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Supervised by Prof. Arkady A. Tseytlin

Submitted in partial fulfillment of the requirements for the

degree of Master of Science of Imperial College London

September 19, 2013



Acknowledgments

I would like to thank my parents. I would not have gotten so far without their

effort and support.

I would also like to thank professor Tseytlin for agreeing to supervise this dis-

sertation and for teaching my favourite class this year.

1



Contents

1 Introduction 3

2 Classical Integrability 5

2.1 The Liouville Theorem . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Lax Pairs and the Monodromy Matrix . . . . . . . . . . . . . . . 7

3 Quantum Integrability 10

3.1 Factorisability of the Scattering Matrix . . . . . . . . . . . . . . 10

3.2 Spin Chains and The Algebraic Bethe Ansatz . . . . . . . . . . . 13

4 The Tetrahedron Zamolodchikov Algebra 18

4.1 The Quantum Group Uq(sl2) and the Free Fermion Model . . . . 18

4.2 A Representation of Affine Ui(sl2) . . . . . . . . . . . . . . . . . 21

4.3 The Tetrahedron Zamolodchikov Algebra . . . . . . . . . . . . . 24

5 The Hubbard Model R-matrix 28

5.1 The su(2|2)nR2 Lie Superalgebra . . . . . . . . . . . . . . . . . . 28

5.2 The Shastry Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 The AdS/CFT S-matrix 34

6.1 The AdS/CFT Correspondence . . . . . . . . . . . . . . . . . . . 34

6.2 The Gauge Theory Spin Chain . . . . . . . . . . . . . . . . . . . 36

6.3 Full Symmetry of the Hubbard Model R-matrix . . . . . . . . . . 38

7 Summary and Further Work 42

2



1 Introduction

Symmetries are extremely important in finding exact solutions for parameters

in a classical theory. Noether proved in [1] that if a physical theory is invariant

under a certain group of continuous transformations, there exists a constant in

time which is said to generate the symmetry. If the number of these symmetries,

and hence constants, is high enough, it is possible to find exact solutions to the

equations of motion. This would correspond to inserting a high enough number

of constraints on a system of linearly independent differential equations until

the number of equations matches the number of variables plus the number of

constraints. This is known as an integrable - or solvable - system.

The quantum mechanical analog of this method is often found in 1+1 di-

mensional quantum field theories and statistical mechanics systems. In this

case, solvability of the system is ensured by the scattering matrix of the theory

or S-matrix satisfying the Yang Baxter equation. This requirement leads to a

method of solving for the variables of the system known as the Bethe ansatz.

As pointed out by Dorey in [4], it is then natural to reduce the problem of

solving for the variables of a quantum field theory to finding such S-matrices.

Furthermore, the Yang Baxter equation implies the S-matrix of any n body

process in 1+1 dimensional quantum field theory can be factorised into 2 body

processes, so finding the 2 → 2 process S-matrix would suffice. This is simply a

function which satisfies unitarity, is invariant under the symmetry of the theory,

and maps different representations of such symmetry - which are interpreted

physically as multi-particle states.

A topic of recent interest in the study of integrable sytems is the famous

AdS/CFT correspondence. This is a conjectured duality between gauge theory

and string theory in a certain space. It was proposed and motivated in 1998 by

Maldacena in [19] for one particular example: N = 4 Super Yang Mills theory

(SYM) in four dimensions and type IIB string theory in AdS5×S5, where AdS5

is the hyperbolic space in 5 dimensions. This duality provides a major advance

in the search for integrable systems which arise from symmetries in these two

theories. N = 4 SYM has a symmetry group containing a variety of algebras

which, if integrable, could have a corresponding solvable system in their string

theory dual in AdS5×S5. Potentially, this could be helpful in finding the form

of S-matrices in a theory of gravity.

The main goal of this dissertation is to analyse the integrability of a par-

ticular sector of the full symmetry group of N = 4 SYM by connecting it to

a much simpler theory known as the Hubbard model, which was shown to be

an integrable system by Shastry in [10]. This sector is the subalgebra su(2|2)

of su(2|3). Beisert showed integrable systems may live in these sectors by com-
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puting the exact form of their corresponding factorised S-matrices in [13] and

[14]. This is known as the AdS/CFT or AdS5×S5 S-matrix, whose existence was

shown by Staudacher in [16] to be fully consistent with string theory in several

other subalgebras of the full symmetry group of N = 4 SYM. The connection

between the su(2|2) S-matrix and the Hubbard model was studied by Mitev,

Staudacher and Tsuboi in [9], which has motivated the possibility of using very

simple integrable models in 1+1 dimensions to study the solvability of those in

a higher number of dimensions. In this dissertation, we wish to expand this

study by explaining in detail the techniques and concepts involved in [9], as

well as bringing together significant relatively modern discoveries on the topic

of integrability in theoretical physics.

To do so, we will first introduce in detail the basic concepts of integrability,

both the classical and quantum version. These will include Liouville integra-

bility, Lax pairs and the algebraic Bethe ansatz among others. The rest of the

dissertation will be divided in two main parts:

• In the first one, we will explain a procedure to find a suitable S-matrix -

which we will call R-matrix to avoid confusion - for a more general version

of the Hubbard model. To achieve this, elements of free fermion theory

and an object known as the Tetrahedrown Zamolodchikov algebra will

be used. Then, the invariance of such R-matrix under two copies of the

quantum group Uq(sl2) will be demonstrated. In addition, we will hint

the possibility of a larger symmetry group, and write a representation

of the algebra su(2|2)nR2 in terms of the operators which compose the

R-matrix.

• In the second one, we will briefly introduce the basic concepts of the

AdS/CFT correspondence. Then we will proceed to analyse a particular

the sector the full gauge theory symmetry which is invariant under su(2|3)

and su(2|2) and show that the R-matrix for the Hubbard model is a valid

candidate for an S-matrix in such sector, thus concluding that this part

of N = 4 Super Yang Mills - and its string theory dual - is an integrable

system.
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2 Classical Integrability

Before studying the conditions which determine whether a quantum theory is

integrable, we shall look at basic concepts of integrability in classical physics.

These should seem very familiar and intuitive as it is always easier to find

solutions to a classical problem if the number of symmetries is big enough.

These symmetries impose constraints on the equations of motion in the form of

a parameter which does not evolve with time.

2.1 The Liouville Theorem

Among the different spaces studied in theoretical physics, perhaps the most

important one is the symplectic manifold. A manifold M of dimension 2n is

called symplectic if it is equipped with a non-degenerate, closed differential 2-

form ω. If we assign coordinates (pi, qi) to each point in M, the choice of ω

becomes obvious:

ω =

n∑
i=1

dpi ∧ dqi i = 1, ...n (1)

The variables pi and qi are interpreted in classical physics as momentum and

position, respectively, and the manifold M is the phase space. The fact that ω

is non-degenerate is crucial - it implies there is an unique vector field X such

that

ω(X) = dH (2)

where H is a function on M called the Hamiltonian with the property that

δH = 0 for any arbitraty variation δ. We shall call the vector field X ≡ XH

associated with it a Hamiltonian vector field, which has the following form:

XH =

n∑
i=1

∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi
(3)

If we let pi and qi depend on a continous paramenter t - which is physically

interpreted as time - the property δH = 0 leads to the familiar Hamilton’s

equations of motion:

ṗi = −∂H
∂qi

, q̇i =
∂H

∂pi
(4)

The evolution of any function F in the phase space is determined by the Hamil-

tonian vector field. To see this, consider XH(F ). Using Hamilton’s equations

of motion, we obtain

XH(F ) =

n∑
i=1

∂H

∂pi

∂F

∂qi
− ∂H

∂pi

∂F

∂qi
=

n∑
i=1

q̇i
∂F

∂qi
+ ṗi

∂F

∂qi
=
dF

dt
(5)
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The first sum of (5) is known as the Poisson bracket of H and F , and is denoted

by the symbol {H,F}. So, using the fact that ω is non-degenerate, we have been

able to obtain the following remarkable result for any function on the phase

space:
dF

dt
= {H,F} (6)

This establishes a relation between the time evolution of a function F on the

phase space and the Hamiltonian. In the case where {H,F} = 0, the function

does not evolve, and is hence a conserved quantity of the system.

Conserved quantities are the key to solving differential equations and, con-

sequently, physical systems. Most classical systems, such as the Lagrange or

Euler top, would be impossible to solve if we did not impose conservation of

energy and angular momentum. In quantum field theory, scattering amplitudes

would be impossible to compute if we did not constrain the 4-momentum to be

conserved at each vertex of Feynman diagrams.

Given their importance, we shall focus our introduction to classical inte-

grability on functions that Poisson-commute with the Hamiltonian. We say

dynamical system represented by a phase spaceM of dimension 2n is Liouville

integrable if there exists n functions Fi on M such that

Ḟi = {H,Fi} = 0, i = 1, 2, ..., n (7)

and the Fi’s are in involution:

{Fi, Fj} = 0, i = 1, 2, ..., n (8)

The Liouville theorem states that Liouville integrable systems can be solved by

first integrals. This provides us with a way of determining whether we can

find exact solutions to a Hamiltonian dynamical system and if possible, obtain

these. The key to the proof of this theorem is the existence of a canonical

transformation from coordinates pi, qi to Fi and a function ψi such that the

nondegenerate closed 2-form on M can be written as

ω =
∑
i

dFi ∧ dψi (9)

which, imposing Hamilton’s equations of motion on these these two variables,

leads to solutions for the canonical variables pi and qi.

