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Abstract

This dissertation is a review for the Born-Infeld action. An introduction of

bosonic string theory and the object D-brane are given with its light-cone

quantization procedure. We then explain the method of obtaining effective

action. The derivation for the Born-Infeld action as an effective theory is

presented. Later we discuss the properties, supersymmetric extensions, and

applications of the Born-Infeld action.

The thesis aims at an elementary and self-contained level. In the bosonic

string theory part, the derivation outside the lectured courses of Quantum

Fields and Fundamental Forces (QFFF) program 2012-2013 will be pre-

sented in detail. No originality is claimed.
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1 Introduction

Our established understanding of nature consists with the Standard Model

(SM) and General Relativity (GR). Besides their numerous success, there

are still unsolved problems calling a deeper theory. For instance, the sin-

gularity in GR [1] and the cosmological constant problem [2] may require

quantum gravity. Quantum gravity is also a concern from consistency. Since

matters are described by the quantum theory, it is unnatural to construct

a classical energy momentum tensor determining the gravity from matter.

We know from the Colella-Overhauser-Werner (COW) gravitational shift

experiment [3] that the non-relativistic quantum mechanics at least par-

tially describes the gravity. From the effective field theory point of view,

we can take the Einstein-Hilbert action as a leading term. There may be

ultraviolate fixing point for gravity. In this direction, it may be expected

that an arbitrary-energy-scale-capable quantum gravity theory can be found

inside Quantum Field Theory (QFT). It is also true that there are many

alternative approaches of quantum gravity, such as causal set [4].

Nevertheless, string theory, which was discovered during studied strong

interaction [5], has several attractive features: 1) it is a quantum theory

automatically includes gravity; 2) no adjustable parameter; 3) it includes

the gauge fields in SM ; 4) it incorporates supersymmetry.

However, the predictions of string theory are mainly at Planck scale [6],

for instance the scattering amplitudes [7, p. 166]. The compactification into

low energy is far from trivial [8].

The thesis will discuss the Born-Infeld action [9] which is a low-energy

effective action for the electromatism of D-brane. In section 2, we introduce

the object D-brane. Then by quantizing the bosonic string, the vector

field Aµ is found on D-brane. We then discuss the method of obtaining

effective action, namely preserving the conformal invariance at quantum

level. In the following sections, the properties, supersymmetric extensions,

and application of Born-Infeld action are presented. The non-abelian Born-
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Infeld action [10] is outside the scope of the present thesis.
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2 Born-Infeld action from string

theory

2.1 Dirichlet branes

The Born-Infeld action is a low-energy effective action for the D-brane. Here

we introduce the object D-brane.

Let Sp be a Polyakov (Brink-Di Vecchia-Howe-Deser-Zumino) action [7,

p. 12]

Sp = − 1

4πα′

∫

M
dτdσ(−γ)1/2γab∂aX

µ∂bXµ, (2.1)

where 1
2πα′ is a string tension. τ and σ are time and spatial variables

parameterizing the string, respectively. γab is the world-sheet metric, with

(−+) signature. γ = det γab. Xµ is the spacetime coordinates where the

string moves (embedded). The Minkowski metric, (−+ + + · · · ), is used for

the spacetime coordinates. Einstein summation convention is assumed.

Consider a variation for Xµ in the region τ ∈ (−∞,∞) and σ ∈ [0, l] [7,
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p. 14]

δSp = − 1

2πα′

∫ ∞

−∞
dτ

∫ l

0
dσ(−γ)1/2γab∂aδX

µ∂bXµ

= − 1

2πα′

∫ ∞

−∞
dτ

∫ l

0
dσ∂a

[

(−γ)1/2γabδXµ∂bXµ

]

+
1

2πα′

∫ ∞

−∞
dτ

∫ l

0
dσ∂a

[

(−γ)1/2γab∂bXµ

]

δXµ

= − 1

2πα′

∫ l

0
dσ (−γ)1/2δXµ∂τXµ

∣

∣

∣

∞

−∞

− 1

2πα′

∫ ∞

−∞
dτ (−γ)1/2δXµ∂σXµ

∣

∣

∣

l

0

+
1

2πα′

∫ ∞

−∞
dτ

∫ l

0
dσ(−γ)1/2∇2XµδX

µ. (2.2)

In the second and third lines, integration by parts was performed. The last

line was obtained with the help of the expression of the Laplace operator

∂a

[

(−γ)1/2γab∂bXµ

]

= (−γ)1/2(−γ)−1/2∂a

[

(−γ)1/2γab∂bXµ

]

= (−γ)1/2∇2Xµ.

(2.3)

The surface term of the fourth line in Eq. (2.2) vanishes as the usual

asymptotic condition. In analogy with classical mechanics (there is no other

sensible reason I have found), we require the surface term of the fifth line

in Eq. (2.2) vanishes. There are three classes for the boundary conditions:

open-string Neumann boundary condition,

∂σXµ|σ=0 = ∂σXµ|σ=l = 0, ∀µ, (2.4)

closed-string periodic boundary condition,

Xµ|σ=0 = Xµ|σ=l , ∂
σXµ|σ=0 = ∂σXµ|σ=l , ∀µ,

γab|σ=0 = γab|σ=l , (2.5)

and the Dirichlet boundary condition

Xµ|σ=0 = Xµ|σ=l = 0, ∀µ. (2.6)

Formally (−γ)1/2|σ=0 = (−γ)1/2|σ=l = 0 could also vanish the surface term.
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This option is not appearing to be physical. The zero determinant of the

metric implies singularity (the author is indebted to Benedict Crampton for

this explanation), which we do not expect to happen.

The Dirichlet boundary condition can be combined with open string Neu-

mann boundary condition, such as [11, p. 51],

∂σXµ|σ=0 = ∂σXµ|σ=l = 0, µ = 0, 1, 2, · · · , p, (2.7)

Xµ|σ=0 = Xµ|σ=l = 0, µ = p+ 1, · · · ,D − 1, (2.8)

where D is the number of space-time dimension. Eq. (2.7) describes open-

string ending points moving in p + 1 dimension. Conventionally this p + 1

dimensional hypersurface is called Dp brane. Eq. (2.8) corresponds to the

open-string ending points in D − p − 1 dimension fixed on that brane. Eq.

(2.6) is for D−1 brane (instanton).

The open- and closed-string boundary conditions are the only possibilities

preserves the Poincaré invariance for δSp [7, p. 14]. The Poincaré invariance

does not hold for the Dirichlet boundary condition, since the ending points

of string are fixed in the corresponding dimension. Therefore the symmetry

group is reduced from SO(1,D − 1) to SO(1, p) × SO(D − p − 1) [11, p.

51]. It is not a problem from our experience. The Poincaré invariance is

for the action, but not the solution of equation of motion. It is like putting

an object in the universe. The action for the known underlying theory is

Poincaré invariant, but the initial condition for creating such object is not

(the author is indebted to Benedict Crampton for this explanation). It

should be noticed that continues experimental efforts for testing Lorentz

symmetry are carried out. So far, no violation of Lorentz symmetry was

found [12].

In addition, the length of world sheet, l, does not contradict with the

Poincaré invariance of the action by length contraction. The transformation

is for the embedded variable [7, p. 13]

Xµ(τ, σ) → X ′µ(τ, σ) = Λµ
νX

ν(τ, σ) + cµ (2.9)

γab(τ, σ) → γ′ab(τ, σ) = γab(τ, σ) (2.10)

not the parameters τ, σ.
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2.2 Quantization for open-string on D-brane

In this section we shall quantize the bosonic string ending on brane under

boundary conditions (2.7) and (2.8). The vector field and scalar field will

be found after quantization.

Before proceeding quantization, there is a few redundency in the action

(2.1) we would like to fix. Recall the Polyakov action (2.1) is invariant under

the Poincaré (2.9)-(2.10), diffeomorphism, [7, p. 13]

σa(σ, τ) → σ′a(σ′, τ ′) =
∂σ′a

∂σb
σb(σ, τ), (2.11)

Xµ(τ, σ) → X ′µ(τ ′, σ′) = Xµ(τ, σ), (2.12)

γab(τ, σ) → ∂σ′c

∂σa
∂σ′d

∂σb
γ′cd(τ ′, σ′) = γab(τ, σ), (2.13)

and Weyl transformations

γab(τ, σ) → γ′ab(τ, σ) = exp(2ω(τ, σ))γab(τ, σ), ∀ω(τ, σ), (2.14)

Xµ(τ, σ) → X ′µ(τ, σ) = Xµ(τ, σ). (2.15)

The diffeomorphism is a reparametrization for (τ, σ). In Eqs. (2.11)-

(2.13) σa schematically stands for (τ, σ). Obviously the dτdσ(−γ)1/2 =

dσ1dσ2(− det(γab))
1/2 term in action (2.1) is invariant under diffeomor-

phism [13, p. 103]. The Weyl transformations is a rescaling for the para-

metrical space (τ, σ). From the structure of indices, the (−γ)1/2γab =

(− det(γcd))1/2γab term in action (2.1) is invariant under Weyl transfor-

mation.

The diffeomorphism and Weyl transformations are local properties, sim-

ilar with the gauge invariance. In analogy with QFT, we would like to fix

them before quantization. Since there are two indices in the metric and one

Weyl transformation, we can set three conditions as following [7, p. 17]

τ = X+, (2.16)

∂σγσσ = 0, (2.17)

det γab = −1. (2.18)
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Using Eqs. (2.17) and (2.18) the inverse metric γab becomes [7, p. 18]

[

γττ γτσ

γστ γσσ

]

=
1

γ

[

γσσ −γστ
−γτσ γττ

]

=

[

−γσσ γστ

γτσ γ−1
σσ (γ2στ − γσσγττ − γ2στ )

]

=

[

−γσσ(τ) γστ (τ, σ)

γτσ(τ, σ) γ−1
σσ (τ)(1 − γστ (τ, σ)2)

]

. (2.19)

Introducing the light-cone coordinates as following [7, p. 16]

X± =
X0 ±X1

√
2

, (2.20)

X± =
X0 ±X1√

2
, (2.21)

therefore

X− = −X+,X+ = −X−. (2.22)

Similar relation holds for any vector.

