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1 Introduction

1.1 Supergravity

Modern theoretical physics bases its work and logic on the belief that a

priori acceptable symmetries should be the background frame of every fun-

damental theory.

This belief has been leading the last sixty years’ research to the Standard

Model and its components, such as Quantum Chromo-Dynamics, but also

towards more fundamental theories such as Supersymmetry, Supergravity

and String Theories. On that track, it has been understood that Supergra-

vity is the low-energy limit of M theory. Thus, it seems interesting to analyse

eleven-dimensional supergravity1 in order to look for underlying symmetries

which would help to understand such a fundamental theory.

The first modern theory of gravity, General Relativity, is built on the sym-

metry group of diffeomorphisms. Gravitational effects are understood to be

due to local curvature of space-time, which is locally Poincaré covariant.

The key to understanding this theory is to give oneself convenient math-

ematical tools in order to express these fundamental symmetries. In this

case, the underlying symmetry group is the group of diffeomorphisms on a

four-dimensional manifold (our space-time). Differential geometry allows us

to easily write down a metric, connections and a torsion ; one would then be

able to set up Lagrangians in a coordinate independent way. It is thus the

naturally covariant language one needs to make the fundamental symmetries

obvious.

Several kinds of theories can be built up following the same sort of ar-

guments. For instance, a global Supersymmetry is a symmetry relating

integer-spin particles − bosons − to half-integer-spin ones − fermions. It

is generated by Supersymmetry fermionic operators {Qα, Q̄α̇} which act on

our particles states.

The Poincaré algebra, defined as the set of translations {Pµ} and Lorentz

1The number of dimensions of our theory - eleven - is due to the necessity to include

the graviton (≤ 11) but also the gauge group of the Standard Model (≥ 11).
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transformations {Mµν} and by the following relationships:

[Pµ, P ν ] = 0 (1.1a)

[Pµ,Mρσ] = −i (ηµρP σ − ηµσP ρ) (1.1b)

[Mµν ,Mρσ] = i (ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (1.1c)

can be extended. Indeed, one builds up the SuperPoincaré algebra by in-

cluding these new fermionic operators and setting up additional relationships

using them:

{Qα, Q̄β̇} = 2 (σµ) β̇
α Pµ (1.2a)

[Mµν , Qα] = −i (σµν)αβ Qβ (1.2b)

[Mµν , Q̄β̇] = −i (σ̄µν)α̇β̇ Q̄β̇ (1.2c)

{Qα, Qβ} = 0 = {Q̄α̇, Q̄β̇} {Pµ, Qα} = 0 = {Pµ, Q̄α̇}

The resulting theory is a globally supersymmetric version of General Rela-

tivity.

Pursuing further this extension, the local version of Supersymmetry can be

added via superdiffeomorphisms. Defining a supermanifold as a manifold

with bosonic and fermionic2 coordinates, one can set up local invariance

under some graded diffeomorphisms. Supergravity is the theory formed by

such an extension of General Relativity.

1.2 Generalised Geometry

Generalised Geometry is a mathematical tool which allows to reformulate

our theory in a geometrical picture. Indeed, one can extend the local sym-

metry group to include both diffeomorphisms and gauge transformations.

One would then have a natural language to express a covariant theory with

respect to these two kinds of transformations.

Therefore, one defines several generalised mathematical objects, such as a

generalised tangent space and generalised vectors, with a differential struc-

ture including generalised metric, connections and torsion. The goal is to

introduce them in a coherent way that makes obvious the covariance. It is

2Fermionic coordinates anticommunte since they are Grassman-valued spinors.
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believed that this language will shed light on the underlying symmetries and

theories.

The structure group, the group of diffeomorphisms in General Relativity,

has to be generalised first in order to include more fundamental symme-

tries. Since this work is dedicated to the study of Supergravity and to the

clarification of String Theory backgrounds, one should look for symmetries

already present in such theories, such as dualities.

At first, five ten-dimensional String Theories, in which the number, shape,

size and twisting of dimensions beyond the usual 3 + 1 ones influence the

predicted physics, had been developped and seemed unrelated. In the mid-

1990s, a new kind of connections between the distinct theories was found

and called dualities. They linked the theories together and unified them into

a broader eleven-dimensional one, called M theory.

The T -duality expresses the fact that different geometries of the manifold

(and especially of the extra-dimensions) may result in the same physical ef-

fects3. Another duality relates a strongly coupled theory to a weakly coupled

one, the coupling constants being inversely proportional. The combination

of these two gives rise to U -duality.

In the following, two groups will be considered for our extension: the T -

duality and the U -duality groups, that is O(d, d)4 and Ed(d)
5, with d the

dimension of our space-time manifold. Instead of our usual tangent space

TM , we have generalised tangent spaces such as, in d = 4 dimensions,

TM ⊕ T ∗M in the first case, and TM ⊕ ∧2 T ∗M in the second one. One

can also consider the general case where the dimension d can take any value

d ≤ 7. In any case, the extension allows us to look at all the transformations

(diffeomorphisms and gauge transformations) in this generalised space, that

is on a generalised vector which will include the gauge fields.

In this work, we will aim on Ed(d) × R+ Generalised Geometry, which is an

3A theory built on a manifold with one dimension compactified over a circle can be

related by T -duality to another theory on the same kind of space-time: the radius of the

circles are inversely proportional.
4The indefinite orthogonal group of split signature.
5The split form of the simple exceptional Lie group Ed.
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extension of the U -duality case6. The generalised Ed(d)×R+ tangent bundle

will be studied both through the split frames one can define on this space

and the differential structure which is needed for the theory. A particular

attention will be given to the metric compatible, torsion-free generalised

connections.

In order to introduce all the notions and specificities of Generalised Geom-

etry, the first section will focus on the low-dimension case d = 4. The two

generalised tangent spaces mentioned before, stemming from both T - and

U -duality groups, will be studied with their linear and differential struc-

tures, and especially the connections and metric.

1.3 Notations

In the following, we consider a manifold M of dimension d ≤ 7, with its

tangent bundle TM . Its restriction to the usual d = 4 Minkowski space-

time manifold is chosen to have (+,−,−,−) signature.

Several generalised tangent spaces can be defined and used:

E1 ' TM ⊕ T ∗M (1.3)

E2 ' TM ⊕ ∧2 T ∗M (1.4)

E ' TM ⊕ ∧2 T ∗M ⊕ ∧5 T ∗M ⊕ (T ∗M ⊗ ∧7 T ∗M) (1.5)

In each case, we define a generalised vector V :

V = v + f V ∈ E1, v ∈ TM, f ∈ T ∗M (1.6)

V = v + ω V ∈ E2, v ∈ TM, ω ∈ ∧2 T ∗M (1.7)

V = v + ω + σ + τ V ∈ E, v ∈ TM, ω ∈ ∧2 T ∗M, (1.8)

σ ∈ ∧5 T ∗M, τ ∈ (T ∗M ⊗ ∧7 T ∗M)

In terms of indices, the space-time representations are covered by Greek

indices such as µ, ν, ρ, σ. . . ; if one wants to define an index for a bigger

representation than the space-time one, Latin indices might be used, such

as m, n, p, q. . .

6Known as the ”trombone symmetry”, this R+ factor is important to specify the

isomorphism between the generalised tangent space and a sum of vector and form spaces.

6



In the case where one defines coordinates xµ on the manifold, the generalised

vector’s components are indiced using a capital letter: for V ∈ E, we would

have:

VM = (vµ; ωµ1µ2 ; σµ1µ2µ3µ4µ5 ; τν,µ1µ2µ3µ4µ5µ6µ7)

with µ, ν, µk . . . = 1 . . . d, and thus M = 1 . . . r where r ≡ (d+ d(d−1)
2 + . . .)

is the dimension of the generalised tangent space.

In different kinds of frame, we might prefer using capital letters A, B, . . . in-

stead of a couple of letters (such as (µ1µ2), or rather (m1m2) as we will see).

This index would then cover the appropriate range of numbers − for instance

A = 1, . . . 6 for a four-dimensional two-form field index: V µ1µ2 ≡ V A.

One can generalise the usual partial derivative operator ∂µ ∈ T ∗M by defin-

ing an operator acting on the dual of the generalised tangent space E∗i . For

the high dimensional version, one simply defines:

∂M ≡

{
∂µ for M = µ

0 otherwise
(1.9)

with ∂M ∈ E∗. This is equivalent to an embedding of the action of the usual

operator using the inverse of the isomorphism defining E with respect to

the direct sum of tensor bundles.

We here define carefully different kinds of actions and contractions. Defining:

h ∈ TM ⊗ T ∗M

z ∈ ∧pTM, 1 ≤ p ≤ d

ρ ∈ ∧qT ∗M and χ ∈ ∧8−qT ∗M, 1 ≤ q ≤ d

we first recall the action of GL(d, R) on usual tensors:

(h · v)µ = hµν v
ν (1.10a)

(h · ω)µ1µ2 = −hνµ1 ωνµ2 − h
ν
µ2 ωµ1ν (1.10b)
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We will also need details about the contraction of high rank tensors: (z � ρ)µ1...µq−p ≡ (1/p!) zν1...νp ρν1...νpµ1...µq−p if p ≤ q

(z � ρ)µ1...µp−q ≡ (1/q!) zν1...νqµ1...µp−q ρν1...νq if p ≥ q
(1.11a)

(z � τ)µ1...µ8−p ≡ (1/(p− 1)!) zν1...νp τν1,ν2...νpµ1...µ8−p (1.11b)

(j ρ ∧ χ)µ,µ1...µ7 ≡ (7!/p! (7− p)!) ρµ,[µ1...νp χµp+1...µ7] (1.11c)
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2 Starting with TM ⊕ T ∗M and TM ⊕ ∧2 T ∗M

As mentioned above, Generalised Geometry gives a geometrical picture to

our theory which is naturally covariant with respect to diffeomorphisms and

form field transformations. It can be developped by introducing two different

symmetry groups: T - and U -duality. Equivalently, it can be built on two

different structure groups, respectively, O(d, d) and Ed(d). In this section,

the manifold M is a d = 4 spin-manifold, on which we consider a patching

of a local connection and an open covering {Ui}.

