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1 Introduction

Regarding stars it is well known that gravitational forces contract the body, whereas outward point-
ing internal forces counteract this process. If the gravitational force dominates, systems with a
highly compact mass can collapse and form a black hole. The point of origin is Einstein’s theory of
general relativity, which describes gravity as a consequence of matter and energy bending space-
time. First solutions of Einstein’s field equations, the theory’s fundamental equations, characterise
a gravitational field of a point mass. However, the solution contains an unphysical coordinate sin-
gularity at a so-called Schwarzschild surface, which is later understood as an event horizon. Such
an event horizon is a key property of black holes and has peculiar implications. E.g., in case that
any matter touches the event horizon, it is contracted to the black hole. In the context of general
relativity the black hole mass deforms the trajectory of the particle so that it is bent towards the
black hole. Then the event horizon is the point of no return and once crossed, gravity is so strong
such that it is impossible to avoid being contracted to the black hole centre where a singularity
occurs. Once inside a black hole even light rays are prevented from escaping.

Black hole formation is an important final state of gravitational collapse, which is discussed in
this dissertation for the specific case of a spherically symmetric massless scalar field. The key
formulae that govern the collapse of a massless and spherically symmetric self-gravitating scalar
field are Einstein’s field equations

Gµν + Λgµν = Rµν −
1
2

Rgµν + Λgµν = 8πGTµν, (1.1)

where the energy-momentum tensor has the form

Tµν = ψ, µψ, ν −
1
2

gµνgαβψ, αψ, β . (1.2)

Energy conservation or the contracted Bianchi identities yield the corresponding scalar field equa-
tion

�ψ = 0. (1.3)

These equations occur throughout this dissertation and are solved using numerical schemes. The
character of the field evolution depends on a critical parameter which identifies the strength of
the initial field. This could for example either be the width or the amplitude of the initial curve.
While the scalar field eventually disperses for weak amplitudes p < p∗, strong initial fields with
p > p∗ finally form a black hole. Consequently, p∗ is referred to as critical parameter or black
hole threshold amplitude. We focus on simulations at criticality to reveal critical phenomena that
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occur in this limit. Universality, i.e. that field evolutions at late times are independent of initial
data, and universal scaling behaviour are explored. The latter phenomenon means that physical
quantities like the black hole mass only depend on the deviation from the black hole threshold in
the following way:

mBH ∝
(
p − p∗

)γ (1.4)

The scaling exponent γ is also universal. In particular, its numerical value determined by fine-
tuning of initial amplitudes agrees with the value obtained from a theoretical construction of the
critical solution.

Before revealing the structure of this dissertation, we point out that large parts discuss gravita-
tional collapse in anti-de Sitter space. AdSd+2, a hypersurface embedded in d+3 dimensional flat
space R2,d+1 with metric

ds2 = −dX2
0 − dX2

d+2 +

d+1∑
i=1

dX2
i , (1.5)

is the maximally symmetric solution of Einstein’s equations with negative cosmological constant.
A representation of AdSd+2 is the hyperboloid

−X2
0 − X2

d+2 +

d+1∑
i=1

X2
i = −R2. (1.6)

AdSd+2 has peculiar geometric properties, which have significant implications on collapse simula-
tions. E.g., light rays can reach the timelike AdS boundary in finite proper time. Even though a
negative cosmological constant is not observed in reality, we have recently seen growing interest
in asymptotically anti-de Sitter spaces. Primary reason is Maldacena’s AdSd+2/CFTd+1 correspon-
dence [26], which proposes to describe a quantum mechanical force by a string theory living in
anti-de Sitter space. In particular, it is conjectured thatN = 4 U(N) Yang-Mills theory corresponds
to a ten dimensional superstring theory defined on AdS5 × S5.

The content of this dissertation is somewhat split into two halves. The first few chapters dis-
cuss gravitational collapse in anti-de Sitter space. The difficulty of the content limits parts of the
discussion to a literature review only. Any performed computations are based on numerical data
supplied externally. However, the second half is a more self-contained work. As the title of this
dissertations suggests concrete simulations, we implement a code for the spherically symmetric
collapse of a massless scalar field in MATLAB and discuss the results. The details of the structure
are as follows.

