
An Introduction to F-Theory
GUT Phenomenology

Theoretical Physics Group,
Department of Physics.

Robert Hogan

Submitted in partial fulfilment of the requirements for the degree of
Master of Science of Imperial College London

21 September 2012

i



Abstract

This review provides a pedagogical introduction to the framework of F-theory. We

begin by discussing the origins of F-theory in Type IIB string theory and outline

the details of elliptic fibrations as used in F-theory compactifications. We examine

many aspects of F-theory GUT phenomenology in the context of a local SU(5)

model. Mechanisms for GUT breaking, SUSY breaking, and their implications

in F-theory are discussed. Finally we present recent work on flavour physics in

F-theory models.
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Chapter 1

Introduction

Ever since Maxwell demonstrated in the late 1800s that electricity and magnetism

were different manifestations of the same underlying structure unification has be-

come a prize that theoretical physics continually strives for. The unification of two

previously distinct theories represents a considerable step forward in understand-

ing and efforts will continue as long as our best theories admit a factorisation.

Modern particle physics is based on the framework of quantum field theory and

relies on the principle of gauge invariance. In the modern formalism electromag-

netism is described by quantum electrodynamics (QED) which is a U(1) gauge

theory with electrons charged under the U(1). QED is a remarkably successful

theory but does not account for nuclear physics.

1.1 Standard Model

In order to include the weak and the strong nuclear forces the picture had to be ex-

tended and would eventually lead to the Standard Model. The weak nuclear force,

responsible for β-decay and related process, was well modelled at low energies by

the Fermi theory. It was known however that this could not be the final picture

1
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because it was non-renormalizable and so did not a have a consistent picture at

high energies. Through the work of Weinberg, Salam, Glashow, and others in

the 1970s it was discovered that if the weak force was combined with electromag-

netism a renormalizable theory could be formulated. The resulting gauge theory

was base on the SU(2) × U(1) gauge group. The strong interaction is also well

described by quantum chromodynamics (QCD), a gauge theory based on SU(3)

colour symmetry with quarks transforming in the fundamental representation. So

we have a gauge theory based on the gauge group

GSM = SU(3)× SU(2)× U(1), (1.1)

which today is known as the Standard Model of particle physics.

In order to make contact with the low energy physics of everyday life some

of the symmetry must be broken. If it remained unbroken then there would

be extra long range forces from the massless gauge bosons of the SU(2) factor

that were inconsistent with experiment. The framework of spontaneous symmetry

breaking, already known to condensed matter physicists, was applied to break the

electroweak theory to electromagnetism

SU(2)× U(1)→ U(1)em, (1.2)

where U(1)em is the QED gauge group and comes from the diagonal component

of SU(2)×U(1) and the original U(1) factor is known as weak hypercharge. This

symmetry breaking endows the additional gauge bosons with a mass via the Higgs

mechanism. The mass lifts these W and Z bosons from low energy spectrum. The

Higgs mechanism breaks the symmetry by giving a vacuum expectation value (vev)

to the scalar Higgs field that becomes massive. The Higgs boson then became the

most sought after prediction of spontaneous electroweak symmetry breaking and,

after much effort, the international particle physics collaboration at the LHC ex-
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periment at CERN on July 4th 2012 announced the discovery of a boson consistent

with the Standard Model Higgs.

This all sounds marvellous (and it is) but the job of the theoretical physicist

is still not complete. There remains some problems with the Standard Model as

a final theory. Most obvious is the absence of gravity. While gravity is too weak

to play a significant role in particle physics experiments its absence is still unsat-

isfactory.

Another famous shortcoming is what is known as the hierarchy problem. In

the modern approach to renormalization due to Wilson, we consider a quantum

field theory as an effective theory valid only up to a certain energy scale. For

the Standard Model this scale is the electroweak scale set by the Higgs mass. It

is naively expected that the Higgs mass would receive large quantum corrections

and push this scale up the Planck scale. The question of why there is such a

large difference between the electroweak scale and the Planck scale is the hierar-

chy problem of particle physics.

There are other issues that are aesthetically displeasing. As we have men-

tioned, if a theory admits a factorization as (1.1) does, then there is always a

urge to unify further into a simple group. The representations of (1.1) that chiral

matter fits into are even less appealing:

(1, 2)− 1
2

⊕ (1, 1)−1 ⊕ (3, 2) 1
6

⊕ (3̄, 1) 2
3

⊕ (3̄, 1)− 1
3

L =
(
νL
e−L

)
e−R Q =

(
uaL
daL

)
uaR daR

left-handed

leptons

right-handed

electron

left-handed

quarks

right-handed

up quark

right-handed

down quark

With the Higgs field transforming as (1, 2) 1
2
. The notation (R,R′)q denotes a

SM representation with hypercharge, q, and SU(3) and SU(2) representations R

and R′ respectively. The index a = 1, 2, 3 are colour indices. These representations

are far from elegant and they also come in three sets called generations. Much
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effort has been put into distilling the Standard Model into a more elegant and

unified form.

1.2 MSSM and GUTs

One of the most promising solutions to the hierarchy problem is supersymmetry.

Supersymmetry is a non-trivial extension of the Poincaré symmetry of spacetime

that allows for fermionic directions parameterized by Grassman numbers in addi-

tion to the usual bosonic directions. This avoids the Coleman-Mandula theorem

by extending the Poincaré algebra to a Lie superalgebra (a Z2 graded Lie algebra).

The minimal N = 1 form of this symmetry predicts that each boson (fermion)

of the Standard Model will have a fermionic (bosonic) superpartner differing only

through their spin quantum number. Because fermionic and bosonic loops in

Feynman diagrams contribute with an opposite sign fermionic loops can cancel

bosonic loops. The loop corrections to the Higgs mass are therefore suppressed,

solving the hierarchy problem. The resulting theory is known as the Minimally

Supersymmetric Standard Model (MSSM). It contains an N = 1 chiral superfield

for each chiral matter field of the Standard Model and two Higgs fields known as

Higgs up, Hu, and Higgs down, Hd. In addition there are vector superfields for

the gauge bosons. The Higgs mechanism generates masses for the chiral fermions

through the Yukawa couplings in the MSSM superpotential

WMSSM ⊃ λuijHuQ
iujR + λdijHdQ

idjR + λlijHdL
iejR. (1.3)

The MSSM also hints at a more unified gauge group at higher energies. If

the gauge couplings of MSSM are allowed run to higher energies with renormal-

ization group flow they unify at ∼ 1016 GeV (Figure 1.1). This suggests that

the electroweak and strong forces, which we view as distinct at energies near the
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electroweak scale, are actually same force at high energy/small distances. As

we decrease the energy/increase the length scale this unified force fragments and

appears to us as two separate phenomena.

It was known in the 1970s that the Standard Model could be embedded into

a larger simple group. The unified force is then mediated by the gauge fields of

this simple group. The simplest of these is based on SU(5) and is known as the

Georgi-Glashow model

SU(3)× SU(2)× U(1) ⊂ SU(5). (1.4)

Already an attractive picture it becomes even more appealing when the chiral mat-

ter are packaged into SU(5) representations. The complicated form of Standard

Model representations reduces to:

5̄m ⊕ 10m

(daR, L) (Q, uaR, e
a
R)

with the Higgs up and Higgs down transforming in the 5H ⊕ 5̄H as (Hu, Tu) ⊕

(Hd, Td). This introduces Higgs triplets, Ti, that must be remove from the low

energy spectrum. The Yukawa couplings of (1.3) are then summarised in the

interactions

5H × 5m × 10m and 5H × 10m × 10m. (1.5)

This elegant picture is spoiled however by the inability to match with ex-

perimental constraints for proton decay. There are potentially several operators

that can mediate proton decay in these models and we will discuss them in the

context of F-theory GUTs later. Experimental bounds currently set the proton

lifetime at > 2.1×1029 years [1] which has historically been a challenging obstacle

for four dimensional GUT model building. We must also consider the problems

of GUT breaking, SUSY breaking, doublet-triplet splitting, and flavour physics
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Figure 1.1: The unification of running coupling constants of MSSM at 1016 GeV
hints at a Grand Unified Theory at this energy.

which constrain models further. We will discuss each of these in turn in the context

of F-theory during this review.

There also exists non-minimal GUT models based on SO(10), E6, and other

groups. In fact it is argued in [2] that physical grand unified theories should be

based on exceptional groups. We can already see a pattern of embeddings from

the groups we have mentioned:

E3 × U(1) ⊂ E4 ⊂ E5 ⊂ E6 ⊂ ...

SU(3)× SU(2)× U(1) ⊂ SU(5) ⊂ SO(10) ⊂ E6 ⊂ ...

(1.6)

This sequence is illustrated by sequentially removing nodes for the E8 Dynkin

diagram (Figure 1.2).

1.3 String model building

If we want to include the effects of gravity then the current best hope is string/M-

theory, the only known self-consistent theory of quantum gravity. The gravita-
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Figure 1.2: The Standard Model and GUT groups obtained as embeddings in E8.
Each diagram is obtained from that above it by removing the right-most node.
Taken from [2].

tional field is then produced as a mode of a closed loop of string. There are 5

different string theories in 10 dimensions as well as M-theory in 11 dimensions.

These theories are all manifestations of the same underlying theory and are in-

terconnected via a web of dualities. Type IIA and Type IIB string theories have

N = 2 supersymmetry whereas Type I, Heterotic SO(32), Heterotic E8 × E8

strings, and M-theory have N = 1 supersymmetry. The extra dimensions, re-

quired for Lorentz invariance of the quantum theory, must be compactified leaving

the four usual spacetime dimensions in order to make phenomenologically realistic

theories. There are many different possibilities for compactification which leads to

hugely varying four dimensional vacua. The plethora of 4D vacua that arise from

string theory has become known as the landscape. While this richness provides

model builders with a lot of freedom so they can, for example, ensure proton decay

is highly suppressed, it also calls into question whether the theory can be truly

predictive. In order to focus in on the most promising string theory backgrounds

various phenomenological constraints are imposed. Historically, the most success-
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ful approaches have been compactifications of the Heterotic E8 × E8 string and

Type IIB orientifold backgrounds with D-branes.

Type IIB orientifold model building considers a compactification of the Type

IIB string theory on a Calabi-Yau threefold, X, that is quotient by an orientifold

action Ω(−1)FLσ. Here Ω is the world sheet parity operator that reverses the

orientation of strings, σ is a space-time reflection of X, and the (−1)FL factor is

required to preserve supersymmetry. The fixed points of the orientifold action,

O3/O7-planes, carry negative tension and negative RR-charge. Consistency of

the quantum theory (tadpole cancellation) requires the net RR charge to be zero

so positively charged D3/D7-branes must be added by hand. We will see later

that adding 7-branes by hand can significantly affect the geometry but this effect

is usually ignored in this setup. The degrees of freedom of strings stretched be-

tween the branes and O-planes can yield the classical groups SU(N), SO(2N), and

Sp(N) (see appendix A for a discussion of gauge theories on branes in perturbative

Type II strings) that can accommodate the Standard Model. In the perturbative

setup however exceptional groups are impossible so GUT model building is more

challenging. A nice feature of this setup is that the gauge degrees of freedom gov-

erning particle physics are in the open string sector localised on the brane while

the gravitational degrees of freedom are in closed string sector and therefore prop-

agate in the entire compactification space. The volume of the compact manifold

can therefore be tuned to alter the separation between particle physics and the

Planck scale.