2.1 Generalised tangent bundle

First, let us give our generalised tangent space a structure, starting with an

inner product between two generalised vectors, V = v+ω, U = u+ σ, both

in (Ek)
2:

〈· , ·〉 :Ek × Ek → ∧k−1T ∗M (2.1)

(V,U) 7−→ 〈V, U〉 ≡ 1

2
(ivσ + iuω)

Let us now build a generalised Lie derivative of U = u + σ with respect to

V = v + ω:

LV U ≡ [v, u] + (Lvσ − iudω) (2.2)

Let us also define the Courant bracket as the antisymmetrisation of the

generalised Lie bracket:

J · , · K : Ek × Ek → Ek (2.3)

(V, U) 7→ JV,UK ≡ [v, u] + Lvσ − Luω −
1

2
(iudω − ivdσ)

It can be seen that diffeomorphisms preserve the Courant bracket, as they

do with the usual Lie bracket.

Finally, let us look at transformations which preserve the Courant bracket.

For B a (k + 1)-form, one can define the endomorphism7:

eB : V → eB(V ) = v + (ω +B(v)) (2.4)

7The choice for the notation of this operator will be clearer in the following.
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where eB(V ) ∈ Ei, that is (ω + B(v)) ∈ T ∗M or ∧2T ∗M . Choosing for

instance B(v) = (−1)k+1 ivB, one can apply this operator to the Courant

bracket and get:

JeB(V ), eB(U)K = eB JV, UK− iviu dB (2.5)

This shows that the Courant bracket is preserved by such a transformation

if and only if dB = 0.

It can even be demonstrated that for any transformation and to preserve

the Courant bracket, it must be a diffeomorphism, a B-field transformation

with B ∈ ∧k+1T ∗M such that dB = 0 − as introduced just before under

the notation eB − or a composition of the two.

2.1.1 T -duality and O(d, d) generalised tangent space

In the case where we choose to extend the symmetry group with T -duality,

the generalised tangent space is isomorphic to the sum TM ⊕ T ∗M . The

main object is thus a generalised vector V = v + f .

Let us define a theory where, together with a metric g, a closed form field

F = df plays a central role. Diffeomorphisms act on v ∈ TM preserving

its properties, such as the inner product or the Lie bracket one can define

on the tangent space. They also preserve the metric’s properties since it

is a symmetric (0, 2)-tensor. Similarly, the one-form field transformation

f → f + g under the condition dg = 0 preserves the closed form field F .

One thus needs to extend this tangent space TM with its symmetries and

build a generalised transformation which will include the two previously

mentioned transformations. Let us write down the inner product between

two generalised vectors (V,U) ∈ (E1)2 in a matrix language. First, one can

write the generalised vector V = ( v ω )tr. Thus, defining:

M =
1

2

[
0 1

1 0

]
(2.6)

one has:

〈V, U〉 = V trM U (2.7)

Since M is a symmetric real matrix, it can be diagonalised using a real or-

thogonal matrix P . Its eigenvalues are {−1, 1} with the same multiplicity.
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The group of morphisms preserving the inner product is thus isomorphic to

O(d, d).

It can be proven that the Lie algebra related to the symmetry group pre-

serving the inner product, denoted by so(E1), can be decomposed as follows:

so(E1) = ∧2TM ⊕ EndTM ⊕ ∧2T ∗M (2.8)

where EndTM = TM ⊕ T ∗M . Indeed,

so(E1) = {Q : QtrM +MQ = 0} (2.9)

=

Q =

[
A C

B −Atr

]
,

A ∈ EndTM

B ∈ ∧2T ∗M

C ∈ ∧2TM


By exponentiating QB =

[
0 0
B 0

]
, one gets the operator for the B-field trans-

formation, which gives (2.4). Hence the notation, slightly simplified, intro-

duced previously.

Similarly, by exponentiating QC =
[

0 C
0 0

]
, the bi-vector C leads to the trans-

formation eC(v + ω) = (v − iωC) + ω (simplifying here again the notation).

Finally, the endomorphisms are represented by the diagonal part of Q. This

gives the decomposition (2.8).

One can finally look for a generalised metric which would combine our fields,

i.e. both the metric g and the form field B.

Let us start by defining a splitting of our space E1 into a maximal subspace

on which the inner product is positive definite, denoted by E+
1 , and its or-

thogonal complement E−1 ≡ (E+
1 )⊥. The inner product is negative definite

on E−1 and we can then define a metric operator:

G : E1 = E+
1 ⊕ E

−
1 → E1 (2.10)

V = V + + V − 7→ GV ≡ 〈V, · 〉 |E+
1
−〈V, · 〉 |E−1

where the equivalence E ∗1 = TM ⊕ T ∗M = E1 has been used.

Let us now define an operator ψ : TM → T ∗M in order to find an explicit

splitting. We require ψ to satisfy:

〈v + ψ(v), v + ψ(v)〉 > 0 ∀ v ∈ TM (2.11)
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One can then simply define the splitting via:

E+
1 ≡ {v + ψ(v), v ∈ TM} (2.12)

The important point here is that ψ, as an operator acting on vectors and

giving one-forms, can be seen as a (0, 2)-tensor, and can thus be decomposed

into a symmetric part and an antisymmetric one. These are the two objects

we wanted to merge into a generalised metric: the usual metric g which

is a symmetric (0, 2)-tensor, and the B-field which is a two-form i.e. an

antisymmetric (0, 2)-tensor. More precisely, g is a Riemannian metric on

TM . This condition is equivalent to the defining condition of ψ (2.11): the

B(v) = −ivB part does not contribute to the value of the inner product,

due to the nilpotency of iv.

Noting that eB(v + g(v)) = v + g(v)− ivB = v + ψ(v), one has:

E+
1 = eBĒ+

1 with Ē+
1 ≡ {v + g(v), v ∈ TM} (2.13)

E−1 = eBĒ−1 with Ē−1 ≡ {v − g(v), v ∈ TM} (2.14)

where Ē±1 is defined with g instead of ψ, i.e. with B = 0. In this case, one

can note that:

Ḡ(2v) = Ḡ(V + + V −) = V + − V − = 2g(v)

Ḡ(2g(v)) = Ḡ(V + − V −) = V + + V − = 2v

where Ḡ is the generalised metric when B = 0. Hence Ḡ =
[

0 g−1

g 0

]
.

Besides, since E+
1 = eBĒ+

1 and GE+
1 = E+

1 , one has e−BGeB = Ḡ. Finally,

we get in this matrix representation:

G =

[
1 0

B 1

] [
0 g−1

g 0

] [
1 0

−B 1

]

=

[
−g−1B g−1

g −Bg−1B Bg−1

]
(2.15)

Note that the need for B to be a closed form is equivalent to the one for eB

to preserve the Courant bracket.
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2.1.2 U -duality and Ed(d) generalised tangent space

A three-form field, that we will denote by B in the following, is appearing

in Supergravity (especially in four dimensions) as well as in several String

Theories. It would thus be interesting to write down a Generalised Geometry

language including such a field and the related symmetries. One can build

the generalised tangent space E2 = TM ⊕ ∧2T ∗M on a d = 4-dimensional

manifold M and a theory where a metric g and a closed form field F = dB

play a central role.

The first important thing to note is that the inner product (2.1) defined

above is no longer bilinear, and is thus no longer preserving the group of

transformations. We then need to find another general linear group on our

generalised tangent space. Looking at the natural group of transformations

on TM , GL(4,R), and at the U -duality symmetry group, E4(4) ' SL(5,R),

one can choose to use GL(5,R) which include both these groups8.

Let us first find another representation for our generalised vector that makes

more sense regarding the symmetry group. In the following, the Latin indices

will cover the GL(5,R) dimensions m, n, p . . . = 1 . . . 5, whereas the Greek

ones will still denote the manifold dimensions µ, µi, νi . . . = 1 . . . 4.

Our generalised vector is written as V mn ; the vector v, element of TM , as

vµ = V 5µ. Using the isomorphism presented in details in appendix A, one

can express our two-form field ω as V ν1ν2 = 1
2 ε

ν1ν2µ1µ2 ωµ1µ2 . Finally, we

have V mn = −V nm, hence a generalised vector V = v+ω written as a 5× 5

matrix.

