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Abstract

Brane constructions of 3D N = 4 supersymmetric gauge theories are revised

in order to explain mirror symmetry. After introducing quiver notation and the

definitions of Higgs branch, Coloumb branch and Hilbert series, a new method for

computing the Hilbert series of the Coloumb branch is explained and applied to

many gauge theories. Comparing the Higgs branch of one theory with the Coloumb

of the mirror, mirror symmetry is confirmed. Also, enhancements of the global

symmetry of the Coloumb branch are identified from the results for the Hilbert

series.
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1 Introduction

In the study of supersymmetric theories the existence of dualities can be very

useful for the calculation of quantities that may be difficult to obtain in one theory

but easier in its dual. In Ref [1] a new duality was proposed by K. Intriligator and

N. Seigberg known as three dimensional mirror symmetry. Such duality provides

two gauge theory descriptions in the UV of the same N = 4 superconformal field

theory. These theories have a moduli space that splits into a Higgs branch and a

Coloumb branch that intersect in the origin. The Higgs branch receives no quantum

corrections, but the Coloumb branch is modified by quantum effects in the infrared.

Mirror symmetry exchanges both branches. For the computation of the Coloumb

branch, mirror symmetry provides an alternative to the computation of the quan-

tum corrections of the metric of the moduli space; it is only necessary to compute

the Higgs branch of the mirror theory, which might be easier to do.

With the help of sting theory and brane engineering it is fairly easy to find

many pairs of mirror theories. In [2] the authors find the mirror of U(k) and SU(k)
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theories with m flavors and in [3], using orientifold planes, for Sp(N) and SO(N).

However, the gauge group of many mirror theories is too large even for computing

its Higgs branch, in that case mirror symmetry is not useful for finding the Coloumb

branch of the original theory using the mirror.

Very recently, a new method for computing the Hilbert series of the Coloumb

branch has been proposed in [4]. The Hilbert series is a generating function that

counts chiral operators and is graded according to their dimension, in this case the

conformal dimension. The set of chiral operators to be considered are the Casimir

invariants of the unbroken gauge group of the theory and Weyl invariant combina-

tions of monopole operators dressed by the classical fields.

The purpose of this work is firstly providing an introduction to brane engineer-

ing of gauge theories, with and without orientifold planes, using D3−, D5− and

NS5−branes, and then giving the rules for computing mirror pairs. Afterwards,

quiver notation of gauge theories is reviewed as a tool for summarising the informa-

tion of a gauge theory in a compact and practical way. Higgs branches are defined

and a method for finding their Hilbert series using the Molien-Weyl integral is ex-

plained with detail. Then , the new method for computing Hilbert series of Coloumb

branches is presented with a computation of the G2 case as an example. Finally,

many different theories are studied, using the new formula for comparing the Higgs

branch of one theory with the Coloumb branch of its mirror in order to confirm

mirror theory, as well as finding the Hilbert series of the Coloumb branch of a the-

ory whose mirror theory has a gauge group too complicated for being able to find

the Hilbert series of its Higgs branch. Also, monopole operators will give rise to

an enhancement of the global symmetry of the Coloumb branch, which will be seen

from the result for the Hilbert series.
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2 Brane Constructions and Mirror Symmetry

This chapter revises the methods of construction of brane configurations, starting

with the most basic setups in the first subsection, then explaining the rules for

the Hanany-Witten transition introduced in [2], followed with an example where

mirror symmetry is studied in detail. The last two subsections are devoted to brane

constructions using O3-planes, which generates theories with non-unitary groups,

revision based on the reference [3].

2.1 Simple Brane Constructions

The massless limit of string theory is known to be a supergravity. For type

IIA we may find the field content by dimensional reduction of the multiplet for M

theory in 11 dimensions, but we are interested in type IIB, where the massless fields

can be found by tensor product of the vector multiplet of N=2 supersymmetry in

10 dimensions by itself, finding: the graviton, the 2-form, the dilaton, 2 gravitinos

of same chirality, 2 gravifermions of same chirality, a 4-form, another 2-form, and

the axion, a compact scalar. The variation of the action for the p-forms C(p) gives

Maxwell equations for each of them of the form:

d ∗G(p+1) = δ(D−p)

dG(p+1) = δ(p+2)
(1)

where G(p+1) = dC(p) and D is the dimension of spacetime. For D = 10 and

p = 0, 2, 4 we find that the sources of the form fields are objects localized in 10,8,6

dimensions, respectively, solving the electric equation or localized in 2,4,6, respec-

tively, solving the magnetic equation. We call them Dp-branes: D(−1), D1, D3 and

D7, D5, D3 (coincides with the previous D3 since the 4-form is selfdual), respec-

tively, each one extended in p+1 dimensions. Taking into account that we have two

2-forms, there will be two 1-branes and two 5-branes, call the extra pair F1 and NS5.

These objects can be understood as charged objects that may fill spacetime,
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just like the usual particle-like charges that we have in 3+1 dimensional spacetime.

Therefore, we can have many different configurations of branes with properties to

be studied. Since supergravity in 10 dimensions has N = 2 supersymmetry with

32 supercharges, and we want to keep only 8 supercharges (N = 4 in 3 dimen-

sions, or N = 2 in 4 dimensions), we need to find a configuration that breaks 3/4

of the supersymmetry. Consider first a D5-brane localised in 4 dimensions, with-

out loss of generality we can take x6 = x7 = x8 = x9 = 0, this breaks half of

the supersymmetry. An NS5-brane localised at the same point would break the

other half of supersymmetry generators, so if we want to combine both types of

branes they cannot be both located at definite values of the same coordinates. If

instead we place a D5-brane at definite values of x3, x4, x5, x6 and an NS5-brane at

definite values of x6, x7, x8, x9 then 1/4 of the supersymmetry is preserved, 8 super-

charges giving N = 4 in 3D. This configuration still allows D3-branes localised in

x3, x4, x5, x7, x8, x9 while preserving the same amount of supersymmtry.

Let us call ~m = (x3, x4, x5) and ~w = (x7, x8, x9), then the position of an NS5-

brane is given by t = x6 and ~w, that of a D5-brane by z = x6 and ~m, and a D3-brane

by ~x = ~m and ~y = ~w. With this notation one possible configuration of branes is the

following:

~x

NS5 D5 NS5

D3

~w, t1 ~m, z ~w, t2

Figure 1: U(1) theory with one electron

Note that for D3 and NS5 to intersect it must be that ~w1 = y and ~w2 = y

and so ~w1 = ~w2 = ~w. If instead D3 connects two D5-branes then it must be that

m1 = m2 = ~x. The last possible case is when a D3-brane stretches between an
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NS5-brane and a D5-brane, then both values of ~x and ~y are set by ~x = ~m of D5 and

~y = ~w of NS5.