Splitting the X− coordinate as [7, p. 18]

X−(τ, σ) = x−(τ) + Y −(τ, σ), (2.23)

x−(τ) =
1

l

∫ l

0
dσX−(τ, σ), (2.24)

Y −(τ, σ) = X−(τ, σ) − x−(τ), (2.25)

the Polyakov Lagrangian can be written as

Lp = − 1

4πα′

∫ l

0
dσ
[

γσσ(2∂τx
− − ∂τX

i∂τX
i) − 2γστ (∂σY

− − ∂τX
i∂σX

i)

+γ−1
σσ (1 − γ2τσ)∂σX

i∂σX
i
]

, i = 2, 3, · · · ,D − 1.

(2.26)
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we have used

∫ l

0
dσγττ∂τX

µ∂τXµ
(2.20)

=

∫ l

0
dσγσσ(2∂τX

+∂τX
− − ∂τX

i∂τX
i)

(2.16)
=

∫ l

0
dσγσσ(2∂τX

− − ∂τX
i∂τX

i)

(2.23)
=

∫ l

0
dσγσσ(2∂τx

− + 2∂τY
− − ∂τX

i∂τX
i)

=

∫ l

0
dσγσσ(2∂τx

− − ∂τX
i∂τX

i) + 2γσσ(τ)∂τ

∫ l

0
dσY −

=

∫ l

0
dσγσσ(2∂τx

− − ∂τX
i∂τX

i) (2.27)

and

∫ l

0
dσ2γτσ∂τX

µ∂σXµ
(2.20)

=

∫ l

0
dσ2γτσ

(

−∂τX+∂σX
− − ∂σX

+∂τX
−

+ ∂τX
i∂σX

i
)

(2.16)
=

∫ l

0
dσ2γτσ(−∂σX− + ∂τX

i∂σX
i)

(2.23)
= −

∫ l

0
dσ2γτσ(∂σY

− − ∂τX
i∂σX

i). (2.28)

Concerning ∂σY
− term in the Polyakov Lagrangian (2.26), we can apply

the Euler-Lagrange equation for Y −. After integration by part, we obtain

∂σγτσ = 0. (2.29)

The Neumann open-string boundary condition (2.7) can be written as

γσσ∂σX
µ + γστ∂τX

µ (2.19)
= γττ∂σX

µ − γστ∂τX
µ = 0, σ = 0, l;∀µ. (2.30)

For µ = +, Eq. (2.30) leads to

γστ |σ=0,l = 0. (2.31)

Since we can perform a Taylor expansion for γστ with Lagrange remainder

γστ = γστ |σ=0 + ∂σγστ |σ=σ′ , σ′ ∈ (0, l), (2.32)
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by Eqs. (2.29) and (2.31), γστ = 0 everywhere. Therefore the Polyakov

Lagrangian (2.26) is simplified to

Lp = − l

2πα′ γσσ∂τx
− +

1

4πα′

∫ l

0
dσ
(

γσσ∂τX
i∂τX

i − γ−1
σσ ∂σX

i∂σX
i
)

.

(2.33)

The conjugated momentum for x− and ∂τX
i are [7, p. 19]

p− =
∂Lp

∂(∂τx−)
= − l

2πα′ γσσ = −p+, (2.34)

Πi =
δL

δ(∂τXi)
=

1

2πα′ γσσ∂τX
i =

p+

l
∂τX

i = Πi. (2.35)

The Hamiltonian for (2.33) is

H = p−∂τx
− +

∫ l

0
dσΠi∂τX

i − L

=
l

4πα′p+

∫ l

0
dσ

(

2πα′ΠiΠi +
1

2πα′ ∂σX
i∂σX

i

)

. (2.36)

The Hamiltonian mechanics gives the equation of motion

∂τX
i =

δH

δΠi
= 2πα′cΠi, (2.37)

∂τΠi = − δH

δXi
=

c

2πα′ ∂
2
σX

i (2.38)

∂2τX
i = c2∂2σX

i, (2.39)

where c = l
2πα′p+ .

The solutions for the wave equation (2.39) under boundary conditions

(2.7) and (2.8) are

Xi(σ, τ) = xi +
pi

p+
τ + i(2α′)1/2

∞
∑

n=−∞
n 6=0

1

n
αi
n exp

(

− icnπτ
l

)

cos
(nπσ

l

)

,

i = 2, 3, · · · , p, (2.40)

Xi(σ, τ) = ai + (bi − ai)
σ

l
+ (2α′)1/2

∞
∑

n=−∞
n 6=0

1

n
αi
n exp

(

− icnπτ
l

)

sin
(nπσ

l

)

,

i = p+ 1, · · · ,D − 1, (2.41)
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respectively. Eqs. (2.40) and (2.41) are also called mode expansions.

In Eq. (2.40) xi and pi are the Schrödinger operators for the center-of-

mass variables xi(τ) and pi(τ)

xi = xi(τ)|τ=0, xi(τ) =
1

l

∫ l

0
dσXi(τ, σ), (2.42)

pi = pi(τ)|τ=0, pi(τ) =

∫ l

0
dσΠi(τ, σ). (2.43)

xi and pi are obtained by integrating the zero mode of Fourier expansion

over the initial conditions. This can be seen from Eq. (2.42) for xi and

1

l

∫ l

0

∂Xi(σ, τ)

∂τ

(2.35)
=

1

p+

∫ l

0
Πidσ

(2.43)
=

p−

p+
(2.44)

for pi.

The Hermician condition (Xi)† = Xi leads to (αi
n)† = αi

−n in both Eqs.

(2.40) and (2.41).

Impose the following equal time commuting relation (only non-zero results

are included) [7, p. 20]

[x−, p+] = −i, (2.45)
[

Xi(σ),Πj(σ′)
]

= iδijδ(σ − σ′), (2.46)

the Fourier modes for the commutators can be obtained in completely anal-

ogous as the scalar field theory

[xi, pj] =

[

1

l

∫ l

0
dσ

∫ l

0
dσ′[Xi(σ),Πj(σ′)]

]

= iδij . (2.47)

By Eqs. (2.35), (2.40), and (2.41), we have the expressions of Πi

Πi(τ, σ) =
pi

l
+

1

(2α′)1/2l

∑

n 6=0

αi
n exp

(

− icnπτ
l

)

cos
(nπσ

l

)

,

i = 2, 3, · · · , p− 1, (2.48)

Πi(τ, σ) = − i

(2α′)1/2l

∑

n 6=0

αi
n exp

(

− icnπτ
l

)

sin
(nπσ

l

)

,

i = p, · · · ,D − 1. (2.49)
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Since for i = 2, 3, · · · p
∫ l

0
Xi(τ, σ) cos

(mπσ

l

)

dσ

=
i(2α′)1/2l

2m

[

αi
m exp

(

− imcπτ
l

)

− αi
−m exp

(

imcπτ

l

)]

, m 6= 0,

(2.50)
∫ l

0
Πi(τ, σ) cos

(mπσ

l

)

dσ

=
1

2(2α′)1/2

[

αi
m exp

(

− imcπτ
l

)

+ αi
−m exp

(

imcπτ

l

)]

, m 6= 0,

(2.51)

and for i = p+ 1, · · · ,D − 1

∫ l

0
Xi(τ, σ) sin

(mπσ

l

)

dσ =

(2α′)1/2l
2m

[

αi
m exp

(

− imcπτ
l

)

+ αi
−m exp

(

imcπτ

l

)]

, m 6= 0, (2.52)

∫ l

0
Πi(τ, σ) sin

(mπσ

l

)

dσ =

−i
2(2α′)1/2

[

αi
m exp

(

− imcπτ
l

)

− αi
−m exp

(

imcπτ

l

)]

, m 6= 0. (2.53)

We have for i = 2, 3, · · · p and m 6= 0

αi
m =

[

m

i(2α′)1/2l

∫ l

0
Xi(τ, σ) cos

(mπσ

l

)

dσ

+ (2α′)1/2
∫ l

0
Πi(τ, σ) cos

(mπσ

l

)

dσ

]

exp

(

imcπτ

l

)

(2.54)

and for i = p+ 1, · · · ,D − 1 and m 6= 0

αi
m =

[

m

(2α′)1/2l

∫ l

0
Xi(τ, σ) sin

(mπσ

l

)

dσ

+
(2α′)1/2

−i

∫ l

0
Πi(τ, σ) sin

(mπσ

l

)

dσ

]

exp

(

imcπτ

l

)

(2.55)
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Thus for i = 2, 3, · · · p

[αi
m, α

j
n] =

m

il

∫ l

0

∫ l

0
dσdσ′

[

Xi(σ),Πj(σ′)
]

cos
(mπσ

l

)

cos

(

nπσ′

l

)

exp

(

i(m + n)cπτ

l

)

+
n

il

∫ l

0

∫ l

0
dσdσ′

[

Πi(σ),Xj(σ′)
]

cos
(mπσ

l

)

cos

(

nπσ′

l

)

exp

(

i(m + n)cπτ

l

)

=
m

2
δij (δmn + δm,−n) exp

(

i(m+ n)cπτ

l

)

− n

2
δij (δmn + δm,−n) exp

(

i(m + n)cπτ

l

)

= mδijδm,−n, m 6= 0 (2.56)

and for i = p+ 1, · · · ,D − 1

[αi
m, α

j
n] =

m

−il

∫ l

0

∫ l

0
dσdσ′

[

Xi(σ),Πj(σ′)
]

sin
(mπσ

l

)

sin

(

nπσ′

l

)

exp

(

i(m + n)cπτ

l

)

+
n

−il

∫ l

0

∫ l

0
dσdσ′

[

Πi(σ),Xj(σ′)
]

sin
(mπσ

l

)

sin

(

nπσ′

l

)

exp

(

i(m + n)cπτ

l

)

= −m
2
δij (δmn − δm,−n) exp

(

i(m + n)cπτ

l

)

+
n

2
δij (δmn − δm,−n) exp

(

i(m + n)cπτ

l

)

= mδijδm,−n, m 6= 0. (2.57)

Eqs. (2.56) and (2.57) imply the modes of open-string and D-brane have

the same role of the annihilation and creation operators, respectively [7, p.