In this representation, we now need to express our transformations in a

coherent way, that is with V ′ = QV Qtr with Q ∈ GL(E2) ' GL(5,R),

or equivalently V ′pq = QpmV mnQ q
n . As for the previous case (E1), the

transformations can be decomposed into several specific cases. Naturally,

the first one is the linear transformations represented by a block diagonal

matrix:

QA =

[
A (detA)κ 0

0 (detA)λ

]
(2.16)

8Even if SL(5,R) seems to be enough at first since we could include GL(4,R) in it,

we will see later that this extension is necessary.
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with9 A ∈ GL(TM) and κ, λ ∈ R. One thus has:

V ′5µ = (QA)5
ν (QA)µρ V

νρ = (detA)κ+λ Aµρ V
5ρ (2.17)

V ′µν = (QA)µρ (QA)νσ V
ρσ = (detA)2κ AµρA

ν
σ V

ρσ (2.18)

In order to preserve the symmetries, one needs to fix κ + λ = 0 (hence

V 5µ ∈ TM) and 2κ = 1 (hence V µν ∈ (detTM)⊗ ∧2T ∗M).

Note that these conditions on κ and λ, i.e. on V 5µ and V µν to transform as a

vector field and a two-form density field, are too restrictive to be compatible

with QA ∈ SL(5, R). Indeed, one could not impose det (QA) = 1 without

restricting A to be in SL(TM) (instead of GL(TM)). Hence why we choose

GL(E2) to be GL(5, R) as opposed to SL(5, R).

Glancing at the way an object such as Pm = ( pµ p )tr transforms under

this operator, it can be seen that we have:

p′µ = (detA)
1/2Aµν p

ν ⇒ pµ ∈ (detTM)
1/2 ⊗ TM

p′ = (detA)−
1/2 p ⇒ p ∈ (detTM)−

1/2

Therefore Pm ∈ (detTM)1/2 (TM ⊗ (detTM)−1).

Let us now look at the two other kinds of transformations, i.e. the shear

transformations in the ∧2T ∗M and TM directions as defined by eB and

eC in the previous case10. First, we define (QB)mn ≡
[

0 Bµ
0 0

]
such that

eQB ∈ GL(5, R) (in the following denoted by eB). One has:

V ′mn = (eB)mp (eB)nq V
pq

= V pq +

[
Bµvν −Bνvµ 0

0 0

]
(2.19)

Indeed, QB does generate a shear transformation in the ∧2T ∗M direction by

shifting the two-form part of V (the ω part) by an antisymmetric product of

the vector part of V (the v part) and the parameter of the transformation

(the B-field).

9Note that here, the morphism A ∈ GL(TM) is different from the one A ∈ End (TM)

used previously in (2.9), even if they could be closely related.

10Except in the fact that eB was a shear transformation in the T ∗M direction since

the generalised tangent space was E1 ' TM ⊕ T ∗M .
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Furthermore, we define (QC)mn ≡
[

0 0
Cν 0

]
such that eQC ∈ GL(5, R) (in the

following denoted by eC). Again, one has:

V ′mn = (eC)mp (eC)nq V
pq

= V pq +

[
0 −CρV ρµ

CρV
ρν 0

]
(2.20)

Here too, QC generates a shear transformation in the TM direction by

shifting antisymmetrically the v part by a contraction of the ω part and the

parameter of the transformation (the C-field).

Finally, the space of transformations can be decomposed as follows:

GL(E2) = GL(5, R) ' GL(4, R)⊕ ∧3T ∗M ⊕ ∧3TM (2.21)

2.2 Differential structure

Since our generalised tangent spaces have been previously provided with a

common differential structure, that is a generalised Lie derivative (2.2) and

a Courant bracket (2.3), we will now focus on the latest tangent space. Let

us then rewrite our Courant bracket in a matrix language as developped for

E2 ' TM ⊕ ∧2T ∗M :

JV, UK = JV 5µ + V µ1µ2 , U5µ + Uµ1µ2K

= [V, U ]5µ +
(
LV U − LUV −

1

2
d(iUV − iV U)

)µ1µ2
= (V 5ν∂νU

5µ − U5ν∂νV
5µ) +

(
V 5ν∂νU

µ1µ2 − U5ν∂νV
µ1µ2

)
− 3

2

(
V [µ1µ2∂νU

5ν] − U [µ1µ2∂νV
5ν] + V [5ν∂νU

µ1µ2] − U [5ν∂νV
µ1µ2]

)
or, in a matrix layout:

JV, UKmn =


V 5ν∂νU

µ1µ2 − U5ν∂νV
µ1µ2

−3
2

(
V [µ1µ2∂νU

5ν] − U [µ1µ2∂νV
5ν]

+V [5ν∂νU
µ1µ2] − U [5ν∂νV

µ1µ2]
) V 5ν∂νU

5µ1

−U5ν∂νV
5µ1

V 5ν∂νU
5µ2 − U5ν∂νV

5µ2 0


(2.22)
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In order to check the consistency, we need to verify that B-field transforma-

tions are still a symmetry of the Courant bracket, i.e. that they satisfy:

eB JV, UK = JeBV, eBUK ⇔ dB = 0 (2.23)

It can firstly be noted that, defining Bµ = εµνρσ Bνρσ i.e. the dual for the

three-form field B, one has 1
2 ε

µ1µ2νρ V 5σ Bνρσ = −2B[µ1 V µ2]5. Also, the v

part of our generalised vector is invariant under the action of eB, whereas

the ω part is modified into:

V ′µ1µ2 ≡ V µ1µ2 +
1

2
εµ1µ2νρ V 5σ Bνρσ = V µ1µ2 − 2B[µ1 V µ2]5 (2.24)

One can then compute:

JeB V (eB)tr, eB U (eB)trKmn

=

t[
V ′µ1µ2 −V 5µ1

V 5µ2 0

]
,

[
U ′µ1µ2 −U5µ1

U5µ2 0

]|

= JV, UKmn + 2


(
V 5ν ∂νU

5[µ2 − U5ν ∂νV
5[µ2
)
Bµ1]

−V 5[µ1Uµ2]5 ∂νB
ν 0

0 0


and identify

(
i[V,U ]B

)µ1µ2 = 2
(
V 5ν ∂νU

5[µ2 − U5ν ∂νV
5[µ2
)
Bµ1], i.e. the

first part of the extra term, as well as (iV iUdB)µ1µ2 = V 5[µ1Uµ2]5 ∂νB
ν , i.e.

the second part. Hence the final equality:

JeB V (eB)tr, eB U (eB)trKmn

= JV, UKmn +
(
i[V,U ]B

)µ1µ2 − 2 (iV iU dB)µ1µ2 (2.25)

=
(
eB JV, UK (eB)tr

)mn ⇔ dB = 0

which implies11 the conservation of the Courant bracket under B-field trans-

formations, under the necessary and sufficient condition that the three-form

field B be closed.

11This was known but has now been proven in the matrix language previously devel-

opped.
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2.3 Generalised connections and metric

In order to complete the structure of our generalised tangent space, an

affine connection is needed, as well as a metric, both being invariant under

GL(5, R).

Let us first introduce an affine connection:

∇ : E2 × E2 → E2

(V, U) 7→ ∇V U (2.26)

satisfying the following properties, ∀ V,U, T ∈ (E2)3 and ∀ f ∈ C∞(M)12:

∇V (U + T ) = ∇V U +∇V T (2.27a)

∇V+U T = ∇V T +∇UT (2.27b)

∇f V (U) = f (∇V U) (2.27c)

∇V (f U) = V [f ] + f (∇V U) (2.27d)

where we define V [f ] = (v + ω)[f ] ≡ v[f ].

We also define a basis for E2 with antisymmetric matrices labelled by A and

with only −1 and 1 at the position (m+ 1, m) and (m, m+ 1):

{
eA ≡


0 · · · 0
...

. . . −1

1

0 0

 , A = 1, . . . 10

}
(2.28)

and connections Ω C
A B ∈ K − K the space of connection − with13:

Ω C
A B eC ≡ ∇A eB (2.29)

Then, one can work out the properties (2.27) in terms of {eA} and get:

∇V U = V A
(
eA[UB] + Ω B

A CU
C
)
eB = V A

(
∂AU

B + Ω B
A CU

C
)
eB

since the form part of eA[UB] vanishes. Here, one can recognise and define

the usual form of the covariant derivative in terms of partial derivative and

12Note that here and in the following, f is no longer an element of T ∗M but a continuous

function over the manifold M .
13We slightly simplify the notation again, assimilating ∇eA ≡ ∇A
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connection.

The last point to check is the invariance of these connections under GL(5, R)

transformations, by defining an action over our tangent space E2 (in (mn)

indices):

( , ) : K× E2 → E2 (2.30)

(Ω mn
pq rs, V

rs) 7→ (Ω · V )mnpq ≡ (Ωpq)
m
r V

rn − (Ωpq)
n
r V

rm

Note that this definition is coherent with the action of the affine connection

∇V on Pm ∈ (detTM)1/2 (TM ⊗ (detTM)−1).

Finally, let us find a generalised metric on E2 as we did for E1. As usual, it

must satisfy several key properties, such as being covariant under GL(5, R)

transformations, and including the fields our theory would need in one ob-

ject, mathematically coherent.

Our theory contains at least the usual metric g and the three-form field

B. Using the isomorphism between ∧3T ∗M and (detTM)⊗ T ∗M , our first

assumption could be that G ∈ ((detTM)⊗ T ∗M) ⊕ S2T ∗M , which seems

reasonable apart from the number of degrees of freedom. Indeed, given that

our generalised metric G must be symmetric (since g is), it should have

5× 6/2 = 15 d.o.f. ; the usual metric contains 4× 5/2 = 10 d.o.f. and the

three-form field 4× 3× 2/3× 2 = 4. There is an extra freedom that we will

include either as the G55 term or as an overall multiplying factor.