The Het E8 × E8 setup is attractive because of the presence of exceptional

groups. These groups appear as a result of requiring anomaly cancellation that

constrains the rank of the gauge group. The physical origin of the gauge group

is less clear that in the Type IIB case. The major drawback of this setup is that

both the gravity and the gauge degrees of freedom lie in the open string sector so

there is no natural way to separate the GUT scale from the Planck scale as in the
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local model picture in Type IIB orientifolds.

F-theory, a non-perturbative extension of the Type IIB picture, can accommo-

date both of the attractive features of these two approaches simultaneously. That

is, we can have local models that separate particle physics from gravity while non-

pertubative effects also allow us to have exceptional groups at our disposal. In

addition to this, the F-theory framework also automatically takes care of tadpole

cancellation and 7-branes are not plugged in by hand so the geometry does not

get distorted. We also find that striving for a satisfactory phenomenology from

F-theory compactifications can be very constraining. As a result, the F-theory

corner of the landscape of vacua can become predictive.

1.4 Organization of this review

The objective of this review is to introduce F-theory as a framework for string

model building and provide some applications to particular GUT models. In

chapter 2 we will motivate the need for F-theory and introduce its basic building

blocks. In chapter 3 we will discuss the various ingredients of an F-theory model

based on an SU(5) GUT. In chapters 4 we will discuss mechanisms for GUT

breaking and SUSY breaking in F-theory models. Finally in chapter 5 we will

discuss F-theory’s approach to flavour and neutrino physics.



Chapter 2

Basics of F-Theory

In this chapter we will introduce the origins and basic ingredients of F-Theory.

Through examining the SL(2,Z) symmetry of the Type IIB supergravity and 7-

brane monodromies we will motivate F-theory as a 12-dimensional non-perturbative

string theory with [p, q] 7-branes. We will briefly introduce F-theory as a dual de-

scription of the strongly coupled Type IIB, M-theory, and the Heterotic string.

Finally, we will discuss how chiral matter and Yukawa interactions arise naturally

as complex codimension 2 and 3 loci of brane intersection respectively.

2.1 Type IIB string and SL(2,Z)

The low energy limit of the closed string sector of the Type IIB superstring theory,

Type IIB supergravity, has the following field content:

Bosonic: graviton, gµν dilaton, φ self-dual 4-form, C+
4

NSNS 2-form, B2 RR 2-from, C2 axion, C0

Fermionic: 2 × gravitini, ψµα̇ 2 × dilatini, ψα

10
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This descirbes a chiral theory with N = (2, 0) supersymmetry. The bosonic field

content can be repackaged in a convenient way by defining fluxes [3]

H3 = dB2, τ = C0 + ie−φ, G3 = F3 − τdB2,

F̃5 = F5 −
1

2
C2 ∧ dB2 +

1

2
B2 ∧ F3, Fp = dCp−1.

(2.1)

Here τ is known as the axio-dilaton and will be referred to throughout. The axio-

dilaton encodes the IIB string coupling through gs = e−φ. With these definitions

we may write the bosonic action of Type IIB in the Einstein frame as

SIIB =
2π

`8
s

(∫
d10x
√
−gR− 1

2

∂τ ∂̄τ

(Imτ)2
+

1

Imτ
Gs ∧ ∗G3

+
1

2
F̃5 ∧ ∗F̃5 + C4 ∧H3 ∧ F3

)
.

(2.2)

In order for variation of this action to yield the correct equations of motion we

require the additional restriction that F̃5 be self-dual i.e. F̃5 = ∗F̃5. The action

was written in this way in order to make manifest the SL(2,Z) symmetry where

the axio-dilaton, τ , transforms in fundamental representation, the NSNS and RR

2-forms transform as a doublet, and the self-dual 4-form is invariant,

τ → aτ + b

cτ + d
,

 C2

B2

→
 aC2 bB2

cC2 dB2

 , C4 → C4, ad− bc = 1. (2.3)

Choosing a = b = d = 1 and c = 0 corresponds to the shift τ → τ + 1, which

is just the usual gauge invariance of the axion field. We can however also have

a = d = 0 and b = −c = 1 which induces the strong/weak coupling duality

τ → −1/τ of Type IIB. Since the NSNS and RR 2-forms transform as a doublet

this transformation will exchange them which maps the F1-string to the D1-string.

The two transformations shown here are the same as the symmetries of the

complex structure of a 2-torus, T 2. If we take z ∈ C and consider a parallelogram in

the complex z plane with vertices z = 0, 1, τ, τ+1, then z is a complex coordinate of

a T 2 if we identify opposite sides of the parallelogram. SL(2,Z) transformations
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of this parallelogram then builds up a lattice of which the parallelogram is the

fundamental domain. In this way the T 2 is self-homeomorphic under SL(2,Z)

transformations. In this setup τ is the complex structure modulus of the torus.

If more general SL(2,Z) transformations are considered we can form a
(
p
q

)
-

string of which the F1 and the D1 are the special cases
(

1
0

)
and

(
0
1

)
respectively

[4]. A
(
p
q

)
-string can then be thought of as a bound state of p F1 strings and q

D1 strings which is BPS for p and q coprime (otherwise we have a multiple string

solution). We will see later that it is the existence of these non-pertubative objects

that give rise to the phenomenologically interesting exceptional gauge groups in

F-theory.

2.2 7-brane backreaction and monodromies

When considering string theory backgrounds with D-branes the standard approach

in the perturbative regime is to use the probe approximation. Since D-branes have

non-zero tension and RR charge, they backreact on the geometry and the form

fields in the ambient space. The probe approximation takes this backreaction to

be negligible sufficiently far from the brane. This is common practice is physics

and seems reasonable. It can be argued for by considering the Poisson equation

for a source that is point-like in n = 9− p spatial dimensions i.e a p-brane,

∆Φ(r) ∼ δ(r) ⇒ Φ(r) ∼ 1

rn−2
, n > 2. (2.4)

We therefore see that for sources of codimension n > 2, the backreaction asymp-

totes to zero as is familiar, for example, from the physics of point particles in 4

dimensions. Conversely, in the case of codimension 2 objects, like the 7-branes of

our 10 dimensional string theory, this argument is not necessarily valid.

If we examine the 10 dimensional Gauss Law for the 7-brane as the electric
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source of the 8-form potential we find [3],

d ∗ F9 = δ(z − z0). (2.5)

Here we have introduced the complex coordinate z = x8 + ix9 labelling the two

real dimensions in which the brane is point-like, and we have considered a brane

located at the point z = z0. Integrating and using Stokes’ theorem we may write

1 =

∫
C
d ∗ F9 =

∮
S1

∗F9 =

∮
S1

F1 =

∮
S1

dC0, (2.6)

where S1 encircles the point z0. This shows that as we encircle the 7-brane the

axion field shifts C0 → C0 + 1⇒ τ → τ + 1. This is known as a monodromy. The

monodromy discussed here is due to encircling a regular D7-brane. We also have to

consider the monodromy of encircling [p, q]-branes (defined as the objects on which(
p
q

)
-strings can end). These branes will introduce an SL(2,Z) monodromy that also

mixes and shifts the B2 and C2 fields. This may be troubling because it appears

our fields are multivalued. We are saved however by the SL(2,Z) invariance of

the theory which we can use to undo the effect of the monodromy. In fact, every

[p, q]-brane can locally be transformed to a D7-brane using this SL(2,Z) symmetry.

This may not be done globally however so a generic background necessarily includes

[p, q]-branes that cannot simultaneously be brought into D7 form.

To determine the asymptotic effect of the 7-brane on the axio-dilaton we may

solve (2.6) near the 7-brane to give [5]

τ(z) =
1

2πi
ln

(
z − z0

λ

)
+ ... (2.7)

Where the ... represents higher order terms neglected near the brane, and λ is

modulus encoding the overall scale of τ . We note that at the position of the

brane τ → i∞ (this will be important later when we interpret singularities of τ

as the position of a 7-brane). The presence of the logarithm indicates a severe
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backreaction. It is shown in [5] that this leads to an asymptotically flat space with

a deficit angle. This long range effect clearly cannot be neglected in general. The

same affect is seen for other codimension 2 objects known as cosmic strings.

Examining (2.7) we can identify the point z − z0 = λ as the source of the

monodromy. At this point we have e−φ = gs → ∞. This does suggest the

possibility however of entering a weak coupling limit where we choose λ to be

large and focus on the region near the brane where |z−z0| � |λ|. In this limit the

backreaction is locally negligible. If we want to study a background with generic

values of the axio-dilaton that varies over space time we must take this strong

coupling point into consideration1. It is by accounting for the contributions of

these special points that F-theory can be viewed and limit of Type IIB that is

inherently strongly coupled.

2.3 F-Theory and elliptic fibrations

In this section we discuss the implication of realising the SL(2,Z) symmetry as

a consequence of the geometry of spacetime. This will lead us to the framework

of F-theory and elliptic fibrations. Understanding these elliptic fibrations is key

in constructing phenomenological models so we will spend some time discussing

them.

2.3.1 A geometric origin to the SL(2,Z) symmetry

In section 2.1 we compared the axio-dilaton with the complex structure of a torus,

and the SL(2,Z) symmetry of Type IIB supergravity with the modular invariance

of this torus. It is tempting to take this correspondence seriously and look for a

1It is worth noting here that there does exist a construction [6] where it can be arranged that
charges of the seven branes are cancelled locally by orientifold 7-planes. This setup yields a gs
that is constant over space time and can be fixed to the weak coupling regime, gs � 1. We forgo
discussion of this here in favour of more generic situations.
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physical origin for the torus. This was first understood through a duality of Type

IIB with M-theory in nine dimensions [4]. In this picture Type IIB is compactified

on an S1 and compared with M-theory on T 2. The SL(2,Z) is then interpreted as

the symmetry of this T 2.

In [7] Vafa proposed that there should be a geometric interpretation in 10

dimensions without the need to resort to the M-theory duality in 9 dimensions.

With this in mind he introduced a 12 dimensional theory with the extra 2 di-

mensions contained in an auxiliary torus. The 2-forms of Type IIB could then be

thought of as originating from a 3-form in 12 dimensions that is reduced on the

two distinct non-trivial one-cycles of the torus. The varying of the axio-dilation

is then captured by the varying of the shape of these extra dimensions. We can

therefore describe the spacetime as an elliptic curve (torus) fibred over the 10 di-

mensional spacetime of Type IIB: T 2 →M10. The corresponding 12 dimensional

supergravity has has a (10,2) signature and so is quite mysterious. The Type IIB

10 dimensional supergravity is obtained via a null reduction of the 12 dimensional

theory. The absence of a fully Lorentz invariant supergravity with signature (11,1)

in 12 dimensions might be an indication that the spacetime is not 12 dimensional

in the usual sense. Another hint at this point is the lack of a 3-form and a 1-form

in Type IIB that would arise from reduction of the 3-form on a point and on the

full T 2 respectively. We will see that indeed the additional two dimensions are on

a slightly different footing to the usual 10 dimensional spacetime.