20]

αi
m ∼

√
ma, αi

−m ∼
√
ma†, m > 0, i = 2, 3, · · · ,D − 1. (2.58)

To gain further insight into the creation and annihilation operators anal-
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ogy of the operator αi
m, we try to write the Hamiltonian (2.36) in terms of

αi
m. For i = 2, 3, · · · , p

H =
l

4πα′p+
2πα′

∫ l

0
dσ





pi

l
+

1

(2α′)1/2l

∑

n 6=0

αi
n exp

(

− icnπτ
l

)

cos
(nπσ

l

)









pi

l
+

1

(2α′)1/2l

∑

m6=0

αi
m exp

(

− icmπτ
l

)

cos
(mπσ

l

)





+
l

4πα′p+
1

2πα′

[(−iπ
l

)

(2α′)1/2
]2 ∫ l

0
dσ
∑

n 6=0

αi
n exp

(

− icnπτ
l

)

sin
(nπσ

l

)

∑

m6=0

αi
m exp

(

− icmπτ
l

)

sin
(mπσ

l

)

=
pipi

2p+
+

1

8α′p+
∑

n 6=0,m6=0

αi
nα

i
m exp

(

− i(n+m)cπτ

l

)

(δn,m + δn,−m)

− 1

8α′p+
∑

n 6=0,m6=0

αi
nα

i
m exp

(

− i(n+m)cπτ

l

)

(δn,m − δn,−m)

=
pipi

2p+
+

1

4α′p+
∑

n 6=0

αi
nα

i
−n

=
pipi

2p+
+

1

2α′p+

(

∑

n>0

αi
−nα

i
n +A

)

. (2.59)
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For i = p+ 1, · · · ,D − 1,

H =
l

4πα′p+
2πα′

∫ l

0
dσ





−i
(2α′)1/2l

∑

n 6=0

αi
n exp

(

− icnπτ
l

)

sin
(nπσ

l

)









−i
(2α′)1/2l

∑

m6=0

αi
m exp

(

− icmπτ
l

)

sin
(mπσ

l

)





+
l

4πα′p+
1

2πα′

∫ l

0
dσ



(2α′)1/2
(π

l

)

∑

n 6=0

αi
n exp

(

− icnπτ
l

)

cos
(nπσ

l

)







(2α′)1/2
(π

l

)

∑

m6=0

αi
m exp

(

− icmπτ
l

)

cos
(mπσ

l

)





= − 1

8α′p+
∑

n 6=0

∑

m6=0

αi
mα

i
n exp

(−ic(n+m)πτ

l

)

(δnm − δn,−m)

+
1

8α′p+
∑

n 6=0

∑

m6=0

αi
mα

i
n exp

(−ic(n+m)πτ

l

)

(δnm + δn,−m)

=
1

4α′p+
∑

n 6=0

αi
nα

i
−n

=
1

2α′p+

(

∑

n>0

αi
−nα

i
n +A

)

. (2.60)

Combining Eqs. (2.59) and (2.60), the Hamiltonian (2.36) can be written

as

H =

p
∑

i=2

pipi

2p+
+

1

2α′p+





p
∑

i=2

∑

n>0

αi
−nα

i
n +

D−1
∑

i=p+1

∑

n>0

αi
−nα

i
n +A



 . (2.61)

The first-term in the Hamiltonian (2.61) is a kinetic energy. Since the string

ending on brane does not move, there is no momentum in p+ 1, · · · ,D − 1

dimension. The combination of creation and annihilation operators in the

parenthesis may be interpreted as number operators. As we shall discuss

later, it corresponds to the mass. The constant A is a zero-point energy

which comes from (creation-annihilation) normal ordering. Therefore

A =
D − 2

2

∑

n>0

n. (2.62)
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The present of the divergent constant, A, is unpleasant. In QFT, we met

at least two kinds of infinities (here we have ignored the infrared divergence,

which seems to be irrelevant). One is an infinity zero-point energy when

quantizing the free scalar field theory. We may argue that only relative

energy is observable and that infinity is thrown away. However, the cosmo-

logical constant problem remains [14, 15]. The constant, A, in Eqs. (2.59) -

(2.61) is somehow similar to the zero-point theory in the free scalar theory.

Nevertheless, string theory is a quantum gravity theory, it is not expected

to simply throw infinity away.

Another kind of infinity is the ultra-violate divergence of the loop dia-

gram. We argue that the current field theory is a low-energy theory. There

is some energy scale that the present field theory is not applicable. We

then regularize and renormalize the theory. For certain theory such as

Quantum ChromoDynamics (QCD), the fundamental cutoff in the one-loop

beta function can be taken into infinity. QCD can be defined in continuum

(high-energy limit) [16, p. 79]. Therefore the low-energy-theory aspect is

not necessary for QCD. We shall try to proceed similar procedure for the

divergence constant, A, in the bosonic string theory.

Introducing a cutoff ε [17, p. 23]

A→ D − 2

2

∞
∑

n=1

ne−εn

= −D − 2

2

∂

∂ε

∞
∑

n=1

e−εn

= −D − 2

2

∂

∂ε

1

eε − 1

= −D − 2

2

∂

∂ε

1

ε
(

1 + ε
2 + ε2

6 +O(ε3)
)

= −D − 2

2

∂

∂ε

1

ε

(

1 − ε

2
− ε2

6
+
ε2

4
+O(ε3)

)

=
D − 2

2

(

1

ε2
− 1

12
+O(ε)

)

. (2.63)

To make the cutoff more physical meaningful, we make substitution exp(−εn) →
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exp(−εγ−1/2
σσ |kσ |), kσ = nπ/l [7, p. 22]. Therefore Eq. (2.63) becomes

A→ D − 2

2

(

2lp+α′

ε2π
− 1

12
+O(ε)

)

. (2.64)

Expression (2.64) brings two messages: (i) the cutoff term ε−2 can be can-

celled by a counter term proportional to
∫

d2σ(−γ)1/2 in the action; (ii) the

vanishing of cutoff dependence is dictated by the Weyl invariance (2.15),

since Weyl transformation is a rescaling of l. Furthermore, the vanishing of

Weyl anomaly leads to zero value of the beta function [7, p. 91, p. 112].

Therefore, the low-energy-theory analogy is not necessary for this eliminat-

ing this divergence in constant, A. As a result

A =
2 −D

24
. (2.65)

Still, there is a question why the Weyl invariance in the classical Polyakov

action (2.1) should be preserved at quantum level. There a few reasons for

that: (i) it is to make theory work, by means of providing finite value; (ii)

it is a kind of consistency; (iii) the Weyl invariance at quantum level could

lead to the Einstein’s equation of gravity [11, p. 161].

It is possible to abandon the Weyl invariance from the very beginning,

by adding a term 1
4πα′

∫

d2σµ(−γ)1/2 in the classical action [11, p. 126].

This will lead to non-critical string theory. As a result, the dimension is not

necessarily 26 for the bosonic string. Investigating the non-critical string

theory is beyond the scope of the present thesis.

In addition, the infinities in constant, A, Eqs. (2.62) and (2.63) do not

appear in the BRST quantization [7, p. 34].

After settle down the infinity, we would like to analyze the spectrum

of Hamiltonian (2.36). However, we do not have an expression for mass.

The expression of mass could be obtained in analogy with relativistic point

particle. Consider an action for a relativistic point particle [7, p. 33]

Spp = −m
∫

dτ(−ẊµẊµ)1/2, (2.66)

where τ is a proper time and Ẋ is the τ derivative. Eq. (2.66) could be
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written in an equalivent form

S′
pp =

1

2

∫

dτ
(

η−1ẊµẊµ − ηm2
)

(2.67)

where η(τ) = (−γττ (τ))1/2 and γττ (τ) is the ττ component of metric. The

equivalence between Eqs. (2.66) and (2.67) can be seen from equation of

motion for η [7, p. 74]

η2 = −ẊµẊµ/m
2. (2.68)

Substitute η in Eq. (2.67) will give Eq. (2.66).

Introduce the lightcone coordinate for the point particle and set X+(τ) =

τ , the action (2.67) can be written as [7, p. 17]

S′
pp =

1

2

∫ τ

0

(

−2η−1Ẋ− + η−1ẊiẊi − ηm2
)

. (2.69)

By the canonical momentum p− = −η−1, pi = η−1Ẋi, p+ = −p−, and

pi = pi, we obtained the Hamiltonian for action (2.69) and an expression of

mass [7, p. 17]

H = p−Ẋ
− + piẊ

i − L =
pipi +m2

2p+
, (2.70)

m2 = 2p+H − pipi. (2.71)

Inserting Eq. (2.61) into (2.72), we have

m2 =
1

α′





p
∑

i=2

∑

n>0

αi
−nα

i
n +

D−1
∑

i=p+1

∑

n>0

αi
−nα

i
n +

2 −D

24



 . (2.72)

The mass of the vacuum state, 2−D
24 , is the same as the open string. It is a

tachyon if D > 2. The presence of Tachyon is similar with the maximum of

the spontaneously symmetry breaking potential. Nevertheless the ground

state in analogy with the symmetry breaking is unknown for bosonic string

theory.