Finally, recalling V ∈ T ∗M ⊕ ∧2T ∗M and that we need to apply the same

transformations on our generalised vectors V mn and on the inverse of the

generalised metric Gmn, we assume G−1 ∈ S2TM ⊕ TM ⊕ (detTM).

Hence:

Gmn =

[
Gµ1µ2 Gµ15

G5µ2 G55

]
=

[
g̃µ1µ2 Xµ1

Xµ2 γ

]
(2.31)

with a density scalar field γ ∈ detTM , a vector field X ∈ TM such that

Xµ ∼ Bµ = εµνρσ Bνρσ, and an inverse metric g̃ ∈ S2TM . Note that

this metric is not necessarily g, the one on our manifold M , but has the

same signature (1, 3). This point raises the question of the signature of

our generalised metric G: we choose it to have a (2, 3) signature − and

not (1, 4) − in order to be adequatly developped for our physical theories.
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Indeed, the fermionic sector of four-dimensional Supergravity is built with

the subgroup Spin(2, 3) of the Clifford Algebra, leading to such a signature.

Moreover, one of the three-form supergravity solutions, that is AdS4, is

naturally embedded in R2,3, confirming the choice for G.

Let us now apply the GL(5, R) transformations on the different components

of the generalised metric, starting with the linear operator QA:

X ′µ = Aµν X
ν ⇒ G5µ ∈ TM (2.32a)

γ′ = (detA)−1 γ ⇒ G55 ∈ (detTM)−1 (2.32b)

g̃′µ1µ2 = (detA)Aµ1ν1A
µ2
ν2 g̃

µ1µ2 ⇒ Gµ1µ2 ∈ (detTM)⊗ S2TM (2.32c)

One can see that this is not coherent. Recalling the determinant of the

metric is a density scalar of rank two and writting
√
|detg̃| ≡ g, we redefine

the generalised metric’s components. The metric part is a density and should

include a γ−1 factor: Gµ1µ2 ≡ g γ g̃µ1µ2 . The vector part needs to include

this extra-factor as well: G5µ2 ≡ γ Xµ. Finally, we adjust the rank of the

density scalar: G55 ≡ g−1 γ.

Hence the final form of the generalised inverse metric:

Gmn = g γ

[
g̃µ1µ2 g−1Xµ1

g−1Xµ2 g−2

]
(2.33)

∈ (detTM)⊗
(
S2TM ⊕ (detTM)−1 TM ⊕ (detTM)−2

)
We also define, in the case B = 0 and using here the usual manifold metric,

Ḡmn ≡ g γ

[
gµ1µ2 0

0 g−2

]
(2.34)

which should satisfy G−1 = eB Ḡ−1 (eB)tr under a shear transformation in

the ∧2T ∗M direction − as was developped proviously for V mn. This leads

to:

Gmn = g γ

[
gµ1µ2 + g−2Bµ1Bµ2 g−2Bµ1

g−2Bµ2 g−2

]
(2.35)

Given that Bµ ∈ (detTM) ⊗ T ∗M , this is coherent with the definition

of the generalised metric. One thus has g̃µ1µ2 = gµ1µ2 + g−2Bµ1Bµ2 and

gXµ = Bµ, which are once again coherent with the previous work.

19



Finally, let us check the consistency with the other shear transformation,

generated by QC : one should have G−1 = eC Ḡ−1 (eC)tr. One gets:

Gmn = g γ

[
gµ1µ2 gµ1ν Cν

gµ2ν Cν gµνCµCν + g−2

]
(2.36)

which is again coherent, since Cµ ∈ (detTM)−1 T ∗M ' ∧3TM .

Lastly, one wants to construct the generalised metric Gmn (not its inverse).

Let us start with the easiest case:

Ḡmn ≡ g−1 γ−1

[
gµ1µ2 0

0 g2

]
(2.37)

One can then invert one of the relationships between Gmn and Ḡmn, giving

G = (e−B)tr Ḡ e−B ; therefore:

Gmn ≡ g−1 γ−1

[
gµ1µ2 −gµ1νBν

−gµ2νBν g2 +BµgµνB
ν

]
(2.38)

Not only does this transformation give a coherent metric, but it also confirms

that G ∈ (detTM)−1 ⊗
(
S2T ∗M ⊕ (detTM)T ∗M ⊕ (detTM)2

)
.

One can finally check that the other shear transformation gives a coherent

result:

Gmn ≡ g−1 γ−1

[
gµ1µ2 + g2Cµ1Cµ2 −g2Cµ1

−g2Cµ2 g2

]
(2.39)

As a conclusion work on our generalised tangent space E2, it would be in-

teresting to look at metric-compatible connections, i.e. connections which

preserve the metric defined above. A torsion-free condition can be added

in order to develop the generalisation of the Levi-Civita connection, that is

the metric compatible torsion-free connection.

First, we recall that in conventional geometry, one has a unique Levi-Civita

connection, since its 64 degrees of freedom (d.o.f.) are constrained by 64

equations: 24 from the torsion-free condition and 4× 10 to be metric com-

patible:

Γ ν
µ ρ such that T ν

µ ρ ≡ Γ ν
µ ρ − Γ ν

ρ µ = 0 and ∇µgνρ = 0 (2.40)

Here, the connections contains 250 d.o.f, since it is a five-dimensional (1, 3)-

tensor with two antisymmetrised indices14 (that is 5× 5× 5×4
2 d.o.f).

14One can write the connections as Ω m
pq r from its action over E2 defined in (2.30).
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The torsion is a generalised (1, 2)-tensor, or equivalently a map defined as

T : E2 × E2 → E2 and such that:

T (V, U) ≡ ∇V U −∇UV − [V, U ] = Ω B
A C

(
V AUC − V CUA

)
eB (2.41)

for any (V, U) ∈ (E2)2. Although the torsion can be seen as some anti-

symmetrisation of the connections on the lower indices (A,C), one can note

that the symmetric part of the trace of the connections remains15. It is a

symmetric (0, 2)-tensor with 15 d.o.f ; the traceless part of the torsion is

a (1, 3)-tensor with three antisymmetrised indices giving 5 × 5×4×3
2×3 = 50

d.o.f. Therefore, the torsion-free condition restricts the connections with 65

equations, 250− 65 = 185 d.o.f. remaining.

Similarly, the generalised metric is a symmetric (0, 2)-tensor, i.e. contains

15 d.o.f., and the covariant derivative is antisymmetric, giving 10 d.o.f.

Thus, the compatibility condition DG = 0 combines 150 equations, leav-

ing 185− 150 = 35 d.o.f. for the generalised Levi-Civita connections.

The unicity of such connections is thus lost. This is not a problem for the

framework developped above, mainly because a Ricci curvature tensor can

still be built up uniquely. Indeed, even if the Riemann curvature − which

can be defined as the commutator of the covariant derivative − is no longer

a tensor, its contraction is and constrains all the freedom left.

15Indeed, when expressed with the (m,n) indices instead of the A ones, the trace of

the connections does not vanish.

21



3 Ed(d) × R+ Generalised Geometry

From its original version where the tangent space is E1 ' TM ⊕ T ∗M and

the underlying structure relies on O(d, d), Generalised Geometry has been

extended to include the symmetries appearing in M theory. The generalised

tangent space E ' TM ⊕∧2 T ∗M ⊕∧5 T ∗M ⊕ (T ∗M ⊗∧7 T ∗M) is relevant

for the low dimensional d ≤ 7 restriction of eleven-dimensional Supergravity

− the low-energy limit of M theory. It admits an Ed(d) structure, which is

completed by a ”trombone symmetry” to give the Ed(d) × R+ structure.

In the following, the manifold M is a d-dimensional spin manifold, restricted

to d ≤ 7. Note that if d < 7, one would need to ignore one or several terms

in the direct sum of tensor bundles that our generalised tangent space E is

isomorphic to. One also defines a patching {Uj} on M .

3.1 Generalised tangent bundle

The tangent space E is isomorphic to a sum of tensor bundles. To be more

accurate, the space E springs from a series of exact extensions:

0 −→ ∧2 T ∗M −→E′′ −→ TM −→ 0

0 −→ ∧5 T ∗M −→E′ −→ E′′ −→ 0 (3.1)

0 −→ T ∗M ⊗ ∧7 T ∗M −→E −→ E′ −→ 0

One can see this in a more practical way when looking at the elements of

sections of E and the way they are patched. Indeed, for V(j), V(k) elements

of a section of E over patches Uj , Uk, one has:

V(j) = v(j) + ω(j) + σ(j) + τ(j) (3.2)

∈ Γ
(
TUj ⊕ ∧2T ∗Uj ⊕ ∧5T ∗Uj ⊕ (T ∗Uj ⊗ ∧7T ∗Uj)

)
and, locally defining Λ(jk) and Ξ(jk) two- and five-forms on the overlap

Uj ∩ Uk, one gets:

V(j) = edΛ(jk)+ dΞ(jk) V(k) (3.3)
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i.e. v(j) = v(k) (3.4a)

ω(j) = ω(k) + iv(k)dΛ(jk) (3.4b)

σ(j) = σ(k) + dΛ(jk) ∧ ω(k)

+ iv(k)dΞ(jk) + 1/2 dΛ(jk) ∧ iv(k)dΛ(jk) (3.4c)

τ(j) = τ(k) + j dΛ(jk) ∧ σ(k) − j dΞ(jk) ∧ ω(k)

+ j dΛ(jk) ∧ iv(k)dΞ(jk) + 1/2 j dΛ(jk) ∧ dΛ(jk) ∧ ω(k)

+ 1/6 j dΛ(jk) ∧ dΛ(jk) ∧ iv(k)dΛ(jk) (3.4d)

Note that v(j) is a globally defined vector, whereas ω(j), σ(j), τ(j) are only

locally defined tensors. Note also that the generalised tangent bundle E

contains all the topological information for our supergravity background.