The field content on a single infinite D3-brane is an N = 4 vector multiplet

in 4 dimensions transforming under a U(1) gauge group. When a D3-brane ends

on a 5-brane, half of the supercharges are broken and the vector multiplet decom-

poses into an N = 2 vector multiplet and a hypermultiplet. Boundary conditions

set either the vector multiplet or the hypermultiplet to zero, depending on whether

the D3-brane ends on a D5 or NS5 brane. Since in our case one dimension of the

D3-brane is finite, the effective field theory on the world-volume of the brane is 2+1

dimensional. The bosonic massless modes will be either ~x plus the vector aµ of the

vector multiplet, in the case when D3 ends on NS5 and the boundary conditions set

the hypermultiplet to 0, or ~y plus the fourth scalar b of the hypermultiplet, when

D3 ends on D5 and boundary conditions set the vector multiplet to 0. Note that

in three dimensions a vector is dual to a scalar and therefore we can consider the

scalar dual to aµ. The vacua of the field theory is parametrized by the scalars of the

vector and hyper multiplets. In three dimensions this moduli space splits into two

branches, two submanifolds, the Coloumb branch and the Higss branch, the former

spanned by the scalars belonging to vector multiplets and the latter by scalars be-

longing to hypermultiplets.

We know from supersymmetry that N = 4 in three dimensions has an SO(4) =

SU(2)V×SU(2)H R-symmetry. From our brane construction we see that the Lorentz

group SO(1, 9) is broken down to SO(1, 2)× SO(3)× SO(3) where the first factor

acts on x0, x1, x2, the second on ~m = (x3, x4, x5) and the third on ~w = (x7, x8, x9).

Calling SO(3)V the second factor and SO(3)H the third one, we can identify the

R-symmetry with the double covers of these groups. SU(2)V is a symmetry of the

Coloumb branch and SU(2)H of the Higgs branch.

Now we are ready to introduce mirror symmetry. An SL(2,Z) transformation
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exchanges D5 and NS5. Combining this with a rotation that maps xj to xj+4 and

xj+4 to xj for j = 3, 4, 5, while leaving the other coordinates invariant, the net effect

is that our brane configuration is mapped to itself, except for D5 and NS5 branes,

that are exchanged. This is what is called mirror symmetry. Therefore, mirror sym-

metry exchanges vector multiplets with hypermultiplets, i.e. ~x with ~y and b with

the scalar dual to aµ.

So far we have interpreted the position of D3-branes as the scalars in the vector

multiplets or the hypermultiplets. What about the other parameters of the config-

uration? The positions t1 and t2 give the coupling constant of the electric gauge

group by

1

g2
e

=| t1 − t2 | (2)

up to a multiplicative constant. There is a global symmetry of the theory living on

the D3-branes given by the symmetry group of the set of parallel NS5-branes. Two

NS5-branes give U(1)× U(1) global symmetry that becomes U(1)ns after factoring

out the center, this symmetry is enhanced to SU(2)ns when the coupling constant

becomes infinite, ge =∞, i.e. the two NS5-branes are coincident. The same applies

to the position x6 of D5-branes, the distance between two D5-branes corresponds to

the magnetic gauge coupling

1

g2
m

=| z1 − z2 | (3)

and the global symmetry of the set of two D5-branes, U(1)d, is enhanced to SU(2)d

when gm =∞.

On the other hand we have the positions w1 and w2 of the NS5-branes. We have

mentioned that it must be that w1 = w2 for a supersymmetric configuration to be

possible. However, we can make a transition to a Higgs branch where the two NS5-

branes are not connected directly with a D3-brane; in that case it is possible to have

~D = ~w1− ~w2 6= 0. We interpret ~D as a Fayet-Iliopoulos parameter, corresponding to

the U(1) factor that the gauge group always has for the case of a stack of D3-branes.

The position m of D5-branes will be interpreted later as a mass of a hypermultiplet.
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In the general case we will have many D3-branes stretched between D5 and NS5

branes. For the case where nv parallel D3-branes end on a pair of NS5-branes,

we get nv vector multiplets that transform under U(1)nv gauge group. When the

parallel branes coincide the gauge symmetry is enhanced to U(nv) by Chan-Paton

factors. A good explanation on how this happens may be found in [5]. Another

case is when nh D3-branes stretch between a pair of D5-branes, in that case we

get nh hypermultiplets. Performing a mirror duality the hypermultiplets become

vectors that transform under U(nh) when the branes coincide. The former gauge

group is called electric gauge group, the latter, magnetic gauge group. Finally, when

D3-branes end on a D5-brane in one side and on an NS5-brane in the other, due to

boundary conditions there are no massless modes.

The next question is: what happens when we add more 5-branes in our configu-

ration? Two possibilities would be:

~x1

~x2

...

~xk1

~x1′

~x2′

...

~xk2 ′

(a) U(k1)×U(k2) elec-
tric gauge group

~y1

~y2

...

~yk1

~y1′

~y2′

...

~yk2 ′

(b) U(k1) × U(k2)
magnetic gauge group

Figure 2

In both cases strings stretched between branes i and j, i = 1, . . . , k1, j =

1, . . . , k2, give a hypermultiplet the mass of which is proportional to | ~xi − ~xj ′ |

(or | ~yi− ~yj ′ |). Hence, when a brane from the left meets a brane from the right, we

get a massless hypermultiplet. We have a total of k1k2 hypermultiplets transforming

as (k1, k̄2) of U(k1)×U(k2). The four real scalars in the hypermultiplets transform

under the R-symmetry group SU(2)V × SU(2)H as (1,2) in the case of the electric
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theory and as (2,1) for the magnetic theory.

Another interesting case is that of Figure 1. We have a string stretched between

the D5-brane and the D3-brane giving a hypermultiplet of mass | ~x − ~m |, which

becomes massless when both branes coincide. The scalars in this hypermultiplet

transform as (1, 2) under the R-symmetry SU(2)V × SU(2)H . Performing a mirror

symmetry we also have the case depicted in the following figure

~y

D5 NS5 D5

D3

~m, z1 ~w, t ~m, z2

Figure 3: U(1) magnetic theory with one hypermultiplet

with a hypermultiplet of mass | ~y − ~w | and scalars transforming as (2,1). Adding

more branes we find the general case:

~w, t1 ~m1, z1 ~mns , zns ~w, t2

k

{
...

. . .

︷ ︸︸ ︷ns

Figure 4: Electric hypermultiplets transforming as ns fundamentals of U(k)

where for each D5-brane we get k hypermultiplets transforming as the fundamental

representation of U(k). The fundamental hypermultiplet jth, j = 1, . . . , ns, has bare

mass ~mj . Thus, we see as we said before how the ~m parameter of D3-branes must

be interpreted as a mass.
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2.2 Hanany-Witten Transition

Consider the configuration of Figure 1 and see what happens when the position z

of D5 increases: at z = t2 the D5-brane coincides with the right NS5-brane and then,

for z > t2, their positions are exchanged. However, in the original configuration we

now know we have a hypermultiplet that becomes massless when ~m = ~x, but for the

new phase we do not have any hypermultiplet! Something is wrong. In reference [2] a

solution was proposed. Define the total magnetic charge measured on an NS5-brane

(or its linking number) as

LNS =
1

2
(r − l) + (L−R) (4)

where r is the number of D5-branes to the right of NS5, l the number to the left, R

the number of D3-branes to the right of NS5 ending on it and L the number ending

to the left. Analogously we define

LD =
1

2
(r − l) + (L−R) (5)

It can be shown that those quantities must be preserved under any transition of

branes. For the brane configuration of Figure 1 the linking numbers are LNSl
= − 1

2

for the NS5-brane at the left, LNSr = 1
2 for the right one and LD = 0. Moving the

D5-brane so that z > t2

~w, t1 ~w, t2 ~m, z ~w, t1 ~w, t2 ~m, z

Figure 5: Two possibilities for the phase z > t2 of U(1) theory with one electron

we find LNSl
′ = − 1

2 , LNSr ′ = 3
2 and LD′ = −1 !! We can fix this if a D3-brane

is created when NS5 and D5 cross each other, then the linking numbers match
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properly.