As we can see, a function H which satisfies all of the above conditions can be

written as a linear combination of all the quantities Fi in involution. Therefore

the Hamiltonian of the system is a linear functional of the conserved quantities

on the phase space.
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2.2 Lax Pairs and the Monodromy Matrix

On the phase space, sometimes one can find matrices L and M such that Hamil-

ton’s equations of motion are encoded in the following relation

L̇ = [M,L] (10)

where [ , ] is the usual matrix commutator. These matrices L and M are

then said to form a Lax pair of the system. For example, consider the one

dimensional harmonic oscillator, with Hamiltonian

H(p, q) =
p2

2
+
ω2q2

2
(11)

where ω is the frequency of oscillations. Then for matrices

L =

(
p ωq

ωq −p

)
, M =

(
0 −ω/2
ω/2 0

)
(12)

one can check that equation L̇ = [M,L] leads to (ṗ, q̇) = (−ω2q, p) which are

the same equations we would obtain using (5).

The importance of Lax pairs lies in that the eigenvalues of the matrix L cor-

respond to the conserved quantities of the system. This provides on a straight-

forward way of finding the form of these quantities H(n) by computing the

following trace

H(n) = Tr Ln (13)

In the case of the harmonic oscillator, H(2) = TrL2 = 2(p2 +ω2q2) which is four

times the Hamiltonian in (11).

Unfortunately, a procedure to determine the existence of Lax pairs in a

particular physical system does not exist. There is, however, a general method to

construct Lax pairs which encode the equations of motion of integrable systems,

called the Zhabarov Shabat construction. This method treats matrices M and L

as functions of a complex variable λ, called the spectral parameter, and studies

the equivalence of poles of both sides of (10) and the diagonalizability of L

around those poles. The reason diagonizability is so important is that if we can

find a way to diagonalise L and M into Ld and Md, this will result in L̇d = 0

since diagonal matrices commute, and we would have found a matrix which

encodes all conserved quantities of the system.

For the purpose of this disseration, we will not discuss this method any

further. We will simply state the result in [2] that for every L(λ) there exist

an infinite number of M(λ)’s such that (10) holds. This implies there exists a

continuous curve corresponding to these choices pf M(λ). We shall incorporate
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an integer label i to denote the different M ’s

∂tiL = [Mi, L], i ∈ Z (14)

Consider now, Mi and Mj , such that the Lax equation holds for a specific L at

times labeled ti and tj respectively. Since [∂ti , ∂tj ] = 0, one obtains the relation

[∂tiMj − ∂tjMi, L] + [Mi, [Mj , L] + [Mj , [L,Mi] = 0 (15)

Using the Jacobi identity [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 and [A,B] =

−[B,A], the relation becomes

[∂tiMj − ∂tjMi − [Mi,Mj ], L] = 0 (16)

If this holds for infinitely many M ’s, it leads to the following result

∂tiMj − ∂tjMi − [Mi,Mj ] = 0 (17)

which can be recognized as the zero curvature condition for any pair of matrices

Mi and Mj . Hence we can think of the Lax equation for this pair of matrices

as L being covariantly transported along the connection (Mti ,Mtj ).

Now suppose the equations of motion of a 1+1 dimensional field theory are

encoded by the following equation

[∂x − U, ∂t − V ] = 0 (18)

where U, V are matrices which depend on parameters of the theory. This is

equivalent to the zero curvature condition for matrices U and V . For any

function T (t, x) that is parallely transported along the curve defined by the

connection (U, V ), we have the conditions

(∂x − U)T (t, x) = 0, (∂t − V )T (t, x) = 0 (19)

Choosing a path λ from (0, 0) to (t, x), the solution of T (t, x) reads

T (t, x) = Pexp[
∫
λ

(Udx− V dt)] (20)

where P represents the path dependence of the integral. This is known as the

monodromy matrix and is the equivalent of the matrix L in classical field theory

in 1+1 dimensions. We can choose a particular path, in this case with a circular
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parametrization λ : [0, 2π]→M, and fix time, to obtain

T (t) = Pexp[
∫ 2π

0

U(t, x)dx] (21)

Just as with L, the trace of the powers of T (t) encodes de conserved quantities

of the classical field theory, which correspond to the eigenvalues of T (t). It also

obeys a similar relation to (10), which becomes apparent after taking the time

derivative

∂tT (t) =

∫ 2π

0

dxPexp
∫ 2π
x

U(t,y)dy(∂tU)Pexp
∫ x
0
U(t,y)dy

=

∫ 2π

0

dxPexp
∫ 2π
x

U(t,y)dy(∂xV + [V,U ])Pexp
∫ x
0
U(t,y)dy

=

∫ 2π

0

dx∂x(Pexp
∫ 2π
x

U(t,y)dy(V )Pexp
∫ x
0
U(t,y)dy)

= [V (t, x), T (t)] (22)
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3 Quantum Integrability

Now that we have reviewed at what it means to be classically integrable, it is

time to immerse ourselves in the topic of quantum field theory and study what it

means for a system to be quantum integrable. First, we will present a property

of the 1+1 dimensional quantum field theory scattering matrix. Then, we will

discuss how this property leads to the solvability of the system by introducing

a familty of integrable systems called spin chains.

3.1 Factorisability of the Scattering Matrix

We shall begin by looking at a particular result in [4]: the 2 → 4 scattering

amplitude f of 1+1 dimensional φ4 theory, computed via

f = 〈out|S |in〉 = 〈S〉 (23)

where S is the S-matrix and 〈out| and |in〉 are representations of the 1+1 di-

mensional Lorentz group SO(1,1). These representations are to be intepreted

physically as ingoing and outgoing multiparticle states. To proceed, we may

first calculate the 3 → 3 process and cross one of the out and in momenta in

the end, and in doing so, we will use light-cone coordinates

pi = (p+, p−) = (p0 + p1, p0 − p1) (24)

Let the in particles be labeled by a, b, c and the out particles d, e, f such that

the momenta of each is labeled by pa = (ma,ma−1) in order to satisfy the mass-

shell condition p+p− = m2. The two possible diagrams for the 3 → 3 process

in φ4 theory are the following:

Figure 1: φ4 theory 3-body processes

Calculating the S-matrix for both diagrams, and imposing conservation of

momentum in their addition, one obtains the simple result S2→4 = −1. This
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means that in 1+1 dimensional φ4 theory, the 2 → 4 scattering amplitude is

constant. In fact, by adding an suitable φ6 term to the Lagrangian, we can set

this amplitude to be exactly zero.

But then we find that, for this new Lagrangian, the 2 → 6 amplitude turns

out to be constant as well, so we can add a φ8 term to cancel such amplitude. We

can repeat this technique for all powers of φ to come to the following conclusion:

• In several two dimensional quantum field theories with interacting la-

grangians, the 2 → n S-matrix vanishes unless n = 2. Therefore, there is

no particle production.

Indeed, if one starts the above procedure with a φ4 term, the resulting

theory is precisely described by the sinh-Gordon Lagrangian. One can generalise

this argument to all quantum field theories in 1+1 dimensions by studying

conserved charges. To be consistent with special relativity, all quantum field

theories must be manifestly Lorentz invariant. This symmetry is generated

by a conserved charge Qs , where the index s determines the representation of

SO(1,1) it transforms under, called the spin. This charge acts on a multiparticle

state |a1a2...an〉 as

Qs |a1a2... aN 〉 = (q(s)a1 + q(s)a2 + ... q(s)an ) |a1a2...aN 〉 (25)

Then for a n → m, scattering amplitude, with ingoing multiparticle state

|a1a2...an〉 and outgoing multiparticle state |b1b2...bm〉, this implies

q(s)a1 + q(s)a2 + ... q(s)an = q
(s)
b1

+ q
(s)
b2

+ ... q
(s)
bm

(26)

Which, if need to be satisfied for infinitely many spins s, requires that n = m.

Therefore,

• In any 1+1 dimensional (scalar) quantum field theory process, there is no

particle production.

Hence we can study the case of three incoming particles, which can only

lead to three outgoing particles. The only three possible diagrams for the 3 →
3 process in any 1+1D quantum field theory are given in Figure 2.

Although at first sight these might seem like different processes, they all

encode the same scattering amplitude. The first and last case are mirror images

of each other, and the S-matrix of the middle case can be converted into one of

the other two by having the operator eiθPs act on the S-matrix and translate

the second particle. This can be done without altering the form of the S-matrix
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Figure 2: 1+1D QFT 3-body processes

using its invariance under SO(1,1):

〈out| [S, eiθPs ] |in〉 = 0 (27)

One also notices that since these diagrams are composed of 2-body collisions,

they must factorise into 2 → 2 processes. The latter is a consequence of the

number of dimensions this quantum field theory lives in. As shown in [5], if the

particles all have different momenta they will cross in the one spatial dimension

at different times. Due to SO(1,1) symmetry, one can think of the possibility of

performing a boost on these particles so that every time there is a crossing, it

happens between no more than two particles.

Factorizability of the 3 → 3 S-matrix can be done in two ways, represented

by the first and second diagram. Denote the S-matrix of the interaction between

2 particles i and j by Sij , and from left to right, label the particles by 1,2 and

3. Then

S123 = S12S13S23 = S23S13S12 (28)

This is known as the Yang Baxter equation. Just as for the 3-body process, a

1+1 dimensional quantum field theory is said to be quantum integrable if the

S-matrix of any process factorises into 2-body S-matrices and, consequently, the

3-body S-matrix satisfies the Yang Baxter equation.

Furthermore, this equation defines an algebraic object called the Yang Bax-

ter algebra. An element R in A ⊗ A belongs to the Yang Baxter algebra in

A⊗A⊗A if it satisfies the Yang Baxter equation

R12R13R23 = R23R13R12 (29)

where the lower indices indicate a tensor product with the identity matrix in a

certain order. Explicitely, if R = a ⊗ b, then R12 = a ⊗ b ⊗ I, R23 = I ⊗ a ⊗ b
and R13 = a⊗ I⊗ b.

Quantum integrability, just as Liouville integrability, allows us to solve for

the variables of the system. To explain how, it is convenient to focus on a family

12



of systems called spin chains.

3.2 Spin Chains and The Algebraic Bethe Ansatz

A spin chain is a model of spin one-half particles distributed in a lattice which

have spin-spin interaction. Although it is statistical mechanical, the spins of

each particle are treated quantum mechanically, and each lattice site can be

thought as a magnetic dipole.