This generalised vector bundle structure means that from every point x ∈M ,

there is a fibre denoted by Ex. Since we have an Ed(d) × R+ principal

bundle, this fibre forms a representation space of the group Ed(d) × R+.

The bundle is also defined by an action of this group, which acts here on

the component spaces TxM, ∧2T ∗xM, ∧5T ∗xM and T ∗xM ⊗ ∧7T ∗xM via the

GL(d,R) subgroup.

Thus, we note that the exact extension (3.1) defining E is directly linked

to the structure group. Indeed, without the extension by an R+ factor,

sections of the vector bundle would not transform as tensors ; they would

get an additional power of (detT ∗M).

Moreover, one can define a superstructure, a frame bundle F , for E. We

define {ÊA, A = 1 . . . r} a basis for the fibre Ex, where r is the dimension

of the representation of the Ed(d) × R+ group, i.e. the dimension of the

generalised tangent space. One can check the values presented in Table 1

below by computing the dimension of each tensor bundle in the sum (the

number of which depends on the dimension) and adding them.

The frame bundle F is formed from all the bases and is therefore a GL(r, R)

principle bundle. This means that E is seen as a sub-bundle, the natural

Ed(d)×R+ principle sub-bundle of F which is compatible with the patching

defined earlier in (3.3).

Let us define {êµ} a basis for TxM and thus {êµ} a basis for T ∗xM . One

then has {êµ1µ2} for ∧2T ∗xM , {êν1...ν5} for ∧5T ∗xM and finally {êν,ρ1...ρ7} for
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# of

d terms r

7 4 56

6 3 27

5 3 16

4 2 10

Table 1: Dimension of the generalised tangent space

(
T ∗xM ⊗ ∧7T ∗xM

)
. Using these, we can easily construct a basis for Ex just

by combining them. Hence the expression of a generalised vector V ∈ Ex:

V = V A ÊA = vµ êµ + 1/2 ωµ1µ2 ê
µ1µ2 + 1/5! σν1...ν5 ê

ν1...ν5

+ 1/7! τν,ρ1...ρ7 ê
ν,ρ1...ρ7 (3.5)

If Uj is endowed with a certain choice of coordinates, the natural basis on

TxM is {∂/∂xµ}, hence {ÊM} = {∂/∂xµ} ∪ {dxµ1 ∧ dxµ2} ∪ . . . Note that

through the GL(d, R) subgroup of our Ed(d) × R+ action, one acts on the

bases such as {êµ} and {êµ1µ2} in the usual way, separately. A general

Ed(d)×R+ transformation, including the patching (3.3), gives an Ed(d)×R+

basis {ÊA}.

Let us have a closer look at these transformations, that is at our group

Ed(d) × R+ and its subgroup GL(d, R). One has a manifold M defining

TM , the usual tangent space, and E, the generalised tangent space. In

order to define the Lie algebra of the group Ed(d) ×R+, we need to define a

space ; let us call it F:

F ≡ R⊕ (TM ⊗ T ∗M)⊕ ∧3T ∗M ⊕ ∧6T ∗M ⊕ ∧3TM ⊕ ∧6TM (3.6a)

F = c+ h+ α+ ᾱ+ a+ ā ∈ F (3.6b)

and its action on V = (v + ω + σ + τ) ∈ E:

F · v = c v + h · v + a � ω − ā � σ (3.7a)

F · ω = c ω + h · ω + v � α+ a � σ + ā � τ (3.7b)

F · σ = c σ + h · σ + v � ᾱ+ α ∧ ω + a � τ (3.7c)

F · τ = c τ + h · τ + j α ∧ σ − j ᾱ ∧ ω (3.7d)
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For more details on the contractions, see Section 1.3, (1.10) and (1.11).

Starting with the action of m ∈ GL(d, R):

(m · v)µ = mµ
ν v

ν

(m · ω)µ1µ2 = (m−1)ν1µ1 (m−1)ν2µ2 ων1ν2

and adding the exponentiated action of α and ᾱ, a and ā:

eα+ᾱ V = v + (ω + ivα) + (σ + α ∧ ω + 1/2 α ∧ ivα+ ivᾱ) (3.8)

+ (τ + j α ∧ σ − j ᾱ ∧ ω + 1/2 j α ∧ α ∧ ω

+ 1/2 j α ∧ ivᾱ− 1/2 j ᾱ ∧ ivα+ 1/6 j α ∧ α ∧ ivα)

ea+ā V = (v + a � ω − ā � σ + 1/2 a � a � σ (3.9)

+ 1/2 a � ā � τ + 1/2 ā � a � τ + 1/6 a � a � a � τ)

+ (ω + a � σ + ā � τ + a � a � σ)

+ (σ + a � τ) + τ

and the R+ scaling factor via eδ, δ ∈ R, one finally gets an element of

Ed(d) × R+ which takes the form:

M · V ≡ eδ ea+ā eα+ᾱ m · V (3.10)

Note that the exponential expansion is limited to cubic terms. It is linked

to the nilpotency (of rank two) of both the actions of α+ ᾱ and a+ ā.

One can also define generalised tensors as an extension of generalised vectors.

Indeed, for instance, an element of the section of the dual generalised tangent

space E∗ ' T ∗M ⊕∧2 TM ⊕∧5 TM ⊕ (TM ⊗∧7 TM) can be expressed in

the dual basis {ÊA} as W = WA Ê
A.

We also need to define the generalised Ed(d) × R+ structure bundle F̃ :

F̃ ≡
{(
x, {ÊA}

)
: x ∈M, {ÊA} an Ed(d) × R+ basis

}
(3.11)

This sub-bundle of F (the frame bundle for E) is an Ed(d) × R+ principle

bundle in the exact same way as in conventional geometry where the frame

bundle is a GL(d, R) principle bundle.

The adjoint bundle ad F̃ associated with F̃ is actually the space acting on

the generalised tangent space to build our group Ed(d) × R+:

ad F̃ ≡ F (3.12)
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An element of a section can be written R = RAB ÊA Ê
B since ad F̃ ⊂ E⊗E∗.

We also define the projection on the adjoint representation:

⊗ad : E∗ ⊗ E → ad F̃

Following the same path, we introduce the sub-bundle of the symmetric

product of two generalised cotangent bundles:

N ' T ∗M ⊕ ∧4T ∗M ⊕
(
T ∗M ⊗ ∧6T ∗M

)
(3.13)

⊕
(
∧3T ∗M ⊗ ∧7T ∗M

)
⊕
(
∧6T ∗M ⊗ ∧7T ∗M

)
Sections can also be written S = SAB ÊA ÊB and the projection defined as

⊗N : E ⊗ E → N .

d E∗ ad F̃ N

7 56 133 + 1 133

6 27 78 + 1 27

5 16 45 + 1 10

4 10 24 + 1 5

Table 2: Dimension of the generalised tensors

The dimension of such generalised tensors − that is the dimension of the

representation they belong to − can be computed by adding the dimensions

of each term in the direct sum. Table 2 gives their dimensions with respect

to the dimension d of our manifold M . Note that higher rank generalised

tensors can be built using the same procedure. For more details, see [4].

3.2 Split frame

So far, we defined a frame bundle F for E and its sub-bundle, the generalised

Ed(d) × R+ structure bundle F̃ . We now want to define a special class of

Ed(d)×R+ frames via a splitting of the generalised tangent space E following

the isomorphism (1.5).

Let {êa} be a generic basis for TM and {êa} its dual, that is a basis for

T ∗M . Let ∆ ∈ R be a scalar field, A and Ā be three-form and six-form
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connections and let us patch them on Uj ∩ Uk:

A(j) = A(k) + dΛ(jk)

Ā(j) = Ā(k) + dΞ(jk) − 1/2 dΛ(jk) ∧A(k)

(3.14)

We can then define a conformal split frame {ÊA} for E:

Êµ = e∆
(
êµ + iêµA+ iêµĀ+ 1/2 A ∧ iêµA

+ jA ∧ iêµĀ+ 1/6 jA ∧A ∧ iêµA
)

(3.15a)

Êµ1µ2 = e∆
(
êµ1µ2 +A ∧ êµ1µ2 − jĀ ∧ êµ1µ2

+ 1/2 jA ∧A ∧ êµ1µ2) (3.15b)

Êµ1...µ5 = e∆ (êµ1...µ5 + jA ∧ êµ1...µ5) (3.15c)

Êµ,ν1...ν7 = e∆ êµ,ν1...ν7 (3.15d)

The term ”conformal” refers to the R+ factor and we would have a split

frame in the case ∆ = 0.

The isomorphism (1.5) is actually realised via the definition of the connection

forms A and Ā since one has, in the conformal split frame:

V (A,Ā) = e−∆ e−A(j)−Ā(j) V(j)

= vµ êµ + 1/2 ωµ1µ2 ê
µ1µ2 + 1/5! σν1...ν5 ê

ν1...ν5 (3.16)

+ 1/7! τν,ρ1...ρ7 ê
ν,ρ1...ρ7

which is an element of the section of

TM ⊕ ∧2 T ∗M ⊕ ∧5 T ∗M ⊕ (T ∗M ⊗ ∧7 T ∗M)

Note that the way the connection forms are patched in (3.14) implies that

e−A(j)−Ā(j) V(j) = e−A(k)−Ā(k) V(k) since we patched the generalised vectors

according to (3.3).