We begin with a theoretical but also descriptive introduction to critical phenomena, which gives
a flavour of what to expect in concrete simulations at criticality. Building on those results, the
construction of Choptuik’s critical solution (for Λ = 0) as proposed by Gundlach is discussed.
The idea is to impose symmetries and other characteristics expected at criticality on the solution of
Einstein’s field equations. This leads to hyperbolic boundary value problem which is then solved
numerically. The approach in the remaining chapters is qualitatively different. We again explore
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a collapse of a massless scalar field, particularly at criticality, but by fine-tuning of the amplitude
of initial data. In addition, a negative cosmological constant is assumed. Since peculiar boundary
properties of anti-de Sitter space play an important role in AdS collapse, the geometry of AdS is
discussed first. After briefly quoting the numerical scheme, we explore critical phenomena. In
particular, theoretical predictions like universality and scale invariance are reviewed. After this,
we finish the first half of the dissertation with studying stability properties of a gravitational col-
lapse in AdS. From now on, we focus on a collapse in Minkowski space. As a preparation for
the understanding of the self-written code, we provide a summary for numerical methods aimed
at individuals without any previous experience in numerical mathematics. Basic ideas such as nu-
merical integration and differentiation are explained. The starting point on solving the collapse is
then as before, except for a vanishing cosmological constant. However, the content is presented
in a different way. In particular, we place importance on explaining the algorithm, a second-order
predictor-corrector method. Regarding results, we mainly focus on critical phenomena, but also
answer on what happens if matter-geometry coupling is switched off.
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2 Critical phenomena

Choptuik’s studies [9, 10] of the spherically symmetric collapse of a massless scalar field revealed
three surprising results in regions close to the black hole threshold p∗, which are referred to as
critical phenomena. First of all, the field evolution in this limit is universal; this means that the
late time solution is independent of initial data (c.f. figure 2.12). The second phenomenon is
scale invariance (also known as self-similarity) and means that certain physical quantities obey
a periodic behaviour. More specifically, Choptuik reported an infinite number of “echoes” for
precisely critical field configurations. Finally in strong field regions, these scale-invariant quantities
only depend on the deviation (p− p∗)γ from the threshold with an exponent γ independent of initial
data.

This chapter introduces critical phenomena focused on the collapse of a massless scalar field in
spherical symmetry and is based on [20]. First of all, the key principle of universality is pointed out
from a phase space perspective. We then provide a mathematical induction to self-similarity and
the related scaling behaviour of the black hole mass mBH and the maximum curvature Rmax. For the
latter phenomenon, the analogy to critical phase transitions in statistical mechanics is described.

2.1 Universality

Due to universality, the evolution of a massless scalar field in spherical symmetry can only end in
either field dispersal or black hole formation. Choptuik provides evidence [9] that these two events
are separated by a critical parameter p∗. Evolving large numbers of fields with various initial
amplitudes p shows that weak configurations p < p∗ end in field dispersion. However, strong
initial fields with p > p∗ eventually form a black hole. Except for the deviation (p − p∗)γ from
the black hole threshold, the strong field evolution is independent of initial data. In this section we
describe the universality phenomenon from a phase space perspective.

Each point in phase space corresponds to values for e.g. initial data, 3-metric, extrinsic curvature,
and evolves in a continuous dynamical system given by Einstein’s field equations. Since the final
field configuration is either dispersion or black hole formation, these two phase space regions are
separated by a critical surface. This surface contains a critical point, which can only be reached by
a field configuration with precise amplitude p∗. Mathematically, this critical point is an attracting
fixed point. The critical surface forms itself a dynamical system with one dimension less. A small
deviation from it leads to an infinite number of perturbation modes tangent to the surface, which -
except for one non-tangential growing mode - all decrease in magnitude. In principle two unstable
modes are possible, but of importance in gravity is the case of a single growing mode.
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Fig. 2.1 Phase space picture depicting the critical surface that separates field dispersal from black hole formation. Lines
with arrows are trajectories, whereas lines without arrows correspond to the choice of initial data (black) and the black

hole threshold (red). (modified version of [20])