The most famous of these models in the Heisenberg model, also known as the

XXX spin chain. This model possesses the property that the coupling constant

of interaction between two neighboring sites is the same in each direction, and

it is therefore rotationally invariant. The Hamiltonian for such model is

HXXX = J

L∑
j=1

(σxj σ
x
j+1 + σyj σ

y
j+1 + σzjσ

z
j+1) (30)

where σαj are spin operators pauli matrices at site j with periodic boundary

conditions σαL+1 = σα1 and L is the length of the spin chain. Pictorically,

Figure 3: the XXX Spin Chain

Its basis of states is given by spins up or down. There exists an operator

that exchanges the spins at sites i and j, called the permutation operator, of

the form

Pij =
1

2
(1 + σzi σ

z
j + σ+

i σ
−
j + σ−i σ

+
j ) (31)

where σ± = (σx ± σy)/2. One can now check that the operator

Rij(u, v) ≡ u− v + Pij (32)

where u and v are complex numbers, satisfies the Yang Baxter equation

R12(u, v)R13(u,w)R23(v, w) = R23(v, w)R13(u,w)R12(u, v) (33)

which implies the Heisenberg model is quantum integrable. In fact, all spin

chains are quantum integrable models, and therefore very useful in the study of
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integrable systems arising in theories invariant under classical lie algebras. Rij

is called the R-matrix, which is just another name for a scattering matrix.

The Heisenberg model is called the XXX-model because there is only one

coupling constant - in other words, Jx = Jy = Jz. A simple variation of this

model is the XXZ model, where Jx = Jy 6= Jz, or the XYZ model, where

Jx 6= Jy 6= Jz. Similarly, R-matrices which satisfy the Yang Baxter equation

can be found in every single one of these models.

As it will be useful in the beginning of the next section, one wishes to

establish a connection between the quantum version of the monodromy matrix,

the permutation operator and the R-matrix.

Let us return to the XXX spin chain, and imagine we face the task of ob-

taining the Hamiltonian density from the R-matrix alone. The first step is to

define a curve in the complex plane such at the starting point, call it u0, the

R-matrix is just the permutation operator. The reasoning behind this is sim-

ple: the R-matrix encodes the possible processes to happen between n particles

while taking into account the overall conservation of one or many quantities of

the system. This set of processes defines a path in the complex plane. Since

permuting the value of the conserved charge for each particle satisfies the con-

servation law, this should be one of the possible actions of the R-matrix on a

multiparticle state. Note that, in the case of the XXX spin chain, this first step

was already accomplished by simply choosing Rij(u, v) ≡ u − v + Pij , where

u0 − v0 = 0.

The next step consists in rearranging (37). After some algebraic manipula-

tion, we obtain the following equivalence

R12(u− v)(Lij(u)⊗ I)(I⊗ Lij(v)) = (I⊗ Lij(v))(Lij(u)⊗ I)R12(u− v) (34)

where Lij(u) = u − i
2 + iPij is called the Lax operator, which is a represen-

tation of the Yang Baxter algebra with R-matrix Rij . This operator acts on

representations of the Hilbert space Hj which are labeled by a specific spin j.

If we wanted, however, to define an operator which acted the same way as Lij

but for any representation of the Hilbert Space of all possible spins, as done in

[6], we must define the monodromy matrix in quantum mechanical systems as

Ta(u) = LLa(u)LL−1a(u)...L1a(u) (35)

which acts in multi-spin states in H =
⊗

j Hj . Hence now, the Yang Baxter

equation for H is

R12(u, v)(Ta(u)⊗ I)(I⊗ Tb(v)) = (I⊗ Tb(v))(Ta(u)⊗ I)R12(u, v) (36)
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The operator Ta(u) is called the monodromy matrix because it plays the same

role as the field theory monodromy matrix: it generates conserved quantities,

one of them being of course, the Hamiltonian. So see this explicitely, we shall

multiply equation (41) by R−1 and take the trace of both sides. Since the trace

is invariant under similatity transformations,

Tr (Ta(u)⊗ I)(I ⊗ Tb(v) = Tr (Tb(v)⊗ I)(I ⊗ Ta(u)) (37)

which using the identity Tr (X ⊗ Y )= TrX TrY , leads to

Tra Ta(u) Trb Tb(v) = Trb Tb(v) Tra Ta(u) (38)

where Tra is the trace taken over the auxiliary space. Since all Ta(u)’s commute

for any u, we can expand Ta(u) in a power series T (p)(u) =
∑
n an(u − u0)n

whose coefficients are such that Tr an = Qn commmute with each other. In other

words, the monodromy matrix is a generating function of conserved quantities

in involution. Each of the Qn can be obtained by

Qn =
1

n!

dn

dun
Tr T (p)(u) |u=u0

(39)

As mentioned in section 2.5, the Hamiltonian can be written as a linear combi-

nation of all conserved quantities. Making use of the monodromy matrix, this

can be accomplished by the following formula:

H =
d

du
lnTra Ta(u) |u=u0

= (Tra T (u0))−1
d

du
Tra Ta(u) |u=u0

(40)

For the XXX spin chain, this equality is easy to check. Note that at u = i/2,

the R-matrix and Lax operator become the permutation operator. This implies

that Ta(u0) becomes the product of all permutation operators Pna where n goes

from N to 1. It is then possible to rearrange Ta(u0) into

Ta(i/2) = iLP12P23... PL−1,LPLa (41)

Since TraPLa = IL, the trace of (41) is simply the same but multiplied by PaL

on the right. Hence

d

du
lnTra Ta(u) |u=i/2 = (P12P23... PL−1,L)−1

∑
n

P12... Pn−1,n+1... PL−1,L

=

L∑
n=1

Pn,n+1 =
HXXX

Jx
− L

2Jx
(42)

Now we proceed to demonstrate how quantum integrability leads to solvavility
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of the quantum system variables. Letting fj(u, v) = δj1 + i/(v−u) (as was used

in [6] to derive the Yang Baxter equation) the operators R,L and T are written

in matrix form:

R(u, v) =


f1 0 0 0

0 f2 1 0

0 1 f2 0

0 0 0 f1

 , Lj(u) =

(
u− i

2σ
z
j −iσ−j

−iσ+
j u+ i

2σ
z
j

)

T (u) =

(
A(u) B(u)

C(u) D(u)

)
(43)

The Yang Baxter equation implies the following relations between A,B,C,D

and fj :

A(u)B(v) = f1(u, v)B(v)A(u)− f2(u, v)B(u)A(v)

D(u)B(v) = f1(v, u)B(v)D(u)− f2(v, u)B(u)D(v)

B(u)B(v) = B(v)B(u) (44)

Define now the vacuum state of an spin chain of length L to be the tensor

product of L spin up states:

|0〉 ≡ |↑〉L ⊗ ...⊗ |↑〉1 ∈ H (45)

Since T (u) = LL(u)...L2(u)L1(u) acts on H, each one of the Lax operators

in the product acts on its corresponding element in the tensor product. For

instance,

L1(u) |↑〉1 =

(
(u− i

2σ
z
1) |↑〉1 −iσ−1 |↑〉1

−iσ+
1 |↑〉1 (u+ i

2σ
z
1) |↑〉1

)
(46)

=

(
u− i/2 b(u)

0 u+ i/2

)
|↑〉1

so acting with T (u), we obtain the following result:

T (u) |0〉 =

(
(u− i/2)L B(u)

0 (u+ i/2)L

)
|0〉 (47)

We observe C(u) satisfies C(u) |0〉 = 0 for all complex numbers u, which is the

same condition that the vacuum must satisfy for all annihilation operators in a

quantum field theory. The algebraic Bethe anstatz is the assumption that these

are actually annihilation operators and the B(u) are creation operators, such
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that every state |~u〉 of the spin chain can be written as |~u〉 = B(u1)...B(uN ) |0〉,
where ~u = (u1, ..., uN ).

Acting on such state with Tra Ta(u) we should obtain an eingenvalue λ(u).

Thus, if

Tra Ta(u) |~u〉 = (A(u) +D(u)) |~u〉 = λ(u) |~u〉+K(u) (48)

Therefore K(u) must be equal to exactly zero. This leads to the following

equations, known as the algebraic Bethe equations

(
un − i/2
un + 1/2

)L
=

L∏
j=1,j 6=n

(
un − uj − i
un − uj + i

)
, n = 1, L (49)

These allow for the solvavility of the parameters of the system. To see this, we

give the expression of the eigenvalue λ(u):

λ(u) = (u− i/2)L
L∏
j=1

(
1 +

i

u− uj

)
+ (u+ i/2)L

L∏
j=1

(
1 +

i

uj − u

)
(50)

As it was shown earlier, the value of d
du ln Tra T (u) at u = u0 corresponds to the

hamiltonian of the system. Consequently, conserved quantities Q are encoded

by d
du ln(λ(u)), where taking u = i/2 we have

Q =
d

du
ln λ(i/2) =

d

du
ln iL

L∏
j=1

(
uj + i/2

uj − i/2

)
(51)

which, together with (49), can be used to solve for Q explicitely.
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4 The Tetrahedron Zamolodchikov Algebra

After covering the main concepts of classical and quantum integrability, we are

ready to focus on the main topic of this dissertation. This section will cover

the the free fermion model R-matrix and how its elements can be thought as

representations of the quantum group Uq(sl2). We will explicitely show that

the R-matrix is invariant under such group. Then we will explain how these

symmetries lead to an analog of the Yang Baxter algebra for 1+2 dimensional

quantum field theory.

4.1 The Quantum Group Uq(sl2) and the Free Fermion

Model

Let us first introduce the quantum group Uq(sl2). This is simply the algebra sl2

but with an additional generator and properties. The group SL(2,C) consists

of all 2×2 complex matrices whose determinant is one, and its algebra, sl2, is

generated by three elements: E,K and F . The four dimensional representation

of sl2 is given in [8] as:

E =

(
0 1

0 0

)
F =

(
0 0

1 0

)
K =

(
1 0

0 −1

)
(52)

Note that these matrices satisfy the relations {K,F} = 0, {K,E} = 0 and

[E,F ] = K. Any three elements which satisfy these relations correspond to a

representation of sl2 and are said to form an sl2-triple.