SO(1, p) × SO(D − p − 1) group has D − 1 spin states for the massive

and D − 2 spin states for the massless vector representations. The lowest

excitation in Eq. (2.72) has D− 2 modes. Therefore it is a massless excited

state. In this case, m2 = 26−D
24 . The (critical) dimension is therefore 26.
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The first excited state has two classes

αi
−n|0; k〉, i = 2, 3, · · · , p, (2.73)

which corresponds to a massless vector representation, Aµ. Since these

states are transformed as vector under SO(1,p).

αi
−n|0; k〉, i = p+ 1, · · · ,D − 1, (2.74)

which corresponds to a massless scalar representation, Xµ. Since these

states are invariant under SO(1,p).

2.3 Derivation of the Born-Infeld action from beta

function

2.3.1 Conformal invariance

The Born-Infeld action is a low-energy effective action for the electromag-

netism of D-brane. There are two methods of obtaining the effective action.

One is analyzing the string scattering process [18]. The other is from the

string moving in a background [19]. Here we follow the second approach.

We have shown there are vector field Aµ and scalar field Xµ living on

D-brane. Therefore we can use the effective action of string ending on D-

brane to identify the electromagnetism of D-brane. The effective action is

obtained by preserving the conformal invariance at quantum level.

To define the conformal invariance, we first rewrite the Polyakov action

(2.1) under (++) Euclidean metric δab as [7, p. 32]

Sp =
1

4πα′

∫

dσ1dσ2 (∂1X
µ∂1Xµ + ∂2X

µ∂2Xµ)

=
1

2πα′

∫

d2z∂Xµ∂̄Xµ (2.75)

where ∂1 = ∂σ1 , ∂2 = ∂σ2 , z = σ1 + iσ2, z̄ = σ1 − iσ2, ∂ = ∂z, ∂̄ = ∂z̄, and
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d2z = dzdz̄. We have used

∂1 =
∂

∂σ1
=

∂

∂z

∂z

∂σ1
+

∂

∂z̄

∂z̄

∂σ1
= ∂ + ∂̄ (2.76)

∂2 =
∂

∂σ2
=

∂

∂z

∂z

∂σ2
+

∂

∂z̄

∂z̄

∂σ2
= i
(

∂ − ∂̄
)

(2.77)

dσ1dσ2 =

∣

∣

∣

∣

∂(σ1, σ2)

∂(z1, z2)

∣

∣

∣

∣

dzdz̄ =

∣

∣

∣

∣

1

2

−1

2i
− 1

2

1

2i

∣

∣

∣

∣

d2z =
1

2
d2z. (2.78)

The conformal transformation is defined as [7, p. 44]

X ′µ(z′, z̄′) = Xµ(z, z̄), z′ = f(z), (2.79)

where f(z) is any holomorphic function. The transformation (2.79) changes

the distances between points.

The action (2.75) is invariant under conformal transformation (2.79) due

to the cancellation of transformation between dz and ∂z, similarly for dz̄ and

∂z̄. Since the conformal invariance is a changing of variables from z, z̄ to z′, z̄′

and changing of distance between points, it can be done by diffimorphism

and Weyl transformation. The breaking of conformal invariance at quantum

level is the same as breaking Weyl invariance, since it is not expect to break

diffimorphism.

We can identify the condition which the anomoly does not happen as the

effective action.

2.3.2 Open string couples to a gauge field Aµ

The starting point is an open string coupled to a gauge field Aµ [19]

S =
1

4πα′

∫

M
d2σ∂aXµ∂aXµ + i

∫

∂M
dτAµ(X)∂τX

µ. (2.80)

Here we have defined a conformal transformation to map the open string

into upper half complex plane

w = σ1 + iσ2, (2.81)

z = − exp(−iw), (2.82)

τ + iσ =: z, (2.83)

where the spatial dimension σ1 ∈ [0, π] and the time dimension σ2 ∈
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(−∞,+∞). Therefore σ ∈ [0,+∞) and τ ∈ (−∞,+∞). The action (2.80)

is obtained by the state-operator mapping technique [11, p. 164]. Here we

outline the procedure of obtaining the coupling term.

Similar with the idea of GR, we generalize the Polyakov action into curved

space [7, p. 108]

Sσ =
1

4πα′

∫

M
d2σg1/2gabGµν(X)∂aX

µ∂bX
ν . (2.84)

Expanding the metric Gµν(X) around flat spacetime

Gµν(X) = ηµν + χµν(X), (2.85)

the integrand of a path integral can be then written as

exp(−Sσ) = exp(−Sp)

[

1 − 1

4πα′

∫

M
d2σg1/2gabχµν(X)∂aX

µ∂bX
ν +O(α′−2)

]

.

(2.86)

On the other hand, we can work out the state-operator mapping term as

following: [7, p. 104]

VI =
gc
α′

∫

d2σg1/2
{(

gabsµν + iǫabaµν

) [

∂aX
µ∂bX

νeik·X
]

r
+ α′φR

[

eik·X
]

r

}

,

(2.87)

here sµν , aµν , and φ are symmetric 2-tensor, antisymmetric 2-tensor, and a

scalar, respectively. gab and ǫab are symmetric and antisymmetric tensors

for the graviton and 2-form in string, respectively. [· · · ] is a renormalized

operator [7, p. 102]

[F ]r = exp

(

1

2

∫

d2σd2σ′∆(σ, σ′)
δ

δXµ(σ)

δ

δXµ(σ′)

)

F , (2.88)

where

∆(σ, σ′) =
α′

2
ln d2(σ, σ′). (2.89)

Definition (2.89) is proposed to remove singularity in operator F . This can

be seen from the following procedure. Consider a path integral for action

(2.75) with a scalar field

∫

[dX] exp(−S)Xν(z′, z̄′). (2.90)
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The total derivative for (2.163) is zero by the usual asymptotic condition

0 =

∫

[dX]
δ

δXµ(z, z̄)

[

exp(−S)Xν(z′, z̄′)
]

(2.75)
=

∫

[dX] exp(−S)

[

δµνδ2(z − z′, z̄ − z̄′) +
1

πα′∂z∂z̄X
µ(z, z̄)Xν(z′, z̄′)

]

= δµν
〈

δ2(z − z′, z̄ − z̄′)
〉

+
1

πα′ ∂z∂z̄〈X
µ(z, z̄)Xν(z′, z̄′)〉, (2.91)

where 〈· · · 〉 is denoted to expectation value
∫

[dX] exp(−S) · · · [7, p. 131].

In the second line we have used integration by part. The expectation 〈· · · 〉
can be removed from Eq. (2.91), therefore

1

πα′ ∂z∂z̄X
µ(z, z̄)Xν(z′, z̄′) = −ηµνδ2(z − z′, z̄ − z̄′). (2.92)

Based on Eq. (2.92), we define the conformal normal ordering

: Xµ(z, z̄) : = Xµ(z, z̄), (2.93)

: Xµ(z, z̄)Xν(z′, z̄′) : = Xµ(z, z̄)Xν(z′, z̄′) +
α′

2
ηµν ln |z1 − z2|2. (2.94)

The conformal normal ordering has the following properties

∂z∂z̄ : Xµ(z, z̄)Xν(z′, z̄′) := 0, (2.95)

since

∂z∂z̄ ln |z|2 = 2πδ2(z, z̄). (2.96)

Eq. (2.96) is a result in exericse 2.1 of Polchinski [7, p. 11]. The solution is

given by Headrick [20].

Comparing Eqs. (2.86) and (2.87), we identify the coupling with graviton

is exactly the same is the bending of metric

χµν(X) = −4πgce
ik·Xsµν . (2.97)

This implies a general idea, that the interactions between string and fields

are produced by varying the metric. The adjustable coupling constants in

QFT are determined by the dynamics of spacetime. Taken into account for
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all terms in Eqs. (2.86) and (2.87), we have

Sσ =
1

4πα′

∫

M
d2σg1/2

[(

gabGµν(X) + iǫabBµν(X)
)

∂aX
µ∂bX

ν + α′RΦ(X)
]

.

(2.98)

Similarly, the vertex operator for opening string coupled with photon is

[7, p. 107]

−i go
(2α′)1/2

eµ

∫

∂M
ds
[

Ẋµeik·X
]

r
. (2.99)

By a similar procedure, we obtain the coupling between open-string and

gauge field Aµ in Eq. (2.80).

2.3.3 Effective action from beta function

The notations here basically follows Tong’s lecture note [11, p. 184], since

it is consistent with the convention of Polchinski [7, p. 12]. d2σ comes from

a Wick rotation. In the original paper of Abouesaood et al [19], the action

was written as

S =
1

2πα′

[

1

2

∫

M2

d2z∂aXµ∂aX
µ + i

∫

∂M
dτAµ∂τX

µ

]

(2.100)

since d2z = 2dσ1dσ2, α′ in Eq. (2.100) is two times of in Eq. (2.80). It

does not matter since α′ is dimensional. In addition, Aµ in Eq. (2.100) is

rescaled by a factor of 2πα′.