2.3 Example of Mirror Symmetry

As an example let us consider the case of the U(2) theory with 5 flavors. The

brane picture of this theory is represented in figure (a) of the following figure:

(a) Brane picture: Coloumb branch (b) Another phase: Higgs branch

(c) Mirror theory (d) Another phase of the
mirror

(e) Simplest phase of the
mirror

The Coloumb branch is spanned by the scalars of two vector multiplets, so it

has quaternionic dimension dV = 2. The Higgs branch is spanned by the scalars

in the hypermultiplets we get from each D5-brane, 5 hypermultiplets transforming

as fundamentals of U(2), this is 10 hypers, giving dH = 6 after substracting four

hypermultiplets that make the vector multiplets become massive by the Higgs mech-

anism. We can move to a Higgs branch connecting the D3-branes in another way

such that the free parameters are the positions ~y instead of the positions ~x of the

D3-branes. This is depicted in the figure (b).

So far we have been representing NS5-branes with a light-blue line and D5-branes

with dark-blue. However, D5-branes span different directions than NS5-branes, so

we can think of them as coming out from the paper and therefore represent them

as a cross, that way there won’t be any confusion on whether a D3-brane intersects

13



them or not. Figure (c) is the mirror of figure (b) where now D5-branes are crosses.

Note that we have not connected the left NS5-brane with the first from the

left D5-brane with two D3-branes. Configurations with NS5-branes and D5-branes

connected with more than one D3-branes are called s-configurations. For consis-

tency with the field theory, s-configurations should be considered to break super-

symmetry and hence we should not allow them. Next we move to another phase

in figure (d) performing a brane transition, for this a D3-brane is annihilated when

D5 crosses NS5 in order for the linking numbers to be conserved. With another

transition we get to the brane picture of figure (e), where we read off the theory

as a U(1) × U(2) × U(2) × U(1) gauge theory with hypermultiplets transforming

as (1, 2) ⊕ (2, 2) ⊕ (2, 1) plus another 2 flavor hypermultiplets transforming as the

fundamental of each U(2) factor. Counting dimensions we find for the Coloumb

branch dV = 6 and for the Higgs dH = 2 + 2 × 2 + 2 + 2 + 2 − 10 = 2, exactly the

opposite of the original theory, as it should be.

Consider now SU(2) gauge group instead of U(2). The Coloumb branch de-

creases in one quaternionic dimension and the Higgs branch increases in one. Hence,

we want for the mirror to increase the Coloumb branch in one dimension and de-

crease the Higgs in one. It can be shown that this is achieved by gauging the two

U(1) flavor groups.

2.4 Brane Constructions with O3 planes

We are now interested in brane constructions for gauge groups Sp(k). For this

we will need to use orientifold planes and hence need to know how they change

under mirror symmetry, that we recall is basically an S-duality transformation. In

the following table we summarize the four different kinds of orientifold planes O3,

their charges, the gauge group they generate and their S-dual:
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O-plane Charge Gauge group S-dual

O3− −1
4 SO(2n) O3−

Õ3
−

+1
4 SO(2n+ 1) O3+

O3+ +1
4 Sp(n) Õ3

−

Õ3
+

+1
4 Sp′(n) Õ3

+

Table 1: Kinds of O3-planes and their S-duals.

When an O3-plane passes through a 1/2NS5-brane or 1/2D5-brane it changes

its type. The different possible cases are exemplified in the following figure:

O3− O3+ Õ3
+

Õ3
−

O3−

Figure 6: Change of O3 plane when passing through a 5-brane.

Applying S-duality we see that the rule is consistent:

O3− Õ3
−

Õ3
+

O3+ O3−

Figure 7: S-dual of the previous figure.

Now we need to know what happens with D3-branes stretched between 1/2NS5-

branes and 1/2D5-branes when the half-5-branes cross each other. What we want to

know is the relation between the number N of D3-branes stretched between the half-

5-branes before the transition and the number Ñ of D3-branes after the transition.
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The process is depicted in the following figure:

N

(a) Before transition

Ñ

(b) After transition

Figure 8: Transition of half-5-branes with O3 planes

Using the conservation of the linking number for the 1/2NS5-brane and the

1/2D5-brane (half-5-branes have charge 1/2) it is straightforward to check that

when the charges of the O3 planes at the left of the left half-5-brane and at the right

of the right half-5-brane are the same, there is either creation or annihilation of a

D3-brane in the transition satisfying N + Ñ = 1, and when the charges are different

then there cannot be any D3-brane stretched between the 5-branes, i.e. N = Ñ = 0.

Lastly, it remains to be analysed the splitting of D5-branes. That is: the mirror

theory is given by D3-branes ending on 1/2NS5-branes, which are the S-duals of

1/2D5-branes, hence we need to split the D5-branes into two independent 1/2D5-

branes that move freely on the O3-plane. This process is depicted in the following

figure:

(a) D5-brane before splitting
(a 1/2D5-brane and its image)

N

(b) Two independent 1/2D5-
branes after splitting

Figure 9: Splitting of a D5-brane

The value N of D3-branes between the pair of 1/2D5-branes depends on the type

of O3-plane. Looking for the configuration with minimum tension, which is propor-

tional to charge/linking number in the case of Dp-branes, we find that N = 0 for

the orientifolds O3+, Õ3
+

, O3−, and N = 1 for Õ3
−

. For the last case, consistency
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with the dimension of the Higgs branch must also be taken into account.

For a general number of D5-branes, starting with linking numbers 0 for all D5-

branes the rule is: L = 0 for O3+ and Õ3
+

, L = ± 1
2 for O3− and Õ3

−
alternating

signs and starting with a minus sign from the left. The consequence of this is that

a D3-brane will be created between each pair of splitted 1/2D5-branes only in the

case of the Õ3
−

-plane, which is represented in the following figure.

Figure 10: Splitting of two D5-branes.

However, we will only use O3-planes for dealing with Sp(k) theories and hence

there won’t be any D3-brane created when splitting D5-branes.

2.5 Example of Mirror symmetry with O3-planes

As an example of brane construction and mirror theory with O3 planes we are

going to show the case of Sp(2) gauge group with Nf = 5 flavors. The brane picture

for this theory is depicted in (a) of the following Figure 11.

We begin by splitting all five D5-branes on the orientifold plane, this is diagram

(b). Then, for simplicity, we perform a rotation on the diagram so that in (c) the

1/2D5-branes are vertical lines and the 1/2NS5-branes come out from the paper

(but we don’t use light blue crosses because we need to attach many D3-branes

on them), and then split all D3-branes getting a Higgs branch. Note that due to

the rules for D3-branes stretched between a 1/2D5-brane and a 1/2NS5-brane we

cannot put a D3-brane between the 1/2NS5-branes and the closest to them 1/2D5-

branes. Further to this, the second D3-brane that ends on 1/2NS5-brane skips again

a 1/2D5-brane. We see the reason for this in diagram (d). With the left 1/2NS5-

brane we show a first transition that doesn’t change the number of D3-branes. With

the right 1/2NS5-brane we perform a second transition, annihilating a D3-brane and
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reaching a distribution of branes where it is clear that the second D3-brane ending

on 1/2NS5-brane must skip also a 1/2D5-brane.