The definition of Uq(sl2) is the q-deformed algebra of sl2, and it is constructed

by taking the above properties and deforming them via the use of a constant

factor, q, and an extra generator, K−1. Summarising, Uq(sl2) is generated by

four elements, E,F,K and K−1, satisfying:

KK−1 = K−1K = 1

KE = q2EK

FK = q2KF

EF − FE =
K −K−1

q − q−1
(53)

We shall now take the first step in showing that the free fermion model R-

matrix possesses a symmetry directly connected to Uq(sl2). By definition, this

model contains at most quadratic fermionic field terms in its Hamiltonian. Just

like in section 3.3, the Hamiltonian operator will be derived starting from the

R-matrix.
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As done in [9] we shall take a different approach than earlier and write the

R-matrix in terms of operators which satisfy generic commutation or anticom-

mutation relations depending on whether they are fermionic or bosonic. This

will be useful later for connecting the R-matrix elements to a specific represen-

tation of Uq(sl2) when q = i.

Let cj and c†j be annihilation and creation fermionic operators, respectively,

where j labels the point in the lattice where the fermion is located. They satisfy

the (fermionic) anticommutation relations

{cj , c†k} = δjk (54)

where {A,B} = AB + BA is the anticommutator and it shall not be confused

with the Poisson bracket. To simplify future writing, using these fermionic

operators we can construct compound ones: nj = c†jcj and mj = cjc
†
j .

The free fermion R-matrix is a combination of products of these operators.

Just as the XXX spin chain R-matrix depended on a complex parameter u, this

one depends on a complex matrix A in SL(2,C), such that ad − bc = 1. It

satisfies RijRji = I (unitarity), maps representations of and is invariant under

the Clifford algebra. These properties and a special condition fully determine

its form, which is

Rfjk(A) = −anjnk − ibnjmk − icmjnk + dmjmk + c†jck + cjc
†
k (55)

Without using operators in the construction, the representation of Rf12 as a 4×4

matrix would look like the following:

Rf12(A) =


a 0 0 0

0 ib 1 0

0 1 ic 0

0 0 0 d

 (56)

The choice of the A variables to obey |A|= 1 is known as the free fermion con-

dition. The free fermion model is quantum integrable, as its R-matrix satisfies

the Yang Baxter equation Rf12(A)Rf13(B)Rf23(C) = Rf23(C)Rf13(B)Rf12(A)Rf12.

However, B = CA must also be satisfied for this to hold, but we can insert this

condition into the equation itself by defining a new operator R0
jk such that

R0
jk(Aj , Ak) ≡ Rfjk(AkA

−1
j ) (57)

as CA = A3A
−1
2 A2A

−1
1 = A3A

−1
1 = B. Another choice of operator to satisfy

B = CA is R1
jk(Aj , Ak) ≡ Rfjk(Akσ

zA−1j σz)(nk − mk). These two options

will become more significant in section 4.3, where they will be identified with a
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certain type of intertwiners in Uq(sl2).

We wish to construct the Hamiltonian density operator for such spin chain.

In the case of the Heisenberg model, we let the R-matrix depend on a complex

parameter u0. In the free fermion model, Rfjk already depends on a complex

matrix A, so we will let A be a function of a continous complex parameter u

defining a curve λ in the complex plane

λ : [u0,∞)→ SL(2,C)

such that at u0 the R-matrix becomes the permutation operator. Now the task

becomes to construct such operator. This is a map Pjk which sends sj ⊗ sk
to sk ⊗ sj , where si is just a spin operator. For the sake of simplicity, assume

we can represent si in a two dimensional vector space. This would be useful in

connecting Pij to the matricial form of Rf12. If X and Y are two dimensional

vectors, then their tensor product is given by

X ⊗ Y =

(
x1

x2

)
⊗

(
y1

y2

)
=


x1y1

x1y2

x2y1

x2y1

 (58)

and Y ⊗X is the same as above but with the middle two entries interchanged.

Since P (X ⊗ Y ) = Y ⊗X, we easily obtain the form of P :

P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (59)

We can recognise this matrix as Rf12 when a = d = 1, b = c = 0, or A(u0) = I2.

So in terms of fermionic operators, the permutation operator generalised to sites

i, j has the form

P fjk = −njnk + mjmk + c†jck + cjc
†
k (60)

The monodromy matrix is constructed in terms of the R-matrix by taking the

product of R0
jk(u)’s in all possible indices k

T fj (u) = R0
jN (u)R0

jN−1(u)...R0
j1(u) (61)

Here we have used the R-matrix instead of the Lax operator because they are

both representations of the same algebra. This expression allows us to compute
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the Hamiltonian density using (40)

Hf =
d

du
ln Trj T

f
j (u)) |u=u0 (62)

One natural choice for the curve is a = d = cosu and b = c = sinu. This way,

we obtain what is known as the XX model, which possesess a Hamiltonian of

the form

HXX =

L∑
i=1

c†ici+1 + cic
†
i+1 (63)

In terms of the Pauli matrices σαj at each lattice site j, this model is just the

XXZ model but lacking a σzjσ
z
j+1 spin-spin interaction term.

4.2 A Representation of Affine Ui(sl2)

Let us return our attention to the quantum group Ui(sl2), where we have taken

q = i, and find the relation of its affine extension to (55). Recall the affine

extension of any algebra A is the vector space spanned by several copies of the

generators of A. In the case of Ui(sl2) we will denote this affine extension by

Ui, which is the algebra generated by Er, Fr,Kr and K−1r , where r = 0, 1. The

properties (53) now become

KrK
−1
r = K−1r Kr = 1

[Kr,Ks] = 0

{Kr, Es} = {Kr, Fs} = 0

[Er, Fs] = δrs
K −K−1

2i
(64)

Furthermore, we introduce the operator Hr defined by the relation Kr = qHr .

Imagine one would like to find a representation of Ui. Impressively, we can use

the elements of the free fermion model R-matrix to write an expression for its

generators. Analysing the commutation and anticommutation relations of the

generators of Ui, we realise Kr can be interpreted as bosonic generators and

Er, Fr as fermionic generators. This gives us a hint on how to construct the

representation: Kr must be a linear combination of m and n and the fermionic

ones must be proportional to c and c†. For the sake of simplicity, we shall ignore
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the lattice indices. Then it is quite easy to check that

K0 = i1+u(n−m) , E0 = −χv−1c† K1 = i−1−u(n−m),

E1 = χw−1c F0 = χvc, H0 = u−m + n

F1 = −χwc†, H1 = −u+ m− n (65)

satisfy the relations (64). Here u, v, w are complex numbers and χ is defined via

χ2 =
i−u−1 − iu+1

2
(66)

We may name this family of 2-dimensional representations 〈u, v, w〉. Now one

would like to find the form of an Ui invariant map between tensor products of

these representations, and investigate if it is related to the free fermion R-matrix.

In other words, we would like to find an S-matrix for a Ui-invariant theory and

check if we can obtain Rfjk from it via a series of similarity transformations. In

order to do so, we must define the coproduct of each element in Ui.
In algebraic terms, if A is a lie algebra then a coproduct ∆ is a linear algebra

morphism from A into A ⊗ A which preserves de lie bracket. It works as an

extension of the lie algebra to the tensor product with itself. For a general

element g ∈ A, it is usually assumed that

∆(g) = g ⊗ g (67)

We can check [∆(g),∆(h)] = (g⊗g)(h⊗h)−(h⊗h)(g⊗g) = (gh)⊗(gh)−(hg)⊗
(hg) = ∆(gh)−∆(hg) = ∆(gh− hg) = ∆([g, h]) so this map does preserve the

Lie bracket. However, there are other choices for the coproduct which differ

from (67). We are free to perform a so called ”twist” of this case in defining the

map. We see that, for example

∆(g) = g ⊗ I + I⊗ g (68)

does also preserve the Lie bracket. We can check this explicitely:

[∆(g),∆(h)] = (g ⊗ I + I⊗ g)(h⊗ I + I⊗ h)− (h⊗ I + I⊗ h)(g ⊗ I + I⊗ g)

= gh⊗ I + I⊗ gh− hg ⊗ I− I⊗ hg

= ∆(gh)−∆(hg) = ∆([g, h]). (69)

We shall define a twisted coproduct of every element in 〈u, v, w〉. To do so , one

needs two extra operators: an element Z which commutes with every element

in Ui, and an operator B = m− n. The coproduct of every element in 〈u, v, w〉
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is defined, for three central elements, as a regular coproduct

∆(Kr) = Kr ⊗Kr, ∆(Z) = Z ⊗ Z, ∆(B) = B ⊗B (70)

And for the noncentral elements (except Hr ) as a twisted coproduct

∆(Hr) = Hr ⊗ 1 + 1⊗Hr

∆(E0) = E0 ⊗ Z +K0B ⊗ E0

∆(E1) = E1 ⊗ 1 + ZK1B ⊗ E1

∆(F0) = F1 ⊗K−10 Z−1 +B ⊗ F0

∆(F1) = F1 ⊗K−11 + Z−1B ⊗ F1 (71)

This choice of twist will also play an important role in section 6.3, when we

connect the quantum symmetry of Ui and su(2|2)nR2.