2.3.2 Dualities and compactification

We have motivated the need for F-theory by considering a generically varying axio-

dilaton in Type IIB. F-theory is therefore often discussed in this language and can

be thought of as non-pertubative formulation of the Type IIB string. We have,

however, also mentioned a connection to M-theory. To make this more precise

we consider compactifying 11-dimensional supergravity (the low energy limit of
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M-theory) on aM9×T 2 =M9×S1
A×S1

B. We use the familiar S-duality relations

to recover weakly coupled Type II A onM9×S1
B by taking the limit of vanishing

radius of S1
A : RA → 0. We then T-dualise along the remaining S1

B to obtain Type

IIB onM9× S̃1
B. Here the radii of the circles obey RB ∼ 1

R̃B
. Finally, we take the

limit RB → 0 to decompactify the S̃1
B and yield Type IIB onM10. We can repeat

this procedure fibre-wise to yield F-theory on T 2 → M10. The axio-dilaton is

given by the complex structure of this torus (roughly τ ∼ iRA

RB
). We note that the

Kähler modulus, A, that measures the area of the T 2 has no meaning in F-theory

because we are taking the limit of A→ 0. This confirms our earlier suspicion that

the extra two dimensions that arise in F-theory are not quite comparable to the

other ten dimensions of spacetime since the volume decouples from the physics.

Instead we should view them as a book keeping tool that tracks of the variation

of the axio-dilation. In summary, we can think of F-theory as the theory dual to

M-theory on a vanishing torus

F = M |A(T 2)→0. (2.8)

This duality can be useful to determine the degrees of freedom and effective action

of F-theory. For example, the M-theory 3-form, C3, decomposes as

C3 = C̃3 +B2 ∧ dx+ C2 ∧ dy +B1 ∧ dx ∧ dy, (2.9)

where dx, and dy are representatives for the de Rahm cohomology H1
dR(T 2). After

decompactification (RB → 0) C̃3 contributes to self-dual 4-from of Type IIB,

C+
4 = C̃3∧dy, B2 and C2 become the NSNS and RR 2-forms respectively, and the

components of B1 become the off-diagonal components of the metric, giy [8].

Another duality that has been exploited for model building is that of F-theory

with the heterotic string. Experience with model building using heterotic strings

provides clear waypoints for the F-theory framework. Introduced in [7], the duality
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maps F-theory on elliptic K3 : T 2 → P1 to the heterotic string on T 2. We will see

later however that for some cases important for phenomenology no heterotic dual

exists.

In order to get a phenomenologically viable theory it is necessary to compact-

ify to 4 dimensions. The resulting four dimensional effective theory then depends

on details of the compactification. We will assume that we have N = 1 super-

symmetry in 4 dimensions. This condition requires that the compact space be a

Calabi-Yau manifold. There has been extensive study of compactifications of 10

dimensional string theories on Calabi-Yau complex threefolds, but in our case we

require an elliptically fibred Calabi-Yau complex fourfold.

In most interesting setup for phenomenology we have M12 = R3,1 × Y , and

Y : T 2 → B3. Here B3 is the three complex dimensional orientifold of the cor-

responding Type IIB theory. We require Y to be Calabi-Yau but not B3. This

background contains 7-branes that span all of R3,1 and wrap a four-cycle in B3.

Our four dimensional effective field theory will therefore live on the 7 brane and

gauge degrees of freedom will come from the open string sector. The details of the

physics is encoded in Y so in the next section we will spend some time introducing

the techniques of algebraic geometry used to study elliptic fibrations.

2.3.3 Weierstrass form for elliptic fibrations

It will be instructive to first consider an elliptically fibred K3 so we can use

the mathematical formalism developed to describe this. An elliptic curve can be

described as a hypersurface in 3-complex dimensional weighted projective space

P2,3,1 subject to the equivalence

(x, y, z) ' (λ2x, λ3y, λz). (2.10)
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The defining equation for the elliptic curve can then always be locally written in

the Weierstrass form

PW = y2 − x3 − fxz4 − gz6 = 0. (2.11)

As a check we can compute the number of degrees of describing the elliptic curve:

3 complex (6 real) of P3 - 1 complex (2 real) from (2.10) - 1 complex (2 real)

from (2.11) = 1 complex (2 real)⇒ geometry of elliptic curve encoded in two real

parameters f and g. We can relate f and g to τ through the modular invariant

j-function

j(τ) =
4(24f)3

4f 3 + 27g2
(2.12)

where

j(τ) = e−2πiτ + 744 +O(e2πiτ ). (2.13)

When the shape of the torus is allowed to vary over the base space f and g become

polynomials, of degree 9 and 12 respectively, of the local coordinate patch of the

base space. To describe a fibration over the entire base space the patches are glued

together and f and g become sections of a line bundle, L, over the base. The non-

triviality of the fibration is therefore encoded in the non-triviality of this line

bundle. We note here that Calabi-Yau condition for the hypersurface is that the

degree of the defining polynomial equals the sum of the weights in the equivalence

relation [8]. Here we have a degree 6 polynomial and weights 2 + 3 + 1 = 6, so we

have a Calabi-Yau one-fold: the T 2. In order to see that the full space is Calabi-

Yau we would have to take the Weierstrass form for the full fibred K3 rather than

the reduce form we have taken in a coordinate patch (see e.g. [8]).

We saw in section 2.2 that τ → i∞ at the postion of the seven brane. Now

that we are interpreting the τ as the complex structure of the elliptic fibre we

should therefore be interested in the points where the fibre degenerates. For a

hypersurface defined by P = 0 this corresponds to the degeneration of its tangent
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space, dP = 0 [3]. To find singularities in the elliptic we apply this to the Weier-

strass form (2.11). To make life easier we using (2.10) to set z = 1. Differentiating

with respect to y and setting the result to zero we find that y = 0. Plugging this

back into (2.11) with z = 1 we find

PW = x3 + fx+ g = (x− a1)(x− a2)(x− a3) = 0 (2.14)

where the ai are the roots of the cubic polynomial. Further imposing dPW = 0 for

this result we find

(x− a1)(x− a2) + (x− a1)(x− a3) + (x− a2)(x− a3) = 0. (2.15)

We therefore find that the condition for the fibre to become singular reduces to

satisfying y = 0, (2.14), and (2.15). This means that at least two of the ai coincide.

The coincidenc of roots of a polynomial results in the vanishing of the discriminant,

∆. For (2.14) we have

∆ = 4f 3 + 27g2. (2.16)

We see then from (2.12) that

j(τ) =
4(24f)3

∆
. (2.17)

Singularities of the fibre are therefore encoded in the degree 24 equation: ∆ = 0.

We therefore have in general 24 distinct singularities in the fibre which we will label

by coordinates zi, i = 1, ..., 24 in the base. Near one of these zeros the j-function

behaves like

j(τ) ∼ 1

z − zi
(2.18)

which, through (2.13) yields

τ(z) ∼ 1

2πi
ln(z − zi) (2.19)
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Figure 2.1: The points in the manifold where the fibre becomes singular corre-
sponds to the position of a 7-brane in the threefold base. B3.

which is the behaviour we observed in section 2.2 of the axio-dilaton near a

D7-brane. We can therefore interpret the vanishing locus of ∆ as hypersurface

wrapped by a D7-brane in the geometry. Note that a simple zero of ∆ signifies as

D7-brane and leaves the full geometry smooth but we can in general have multiple

zeros that coincide to make the full compactification space singular and correspond

to a [p, q] 7-brane (Figure 2.1).

One of the most attractive aspects of the F-theory framework is that the

7-branes are a result of the geometry. Unlike the case of Type IIB orientifolds

where the 7-branes must be added to the geometry by hand in order to cancel the

RR charge of the O7-plane and yield a consistent quantum theory, in F-theory

the charge cancellation is automatically accounted for. In addition, the problems

with 7-brane backreaction discussed in section 2.2 is no longer an issue. Once

a consistent fibred Calabi-Yau is specified the backreaction is already built in

and no additional branes have to be added. On the other hand the D3-brane

tadpole condition is not automatic and boils down to a topological constraint on

the compactification space.



2.3. F-Theory and elliptic fibrations 21

2.3.4 A-D-E gauge symmetries

As just mentioned, there are different ways in which to the fibre can degenerate.

There exists a complete classification of the types of singularities that can occur

in elliptically fibred K3 manifolds due to Kodaira [9]. The type of singularity

controls the resulting gauge symmetry on the brane (appendix A). If ∆ factors

into 24 pieces, each with distinct zeros, then each corresponding brane will have a

U(1) gauge symmetry. In Kodaira’s classification this is called an I1 singularity.

The details of how to get more general gauge symmetries from the A, D,

and E Lie algebra series are beyond the scope of this review. It will suffice here

to say that there are standard techniques in algebraic geometry to resolve the

singularities of manifold by blowing up two-cycles at the point of the singularity.

These two-cycles then intersect each other and the intersection points correspond

to the nodes of the affine Dynkin diagram of the corresponding gauge group.

The number of linearly independent two-cycles then corresponds to the rank of

the gauge group. The singular limit of the manifold is then when these non-

contractible two-cycles shrink to zero size and we can trace the origin of the gauge

symmetry to the collision of these zero sized two-cycles in the manifold. The

results can be summarised in the vanishing order of ∆, f , and g as in Table 2.1.

This classification shows that the maximum singularity that can be achieved is to

E8. Singularities that are worse than this lead to technical issues that can destroy

the Calabi-Yau property of the manifold.

The reader may wonder how to interpret the exceptional gauge symmetries

in the framework of open strings stretching between branes. Using the analysis

of appendix A it was impossible construct such groups. It was shown in [11]

that it is possible to use the open string picture if we allow for multi-pronged

string junctions. The analysis relies on the existence of mutually non-local 7-

branes of different [p, q] type. Recall that a
(
p
q

)
-string may end on a [r, s]-brane

provided (p, q) = ±(r, s), where the minus corresponds to opposite orientation. It
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Table 2.1: Kodaira classification of A-D-E fibre singularities taken from [10].

is also true that a
(
p
q

)
-string can end on an

(
r
s

)
-string, and vica-versa, provided

ps− qr = ±1. We say such strings are compatible. This is a result of performing

an SL(2,Z) transformation on the well know result that an F1 can end on a D1.

To see how a string junction is formed we consider the case of an
(
r
s

)
-string

looping around a [p, q]-brane on which it cannot end, i.e. ps − qr 6= ±1. As the

string crosses the branch cut a
(
p
q

)
-string is formed by the SL(2,Z) monodromy

of the brane . If, however, the
(
r
s

)
- and

(
p
q

)
-strings are compatible a

(
p
q

)
-string

can form to connect the brane and the
(
r
s

)
-string if the latter crosses the brane

(Figure 2.2) . We now have a triple-pronged string with one end on the [p, q]-

brane. The forming of the extra prong is analogous the Hanany-Witten effect

of crossing p-branes [12]. The extra generators needed to form exceptional Lie

algebras come from the multiple prongs of the string junction ending on mutually

non-local 7-branes in the base manifold. Explicit constructions of E6, E7, and E8

in this framework can be found in [11].

