum and thus the conformal dimension ∆(H)
of the monopole operators depend on the magnetic charges. The expression we will
use is derived in [3]. Let α be the positive roots of the root system Ξ+ and ρi the

1The procedure is not overly complicated. One writes the action of the superconformal theory
being studied, Wick rotates one coordinate to have an Euclidean action and introduces a dimension-
less parameter to replace the radial coordinate by a non-compact (time) direction. The fields are
also rescaled so as to become dimensionless.

2This is actually not correct since the Dirac quantisation condition forces M to lie in (the closure
of) the Weyl chamber of the dual gauge group. We have avoided such a complication by choosing
gauge groups which are self-dual.
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Figure 5.1: The quiver for U(1)with N flavours

weights of the matter field representation Ri where i = 1, ..., n is the number of
hypermultiplets . Then

∆(H) = −
∑
α∈Ξ+

|α(H)|+ 1

2

n∑
i=1

∑
%i∈Ri

|%i(H)| (5.3)

where the negative contribution comes from the vector multiplet and the positive
contribution from the matter fields. We will encounter only one non-unitary gauge
group, G2, where the above form of this formula will become essential. In the case
of unitary groups (5.3) can be written without thinking about roots and weights in a
manner that we show in our examples below.

Once the conformal dimension of monopole operators in a given gauge theory is
computed, a generating function that encodes the chiral ring for the Coulomb branch
can be written. We will study the Coulomb branch of some quiver gauge theories,
including the ADE types. For the quivers representing these gauge theories it always
holds that, for each node, the number of flavours is twice the number of colours
nf = 2nc. These quivers are called balanced. For balanced quivers gauge theories
the monopole operators always have E ≥ 1. This preserves unitarity which in turns
imply that the R−symmetry of the IR theory coincides with the R-symmetry at the
UV . This is essential if one is to make any statement at all about the conformal
dimension of monopole operators.

The concrete examples that we present in the next section will greatly clarify the
use of monopole operators in the description of the Hilbert series of the Coulomb
branch of quiver gauge theories. This new method has been developed in the past
two months by S. Cremonesi, A. Hanany and A. Zaffaroni and is not yet published [8].
The author reproduces here her calculations and her understanding of the excitement
of the past few weeks.

5.2 Hilbert series for the Coulomb branch: abelian
theories

5.2.1 U(1) with N flavours

Consider the simple gauge theory of U(1) with N flavours. The quiver is in Fig. 5.1 .
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The Coulomb branch is one dimensional in quaternionic units since there is only
one vector multiplet. The Higgs branch has dimension3 d = N − 1.

We would like to characterise the Coulomb branch through the Hilbert series, again
the generating function for the chiral ring of gauge invariant operators, and possibly
closed forms thereof. Since the Coulomb branch receives quantum corrections it is not
possible to approach the issue as we did for the Higgs branch, by finding the F-terms
for the superpotential and projecting onto the gauge invariant section. The Hilbert
series for the Coulomb branch can be obtained by finding the Hilbert series for the
Higgs branch of the mirror theory. It is through this that we know that the Coulomb
branch is in fact the ALE-space with AN−1 singularity. However, we want to be able
to derive the algebraic description independently. The procedure is as follows.

The Coulomb branch has a global symmetry SU(2)L × U(1)J . The topological
charge under the U(1)J is labelled m. We start by writing a formula for the scaling
dimension of operators Vm that carry non-zero magnetic charge m. For a theory
with an abelian gauge group there is no contribution to the scaling dimension from
the vector multiplet. The matter contribution is instead ∆matter = N

2
|m|, i.e each

flavour gives a contribution of 1/2 magnetic charge. Hence the conformal dimension
for monopole operators with charge m is

∆(m) = ∆matter =
N

2
|m| (5.4)

The generating function for gauge invariant operators on the Coulomb branch of U(1)
with N flavours is written by choosing a fugacity t, which counts operators with a
given dimension ∆(m)

HSC1,N(t) =
1

1− t

∞∑
m=−∞

t∆(m)

=
1 + tN/2

(1− t) (1− tN/2)
(5.5)

=
1− tN/2

(1− t) (1− tN/2) (1− tN/2)
(5.6)

Note that the factor in front of the summation reminds us that there is the aforemen-
tioned complex scalar in the vector multiplet which does not enter in the construction
of the monopole operators.

We can refine the Hilbert series by introducing a fugacity z for the topological
charge m

3Recall that the quaternionic dimension of the Coulomb branch is given by the rank of the gauge
group, i.e. a vector multiplet for each U(1) in the Cartan subalgebra.
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HSC1,N(z, t) =
1

1− t

∞∑
m=−∞

zmt∆(m) (5.7)

=
1− tN/2

(1− t) (1− ztN/2) (1− z−1tN/2)
(5.8)

The space is a complete intersection and from the Hilbert series we can read off that
there are three generators: the complex scalar Φ which corresponds to the first factor
in the denominator and is neutral under the U(1)J as expected, a monopole operator
V+1 of magnetic charge +1 with fugacity ztN/2 corresponding to the second factor in
the denominator and a monopole operator V+1 of magnetic charge −1 with fugacity
z−1tN/2 corresponding to the last factor in the denominator. They obey a relation
V+1V−1 = ΦN

Note that the fugacity t can be replaced by, say, a fugacity s2 to cast the generating
function in a suitable form. This is a useful fact to keep in mind when we deal with
mirror symmetry.

5.2.1.1 U(1) with 2 flavours

For this special case, we have a set of three chiral fields {Φ,Λ±}which have the same
scaling dimension. Indeed, since ∆(m) =| m |, there are only two operators that have
∆ = 1, the ones carrying charge m = ±1, i.e. precisely the vortex-creating operators
defined above.

The most general monomial formed out of the three chiral operators is ΦnΛm where
n is a non-negative integer and m is any integer. The the scaling dimension ς of a
general monomial will be ς = n+ |m|. For example monomials with dimension ς = 1
are {Φ,Λ+,Λ−}. Monomials with dimension ς = 2 are

{
Φ2,Λ2

+,Λ
2
−,ΦΛ+,ΦΛ−

}
.

Since {Φ,Λ±} have the same scaling dimension and are complex they form a
natural triplet [2] of an SU(2). The three chiral fields transformation under U(1)L×
U(1)J , where U(1)L is the Cartan subalgebra of the R− symmetry SU(2)L, can be
written as

Λ+ → (1, 2)

Φ → (1, 0) (5.9)
Λ− → (1,−2)

where the first number in the bracket is the scaling dimension and the second is their
charge under U(1)J with fugacity q2.

By means of symmetric product of [2] we can obtain all monomials with scaling
dimension ς, e.g Sym2[2] = [4] + [0] gives the operators at order 2. From this we
infer that a relation must exist between these operators ([4] is the 5d representation
of SU(2), which completes the count of operators with dimension ς = 2). The singlet
must then represent a relation at degree 2 which can only be: Φ2 = Λ+Λ−, in order
for the relation to be neutral under U(1)J . The Hilbert series can be written at once
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as we showed in (2.33); however we note that since the generators are here at order
1, we take fugacity t and not t2. Then

HSC(t, x) = (1− t)2PE[dim ([2]) t] =
1− t2

(1− t)3
(5.10)

Alternatively let t count ∆(n,m) and let x count the weights of highest weight rep-
resentation of symmetric products of [2], then the generating function of monomials
with charge ∆ is:

g(t, x) =
1

1− t

∞∑
m=−∞

t|m|q2m (5.11)

=
1

1− t

(
1

1− tq2
+

−1∑
m=−∞

t|m|q2m

)
(5.12)

=
1− t2

(1− t)(1− tq2)(1− tq−2)
(5.13)

which shows an enhancement of the symmetry U(1)J to SU(2). This enhancement is
unique to U(1) with 2 flavours, since the theory happens to be self-mirror. We will
show this using branes in chapter 7.

5.2.2 Coulomb branch for the Â2 quiver gauge theory

Consider now the Â2 quiver gauge theory as shown in Fig. ?? on the left. It consists
of a gauge group U(1)2 and three hypermultiplets in the bifundamental representation
of adjacent U(1) factors. We can open this quiver, turn one gauge node into a flavour
node and add an extra flavour node to obtain an equivalent gauge theory shown in
Fig. ?? on the right.