By splitting the scalar Xµ as

Xµ(τ, σ) = X̄µ(τ, σ) +
√
α′Y µ(τ, σ) (2.101)

where X̄ satisfies the classical equation of motion, the action (2.80) can be

written as

S[X̄ + Y ] = S[X̄ ] +
1

4π

∫

M
d2σ

(

2√
α′ ∂

aX̄µ∂aYµ + ∂aY µ∂aYµ

)

+ iα′
∫

∂M
dτ

(

1√
α′ FµνY

µ∂τ X̄
ν +

1

2
∂νFλµY

νY λ∂τ X̄
µ +

1

2
FµνY

µ∂τY
ν

+O(Y 3)
)

(2.102)

where Fµν = ∂µAν − ∂νAµ. Here we have performed the following manipu-
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lations

S[X̄ + Y ] =
1

4πα′

∫

M
d2σ

[

∂a(X̄µ +
√
α′Y µ) ∂a(X̄µ +

√
α′Yµ)

]

+ i

∫

∂M
dτ

[

Aµ +
√
α′∂νAµY

ν +
α′

2
∂ν∂λAµY

νY λ +O(Y 3)

]

∂τ

[

X̄µ +
√
α′Y µ

]

= S[X̄ ] +
1

4π

∫

M
d2σ

(

2√
α′ ∂

aX̄µ∂aYµ + ∂aY µ∂aYµ

)

+ i

∫

∂M
dτ
[√

α′ (∂νAµ∂τ X̄
µY ν +Aµ∂τY

µ
)

+ α′
(

1

2
∂ν∂λAµY

νY λ∂τ X̄
µ + ∂νAµY

ν∂τY
µ

)

+O(Y 3)

]

. (2.103)

The O(Y ) term in the last line of Eq. (2.103) can be written as

i

∫

∂M
dτ

√
α′ (∂νAµ∂τ X̄

µY ν +Aµ∂τY
µ
)

= i

∫

∂M
dτ

√
α′ [∂νAµ∂τ X̄

µY ν − (∂τAµ)Y µ
]

= i

∫

∂M
dτ

√
α′ [∂νAµ∂τ X̄

µY ν −
(

∂τ X̄
ν∂νAµ

)

Y µ
]

= i

∫

∂M
dτ

√
α′ [∂µAν∂τ X̄

νY µ −
(

∂τ X̄
ν∂νAµ

)

Y µ
]

= iα′
∫

∂M
dτ

1√
α′ FµνY

µX̄ν (2.104)

where in the second, third, and fourth lines, integration by parts, substitu-

tion of variables, and renaming indices have been made, respectively.

The O(Y 2) term in the last line of Eq. (2.103) can be written by integra-
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tion by parts as

iα′
∫

∂M
dτ

(

1

2
∂ν∂λAµY

νY λ∂τ X̄
µ + ∂νAµY

ν∂τY
µ

)

= iα′
∫

∂M
dτ

(

1

2
∂ν∂λAµY

νY λ∂τ X̄
µ +

1

2
∂νAµY

ν∂τY
µ +

1

2
∂νAµY

ν∂τY
µ

)

= iα′
∫

∂M
dτ

[

1

2
∂ν∂λAµY

νY λ∂τ X̄
µ +

1

2
∂νAµY

ν∂τY
µ − 1

2
∂τ (∂νAµY

ν)Y µ

]

= iα′
∫

∂M
dτ

[

1

2
∂ν∂λAµY

νY λ∂τ X̄
µ +

1

2
∂νAµY

ν∂τY
µ − 1

2
∂ν∂τAµY

νY µ

−1

2
∂νAµ∂τY

νY µ

]

= iα′
∫

∂M
dτ

[

1

2
∂ν∂λAµY

νY λ∂τ X̄
µ +

1

2
∂νAµY

ν∂τY
µ − 1

2
∂ν∂λAµY

νY µ∂τ X̄
λ

−1

2
∂νAµ∂τY

νY µ

]

= iα′
∫

∂M
dτ

[

1

2
∂νFλµY

νY λ∂τ X̄
µ +

1

2
FµνY

µ∂τY
ν

]

. (2.105)

The expansion here is perturbative. We have assumed the curvature is

sufficiently small [7, p. 110]. The variation of ξ gives classical equation of

motion and boundary condition

�X̄µ = 0, (2.106)

∂σX̄
µ + 2πα′iFµν∂τ X̄ν

∣

∣

∂M
= 0, (2.107)

where � = ∂21 + ∂22 .

Our task is to identify the one-loop divergence and find the counter term.

We expect the counter term has the form

∆SI(X̄) =
iα′

2

∫

∂M
dτΓµ∂τ X̄

µ. (2.108)

The corresponding term in (2.102) is

iα′

2

∫

∂M
dτ∂νFλµY

νY λ∂τ X̄
µ. (2.109)
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Thus we identify

∆SI(X̄) = − iα′

2

∫

∂M
dτ∂νFλµG

νλ(τ, τ ′)∂τ X̄
µ . (2.110)

The Green’s function G satisfies

1

π
∂z∂z̄G(z, z′) = −δ2(z − z′, z̄ − z̄′), (2.111)

∂σG(z, z′)
∣

∣

σ=0
= 0, (2.112)

where the delta function δ2(z − z′, z̄ − z̄′) is defined as [7, p. 33]

∫

d2zδ2(z, z̄) = 1. (2.113)

Eq. (2.111) is obtained as following [7, p. 35]. Notice a rescaling factor√
α′ in Eq. (2.101) on Eq. (2.91), we confirm Eq. (2.111).

Eq. (2.112) corresponds to the open-string boundary condition. Eqs.

(2.111) and (2.112) can be solved in analogy as the charge imagine method

[11, p. 106]. The solution is

G(z, z′) = −
(

ln |z − z′| + ln |z − z̄′|
)

. (2.114)

It is straightforward to verify the solution for Eq. (2.111) on the upper

half plane

1

π
∂∂̄G = −δ2(z − z′, z̄ − z̄′). (2.115)

Eq. (2.112) can be seen as following

∂σG|σ=0
(2.83)

=

(

∂

∂z

∂z

∂σ
+

∂

∂z̄

∂z̄

∂σ

)

G

(2.114)
= i(∂ − ∂̄)

[

ln(z − z′) + ln(z̄ − z̄′) + ln(z − z̄′) + ln(z̄ − z′)
]∣

∣

σ=0

= i

(

1

z − z′
− 1

z̄ − z̄′
+

1

z − z̄′
+

1

z̄ − z′

)∣

∣

∣

∣

σ=0⇒z=z̄

= 0. (2.116)

It is possible to look for counterterm based on Eqs. (2.111) and (2.112),

as given in Appendix A in [19]. However, it is simpler to shift the boundary
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condition (2.111) with the presence of gauge field

∂σG
µν + 2πα′iFµ

λ ∂τG
λν
∣

∣

∣

σ=0
= 0. (2.117)

The solution for Eq. (2.111) and (2.117) is [11, p. 186]

Gµν = −δµν ln |z − z′| − 1

2

(

1 − 2πα′F
1 + 2πα′F

)µν

ln(z − z̄′)

− 1

2

(

1 + 2πα′F
1 − 2πα′F

)µν

ln(z̄ − z′), (2.118)

where (the author is indebted to David Tong for explaining this notation)

(

1 − 2πα′F
1 + 2πα′F

)µν

=
(

1 − 2πα′F
)µ

λ

[

(

1 + 2πα′F
)−1
]λν

. (2.119)

The solution can be verified as following. Recall

∂σ =

(

∂

∂z

∂z

∂σ
+

∂

∂z̄

∂z̄

∂σ

)

(2.83)
= i

(

∂ − ∂̄
)

, (2.120)

∂τ =

(

∂

∂z

∂z

∂σ
+

∂

∂z̄

∂z̄

∂σ

)

(2.83)
=

(

∂ + ∂̄
)

. (2.121)

Therefore

∂σG
µν = i

(

∂ − ∂̄
)

[

−δ
µν

2

(

ln(z − z′) + ln(z̄ − z̄′)
)

− 1

2

(

1 − 2πα′F
1 + 2πα′F

)µν

ln(z − z̄′)

−1

2

(

1 + 2πα′F
1 − 2πα′F

)µν

ln(z̄ − z′)

]∣

∣

∣

∣

σ=0

= i

[

−δ
µν

2

1

z − z′
+
δµν

2

1

z̄ − z̄′
− 1

2

(

1 − 2πα′F
1 + 2πα′F

)µν 1

z − z̄′

+
1

2

(

1 + 2πα′F
1 − 2πα′F

)µν 1

z̄ − z′

]∣

∣

∣

∣

σ=0⇒z=z̄

= i

[

−1

2

(

1 − 1 + 2πα′

1 − 2πα′

)µν 1

z − z′
+

1

2

(

1 − 1 − 2πα′

1 + 2πα′

)µν 1

z − z̄′

]∣

∣

∣

∣

σ=0⇒z=z̄

= i

[

1

2

(

4πα′F
1 − 2πα′F

)µν 1

z − z′
+

1

2

(

4πα′F
1 + 2πα′F

)µν 1

z − z̄′

]∣

∣

∣

∣

σ=0⇒z=z̄

(2.122)

29



and

2πα′iFµ
λ ∂τG

λν

= 2πα′iFµ
λ

(

∂ + ∂̄
)

[

−δ
λν

2

(

ln(z − z′) + ln(z̄ − z̄′)
)

− 1

2

(

1 − 2πα′F
1 + 2πα′F

)λν

ln(z − z̄′)

−1

2

(

1 + 2πα′F
1 − 2πα′F

)λν

ln(z̄ − z′)

]∣

∣

∣

∣

∣

σ=0

= 2πα′iFµ
λ

[

−δ
λν

2

1

z − z′
− δλν

2

1

z̄ − z̄′
− 1

2

(

1 − 2πα′F
1 + 2πα′F

)λν 1

z − z̄′

−1

2

(

1 + 2πα′F
1 − 2πα′F

)λν 1

z̄ − z′

]∣

∣

∣

∣

∣

σ=0⇒z=z̄

= 2πα′iFµ
λ

[

−1

2

(

1 +
1 + 2πα′F
1 − 2πα′F

)λν 1

z − z′
− 1

2

(

1 +
1 − 2πα′F
1 + 2πα′F

)λν 1

z − z̄′

]∣

∣

∣

∣

∣

σ=0⇒z=z̄

= i

[

−1

2

(

4πα′F
1 − 2πα′F

)µν 1

z − z′
− 1

2

(

4πα′F
1 + 2πα′F

)µν 1

z − z̄′

]∣

∣

∣

∣

σ=0⇒z=z̄

.