2.3.5 Tate’s algorithm

We have seen that Kodaira’s classification of singular fibres can be used to de-

termine the gauge symmetry on the brane in the case of elliptic K3. We would,

however, like to generalise this method to other Calabi-Yau manifolds with possi-
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Figure 2.2: The forming of a 3 pronged string junction as the string crosses the
brane. The dashed line is the branch cut due to the brane. Adapted from [11].

bly higher dimension. Such a method is provided by Tate’s algorithm [13] which

was first discussed in the context of F-theory in [10]. It allows the gauge group to

be determined for general Calabi-Yau manifolds without the need for an explicit

resolution of the singularity.

In order to describe Tate’s algorithm it is convenient to generalize the Weier-

strass form to the so called Tate form

PW = x3 − y2 + a1xyz + a2x
2z2 + a3yz

3 + a4xz
4 + a6z

6 = 0, (2.20)

which, using (2.10) to set z = 1, we write as

PW = x3 − y2 + a1xy + a2x
2 + a3y + a4x+ a6 = 0. (2.21)

The ai are sections of sections of the line bundle L⊗i (this notation will be reused

for other coefficients defined in this section). The equivalence to the Weierstrass
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form (2.11) can be made by defining quantities

b2 = a2
1 + 4a2

b4 = a1a3 + 2a4

b6 = a2
3 + 4a6

b8 = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

(2.22)

and we then have the Weierstrass sections as

f = − 1

48
(b2

2 − 24b4)

g = − 1

184
(−b3

2 + 36b2b4 − 216b6).

(2.23)

If w = 0 defines the vanishing locus of the discriminant, the algorithm proceeds

by investigating the divisibility of the ai by various powers of w. The singularities

are blown up one by one and the divisibilities of the ai are checked each time

causing the result to branch into various Kodaira types. This process eventually

terminates and the Kodaira type of the singularity has been determined by the

order of the divisibility of the ai. These results we summarised in [10] and are

displayed in Table 2.2. As we mentioned earlier, the most general elliptic curve

can be locally modelled by the Weierstrass form (2.11) which we have shown can

be written in the Tate form (2.20). It is possible in some cases, however, to define

at Tate form globally. In this case the gauge group can be read off Table 2.2

straight away without needing to follow the algorithm outlined in [10] to bring the

model into the correct form.

As an example, an SU(5) model defined on divisor w = 0 takes the form

a1 = β5, a2 = β4w, a3 = β3w
2, a4 = β2w

3, a6 = β0w
5, (2.24)

where the βi do not contain any overall w factors. The discriminant then takes
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Table 2.2: Summary of the Tate’s Algorithm. The Kodaira fibre and corresponding
gauge group given in terms of vanishing order of coefficients of Tate form. Taken
from [10].
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the form

∆ ∼ w5(...), (2.25)

where the factor in brackets is generically irreducible and is manifested as an

additional I1 factor.

2.4 Gauge enhancements

In order to get the a geometric realisation of a realistic gauge theory based on the

gauge group of the 7-branes we need additional ingredients. We need a geometric

origin for chiral matter and the Yukawa couplings between them. As we have seen,

the gauge theory on 7-brane comes from a complex codimension 1 hypersurface

in the threefold base space. Chiral matter lives on a codimension 2 hypersurface

defined by the intersection of 7-branes. Yukawa couplings are the points (complex

codimension 3) in the base space at the intersection of three seven branes.

2.4.1 Matter curves

At the intersection of two codimension 1 fibre degeneration loci we find a codi-

mension 2 locus of enhanced fibre singularity type. By enhanced here we mean

that rank of the associated A-D-E gauge group is increased with respect to the

two codimension 1 singularities. It is important to note here that although it is

common practice in the literature to use experience with Tate’s algorithm from

codimension 1 singularities to determine the gauge group of singularities of higher

codimension, this is outside the general validity of Tate’s algorithm [14]. As such,

the discussion of enhanced gauge symmetries in F-theory, although vital for model

building, is still a conjecture.

The setup is described by two hypersurfaces, S1 and S2, wrapped by seven

branes with gauge groups G1 and G2 respectively. Matter becomes trapped at the
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one complex dimensional curve define by their intersection (Figure 2.3),

S1 ∩ S2 = Σ12. (2.26)

The rank of the enhanced gauge group, G12, is the sum of the ranks of G1 and G2.

Along the intersection the we obtain extra representations in order to fill out the

degrees of freedom of G12. Under to branching G12 → G1 +G2 the adjoint of G12

decomposes as

Adj(G12)→ (Adj(G1), 1)⊕ (1,Adj(G2))
⊕
i

(Ri
1, R

i
2), (2.27)

where the Ri
1 and Ri

2 are non-trivial representations of G1 and G2 respectively.

The zeros modes of the Dirac operator on Σ12 constitute the chiral matter of

the 4D effective theory and they are contained in these additional representations

[15]. This situation is familiar from D-brane model building in Type II theories

where an SU(n) stack intersects an SU(m) stack. In this case, strings stretching

between the stacks gives rise to additional bifundamental matter transforming in

the (m, n̄) ⊕ (m̄, n) representation of SU(m) × SU(n). In the context of the M-

theory dual, the matter localised on the curve corresponds to M2 branes wrapping

two cycles that degenerate along the curve.

In order for the matter to be chiral we require non-zero 7-brane flux. The

flux, F , takes a value in a subgroup of the seven brane gauge group H ⊂ G and

index theory is used to determine the net number of chiral generations along the

matter curve [16, 2],

# chiral modes =

∫
Σ12

(FS1 + FS2) . (2.28)

The number of chiral generations can therefore be arranged by choosing suitable

gauge flux on the seven branes. Note however that gauge flux can also break

the gauge group to the commutant of H in G which can be problematic for GUT
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Figure 2.3: The intersection locus of two seven branes in F-theory results in an
enhanced gauge symmetry that produces chiral matter trapped along the matter
curve Σ12.

Figure 2.4: A rank 2 enhancement of the 7-brane gauge group forming at the
intersection of three matter curves. Taken from [2].

model building. We will see later however that this provides a method for breaking

the GUT to the Standard Model in a phenomenologically viable way.

2.4.2 Yukawa couplings

There can be a further gauge enhancement at the point of intersection of matter

curves (Figure 2.4). Although it is possible to have enhancements at the inter-

section of two matter curves, in order to form a gauge invariant interaction three

curves must intersect (we will see an example of this later when we consider an

SU(5) in detail). At the intersection of three matter curves Σ12,Σ23, and Σ13 com-



2.4. Gauge enhancements 29

bine to fill the adjoint of the gauge group G123. The Yukawa interactions originate

from the decomposition of the Adj(G123)⊗3, and gives a superpotential term of the

form [17]

W ⊃ λijkΨiΨjΨk, (2.29)

where the Ψi are the chiral superfields localised on the matter curves. The Yukawa

coupling λijk is given by the overlap of the wavefunctions in the 7-brane,

λ123 =

∫
S

ψ1ψ2ψ3, (2.30)

where the ψi are components of chiral superfields Ψi.



Chapter 3

F-Theory GUTs

In this chapter we will embed a GUT model into the framework of F-theory

introduced in the previous chapter. Recent years have seen much success in this

area with the works [2, 18, 16] sparking much interest in the field.

Before we can consider any example of a GUT model in F-theory we must

choose a gauge group. In chapter 1 we introduced the SU(5) model but we did

not give any detail on GUTs based on higher rank gauge groups such as SO(10)

and E6. These groups also have some nice properties. For example the spinor

representation 16 of SO(10) can accommodate all of the chiral matter of the

MSSM in one representation. The 16 also accounts for a right handed neutrino

which can be used in a seesaw mechanism to generate small neutrino masses. It

is well known however that reproducing the 16 from the perturbative Type IIB

approach is impossible.

We have seen that the maximum enhancement of the gauge symmetry from

fibre degeneration is to E8. Therefore if we require rank two enhancements for

Yukawa couplings then the only exceptional simple groups can contain the Stan-

dard Model are indeed SU(5), SO(10), and E6. It turns out that GUT breaking

and requiring the existence of a limit where gravity is decoupled causes problems

30
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for the non-minimal GUTs. In particular there is a no-go theorem for SO(10)

GUTs that says breaking the gauge group to the Standard Model via internal

hyperflux (more later) necessarily introduces exotics to the low energy spectrum

[18]. For the E6 there are similar problems that require very fine tuned geometries

to eliminate exotics. It is for this reason that most of the F-theory literature has

been focused on SU(5) models and here we will treat them exclusively.

3.1 Decoupling limit

The philosophy behind local models is motivated by the large difference is energy

scales between the GUT scale and the Planck scale. This suggests that we should

be able to treat only the gauge degrees of freedom initially and postpone consid-

eration of gravitational effects. The decoupling limit Mpl → ∞ is not absolutely

necessary but is sensible from the point of view of GUT physics for which UV

completeness requires this limit to exist.

In order to see how this limit constrains the geometry we must relate the 4

dimensional Planck scale and the GUT scale with geometrical parameters. If we

compactify the Einstein-Hilbert action on the threefold base B3 we find

SEH = M8
∗

∫
R1,3×B3

d10x
√
−gR (3.1)

where in M∗ is a fundamental scale given by l−1
s in the IIB limit. We therefore

have that

M2
pl = M8

∗V ol(B3). (3.2)

The GUT scale however is set by the volume of the 2 complex dimensional

Kähler surface, S, wrapped by the 7-brane

M−4
GUT ' V ol(S). (3.3)
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We see then that the decoupling limit is determined by the relative volume of B3

and S. For Mpl →∞ we require

V ol(S)→ 0, V ol(B3) finite. (3.4)

This requires S to be Fano [18]. The 2 complex dimensional Fano surfaces are the

del Pezzo surfaces P1 × P1, P2, and dPN , N = 1, ..., 8. The dPN are P2’s with N

two-cycles blown up. We see that the existence of a decoupling limit allows only

a short list of possibilities for S and so it is quite restrictive. We will see later

that this also greatly restricts the possibilities for GUT breaking mechanism. The

existence of such a surface wrapped by a 7-brane in the compactification space

is one of the most constraining ingredients in F-theory model building and can

lead to some degree of predictivity. Explicit construction of a family F-theory

compactifications on elliptically fibred Calabi-Yau fourfolds that admit such a

decoupling can be found in [19].

3.2 SU(5) model

We start with an SU(5) gauge symmetry from the vanishing of a discriminant of

the form (2.25). This describes an SU(5) gauge theory on a 7-brane which we will

assume wraps a del Pezzo surface. This is the brane on which all gauge degrees of

freedom localise and we will call it the GUT brane. In order to introduce chiral

matter and Yukawa couplings we proceed as in section 2.4 by considering rank

1 and rank 2 gauge enhancements. The allowable gauge enhancements can be

obtained by considering the Dynkin diagram of SU(5)/A4 and adding one and

two nodes to create other A-D-E Dynkin diagrams. The resulting gauge groups

are shown in Figure 3.1.