Figure 5.2: Â3 quiver diagram on the left. Its open version on the right

The dimension of the Coulomb branch is dim(MC) = 3 − 2 = 1 quaternionic.
Since the gauge group is U(1)2, a topological global symmetry U(1)2

J arises, with
conserved charges a, b. Monopole operators Λ = Λ(a, b) have conformal dimension
dependent on these magnetic charges. The matter sector contributes to ∆ as follows:

∆matter =
1

2
(|a|+ |b|+ |a− b|) (5.14)
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and since the gauge sector gives vanishing contribution, the monopole operators Λ
have conformal dimension ∆(a, b) = ∆matter and are gauge invariant as previously
discussed. Recall that monopole operators are constructed using the dual photon
and one of the scalars which appears in the triplet

−→
φ of SU(2)V . The remaining

two real scalars, φ1, φ2 are also gauge invariant since the gauge group is abelian.
These contribute to the chiral ring by means of nonnegative powers of them. Hence
a function that generates gauge invariant monomials is:

HSH
Â3

(t) =
∞∑

n1,n2=0

∞∑
a,b=−∞

tn1+n2+∆(a,b) (5.15)

=
1

(1− t)2

∞∑
a=−∞

∞∑
b=−∞

t
1
2

(|a|+|b|+|a−b|) (5.16)

=
1 + 4t+ t2

(1− t)4
(5.17)

=
∞∑
k=0

(k + 1)3tk (5.18)

Notice that g(t) =
∑∞

k=0 dim[k, k]SU(3)t
k . This nonabelian symmetry enhancement

can be made more explicit by refining the Hilbert series. We introduce fugacities z1,
z2, one for each topological charge a, b and modify (5.15) as follows

HSH
Â3

(t; z1, z2) =
∞∑

n1=0

∞∑
n2=0

∞∑
a=−∞

∞∑
b=−∞

tn1+n2+∆(a,b)za1z
b
2 (5.19)

= 1 + (2 +
1

z1

+ z1 +
1

z2

+ z2 +
1

z1z2

+ z1z2)t+ ... (5.20)

By using the fugacity map z1 = y2
y21
, z2 = y1y2 we can recognise that the coefficient

of the linear term is the character of the adjoint of SU(3). This fugacity map can be
extended to all coefficients to arrive at (5.23):

HSH
Â3

(t; y1, y) = 1 +

(
y1y2 +

y2
2

y1

+
y2

1

y2

+
y1

y2
2

+
y2

y2
1

+
1

y1y2

+ 2

)
t+ .. (5.21)

= 1 + [1, 1]SU(3)t+ .. (5.22)

=
∞∑
k=0

[k, k]SU(3)t
k (5.23)

The current theory fully displays an SU(3) symmetry enhancement through the use
of monopole operators. This is a type of hidden symmetry that we had hinted at and
its appearance will become even more clear when we discuss mirror symmetry in the
next chapter.
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5.3 Coulomb branch for non abelian gauge groups:
the classical dressing

Here we need to introduce a modification to the computation of the Hilbert series
since the gauge group is nonabelian and we need to account for the presence of a
Weyl group of symmetry. Our formula so far for the computation of the unrefined
Hilbert series for the Coulomb branch of a theory with abelian gauge group G with
rank r has been:

HSC(t) =
1

(1− t)r
∞∑

m1=−∞

. . .
∞∑

mr=−∞

t∆(−→m) (5.24)

Nonetheless for nonabelian gauge group the set of integers {mi} that solve ∆(−→m) = j
with j ∈ N is larger than it should be, since the action of the Weyl group is not
taken into account. In order to understand this issue we analyse the quiver gauge
theory of D̂4 as shown in Fig. 5.3. The gauge group is U(1)3 × U(2). There are
4 hypermultiplets, each in the fundamental of U(2) and charged under the relevant
U(1).

Figure 5.3: The gauge theory constructed out of D̂4. The nodes labelled 1 corre-
spond to U(1) factors and the central node labelled 2 corresponds to a U(2) factor.
The hypermultiplets are represented by the links between the nodes and are in the
bifundamental of the nodes they join. The letters under the U(1) factors m1, m2, m3,
m4 signify four topological charges. The letters under the U(2) node n1, n2 signify
the monopole charges: a linear combination of these n1 + n2 is a global conserved
charge, corresponding to the centre U(1) of U(2). The remaining independent linear
combination is not conserved and it is associated to the maximal torus of SU(2).

We assign magnetic charges m1, m2, m3, m4 to the U(1)4
J topological hidden sym-

metry and charges n1, n2 to the maximal torus of U(2). Since U(2) has a U(1) factor,
we can extrapolate another topologically conserved charge: n1 + n2. The conformal
dimension ∆ of monopole operators Λ is a sum of a positive contribution coming from
the hypermultiplets and a negative contribution from the vector multiplet. Firstly
we need to set one of the topological charges to zero, i.e working modulo U(1)J .
To understand the reason behind this procedure one has to realize that the energy
∆(mi) is invariant under a rigid shift of the magnetic charges. If we didn’t fix one
of the topological charges, there would be a continuous of solution for the conformal
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dimension. Using the formula 5.3 we can write the conformal dimension:

∆unfixed =
1

2

∑
i=1,2

∑
j=1,2,3,4

|mj − ni| − |n1 − n2| (5.25)

Let ~m1 = (m1
1,m

1
2,m

1
3,m

1
4, n

1
1, n

1
2) be one solution of ∆ = 1. Since the energy is

invariant under a shift mi −→ mi + κ,ni −→ ni + κ for anyκ, we have just found a
continuum of solutions.To avoid this we set m4 = 0 and the formula for the conformal
dimension becomes

∆D̂4
=

1

2

(∑
i=1,2

∑
j=1,2,3

|mj − ni|+ |n1|+ |n2|

)
− |n1 − n2| (5.26)

The monopole operators set is {Λ−→m} , where −→m is the 5-vector (m1,m2,m3, n1, n2)
with nonnegative integral dimension ∆. In order to count the number of primary
monopole operators we find solutions to the equation ∆ = 1. The results are sum-
marised in Table 5.1 .

m1m2m3; n1n2 m1m2m3; n1n2 m1m2m3; n1n2

1 0 0 ; 0 0 0 0 0 ; 1 0 0 0 0 ; 0 1
0 1 0 ; 0 0 1 1 1 ; 1 0 1 1 1 ; 0 1
0 0 1 ; 0 0 1 0 0 ; 1 0 1 0 0 ; 0 1
1 1 1 ; 1 1 0 1 0 ; 1 0 0 1 0 ; 0 1

0 0 1 ; 1 0 0 0 1 ; 0 1
1 1 0 ; 1 0 1 1 0 ; 0 1
1 0 1 ; 1 0 1 0 1 ; 0 1
0 1 1 ; 1 0 0 1 1 ; 0 1

Table 5.1: Shows all solutions to the equation ∆(−→m) = 1. The total number solutions
is twice the one in the table as we can take the same vectors with negative entries.
Note that the solutions with n1 6= n2 are not invariant under the Weyl group.

Notice how in the first colum n1 and n2 are equal and thus this subset of solutions
is invariant under the Z2 Weyl group of U(2), whose action is just to permute the
charges. In the second column instead n1 6= n2 and thus the vector −→m is not Z2

invariant. The third column is identical to the second but for the fact that the values
of n1 and n2 are swapped. We can construct sum and differences of the vectors in the
second and third column to obtain Z2 even (i.e. invariant) vectors and Z2 odd ones.
We discard the latter to obtain a set of 12 possible solutions which are Z2 invariant.
There will also be 12 other solutions by taking the negative of these vectors, which
are still solutions. Hence altogether out of an initial set of 40 solutions we select only
24 which are invariant under the Weyl group of the nonabelian factor group U(2).

In fact, what is happening is that we have accounted for the quantum “corrections”,
without having established a classical background. The magnetic flux m carried by
the monopole operators breaks the symmetry group G to a residual gauge group Hm.
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Gauge invariants under Hm are accounted for by a the so called “classical dressing
function”, which we define below. We will find the residual group of symmetry for a
gauge group G on a case by case basis.

Let G be a non abelian gauge group with rank r. Assign the usual monopole
charges m1, ...,mr. The “classical dressing” function is a piecewise constant function
defined as follows:

P (−→mi; t) =
∏
i

(1− tαi)−1 (5.27)

where {αi} is the set of degrees of the Casimir operators of the residual groups of
symmetry of Hm. The classical dressing is just a factor which counts the Casimir
invariants of the residual gauge group. These Casimir invariants are constructed
using the complex scalar Φ in the vector multiplet. The piecewise linearity becomes
explicit in the following examples.

5.3.1 Coulomb branch for the D̂4 quiver gauge theory

Let us return to the quiver gauge theory of D̂4 as show in Fig. 5.3 . The nonabelian
factor is H = U(2) with assigned monopole charges n1, n2. The group U(2) has two
residual symmetry groups depending on whether it is broken or not:

• H̃1 = U(2) itself which has two Casimir operators with degrees {αi} = {1, 2}.
This corresponds to n1 = n2

• H̃2 = U(1)2 which has two Casimir operator of degree 1, i.e {αi} = {1, 1}. This
corresponds to n1 6= n2

Hence the classical dressing function is:

P2 (n1, n2; t) =

{
1

(1−t)(1−t2)
if n1 = n2

1
(1−t)(1−t) if n1 6= n2

(5.28)

This classical dressing function can be used as a weight on the Hilbert series and we
thus write

HSC
D̂4

(t) =
1

(1− t)3

∑
n1≤n2

∑
m1,m2,m3

∈ Z

P2 (n1, n2; t) t
∆D̂4

(−→m) (5.29)

=
1

(1− t)3

∑
m1,m2,m3

n1 ≤ n2

∈ Z

P2 (n1, n2; t) t
1
2(

∑
i,j |mj−ni|+|n1|+|n2|)−|n1−n2|

where the factor of 1
(1−t)3 accounts for the remaining three complex scalars Φ1, Φ2,

Φ3, each associated with one of the U(1)’s. Notice that there also is a complex scalar

46



ϕ in the adjoint of U(2). The way to think about this is to diagonalise it and consider
its eigenvalues: ϕ = diag(ϕ1, ϕ2). Alternatively one can choose use the basis of the
Tr(ϕ) and Tr(ϕ2).The Weyl group acts on ϕ by permuting the eigenvalues, hence
Tr(ϕ) and Tr(ϕ2) are Weyl invariant quantities. The classical dressing takes care of
both accounting for the Weyl invariance of the monopole operators and for the Weyl
invariance of the operators constructed out of the classical fields Tr(ϕ) and Tr(ϕ2).
In order to see the contributions that come only from the classical fields, i.e the fields
that appear in the Lagrangian description , it is sufficient to set −→m = 0 and observe
how the Hilbert series reduces to that of four scalars at order 1 and one at order 2,
corresponding to Φ1, Φ2, Φ3, Tr(ϕ), Tr(ϕ2). When the Hilbert series is evalauted the
result is:

HSC
D̂4

(t) = 1 + 28t+ 300t2 + ... (5.30)