Finally, the class of split frames − which is a sub-bundle of F̃ − can be

defined as:

Psplit ≡
{(
x, {ÊA}

)
: x ∈M, {ÊA} a split frame

}
⊂ F̃ (3.17)

The exponentiated action of (α + ᾱ) on such frames shifts the connection

forms: A 7→ A + a, Ā 7→ Ā + ᾱ. Thus, transformations such as M =

eα+ᾱm with m ∈ GL(d, R) are endomorphisms of Psplit. They transform a

split frame into another split frame, in opposition with the other kinds of

Ed(d) × R+ transformations with a ea+ā term − as defined in (3.10).
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3.3 Dorfman derivative and exceptional Courant bracket

As mentioned initially, one of the main goals of this structure is to build

a transformation which combines infinitesimal diffeomorphisms and gauge

transformations. This is the role of the generalised Lie derivative, commonly

called Dorfman derivative, which acts on any generalised tensor. As will be

seen below, it also encodes the bosonic symmetries of our theory.

Indeed, let again V = v + ω + σ + τ be an element of the section of our

generalised tangent space E and let us define LV this operator, acting on

U = u+ ξ + φ+ π a generalised vector:

LV U ≡ Lvu+ (Lvξ − iudω) + (Lvφ− iudσ − ξ ∧ dω)

+ (Lvπ − j φ ∧ dω − j ξ ∧ dσ)
(3.18)

Here, U is transformed by the action generated by both the vector part

v − infinitesimal diffeomorphism − and the form parts ω and σ − gauge

transformations, under the A- and Ā-form fields.

In order to extend this Dorfman derivative to a derivative on other Ed(d)×R+

generalised tensors, we should make the symmetry more obvious, that is

rewrite the definition (3.18) in a covariant way.

Using the generalised partial derivative operator ∂M defined in (1.9) for high

dimensional manifolds, and defining the action of the Dorfman derivative on

a function as the one of the usual Lie derivative LV f = Lvf , one can write:

LV U
M = V N∂NU

M − (∂ ⊗ad V )MN U
N (3.19)

with (∂ ⊗ad V ) = dv + dω + dσ the projection of the generalised partial

derivative and the generalised vector onto ad F̃ .

Written in this form, one can simply extend the Dorfman derivative action

to any kind of generalised tensor by taking the projection map’s action on

the appropriate Ed(d) × R+ representation.

Then, the Dorfman derivative can be antisymmetrised, defining an excep-
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tional Courant bracket as:

JV, UK ≡ 1/2 (LV U − LUV ) (3.20)

= [v, u] + Lvξ − Luω − 1/2 d(ivξ − iuω)

+ Lvφ− Luσ − 1/2 d(ivφ− iuσ)

+ (1/2 ω ∧ dξ − 1/2 ξ ∧ dω)

+ 1/2 (Lvπ − Luτ) + 1/2 (j ω ∧ dφ− j φ ∧ dω)

− 1/2 (j ξ ∧ dσ − j σ ∧ dξ)

It can be noted that the full automorphism group of the exceptional Courant

bracket, that is the group of transformations generated by this bracket, is

the local symmetry group of Supergravity: local diffeomorphism and closed

three- and six-form connections gauge transformations. It can be written as

a semi-direct product: Gsugra = Diff(M) n Ω3
cl(M) n Ω6

cl(M).

Finally, the Dorfman derivative satisfies the Leibniz identity:

LU (LV T )− LV (LUT ) = LJU,V KT = LLUV T

with V, U, T generalised vectors. Thus, E has a ”Leibniz algebroid” struc-

ture.

3.4 Compatible, torsion-free generalised connections

3.4.1 Connections and torsion

We first need to introduce generalised connections in a way that would be

compatible with the Ed(d) × R+ structure. Let us define Ω an element of

a section of E∗ indiced by M and taking values in Ed(d) × R+. Hence the

first-order linear differential operator D acting on a generalised vector V :

DMV
A = ∂MV

A + Ω A
M B V

B (3.21)

In such a covariant way, one can naturally extend the action of the differen-

tial operator D to any higher rank Ed(d) × R+ generalised tensor.

One can also build up a generalised connection on a conventional one ∇
acting on conventional tensors. Indeed, we embed the action of ∇ in E∗,
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acting now on generalised vectors (and tensors):

D∇M V ≡



(∇µ va) Êa + 1/2 (∇µ ωa1a2) Êa1a2

for M = µ+ 1/5! (∇µ σa1...a5) Êa1...a5

+ 1/7! (∇µ τa,b1...b7) Êa,b1...b7

0 otherwise

(3.22)

where ∇µ va, ∇µ ωa1a2 . . . are the usual tensors under the action of a con-

ventional connections.

The definition of the generalised torsion follows directly the one for the gen-

eralised connection.

First, one needs to define LD as the Dorfman derivative in which the partial

derivative ∂ has been replaced by the covariant one D defined above. It

acts on any generalised tensor with respect to a generalised vector as it did

before. Hence the generalised torsion:

T (V ) · U ≡
(
LDV − LV

)
U (3.23)

T can be seen as a generalised tensor, element of a section of E∗ ⊗ ad F̃

even if some of the components actually vanish16. T can also be looked at

as a linear map acting on a generalised vector and leading to the adjoint

representation: T : E → ad F̃ . T (V ) then acts on any generalised tensor as

the Dorfman derivative does.

Using {ÊA} and {ÊA} an Ed(d) × R+ frame and its dual and recalling

ÊA
(
ÊB
)

= δAB , one can get:

T (V ) = V C
[
Ω A
C B − Ω A

B C − ÊA
(
LÊC ÊB

)]
ÊA ⊗ad Ê

B (3.24)

Note that if we use a coordinate frame, the ”frame term” ÊA
(
LÊC ÊB

)
vanishes. We then recognise the usual definition of the torsion, that is the

antisymmetric part of the connections: T (V )AB = 2V C Ω A
[C B].

Finally, as in conventional geometry one could want to define a generalised

curvature in order to complete the picture. However, since the Dorfman

derivative is not antisymmetric, which also means that the exceptional

16The generalised torsion is an element of a section of E∗ ⊕K where K ∈ E∗ ⊗ ad F̃

has elements decomposing as T = T B
A C ÊA ⊗ ÊB ⊗ ÊC . For more details, see [4].
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Courant bracket does not satisfy the Jacobi identity, one cannot obtain

a generalised tensor by using the usual definition:

R (V, U) T ≡ [DV , DU ]T −DJV, UK T (3.25)

Although Ricci curvature tensor and scalar could be defined, they would

need some extra structure on E.

3.4.2 Metric

In order to continue our study on the connections, and especially to look

for compatible torsion-free ones, we need to build up a generalised metric.

This additional structure generalises the set of orthonormal frames related

by O(d) transformations in conventional geometry. Here, we would have

an Hd structure, where Hd is the maximally compact17 subgroup of Ed(d).

Thus, the generalised connections D preserving this Hd structure would be

considered as compatible, as we will see below.

Note that the double cover of Hd, denoted by H̃d, is physically more relevant.

Indeed, the fermionic sector of Supergravity − through spinor representa-

tions − would require such an extension. These groups are exposed in Table

3 with respect to the dimension d of our manifold.

d Ed(d) H̃d

7 E7(7) SU(8)

6 E6(6) Sp(8)

5 E5(5) ' Spin(5, 5) Spin(5)× Spin(5)

4 E4(5) ' SL(5, R) Spin(5)

Table 3: Double cover of the maximally compact subgroup of Ed(d)

This set of frames forms an H̃d principle sub-bundle of F̃ , the generalised

structure bundle for E, and we denote it by P ⊂ F̃ .

We would like to identify explicitely the frames which are in P . First, in any

17In the physically relevant case, one might prefer to consider non-compact versions of

Hd, that is modify the signature of the metric to get for instance an SO(6, 1) subgroup of

GL(7, R). One would get the same results as here and would be able to discuss consistent

dimensional reductions of eleven-dimensional Supergravity with a timelike dimension.
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Hd structure18, the Hd frame can be chosen to be a conformal split frame

with no loss of generality. Equivalently, any Hd frame can be transformed

into a conformal split frame via the definition of three- and six-form field

connections over a patching of M . Thus, one gets (3.15), and any other

frame by an Hd transformation defined as:

ÊA 7→ Ê′A = ÊB
(
H−1

)B
A

and V A 7→ V ′
A

= HA
B V

B (3.26)

with H ≡ ea+ā eα+ᾱ h (3.27)

with h ∈ O(d) and the same exponentiated actions as in Ed(d) × R+ trans-

formations, set up in (3.10).

The action of h ∈ O(d) ⊂ Hd on an Hd frame keeps it both orthonormal for

a conventional metric − since it simply transforms an orthonormal frame

{êa} for TM into another one − and in its conformal split form. There-

fore, the set of Hd conformal split frames forms an O(d) structure on E:

(P ∩ Psplit) ⊂ F̃ .

In an Hd frame, one can easily define a generalised G metric such as:

G(V, V ) ≡ |v|2 + |ω|2 + |σ|2 + |τ |2 (3.28)

= vµ v
µ + 1/2 ωµ1µ2 ω

µ1µ2 + . . .