These enhancements occur due to intersections with other 7-branes in the
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Figure 3.1: The allowable rank 1 and rank 2 A-D-E gauge enhancements of SU(5)
obtained by adding nodes the the A4 Dynkin diagram.

compactification space. For example, the additional I1 locus of (2.25) results in a

U(1) 7-brane that can intersect the GUT brane leading the a rank 1 enhancement.

As we have seen, rank 1 enhancements lead to chiral matter and so this U(1) brane

will be called the matter brane. To find the type matter produced we decomposed

the adjoint of the enhanced gauge groups into representations of SU(5) and U(1).

Under the breaking SO(10)→ SU(5)× U(1) the 45 of the SO(10) enhancement

decomposes as [20]

45→ 240 ⊕ 10 ⊕ 102 ⊕ 10−2. (3.5)

The SO(10) enhancement therefore produces the 10 matter of the SU(5) GUT.

The 5 is similarly obtained from the SU(6) enhancement

35→ 240 ⊕ 10 ⊕ 51 ⊕ 5−1. (3.6)

As an aside we note that we may use this procedure to produce the 16 of SO(10)

that descends from an E6 ⊃ SO(10)× U(1) enhancement

78→ 450 ⊕ 10 ⊕ 16−3 ⊕ 163. (3.7)
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This illustrates the importance of taking a non-perturbative approach to string

model building.

In section 2.4 we saw that in order engineer chirality we need to turn on

7-brane flux (see (2.28)). At this stage we do not want to consider breaking the

GUT so we ensure that there is no flux on the GUT brane. Instead we turn on the

abelian flux on the matter brane that intersects the GUT brane along a matter

curve. This can be tuned to ensure we get the 3 chiral generations required for

the Standard Model.

It order to reproduce the necessary Yukawa interactions in (1.5) we must

consider rank 2 gauge enhancements. These will reduce to the Yukawa interactions

of the MSSM (1.3) after GUT breaking. If we first consider the decomposition of

the adjoint of E6 under E6 → SU(5)× U(1)2 we find [20]

78→ 240,0 ⊕ 10,2 ⊕ 10,0 ⊕ 56,0 ⊕ 10−3,1 ⊕ 10−3,−1 ⊕ c.c. (3.8)

The Yukawa coupling then descend from the cubic term in the 7-brane Chern-

Simons action and we find the interaction

783 ⊃ 5H × 10m × 10m. (3.9)

This interaction will yield masses for the up-type quarks of the MSSM after elec-

troweak symmetry breaking. It is important to note here that Type II model

building it has been a challenge to include this as a non-zero interaction because

it is forbidden by U(1) symmetries. It is necessary to include D-brane instanton

corrections in order to achieve it [21]. This need for non-perturbative effects is

reflected in the F-theory approach which requires the E6 enhancement to generate

the coupling. This again suggests that viable phenomenological models are best

described in an inherently non-perturbative framework such as F-theory.

If we conduct a similar analysis for the SO(12) and SU(7) enhancements we
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find that the SO(12) adjoint decomposes as

66→ 240,0 ⊕ 10,0 ⊕ 10,0 ⊕ 52,2 ⊕ 5−2,2 ⊕ 100,4 ⊕ c.c. (3.10)

This yields the down-type quark Yukawa

663 ⊃ 5H × 5m × 10m. (3.11)

We therefore have reproduced the desired Yukawas of the four dimensional SU(5)

GUT (1.5). The SU(7) adjoint decomposes as

48→ 240,0 ⊕ 10,0 ⊕ 10,0 ⊕ 50,6 ⊕ 5−7,1 ⊕ 17,5 ⊕ c.c. (3.12)

This can be used to generated neutrino masses via the coupling

483 ⊃ 5H × 5m × 1NR
. (3.13)

Here the 1NR
is a right-handed neutrino. It is a GUT singlet and its matter curve

is perpendicular to GUT brane and intersects the 5H and 5m curves only at the

SU(7) point. We will discuss neutrinos further in chapter 5.

The gauge symmetry of the rank 2 enhancement points is Higgsed to lower

symmetry along the matter curves. The gauge symmetry of the matter curves

is then further Higgsed to the GUT symmetry of the brane. For example the

in the E6 case we have E6 locally Higgsed to the SU(6) of the 5 matter curve

and Higgs curve, and the SO(10) of the 10 matter curve. These are further

Higgsed to SU(5) on the brane. We can see from (3.8) that each of the factors

in the 5H × 10m × 10m interaction carry different U(1)2 charges. Each matter

factor must therefore localise on different matter curves and intersect only at the

enhancement point. Local cancellation of the U(1)2 charges at this point is the

reason we need precisely three curves to intersect at this point.
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3.3 Point of E8 and spectral covers

The requirement of SO(12), E6, and SU(7) enhancement points along with con-

straints from constructing realistic quark and neutrino hierarchies suggests a fur-

ther embedding of these structures into a single point of E8 [22, 23]. All other

interactions then descend from this point. Recall that E8 is the maximum allow-

able singularity if we require the manifold to remain Calabi-Yau. If we consider

again the SU(5) Tate form

y2 = x3 + β5xy + β4w + β3w
2y + β2w

3x+ β0w
5 (3.14)

we can see that this is just the E8 singularity

y2 = x3 + w5 (3.15)

deformed or unfolded down to SU(5). By sequentially smoothing out the defor-

mation by letting the βi → 0 we recover SO(10), E6, E7, and E8 singularities

[24].

In this way we can think of an underlying E8 gauge symmetry that exists

everywhere on the divisor wrapped by the GUT brane. To reproduce our earlier

picture we imagine this E8 deformed to various degrees throughout the divisor.

This suggests that the model can be described solely in terms of these deforma-

tions.

If we consider the E8 symmetry as resulting from a stack on branes in the

strongly coupled Type IIB language then the deformations are encoded in the

adjoint valued scalar field, Φ, that lives on the stack. The variation of this Higgs

field over the stack then determines the gauge symmetries, and hence the matter

and Yukawa couplings, of the setup. In this way the model can be locally described

as a Higgs bundle [24]. In the spectral cover approach the Higgs bundle is replaced
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with just the eigenvalues of Φ at each point of the divisor.

As an example we can consider giving a vev to Φ by blowing up some of the

two-cycles of the E8 (or in a brane picture folding away some of the branes) to

produce and SU(5) gauge symmetry

E8 → SU(5)× SU(5)⊥. (3.16)

The Higgs field Φ then takes values in Adj(SU(5)⊥) and its eigenvalues µi, i =

1, .., 5 are the roots of the equation det(w15 − Φ) = 0 and are stored in the

spectral cover. Under this breaking pattern the adjoint of E8 decomposes into

representations of SU(5)× SU(5)⊥ as

248→ (24, 1)⊕ (1,24)⊕ (5,10)⊕ (5,10)⊕ (10,5)⊕ (10,5). (3.17)

We therefore see the appearance of the required matter curves on the stack on

branes. In Higgs bundle language the SU(5)⊥ is the holonomy group of the Higgs

bundle.

The usefulness of the spectral cover approach really becomes apparent when

describing gauge flux for GUT breaking. The allowed spectral covers that de-

scribed the necessary gauge flux while also meeting various phenomenological

constraints are highly constrained (see e.g. [25]).



Chapter 4

GUT breaking and SUSY

breaking

In order to make contact with the low energy physics of the MSSM it is neces-

sary to break the GUT group. In this chapter we will discuss what options are

available to us in the most phenomenologically attractive F-theory compactifica-

tions. The method of GUT breaking has many consequences that can upset the

phenomenology (e.g. proton decay) so we discuss some of these. It turns out that

consistent GUT breaking is one of the most restrictive aspects of F-theory model

building. We will also discuss how supersymmetry breaking can be embedded in

the F-theory framework.

4.1 Mechanism of GUT breaking

It turns out that the requirement of a gravitational decoupling limit severely re-

stricts the mechanisms for GUT breaking. One traditional approach is the break

the GUT by giving a non-zero vev to the adjoint valued holomorphic (2, 0) form

Higgs field, Φ. This method is familiar from gauge theories. If our GUT brane

38
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wraps a del Pezzo surface (as is required for decoupling), however, the zero mode

content does not contain any holomorphic (2, 0) form chiral superfields to play the

role of the Higgs since h2,0(S) = 0. In the brane picture we can understand this

as result of the absence of gravity preventing branes from moving in the compact-

ification space to yield the geometric Higgsing. This is also a dynamical breaking

mechanism and so requires a suitable breaking potential which can be challenging

to arrange. As was noted in [26] models that break the GUT via a Higgs mech-

anism end up similar to four-dimensional GUT models which have many issues

with phenomenological constraints.

Another traditional approach to breaking the GUT group in string compact-

ifications is by turning on discrete Wilson lines. This is a non-dynamical breaking

because it is already built into the topological data of the compactification. This

however requires and non-trivial fundamental group, π1, on which to wrap the

1-cycles. This is again unavailable to us because all del Pezzo surfaces have trivial

fundamental groups.

There is however an third option available. As we mentioned earlier it is

possible to break the GUT by turning on U(1) fluxes on the GUT brane [18, 26].

This is again an non-dynamical breaking. We will focus on the SU(5) model

because, as we mentioned earlier, breaking non-minimal GUTs with internal flux

necessarily generates exotics in the low energy spectrum. In this case we can give a

non-zero vev to the flux of hypercharge (hyperflux), U(1)Y , to break SU(5) down

to the commutant

SU(5)→ SU(3)C × SU(2)L × U(1)Y . (4.1)

The hypercharge generator, TY , embeds in SU(5) as TY = diag(−1
3
,−1

3
,−1

3
, 1

2
, 1

2
).
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The SU(5) representations then decompose as [26]

24→ (8, 1)0 ⊕ (1,3)0 ⊕ (1, 1)0 ⊕ (3,2) 5
6
⊕ (3,2)− 5

6
,

10→ (3,2) 1
6
⊕ (1, 1)−1 ⊕ (3, 1) 2

3
,

5→ (3, 1)− 1
3
⊕ (1,2)− 1

2
.

(4.2)

In other string compactifications, such as those of the heterotic string, non-trivial

internal flux can cause the photon to develop mass via the Stuckleberg mechanism.

This is a result of coupling of the Yang-Mills theory on the brane to closed string

modes in the bulk via the seven brane Chern-Simons interaction [3]

SStuckleberg '
∫

R1,3

F 4D
Y ∧ ci2 trT 2

Y

∫
S

c1(LY ) ∧ ι∗ωi. (4.3)

Here the ωi provide a basis for the two-forms in the base manifold B, H2(B,Z),

and the self-dual four form of IIB has be decomposed as C4 = ci2 ∧ ωi. The

hyperflux data has been packaged into a non-trivial line bundle, LY , with first

chern class, c1(LY ), that is Poincaré dual to β ∈ H2(S). Finally, ι∗ denotes the

pullback map of the embedding ι : S → B. We therefore see that in order to

avoid generating a mass for U(1)Y we must only have non-trivial flux on the two-

cycle β that is non-trivial in S but lifts to trivial cycle in B i.e. there exists a

three-chain, α in B such that β = ∂α. The two-cycle β is then said to lie in the

relative cohomology of S in B. This considerably restricts the choice of hyperflux

in F-theory compactifications. It is impossible to avoid such a mass in heterotic

compactifications with non-trivial internal flux and so when we consider these

setups in F-theory the duality with the heterotic string [7] is lost.
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4.2 Additional phenomenological constraints

The allowable hyperfluxes that can be use to break the GUT to the MSSM must

overcome several phenomenological obstacles of which we will mention a few.