=
∞∑
k=0

dim
(
[0, k, 0, 0]SO(8)

)
tk (5.31)

which shows the enhancement of the global symmetry to SO(8). To make this
enhancement more evident we refine the Hilbert series by introducing fugacities zi
i = 1, ..4 for the conserved U(1)J charges. Recall that there are four of these m1, m2,
m3 and (n1 + n2). The zi provide a counter for these. Hence we rewrite (5.29) as

HSC
D̂4

(t; z1, z2, z3, z4) =
1

(1− t)3

∑
n1≤n2

∑
m1,m2,m3

∈ Z

P2 (n1, n2; t) t
∆D̂4

(−→m)
zm1

1 zm2
2 zm3

3 z
n1+n2

4

(5.32)
We use the Cartan matrix for D4 in order to find a fugacity map between the z1,

z2, z3, z4 and the fugacities y1, y2, y3, y4 which give the character ofD4 representations
in the basis of the fundamental weights, i.e.

z1

z2

z3

z4

 −→


2 −1 0 0
−1 2 −1 −1
0 −1 2 0
0 −1 0 2




y1

y2

y3

y4

 (5.33)

where we read this matrix notation as follows: z1 = y2
1y
−1
2 ,z2 = y−1

1 y2
2y
−1
3 y−1

4 , z3 =
y−1

2 y2
3, z4 = y−2

2 y2
4, i.e. th entries of the Cartan matrix correspond to the power of the

fugacity yi. After making use of the just found fugacity map, (5.32) yields a series for
the characters [0, k, 0, 0] in y1, y2, y3, y4 and thus we can write the fully refined series

HSC
D̂4

(t; y1, y2, y3, y4) =
∞∑
k=0

[0, k, 0, 0]SO(8)t
k (5.34)

which encompasses the symmetry enhancement to SO(8).
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5.3.2 Coulomb branch for the D̂k quiver gauge theory

We will now generalise the case of D̂4 to the the quiver gauge theory underlying the
affine Dynkin diagram D̂k. The gauge group is the product: U(1)4 × U(2)k−3/U(1).
A global shift symmetry U(1)kJ is generated. We assign topological charges a, b, c, d
to the the four U(1)J associated to the legs of the diagrams and monopole charges
ni,mi, i = 1, ..., k−3 to the Cartan subalgebra of the nonabelian factors of the gauge
group as shown in Fig. 5.4. Note the topological charge d will be set to zero, as we
work modulo U(1). Moreover we can construct the additional k−3 conserved charges
by the centre U(1) of each U(2), i.e. ni +mi.

Figure 5.4: The quiver gauge theory associated to D̂N . To the Cartan subalgebra
of each ith factor U(2) monopole charges mi, ni are assigned, for i = 1, ..., k − 3. The
U(1)4

J is assigned topological charges a, b, c, d. The remaining conserved topological
charges are ni +mi

Again, for a non abelian gauge group the conformal dimension ∆ will receive
contribution both from the vector multiplets and the hyper mutltiplets.

∆gauge = −
k−3∑
i=1

|ni −mi| (5.35)

and

∆hyper =
1

2

{
k−4∑
i=1

|ni − ni+1| + |ni −mi+1|+ |mi −mi+1|+ |mi − ni+1|

+ |b− nk−3|+ |b−mk−3|+ |c− nk−3|+ |c−mk−3|
|a− n1|+ |a−m1|+ |n1|+ |m1|} (5.36)

where in the last two terms we have set d = 0. The conformal dimension is given by
the sum of these two expression ∆D̂k

(a, b, c, ni,mi) = ∆gauge + ∆hyper. The classical
dressing function includes a factor (5.28) for each U(2), hence

P =
k−3∏
i=1

P2 (ni,mi) (5.37)
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We assign fugacities z1to the magnetic charge labelled by a; zi+1 i = 1, ..., k − 3 to
the k− 3 fugacities labelled by ni +mi; zk−1 to the magnetic charge labelled by b and
zk to the magnetic charge labelled by c. The refined HIlbert series is then

HSC
D̂k

(t; zj) =
1

(1− t)3

∑
mi ≤ ni

i = 1, ..., k − 3

∑
a, b, c
∈ Z

t
∆D̂k

k−3∏
i=1

P2 (ni,mi) z
a
1z

mi+ni
i+1 zbk−1z

c
k

where we recall that the factor in front of the summation corresponds to the polyno-
mial which encodes the three adjoint scalar field associated to the three U(1). The
Cartan matrix for Dk can again be used be used to find a map between the zi to the
yi which are the fugacities used in the to write the character of representations of Dk

in the highest weight basis and we obtain the generalisation of (5.34)

HSC
D̂k

(t; yi) =
∞∑
p=0

[0, p, 0, ...]SO(2k) t
k

with an explicit SO(2k) symmetry enhancement brought about by the monopole
operators.

5.3.3 Coulomb branch for U(K) with N flavours

The theory is shown in the Fig. 5.5. We assign magnetic charges mi i = 1, ..., K
to the maximal torus of U(K). There is one topologically conserved charge,

∑
imi

, corresponding to the centre of U(1), and K − 1 linearly independent monopole
charges. The conformal dimension in terms of these is again a sum of the hyper
multiplets positive contribution and the vector multiplets negative contribution

∆ =
N

2

∑
i=1

|mi| −
∑
i<j

|mi −mj| (5.38)

Figure 5.5: The quiver for U(K) with N flavours. The global symmetry is SU(N)
since the fundamental representation of a unitary groups is complex. Under the gauge
group we have indicated the K monopole charges mi , i = 1, ..., K, where

∑
imi is a

conserved topological charge.

The classical dressing function is given by (5.27). In order to find the residual
symmetry group we can appeal to the brane realisation of symmetry breaking. U(K)
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is realised by a stack of Dp-branes coincident at the same place in spacetime. Pulling
branes away one by one, we can get different configurations where the symmetry
group is broken as

U(K) −→
∏
i

U(ki) (5.39)

with
∑
i

ki = K

K=3 Let us first consider the case of U(3) with N flavours. Then the classical
dressing function, P3 (m1,m2,m3; t) is

P3 (m1,m2,m3; t) =


1

(1−t)3 m1 6= m2 6= m3

1
(1−t)(1−t)(1−t2)

m1 6= m2 = m3

orcyclic
1

(1−t)(1−t2)(1−t3)
m1 = m2 = m3

(5.40)

which enacts the fact that U(3) can be unbroken (m3 = m1 = m2), or break to
U(2)× U(1), when two out of the three mi are coincident and the other is different,
or break to U(1)3 when the mi are all different. Again we need to project onto the
invariant Weyl chamber and we do so by restricting the summations to m3 ≤ m1 ≤
m2. The Hilbert series is then

HSC3,N(t) =
∑

m1 ≥ m2 ≥ m3

∈ Z

t
N
2 (

∑
i|mi|)−(

∑
i<j |mi−mj |)P3 (m1,m2,m3; t) (5.41)

where i, j = 1, 2, 3. The Hilbert series was evaluated and found to have the features
of a complete intersection moduli space, with the numerator of the rational function
to be factorisable

HS(MC(U(3)); t) =

(
1− tN

) (
1− tN−1

) (
1− tN−2

)
(1− t)(1− t2)(1− t3)(1− tN2 )2(1− tN2 −1)2(1− tN2 −2)2

(5.42)

Note that the first three generators correspond to the Casimir operators of degree
1, 2, 3 and the remaining are monopole operators.

5.3.4 Coulomb branch for the Ê6 quiver gauge theory

The theory with gauge group given by the affine quiver Ê6 is shown in Fig. 5.6 .
We have assign magnetic charges to each factor group. These are all unitary groups
U(Ki) with Ki as specified in each node. The gauge group is taken modulo the sum
of the U(1) generators, hence U(1)2 × U(2)3 × U(3) with the hypermultiplets in the
bifundamental of adjacent factors.
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Figure 5.6: The quiver theory with affine E6 diagram. Under each gauge factor we
show the magnetic charges assigned. Note that m12 is set to zero. Moreover m1, m2,
m4, m7, m9, m10 are topological and thus conserved charges. The rest are monopole
charges.

Let us write the contribution from the hyper multiplets to the conformal dimen-
sion. We do so by taking the absolute values of the difference of magnetic charges
separated by a link. We then get:

∆hyper =
1

2
(|m1 −m2| + |m1 −m3|+

|m2 −m4|+ |m2 −m5|+ |m2 −m6|+
|m3 −m4|+ |m3 −m5|+ |m3 −m6|+
|m7 −m4|+ |m7 −m5|+ |m7 −m6|+
|m8 −m4|+ |m8 −m5|+ |m8 −m6|+ (5.43)
|m7 −m9|+ |m8 −m9|+
|m10 −m4|+ |m10 −m5|+ |m10 −m6|+
|m11 −m4|+ |m11 −m5|+ |m11 −m6|+
|m10|+ |m11|)

where in the last line we have taken m12 to vanish. The negative contribution to the
conformal dimension from the V-plet arises through the nonabelian gauge factors.
For each nonabelian factor we take differences of its assigned magnetic charges. Thus

∆gauge = − (|m2 −m3|+ |m4 −m5|+ |m4 −m6|+ |m5 −m6|+ |m7 −m8|+ |m10 −m11|)
(5.44)

and the conformal dimension is just the sum

∆Ê6
(mi) = ∆hyper + ∆gauge

The classical dressing function is the product of the classical dressing function
for each nonabelian gauge factor. For each of the threeU(2) factors it is Eq. 5.28
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where n1and n2 must be changed according to the magnetic charges at hand. For the
U(3) factor, the classical dressing function is Eq.(5.40) with m1 −→ m4, m2 −→ m5,
m3 −→ m6. Then

P (mi) = P2(m2,m3)P3(m4,m5,m6)P2(m7,m8)P2(m10,m11) (5.45)

For each summation over the magnetic charges of nonabelian factors one needs
to restrict to the sector where the magnetic charges are ordered, so as not to double
count solutions. The Hilbert series for the Coulomb branch of the affine E6quiver
gauge theory is then

HS
(
MC(KÊ6

); t
)

=
∞∑

m1, ...,m11 = −∞
m3 ≥ m2

m6 ≥ m5 ≥ m4

m8 ≥ m7

m11 ≥ m10

t∆(mi)P (mi) (5.46)

The eleven nested sums in the expression above were evalauted up to and including
order t3

HS
(
MC(KÊ6

); t
)

= 1 + 78t+ 2430t2 + 43758t3 + ... (5.47)

=
∞∑
k=0

dim
(
[0, k, 0, 0, 0, 0]E6

)
tk (5.48)

which allows us to demonstrate an enhancement of the global symmetry of the
Coulomb branch to E6.