Fig. 2.11 Phase space picture for discrete self-similarity showing the critical solution within the critical surface.
Depending on initial data, nearly critical trajectories are either attracted or repelled by the critical solution. (modified

version of [18])
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A simplified phase space picture of black hole formation is visualised in figures 2.1 and 2.11.
We look at trajectories whose initial data are sufficiently close to the threshold value p∗. Its solu-
tion curves are attracted by the critical point and thus evolve approximately parallel to the critical
surface. While precisely critical curves move towards the critical point, all other trajectories fi-
nally change direction due to the single non-tangential mode. The key point of universality is that
this late time evolution is independent of the details of initial field configuration. Eventually, the
trajectory only depends on the deviation |p − p∗| from the threshold.

We close this section with a specific example of universality in the case of a gravitational collapse
of a massless scalar field [9]. For marginally subcritical data, Choptuik evolves four different
families of initial data, whose agreement at early times is increased by an overall scaling parameter.
Figure 2.12 shows a universal behaviour in the sense that the profiles of the families agree with each
other at late times.

Fig. 2.12 Evolution of four different families of initial data that coincide at the beginning (foreground). Due to
universality, the curves also agree with each other at late times (background). (taken from [9])

2.2 Scale invariance

The critical solution of a spherically symmetric scalar field has a discrete self-similarity behaviour.
We introduce coordinates xµ =

(
τ, xi

)
that are adapted to the symmetry. The symmetry coordinate

τ is the negative logarithm of the spacetime scale, whereas xi are the angles around the spacetime
singularity. In these coordinates the metric coefficients are given by

gµν
(
τ, xi

)
= e−2τĝµν

(
xi
)
. (2.1)

The key point is that ĝµν has a period of ∆ in the τ coordinate.
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In practice it is easier to work with continuous self-similarity, as it e.g. occurs at criticality for
a spherically symmetric perfect fluid. This means that the spacetime locally obeys a continuous
symmetry

Lξgµν = 2gµν (2.2)

for a homothetic vector field ξ. This fixes the coordinate τ to

∂

∂τ
= −ξ, (2.3)

and yields metric coefficients
gµν

(
τ, xi

)
= e−2τĝµν

(
xi
)
. (2.4)

However, various matter models include length scales that spoil scale-invariance. If this is the
case, a dimensionful parameter L is introduced and it is expanded around Le−τ. This only works
well on arbitrary small spacetime scales where length scales are negligible.

To better understand this abstract phenomenon, we again mention the collapse of a massless
scalar field as a concrete example. For the strong-field evolution close to r = 0, Choptuik discov-
ered that a set of scale-invariant quantities Z obeys the scaling relation [9]

Z∗(ρ − ∆, τ − ∆) ' Z∗(ρ, τ), (2.5)

where ∆ is a universal period length. This means that the same profile occurs over and over again
after a time ∆T has passed by. However, the scale has to be refined by a factor of e∆ with each
recurrence in order to resolve this infinite number of “echoes”.

2.3 Mass and curvature scaling

A consequence of continuous self-similarity is that near the threshold a set of scale-invariant quan-
tities Z scales proportional to |p − p∗|γ, where γ is a critical exponent independent of initial data.
In this section we derive this scaling behaviour.

For Z(x), a point in phase space up to an overall scale proportional to τ, Z(x, τ) is a solution
trajectory, which simplifies to Z(x, τ) = Z∗(x) at the critical point p∗. We linearly perturb the
solution around p∗