(a) Brane picture (b) Splitting of D5-branes

(c) Higgs branch after splitting D3-branes (d) Another phase

(e) Another phase (f) Mirror theory

Figure 11: Sp(2) with 5 flavors and mirror theory

After some more transitions we reach diagram (e), where we can observe that,

due to the rules already mentioned, one more transition for each 1/2NS5-brane

is possible without neither creation nor annihilation of D3-branes, reaching finally

diagram (f) after performing a mirror duality and joining both 1/2D5-branes so that

they can leave the orientifold plane. From the last diagram we can read off the gauge

group, which is O(2) × Sp(1) × O(4) × Sp(2) × O(4) × Sp(1) × O(2)×, with half-

hypermultiplets transforming in the bifundamental of each pair of adjacent factors,

and a full hypermultiplet (since the two 1/2D5-branes have joined) transforming in

a flavor group O(2).
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3 Quivers and Hilbert series of the Higgs branch

An N = 2 theory in four dimensions is fully specified with the gauge group

and the matter fields transforming as hypermultiplets in a certain representation.

A quiver encodes this information using nodes for the gauge groups and edges for

the hypermultiplets. From an N = 2 quiver we can find the corresponding N = 1

quiver which must be oriented in order to encode also the superpotential. For this

we need to do three steps:

• Each gauge group transforms in an N = 2 adjoint vector multiplet, which

decomposes in an adjoint vector multiplet and an adjoint chiral multiplet. We

add an edge starting and ending at the node corresponding to the gauge group

in order to account for this chiral multiplet.

• Each hypermultiplet decomposes into two chiral multiplets, hence substituting

each edge for two oriented edges (or one bi-directional edge).

• We read off the superpotential summing up all possible gauge invariant terms,

i.e. closed paths of edges in the quiver, that contract properly.

Let us exemplify this with the U(1) theory with two flavors. The global symmetry

group is SU(2) and hence the N = 2 quiver is:

U(1) SU(2)

Then, the N = 1 quiver is:

U(1) SU(2)φ

X12

X21

where the vector multiplet has decomposed into a vector and a chiral multiplet Φ,

and the bifundamental hypermultiplet has decomposed into the two chiral multiplets

X12 and X21. Hence, the superpotential is

W = Tr [X21 · φ ·X12] (6)
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The moduli space of vacuum expectation values of scalar fields a priori, without

any restriction, would be CE , where E is the number of complex scalar fields. There

are two types of restriction, the existence of a superpotential W gives the F-terms,

and the Fayet-Iliopoulos the D-terms. We define the Master Space to be the subspace

defined by the F-terms:

Fb = CE
/
< F − terms > (7)

being the F-term condition:

∂W(Φ)

∂Φ
= 0 (8)

and the Mesonic Moduli Space restricting further to combinations of fields that are

gauge invariant, i.e. closed paths of edges on the quiver:

Mmes = Fb // U(1)G (9)

for the case when the gauge group is a product of G U(1) factors. In the case of

gauge group U(N)G we have

Mmes
N = Fb // (SU(N)G × U(1)G) = FbN // U(1)G = (Mmes)N

/
SN (10)

where we have defined

FbN = Fb // SU(N)G (11)

The same definition applies to any non-unitary gauge group.

In the previous example, the F-term condition that defines the Higgs branch is

∂W(Φ)

∂φ
= X21 ·X12 = 0 (12)

and the scalars from vector multiplets are set to 0, i.e. φ = 0. We can understand

this condition better writing explicitly all the indices. Define Ai = X21, Bj = X12,

then:

W = Tr
[
AiΦ

i
jB

j
]

0 =
∂W(Φ)

∂Φ
= Tr

[
AiB

j
]

= AiB
i (13)
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Defining the matrix M j
i = AiB

j this is equivalent to requiring

Tr [M ] = 0 M2 = AiB
j ·AjBk = 0 (14)

the first equation being the F-term condition and the second a consequence of the

definition of M .

For any number of flavors Nf , and gauge group U(1), we find analogously:

Mmes = {MNf×Nf
| TrM = 0,M2 = 0} (15)

We need now a way to characterize the moduli spaces so that we can compare

and classify them easily. We use for this the Hilbert series of the moduli space,

which encodes the algebraic structure of the space. The Hilbert series is a partition

function counting gauge invariant operators in the chiral ring. If we have a set of

basis operators, say {a, b, c}, the complete set of operators made out of them is

{
1, a, b, c, a2, ab, ac, b2, bc, c2, a3, a2b, a2c, ab2, ac2, abc, b3, b2c, bc2, c3, a4, ...

}
(16)

and we can count them keeping track of the degree of each operator using the

Plethystic Exponential. Using ti as dummy variable for the degree of each of the

basis operators, the Hilbert series is

HS = PE[t1 + t2 + t3] = PE[t1]PE[t2]PE[t3] =
1

1− t1
1

1− t2
1

1− t3
(17)

and using just one variable for the degree of the operators, t = t1 = t2 = t3,

HS =
1

(1− t)3
(18)

Furthermore, the generators may be in a certain representation of a certain group,

defined by a character. Take for instance a,b,c to be in the adjoint of SU(2), whose

character is x2 + 1 + x−2. Then we can keep track of the representation of all the

operators of the Hilbert series in which they transform just taking into account this
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fugacity. In this case:

HS = PE[x2t+ t+ x−2t] =
1

(1− x2t)(1− t)(1− t/x2)
(19)

Finally, the generators may satisfy a certain relation. Let us return to the example

of U(1) with 2 flavors. Here we have three operators M11,M12,M21 of order 2,

the three independent components of the matrix M, order 2 because each of them

comes from M j
i = AiB

j , and we take order 1 to be the order of the complex scalars

X12 and X21. These operators satisfy the relation M2 = 0, which translates into

M11M22 = M12M21, i.e. detM=0, that transforms as a singlet. Hence, the Hilbert

series takes the form

HS = (1− t4)PE[x2t2 + t2 + x−2t2] =
1− t4

(1− x2t2)(1− t2)(1− t2/x2)
(20)

where the first factor keep track of the relation, and now we have set the order of

the generators to be 2.

The calculation of the Hilbert series of the Higgs branch can be done in a more

systematic way. We define the F-flat Hilbert series the partition function that takes

into account the F-term conditions but not the gauge invariance of the operators.