5.3.5 Coulomb branch for G2 with N flavours

In this subsection we present an example of how to compute the Coulomb branch of
gauge theories when the nonabelian gauge group is not a unitary group. Let us in
particular consider G2 with N flavours, whose quiver we show in Fig. ??.

Figure 5.7: The quiver theory of G2with N flavours. The fundamental representation
of G2is real, hence the global symmetry is Sp(N). The rank of G2 is two, thus there
are two monopole charges, m1 and m2.

Let H1, H2 be two Cartan generators of G2. Choose the Cartan subalgebrah =
L (U(1)2) inG2 through an embeddingexp(iα) ↪→ exp(iαH1) and exp(iβ) ↪→ exp(iβH2)
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where theα, β are the simple roots of G2, i.e they are the basis elements of the dual
space h∗. Consider an arbitrary element of the Cartan subalgebra and write it as a
linear combination of the basis {H1, H2}

H = mH1 + nH2 (5.49)

The negative contribution from the vector multiplet is the sum of the roots in terms
of H, αi(H)

∆V−plet = −
∑
|αi(H)| (5.50)

For G2 a set of roots is α, β, α + β, 2α + β, 3α + β, 3α + 2β. Then

∆V−plet = − (|m|+ |n|+ |m+ n|+ |2m+ n|+ |3m+ n|+ |3m+ 2n|) (5.51)

The contribution from the matter depends on which representation of the gauge group
the hyper multiplet is in, which here is the fundamental. For each of the 2N flavours,
there are dim(fundam) terms, one for each weight, and an overall factor of 1/2:

∆h−plet =
(2N)

2

∑
|wi(H)| (5.52)

Let us first find the fundamental weights of G2. From the inverse Cartan matrix

A−1
ij =

(
2 1
3 2

)
(5.53)

we find the fundamental weights Λi = A−1
ij αj, Λ1 = 2α + β and Λ2 = 3α + 2β.

Λ1 is the highest weight of the fundamental representation of G2, which is seven
dimensional. We find the weights of this representation by acting with the roots
on the highest weight: wi = {2α + β, α + β, α,−2α− β,−α− β,−α, 0}. Then the
hyper contribution is

∆V−plet = 2N (|2m+ n|+ |m+ n|+ |m|) (5.54)

and then the conformal dimension is thus a sum of the vector multiplet and hyper-
multiplet contribution

∆G2(m,n) = 2N (|2m+ n|+ |m+ n|+ |m|)
− (|m|+ |n|+ |m+ n|+ |2m+ n|+ |3m+ n|+ |3m+ 2n|)(5.55)

Let us now proceed to compute the classical dressing function P (m,n). Recall that
this is intimately related to the Weyl symmetry of the gauge group. For G2, W = D6,
the dihedral group of order |W | = 12. The two Casimir operators of G2 have order
2, 6. In Fig. 5.8 we show the root lattice and the dual lattice for G2.
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Figure 5.8: The roos system for G2. α, β are the two simple roots, which identify
the root lattice. The black dots identify the six positive roots of G2. Λ1,Λ2 are the
fundamental weights, i.e. the basis for the dual lattice. The region shaded in red is the
Weyl chamber. One can notice that the Weyl group acts on it by rotating/reflecting
it to equivalent chambers.

The fundamental weights delimitate the Weyl chamber, i.e the region the span
the whole root system when acted upon by the Weyl group. The boundaries and the
interior of the Weyl chamber are the “locations” of symmetry breaking/enhancement:

• in the interior of the Weyl chamber G2is maximally broken =⇒ residual sym-
metry group is U(1)2 with two Casimir operators of degree {1, 1}

• at the two boundaries of the Weyl chamber G2 =⇒ residual symmetry group is
U(2) with two Casimir operators of degree {1, 2}

• at the boundary of the boundaries (the centre) of the Weyl chamber G2is un-
broken =⇒ residual symmetry group is G2 with two Casimir operators of degree
{2, 6}

The classical dressing function is then

PG2 (m,n; t) =


1

(1−t)2 m > 0, n > 0

1
(1−t)(1−t2)

m > 0, n = 0 or

n > 0, m = 0
1

(1−t2)(1−t6)
m = n = 0

(5.56)

where we have chosen one of the twelve identical Weyl chamber so that the boundaries
occur at the chosen values. The Hilbert series is then

HS(MC(G2); t) =
∞∑
m=0

∞∑
n=0

t∆G2
(m,n)PG2 (m,n; t) (5.57)

=
1 + t4n−5 + t2n−4 + t2n−3 + t2n−2 + t2n−1

(1− t2) (1− t6) (1− t2n−5) (1− t2n−6)
(5.58)

5.3.6 Coulomb branch for SU(2) with N flavours

Finally we compute the Hilbert series for the Coulomb branch of SU(2) with N
flavours, since the result will be used in the next section. The formula for the confor-
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mal dimension of the monopole operators, ∆, can be written by taking into account
contributions from the gauge sector and the matter sector.

The gauge contribution is as follows. Consider a gauge groupU(2) instead of
SU(2). Assign monopole charges m1, m2 to the Cartan subalgebra U(1)2of U(2).
The contribution to the conformal dimension from the gauge sector for U(2) is then:
− |m1 −m2|. Since the gauge group is SU(2),the traceless condition requires that
m1 + m2 = 0. Set m1 = m and get a contribuiton:. ∆gauge = −2 |m|. The mat-
ter sector gives a positive contribution to the conformal dimension 4. Each flavour
contributes a factor of 1

2
. Thus for the case of SU(2)the matter contribution is:

∆matter = N |m| . Hence the scaling dimension of monopole operators is

∆SU(2) = ∆matter + ∆gauge = (N − 2) |m| (5.59)

Since SU(2) is nonabelian, we need to implement the classical dressing function
to account for the residual group of symmetry after breaking of SU(2). SU(2) can
only break to U(1) when m 6= 0 with Casimir invariant of degree α = 1, or remain
unbroken with Casimir invariant of degree α = 2 , hence we can write the dressing
function

P (m; t) =

{
1

(1−t2)
if m = 0

1
(1−t) if m 6= 0

(5.60)

Moreover one needs to account for the Z2 Weyl group in the summation. The pro-
jection from m ∈ Z to m ∈ N takes care of this. Thus the Hilbert series is:

HS(MC(SU(2)); t) =
∞∑
m=0

P (m; t) t∆(m) (5.61)

=
1

(1− t2)
+

1

(1− t)

∞∑
m=0

t(N−2)m (5.62)

=
1− t2N−2

(1− t2)(1− tN−1)(1− tN−2)
(5.63)

where in the last line we have cast the rational function in a way which will be useful
in the next section.

4Recall that for a gauge symmetry whose fundamental representation is pseudoreal (e.g. SU(2))
the global symmetry for Nf flavours is SO(2Nf )
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Chapter 6

Mirror Symmetry for N = 4 gauge
theories in 3d

6.1 The Kronheimer gauge theories
Seiberg and Intriligator illustrated N =4 3d mirror symmetry for a special class of
gauge theories named after Kronheimer who proposed them in [31]. The Kronheimer
gauge group KG is defined as:

KG ≡
∏r

i=0 U(ni)

U(1)
(6.1)

where G is an ADE-group, i labels the node of the extended Dynkin diagram of G and
ni is the Dynkin index of the ith node where n0 = 1 corresponds to the extended node.
These products of U(ni) gauge theories are exactly the ADE-quiver gauge theories
discussed at the end of the chapter 4, with the sole exception that the U(1) factor
corresponding to the sum of all the U(1)′s in the U(ni) is gauged away. The matter
fields are taken to be bifundamental of adjacent gauge group factors:⊕

ij

aij(ni,nj) (6.2)

where

aij =

{
1 i, j are connected

0 else
(6.3)

and (ni,nj) denotes the bifundamental representation of U(ni)×U(nj), with dimension
ninj.

The relation between these gauge theories, simply laced extended Dynkin diagrams
and ALE spaces was explained previously. In particular Kronheimer argues that the
Higgs branch,MH , of an ADE-quiver is an ALE space with an ADE singularity, C2

Γ
.

The Higgs branch can then be described in terms of the Hilbert series of section 4.3.
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Dimension counting

Firstly, we expect from the claim above that the Higgs branch be 2 complex dimen-
sional, i.e.one quaternionic dimensional, since ALE spaces are. Using Eq. 3.11, we
compute dim(MH) for each G = ADE and we show the result in the first column
of Table 6.1 . Dimension counting will be the only check in this dissertation that
Kronheimer claim is true. For an advanced mathematical treatment the reader is
referred to the original paper [31].