We can use the coproduct to find operators called intertwiners between

representations 〈u, v, w〉, which is the first step in deriving the Tetrahedron

Zamolodchikov algebra and would give us a set of operators invariant under

Uq(sl2). An intertwiner is a map between two representations of the same

algebra which is invariant under the action of the algebra itself. S-matrices are

themselves a type of intertwiners. In the case we are discussing - let us call

this specific intertwiner r012 - it will act in the space 〈u1, v1, w1〉 ⊗ 〈u2, v2, w2〉.
The reason why there is no need of finding operators between tensor products

of higher order than two is factorisability: if the system is integrable, the S-

matrix of any process can be decomposed into the 2 → 2 S-matrix. This type

of intertwiner must satisfy

r012∆(X)r012
−1

= P(∆(X)) (72)

where X is an element of Ui, and P is the permutation operator such that

P(X⊗Y ) = Y ⊗X. The intertwiner maps a representation 〈u, v, w〉⊗〈u′, v′, w′〉
to a permutation of itself. As noted in [9] the solution for equation (72) is

very similar to the R-matrix Rf12 for the free fermion model: it contains a

(n1+m1)(n2+m2) factor with different coefficients in each compound operator

combination, and the c†2c1 + c†1c2 factor. If we let ηk = i−1−uk , where k = 1, 2,

it reads

r012 = (v1w1η1η2 − v2w2)n1n2 + z−1(v2w2η1 − v1w1η2)n1m2

+ (v2w2η2 − v1w1η1)m1n2 + (v1w1 − v2w2η1η2)m1m2

−
√

(η1 + η−11 )(η2 + η−12 )(c†2c1 + c1c
†
2) (73)
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where z is the eigenvalue of the operator Z, which we have imposed to be the

same in every space 〈u, v, w〉, and physically represents the value of a conserved

charge. If there exists an R-matrix which is invariant under the action of a

certain algebra A, then it must be related by a similarity transformation to

an intertwiner such algebra which acts on spaces of representations 〈n〉 ⊗ 〈n′〉,
provided the central charges of the representations are conserved through such

map. Although it is not obvious at first sight, the operator r012 satisfies the Yang

Baxter equation. This is seen by studying the connection between r12 and R0
12.

Define a new operator Ns = ns +
√

ws
vs
ns, then R0

12 can be written as

R0
12 = − N−11 N−12 r012N1N2√

(η1 + η−11 )(η2 + η−12 )v1w1v2w2η1η2

(74)

therefore a rescaled r012 must be a representation of the Yang Baxter algebra.

This expression for R0
12 is true provided the parameters a, b, c and d of A has

been carefully adjusted as functions of v, w, η and z. This adjustment is equiv-

alent to satisfying the conservation of central charges through maps between

representations.

Since R0
12 can be identified with an interwiner of representations of Ui, we

come to the conclusion that it has a Ui symmetry, and it is therefore a suitable

R-matrix for a theory invariant under such algebra. In the next section we will

see the Tetrahedron Zamolodchikov algebra elements define an endomorphism

of the space of operators with this type of symmetry.

4.3 The Tetrahedron Zamolodchikov Algebra

Let us now consider the elements in Ui(sl2) ⊂ Ui, where we will denote the

defining representation as 〈u〉 and study the possible solutions to the same

intertwiner equation of the previous section, which assures the invariance of the

intertwiner under the algebra,

r012∆(X)r012
−1

= P(∆(X)) (75)

where this time, X is an element of Ui(sl2). Note it would be intuitive to

label the representation with u and v instead of only u. However, since the

choice of these numbers come solely from obeying the commutation relations,

the representation actually depends on u and v−1v = 1, so the second label

is ignored. Due to an automorphism of the algebra, we can find two possible

solutions:

• The one which was found earlier, r012. We are working on a coproduct that
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was originally defined for elements in the affine extension of the algebra,

so the three labels on the representation should be kept. This solution can

be adjusted to Ui(sl2) elements only by requiring vr = wr, so the operator

belongs to the space 〈u1, v1, v1〉 ⊗ 〈u2, v2, v2〉.

• An operator which acts on the space 〈u1, v1, v1〉 ⊗ 〈u2, v2,−v2〉. The last

v2 has been multiplied by a minus sign, which comes from an automor-

phism between representations. If we define ψi to be an element such that

[ψi, Ej ] = δijEj , [ψi, Fj ] = −δijFj and [ψi, Hj ] = 0, then we see that the

map

X 7→ e−iπψ1Xeiπψ1 (76)

leads to the transformation (E0, E1, F0, F1, Hi) 7→ (E0,−E1,−F0, F1, Hi)

which induces an automorphism from 〈u, v, v〉 to 〈u, v,−v〉.

As is shown in [9], one can perform a transformation which relates these two

operators to R0
12 and R1

12, respectively. Due to the fact that r012 and r112 possess

an Ui(sl2) symmetry, the operators composing the Yang Baxter equation on Rαjk
- such as Rα23R

β
13R

γ
12 - are also invariant under Ui(sl2). However these operators

do not form a linearly independent basis for the space of intertwiners in the

tensor product of three representations.

There are 16 possible combinations of such operators but the dimension of

the space where they live is smaller than 16. To see this, we must calculate the

dimension of the space of Ui(sl2)-invariant interwiners on 〈u1〉 ⊗ 〈u2〉 ⊗ 〈u3〉.
The representations 〈u〉 depend on the value of two functions of u, which are

f(u) = i−1−u and f−1(u) = i1+u. This means the tensor product of two

representations dependent on u1 and u2 depends on (f(u) + f−1(u))(f(u2) +

f−1(u2)) = f(u1 +u2 +1)+f−1(u1 +u2 +1)+f(u1−u2−1)+f−1(u1−u2−1).

One notices the first two terms are the functions of 〈u1 + u2 + 1〉. The second

two terms can be identified with f(u1 + u2 − 1) + f−1(u1 + u2 − 1) by realising

the representation also depends on χ(u)2, which is symmetric under u → −u,

and so the tensor product of two Ui(sl2) representations decomposes irreducibly

as follows

〈u1〉 ⊗ 〈u2〉 = 〈u1 + u2 + 1〉 ⊕ 〈u1 + u2 − 1〉 (77)

The computation of the tensor product of three representations is then straight-

forward:

〈u1〉 ⊗ 〈u2〉 ⊗ 〈u3〉 = (〈u1 + u2 + 1〉 ⊕ 〈u1 + u2 − 1〉)⊗ 〈u3〉

= (〈u1 + u2 + 1〉 ⊗ 〈u3〉)⊕ (〈u1 + u2 − 1〉 ⊗ 〈u3〉)

= 〈u123 + 2〉 ⊕ 2 〈u123〉 ⊗ 〈u123 − 2〉 (78)
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where u123 = u1 + u2 + u3. The dimension of the space of invariant inter-

twiners on this decomposition is obtained through Schur’s Lemma: if Vk are

1-parameter dependent representations of a lie algebra h and
⊗

r Vr is decom-

posed irreducibly as
⊕

iAiVi, then

dim(
⊗
r

Vr) =
∑
i

A2
i (79)

In this case the dimension of the tensor product happens to be 6. Therefore the

operators Rα23R
β
13R

γ
12 must be related to each other. Such relations define the

Tetrahedrown Zamolodchikov algebra elements S: taking lightcone coordinates

R± = 1
2 (R0 ±R1),

Rα23R
β
13R

γ
12 =

∑
α′,β′,γ′=±

Sαβγα′β′γ′(ak, bk, ck, dk)Rγ
′

12R
β′

13R
α′

23, k = 0, 1, 2, 3 (80)

where ak, bk, ck, dk are the free fermion parameters. Since this shows a relation

between 8 generators, and there should only be 6 linearly independent ones,

there exist two linear dependence equations:∑
α,β,γ=±

Hiαβγ(ak, bk, ck, dk)Rα12R
β
13R

γ
23 = 0, i = 1, 2. (81)

which generate a set of gauge transformations. Note that adding (81) to (80)

does not change (80), so the algebra is invariant under the following transfor-

mation

(S)αβγα′β′γ′ → (S′)αβγα′β′γ′ = (S)αβγα′β′γ′ + cαβγ1 H1
α′β′γ′ + cαβγ2 H1

α′β′γ′ (82)

and each coefficient S′ depends on three fermion parameters only. We can label

the dependence of such variables explicitely by writing S′rst where each r, s, t

can be labelered by 1,2,3 or 4 depending on which three fermion parameters each

coefficient is a function of. If we consider now the product of six R-matrices

in lattice order, the Tetrahedron Zamolodchikov equations can be obtained by

gauging elements of the algebra suitably:

S′123S′124S′134S′234 = S′234S′134S′124S′123 (83)

This is the analog of the Yang Baxter equation and its corresponding algebra

for 1+2 dimensional physics: just as the Yang Baxter equation corresponds to

the equality of two scattering matrices of a 3-body process in a two dimesional

lattice, the Tetrahedron Zamolodchikov equation corresponds to this equality in

a three dimensional lattice. It generates integrable three dimensional quantum
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field theories and statistical systems. It can also generate an infinite amount

of two dimensional integrable models by interpreting the third dimension as an

internal degree of freedom, every single one of these systems depending on the

size of such degree.

It is convenient to perform the analog of figure 2 and represent this equation

pictorically in a two dimensional lattice. To do so, let us express (77) as

R12aR12bR13cRabc = RabcR13cR12bR12a (84)

where, pictorically,

Figure 4: pictorial representation of R

are R12a and Rabc respectively. Then (62) is just the equality of the following

two lattices

Figure 5: pictorial representation of (62)

where different shaped lines are interpreted to be apart in the third dimen-

sion. We can see that if we ignore any set of three lines that crossed at a point

we obtain the Yang Baxter equation.
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5 The Hubbard Model R-matrix

As in the previous section, we will begin by describing an algebraic object:

centrally extended su(2|2). We shall point out its relation to Uq(sl2). Then we

will introduce the Hubbard model and show that its R-matrix is a specific case

of the solution for the Shastry ansatz. We will follow by identifying elements of

the aforemenetioned R-matrix to a specific representation of centrally extended

su(2|2).