4.2.1 No non-MSSM exotics

The decomposition of the adjoint 24 of SU(5) after GUT breaking produces the

SU(3)C × SU(2)L × U(1)Y representations (3,2) 5
6
⊕ (3,2)− 5

6
(see (4.2)). There

is no matter in the MSSM that transforms in these representations so they must

somehow be lifted from the low energy spectrum. Since representations (sometimes

referred to as XY bosons) descend from the adjoint they propagate in the full

bulk of the GUT brane. Such states are count by the cohomology groups of the

hyperflux, LqY , where q is the hypercharge of the state. It was shown in [18] that

by considering the vanishing of such fractional powers of line bundles that these

exotics can be avoided. This is non-trivial to arrange and reduces the freedom in

choosing hyperflux considerably. As we mentioned earlier, this step is impossible in

many non-minimal GUTs that necessarily have low energy exotics in the spectrum

if the GUT is broken by hyperflux [18]. This is one of the main reasons that the

minimal SU(5) model has received the most attention in the literature.

In (4.2) we also see that the decomposition of 5 produces the representation

(3, 1)− 1
3
. While this is needed in the chiral matter curve for the right-handed down-

type quark, on the Higgs curve these triplets should not be in the low energy

spectrum. Since the component representations of the 5 curve have different

hypercharges it is possible to lift one of the components from the low energy

spectrum if there is a non-zero net hyperflux penetrating the curve. This is not

desirable for the case of the chiral matter because we want to retain full GUT

multiplets. We must therefore arrange that the net hyperflux through the matter

curves is zero. If, however, the Higgs curve is separated from the matter curve and
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the hyperflux through it is non-zero then the Higgs triplets can acquire a large

mass. The hyperflux can then also cause the Higgs up, 5H , and Higgs down, 5H ,

curves to can also split due to the their opposite hypercharge. We will see in a

moment that this is the preferred situation for suppressing proton decay.

4.2.2 Proton decay

Proton decay in in the 4d effective theory can be caused by dimension four, five,

and six operators [27]. Dimension 6 operators can cause proton decay through the

channel p→ e+π0. These take the form

α6

MGUT

∫
d4θ u†Re

†
RQQ (4.4)

and are mediated by the off-diagonal XY bosons of the GUT. Fortunately these

operators are suppressed by the GUT scale and are currently safely outside current

experimental bounds. It is, however, important to ensure that dimension four and

five operators, which can give rise to experimentally unacceptable decay rates, are

suppressed in a natural way in our model.

Dimension four operators descend from the Yukawa interaction 10m × 5m ×

5m and so includes terms like uRdRdR, uRdRL, and eRLL. These operators are

forbidden by R-parity in the MSSM. R-parity is Z2 symmetry under which SM

matter has parity +1 and its superpartners has parity -1. In terms of chiral

superfields we have chiral matter superfields with parity -1 and Higgs matter

superfields with parity +1. In order to form an R-parity invariant cubic interaction

we therefore need the Higgs superfield. In F-theory we want to find a geometric

origin for this. It was shown in [18] that this is achievable if we the Calabi-Yau

fourfold has a Z2 reflection symmetry. All the line bundles, which encode matter

curve and flux data, must have a definite parity under this Z2. The hyperflux must

also have a definite parity and if it is to be integrated over a matter curve then the
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result will only be non-zero if the curve and the hyperflux have the same parity.

We have already seen that the we require zero net hyperflux through the chiral

matter curves and non-zero through the Higgs curves. This discrete difference

distinguishes the parity of the Higgs and chiral matter curves and so forbids the

troublesome dimension four operators.

From the perspective of global models base on E8 spectral covers, it is shown

in [28] that dimension four proton decay can be forbidden using a global U(1)PQ

symmetry. Such a symmetry arise naturally when E8 is unfolded to SU(5) and

the charge assignments for the various matter representations prevents both the

10m × 5m × 5m Yukawa and a tree-level µ-term, ∼ µHuHd.

Dimension 5 operators such as

α5

MGUT

∫
d4θ QQQL and

α′5
MGUT

∫
d4θ uRdRuReR (4.5)

are mediated by the exchange of heavy Higgs colour triplets. While we have

arranged that the Higgs triplets become very massive and so this should be quite

suppressed, we must also worry about and entire Kaluza-Klein tower of states

that will contribute to these operators when the triplets are integrated out. The

interactions arise from the superpotential terms

WGUT ⊃ QQTu + uReRTu +QLTd + uReRTd +MGUTTuTd, (4.6)

where the terms 1 and 2 originate from the up-type Yukawa (10m×10m×5H) and

terms 3 and 4 originate from down-type Yukawa (10m × 5m × 5H). It was shown

in [18] that these interactions could be avoided using a geometric implementation

of the missing partner mechanism known to field theory. If instead of pairing with

each other, Tu and Td pair with other heavy triplets T ′u and T ′d then the problematic

triplet mass term of (4.6) could be avoided. This is achieved geometrically by

allowing the Higgs curve 5H⊕5H split into two parts, 5H and 5H . In our discussion
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Figure 4.1: In a) Higgs up and Higgs down are on same matter curve leading to
the generation of unwanted dimension 5 proton decay operators. Splitting Higgs
up and down as in b) removes this possibility. Taken from [18].

of doublet-triplet splitting we already mentioned that this can be engineered by

suitable choice of hyperflux. This geometric splitting can be directly interpreted

as splitting of the unwanted Feynman diagram in the 4d effective theory (Figure

4.1). This can again be enforced in the spectral cover picture using U(1)PQ.

4.2.3 Gauge coupling unification

One consequence of hyperflux GUT breaking is the alteration of the running of the

MSSM coupling constants. This is not to be taken lightly because it may spoil the

unification which is well founded in low energy experimental data and motivated

the study of GUT structures. The GUT scale is generally define as the energy

at which the couplings of SU(2)L and U(1)Y intersect. The question of whether

we have full gauge coupling unification is then whether or not the SU(3)C passes

through this intersection point. It was shown in [29] and [26] that the internal flux

alters the gauge kinetic functions of each factor of the Standard Model through
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the 7-brane Chern-Simons coupling

SCS ∼
∫

R1,3×SGUT

C0 ∧ tr(F ), (4.7)

where F is the total gauge flux on the seven brane. Instead of unifying the

couplings satisfy [25]

α−1
1 −

3

5
α−1

3 −
2

5
α−1

3 = 0. (4.8)

This does not, however, explain why experimental data points towards unification.

It is argued in [29] that introduction of a new scale between the weak scale and the

GUT scale can correct the running of coupling constants leading to ‘F-unification’.

Fortunately we already have such as scale available to us: the mass of the Higgs

triplets. If we include a vector like pair of Higgs triplets, Tu ⊕ Td, and set their

mass to lie in the range 1015 − 1016 GeV then unification can be retained. Above

this new scale the beta-function coefficients are modified

(b3, b2, b1) = (3,−1,−11) → (b3, b2, b1) =

(
2,−1,−35

5

)
. (4.9)

We therefore find that requiring doublet-triplet splitting to obtain the correct

spectrum and suppress proton decay automatically gives us a solution to gauge

coupling unification. In [25] it is argued that massive exotic matter from any

incomplete GUT multiplets can be used as this new scale to correct unification.

4.3 SUSY breaking

Up to this point we have been assuming N = 1 supersymmetry in the low energy

theory. While this is well motivated and attractive from a theoretical viewpoint

it disagrees with current particle physics data. Therefore if supersymmetry exists

in the real world it must be broken and any theoretical model of supersymmetric

particle physics must incorporate a mechanism to achieve this. To agree with
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experiment all the superpartners of the Standard Model matter must be given

a mass to lift them from the low energy spectrum. This must be achieved in

such a way that quadratic divergences are not introduced. This is known as soft

supersymmetry breaking.

A well established method for soft supersymmetry breaking is to break super-

symmetry in a hidden sector and have a messenger sector communicate this to the

MSSM matter, known as the visible sector. In the hidden sector supersymmetry

is broken dynamically and can be parametrised by chiral superfield, X, that has

a non-zero vev

〈X〉 = x+ θ2F. (4.10)

The scale of the supersymmetry breaking in the hidden sector is then set by
√
F .

It is important to specify the form of the messenger fields because it plays an

important role in the phenomenology. The two main approaches considered are

gravity mediation and gauge mediation. The primary drawback of the gravity me-

diation approach is the introduction of flavour changing neutral current (FCNC)

processes. These flavour violating process are troublesome and often lead to the-

ories inconsistent with experiment. In gauge mediation scenarios the FCNCs are

suppressed but work has to be done to address the µ problem naturally. This issue

can be resolved in many cases however which makes gauge mediation appealing.

Theories with gauge mediated SUSY breaking are reviewed in [30].

A framework for gauge mediated SUSY breaking in F-theory models have

been developed in [31] and [32]. In an SU(5) F-theory model the messenger fields

are comprised of the vector-like pairs 5 ⊕ 5 or 10 ⊕ 10. The X field is a GUT

singlet and localises on a matter curve normal to the GUT brane. In this way

the hidden sector, where SUSY breaking takes place, is on a different brane to

the GUT brane. The X field then interacts with the messenger fields, f and f ,
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Figure 4.2: F-theory geometry of 5⊕5 messenger fields and SUSY breaking sector.
Taken from [31].

through the superpotential term

W ⊃ λXff. (4.11)

When the X field has a non-zero vev as in (4.10) this will generate a mass for the

messenger fields. The SUSY breaking is then communicated to the visible sector

because the MSSM fields also interact with the messenger fields. The gaugino

masses are generated at one loop order and the scalar masses are generated at two

loop order. The geometry of this setup where the interaction (4.11) descends from

an SU(7) gauge enhancement is shown in Figure 4.2.

Next we must address the µ problem. The µ problem get its name from the

superpotential term

W ⊃ µHuHd. (4.12)

The natural scale for µ is the GUT scale but the electroweak symmetry breaking

of the Standard Model requires it to lie at the weak scale. As we have mentioned,

and explicit µ-term can be evaded in F-theory by splitting the 5H and 5H curves

using an U(1)PQ symmetry. The fields are charged under the U(1)PQ as [18]
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Φ Hu, Hd f, f X

U(1)PQ +1 -2 +2 -4

where Φ is any MSSM field other than the Higgs doublets. Clearly this symmetry

forbids a GUT scale µ-term (4.12). A weak scale µ-term can then be generated by

coupling the messenger fields the the Higgs. When the massive messenger fields

are integrated out we obtain an effective operator of the form

1

MX

∫
d4θX†HuHd, (4.13)

where MX is the scale at which the operator is generated. From a geometric point

of view this operator is generated at SU(7) Yukawa point where X, 5H , and 5H

intersect. When the X field has a non-zero vev as in (4.10) this will yield µ ∼ F
MX

.