= δνµ v
ν vµ + 1/2 δν1µ1 δν2µ2 ωµ1µ2 ων1ν2 + . . .

with V a generalised vector and δνµ the flat frame metric. But this defini-

tion has to be independent of the choice of frame and thus is valid in any

conformal split frame. The fields determining the coset element and thus the

frame, i.e. g the conventional metric, A and Ā the three- and six-form field

connections and ∆ the scaling factor, are entirely defining the generalised

metric G.

Finally, it is useful to define a ”detE∗” density scalar the same way we had
√
g, an SO(d)-invariant detT ∗M density. In conventional geometry, this

was possible because of the embedding SO(d) ⊂ SL(d, R) ⊂ GL(d, R) ;

it is also feasible in our Generalised Geometry since we have the parallel

18The choice of an Hd structure is equivalent to the choice of an element of the coset(
Ed(d) × R+

)
/Hd
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sequence Hd ⊂ Ed(d) ⊂ Ed(d)×R+. Thus, we define an Hd-invariant density

in terms of the conformal split frame:

volG ≡
√
g
(
e∆
)9−d

(3.29)

Note that this density is also Ed(d)-invariant and that one can define it as

the determinant of the generalised metric G to a suitable power.

3.4.3 Generalisation of the Levi-Civita connection

In conventional d = 4 geometry, the Levi-Civita connection is the unique

connection which is both torsion-free and metric compatible. Here, we want

to extend this notion and look for the constrained generalised connection,

with its possible multiplicity.

Let us first look at the compatibility of our generalised connection. To be

compatible with the Hd structure P ⊂ F̃ , it has to satisfy DG = 0, that

is to act only in the Hd principle sub-bundle. Defining ∇ the Levi-Civita

connection with respect to the usual metric g, one can lift it to an action on a

generalised vector V in an Hd conformal split frame, as in (3.22). Moreover,

the Levi-Civita connection ∇ is Hd compatible since it is O(d) compatible,

O(d) being a subset of Hd.

Note that even if we formally work out the compatible connections in a

restricted set of frames, the resulting form can easily be adapted to any other

frame via an Hd transformation − since the connection is Hd covariant.

Though, in this form, D∇ is not torsion-free even if∇ is by definition torsion-

free19. Indeed, we can calculate the (generalised) torsion of the generalised

connection D∇ in an Hd conformal split frame:

T (V ) = e∆
(
− ivd∆ + v ⊗ d∆− ivF + d∆ ∧ ω

− ivF̃ + ω ∧ F + d∆ ∧ σ
)

(3.30)

19Beware here of the notion of torsion: when we deal with the generalised connections

D∇, we do mean that the generalised torsion is vanishing, whereas we actually imply con-

ventionally torsion-free when we explicitely refer to the usual connections in conventional

geometry, such as the Levi-Civita connection ∇.
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where F and F̃ are the field strengths of the A and Ã form field potentials

set up in (3.14) and are defined by:{
F ≡ dA(j)

F̃ ≡ dÃ(j) − 1/2 A(j) ∧ F
(3.31)

In order to get a generalised Levi-Civita connection, i.e. a torsion-free com-

patible one, we need to modify the embedding of our (usual) Levi-Civita

connection (3.22), that is the definition of D∇. One can always write for an

Hd compatible generalised connection D the relationship:

DMV
A = D∇MV

A + Σ A
M B V

B (3.32)

where Σ is an element of a section of (E∗ ⊗ adP ), that is a generalised (0, 1)-

tensor (index downstairs M) taking its values in the adjoint of Hd (indices

upstairs and downstairs A and B).

By fixing in the appropriate way this Σ to make the torsion of D vanish, one

would define a torsion-free compatible connection. If we have a closer look at

the decomposition under Hd of the representations appearing in the torsion,

we note that they are all contained in the ones defined by Σ. This means

that solutions for this problem exist but not uniquely. Indeed, except for the

d = 3 case, some of the components of Σ are not contained reciprocally in the

torsion representations20, leaving some unconstrained degrees of freedom.

In order to write down the explicit solution for Σ, we contract it with a

generalised vector V to get Σ(V ) ∈ adP . We can then express it in the

basis for the adjoint of Hd:

Σ(V )µ1µ2 ≡ e∆
(

2
(

7−d
d−1

)
v[µ1∂µ2]∆ + 1/4! ων1ν2F

ν1ν2
µ1µ2

+ 1/7! σν1...ν5F̃
ν1...ν5

µ1µ2 + C(V )µ1µ2

) (3.33a)

Σ(V )µ1µ2µ3 ≡ e∆
(

6
(d−1)(d−2) (d∆ ∧ ω)µ1µ2µ3

+ 1/4 vνFνµ1µ2µ3 + C(V )µ1µ2µ3

) (3.33b)

Σ(V )µ1...µ6 ≡ e∆
(

1/7 vνF̃νµ1...µ6 + C(V )µ1...µ6

)
(3.33c)

20The torsion is actually an element of the section of K ⊕ E∗, where K ⊂ E∗ ⊗ ad F̃

has not been explicitely defined here (again, see [4] for more details). In general, we have

E∗ ⊗ adP ' (K ⊕ E∗)⊕ U , where sections of U contain the unconstrained part of Σ. In

d = 3, we simply have E∗ ⊗ adP ' K ⊕ E∗.
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where C is the unconstrained part of the connection21.

Finally, we define the Clifford algebra Cliff(d, R) and its gamma matrices

γµ satisfying {γµ, γν} = gµν . As well, we denote by γµ1...µn ≡ γ[µ1 . . . γµn]

the antisymmetric product of n of them. Using this and the embedding of

the double cover H̃d in this algebra, we can finally write the connection:

Dµ = e∆
(
∇µ + 1

2

(
7−d
d−1

)
(∂ν∆) γ ν

µ − 1
2·4!Fµν1ν2ν3γ

ν1ν2ν3

− 1
2·7! F̃µν1...ν6γ

ν1...ν6 + /Cµ

) (3.34a)

Dµ1µ2 = e∆
(

2!
4·4!F

µ1µ2
ν1ν2γ

ν1ν2 + 3
(d−1)(d−2) (∂ρ∆) γµ1µ2ρ

+ /C
µ1µ2

) (3.34b)

Dµ1...µ5 = e∆
(

5!
4·7! F̃

µ1...µ5
ν1ν2γ

ν1ν2 + /C
µ1...µ5

)
(3.34c)

Dµ,ν1...ν7 = e∆
(
/C
µ,ν1...ν7) (3.34d)

where /C is the embedding of the unconstrained part of the connection in

Cliff(d, R), that is:

/Cα = 1
2

(
1
2! Cα,µ1µ2γ

µ1µ2 − 1
3! Cα,µ1µ2µ3γ

µ1µ2µ3 − 1
6! Cα,µ1...µ6γ

µ1...µ6
)

/C
α1...αn = 1

2

(
1
2! C

α1...αn
µ1µ2γ

µ1µ2 − 1
3! C

α1...αn
µ1µ2µ3γ

µ1µ2µ3 − 1
6! C

α1...αn
µ1...µ6γ

µ1...µ6
)

for n ∈ {2, 5, 7}.
As wanted, this defines the generalised Levi-Civita connections, i.e. Hd

compatible torsion-free generalised connections, here expressed in a basis

for the adjoint of Hd and embedded in Cliff(d, R).

21This element of a section of E∗ ⊗ adP actually leaves on a section of U . Indeed, if

we define the projection map on the torsion representation K ⊕ E∗, C is in its kernel.
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4 Conclusion

Through the extension of diffeomorphisms to include gauge transformations,

Generalised Geometry gives us a powerful tool to express dimensional re-

ductions of M theory in a simpler way.

As has been shown, the bosonic sector of eleven-dimensional Supergravity,

reduced to d ≤ 7 dimensions, can be rewritten in a larger structure which

includes all the symmetries. The generalised tangent space can be endowed

with a coherent linear structure. By adding U -duality symmetries, the un-

derlying group defines transformations which combine local diffeomorphisms

with three- and six-form field gauge transformations.

Moreover, the whole differential structure, which consists mainly in a Dorf-

man derivative and connections, is covariantly defined. The generalised

metric contains the several bosonic fields of our theory. Together with a

subset chain Hd ⊂ Ed(d) ⊂ Ed(d) × R+, it allows us to generalise the notion

of torsion-free compatible connections − even if we lose the unicity.

Finally, it is noticeable that the generalised tangent space is actually in-

cluded in a much broader structure. Higher rank generalised tensors are

sections of larger Ed(d) ×R+ bundles. More importantly, we defined several

kinds of frames that build up a principle bundle and sub-bundles structure

in a coherent and physically meaningful way.

Moreover, it is remarkable to see how all of this work is perfectly suited

to the fermionic sector. Indeed, this development has been done in a spin-

manifold and with the double cover of Hd, in order to include spinor rep-

resentations. In addition, the generalised Levi-Civita connections defined

here are expressed in an embedding of Hd the maximally compact subgroup

of Ed(d) into the corresponding Clifford algebra Cliff(d, R). This defines

{γµ} the gamma matrices necessary for the extension of this structure to

the fermionic sector.

This work could be extended further. Indeed, one could first define tools

to express the curvature via a generalised Ricci tensor and the associated

scalar. This would allow us to write a Supergravity action in comparison

with the Einstein Hilbert action of General Relativity. One would therefore
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be able to derive equations of motion in such a framework. So far, this work

has mainly been carried out by A. Coimbra, C. Strickland-Constable and

D. Waldram in [4].

However, several important questions remain, amongst which the question

of how extra-dimensions are truncated or wrapped is obviously worth exam-

ining. Indeed, it may have several consequences on the lower dimensional

cases and thus on the physical interpretation of the action and equations

of motion. Besides, the timelike dimension has to be considered carefully,

even though this work can easily be modified to non-compact structures −
for instance using the non-compact subgroup SU∗(8) instead of its compact

version SU(8) in the E7(7) case.