5.1 The su(2|2)nR2 Lie Superalgebra

A Lie superalgebra is a vector space which contains both fermionic and bosonic

generators, and hence does not only satisfy commutation relations but also

anticommutation ones. Let a vector space generated by bosonic elements X
(b)
r

(or a regular lie algebra) be Ab, and a space generated by fermionic elements

X
(f)
r be Af . A Lie superalgebra is defined as A = Ab ⊕ Af = 〈X(b)

r , X
(f)
s 〉,

where the bracket denotes A is spanned by both X
(b)
r and X

(f)
s . A possesses

an operation known as the Superlie bracket [ , }, which is a commutator or

anticommutator depending on the elements involved:

[X(b)
r , X(b)

s } ≡ [X(b)
r , X(b)

s ] = CtrsX
(b)
t

[X(f)
r , X(f)

s } ≡ {X(f)
r , X(f)

s } = Nk
rsX

(b)
k

[X(b)
r , X(f)

s } ≡ [X(b)
r , X(f)

s ] = QlrsX
(f)
l (85)

where C,N and Q are structure constants. Just as the elements of any algebra

satisfy the Jacobi identity, an additional property ofA is that its elements satisfy

the Superjacobi identity: for any X,Y, Z in A,

[X, [Y,Z}} ± [Y, [Z,X}} ± [Z, [X,Y }} = 0 (86)

where the ± sign depents on whether the order of the fermionic generators has

changed with respect to the first factor.

The Lie superalgebra of concern is psu(2|2). Unlike matrices in the product

of projective special unitary groups psu(2)× psu(2), the 2|2 label indicates that

one of the psu(2) groups acts on fermionic fields and the other one acts on

bosonic fields. This algebra is spanned by six bosonic generators Lαβ and Rab
and eight fermionic ones Qαa and Saα. By adding three central elements C,P
and K we can centrally extend this Lie superalgebra to psu(2|2)nR3. Note the

group PSU(N) is simply SU(N) with a ZN symmetry, hence psu(2|2) is the

same as su(2|2) with a dimension less, and thus psu(2|2)nR3 = su(2|2)nR2.

This is the su(2|2) centrally extended Lie superalgebra.
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Its nontrivial commutation relations are

[Lαβ ,L
γ
ξ] = δγβL

α
ξ − δαξ L

γ
β , [Rab,Rcd] = δcbRad − δadRcb

[Lαβ ,Q
γ
b] = δγβQ

α
b −

1

2
δαβQ

γ
b, [Lαβ ,Saγ ] = −δαγ Sαβ +

1

2
δαβSaγ

{Qαa,Q
β
b} = εαβεabP, {Saα,Sbβ} = εabεαβK

{Qαa,Sbβ} = δbaLαβ + δαβRba + δbaδ
β
αC (87)

As we expect, the bosonic elements generate rotations on themselves and the

fermionic elements generate central charges with the exception of {Qαa,Sbβ},
which also generates bosonic elements. As noted in [15], this centrally extended

superalgebra has an sl2 automorphism. The action of bosonic elements is imme-

diately invariant under sl2 since they ”rotate” themselves. Grouping the central

charges in one element and the fermionic generators in another as

T ab =

(
−C P
−K C

)
J aβc =

(
εadQβd
εβδSaδ

)
(88)

The element J αβc, being composed by fermionic generators, is immediately an

sl2 multiplet. Furthermore, we can infer the element T ab is also a multiplet of

sl2 by decomposing it as a linear combination of the generators in (51):

T ab = −CKa
b −KF ab + PEa b (89)

Hence we can now write the centrally extended su(2|2) superalgebra in a form

which explicitely manifests sl2 invariance

[Lαβ ,L
γ
ξ] = δγβL

α
ξ − δαξ L

γ
β , [Rab,Rcd] = δcbRad − δadRcb

[Rab,J cδe] = δcbJ aδe −
1

2
δabJ cδe, [Lαβ ,J cδe] = δδβJ cαe −

1

2
δαβJ cδe

{J aβc,J aβc} = εadεεκεcfLβκ + εakεεβεcfRdk + εadεεβεfhT c
h (90)

The representations of su(2|2)nR2 depend on the central charges only, so we

can write them as 〈~C〉 = 〈C,P,K〉. Letting φa and ψα be bosonic and fermionic

fields respectively, one can write the transformation rules, which must encode

su(2)× su(2) covariance of the generators. Thus

Rab |φa〉 = δcb |φa〉 −
1

2
δab |φc〉 , Lαβ |ψγ〉 = δγβ |ψ

α〉 − 1

2
δαβ |ψγ〉
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
Qαa 0 0 0

0 Qαa 0 0

0 0 Saα 0

0 0 0 Saα



|φb〉
|ψβ〉
|φb〉
|ψβ〉

 =


aδba |ψα〉

bεαβεab |φb〉
cεabεαβ |ψβ〉
dδβα |ψα〉

 (91)

where a, b, c, d determine the values of C,P,K, and the closure of the algebra

requires that ad− bc = 1.

The presence of SL(2,C) both as the group whose algebra is deformed to

obtain Uq(sl2) and the automorphism of centrally extended su(2|2) suggest a

connection between these two objects. Let g = su(2|2)nR2 and U2
i ≡ Ui ⊗ Ui,

each Ui corresponding to either spin up or down. We wish to convey the possi-

bility that a subset of g is isomorphic to a subset of U2
i , one of the possibilities

of this subset being of course the space itself. To achieve this, it is necessary to

connect the generators of both spaces by linear maps, or identifications.

Let us first focus on the fermionic generator Saα ∈ g. It satisfies the anti-

commutation relations {Saα,Sbβ} = εabεαβK. Note that if this anticommutator

vanishes if a = b or α = β. In the case of U2
i , all anticommutation relations

vanish if they involve elements with in different spin layers. Hence, if we pick

S11 to be identified with an element with spin up, we must make sure both S12
and S21 are identified with an element with spin down.

The only nontrivial anticommutation relations are {S11,S22} = −{S12,S21} =

K. Thus, we must have one of the generators in the second anticommutator be

negative. Let us now perform the identification for the generators Saα:(
S11 S12
S21 S22

)
→

(
F0↑ F0↓

−E0↓K
−1
0↓ E0↑K

−1
0↑

)
(92)

As we can see, {S11,S22} = −{S12,S21} is nonzero and every other anticommu-

tator is exactly zero because different spins anticommute. The actual value of

the nontrivial anticommutators is

{S11,S22}id = {F0↑, E0↑K
−1
0↑ }

= E0↑{F0↑,K
−1
0↑ }+ [F0↑, E0↑]K

−1
0↑

=
1

2i
[(K−10↑ )2 − 1] (93)

where the id label denotes this is not an equality but an identification. Is the

result a conserved charge? We know K−10 = λ(n −m) so (K−10 )2 = λ2(n2 +

m2) where the crossing elements have vanished because fermionic operators
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anticommute. One can now check

(K−10 )2 = η2(n2 + m2)

= η2(c†cc†c + cc†cc†)

= η2(c†(1− c†c)c + (1− c†c)cc†))

= η2(c†c + cc†) = η2. (94)

so that {S11,S22} = −{S12,S21} is a constant, and hence a conserved charge.

We can also identify the elements Qαa with operators in U2
i using linear

transformations. This map takes the form(
Q1

1 Q1
2

Q2
1 Q2

2

)
→

(
F1↑ E1↓K

−1
1↓

F1↓ −E1↑K
−1
1↑

)
(95)

Thus we have identified the fermionic part of g with a subspace of U2
i . This is one

of the key hints for investigating the connections between the Hubbard model,

which is invariant under the latter, and a sector of a gauge theory invariant

under the former.

5.2 The Shastry Ansatz

Now we proceed to introduce the 1-dimensional Hubbard model, which was

shown to be exactly integrable by Shastry in [10]. As before, let cj,σ and c†j,σ
be annihilation and creation fermionic operators respectively, and the index σ

can be either spin up or down, ie σ =↑, ↓. As in (54), define the compound

operators nj,σ = c†j,σcj,σ and mj,σ = cjc
†
j,σ. The fermionic operators satisfy

the usual commutation relations

{cj,σ, c†k,τ} = δjkδστ

The Hubbard model is of great importance in solid state physics. It manages to

accurately describe electron conduction by assuming electrons move from atom

to atom located in a lattice during such process. The Hamiltonian of the model

is

Hh = −
N∑
j=1

(
∑
σ=↑,↓

c†j+1,σcj,σ + c†j,σcj+1,σ) +
U

4
(mj,↑ − nj,↑)(mj,↓ − nj,↓) (96)

where the first part corresponds to the kinetic part of any quantum field theory

hamiltonian and U is a coupling constant of interaction. Without any coupling,
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the Hamiltonian of this spin chain decomposes into

H0
h = −

N∑
j=1

c†j+1,↑cj,↑ + c†j,↑cj+1,↑ +

N∑
j=1

c†j+1,↓cj,↓ + c†j,↓cj+1,↓ (97)

which is just the sum of two Hamiltonians for two free XX models. In order to

compute the R-matrix for this model, it is rather intuitive to propose a linear

combination of the R-matrices in section 4.3. Indeed, this is what Shastry did:

proposing an Ansatz for all possible U , which was later generalized in [11]:

Rjk = (αjkR
0
jk,↑ + βjkR

1
jk,↑)(γjkR

0
jk,↓ + κjkR

1
jk,↓) (98)

where the coefficients are complex parameters determined by the requirement

that (98) obeys the Yang Baxter equation. Using light-cone coordinates and

the Tetrahedron Zamolodchikov algebra, the most general expression for Rjk is

given in [11] by

Rjk = R+
jk,↑R

−
jk,↓ +R−jk,↑R

+
jk,↓

+
ok + oj

bjcj
ajdj

oj + ok
bkck
akdk

(
ajbk
bjak

R+
jk,↑R

+
jk,↓ +

djck
cjdk

R−jk,↑R
−
jk,↓) (99)

where oj are known as the gluing parameters and satisfy the equation

θ21oj
ajdj

−
θ22o
−1
k

bjcj
= −i j = 1, 2 (100)

We can see that (99), being composed of R-matrices of the free fermion model,

is invariant under U2
i . Hence, the full symmetry seems to be connected to g.