Starting from the operators Ai and Bj for any number Nf of flavors, they transform

as the fundamental and the antifundamental, respectively, and have charges -1,+1

under the gauge group U(1). The relation Tr
[
AiB

j
]

is of order two and transforms

as a singlet. Then,

gF
b

= (1− t2)PE

[
[1, 0, . . . , 0]SU(Nf )tz + [0, . . . , 0, 1]SU(Nf )

t

z

]
(21)

which, setting the fugacities for the representations of SU(Nf ) to 0, for the sake of

simplifying the calculations, gives:

gF
b

(t, z) =
1− t2

(1− tz)Nf (1− t/z)Nf
(22)
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Now we can project onto the set of gauge invariant operators by performing a Molien-

Weyl integral:

HS = gHiggs(t) =
1

2πi

∮
dµG(z)gF

b

(t, z) (23)

where dµG(z) is the Haar measure of the gauge group. In the case Nf = 2:

gHiggs(t) =
1

2πi

∮
dz

z

1− t2

(1− tz)2(1− t/z)2
(24)

which can be easily solved by the residue theorem:

gHiggs(t) = Res
z=t

[
1

z
gF

b

(t, z)

]
= (1− t2)

d

dz

[
1

z

(z − t)2

(1− tz)2(1− t/z)2

]
=

= · · · = 1 + t2

(1− t2)2

(25)

and coincides with the result that we already got if we set the fugacity x = 0.

In ref [6] they introduce and apply this method for calculating the Hilbert series

of the moduli space of instantons for different gauge groups, which is identified with

the Higgs branch of supersymmetric theories where the characteristic group becomes

de global symmetry of the theory.

4 Hilbert series of the Coloumb branch and En-

hanced Global Symmetries

A hidden symmetry is generated by a set of conserved currents which are not

associated to a symmetry of an action. In any 3D gauge theory with a U(1) factor

in the gauge group we find a topological conserved current

Jµ =
1

2π
εµνλTrFνλ (26)

In Ref [1] the authors predicted hidden symmetries of the mirror theories of

U(1) and SU(2) with Nf flavors, showing explicitly in the original theory as the
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flavor symmetry, which are generated by the topological currents of each of the

U(1) factors of the gauge group and by monopole operators of conformal dimension

1. A nice review on magnetic monopoles may be found in [7], and also a treat-

ment of the metric of SU(N) monopoles in [8]. The chiral scalars, superpartners

of the topological currents, to be considered are the Casimir operators of the gauge

group; these together with the monopole operators generate the Coloumb branch

of the moduli space of the theory, and those of conformal dimension 1 must have

topological charges corresponding to the roots of the global hidden symmetry group.

The conformal dimension of a monopole operator equals the energy of a state of

a supersymmetric theory on R×S2 the states of which are in one-to-one correspon-

dence with the monopole operators of the original theory on R3. For an arbitrary

gauge group of rank r with Nf flavors we have r magnetic charges and the conformal

dimension is given by

∆ = −
∑
r+

| r+(H) | +1

2

∑
w

| w(H) | (27)

where the first sum runs over all positive roots in a chosen basis and the second

over all weights of the representation in which the hypermultiplets transform. H

is the embedding that assigns a magnetic charge to each U(1) factor of the gauge

group corresponding to each Cartan generator. Examples of this formula for dif-

ferent gauge groups can be found in [9], and more details about its origin in [10], [11].

Let us exemplify how this works with a G2 theory with hypermultiplets trans-

forming in the fundamental representation. The set of positive roots is

Φ+ = {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2}, W = D6 (28)

and W is the Weyl group. The weights of the fundamental representation of G2 are

α, 2α+ β, α+ β,−α,−2α− β,−α− β, 0 (29)
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and hence the conformal dimension of monopole operators is given by

∆ = − (| m1 | + | m2 | + | m1 +m2 | + | 2m1 +m2 | + | 3m1 +m2 | + | 3m1 + 2m2 |)

+
Nf
2

(| m1 | + | 2m1 +m2 | + | m1 +m2 | + | −m1 | + | −2m1 −m2 | + | −m1 −m2 | + | 0 |)

= Nf (| m1 | + | 2m1 +m2 | + | m1 +m2 |)

− (| m1 | + | m2 | + | m1 +m2 | + | 2m1 +m2 | + | 3m1 +m2 | + | 3m1 + 2m2 |)

(30)

The Coloumb branch is the set of chiral operators of the form

{V~mφn1
1 φn2

2 }~m∈Zr;n1,n2∈N (31)

that are invariant under Weyl transformations, where φ1, φ2 are the two diagonal

chiral complex scalars of the vector multiplet and Vm is a monopole operator of

charge ~m. The Hilbert series is given by

HS =
∑
~m

t∆P (~m) (32)

where t is a dummy variable that counts the degree of the operator and P is the

product of plethystic exponential of each Casimir invariant of the unbroken gauge

group, which is broken by the values of the magnetic charges.

The different possibilities for the unbroken gauge group in the case of the example

are summarised in the following table:

~m Unbroken group Degrees of Casimirs P (~m)

(0, 0) G2 2,6 1
(1−t2)(1−t6)

(m, 0), (0,m) U(1)× SU(2) 1,2 1
(1−t)(1−t2)

(m1,m2) U(1)× U(1) 1,1 1
(1−t)2

Table 2: Different breakings of the gauge group by the set of values of the magnetic charges.
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Since we want only Weyl invariant operators we restrict the sum to:

HS =
∑

m1,m2∈N
t∆P (~m) (33)

and solving the four cases in the table separately using the conformal dimension

formula given above we find:

HSG2,Nf
=

1 + t2Nf−4 + t2Nf−3 + t2Nf−2 + t2Nf−1 + t4Nf−5

(1− t2)(1− t6)(1− t2Nf−6)(1− t2Nf−5)
(34)

An algebraic variety is defined by the simultanous vanishing of a set of homoge-

neous polynomials. When the difference between the number of generators and the

number of relations equals the dimension of the space we call the variety a complete

intersection. The generators always appear in the Hilbert series as monomials in the

denominator, one factor for each generator, the order of the monomial indicating

the order of the generator. In the case of a complete intersection we find a factor in

the numerator for each relation, the order of which corresponds to the order of the

relation.

In the case of G2 we see that the numerator does not factorise, meaning that the

Coloumb branch of G2 is not a complete intersection. In the following section we

will see many cases where we find a complete intersection.

5 Computations

5.1 U(1) gauge group with Nf flavors

We start with the simplest gauge group, U(1), with Nf hypermultiplets trans-

forming under a global symmetry group SU(Nf ). As explained in section 3 the

Higgs branch is given by a Molien-Weyl integral:

HS =

∮
dz

z
(1− t2)

1

(1− tz)Nf (1− t/z)Nf
(35)
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which can be solved for every value of Nf . For the Coloumb branch we need the

formula for the conformal dimension of monopole operators. In this case there is

only one magnetic charge m and the formula is

∆ =
Nf
2
| m | (36)

The Hilbert series for the Coloumb branch is

HSU(1),Nf
=

∞∑
m=−∞

t∆P (m)qm =
1

1− t

∞∑
m=−∞

t
Nf
2 |m|qm

=
1− tNf

(1− tNf/2q)(1− t)(1− tNf/2/q)

(37)

where the fugacity q keeps track of the conserved charge under the U(1) symmetry

of the topological conserved current. Setting q = 1 we find the unrefined Hilbert

series:

HS =
1− tNf

(1− tNf/2)2(1− t)
= PE[t+ 2tNf/2 − tNf ] (38)

From this result we see there are three generators of the Coloumb branch: the

Casimir operator of order 1, call it Φ, and two monopole operators of dimension

Nf/2 with charges ±1, V±. The relation that the generators satisfy which defines

the algebraic variety, is

V+V− = ΦNf (39)

Note also that this Coloumb branch is a complete intersection, since the dimension of

this moduli space is one quaternionic dimension, which corresponds to two complex

dimensions spanned by three generators restricted by one condition.