The Coulomb branch is instead given by counting the number of vector multiplets
as we have previously stated, i.e dim(MC) = rank(KG). For the Kronheimer groups
is also true that

rank(KG) = C2(G)− 1 (6.4)

where C2(G) is the dual Coxeter number of the group G. Then the Coulomb branch
is classically (R3 × S1)

C2(G)−1. We list the dimension of the Coulomb branch in the
second column of Table 6.1 .

Quiver dim(MH) dim(MC)
An [n− 1]− n = 1 n− 1
Dn [2× 4 + 4(n− 4)]− [3 + 4(n− 3)] = 1 2n− 3
E6 [3× 2 + 3× 6]− [1 + 4 + 9 + 4 + 1] = 1 11
E7 [2(2 + 6 + 12) + 8]− [2(4 + 9) + 4 + 16 + 1] = 1 17
E8 [2 + 6 + 12 + 20 + 30 + 18 + 24 + 8]− [4 + 9 + 16 + 25 +

36 + 16 + 4 + 9] = 1
29

Table 6.1: In the first column we check that dim(MH) for each G = ADE is one
dimensional. In the second column we write dim(MC) , which is just the rank of KG

The Coulomb branch gets quantum corrections. [35] argued that such corrections
modify (R3 × S1) to become the moduli space of the corresponding G-instanton.
In a sense this is a statement of mirror symmetry since the underlying assumption
is that the theory is dual to another whose Higgs branch is the moduli space of G-
instanton. We will explain this more carefully by means of the two canonical examples
presented in [25]. There are many more mirror symmetric dual theories which have
been found by brane constructions and discussed in (author?) [11, 10] but we will
not be considered here.

6.2 Mirror Symmetry KSU(n)

Our analysis of mirror pairs commences by considering theories with gauge group
KSU(n) = U(1)n−1and n hypermultiplets Qi. These have charge +1 under U(1)i and
charge -1 under U(1)i+1, i = 0, ..n − 1 where U(1)0 ≡ U(1)n. We call this the A-
theory. We can also turn on FI terms (which recall are triplets of SU(2)R) , one for
each U(1)of the gauge group, thus in this instance n− 1 of them: ~ζi, i = 0, ..., n− 1

with
∑

i
~ζi = 0. We can also add mass terms ~mj (triplets again but of SU(2)L) for the
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n hypermultiplets. Linear combinations of these masses can nonetheless be removed
by shifting the Coulomb branch for each U(1) gauge factor. We are left thus with
only one ~m. For the time being we don’t turn on any of these. From table 6.1 we
know that

dim(MA
H) = 1 (6.5)

dim(MA
C) = n− 1 (6.6)

Claim
At the IR non-trivial superconformal fixed point U(1)n−1 with n hypermultiplets

is dual to U(1) with n flavours, which we name the B-theory.

Dimension checking
U(1) with n flavours has:

dim(MB
H) = n− 1 (6.7)

dim(MB
C) = 1 (6.8)

and thus dimensions cross-match. Moreover U(1) with n flavours allows for one FI
term ~ζ ′ and n − 1 mass terms ~m

′
i , i = 0, ..n − 1 with

∑
i
~m
′
i = 0. Thus mirror

symmetry when FI and/or mass terms are turned on claims that

~m⇐⇒ ~ζ ′ (6.9)
~ζi ⇐⇒ ~m

′
i (6.10)

At this point the paper of Seiberg and Intriligator proceeds by analysing the metric
on the Higgs branch and Coulomb branch of both theories. They then cross-identify
the metrics on the spaces in the IR, i.e. in the limit of strong-coupling. Here we don’t
follow this approach relying instead on the more modern technique of identifying the
generating function for the ring of gauge invariant operators for the Higgs branch
and the Coulomb branch of both theories and show cross-matching. We make use of
unrefined Hilbert series for simplicity

Consider the duality for n = 3, i.e. our proposed mirror theories are:

• theory A: U(1)2 with 3 hypermultiplets

• theory B: U(1) with 3 flavours

The Higgs branches are known to the reader:

• MA
H is the ALE space C2

Z3
as suggested by Kronheimer and the Hilbert series is

Eq. 4.12 with n = 2

HS(
C2

Z3

; t) =
1− t6

(1− t3)(1− t3)(1− t2)
(6.11)
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• MB
H is the moduli space of 1−SU(3) instanton and the Hilbert series is Eq. ()

as computed in section [2]

HS1−SU(3)(t) =
∞∑
k=0

dim[k, k]SU(3)t
k (6.12)

The Coulomb branches of both theories are also known to the reader since they were
computed in section 5 using monopole operators:

• the Hilbert series ofMA
C was computed in section 5 subsection [] and we notice

that it is indeed the 1− SU(3) instanton moduli space, i.e the Higgs branch of
U(1) with 3 flavours

HSAC (t) =
∞∑
k=0

dim[k, k]SU(3)t
k = HS1,SU(3)(t) = HSBH (t) (6.13)

• the Hilbert series forMB
C was also computed in section 5 subsection [] and we

notice that it is identical to the Hilbert series for the ALE space C2

Z3
, i.e. the

Higgs branch the A-theory

HSBC (t) =
1− t6

(1− t3)(1− t3)(1− t2)
= HS(

C2

Z3

; t) = HSAH (t) (6.14)

Matching of the chiral rings by means of comparing the Hilbert series for the Coulomb
branch and the Higgs branch confirms the statements of mirror symmetry, at least as
far as the moduli space of vacua of dual theories is concerned.

6.3 Mirror Symmetry KSO(2N)

We now examine the theory with Kronheimer gauge group KDN
. The quiver diagram

for this gauge theory is the affine Dynkin diagram D̂N as shown in Fig. 4.1b where
the ri indices label the dimensions of DicN by the McKay correspondence. Mapping
to quiver gauge theory, each node with label ri corresponds to a factor U(ri) in the
gauge group. Hence

KSO(2N) =
U(1)4 × U(2)n−3

U(1)
= U(1)3 × U(2)n−3 (6.15)

The matter content is as follows:

• 2 doublets of the leftmost U(2), one with charge +1 under the top left U(1) and
the other with charge U(1) under the bottom left U(1)

• 2 doublets of the rightmost U(2), one with charge +1 under the top right U(1)
and the other with charge U(1) under the bottom right U(1)
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• (n− 3) bifundamentals (2, 2̄)of neighbouring U(2)’s

The dimensions for the Higgs and the Coulomb branch were computed in Table 6.1
and are respectively dim(MH) = 1 and dim(MC) = 2n− 3. This is the A-theory.

Claim
In the IR KSO(2N) flows to a non-trivial fixed point where it is dual to the theory

SU(2) with N flavours.

Dimension checking

For SU(2) with N flavours, our the B-theory, the Higgs and Coulomb branch1 have
dimensions:

dim(MB
H) = rank(SU(2)) = 1 (6.16)

dim(MB
C) =

1

2
(2× 2n)− dim(SU(2)) = 2n− 3 (6.17)

and the dimensions of the two pieces of moduli space of SU(2) with N flavours cross
match those of KSO(2N), thus providing dimensional evidence to the claim. Consider
the duality for N = 4; the proposed mirror theories are:

• theory A: U(1)4 × U(2) with 8 hypermultiplets according to the prescription
above

• theory B: SU(2) with 4 flavours

The Higgs branches are as follows:

• MA
H is the ALE space C2

Dic2
as suggested by Kronheimer and the Hilbert series

is Eq. 4.13 with n = 4

HS(
C2

Dic2

; t) =
1− t6

(1− t2)(1− t3)(1− t2)
(6.18)

• MB
H is the moduli space of 1−SO(8) instanton and the Hilbert series is Eq. as

computed in section [2]

HS1,SO(8)(t) =
∞∑
k=0

dim[0, k, 0, 0]SO(8)t
k (6.19)

The Coulomb branches of both theories were computed in section 5 using monopole
operators:

1The factor of 1
2 in front of the number of hypermultiplets is due to the fact that these are in

fact half-hypermultiplets
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• the Hilbert series ofMA
C was computed in section 5 subsection [], where we had

hinted at the SO(8) enhancement; this moduli space corresponds indeed to the
1−S0(8) instanton moduli space, i.e the Higgs branch of SU(2) with 4 flavours

HSAC (t) =
∞∑
k=0

dim[0, k, 0, 0]So(8)t
k = HS1,SO(8)(t) = HSBH (t) (6.20)

• the Hilbert series for MB
C was also computed in section 5 Eq. [] with N = 4

where we had cast it in a suitable form: it is indeed identical to the Hilbert
series for the ALE space C2

Dic2
, i.e. the Higgs branch the A-theory

HSBC (t) =
1− t6

(1− t3)(1− t2)(1− t2)
= HS(

C2

Dic2

; t) = HSAH (t) (6.21)

Again, we have shown that the generating function for the chiral rings on the Higgs
branch of the A-theory match the Hilbert series of the Coulomb branch of the B-
theory, providing a check of mirror symmetry at the level of the moduli space.

6.4 Mirror Symmetry KE6

Our last check of mirror symmetry concerns the theory with Kronheimer gauge group
KE6 . This is not examined in the original paper and here is the place to truly test our
new technique. The quiver diagram for this gauge theory is the affine Dynkin diagram
Ê6 as shown in Fig.4.1c where the indices insides the nodes label the dimensions of the
binary tetrahedral group BT by the McKay correspondence. Mapping to the quiver
gauge theory, each node with label ri i = 1, ..., 7 corresponds to a factor U(ri) in the
gauge group. Hence

KE6 =
U(1)3 × U(2)3 × U(3)

U(1)
= U(1)2 × U(2)3 × U(3) (6.22)

This is precisely the affine Ê6 theory whose Coulomb branch we calculated in Chapter
5, the only difference being that here we gauge the sum of the U(1) charges. The
matter multiplets are in the bifundamental of adjacent nodes, e.g (3, 2̄) if the left
node is U(3) and the right U(2) . The quaternionic dimension of the Higgs branch
and Coulomb branch, as computed in Table 6.1, are 1 and 11.