To study this connection, it is convenient to write a representation using the

elements in Rjk. The bosonic generators can be written as

R1
1 = −R2

2 =
1

2
(1− n↑ − n↓), R1

2 = (R2
1)† = c↓c↑

L1
1 = −L2

2 =
1

2
(n↑ − n↓), L1

2 = (L2
1)† = c†↑c↓ (101)

and, defining P to be the spin permutation operator, we can write the fermionic

generators as

Q1
1 = (am↓ + bn↓)c

†
↑ = PQ2

1, Q1
2 = −(bm↑ + an↑)c↓,= −PQ2

2

S11 = (dm↓ + cn↓)c↑ = PS12, S21 = −(cm↑ + dn↑)c
†
↓ = −PS22 (102)
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Finally, the central charges may be written as

C =
ad+ bc

2
, P = ab, K = cd (103)

where a, b, c, d are complex parameters such that ad − bc = 1. As mentioned

earlier, this is a requirement of the closure of g and these parameters determine

the four dimensional representation of such algebra.

As shown in section 5.1, this algebra possesses an outer automorphism group

isomorphic to SL(2,C). As we will examine in the next section, this automor-

phism links the Hubbard model R-matrix, which can be decomposed in free

fermion model ones, and the AdS5×S5 S-matrix, which must be invariant under

g.
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6 The AdS/CFT S-matrix

In this section we will first give a brief introduction to the AdS/CFT corre-

spondence. We will then focus our attention on integrable systems which arise

in N = 4 Super Yang Mills by investigating subalgebras of the full symmetry

algebra of the theory. The goal is to construct an S-matrix which is invariant

under such algebras. Finally, we will show that, after a similarity transforma-

tion, a good candidate for such S-matrix is the simplest solution derived from

the Shastry ansatz.

6.1 The AdS/CFT Correspondence

The Anti-de-Sitter/Conformal Field Theory (AdS/CFT) correspondence, also

known as the gauge/gravity duality, is a conjectured connection between con-

formal field theories in d dimensions and quantum gravity theories in d + 1

dimensions. The specific one motivated by Maldacena in [19] is that type IIB

string theory in AdS5×S5 is equivalent to N = 4 Super Yang Mills (N = 4

SYM) theory in the four-dimensional conformal boundary of such space. In

other words, N = 4 SYM as a hologram of type IIB. A familiar analog of this is

the theory of special relativity in 1+3 dimensions, where we can only experience

its 3-dimensional spatial boundary.

The Anti-de-Sitter spacetime AdSd, also known as hypebolic spacetime, is

a d-dimensional manifold with metric signature (−1, 1.., 1,−1). In other words,

given coordinates X0, X1, ..., Xd on AdS, the metric is of the form

ds2 = −dX0 +

d−1∑
n=1

dXn − dXd (104)

Yand Mills theory is a gauge theory where the Lagrangian is invariant under the

group SU(N). All fields of such a theory are represented as a linear combination

of the generators ta of the algebra su(n), and thus the action of the theory is

given by a trace of the non-abelian field strength Fµν = F aµνt
a:

SYM = Tr

∫
d4xFµνF

µν (105)

This Lagrangian does of course admit SU(N)-invariant functions of bosonic and

fermionic fields. The field strength itself depends on the gauge field Aµ - written

in terms of differential forms - as F = dA.

Let us now construct a Yang Mills theory which is also supersymmetric. This

implies that the theory is now not longer invariant under the Poincare algebra

but the Superpoincare algebra. This superalgebra is composed of the bosonic
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elements which generate so(1,3), divided in translations and rotations, and a set

of N generators QAα , Q̄
A
α̇ which anticommute with each other. Here A denotes

the number of copies of generators and α = 1, 2 is the spinor index, which

corresponds to each irreducible component of a spinor ψα. All these generators

satisfy supercommutation relations through the Superlie bracket which can be

easily constructed a priori by preserving both Lorentz and spinor indices.

Each of these anticommuting generators can be identified with a supercharge,

which is the conserved quantity that generates the supersymmetry. If we let

N = 4, the superpoincare algebra will have four copies of fermionic generators

with two possible indices and a complex conjugate, or a total of 16 supercharges.

If we imposedN = 4 superpoincare and SU(N) invariance, the action of a theory

with gauge field A and fields λa, Xj reads

SSYM = Tr

∫
− 1

2g2SYM
FµνF

µν +
θI

8π2
Fµν F̄

µν − iλaσµDµλa −DµX
iDµXi

+gCabi λa[Xi, λb] + Ciabλ
a[Xi, λb] +

g2SYM
2

[Xi, Xj ]2 (106)

where Xi, i = 1, .., 6 are scalar fields, λa, a = 1, .., 4 are fermionic fields, Dµ

is the covariant derivative and F̄µν = εµνρσFρσ is the Hodge dual of the field

strength. This is N = 4 SYM, and its fundamental element is a gauge field Aaµ

in a SU(N) gauge group.

This gauge theory is present in a particular example of a string theory. String

theory is a theory of strings moving at relativistic speeds, and a candidate

in the unification of the four fundamental forces of physics. It incorporates

gravity to the electroweak force by increasing the number of spatial dimensions

in 1+3 dimensional spacetime. In doing this, the theory proposes a description

of gravity as living in all conjectured dimensions. The action of any string

theory is derived through the minimization of the transvered area travelled by

the string - also known as the worldsheet. The simplest string theory action,

due to Polyakov, is given by

S =
T

2

∫
d2σ
√
−hhabgµν(X)∂aX

µ(σ)∂bX
ν(σ) (107)

where σ is the worldsheet spacelike coordinate, gµν(X) is the metric of the

manifold the string is embedded in, Xµ(σ) are coordinates of position of the

string, T = (2πα)−1 is the string tension, hab is the worldsheet metric and

h = det(hab). The energy spectrum of the theory is obtained by performing

regular quantisation on the string coordinates. After this process , each string

mode is interpreted as a different particle.

There are two types of strings: closed and open. Closed strings can move
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arbitrarly through space and satisfy peridiocity conditions, however open ones

must have boundary conditions on their two endpoints. These can be classified

in two types: Dirichlet and Neumann. The Dirichlet conditions [18] imply the

string is constrained to exist in a p+ 1 dimensional hypersurface in spacetime.

In [20], it was proved that in fact this hypersurface is dynamical, i.e. it can

fluctuate and respond to external interactions, and it has internal degrees of

freedom. It is known as a Dirichlet-brane, or D-brane. Depending on the value

of p, this will be called a Dp-brane.

Imagine a string living in N coincident D-branes. In this case the string has

a zero tension mode, and after quantisation one can check that the resulting

particle corresponding to this mode resembles a photon. This is an SU(N)

gauge field, where N is the number of D-branes. In d=4 dimensions, we have

16 supercharges or N = 4 supersymmetry, which means that the 4-dimensional

worldvolume of the D3-brane will contain N = 4 SYM.

This provides a motivation to study if there is a certain string theory in

a specific space which in the massless limit is equivalent to N = 4 SYM in 4

dimensions. Indeed, as suggested in [19], this theory appears to be type IIB

supergravity in AdS5×S5.

The AdS/CFT correspondence is widely considered on of the biggest break-

throughs of the last decades in the physical sciences. It provides both physically

meaningful understanding of aspects of both theories and, most importantly, the

ability to perform calculations in either theory which would otherwise be much

tougher or even impossible. In the next section, we shall discuss the the search

of integrable systems in a sectors of the gauge theory symmetry group.

6.2 The Gauge Theory Spin Chain

The N=4 SYM symmetry is fixed by the group psu(2,2|4), also known as the

N=4 superconformal group. In this section we may consider a subsector of

N=4 SYM by focusing on the superalgebra su(2|3) ⊂ psu(2,2|4). In [15], Beisert

constructed a set of representations of spin chain states invariant under su(2|3).

This was achieved with the goal of studying the integrability of structures arising

from perturbative U(N) N = 4 SYM as N → ∞. These representations were

parametrised by a coupling constant, g, related to the gauge theory coupling

constant in equation (106) by

g2 =
g2SYMN

8π2
(108)

The algebra su(2|3) acts on vectors composed of 3 bosonic fields and 2 fermionic

ones. Therefore, in a spin chain with a su(2|3) symmetry, the spin s of each
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lattice site can be b1, b2, b3, f1 or f2, where the b′js are bosonic orientations and

the f ′js are fermionic ones. A generic state for this spin chain is, for example

|ψ〉 = |b1f2b3b1...f1〉 (109)

where each lattice site satisfies periodic boundary conditions since the spin chain

is a closed object. This is equivalent to the cyclicity of the trace. Thus, the

trace of a product of possible string spins, which incorporates periodicity of

every site, has been replaced by a quantum mechanical state.

In [16], it is shown that the large N AdS/CFT S-matrix is equivalent to

the diffractionless S-matrix of elementary excitations. Hence one shall define a

vacuum state, |0〉, and then construct every other state as an excitation of |0〉.
The vacuum may be assumed to be infinitely long and composed of b1’s only

|0〉 = |b1b1...b1〉 (110)

Although an infinitely long spin chain is not physical, one can obtain the correct

energy spectrum by considering periodically identified states. A generic state

|s1...sk〉 is now given by a linear combination of all possible spin excitations of

the vacuum of an infinitely long spin chain

|ψ〉 = |s1...sk〉 =
∑

x1<...<xk

ψ(x1, ..., xk) |...b1b1...s1...sn...sk...b1b1...〉 (111)

where the condition x1 < ... < xk in the sum comes from the periodicity of

states. Although this is a very useful way to describe the energy spectrum

of the spin chain, it has one minor flaw: the number of excitations, k, is not

preserved under su(2|3) transformations. The largest subalgebra in which is

preserved is precisely su(2|2) ⊂ su(2|3). Hence our goal has become to study

a spin chain whose states transform under su(2|2) and to find its S-matrix. It

is convenient to extend it by adding two central charges, in which case one

obtains g = su(2|2)nR2. The reason behind this is, as shown in [21], that

in (super)string theory this centrally extended superalgebra corresponds to the

asymptotic symmetry of the the light-cone sigma model on AdS5×S5. Therefore,

by constructing a g-invariant spin chain, one can ensure the integrability of the

aforementioned model and if possible compute string solutions.