(2.123)

Eqs. (2.122) and (2.123) cancel each other, therefore we confirmed the

solution (2.119)

Since the interaction between scalar and gauge fields happen at boundary,

we should look at σ → 0 and σ′ → 0 in Eq. (2.119). The divergence happens

at z → z′. We denote ln Λ in Eq. (2.119) as the divergence term

G→ − ln Λ

[

1 +
1

2

(

1 − 2πα′F
1 + 2πα′F

)

+
1

2

(

1 + 2πα′F
1 − 2πα′F

)]µν

= − ln Λ

[

1 +
(1 − 2πα′F )2 + (1 + 2πα′F )2

2(1 − 4π2α′2F 2)

]µν

= −2 ln Λ

(

1

1 − 4π2α′2F 2

)µν

. (2.124)

The counter term (2.110) then has form

−2iα′ ln Λ

∫

∂M
dτ∂νFλµ

(

1

1 − 4π2α′2F 2

)νλ

∂τ X̄
µ. (2.125)
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Define beta function with respect to the cutoff scale Λ

βµ = Λ
∂

∂Λ
Γµ = 4∂νFλµ

(

1

1 − 4π2α′2F 2

)νλ

. (2.126)

The scale dependence vanishes if and only if

∂νFλµ

(

1

1 − 4π2α′2F 2

)νλ

= 0. (2.127)

Condition (2.127) can be obtained by the equation of motion of the Born-

Infeld action

LBI =
√

− det(1 + F ), (2.128)

where we have rescaled the field strength tensor F as F → 2πα′F . To show

Eq. (2.128) implies (2.127), we start from Eq. (2.128)

δLBI = δ
√

− det(1 + F )

= δ
[

det(1 + F ) det((1 + F )T)
]1/4

= δ [det(1 + F ) det(1 − F )]1/4

= δ
[

det(1 − F 2)
]1/4

, (2.129)

where we have used the antisymmetric properties of Fµν in transposing

the matrix. Here F 2 should be understood as FabF
cd since we can let

det(1ab + Fab) = det(ηac(1
cd + F cd)ηdb) = det(F cd). Then by the matrix
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identity detA = etr lnA [21, p. 99], we have

δLBI = δ exp

(

1

4
tr ln(1 − F 2)

)

= −1

2
exp

(

1

4
tr ln(1 − F 2)

)(

F

1 − F 2

)µν

δFνµ

=
1

2
exp

(

1

4
tr ln(1 − F 2)

)(

F

1 − F 2

)µν

δ (∂µAν − ∂νAµ)

= −∂µ
[

exp

(

1

4
tr ln(1 − F 2)

)(

F

1 − F 2

)µν]

δAν

= −∂µ
[

exp

(

1

4
tr ln(1 − F 2)

)](

F

1 − F 2

)µν

δAν

− exp

(

1

4
tr ln(1 − F 2)

)

∂µ

(

F

1 − F 2

)µν

δAν

= −1

4
exp

(

1

4
tr ln(1 − F 2)

)

∂µ
[

tr ln(1 − F 2)
]

(

F

1 − F 2

)µν

δAν

− exp

(

1

4
tr ln(1 − F 2)

)

∂µ

(

F

1 − F 2

)µν

δAν , (2.130)

in the fourth line we have performed integration by part. To proceed, we

compute

∂µ
[

tr ln(1 − F 2)
]

= 2

(

F

1 − F 2

)αβ

∂µFαβ

= 2

(

F

1 − F 2

)αβ

(−∂αFβµ − ∂βFµα)

= −4

(

F

1 − F 2

)αβ

∂αFβµ, (2.131)

in the second line we have used the Bianchi identity. Insert Eq. (2.131) into

(2.130), we obtain

δLBI = exp

(

1

4
tr ln(1 − F 2)

)(

F

1 − F 2

)αβ

∂αFβµ

(

F

1 − F 2

)µν

δAν

− exp

(

1

4
tr ln(1 − F 2)

)

∂µ

(

F

1 − F 2

)µν

δAν . (2.132)
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We further notice an identity [22]

∂µ

(

F

1 − F 2

)µν

=

(

F

1 − F 2

)µρ

∂µFρσ

(

F

1 − F 2

)σν

+

(

1

1 − F 2

)µρ

∂µFρσ

(

1

1 − F 2

)σν

, (2.133)

the proof of Eq. (2.133) can be found on web [23].

Combining Eqs. (2.132) and (2.133) we obtain

δLBI = − exp

(

1

4
tr ln(1 − F 2)

)(

1

1 − F 2

)µρ

∂µFρσ

(

1

1 − F 2

)σν

, (2.134)

which gives the condition of vanishing beta function (2.127). Therefore we

obtained the Born-Infeld action (2.128) from string theory.

Consequently, the Born-Infeld action is

SBI =
1

2πα′

∫

dp+1x
√

− det (1 + 2πα′F ). (2.135)

It is possible to include the scalar fluctuation of brane, the action is known

as the Dirac-Born-Infeld (DBI) action [24]

SBI =
1

2πα′

∫

dp+1x
√

− det (1 + ∂mXs∂nXs + 2πα′Fmn). (2.136)

2.4 Derivation of Born-Infeld action from path

integral approach

2.4.1 Path integral for string interactions

We start from the path-integral for string interactions [18]

Γ[φ,Aµ, Bµν , · · · ] =
∑

χ=1,0,···
eσχ

∫

[dgab][dx
µ]e−I2tr(Pe−I1), (2.137)

I2 =
1

4πα′

∫

M
d2z

√
ggab∂ax

µ∂bxµ, (2.138)

I1 =

∫

∂M
dt[eφ(x(t)) + iẋµ + e−1ẋµẋνBµν(x(t)) + · · · ].

(2.139)

Since the path integral is carried out over all possible configurations in-
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cluding the conformations of strings, the metric gab should be taken into the

integration measure. χ is the Euler character. It comes from an extension

of Polyakov action and Gauss-Bonnet theorem.

We hope we construct the theory from most general action includes all the

Poincaré, diffeomorphism, and Weyl symmetries. The extension of Polyakov

action based on two assumptions (i) local; (ii) the action is in polynomial

form in derivatives. The result is

χ =
1

4π

∫

M
dτdσ(−γ)1/2R, (2.140)

S′
p = Sp − λχ (2.141)

= −
∫

M
dτdσ(−γ)1/2

(

1

4πα′ γ
ab∂aX

µ∂bXµ +
λ

4π
R

)

, (2.142)

where λ is any number. R is Ricci scalar. The extra term is invariant under

Weyl transformation. Since

(−γ′)1/2R′ = (−γ)1/2(R− 2∇2ω) (2.143)

and taking ∇ω as a vector

(−γ)1/2∇aν
a = ∂a((−γ)1/2νa), (2.144)

we see the variation in Eq. (2.143) is a total derivative.

Eq. (2.143) can be verified by brute force computation. Recall the defin-

ions of Christoff symbol, Rienmann tensor, Ricci curvature, and Ricci scalar

Γi
kl =

1

2
γim (∂lγmk + ∂kγml − ∂mγkl) , (2.145)

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓν
µσ , (2.146)

Rij = Rk
ikj , (2.147)

R = Ri
i. (2.148)

We perform a Weyl transformation γ′ab = γab exp(2ω) from a local inertia

frame γµν = ηµν +O(x2), the Christoff symbol becomes

Γ
′i
kl = Γi

kl + ∂lωγ
imγmk + ∂kωγ

imγml − ∂mωγ
imγkl

= Γi
kl + ∂lωδ

i
k + ∂kωδ

i
l − ∂iωγkl (2.149)
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hence

R
′ρ
σµν = Rρ

σµν + (∂µ∂σω) δρν − (∂µ∂
ρω) ηνσ − (∂ν∂σω) δρµ + (∂ν∂

ρω) ηµσ

+
[

(∂λω) δρµ + (∂µω) δρλ − (∂ρω) ηµλ
]

[(∂σω) δλν + (∂νω) δλσ − (∂λω)ηνσ]

−
[

(∂λω)δρν + (∂νω)δρλ − (∂ρω)ηνλ
]

[(∂σω)δλµ + (∂µω)δλσ − (∂λω)ηµσ]

(2.150)

hence

R′
σν = R′ρ

σρν

= Rσν + (∂ρ∂σω)δρν − (∂ρ∂
ρω)ηνσ − (∂ν∂σω)δρρ + (∂ν∂

ρω)ηρσ

+
[

(∂λω) δρρ + (∂ρω) δρλ − (∂ρω) ηρλ
]

[(∂σω) δλν + (∂νω) δλσ − (∂λω)ηνσ]

−
[

(∂λω)δρν + (∂νω)δρλ − (∂ρω)ηνλ
]

[(∂σω)δλρ + (∂ρω)δλσ − (∂λω)ηρσ]

(2.151)

hence

R′ = R′
σνη

σν

= R+ (∂ρ∂σω)ησρ − (∂ρ∂
ρω)2 − 2(∂ν∂σω)ησν + (∂ν∂

ρω)δνρ

+ 2(∂λω)(∂σω)δλση
σν + 2(∂λω)(∂νω)δλση

σν − 2(∂λω)(∂λω)ηνση
σν

+ (∂ρω)(∂σω)δρλδ
λ
ν η

σν + (∂ρω)(∂νω)δρλδ
λ
ση

σν − (∂ρω)(∂λω)δρλη
σνηνσ

− (∂ρω)(∂σω)ηρλδ
λ
ν η

σν − (∂ρω)(∂νω)ηρλδ
λ
ση

σν + (∂ρω)(∂λω)ηρληνση
σν

− (∂λω)(∂σω)δρνδ
λ
ρη

σν − (∂λω)(∂ρω)δρνδ
λ
ση

σν + (∂λω)(∂λω)δρνηρση
σν

− (∂νω)(∂σω)δρλδ
λ
ρη

σλ − (∂νω)(∂ρω)δρλδ
λ
σσ

ρν + (∂νω)(∂λω)δρληρση
σν

− (∂ρω)(∂σω)ηνλδ
λ
ρ η

σν − (∂ρω)(∂ρω)ηνλδ
λ
ση

σν + (∂ρω)(∂λω)ηνληρση
σν

= R− 2∂ρ∂
ρω

+ 2(∂λω)(∂λω) + 2(∂λω)(∂λω) − 4(∂λω)(∂λω)

+ (∂λω)(∂λω) + (∂λω)(∂λω) − 2(∂λω)(∂λω)

− (∂λω)(∂λω) − (∂λω)(∂λω) + 2(∂λω)(∂λω)

− (∂λω)(∂λω) − (∂λω)(∂λω) + 2(∂λω)(∂λω)

− 2(∂λω)(∂λω) − (∂λω)(∂λω) + (∂λω)(∂λω)

+ 2(∂λω)(∂λω) + (∂λω)(∂λω) − (∂λω)(∂λω)

= R− 2∂ρ∂
ρω. (2.152)
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The last two lines in Eq. (2.151) do not contribute to the Ricci scalar as we

saw in the explicitly computation. It may be intuitively viewed as coming

from exchanging indices µ and ν in the definition (2.146) with different

signs. Therefore their contractions in the Ricci scalar cancel.