For messenger scale just below the GUT scale we have MX ∼ 1015 GeV so we

require F ∼ 1017 GeV2 for a weak scale µ.

Since the X field is charge under U(1)PQ the F-term vev of X that breaks

SUSY will also break U(1)PQ at this scale. The massive U(1)PQ will then con-

tribute additional soft term contributions beyond the minimal scenario presented

above. This gives rise to a coupling between the chiral matter and X through the

exchange of the heavy U(1)PQ [32]. This generates the operator

−4παPQ
eΦeX

M2
U(1)PQ

∫
d4θX†XΦ†Φ, (4.14)

where MU(1)PQ
is the mass of U(1)PQ and the ei are the charges of the superfields

under U(1)PQ. This will clearly give rise to another mass contribution when

X gets a vev. This setup is therefore referred to as deformed gauge mediated

supersymmetry breaking.

As a first attempt one might not be concerned how supersymmetry is broken

in the hidden sector and only require that is broken somehow and at the correct
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scale. However a complete model must of course address this. It was shown in [33]

that dynamical SUSY breaking can be induced in the hidden sector by Euclidean

D3-instantons if appropriate fluxes on the f and f matter branes are chosen. It

was shown in [31] that the conditions needed to achieve this fit precisely with the

gauge mediation scenario described above.



Chapter 5

Flavour and neutrinos in

F-Theory

Up to this point in our treatment all three generations of MSSM matter has been

identical. We arranged for three chiral matter generations by appropriate choice

of gauge flux on the matter brane but there is no immediate reason why any of

these generations should be different. This is of course not the case in reality.

Particle physics data reveals mass hierarchies in the quark and neutrino sectors

that must be explained. The different flavours of both quarks and leptons also

mix non-trivially. If we hope to build a realistic model in the F-theory framework

then we must reproduce these flavour textures in the compactification. Recent

work has found that F-theory can naturally incorporate both quark and neutrino

flavour sectors [18, 34, 35, 23].

5.1 Quark flavour

To frame the discussion we will first review what we need to reproduce. The up-

type quarks fall into the mass hierarchy (u, c, t) = (0.003, 1.3, 170) GeV, whereas

50
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the down-type quarks have masses (d, s, b) = (0.005, 0.1, 4) GeV [1]. The leptons

follow a similar structure with (e, µ, τ) = (0.0005, 0.1, 1.8) GeV. The difference be-

tween the mass and gauge quark eigenstates is quantified in the Cabibo-Kobayashi-

Maskawa (CKM) mixing matrix [1]

|VCKM | =


|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|

|Vtd| |Vts| |Vtb|

 =


0.97 0.23 0.004

0.23 0.97 0.04

0.008 0.04 0.99

 . (5.1)

There is also the well known GUT scale mass relation mb ∼ mτ . This fits well

with both the b and the τ Yukawas descending from the same GUT Yukawa

5H × 5m × 10m but this cannot explain the absence of such a relations for the

lighter generations.

As a first approximation for the up-type quarks we should require that one

quark, the t, be hierarchically heavier that the other two generations. Subleading

effects will then deform the Yukawas to create a smaller hierarchy for the lighter

generations. To see how this might arise in F-theory we consider the superpotential

term

W ⊃ λuij 5H × 10(i)
m × 10(j)

m (5.2)

To leading order the Yukawa coupling is given by the product of the wavefunctions

at the point of intersection. Generically there can be more than one such inter-

section point which we must sum over. For example the up-type quark Yukawa is

given by

λuij =
∑
p

ψHu(p)ψQi (p)ψuRj (p). (5.3)

The Higgs term contributes a constant factor at each point but the chiral matter

terms are vectors containing an entry for each generation. This is therefore and

outer product of vectors yielding a 3× 3 matrix. In a setup where we have three
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distinct curves that do not self intersect then λu will take the form

λu =


0 A B

A 0 C

B C 0

 . (5.4)

It was shown in [18] that this setup cannot give one hierarchically heavier gener-

ation as is required for up-type quarks. In the limit of one of the mass being zero

the determinant of λu will vanish

2ABC = 0. (5.5)

We can take the solution as A = 0. Since the trace of λu vanishes the remaining

eigenvalues must be equal and of opposite sign. We therefore have not obtained

the desired result. Instead of one heavy and two light (approximately massless

here) we have two quarks that are hierarchically heavier that the last. This is an

unacceptable phenomenology and so we must reject the assumption that we have

three distinct curves that do not self intersect. Instead we take the two 10m factors

to originate from the same curve that self intersects at the Yukawa point. At first

sight this seems to contradict out discussion in section 3.2 where we argued that

the U(1)2 charges of the matter curves required three distinct curves for charge

conservation. This can be reconciled however using 7-brane monodromy [17]. The

monodromy of the brane produces a branch cut and as the matter curve crosses

it it is splits into two curves with different U(1)2 charges. From the spectral cover

viewpoint the monodromy group permutes the eigenvalues of Φ that unfold the

Yukawa enhancement. Under the breaking Gp → GGUT ×Γ the monodromy group

is a subgroup of the Weyl group of Γ. If we consider the breaking pattern [17]

E6 → SU(6)× SU(2)→ SU(5)× U(1)× SU(2) (5.6)
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then we get the matter

78→ (24, 1)⊕ (1,3)⊕ (5−6, 1)⊕ (56, 1)⊕ (10−1,2)⊕ (103,2). (5.7)

We therefore have the 10m curves transforming as a doublet of SU(2). The Weyl

group of SU(2) is Z2 so the monodromy group just interchanges these two 10’s.

Such a setup can yield to first approximation two massless generations and one

heavy generation.

The next step is to find an origin to the subleading hierarchies. A common

method for achieving this in four-dimensional GUTs is introduce and additional

global U(1) symmetry and generate the hierarchies using the Froggatt-Nielsen

mechanism [36]. In this approach it was shown that correct masses and mixing

for the quark sector could be generated if the Yukawa matrices took form

λuij = guijε
ai+bj and λdij = gdijε

ai+cj , (5.8)

where ε is a small parameter. This is usually arranged for by introducing a GUT

singlet charged under the additional global U(1) and coupling it to the matter

fields that form the Yukawa. The chiral matter fields are assigned U(1) charges to

form invariants when interacting with the new singlet. When this singlet admits a

vev and the U(1) breaks we obtain the desired form of the Yukawa matrices from

the couplings

guij

(
〈φ〉
Mpl

)ai+bj
HuQ

iujR and gdij

(
〈φ〉
Mpl

)ai+cj
HdQ

idjR. (5.9)

While this will yield the desired results for clever choices of ai, bi, and ci this

merely sidesteps the question. It is natural to desire some physical argument for

the charge assignments.

There is a natural way to incorporate Froggatt-Neilsen like symmetries in F-
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theory by considering the effect of background fluxes on the matter wavefunctions

[18, 34]. The wavefunctions have U(1) rephasing symmetry under the action of

the internal Lorentz group. The three generations can by labelled by the vanished

order of the wavefunctions at the Yukawa point, ψi ∼ z3−i, i = 1, ..3. Background

gauge flux and three form flux can distort the wavefunctions via the Aharonov-

Bohm effect and break the rephasing symmetry [34]

ψ → exp(Mij̄ziz̄j̄)ψ. (5.10)

As an example we can consider the effects of hyperflux on the chiral matter wave-

functions. Earlier we enforced the condition that the net hyperflux penetrating a

matter curve is zero in order to maintain full GUT multiplets for the chiral mat-

ter, and to facilitate doublet-triplet splitting and proton decay suppression. It was

noted in [18] however that since the hyperflux will not necessarily vanish pointwise

this can have an effect on the wavefunctions. Since the components of the GUT

multiplets have different hypercharge this will effect them all differently and yield

different Yukawas for each generation and matter type. It turns out that this has

the least effect on the heaviest generation and so the GUT scale mass relation

mτ ∼ mb is maintained but such relations for the lighter generations break down.

Including the effects of three form flux into M can generate realistic quark

flavour textures [34]. To calculate corrections coming from the distortion M it

can be expanded in two different ways. Firstly it can be expand in terms of higher

derivatives of the flux (DER) or in terms of higher powers of the first derivative

of the flux (FLX). The contributions of the various leading order and subleading

corrections to the Yukawa matrix can be summarised as [34]

λ ∼ λ0 + λDER + λFLX ∼


0 0 0

0 0 0

0 0 1

+


ε5 ε4 ε3

ε4 ε3 ε2

ε3 ε2 1

+


ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1

 , (5.11)
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where the first contribution comes from the self intersection of the 10 curve and

so is absent for down-type Yukawas. Either λDER or λFLX will dominate for a

given matter type depending on the hypercharge. For the up-type quarks λFLX

dominates whereas λDER dominates for down-type quarks. The natural scale for

these distortions is ε ∼ √αGUT ∼ 0.2. This yields the mass hierarchies

mu : mc : mt ∼ ε8 : ε4 : 1 ∼ 0.004 : 0.8 : 170

md : ms : mb ∼ ε5 : ε3 : 1 ∼ 0.006 : 0.08 : 4,

(5.12)

which, as can be seen from the beginning of this section, are remarkably close to

the true hierarchies. Finally, the CKM matrix is given by VCKM = V L
u V

L†
d . Here

VL ∼ VR are the unitary matrices required to diagonalise the Yukawa matrices.

This yields

|VCKM | ∼


1 ε ε3

ε 1 ε2

ε3 ε2 1

 ∼


1 0.2 0.008

0.2 1 0.04

0.008 0.04 1

 , (5.13)

which is again very similar to the observed result.

As a finally point on quark flavour we note that the calculation of the CKM

matrix requires that hierarchy in both the up-type and down-type Yukawa mani-

fest itself in the same basis for Q matter fields since they appear in both Yukawas.

This can be arranged by ensuring the up and down Yukawa points are close to

each other in the compactification space. While this introduces a mild fine tuning

this can be evaded by appealing to the point of E8 picture. In this case the up

and down Yukawas originate from a single E8 enhancement point and so coincide

precisely.
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5.2 Neutrinos

The observation of neutrino oscillations, solving the famous solar neutrino prob-

lem, is the first experimental evidence of particle physics beyond the Standard

Model. The mixing of the three neutrino generations requires a small but non-

zero mass for neutrinos of the order of 10−2 eV. This mass scale is far below the

electroweak scale which suggests a fundamental difference between neutrino mass

generation and that of the other leptons of the Standard Model. One popular ap-

proach is to generate a small Majorana mass using the seesaw mechanism which

requires a right-handed neutrino with a Majorana mass near the GUT scale. This

hints at a possible connection between GUTs and neutrino physics. Indeed one of

the most attractive features of the non-minimal SO(10) GUTs is the presence of

a right-handed neutrino in the spectrum.