5.1.1 Nf = 2

The special case of U(1) with two flavors is self-dual and exhibits an enhancement

of the U(1) global symmetry associated to the topological conserved current to a

SU(2) symmetry. The generators of the Coloumb branch transform in the adjoint
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of this group and we can observe this in the Hilbert series, in this case is

HSU(1),2 =
1− t2

(1− qt)(1− t)(1− t/q)
(40)

and we see that the three generators are of order one and have charges correspond-

ing to the adjoint of SU(2), while the relation is at order two. The SU(2) global

symmetry shows explicitly in the mirror theory as a square representing a SU(2)

flavor group attached to the U(1) node.

Figure 12: U(1) theory with 2 flavors

Of course, the quiver of the mirror theory is exactly the same as the quiver of the

original since, as we already said, this theory is self-dual under mirror symmetry.

5.1.2 Nf = 3

This theory has an SU(3) global symmetry of the flavor hypermultiplets (in the

brane picture this corresponds to the case when D5-branes are coincident, otherwise

it is broken to a subgroup).

(a) Brane picture (b) Higgs branch (c) Mirror

Figure 13: U(1) theory with 3 flavors

For this theory we are going to check that the Higgs branch of the original theory

corresponds to the Coloumb branch of the mirror theory. The Hilbert series of the
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Higgs branch is given by

HS =

∮
dz

z
(1− t2)

1

(1− tz)3(1− t/z)3
= (1− t2)

1

2

d2

dz2

[
(z − t)3

z(1− tz)3(1− t/z)3

]
=

= · · · = 1 + 4t2 + t4

(1− t2)4

(41)

The mirror theory is summarised in the quiver that can be extracted from the above

quiver:

1 1 1 1

all groups being U(1). For this theory we have two magnetic charges m1, m2 cor-

responding to the two U(1) gauge groups, and matter content transforming as a

bifundamental hypermultiplet of the two gauge groups and two flavor hypermulti-

plets, one for each gauge group. Hence, the unrefined Hilbert series is given by:

HS =
1

(1− t)2

∞∑
m1,m2=0

t
1
2 (|m1|+|m2|−|m1−m2|) = · · · = 1 + 4t+ t2

(1− t)4
(42)

We see that, after redefining the order of the generators from 1 to 2, we get the

same result as the Higgs branch of the original theory.

5.2 U(2) with Nf flavors

Following the procedure detailed in section 4, let us compute the Hilbert series

of the Coloumb branch of U(2) with Nf flavors. To begin with we need a set of

positive roots for U(2), this is just

Φ+ = {e1 − e2}, (43)

in the cartesian basis. Using this we find the conformal dimension of monopole

operators to be

∆ =
Nf
2

(| m1 | + | m2 |)− | m1 −m2 | . (44)
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The charges of monopole operators give two possibilities for the unbroken gauge

group, summarised in the following table:

~m Unbroken group Degrees of Casimirs P (~m)

(m,m) U(2) 1,2 1
1−t

1
1−t2

(m1,m2) U(1)xU(1) 1,1 1
1−t

1
1−t

Table 3: Breaking of U(2) by the set of values of the magnetic charges.

Finally we find the Hilbert series summing over all pairs of magnetic charges satis-

fying m1 ≥ m2, since for U(2) the Weyl group is the permutations group S2 that

maps the case where m2 ≥ m1 to the former case. After some computations we get

HSU(2),Nf
=

∞∑
m1≥m2∈Z

t∆P (m1,m2) =
(1− tNf )(1− tNf−1)

(1− t)(1− t2)(1− tNf/2−1)2(1− tNf/2)2

= PE[t+ t2 + 2tNf/2−1 + 2tNf/2 − tNf−1 − tNf ].

(45)

Again the Coloumb branch is a complete intersection, now of quaternionic dimension

2, complex dimension 4, generated by six operators under two relations.

5.2.1 Nf = 4

In the same way that we found a symmetry enhancement for the U(1) theory

with two flavors, we now find the same enhancement for U(2) with four flavors.

Evaluating the Hilbert series of the Coloumb branch at Nf = 4 we find

HSU(2),4 = PE[3t+ 3t2 − t3 − t4]. (46)

In the unrefined case we only see that we have as many generators at order one and

at order two as the dimension of the adjoint of SU(2). We could add a fugacity

in the Hilbert series keeping track of the value of the conserved charge correspond-

ing to the U(1) symmetry of the topological conserved current and we would see

that those generators have charges +1,0,-1 corresponding to the adjoint of SU(2).

The conserved charge is the sum of the magnetic charges, m1 + m2. However, it
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is not really necessary to repeat the whole calculation with the extra fugacity, we

can know what are the charges of the generators just by identifying those genera-

tors. Evaluating the formula for the conformal dimension at Nf = 4 we see that

the only possible monopole operators of conformal dimension one are those with

magnetic charges (+1,0), (-1,0),(0,+1),(0,-1). Imposing Weyl invariance we are left

with two linear combinations: (1,0)+(0,1) and (-1,0)+(0,-1). Hence, we have two

generators at order one that are monopole operators of conserved charge ±1. The

third generator at order one is the first Casimir operator, which has no magnetic

charge, and can be written as a trace, TrΦ = φ1 + φ2, of the adjoint scalar in the

vector multiplet. Dressing the two monopole generators with φ1 and φ2 we find the

independent generators at order two with charges ±1:

{V1,0φ2 + V0,1φ1, V−1,0φ2 + V0,−1φ1, T rΦ
2 = φ2

1 + φ2
2}, (47)

the third operator being the second Casimir invariant, neutral under the conserved

current.

5.3 U(3) with Nf flavors

Starting with the set of positive roots

Φ+ = {e1 − e2, e1 − e3, e, e2 − e3}, (48)

we find the conformal dimension of monopole operators

∆ =
Nf
2

(| m1 | + | m2 | + | m3 |)− (| m1 −m2 | + | m1 −m3 | + | m2 −m3 |) .

(49)

The different cases of breaking of the gauge symmetry by the choice of magnetic

charges are:
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~m Unbroken group Degrees of Casimirs P (~m)

(m,m,m) U(3) 1,2,3 1
1−t

1
1−t2

1
1−t3

(m1,m1,m2) U(2)xU(1) 1,2,1 1
1−t

1
1−t2

1
1−t

(m1,m2,m3) U(1)xU(1)xU(1) 1,1,1 1
1−t

1
1−t

1
1−t

Table 4

Taking into account that the Weyl group is S3, the Hilbert series is:

HSU(3),Nf
=

∞∑
m1≥m2≥m3∈Z

t∆P (m1,m2,m3) = · · · =

=
(1− tNf )(1− tNf−1)(1− tNf−2)

(1− t)(1− t2)(1− t3)(1− tNf/2−2)2(1− tNf/2−1)2(1− tNf/2)2

= PE[t+ t2 + t3 + 2tNf/2−2 + 2tNf/2−1 + 2tNf/2 − tNf−2 − tNf−1 − tNf ]

(50)

Once again, the Coloumb branch is a complete intersection of quaternionic dimension

three, generated by the three Casimir invariants of U(3) and six monopole operators

(four of them dressed by classical operators), under three relations. As before, for

Nf = 6 there is an enhancement of the topological U(1) to an SU(2) symmetry such

that the generators transform in three adjoints of this group.