Claim
In the IR KE6 flows to a non-trivial fixed point where it is dual to the unknown

gauge theory that has E6 as the flavour symmetry, theory B.

Since the gauge theory is not known, we cannot cross-match the dimensions of the
two branches. However we can rely on the Hilbert series since it encodes information
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on the moduli spaces. In chapter 2 we wrote down the unrefined Hilbert series for
theory B:

• MA
H is the ALE space C2

BT the Hilbert series is Eq.4.14

HS(
C2

Dic2

; t) =
1− t6

(1− t2)(1− t3)(1− t2)
(6.23)

• MB
H is the moduli space of 1−E6 instanton moduli space and the Hilbert series

was computed in chapter 2 to be

HS1,E6(t) =
∞∑
k=0

[0, k, 0, 0, 0, 0]E6
tk (6.24)

The Hilbert seriesMA
C for the Coulomb branch of theory A was computed in chapter

5 using monopole operators: it displayed an E6 enhancement. Indeed it corresponds,
up to order 2 in the computations of the author, and fully in [8] , to the 1 − E6

instanton moduli space, that is, the Higgs branch of the unknown gauge theory with
E6 as the flavour symmetry.

HSAC (t) = 1 + 78t+ 2430t2 + ... = HS1,E6(t) = HSBH (t) (6.25)

Here we have stopped short of a double cross-matching, since we can not compute
the Coulomb branch for theory A. We have shown though that the Hilbert series for
the Higgs branch of the A-theory matches the Hilbert series of the Coulomb branch
of the B-theory, thus identifying the two pieces of the moduli space. The Coulomb
branch for the theory with E6 flavour symmetry should, by mirror symmetry, be
identical to the Hilbert series for the ALE space C2

BT , i.e. the Higgs branch the A-
theory.
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Chapter 7

Brane realisation of mirror symmetry

Soon after the publication of [25] explanations of mirror symmetry by means of string
theory settings followed. Two different approaches were introduced to think about
the duality using brane construction: on the one hand Porrati and Zaffaroni [32] used
brane constructions in type IIA compactified on a singular space, whilst on the other
Hanany and Witten [24] described mirror symmetry in terms of brane constructions
in type IIB. The two methods are useful in different ways: the IIA constructions
are formulated in order to lift mirror duals to M-theory where they become a single
theory. The type IIB construction revealed a nice technique to construct mirror duals
by means of a brane creation mechanism, now known as Hanany-Witten transition.
Since it is actually great fun to play around with branes and realise different gauge
theories, we explore this latter realisation in the next subsections.

Type IIB involves, together with the omnipresent NS5-brane, Dp-branes for p
odd. A system of D5, NS5 and D3-branes is considered and by varying their number
several gauge theories can be realised. This section is purposedly light in calculations
and should serve as a pedagogical example of how the geometric brane realisation of
supersymmetric gauge theories unfolds.

7.1 Brane Configurations
We consider type IIB on flat space R1,9, x0 being the time coordinate. This is a max-
imal supergravity theory, i.e it has 32 supercharges. We will often identify spacetime
directions by a sequence of numbers, possibly on top of x. So, for example, an object
which fills the first four spacetime directions will be labelled as extended in the 0123
or x0123 or x0x1x2x3, these notations being used interchangeably to mean the x0, x1,
x2, x3directions.

Consider configurations of NS5-branes and D5-branes. No supersymmetry is
preserved at all if both are extended along the same directions, for example in the
012345. In order to preserve some supersymmetry, the NS5-brane is placed at definite
values of x7x8x9, which means it is extended in the 012345 directions, whilst the D5-
brane is at definite values of x3x4x5, i.e. extended in the 012789 directions. Such a
system preserves 1/4 of the background supersymmetries, which means that on the
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NS5 D5 D3
world-volume 012345 012789 0126
localised in 789 345 345 and 789

Table 7.1: The five-branes fill their world-volume directions and are localised in the
remaining.

worldvolume of the fivebranes there will be defined supersymmetric gauge theories
with 8 supercharges. We show the branes in Fig. 7.1 where the time coordinate is
suppressed.

Figure 7.1: The system of D5 and NS5 that preserves 1/4 of the background super-
symmetry. The coordinates x0, x1, x2 are suppressed in this sketch.

Further one can add D3 branes extended in the 0126 direction, the only way to
preserve the 8 supercharges configuration. We summarise the brane content in Table
7.1.

The Lorentz group of symmetry SO(1, 9) breaks as

SO(1, 2) ×SO(3)V× SO(3)H

012; ~m = 345; ~w = 789

The rotation subgroups SO(3)V and SO(3)H act as symmetry groups of the reduced
coordinates ~m = 345 and ~w = 789 respectively. The double covers SU(2)V and
SU(2)H correspond to the symmetries of the Coulomb branch and Higgs branch.
The configurations we study involve many NS5, D5 and D3 branes whose positions
are as follows:

• the ith NS5 will be localised at x6 = ti and ~w = ~wi

• the jth D5 will be localised at x6 = zj and ~m = ~mj
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• the D3 can have both ends on two NS5-branes or on two D5-branes or on one
NS5 and one D5 in a way which we specify shortly

Supersymmetry constrains the system even further:

• two NS5-branes, i and i′, can be connected by a D3-brane if and only if they
have the same position in the 789 direction, that is ~wi = ~wi′ . The D3-brane
is at some given value of ~m, which we name ~x. The αth brane will thus be
parametrised by ~m = ~xα. This is shown in Fig. 7.2.

• analogously two D5-branes, j and j′ are conneccted by a D3-brane if and only
if ~mj = ~mj′, which can be obtained in Fig. 7.2 by exchanging the directions ~m
and ~w and the NS5 with the D5 label. The αth D3-brane is this time at some
given value of ~w, which we name ~yα.

• a D3 brane can connect a D5 and a NS5 but there is no choice in how to place
it in the two sets of transverse directions, 345 and 789. Hence no moduli space
for such a configuration arises.

Figure 7.2: The two NS5-branes must be at the same position in the 789 directions:
~wi − ~wi′ = 0 . Indeed the triplet ~wi − ~wi′ can be thought of as a Fayet-Iliopolous
term, which, when present, lifts the Coulomb branch. It must be set to zero for the
Coulomb branch to appear.

S-duality is nicely in place in such set-ups. S =

(
0 1
−1 0

)
∈ SL(2,Z) converts

a D5 into a NS5. Define a rotation R that maps x345 to x789 and x789 to −x345. The
successive application of these two transformations, RS, leaves the system invariant
up to exchange of D5-branes with NS5-branes. We will make use of this RS trans-
formation to find mirror pairs. Indeed this geometrically manifest invariance is what
underlies mirror symmetry.
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7.2 Field Theory on the branes
Why is this brane arrangement useful? To begin with one should notice that the
D3-brane has only three infinite directions: time x0 and two spatial ones x1 and
x2. It is finite along the x6 direction, hence the field theory on its worldvolume is
macroscopically 2 + 1 dimensional. It has 8 supercharges, which in 3d corresponds to
N = 4. The potential Spin(4) ∼= SU(2)×SU(2) R-symmetry has been geometrically
pointed at above: it is the SU(2)V × SU(2)H corresponding to the (double cover)
rotations in the ~w and ~m directions.

Moreover the D5 and NS5-branes are infintely extended in two extra dimensions
thanD3, they are thus heavier and their parameters are taken fixed: field-theoretically
t, ~w and z, ~m which specify the transeverse positions of the NS5 and D5 respectively
act as coupling constants for the QFT on the D3-brane.

The D3 positions in the 345 and 789 directions, which recall have been labelled ~x
and ~y, are instead dynamical moduli and they precisely parametrise the moduli space
of vacua. We have thus completed the realisation of a N = 4 3d supersymmetric
theory by means of brane configurations. The fields living on the worldvolume of
the D3-brane are collected in a vector multiplet and a hypermultiplet. They are not
present simultaneously: Neumann (supersymmetry preserving) boundary conditions
can be imposed at the ends of the D3-brane which force either the vector mulitplet or
the hypermulitplet to vanish. The other multiplet will then obey Dirichlet boundary
conditions. In particular the 3 + 1d vector Aµ that lives on an infinite D3 reduces in
2+1d to a vector aµ and a scalar b. Neuman boundary conditions on Aµ imply that b
vanish whereas Dirichlet imply that aµ vanishes. The aforementioned vector multiplet
and hypermultiplet can be constructed geometrically by combining the transverse
positions of the D3-brane and the fields aµ and b:

• aµ and ~x form the vector multiplet

• b and ~y form the hypermulitplet

When a D3-brane ends on a NS5-brane, the position ~x in the ~m direction is free to
fluctuate whilst Dirichlet boundary conditions enforce the vanishing of ~y and b. The
massless modes of this configurations are ~x and aµ. Conversely, when aD3-brane ends
on a D5-brane ~x and aµ will be set to zero whilst ~yand b become the free parameters.

7.2.1 Effective 3d gauge theory on the D3-brane

The parameters introduce above provide a geometrical description of the gauge theory
living on the D3-brane. There are three cases to consider.

Case 1

Consider nv D3-branes ending between two NS5-branes. The effective theory on
the D3-branes is a U(1)nv gauge theory, which follows straightforwardly from the
last paragraph in the previous subsection. As the nv D3-branes approach each other
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and become coincident the U(1)nv gauge theory is enhanced to U(nv). In particular
this configuration is suitable to analyse the dynamics of the Coulomb branch. Recall
that the two NS5-branes must be placed at the same value in the 789 direction, i.e.
~w1 − ~w2 = 0. The separation of the two branes along the x6 direction is interpreted
as the gauge coupling:

1

g2
e

∝ |t1 − t2|

This is referred to as the ’electric coupling’.