Z(x, τ) ' Z∗(x) +

∞∑
i=1

Ci(p) eλiτ Zi(x), (2.6)

where the expansion coefficients Ci(p) are determined by initial data. Since we focus on nearly
critical solutions, the phase space picture only allows a single non-tangential growing mode at late
times. Thus, all coefficients except for C0(p) and the related positive real λ0 vanish. We recap that
the choice of p such that C0 > 0 eventually leads to black hole formation, whereas the field finally
disperses if C0 < 0. In order to derive the scaling relation, equation 2.6 is rewritten in this late time
limit

lim
τ→∞

Z(x, τ) ' Z∗(x) +
dC0

dp
(
p − p∗

)
eλ0τ Z0(x), (2.7)
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where we also linearised around the threshold p∗. For a specific τ∗ and ε � 1, which retains
validity of the linear expansion, we set

dC0

dp
(
p − p∗

)
e−λ0τ

∗

≡ ε. (2.8)

Reinserting into equation 2.7 yields at the point τ = τ∗

Z(x, τ∗) ' Z∗(x) + εZ0(x). (2.9)

Thus, the value of Z at τ∗ is universal up to an overall scale e−τ
∗

. Since e−τ
∗

is the sole initial scale,
it follows from equation 2.8 that

Z(x, τ∗) ∝ e−τ
∗

. (2.10)

We stress that the discussion above is only valid for continuous self-similarity. For discrete self-
similarity, an additional periodic structure appears on small scales. In other words a weak function
f (z) with period ∆ is superimposed on top of the solution.

Specific examples that we encounter in this dissertation are the black hole mass scaling (c.f.
figure 7.4.44)

mBH ∝ e−τ
∗

∝
(
p − p∗

) 1
λ0 =:

(
p − p∗

)γ , (2.11)

and the maximum curvature scaling (c.f. figure 7.4.41)

Rmax ∝
(
p − p∗

)2γ . (2.12)

The factor of two in the exponent occurs due to the quadratic length scale of curvature. Further-
more, the horizon radius xH in a spherical collapse in anti-de Sitter space scales near each critical
amplitude εn as (c.f. figure 5.2)

xH(ε) ∝ (ε − εn)γ . (2.13)

In addition, similar power-law scalings hold for the black hole charge Q and the angular momentum
L.

2.3.1 Analogy with critical phase transitions

Universal phenomena also occur in statistical mechanics in the field of critical phase transitions.
In statistical mechanics macroscopic observables A and its external forces f are described by an
ensemble (a large number) of microscopic states. Statistical quantities like expectation values and
variances are related to derivatives of a partition function

Z(µ, f ) =
∑

microstates

e−H(microstate,µ, f ). (2.14)

The macroscopic parameters µ and f of the Hamiltonian determine the distribution. In this context,
phase transitions are discontinuities in observables. A concrete example is a solid-liquid-gas phase
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transition. For a fluid, the density ρliquid suddenly changes its value at a temperature T due to
the phase transition from liquid to gas state. In the neighbourhood of a further increased critical
temperature T ∗, the density difference scales as [20]

ρliquid − ρgas ∝
(
T ∗ − T

)γ , (2.15)

which is the same universal scaling relation as before.

The discussion of universal phenomena as it is structured in this chapter might suggest that it
only applies for a spherical collapse of a massless scalar field. While Choptuik’s pioneering results
in this field introduced the term critical phenomena, further research for other types of matter
showed that the presented ideas are general and extend far beyond spherical symmetry. E.g. even
in the case of collision of two black holes, whose critical solution is a circular orbit, the number of
orbits below and above the threshold obeys a scaling behaviour with a universal constant γ. This is
why we refer to [20] for a more comprehensive discussion of critical phenomena. With regard to
spherical symmetry, table one on page 31 provides a useful overview of previous work on critical
collapse for several types of matter.
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3 Critical solution

Following discovery of critical phenomena [9], we have seen growing interest in understanding
this pattern. The theoretical framework was introduced in the previous chapter. This chapter,
however, focuses on the construction of Choptuik’s critical solution. The basic idea is to construct
a solution for a spherically symmetric collapse of a massless scalar field by imposing discrete
scale-invariance and analyticity. Gundlach covers the topic in a series of papers [17–19]. The
more recent ones [18,19] are written in much detail and describe the global structure of the critical
solution. This includes, apart from revealing the structure at the past lightcone of the singularity,
an extension of the solution to the future lightcone of the singularity and consequently an analysis
of regularity/differentiability. Concerning the topic of this dissertation, however, a discussion of
the first publication [17] is more suitable.