There are apriori two possibilities for the neutrino to develop a mass: a Dirac

mass, or a Majorana mass. These are respectively generated from terms of the

form

mDirac
ij N i

LN
j
R and mMaj.

ij N i
LN

j
L, (5.14)

where NL denotes the left-handed neutrino superfield component of the lepton

SU(2) doublet, L, of the MSSM. Although the Majorana terms if forbidden by

the gauge symmetries of the MSSM it can be generated using the effective higher

dimensional operator

W ⊃ λij
(HuL

i)(HuL
j)

ΛUV

, (5.15)

where ΛUV is an energy scale close to the GUT scale. When Hu develops a vev

we obtain a Majorana mass term for the left handed neutrino. This operator can

be generated using the seesaw mechanism. If we have a large Majorana mass for

NR and this couples to NL via

W ⊃ gijHuL
iN j

R +MijN
i
RN

j
R, (5.16)
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then when the heavy NR fields are integrated out we obtain the operator (5.15)

where the scale ΛUV is set by M .

In the Dirac mass scenario the mass term arises from the Yukawa

W ⊃ λijHuL
iN j

R. (5.17)

This had traditionally been problematic in string models because order one Yukawa

couplings are the easiest to arrange for. In order to get a neutrino mass much lower

than the weak scale we must introduce a fine tuning.

It was shown in [18] that both scenarios could be accommodated naturally in

the F-theory framework. Firstly, we saw in section 3.2 that GUT singlets could

couple to GUT matter at an SU(7) enhancement point. These singlets localise on

matter curves perpendicular the brane and only intersect it at a few points. The

wavefunction of the singlet can either be exponentially suppressed or enhanced at

the Yukawa point depending on the local curvature of the GUT divisor and the

matter curve [18]. In the case where the wavefunction is suppressed a Yukawa

coupling of the right order needed for Dirac neutrino masses is realisable. This is

a direct consequence of the geometry and avoids arbitrary tuning. The Majorana

scenario can occur if we have and order one Yukawa coupling from an enhanced

wavefunction at SU(7) in addition to a large Majorana mass for NR. This can be

achieved by introducing another GUT singlet, Φ, that intersect the NR curve to

yield

W ⊃ λijHuL
iN j

R + gijΦN
i
RN

j
R. (5.18)

If Φ develops a suitably large vev we can implement a seesaw mechanism.

This Majorana setup is not completely satisfactory however. In order to

accommodate a seesaw we were forced to introduce an additional singlet and now

are left the responsibility of justifying its large vev. It was noted in [23] however

that since the Majorana mass scale of NR is close to the Kaluza-Klein scale then
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it may be possible to interpret the right-handed neutrino as a Kaluza-Klein mode.

Since these modes already have the required mass we no longer need to introduce

Φ or discuss its vev. One problem remains however. Since we have bifundamental

matter localised on the curve the Kaluza-Klein mass term actually couples NR

with N c
R, its CPT conjugate. In order to resolve this problem a covering theory

can be developed which is later under goes a Z2 quotient which identifies NR and

N c
R [23].

The participation of these Kaluza-Klein modes in interactions reduces the

mass hierarchy with respect to the quark and charged lepton sectors [23]. These

models prefer a normal hierarchy for neutrinos such that

mν1 : mν2 : mν3 ∼ ε2 : ε : 1. (5.19)

It is also possible to calculated the leptonic mixing matrix UPMNS = U l
L · (Uν

L)†,

where U l
R/L and U ν

R/L are used in biunitary transformations to diagonalise the

mass matrices of the charge leptons and neutrinos respectively. This obtains

|UPMNS| ∼


Ue1 ε

1
2 ε

ε
1
2 Uµ3 ε

1
2

ε ε
1
2 Uν3

 ∼


0.87 0.45 0.2

.45 0.77 0.45

0.2 0.45 0.87

 , (5.20)

where the diagonal elements were obtained using the constraint of unitarity. This

estimate is rather close to experimental data

|UPMNS| ∼


0.77− 0.86 0.50− 0.63 0.00− 0.20

0.22− 0.56 0.44− 0.73 0.57− 0.80

0.21− 0.55 0.40− 0.71 0.59− 0.82

 . (5.21)

In order to achieve this hierarchy it was necessary to unify all of the Yukawa

interactions into a single point of E8 which, as we have mentioned several times,

arises naturally in F-theory. This evades a problem with the SU(7) Kaluza-Klein



5.2. Neutrinos 59

Figure 5.1: Unification of all SU(5) GUT interaction into a single point of E8.
Taken from [23].

seesaw that requires the Hu and L matter curves to be identified after the Z2

quotient. The entire picture of a minimal F-theory GUT in this setup in shown

in Figure 5.1.

At the time of the writing of [23] there seemed to be growing experimental

and theoretical evidence that the U13 entry be precisely zero. The non-zero value

was however unavoidable in the F-theory model and could therefore be deemed a

prediction. Earlier this year the Daya Bay neutrino experiment reported an result

of ∼ 0.154 for U13 confirming that is non-zero [37]. While this F-theory result is

far from precise it is an encouraging sign for string model building.



Conclusion

We have introduced the subject of F-theory and developed some of its application

to GUT model building. The result is an appealing framework for interpreting

many particle physics structures as a direct result of the geometry of spacetime.

We have seen that various phenomenological considerations, such as the decou-

pling limit and GUT breaking, have introduced many constraints on F-theory

constructions. In particular we have seen the inclusion of hyperflux play a key

role in many aspects of the phenomenology. Finally, we saw that F-theory models

can reproduce realistic flavour textures for the quark and neutrino sectors.

There is still, however, much work to be done in the area of F-theory phe-

nomenology. Firstly there is ongoing work attempting to incorporate all of the

ingredients of the local model into an explicit global compactification. It is pos-

sible that there may be obstructions to some of the features of the local models

when considered on the global setting.

It is also important to consider the cosmological implications of such mod-

els. Although we have not dealt with this issue here, in order to construct a

model that fits with cosmological data it is necessary to dynamically stabilise any

compactification moduli that could affect early universe dynamics.
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Appendix A

Branes, gauge theories, and root

systems

To understand how a gauge theory may live on the world volume of a brane we

must recall the definition of a D-brane: a hypersurface on which a fundamental

string may end. From the perspective on the world volume of the D-brane the

end of the string appears as a point particle. As is well known from ordinary 4d

electromagnetism a point particle couples electrically to a one form field, Aµ. If

we a have a Dp-brane we can used Wigners little group on the brane, SO(p−1), to

determine that Aµ contributes p−1 bosonic degrees of freedom living on the brane.

We must also consider that the location of the brane in spacetime spontaneously

breaks Poincaré invariance. As a result we will have a Goldstone boson for each

broken generator. Since the brane is localise in 9 − p spacetime dimensions then

we will have 9− p Goldstone modes. These adjoint valued scalars also live on the

brane and can be viewed as embedding functions of the brane in spacetime. We

therefore have a total of 8 bosonic degrees of freedom on every Dp-brane. This

will break supersymmetry to produce 8 fermionic Goldstino modes. D-branes are

therefore 1
2

BPS objects with supersymmetric U(1) gauge theory on their world

volume.
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Figure A.1: Two separated D-branes with U(1) connected my a massive W -boson
string mode.

By introducing more branes we can furnish the degrees of freedom of more

complicated groups by allowing strings to stretch between the branes. As a first

example consider two D-branes with a string stretching between them. The brane

positions, λ1 and λ2, are labelled by the eigenvalues of the scalar living on the

branes. The setup can be seen in Figure A.1. When the branes are separated

we have a U(1)2 gauge symmetry and the string stretching between the brane

constitutes a W -boson of mass m2 ∼ (λ1 − λ2)2. When the length of the string

collapses to zero size the W -boson becomes massless and the gauge symmetry is

enhanced to U(1)2 ⊂ U(2) = SU(2) × U(1). The U(1) factor then parametrizes

the position of the centre of mass of the brane system. Since the W -boson carries

no charge with respect to this U(1) the physics decouples from it and we are left

with and SU(2) gauge symmetry. We can make this relationship between stacks

of branes and gauge symmetries more precise by considering arbitrary numbers of

branes and strings and their relationship to root systems.

A.1 An root system

If we have N parallel D-branes we can have strings stretching between each brane

as shown in Figure A.2. If we labelling each brane i = 1, ..., N we can creating an

orthonormal basis or string vectors ei = (0, ..., 1, ...0) with the 1 in the ith position
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Figure A.2: Brane construction of the AN+1 root system. N parallel D-branes
with strings stretching between them. Black strings connecting adjacent branes
correspond to simple roots whereas red string are sums of simple roots i.e. positive
roots.

such that (ei, ej) = δij. When the distance between the branes is zero this setup

corresponds precisely to the root system of the AN+1 algebra. The simple roots

are given by αi = ei−ej, i < j and correspond the to black string joining adjacent

branes in Figure A.2. The positive roots are given by sums of these simple roots

and corresponds to the red strings. The negative roots are then just strings with

the opposite orientations. We therefore have a clear geometric picture of how the

gauge symmetries arise in the case of SU(N).

We can immediately see that the adjoint Higgs mechanism can be geometri-

cally interpreted as the separation of branes from the stack. In this case we obtain

some non-zero mass W -bosons corresponding the strings stretching between the

stacks and we break SU(N)→ SU(M)× SU(N −M).

To get other classical Lie algebras from this setup we must include orientifold

planes, the fixed plane under the action of an orientifold on the spacetime.

A.2 Dn root system

In order to get Dn algebras for SO(2n) with need n D-branes and an orientifold

plane with negative RR charge, O−. The negative charge means that a string can-
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Figure A.3: Brane construction of the Dn root system. An O− plane and n parallel
D-branes with strings stretching between them. A string cannot stretch between
a brane and its image so all simple roots have same length.

Figure A.4: Brane construction of the Cn root system. An O+ plane and n
parallel D-branes with strings stretching between them. A long root is obtained
by stretching a string between n and n′.

not be stretched between a brane and its image under the orientifold. We therefore

obtain the setup of Figure A.3. While the diagram depicts strings stretching be-

tween branes and images, the physical string does not cross the orientifold so we

have all string of the same length. The simple roots are now given by αi = ei− ej

with i < j, i = 1, ..., n−1 and αn = en−1 +en as required for a Dn algebra. We see

that Dynkin diagram is reflected in the fact that three strings constituting simple

roots can attach to the n − 1 brane (from the n, n − 2, and n′ branes), whereas

only two can attach to the others.



A.3. Cn root system 65

Figure A.5: Brane construction of the Bn root system. An Õ+ plane and n
parallel D-branes with strings stretching between them. A short root is obtained
by stretching a string between n and Õ+.

A.3 Cn root system

The Cn algebra can be realised using a system of n D-branes with an orientifold

plane with positive RR charge, O+. This differs from the Dn case because we can

now stretch strings between a brane and its image and so we can obtain a longer

root by stretching a string between n and n′ (Figure A.4). The simple roots of Cn

are given by αi = ei − ej with i < j, i = 1, ..., n− 1 and αn = 2en.

A.4 Bn root system

Finally for the Bn algebra we must introduce a new type of orientifold plane, the

Õ+. This is like an O+ plane with half a D-brane on top of it. This construction

allows strings to end on the Õ+ plane to produce the configuration of Figure A.5.

The resulting positive roots are given by αi = ei − ej with i < j, i = 1, ..., n − 1

and αn = en.
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