Case 2

Let us now take nh D3-branes ending between two D5-branes. This identifies an
effective theory on the D3-branes with nh hypermultiplets. An RS transformation
can be performed which exchanges the ~m and ~w directions, the NS5-brane and D5-
brane as well as aµ and b (since SL(2,Z) implements electric-magnetic duality). A
U(nh) gauge theory is thus realised whose gauge coupling is, along the lines of the
previous case,

1

g2
m

∝ |z1 − z2|

To differentiate from g2
e , this is known as the magnetic coupling.

Case 3

As previously stated, no moduli exist for a D3-brane stretched between a D5-brane
and a NS5-brane since both ~x and ~y are fixed at either eneds: henceforth massless
states can not arise.

7.3 Singularities
Without going into too many details we state here certain singularities of the brane
configurations which lead to extra massless modes. Since these singularities are fairly
intutitive a superficial geometrical description will suffice.

7.3.1 Singularity of the first kind

The first type of singularity is obtained by letting D3-branes on one side of a NS5-
brane swing close to D3-branes on the other side as shown in Fig. 7.3. This is a
non-perturbative arrangement. When a left D3-brane with ~m = ~xL is tangent to
a right D3-brane by ~m = ~xR, i.e. when|~xL − ~xR| = 0 a massless hypermultiplet
arises. This is due to the string stretching between them becoming lengthless. For k1

left branes and k2 right branes there will be k1k2 potential hypermultiplets. Since the
enhanced gauge group of such a configuration is U(k1)×U(k2) the hypermultiplets will
be in the bifundamental representation (k1, k̄2). Furthermore they transform as (1, 2)
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Figure 7.3: Potential singularities arise when the 345 position of a left D3-brane
coincide with that of a right D3-brane. We have marked the position of the “first”
left D3-brane by ~xL and the position of the “first” right D3-brane by ~xR. When
|~xL − ~xR| = 0 a massless hypermultiplet arises.

under the R-symmetry SU(2)V ×SU(2)H . Similar arguments can be exploited forD3-
branes ending on both sides of aD5-brane after application of a RS tranformation, the
only difference being that the gauge group is now referred to as magnetic and that the
massless hypermultiplets transform as (2, 1) under the R-symmetry SU(2)V ×SU(2)H
.

7.3.2 Singularity of the second kind

The second type of singularity occurs when a D5/NS5-brane and a D3-brane meet
in space. For example consider a D5-brane sitting at a given ~m = ~mD5 and a D3-
brane at ~m = ~x. A string can stretch between the two until ~mD5 = ~x at which
point a massless hypermultiplet arises, as it is shown in Fig. 7.4. This hypermultiplet
transforms in (1, 2) under the R-symmetry SU(2)V × SU(2)H .

Performing an RS transformation, the D3-brane can be replaced by the NS5-
brane and a similar outcome achieved. This type of singularity can be described
perturbatively unlike the singularity of the first kind.

Note that the singularities arising in Fig. 7.3 and Fig. 7.4 are related to each
other: if one allows the D3-brane to effectively split in two upon encounter with the
D5/NS5-brane in Fig. 7.4, then the configuration in Fig. 7.3, with one left D3-brane
and one right D3-brane is yielded.

7.3.3 From branes to quivers

The discussion so far is sufficient to see how the brane realisation of the general gauge
theory of U(K) with N flavours is done: this consists of K parallel and stacked D3-
branes between two NS5-branes which are at positions t1 and t2 along the x6 direction
and are located at the same point in the 789 with ~w1 = ~w2. The flavour group is
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Figure 7.4: The D3-brane is “further back” than the D5-brane in the 345 direction.
When ~mD5 and ~x coincide, the string stretching between the two become lengthless
and thus the hypermultiplet massless.

realised by stacked N D5-branes when they meet the D3-brane in spacetime. The
D5-branes positions zi, for i = 1, ..., N , along the x6 direction are bounded by the
two NS5-brane positions: t1 < zi < t2 . The D5-branes positions in the 345 direction
are labelled ~mi. The set up is shown in Fig.7.5.

Figure 7.5: the brane realisation of U(K) with N flavours. The N D5-branes are
“inside” the NS5-branes along the x6 direction and have position ~mi

D5 in the 345
direction. When the D3-branes become coincident and the D5-branes are tangent to
the stack, the configuration realises a gauge theory U(K) on the D3-branes with a
global symmetry U(N).

Intersection of D3-branes and D5-branes gives rise to N hypermultiplets, each of
which has a mass triplet ~mi parametrised by its position along the 345direction. One
mass triplet can always be removed by a shift of the origin. When the D5-branes meet
the D3-branes in spacetime, by the second type of singularity, the N hypermultiplets
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become massless. If the two NS5-branes are located at different values along the 789
direction, the nonzero difference ~w1− ~w2 6= 0 acts as a Fayet-Iliopolous term and lifts
the Coulomb branch. Thus the brane configurations reproduce every parameter of
the supersymmetric gauge theory, including masses and FI terms.

7.4 Hanany-Witten transition
Before turning our attention to how brane configurations encode mirror symmetry,
we have to look at the phenomenon of brane creation. We state, without proof, the
mechanism for the Hanany-Witten transition. The authors of [24] provide a detailed
explanantion based on a generalised Gauss’ law and the so called linking number but
we will neglect these here.

(a) A massive hypermultiplet exists in this
set-up since a string can stretch between the
D3-brane and the D5-brane when z, the po-
sition of theD5 along x6 satisfies t1 < z < t2,
where t1 and t2 are the NS5 positions on the
x6 direction. When ~mD5 = ~x the hypermul-
tiplet becomes massless.

(b) Even when ~mD5 = ~x there is no hyper-
multiplet if t1 < t2 < z. The same parame-
ters are present and physically the D5-brane
has just shifted along the x6 direction. What
happens to the hypermultiplet?

(c) A new D3-brane is created when the
D5-brane crosses the NS5-brane. We have
restored a massless hypermulitplet when
~mD5 = ~x by the singularity of first kind.

Figure 7.6: A U(1) theory living on the D3. A massless hypermultiplet can arise in
7.6a but not in 7.6b. In 7.6c the actual outcome of moving the D5-brane “outside”
the NS5 with a new D3-brane.
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In Fig. 7.6a we show the theory of U(1) with one flavour. The two NS5 are at t1,
~w1 and t1, ~w2. A D3-brane connects them and its position along the 345 direction is
~x. The D5-brane is at z with t1 < z < t2 and has position ~mD5 in the 345 direction.
Thus there exists one hypermultiplet arising from a string that connects the D3 and
D5 with mass ∝ ~m − ~x. When the D3-brane and the D5-brane are localised in the
same point of 345, the hypermultiplet is massless.

Imagine now that the D5-brane moves along the x6 direction untill z > t2 as in
Fig. 7.6b. The hypermultiplet disappears, both when massive ~mD5 6= ~x and when
massless ~mD5 = ~x. However, to reach this new set-up the NS5-brane and the D5-
brane must cross: to see this it suffices to realise that the NS5-brane is localised in
789, where the D5-brane is extended, and the D5-brane is localised in 345, where the
NS5-brane is extended.

Instead of the one in Fig. 7.6b, the outcome of moving the D5-brane past the
NS5-brane is sketched in Fig. 7.6c where a new D3-brane stretching along the
x6 direction between t2 and z has been created. No moduli exist for the new D3-
brane since it is between D5 and a NS5 brane. However from the singularity of
the first kind encountered and shown in 7.3, such a configuration can give rise to
a massless hypermultiplet. This happens precisely for ~mD5 = ~x, when the two D3
are tangent. Thus the two singularity mechanisms are related by means of a brane
creation transition.

7.5 Constructing mirror pairs
Mirror symmetry can be enacted in brane configurations by exchanging the ~m = 345
direction with the ~w = 789 direction and concurrently exchanging the NS5-brane
and the D5-brane. We give a few examples of how this is done by drawing the theory
and moving to its mirror dual.

U(1) with 2 flavours

This theory is a special case of U(1) with N flavours whose Coulomb branch was
considered in chapter 5. It is special because the theory is self-mirror. The Coulomb
branch is C2

Z2
and its Higgs branch is the 1 − SU(2) instanton moduli space, which

coincides with C2

Z2
. The brane picture preserves this self-duality in that an RS trans-

formation brings us back to the starting one. In Fig. 7.7a we realise the theory of
U(1) with 2 flavours by stretching a D3-brane between two NS5-branes. The flavour
symmetry is implemented by the D5-branes since two massless hypermultiplets arise
when the D5-branes meet the D3 along the 345 direction. Fig. 7.7b is the inter-
mediate stage, where the D5-branes have been brought at x6 locations z1, z2 such
that z1 < t1 < t2 < z2, “outside” the NS5-branes. By the Hanany-Witten transition,
D3-branes are created, which stretch between the D5-branes and the NS5-branes. In
Fig. 7.7c, after performing a RS transformation, we obtain the same set-up of Fig.
7.7a, with the D3-branes reconnected in one and stretching between the NS5-branes
(U(1)gauge group) whilst the two D5-branes provide matter multiplets.
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(a) U(1) with two flavours provided
by the D5-branes

(b) The D5-branes are brought to the out-
side and two extra D3-branes are created

(c) Exchanging NS5-branes with D5-
branes and the 345 directions with the
789, we obtain the mirror theory. In this
case is identical to the original theory of
U(1) with 2 flavours.