5.4 SU(3) gauge group with Nf flavors

The Hilbert series of the Coloumb branch of the SU(Nc) theories can be found by

gauging away the topological U(1) symmetry from the Hilbert series of the U(Nc)

theory. For doing this we need the refined Hilbert series with a fugacity for the

conserved charge, which is the sum of magnetic charges. Let us do the case Nc = 3

using the Hilbert series found in the previous section.

We already mentioned that the charge under the topological U(1) for the gen-

erators is 0 for the classical operators and ±1 for the monopole operators. We can
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see this explicitly building all nine generators:



TrΦ, T rΦ2, T rΦ3, V100 + V010 + V001, V−100 + V0−10 + V00−1,

V100(φ2 + φ3) + V010(φ1 + φ3) + V001(φ1 + φ2),

V−100(φ2 + φ3) + V0−10(φ1 + φ3) + V00−1(φ1 + φ2)

V100(φ2
2 + φ2

3) + V010(φ2
1 + φ2

3) + V001(φ2
1 + φ2

2),

V−100(φ2
2 + φ2

3) + V0−10(φ2
1 + φ2

3) + V00−1(φ2
1 + φ2

2),


(51)

The three Casimir invariants have charge 0 and the monopole operators, both dressed

by classical operators or fundamentals, have charge either 1 or -1. We can add the

fugacity with this conserved charge to the Hilbert series directly, since it does not

depend on the basis chosen for the generators. We find:

HSU(3),Nf
=

(1− tNf )(1− tNf−1)(1− tNf−2)

(1− t)(1− t2)(1− t3)
·

· 1

(1− ztNf/2−2)(1− 1
z t
Nf/2−2)(1− ztNf/2−1)(1− 1

z t
Nf/2−1)(1− ztNf/2)(1− 1

z t
Nf/2)

(52)

Then we find the Hilbert series of the Coloumb branch of SU(3) by gauging away

the topological conserved charge using a Molien-Weyl integral and by eliminating

the classical contribution of the Casimir invariant of order one:

HSSU(3),Nf
= (1− t) 1

2πi

∮
|z|=1

dz

z
HSU(3),Nf

= (1− t)
∑
zi pole
|zi|<1

Res
z=zi

[
1

z
HSU(3),Nf

]
=

= (1− t)
(

Res
z=tNf/2−2

[
1

z
HSU(3),Nf

]
+ Res
z=tNf/2−1

[
1

z
HSU(3),Nf

]
+ Res
z=tNf/2

[
1

z
HSU(3),Nf

])
=

= · · · = 1 + tNf−3 + 2tNf−2 + tNf−1 + t2Nf−4

(1− t2)(1− t3)(1− tNf−4)(1− tNf−3)

(53)

In that case the Coloumb branch is not a complete intersection. The dimension of

the moduli space is the order of the pole at t = 1, this gives four complex dimensions,

equivalently two quaternionic dimensions.
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5.5 Sp(1) = SU(2) gauge group with Nf flavors

Let us now study the SU(2) theory that Intriligator and Seiberg found in [1] to

be mirror symmetric to a theory with gauge group KSO(2Nf ) = U(1)3 × U(2)Nf−3

and hidden global symmetry SO(2Nf ) which shows explicitly in the SU(2) theory

as the flavor symmetry of Nf hypermultiplets. Start with the Coloumb branch. The

positive root of Sp(1) is

Φ+ = {2e1}, (54)

and hence the conformal dimension of magnetic monopoles:

∆ =
1

2

2Nf∑
i=1

| m | −2 | m |= (Nf − 2) | m | . (55)

The breaking of Sp(1) by the choice of magnetic charges is shown in the following

table:

~m Unbroken group Degrees of Casimirs P (~m)

0 Sp(1) 2 1
1−t2

m U(1) 1 1
1−t

Table 5

Finally, restricting the summation to the Weyl chamber where m ≥ 0, the Hilbert

series is:

HS =

∞∑
m=0

t∆P (m) =
1− t2Nf−2

(1− t2)(1− tNf−2)(1− tNf−1)
= PE[t2+tNf−2+tNf−1−t2Nf−2]

(56)

In the general case of the Coloumb branch of SU(N) with Nf flavors we do not get

a complete intersection, as we saw in the case of SU(3), but for the case N = 2,

which coincides with the Sp(1) theory, we see that it is a complete intersection.

5.5.1 SU(2) with Nf = 4

As explained in section 2.3, the mirror of SU(2) with Nf flavors can be obtained

from the mirror of U(2) by gauging the U(1) flavor groups. For the case Nf = 4 we
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find the quiver theory:

1

1

1

1

2

Figure 14: Mirror theory of SU(2) with 4 flavors

Denoting mi, i = 1, 2, 3, 4, the magnetic charges corresponding to the U(1) factors

and n1, n2 the charges for U(2), after setting m4 = 0 in order to fix the translational

invariance that would have the formula for the conformal dimension otherwise, we

get:

∆ =
1

2

∑
j=1,2,3
i=1,2

| mj − ni | − | n1 − n2 | +
1

2
(| n1 | + | n2 |) (57)

The Hilbert series for the Coloumb branch is thus

HSKSO(8)
=

1

(1− t)3

∑
mi∈Z
i=1,2,3

∑
ni∈Z
n1≤n2

t∆P2(n1, n2) (58)

with

P2(n1, n2) =

 a2
1 n1 6= n2

a1 · a2 n1 = n2

where ai =
1

1− ti
(59)

After some rearrangements of the summations, we find:

HSKSO(8)
=

1 + 18t+ 65t2 + 65t3 + 18t4 + t5

(1− t)10
= 1+28t+300t2 +1925t3 + . . . (60)

Notice that for order k we get as many operators as the dimension of the represen-

tation [0, k, 0, 0] of D4. We could add fugacities for each U(1) magnetic charge and

one fugacity for the conserved charge of the U(2) factor, n1 +n2, and we would actu-

ally get the characters of these representations of D4. Hence, the hidden symmetry

SO(8) is visible in the Hilbert series. Furthermore, this Coloumb branch should

coincide with the Higgs branch of the original theory. In ref [6] the authors showed
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that the Higgs branch of certain N = 2 theories in 4 dimensions are identified with

the corresponding moduli space of instantons on R4. In particular, the Hilbert series

for the coherent component of the one D4 instanton moduli space is precisely

gIrrD4
(t) =

∞∑
k=0

[0, k, 0, 0]D4
tk. (61)

Therefore, we have seen that the Higgs branch of SU(2) with four flavors has the

same Hilbert series as the Coloumb branch of its mirror, as mirror symmetry pre-

dicts.

5.5.2 SU(2) with Nf = 5

When increasing the number of flavors for the SU(2) theory the quiver of the

mirror theory grows adding U(2) factors, and the computation of the Hilbert series

of the Coloumb branch of the mirror becomes quite complicated to do analytically.