Other forms of action than Eq. (2.142) seem to be impossible, since

the diffeomorphism fixed the form dσdτ(−γ)1/2. We can only add scalars.

Higher power Ricci scalar is not possible, since it breaks the Weyl invari-

ance. Nevertheless proving Ricci scalar is the only possibility is beyond the

author’s knowledge.

For the open string with boundary, an additional term can be added in

the action [7, p. 30]

χ =
1

4π

∫

M
dτdσ(−γ)1/2R+

1

2π

∫

∂M
dsk, (2.153)

where ds is the proper time and k = ±tanb∇at
b. Here ta is the unit tagent

vector to the boundary. nb is the unit vector orthogonal to ta.

Combing Eqs. (2.142) and (2.153), we write the general path integral as

∫

[dXdg] exp(−S), (2.154)

S = SX + λχ, (2.155)

SX =
1

4πα′

∫

M
d2σg1/2gab∂aX

µ∂bXµ, (2.156)

χ =
1

4π

∫

M
d2σg1/2R+

1

2π

∫

∂M
dsk. (2.157)

The Gauss-Bonnet theorem [25, p. 81] can convert Eq. (2.157) into e−λχ

where χ here is the Euler character. The difference in the minus sign here

and the plus sign with σ in Eq. (2.137) is conventional.

2.4.2 General expressions for present computation

Similar with the treatment in the β function approach, we split the co-

ordinate xµ = yµ + ξµ in Eq. (2.137). Here ξ is the non-constant part.

Thus

∫

[dxµ]e−I1−I2 =

∫

dDy

∫

[dξµ] exp

{

− 1

4πα′

∫

d2σ
√

ĝ(∂ξµ)2 − i

∫

dtξ̇µAµ(y + ξ)

}

.

(2.158)
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Integrating the Gaussian integrals, Eq. (2.158) becomes

∫

[dξµ]e−I2−I1[ξ|∂M ] ∼
∫

[dηµ]e−1/2ηG−1η−I1[
√
2πα′η], (2.159)

where a change of variables was made, that η is simply connected component

on the boundary, such that 1 = ΠA

∫

[dηµAδ(ξ
µ|CA

− ηA)]. Expanding Aµ in

Eq. (2.158) and integrating by parts, we have

∫

dtξ̇µAµ(y + ξ) =
1

2
Fνµ(y)

∫

dtξ̇µξν +O(ξ3). (2.160)

The path integral is then proportional to a Gaussian one

∫

[dηµ] exp

(

−1

2
ηG−1η +

i

2
F̄µν

∫

dtη̇µην
)

, (2.161)

where F̄µν = 2πα′Fµν . The field strength tensor is antisymmetric, therefore

it cannot be diagonalized in general. Nevertheless it can be rotated into a

block diagonal form

F̄µν =























0 f̄1

−f̄1 0

·
·

0 f̄n

−f̄n 0























, (2.162)

where n = D/2 and f̄n = 2πα′fn.

Hence the path integral becomes

Γ(F ) =
∑

χ

eσχ
∫

dµ(λ)Z(0)Z̄(F ), (2.163)

Z(0) =

∫

[dxµ]e−I2 , (2.164)

Z̄(F ) = Π
D/2
k=1

∫

[dη̃] exp

(

−1

2
η̃∆kη̃

)

= Π
D/2
k=1(det ∆k)−1/2, (2.165)

∆k = 1 + f̄2k G̈ ·G. (2.166)
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2.4.3 Tree level approximation

The perturbative expansion is controlled by the Euler character χ. χ = 1

correspond to the tree-level approximation. We map the world sheet into a

unit disc by [26, p. 85]

z = reiθ, (2.167)

where θ ∈ [0, 2π) and r ∈ [0, 1]. The Neumann boundary problem becomes

∆G(z, z′) = ∂z∂z̄G(z, z′) = δ(z − z′), (2.168)

∂G(z, z′)
∂r

∣

∣

∣

∣

r=1

= 0. (2.169)

The solution

G(z, z′) =
1

2π
ln |z − z′||z − z̄′−1| (2.170)

could be obtained by the charge image method. By Eq. (2.167) we have

[26, p. 134]

G =
1

4π

[

ln(eiθ − eiθ
′

) + ln(eiθ − eiθ
′

) + c.c.
]

=
1

2π

[

ln(eiθ − eiθ
′

) + ln(e−iθ − e−iθ′)
]

=
1

2π

[

ln(1 − ei(θ
′−θ)) + ln(1 − e−i(θ′−θ))

]

=
1

2π

[

−
∞
∑

n=1

e−in(θ−θ′)

n
−

∞
∑

n=1

ein(θ−θ′)

n

]

= − 1

π

∞
∑

n=1

cos(n(θ − θ′))
n

. (2.171)

here c.c. denote to complex conjugation.

We can then find the inverse Green function

G−1 = − 1

π

∞
∑

n=1

n cos(n(θ − θ′)) = G̈ (2.172)

Therefore Eq. (2.166) becomes

∆k = (1 + f̄2k )δ̄(ξ). (2.173)
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The expression of inverse Green function (2.172) can be verified by

∫ 2π

0
dθ′G(θ, θ′)G−1(θ′, θ′′)

=
1

π2

∫ 2π

0

∞
∑

n,m=1

m

n

(

cosnθ cosnθ′ + sinnθ sinmθ′
) (

cosmθ′ cosmθ′′ + sin θ′ sinmθ′′
)

dθ′

=
1

2π2

∞
∑

n,m=1

∫ 2π

0

m

n

(

cosnθ cos(n−m)θ′ cosmθ′′ + sinnθ cos(n−m)θ′ sinmθ′′
)

=
1

π

∞
∑

n=1

cos(n(θ − θ′′))

= δ(θ − θ′′) − 1

2π

≡ δ̄(θ − θ′′), (2.174)

in the fifth line we have used the completeness relation in the Fourier series.

By further using Fourier expansion

η(θ) =
∞
∑

m=1

1√
π

(am cosmθ + bm sinmθ) , (2.175)

the following results can be obtained

∫

[dη]e−cη2 ∼
∫

Π∞
m=1damdbme

−c(a2m+b2m) ∼ Π∞
m=1c

−1 = e−ζ(0) ln c = c1/2

(2.176)

Z̄(F ) = Π
D/2
k=1Π∞

m=1(1 + f̄2k )−1 = Π
D/2
k=1(1 + f̄2k )1/2. (2.177)

Eq. (2.176) employs the zeta function regularization. Namely define the

value of Riemann zeta function

ξ(s) =

∞
∑

n=1

n−s (2.178)

through continuation.

The physical meaning of zeta function regularization may be understood

in analogy with Eq. (2.62). In Eq. (2.62) we can perform an alternative

approach

A =
D − 2

2
ζ(−1) = −D − 2

24
, (2.179)
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since the removing infinity treatment in quantizing Bosonic string has to

physical effect due to vanishing beta function, we can use the zeta function

regularization as well.

The path integral (2.163) becomes

Γ(F ) = Z0
1

α′D/2g20

∫

dDy
[

det(δµν + 2πα′Fµν)
]1/2

, (2.180)

which provides the Born-Infeld action. In the next section, we shall supple-

ment the supersymmetry from path integral approach.
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3 Properties of the D = 4

Born-Infeld action

The Born-Infeld action in four dimension can be written as

LBI =
√

− det4 (ηµν + Fµν) − 1. (3.1)

here ηmn = − + ++.

The factor −1 in the end of Eq. (3.1) is conventional, in order to reproduce

the Maxwell action for small F

−1

4
FµνF

µν . (3.2)

Explicitly computing the determinant in terms of E and B for Eq. (3.1)

gives

− det4 (ηµν + Fµν) = 1 +
1

2
FµνF

µν − 1

16
(FµνF

∗µν)2 , (3.3)

where F ∗µν = εµνλρFλρ is the dual tensor. Therefore for small field strength,

the Born-Infeld action (3.1) reduces to the Maxwell action (3.2). Eq. (3.3)

also shows the Lorentz invariance of the Born-Infeld action.

In the Euclidean signature there is an inequality

LBI =

√

(

1 +
1

4
FµνF ∗µν

)2

+
1

4

(

Fµν − F ∗
µν

)2 − 1 ≥ 1

4
FµνF

∗µν , (3.4)

which implies the minimum value of action is at Fµν = F ∗
µν (self-dual)

The Born-Infeld action is invariant under duality transformation F → F ∗.
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4 Supersymmetric D = 4

Born-Infeld action

The bosonic string theory is generally regarded as an unrealistic theory,

since it does not describe fermion. The incorporation of the supersymmetry

is the superstring theory. Nevertheless, the bosonic string string usually

remains in the lecture course of string theory. Many techniques in bosonic

string theory could apply to superstring theory as well. Here we first review

the properties of supersymmetry and then introduce on the extension of

D = 4 Born-Infeld theory with supersymmetry.