Figure 7.7: A self-dual theory and the brane realisation

U(1) with N flavours

Let us consider again two NS5-branes, one D3-brane extended between the two
which realise a U(1) theory and this time N flavours, provided by N D5-branes. The
four dimensional Coulomb branch is parametrised by the scalars on the D3-brane:
geometrically these are given by the location ~x in the 345 direction plus the dual
photon. The hypermultiplet masses are the locationsmi of theD5-branes. By shifting
the D3-brane position we can eliminate the centre of mass of the D5-branes, hence we
are left with N−1 mass parameters. The potential separation of the two NS5-branes
in the 789 direction ~w1− ~w2 acts as a FI term, which would lift the Coulomb branch.
In Fig. 7.8a we realise the theory. The intermediate stage consists of maximally
breaking the D3-branes, when they encounter the D5-branes. Exchanging the NS5-
branes and the D5-branes in Fig. 7.8c completes the procedure to obtain the mirror
theory: there are N −1 D3 branes, each of which stretches between two NS5-branes,
giving rise to a U(1)N−1 gauge group. The matter multiplets arise by the singularity
of first kind and they transform as (1,1) of adjacent factors. This is precisely the
mirror theory that we expect from section 6.
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(a) U(1) with N flavours. The N D5-branes
are “inside” along the x6 direction the NS5-
branes

(b) The intermediate stage: The D3-branes
are maximally broken between the D5-branes

(c) RS symmetry is performed. The D5-branes
become NS5-branes and vice versa. The mirror
gauge theory is now U(1)N−1 with bifundamen-
tal hypermultiplets which recovers what we know
from chapter 5.

Figure 7.8: U(1) with N flavours and its dual theory

U(3) with 6 flavours

The last example of how to obtain mirror theories using brane constructions will
be a special case of U(k) with 2k flavours for k = 3. The general case is treated
in [24] but it doesn’t differ much from the current example. We start in Fig.7.9a
with three D3-branes streching between two NS5. The 6 D5-branes provide the
flavour symmetry to the gauge theory on the D3. We then move the D5-branes
one by one to the outside, in the x6 direction, of the NS5-brane. Each time a D5-
brane crosses a NS5-brane, a D3-brane is created. This is shown in Fig.7.9b. By
converting the D5-branes into NS5 and viceversa and maximally breaking the D3-
branes we obtain the mirror theory, which corresponds to the brane configuration
in Fig.7.9c. The gauge theory can be simply read off the brane picture. The gauge
group is U(1)×U(2)×U(3)×U(2)×U(1) with matter multiplets transforming in the
(1,2)⊕ (2,3)⊕ 3⊕ 3⊕ (3,2)⊕ (2,1) . This is the quiver gauge theory of Fig.7.9d.
In section 5 we computed the Coulomb branch of U(3) with 6 flavours and found
that it was a complete intersection. A check that its mirror dual is in fact the quiver
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gauge theory sketched in Fig.7.9d would be to evaluate the Hilbert series on the Higgs
branch of this theory and show it gives the complete intersection moduli space found
in section 5.

Many other mirror pairs can be constructed using the NS5/D5/D3 brane picture.
Moreover Sp(n) and SO(n) gauge groups can also be constructed using orientifold
hyperplanes O3− in the background. This is studied in [16] to which we refer the
interested reader.

(a) The theory of U(3) with 6 flavours (b) The D5-branes are moved “outside” and at
each stage a D3-brane is created.

(c) The RS transformation turns the D5-
branes into NS5-branes and viceversa. This is
the mirror theory: the gauge group is U(1) ×
U(2) × U(3) × U(2) × U(1) as we can read
from the number of D3-branes stretching be-
tween pairs of NS5-branes. The gauge the-
ory as matter hypermultiplets as well, which
can be read more easily from the correspond-
ing quiver diagram.

(d) The quiver diagram for the mirror
theory of U(3) with 6 flavours. Mat-
ter hypermultiplets are in the bifunda-
mental of adjacent factors. The square
node represents the flavour symmetry
that arises because of the two D5-
branes.

Figure 7.9: U(3) with 6 flavours and its mirror via brane constructions. In order not
to clutter the figures we mark D5-branes with a cross, but they of course extend in
the 789 direction (as well as the suppressed 012)
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Chapter 8

Conclusion and outlook

Many techniques have been provided throughout this dissertation. We explored some
of the features of supersymmetric gauge theories in three dimensions. Phenomena
occurring in these theories are far from being fully understood. In particular mirror
symmetry is a very surprising duality in that it exchanges the Coulomb branch, which
is not classically exact and needs loop corrections, with the Higgs branch, which is
protected by quantum corrections. So far, for a given gauge theory, in order to
calculate the Coulomb branch one would often resort to the dual mirror theory and
evaluate the Higgs branch thereof. In particular, as far as the chiral ring of the
moduli space is concerned, calculations on the Higgs branch dominated the scene
whilst methods to tackle the Coulomb branch seemed elusive.

Fortunately enough, the role of monopole operators has been gaining momentum.
It is fascinating to see how this developed historically: from the first guesses at the
poorly understood nature of these operators in [27, 1] to their modern definition
and computation of their quantum numbers in [21, 3, 7, 6, 26]. Unfortunately, an
encompassing proof of mirror symmetry doesn’t yet exist, though one can provide
strong arguments on a case by case basis. In this dissertation we have followed
relatively simple prescriptions to check the duality:

• an initial measure is to check the dimensions of the Coulomb and Higgs branch
and show they cross match with the mirror dual (including counting FI and
mass terms)

• matching of the chiral rings for the two branches of the moduli space of mirror
duals

A fairly technical approach is to match observables of the dual theories. This amounts
to writing the partition function for the 3d gauge theory, implementing mirror sym-
metry at the level of the partition function and showing that this is equivalent to the
partition function of the supposed dual symmetry. This has been done and contin-
ues to be studied. In particular the authors of [29, 28] and [13] used the so called
localization methods of [18] to write down the partition function for N =4 gauge
theories with matter on S3. This approach has not been given a share of this disser-
tation purely as a matter of taste but it would be very interesting to review mirror
symmetry from this point of view.
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The aim of this dissertation was not to exploit mirror symmetry but to check
its claims for a few pairs of mirror duals. This was accomplished by presenting
the previous work on the chiral ring of the Higgs branch and introducing a new
technique for the Coulomb branch in order to cross-match the two. In the latter we
constructed operators which carry magnetic charges mi. The conformal dimension of
these operators depends on these magnetic charges and has positive contribution from
the matter sector and negative contribution from the gauge sector, as was detailed
in section 5. Once the dimension of these operators is known, a generating function
for all monomials made of monopole operators can be written down. Perhaps a
little surprising is the idea that one has to include classical contributions from the
Lagrangian operators that survive the monopoles magnetic flux ex post facto. Usually
quantum corrections are precisely this: corrections to a classical background. In
light of this, the classical contribution was called a “dressing”: it consists of classical
Casimir operators of the residual gauge group. Once all of this has been accounted
for, the Hilbert series take a simple expression: after its evaluation it unambiguously
coincides with the Hilbert series of the Higgs branch of the dual theory, thus proving
the equivalence of the two moduli spaces in a elegant and neat way. We would like
to point out that the new computations for the ring of invariants on the Coulomb
branch can sometimes be simpler than calculating the Higgs branch of the dual. This
is a hint towards the power of this new method. Much more can be extracted from it,
for example by exploring the often difficult gauge theories with exceptional groups.

Lastly, let us stress that the work presented is by no means comprehensive nor
does it aim to be. There are several sides, as we have appreciated above, that have
not even been mentioned. However we took the view that it was better to instruct
the reader in depth on one aspect of 3d mirror symmetry than to touch much and
leave little.
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Appendix A

HyperKähler manifolds

The moduli spaces encountered in this dissertation are a special class of manifolds,
known as HyperKähler. This is a very short summary of what the reader needs to
know to have an idea of what these spaces are geometrically. For a nice article which
introduces the HyperKähler manifolds encountered in this dissertation we refer to [9].

Let us start by considering a complex manifoldM of complex dimension m. The
almost complex structure of M is a tensor field J which acts on the complexified
tangent space as

J : TpMC −→ TpMC

Z −→ JZ = iZ

where Z = Zµ ∂
∂Z

is an element of the complexified tangent space. The condition for
J to be a complex structure is that it squares to minus the identity

J2 = −idTpM

Now letM be equipped with a riemannian metric g. The metric is Hermitian if

gp (JX, JY ) = gp (X, Y )

for all tangent vectors X, Y ∈ TpM such that Z = X + iY .
Let us also introduce a tensor field ω acting on TpM as

ωp (X, Y ) = gp (JX, Y )

ω is by construction antisymmetric and thus defines a two-form: it is known as the
Kähler form. In coordinate components

ω =
i

2
gµνdz

µ ∧ dzν

If the Kähler form of an Hermitian manifold is closed, dω = 0, the manifold is known
as Kähler and g as a Kähler metric.

80



Consider now a manifoldM on which two Kähler forms I, J exist for the metric g
and furthermore that these two anticommute: IJ = −JI. Now define K = IJ . Then
K is also a Kähler form for g. Since now I, J,K satisfy the algebra of quaternions I2 =
J2 = K2 = IJK = −1, the tangent space TpM becomes effectively a quaternionic
vector space with real dimension 4n, for n ∈ N. Such a space space is known as a
HyperKähler manifold.

The holonomy group of a 4n-dimensional HyperKähler manifold is Sp(n) which is
a subgroup of SU(2n). For n = 1, i.e a 4 real dimensional HyperKähler, the holonomy
group is Sp(1) ∼= SU(2), which is the conditionfor the space to be Ricci flat.

The ALE spaces of chapter 4 are the simplest class of noncompact HyperKahler
manifolds.
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