As we noted in section 5.1, a representation of g is uniquely determined by

its central charges C,P and K. We may denote such representation 〈~C〉. Our

purpose is to construct the S-matrix, a function S which satisfies the following

properties:
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• S maps representations of g to each other via a permutation σ:

Sσ : 〈~C1〉 ⊗ ... ⊗ 〈~Ck〉 → 〈~C ′σ(1)〉 ⊗ ... ⊗ 〈~C ′σ(k)〉 (112)

• S satisfies unitarity: S12S21 = S21S12 = I

• S satisfies the Yang Baxter equation.

In the assumption of [16], excitations transform under g as a tensor product

- they do not affect each other. However, there must exist contributions from

states with nearby excitations. In the exact action of the algebra on states of

this spin chain, these contributions must be taken into account. A generic state

|Ψ〉 = Ψ1 |...sks′l...〉 would also include, for every pair of nearby excited particles

in positions k and l,

• A contribution from the interaction between nearby excitated one-particle

states. This can be represented by the state Ψ2 |...(ss)kl...〉.

• A contribution from particles with interchanged central charges. If close

particles are allowed to interact, any generic state should include all per-

mutations that conserve the overall central charge, and this is one of them.

This can be represented by the state Ψ3 |...s′′l s′′′k ...〉.

Ψ1 and Ψ3 are transformed independently, and Ψ2 must be adjusted so that

it yields the contributions to the boundaries of the asymptotic regions. The

completion of states can be performed by the operator S, which permutes the

momenta labels of different particle states in representations of g. Hence

Skl |...sks′l...〉 = |...s′′l s′′′k 〉 (113)

so that a generic state can be written as

|Ψ〉 = Ψ1(1 + Skl) |...sks′l...〉+ |...(ss)kl...〉 (114)

So the requirement to ensure the consistency of Staudacher’s assumption is

that the state |Ψ〉 transforms adequately under g, which implies the operator

S must commute with the generators of the algebra. As we will see, the R-

matrix from the Shastry ansatz satisfies this property, and is therefore a suitable

candidate for the S-matrix of this spin chain.

6.3 Full Symmetry of the Hubbard Model R-matrix

The goal of this section is to show that the solution to the Shastry ansatz is

invariant under g. To do this, the representation in section 5.2 constructed via
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elements of the R-matrix itself will be used. Since we suppresed the lattice

indices of operators cσ and its adjoint partner, we intend to restore them via

labeling each generator g(cσ) ∈ g with an index j.

An operator Ω is invariant under a certain Lie algebra if g−1Ωg = Ω for

every generator g, or equivalently, [Ω, g] = 0. But g is not only generated by

bosonic elements but also fermionic ones. Thus, we can extend this condition to

a superalgebra by imposing invariance under fermionic generators as well. So Ω

is invariant under a fermionic generator gf of g if g−1f Ωgf = −Ω, or equivalently,

{Ω, gf} = 0.

Let us focus on the invariance of Rjk under the even subspace of g. In the

representation of g we constructed using the elements of Rjk each generator

depended on one lattice site only. Thus, we need to show that

[Rjk, gj + gk] = 0, g ∈ g, j, k = 1, 2, 3. (115)

On can observe Rjk depends on the operators nσ,j and mσ,j where the spin of

the products of cσ,j and c†σ,j are the same. It is then easy to check then, since

[nj ,mk] = [nj ,nk] = [mj ,mk] = 0, that

[Rjk, (Lαβ)j + (Lαβ)k] = 0

[Rjk, (R1
1)j + (R2

2)k] = 0 (116)

Showing the invariance under the generators R1
2 and R2

1 requires a little more

work. One must look back at the relation between the interwiner r012 and R0
12

in (59). This relation was established to be true for carefully adjusted param-

eters vi, wi and ηi in terms of the SL(2,C) matrix elements ak, bk, ck and dk.

Specifically, as in [9], we obtain the following identifications:

ak =
1√

vkwk(1− 1
λ2
k

)
, bk =

1

izλk

√
vkwk

(1− 1
λ2
k

)

ck =
iz

λ2k

1√
vkwk(1− 1

λ2
k

)
, dk =

√
vkwk

1− λ2k
) (117)

One notices that akbk = − 1
z2 ckdk. This indicates that the value z is necessary

to cover all possible SL(2,C) variables, which is the main reason to use a central

element Z to twist the coproduct. If one chooses z ∈ {−i, i}, which equates to

akbk = ckdk, we can perform two similarity transformations on Rjk to obtain a
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new R-matrix R̄jk which satisfies

[R̄jk, (R1
2)j − (R1

2)k] = 0

[R̄j , (R2
1)j − (R2

1)k] = 0

[R̄j,, (Rab)j + (Rab)k] = 0 (118)

Now we proceed to show the invariance of R̄jk under fermionic generators. First

we must define the following two matrices:

M = e−i
π
4

√ θ3o
θ2

cjoj
tj

1
ajdj

√
θ32
θ1

tj
cjoj

−
√
θ1θ2
bjtj

− tj
√
θ1θ2
cj

 , N =

(
cj
aj

0

0
aj
cj

)
(119)

The matrix N is clearly in SL(2,C). For M, we can see that det(M) = 1 by

the gluing conditions. Therefore both of these matrices belong to SL(2,C), and

they can determine a representation of g subject to the outer automorphism of

the algebra sl2. Hence one can form other representations of g by multiplying

these two matrices in any desired combination. Define now matrices Di and

D′i ∈ SL(2,C), i = 1, 2, as follows:(
D1 D2

D′1 D′2

)
=

(
N2M1 M2

M1 N1M2

)
(120)

With this choice of matrices, and Gi being any fermionic generator of g, one

obtains the following result:

R̄12[G1(D1) + G2(D2)]R̄ −112 = [G1(D′2) + G2(D′1)] (121)

The matrices D1 and D2 determine the representation D12 of the fermionic

part of g, so the operator R̄ happens to be an intertwiner acting on the space

D12 ⊗D1′2′ , which implies this R-matrix is a well defined map between repre-

sentations of the fermionic part of g which is also invariant under the such sector

of the algebra. One can also see this choice of representation and R-matrix is in

agreement with the conservation of the central charges in a map between rep-

resentations of g. We have the relation ad− bc = 1, which using (94), imposes

a condition on the central charges

〈C〉2 = C2 − PK =
1

4
(122)

Hence in a process where 〈C1〉 ⊗ 〈C2〉 → 〈C ′2〉 ⊗ 〈C ′1〉 we have the following

conservation laws:

• 〈C1〉2 + 〈C2〉2 = 〈C′2〉
2

+ 〈C′1〉
2
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• C1 + C2 = C′1 + C′2

• P1 + P2 = P ′1 + P ′2 and K1 +K2 = K′1 +K′2

A solution of this process starts with the imposition that Ci is mapped to C′i.
Intuitively, one can think of C as the energy of the system and this would be

equivalent to working in the particle rest frame. Then, by the first conservation

law, we obtain P1K1 + P2K2 = P ′1K′1 + P ′2K′2. If we now impose P ′iK′i = PiKi,
we obtain a solution of the transformation of the central charges under this map:

C′i = Ci, P ′i = Ki
P1 + P2

K1 +K2
, K′i = Pi

K1 +K2

P1 + P2
(123)

This should be true for any valid g-invariant R-matrix. We can work out if these

conditions are compatible with the defined matrices. The matrices Di and D′i
provide a representation of g where, for example,

D1 =

(
a1 b1

c1 d1

)
= e−i

π
4

 c2
a2

√
θ31
θ2
c1o1
t1

1
a1d1

c2
a2

√
θ32
θ1

t1
c1o1

−a2c2
√
θ1θ2
b1t1

−a2c2
t1
√
θ1θ2
c1

 (124)

Using equation (94), this leads to a solution for every central charge which is

compatible with the form of matrices Di and D′i. Hence R̄jk is an intertwiner

acting on tensor products of representations of g, and it is therefore a suitable

S-matrix for a g-invariant theory. In terms of variables used in AdS/CFT, a, b, c

and d in the representation of g given in section 5 is written as

A =

(
a b

c d

)
=
√
g

(
η ζ

η (1− x+/x−)

i η
ζx−

x+

iη (1− x−/x+)

)
(125)

where the condition A ∈ SL(2,C) relates variables x+, x− and g.

One can’t help but notice the similarity between equations (122) for g and

(75) for Ui(sl2). Indeed, this similarity is not a coincidence and is connected to

the identification between the fermionic part of g and a subspace of U2
i found in

section 5.1. Through a series of linear transformations, call these x and y, one

can actually merge these two equations into one:

R̄12(x ◦∆(X))R̄−112 = y(P12)(x ◦ P(∆(X)))y(P12) (126)

where X ∈ Ui(sl2)⊕Ui(sl2) and one can find the exact form x and y in [9].
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7 Summary and Further Work

In this dissertation, we have shown in detail that a very simple physical model in

two dimensions is nontrivially related to N = 4 SYM, a theory which in the past

few decades has had a significant role in the attempt of explaining reality due

to the AdS/CFT correspondence. This relation becomes apparent if one tries

to analyse the full symmetry of the scattering matrix of the model is invariant

under. One finds this symmetry is closely related to a subalgebra of psu(2,2|4)

which, in the string dual of N = 4 SYM, corresponds to the off-shell symmetry

of the light-cone sigma model.

This discovery should motivate for further study of well-known integrable

models to understand structures in more complicated theories. The task of

performing calculations in perturbative N = 4 SYM has become easier with

the gauge/gravity duality, however, recent work in integrability does hint for a

correspondence between integrable models which may rely on tools to perform

calculations and obtain exact solutions.
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