4.1 Brief review of Supersymmetry

Supersymmetry is a symmetry between boson and fermion [27]

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉. (4.1)

It was explored by Golfand in the late 1960s for solving weak interaction

[28]. The supersymmetric quantum field theory has much less divergence

than the ordinary QFT [27]. This feature makes it very attractive. Although

supersymmetry is not the only possibilities to reduce the divergence in QFT,

discrete spacetime can also avoid the divergences [29].

The supersymmetry algebra is [30, p. 3]

{QA
α , Q̄β̇B} = 2σm

αβ̇
Pmδ

A
B , A,B = 1, · · · , N, (4.2)

{QA
α , Q

B
β } = {Q̄α̇A, Q̄β̇B} = 0, (4.3)

[Pm, Q
A
α ] = [Pm, Q̄α̇A] = 0, (4.4)

[Pm, Pn] = 0. (4.5)

here [· · · , · · · ] and {· · · , · · · } denote to commutator and anticommutator,
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respectively. The reason for the anticommutator in Eqs. (4.2) and (4.3) is

highly remarkable. It is restricted by the Coleman-Mandula theorem [31].

The Coleman-Mandula theorem is a result of all the possible symmetries

of the S-matrix in QFT. Based on the assumptions of Poincaré invariance,

finiteness of particle number, elastic analyticity, existence of scattering, and

a technical assumption, the theorem concludes that the symmetry group G

is locally isomorphic to a direct product of a compact internal symmetry

group and the space-time Poincaré group (external symmetry).

Since Eq. (4.2) mixes the internal and external symmetries and we are

not dealing with conformal field theory at this moment, the anticommutator

is used. In conformal field theory, in/out state cannot be defined. There is

no S-matrix.

Furthermore, the Haag- Lopuszański-Sohnius theorem limits that the only

possible spin change by supertransformation is 1/2 [32]. The 3/2 and higher

spin transitions are excluded. Therefore, the logic restriction fixed the form

Eqs. (4.2) and (4.3). This feature somehow strength the hope of supersym-

metry.

For massless particle, the four momentum pm = (E, 0, 0, E). Eq. (4.2)

can be written as [30, p. 12]

{QA
α , Q̄β̇B} = δAB

(

4E 0

0 0

)

. (4.6)

Therefore we can introduce the creation and annihilation operators

aAα =
1√
4E

QA
α (4.7)

to construct states with supersymmetry partners.

4.2 Born-Infeld action from superstring theory

The superstring analogy of the path integral approach is to add extra terms

[33, 9]

S[ψ,A] =
i

4πα′

∫

d2z
(

ψ̄∂zψ̄ + ψ∂z̄ψ
)

− i

2

∫ 2π

0
dθψµFµνψ

ν

∣

∣

∣

∣

r=1

(4.8)
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in the action. The tree-level path integral becomes

S =

∫

DxDψe−I , (4.9)

I =
1

4πα′

∫

d2σ
(

∂zX
µ∂z̄X

µ + ψ̄∂zψ̄ + ψ∂z̄ψ
)

+ i

∫

dθ [ẋµAµ(x)

−1

2
ψµψνFµν(x)

]

, (4.10)

∂z = ∂1 + i∂2, ∂z̄ = ∂1 − i∂2. (4.11)

It can be shown that the new action is invariant under supersymmetry

transformation [26, p. 90]. By a similar procedure as the bosonic string

path integral, the effective action is the same as the bosonic case.

Beyond the leading term, there are derivative corrections to the Born-

Infeld action. For open bosonic theory, the result is [34, 35]

L =
√

− det(ηmn + Fmn) − 1

48π
(FklFkl∂aFmn∂aFmn + 8FklFlm∂aFmn∂aFnk

−4FlaFlb∂aFmn∂bFmn) +O(∂2F 6). (4.12)

For open superstring theory, the result is [34]

L =
√

− det(ηmn + Fmn) − 1

96
(∂a∂bFmn∂a∂bFnlFlrFrm

+
1

2
∂a∂bFmnFnl∂a∂bFlrFrm − 1

4
∂a∂bFmnFmn∂a∂bFlrFlr

−1

8
∂a∂bFmn∂a∂bFmnFlrFlr

)

+O(∂4F 6). (4.13)

4.3 Supersymmetric extensions of D = 4

Born-Infeld action with N = 1, N = 2, and

N = 4

In this section, the notations follow the review of Tseytlin [9]. Based on the

Born-Infeld action from superstring theory, Cecotti and Ferrara constructed
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N = 1 supersymmetric Born-Infeld action [36, 37]

S =
1

2

∫

d4x

(
∫

d2θWαWα + h.c.

)

+

∫

d4x

∫

d2θ̄B(K, K̄)WαWαW̄
α̇W̄α̇,

(4.14)

B ≡ 1

1 − 1
2(K + K̄) +

√

1 − (K + K̄) + 1
4(K − K̄)2

, (4.15)

K ≡ D2(WαWα), K̄ = D̄2(W̄ α̇W̄α̇), (4.16)

D2 ≡ −1

4
DαDα, D̄2 ≡ −1

4
D̄α̇D̄

α̇, (4.17)

Dα ≡ ∂α + iσmαα̇∂m, D̄α̇ ≡ −∂̄α̇ − iθασmαα̇∂m, (4.18)

where θ is the anticommuting variables in the superspace. The N = 1 super-

symmetric Born-Infeld action is interpreted as a supersymmetry breaking

from N = 2 actions. The corresponding N = 2 action is not unique [37, 9].

One N = 2 supersymmetric Born-Infeld action was constructed by Ketov

[38, 9]

S =
1

2

∫

d4x

[(∫

d4θW2 + h.c.

)

+
1

4

∫

d4θd4θ̄B(K, K̄)W2W̄2

]

, (4.19)

B =
1

1 − 1
2(K + K̄) +

√

1 − (K + K̄) + 1
4(K − K̄)2

, (4.20)

K =
1

2
D4W2, K̄ =

1

2
D̄4W̄2. (4.21)

Similarly with the N = 1 action (4.14), Eq. (4.19) was interpreted as

symmetry breaking from N = 4 action [39].

The N = 4 supersymmetric Born-Infeld action has been constructed by

several authors [40, 41, 42, 43, 44], although the expressions have not been

in form of Wα and Φa. For a D3 brane the bosonic part is the DBI action

S =

∫

d4x
√

− det(ηmn + ∂mXs∂nXs + Fmn), s = 1, 2, · · · , 6, (4.22)

where

ϕa = Xa + iXa+3, ∂mX
s∂nX

s = ∂(mϕ
a∂n)ϕ̄

a. (4.23)
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5 Application to cosmology

Inflation is a proposal to solve the homogeneity and magnetic monopole

problems in cosmology. In principle, the homogeneity in the region without

causal contact in the universe and the absence of magnetic monopole could

be explained by a very special initial condition of big bang. Inflation pro-

vides a more natural explanation. More important, the inflation predicts

the cosmological background spectrum. The detailed prediction depends on

particular models of inflation [45].

The DBI action has been used in describing inflation in cosmology [46, 47]

S =

∫

1

2
M2

p

√−gR + Leff + · · · , (5.1)

Leff = − 1

gs

√−g
(

f(φ)−1
√

1 + f(φ)gµν∂µφ∂νφ+ V (φ)

)

, (5.2)

where Mp is the planck mass. f(φ) is an Anti-de Sitter (AdS)-type warp

factor. V (φ) is a scalar potential from Ramond-Ramond flux and compacti-

fication. The action (5.1) describes D3 brane couples with gradational field.

One singificant feature of this model is, it predicts large non-Gaussianities

on the CMB.
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[37] M. Roček and A. A. Tseytlin. Partial breaking of global D = 4 super-

symmetry, constrained superfields, and three-brane actions. Phys.Rev.,

D59:106001, 1999.

[38] Sergei V. Ketov. A Manifestly N=2 supersymmetric Born-Infeld action.

Mod.Phys.Lett., A14:501–510, 1999.

49



[39] S. Bellucci, E. Ivanov, and S. Krivonos. Partial breaking N=4 to N=2:

Hypermultiplet as a Goldstone superfield. Fortsch.Phys., 48:19–24,

2000.

[40] M Cederwall, A von Gussich, B.E.W. Nilsson, and A Westerberg. The

Dirichlet super three-brane in ten-dimensional type IIB supergravity.

Nucl.Phys., B490:163–178, 1997.

[41] M Cederwall, A von Gussich, B.E.W. Nilsson, P Sundell, and A West-

erberg. The Dirichlet super p-branes in ten-dimensional type IIA and

IIB supergravity. Nucl.Phys., B490:179–201, 1997.

[42] M Aganagic, C Popescu, and J. H. Schwarz. D-brane actions with local

kappa symmetry. Phys.Lett., B393:311–315, 1997.

[43] M Aganagic, C Popescu, and J. H. Schwarz. Gauge invariant and gauge

fixed D-brane actions. Nucl.Phys., B495:99–126, 1997.

[44] E. Bergshoeff and P.K. Townsend. Super D-branes. Nucl.Phys.,

B490:145–162, 1997.

[45] Daniel Baumann. TASI Lectures on Inflation. 2009.

[46] Mohsen Alishahiha, Eva Silverstein, and David Tong. DBI in the sky.

Phys.Rev., D70:123505, 2004.

[47] Eva Silverstein and David Tong. Scalar speed limits and cosmology:

Acceleration from D-cceleration. Phys.Rev., D70:103505, 2004.

50