Finally, one of the most important issues remaining is the extension of these

tools to d > 7 dimensional reductions of Supergravity and M theory. Indeed,

as mentioned briefly in this work, the case d = 7 already shows the tip of

a broader problem through the symmetric part of the Dorfman derivative

that we cannot express in an Ed(d) covariant way. This is linked to the fact

that the exceptional Courant bracket does not satisfy the Jacobi identity.

In larger dimensions, the Dorfman derivative itself cannot be written covari-

antly.

Solutions could emerge from the constraints one can identify in such higher

dimensional extensions or even in String Theories, and apply to our mani-

fold. These links would probably enlighten the way our lower dimensional

cases are embedded into the eleven-dimensional structure. Another track

may also lie in the study of various other formulations, whether or not they

are built on geometrical considerations.
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A The isomorphism ∧pT ∗M ' (detTM)⊗ ∧d−pT ∗M

In order to describe our mathematical objects in a clearer way, and especially

to make the R+ factor more intuitive, one has to look at the isomorphism

∧pT ∗M ' (detTM)⊗ ∧d−pT ∗M .

Before any further analysis, this isomorphism can simply be interpreted by

using the Hodge dual in the case of a manifold M allowing a metric g.

Indeed, for a p-form ω = 1
p! ωm1...mpdx

m1 ∧ . . . ∧ dxmp , one has:

?ω =

√
| g |

p!(d− p)!
ωm1...mp ε

m1...mp
mp+1...md dxmp+1 ∧ . . . ∧ dxmd (A.1)

One can also use the metric to transform a (d−p)-form into an antisymmetric

(d− p, 0)-tensor (i.e. raising the indices) and get the metric dual:

(?ω)∗ =

√
| g |

p!(d− p)!
ωm1...mp ε

m1...mpmp+1...md
∂

∂xmp+1
∧ . . . ∧ ∂

∂xmd
(A.2)

This gives the isomorphism we are looking for.

Still, one can set it up without any metric and get the following relationship

between x ∈ (detTM)⊗ ∧d−pT ∗M and ω ∈ ∧pT ∗M :{
xmp+1...md = 1

p! ε
m1...mpmp+1...md ωm1...mp

ωm1...mp = 1
(d−p)! εm1...mpmp+1...md x

mp+1...md
(A.3)

This representation allows us to define all the usual operations on p-forms.

Indeed, one has the interior product, with v ∈ TM :

iv : ∧p T ∗M −→ (detTM)⊗ ∧d−p+1T ∗M (A.4)

1

p!
ωm1...mp 7→ (ivx)np...nd =

(−1)d−1

d− p
x[np+1...ndvnp]

the exterior derivative:

d : ∧p T ∗M −→ (detTM)⊗ ∧d−p−1T ∗M (A.5)

1

p!
ωm1...mp 7→ (dx)np+2...nd = (−1)d−p+1 ∂np+1x

[np+1np+2...nd]

the exterior derivative of the interior product:

div : ∧p T ∗M −→ (detTM)⊗ ∧d−pT ∗M (A.6)

1

p!
ωm1...mp 7→ (divx)np+1...nd = (d− p+ 1) ∂np(v

[npxnp+1...nd])
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and finally the Lie derivative (with respect to v):

Lv : ∧p T ∗M −→ (detTM)⊗ ∧d−pT ∗M (A.7)

1

p!
ωm1...mp 7→ (Lvx)np+1...nd = vnp∂np(x

np+1...nd)

+ (d− p+ 1) (∂npv
[np)xnp+1...nd]

B Eleven-dimensional Supergravity

In order to embed this work into a more physical point of view, let us have a

look first at eleven-dimensional Supergravity and then at its lower dimension

restrictions.

Eleven-diemensional Supergravity contains three fields: the metric Gµν , a

symmetric (0, 2)-tensor ; the three-form potential Aµνρ ; the gravitino ψ e
µ ,

a one-form carrying a spinor index e. Thus, we can define the Ricci tensor

Rµν and the Ricci scalar R, as well as the field strength four-form H ≡ dA.

The bosonic action is:

SB =
1

2κ2

∫
(volgR− 1/2 H ∧ ∗H − 1/6 A ∧H ∧H) (B.1)

which gives the following equations of motion:

Rµν − 1/12
(
Hµρ1ρ2ρ3H ρ1ρ2ρ3

ν − 1/12 gµν H2
)

= 0 (B.2a)

d ∗ H+ 1/2 H ∧H = 0 (B.2b)

In order to deal with the fermionic sector, we define Γµ the gamma matrices

of the relevant Clifford algebra Cliff(10, 1, R). Therefore, under a super-

symmetry transformation parametrised by ε, the variation of the gravitino

is:

δψµ = ∇µε+ 1/288
(
Γ ν1...ν4
µ − 8 δ ν1

µ Γν2ν3ν4
)
Hν1...ν4 ε (B.3)

DefiningM a d-dimensional spin manifold, d ≤ 7, and R10−d, 1 the Minkowski

space-time in (11−d) dimensions, we now look at restrictions of our eleven-

dimensional theory in R10−d, 1 ×M . For that purpose, we choose all the

fields to be independant of the flat R10−d, 1 space-time and thus restrict the

theory to leave on M . The indices are split between a, b = 0, 1 . . . (10 − d)
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on the flat space-time, and m,n = 1 . . . d on M .

To build up an action for this restricted theory, the fields need to be defined

carefully. The internal components of the metric G and the potential A give

the restricted metric g and potential A. The corresponding field strength is

defined as usual as F = dA. The warp factor ∆ remains the same.

Finally, a dual six-form potential Ã can be introduced on M if d = 7.

Indeed, in that case a seven-form field strength F̃ can be defined as the

eleven-dimensional Hodge dual of the four-form field strength F . Thus, one

can define F̃ = dÃ− 1/2 A ∧ F .

These field strengths satisfy the Bianchi identities:

dF = 0 (B.4a)

dF̃ + 1/2 F ∧ F = 0 (B.4b)

and are related to the eleven-dimensional field strength F via:

Fm1...m4 = Fm1...m4 (B.5a)

F̃m1...m7 = (∗F)m1...m7
(B.5b)

Defining again Rmn and R the Ricci tensor and scalar restricted on M , one

can write down the bosonic action for this restricted theory:

SMB =
1

2κ2

∫
√
g e(11−d)∆

(
R+ (11− d)(10− d) (∂∆)2 − 1

2·4! F
2 − 1

2·7! F̃
2
)

(B.6)

Since this action has the same form as the action SB for the eleven-dimensional

theory, it leads to the same kind of equations of motion for the fields:

Rmn − (11− d)
[
∇m∇n∆ +

(
∂m∆

)(
∂n∆

)]
− 1

2·4!

(
4Fmp1p2p3 F

p1p2p3
n − 1

3 gmnF
2
)

− 1
2·7!

(
7 F̃mp1...p6 F̃

p1...p6
n − 2

3 gmnF̃
2
)

= 0 (B.7a)

R− (10− d)
[
2∇2∆− (11− d)

(
∂∆
)2]

− 1
2·4! F

2 − 1
2·7! F̃

2 = 0 (B.7b)

d ∗
(
e(11−d)∆F

)
− e(11−d)∆

(
∗ F̃
)
∧ F = 0 (B.7c)

d ∗
(
e(11−d)∆F̃

)
= 0 (B.7d)
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One also has the same kind of supersymmetry variations for the gravitino:

δψm = ∇mε+ 1
288

(
γ n1...n4
m − 8 δ n1

m γn2n3n4
)
Fn1...n4ε

− 1
12·6! F̃mn1...n6γ

n1...n6ε (B.8a)

δρ = γm∇mε− 1
4·4!γ

m1...m4Fm1...m4ε

− 1
4·7! F̃m1...m7γ

m1...m7ε+ 9−d
2

(
γm∂m∆

)
ε (B.8b)

where ρ has to do with the trace of ψm, ε is the parameter of the supersym-

metry transformation and {γm} are the gamma matrices defining Cliff(d, R).

41



References

[1] S. O. Tavares, Generalized geometry applied to 4d-supergravity, MSc dis-

sertation, Imperial College (2010)

[2] R. Subramaniam, Supergravity and Generalised Geometry, MSci disser-

tation, Imperial College (2012)

[3] A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity and

Generalised Geometry I: Type II Theories [arXiv:1107.1733] (2011)

[4] A. Coimbra, C. Strickland-Constable and D. Waldram, Ed(d)×R+ Gen-

eralised Geometry, Connections and M theory [arXiv:1112.3989] (2011)

[5] M. Gualtieri, Generalized Complex Geometry, DPhil thesis, Oxford

[arXiv:math.DG/0401221] (2003)

[6] B. A. Ovrut and D. Waldram, Membranes and Three-form Supergravity

[arXiv:9704045] (1997)

[7] B. de Wit, Supergravity [arXiv:hep-th/0212245] (2002)

[8] B. Zwiebach, A First Course in String Theory, Cambridge University

Press (2nd edition, 2009)

[9] M. Nakahara, Geometry Topology and Physics, Institute of Physics Pub-

lishing (2nd edition, 2003)

42