In the case of five flavors the quiver is

1

1

1

1

2 2

Figure 15: Mirror theory of SU(2) with 5 flavors

and the conformal dimension of monopole operators:

∆ =
1

2

∑
i=1,2
j=1,2

| mi−nj | +
1

2

∑
i=3,4
j=1,2

| mi− lj | +
1

2

∑
i=1,2
j=1,2

| ni− lj | − | n1−n2 | − | l1− l2 |

(62)
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where now l1, l2 stand for the magnetic charges of the second U(2) factor. The

Hilbert series:

HSKSO(10)
=

1

(1− t)3

∑
m1,m2,m3∈Z
n1≤n2∈Z
l1≤l2∈Z

t∆P2(n1, n2)P2(l1, l2) (63)

This case could still be done exactly analytically, but it does not worth the time.

Calculating order by order we find

HSKSO(10)
= 1 + 45t+ 770t2 + 7644t3 + . . . (64)

The coefficient of the order k term corresponds to the dimension of the representation

[0, k, 0, 0, 0] of SO(10), thus the correspondence with the Higgs branch of the original

theory is confirmed, as well as the SO(10) hidden symmetry.

5.5.3 Sp(1) with Nf = 4 flavors

Consider now the mirror theory of Sp(1) with 4 flavors found from the brane

picture of Sp(1). This theory is depicted in the following figure:

(a) Mirror of Sp(1)
with 4 flavors

O(2) Sp(1) O(3) Sp(1) O(3)

O(1) O(1)

We find a different mirror than that of SU(2), there is no uniqueness for the mir-

ror of a theory. Although this quiver theory is very different from the KSO(8) theory,

both Higgs branches and Coloumb branches must coincide. It would be interesting

calculating the Hilbert series for both branches of this theory and confirming that

statement.
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5.6 Sp(2) gauge group with Nf flavors

Starting with the set of positive roots

Φ+ = {2e1, 2e2, e1 − e2, e1 + e2} (65)

we find the following formula for the conformal dimension of monopole operators:

∆ =
1

2

2Nf∑
i=1

(| m1 | + | m2 |)− (| 2m1 | + | 2m2 | + | m1 −m2 | + | m1 +m2 |)

= (Nf − 2) (| m1 | + | m2 |)− | m1 −m2 | − | m1 +m2 |

(66)

The breaking of the gauge group by the set of magnetic charges:

~m Unbroken group Degrees of Casimirs P (~m)

(0, 0) Sp(2) 2,4 1
1−t2

1
1−t4

(m, 0) U(1)xSp(1) 1,2 1
1−t

1
1−t2

(m,m) U(2) 1,2 1
1−t

1
1−t2

(m1,m2) U(1)xU(1)) 1,1 1
1−t

1
1−t

Table 6

And finally, the Hilbert series of the Coloumb branch is

HSSp(2),5 =

∞∑
m1≥m2≥0

t∆P (m1,m2)

=
(1− t2Nf−2)(1− t2Nf−4)

(1− t2)(1− t4)(1− tNf−4)(1− tNf−3)(1− tNf−2)(1− tNf−1)

= PE[t2 + t4 + tNf−4 + tNf−3 + tNf−2 + tNf−1 − t2Nf−4 − t2Nf−2]

(67)

As for Sp(1), the Coloumb branch is a complete intersection, as it will be for any

Sp(k) theory.

5.6.1 Nf = 5

The brane picture of this theory and its mirror is depicted in figure 11. The

quiver for the mirror theory is
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O(2) Sp(1) O(4) Sp(2) O(4) Sp(1) O(2)

O(2)

Calculating the Hilbert series for either the Higgs branch or the Coloumb branch

of this theory can be quite complicated. Let us check that the dimensions of each

branch are in correct correspondence with the dimensions of the branches of the

original theory. For the original theory, the dimensions of the Coloumb branch and

Higgs branch are dV = 2 and dH = 10, respectively. For the mirror:

dV = 1 + 1 + 2 + 2 + 2 + 1 + 1 = 10

dH =
1

2
(2× 2 + 2× 4 + 4× 4 + 4× 2 + 4× 4 + 4× 2 + 2× 2)

− (1 + 3 + 6 + 10 + 6 + 3 + 1) = 32− 30 = 2

(68)

5.6.2 Nf = 6

One last example of Sp(2) theory, now with six flavors. The quiver of the mirror

theory is

O(2) Sp(1) O(4) Sp(2) O(5) Sp(2) O(4) Sp(1) O(2)

O(1) O(1)

Figure 16: Mirror theory of Sp(2) with 6 flavors

The dimensions of the Higgs and Coloumb branches of the original theory are dH =

14 and dV = 2, respectively. For the mirror:

dV = 1 + 1 + 2 + 2 + 2 + 2 + 2 + 1 + 1 = 14

dH =
1

2
(2× 2 + 2× 4 + 4× 4 + 4× 1 + 4× 5 + 5× 4 + 4× 1 + 4× 4 + 4× 2 + 2× 2)

− (1 + 3 + 6 + 10 + 10 + 10 + 6 + 3 + 1) = 52− 50 = 2

(69)
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5.7 Sp(3) gauge group with Nf flavors

As a last result, we give the Hilbert series for the Coloumb branch of Sp(3) with

Nf flavors:

HSSp(3),7 =

= PE[t2 + t4 + t6 + tNf−6 + tNf−5 + tNf−4 + tNf−3 + tNf−2 + tNf−1 − t2Nf−6 − t2Nf−4 − t2Nf−2]

(70)

Taking into account the form of the Hilbert series for Sp(1) and Sp(2), it is clear

how the general case Sp(k) is going to be.

5.7.1 Nf = 7

And one more example of brane configuration, its mirror and the corresponding

quiver.

(a) Higgs branch of Sp(3) with 7 flavors

(b) Mirror of Sp(3) with 7 flavors

O(2) Sp(1) O(4) Sp(2) O(6) Sp(3) O(6) Sp(2) O(4) Sp(1) O(2)

O(2)
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6 Conclusions

Mirror symmetry has been confirmed for U(1) (with 3 hypermultiplets) and

SU(2) (with 4 and 5 hypermultiplets) , the theories considered by Intriligator and

Seiberg in [1], comparing the Hilbert series of the Higgs branch of each theory with

the Hilbert series of the Coloumb branch of the corresponding mirror theory. For the

SU(2) theory, an enhanced global symmetry has been observed for the cases with

four and five flavors, giving SO(8) and SO(10), respectively, which generalizes to an

SO(2Nf ) symmetry for Nf number of flavors, and corresponds to the flavor symme-

try of the original theory. The Hilbert series of the Coloumb branches of U(1), U(2)

and U(3) theories with any number of flavors have been computed and an enhance-

ment of the U(1) topological symmetry to an SU(2) has been observed for the cases

with 2, 4 and 6 flavors, respectively. For Sp(1), Sp(2) and Sp(3) the Hilbert series

of the Coloumb branch has also been computed, showing that the Coloumb branch

of these theories is a complete intersection, which has also been observed to be true

for U(N) theories. The computation of the SU(3) theory has shown that in this

case, as well as for the G2 theory, the Coloumb branch is not a complete intersection.

The SO(N) theories have not been computed, as well as the F4, E6, E7 and E8.

These theories, and all the ones considered in this work, are treated in a very recent

paper [4].
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