In this paper Gundlach constructs the critical solution of a spherical symmetric collapse of a
massless scalar field. By demanding discrete scale-invariance and analyticity, the problem, gov-
erned by Einstein’s equations, is reformulated as a hyperbolic boundary value problem. We discuss
the derivation, but avoid describing the subtle numerical scheme used to solve it. However, we
stress that the region of convergence of the algorithm is small. Thus, the scheme requires input
data made available by Choptuik [9]. The obtained results then confirm Gundlach’s ansatz. The
value of the echoing period ∆, which is the eigenvalue of the hyperbolic boundary value problem,
agrees with Choptuik’s results and so does the critical exponent. In addition, a comparison of the
spacetime variables shows that the critical solution improved the precision of Choptuik’s spacetime
by one to two orders of magnitude [17].

3.1 Construction of critical solution

A scalar field collapse in spherical symmetry is governed by Einstein’s field equations

Gµν = 8πG
(
φ, µφ, ν −

1
2

gµνgαβφ, αφ, β

)
, (3.1)

and the corresponding scalar field equation

φ , c
, c = 0. (3.2)

The metric, whose gauge freedom is fixed by the condition α(t, r = 0) ≡ 1, is chosen as proposed
by Choptuik [9]:

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2dΩ2 (3.3)
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We then introduce auxiliary matter fields

X(t, r) =
√

2πG
r
a
φ, r , Y(t, r) =

√
2πG

r
α
φ, t. (3.4)

Due to discrete scale invariance, we have a logarithmic symmetry of Z(t, r) = Z(te∆, re∆), which is
simplified to a periodicity in Z by defining

τ ≡ ln(±t), ξ ≡ ln
(
±r
t

)
. (3.5)

This yields a symmetry of
Z(τ, ξ) = Z(τ + ∆, ξ). (3.6)

This discrete homotheticity can be geometrically thought of as Lie-dragging the metric alongside
the vector field ∂

∂τ (c.f. beginning of section 2.2). However, there is an arbitrariness in this vector
field which has to be described by a periodic function ξ0(τ). Thus, defining a new coordinate
ζ ≡ ξ − ξ0(τ) and rescaling the time coordinate to ϕ ≡ 2πτ

∆
, yields the symmetry

Z(ϕ, ζ) = Z(ϕ + 2π, ζ). (3.7)

Applying these definitions of variables and substituting the metric 3.3 into the field equations,
leads to a set of equations which is solved for the field’s ζ-derivatives. However, the equations are
“messy” and hence better expressed in terms of a new field g ≡ a

α eξ0(τ) and following abbreviations:

X± ≡ X ± Y, z ≡
(
1 +

2π
∆

dξ0

dϕ

)−1

, D ≡ z−1 eζ g (3.8)

B± ≡
1
2

(1 − a2)X± − a2X±X2
∓ − X∓ ± z

2π
∆

X± , ϕD (3.9)

The evolution equations then have the form of

a, ζ =
1
2

a[(1 − a2) + a2(X2
+ + X2

−)], (3.10)

g, ζ = g(1 − a2), (3.11)

X+ , ζ =
B+

1 + D
, (3.12)

X− , ζ =
B−

1 − D
. (3.13)

The corresponding constraint equation is

z
2π
∆

a, ϕ
a

=
1
2

[(1 − a2) + a2(X2
+ + X2

−) + a2D−1(X2
+ − X2

−)]. (3.14)
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By interpreting ϕ as the angular coordinate in a polar coordinate system and by keeping ζ small, the
equations above describe a constrained Cauchy problem. Regularity of the metric requires a = 1
at (ζ = −∞, r = 0). In order to specify data obeying the conditions above, we need another free
function Y0(ϕ) which is determined by the following expansion in terms of eζ :

Y(ϕ, ζ) ≡ Y0(ϕ) eξ0(ϕ) eζ + O(e3ζ) (3.15)

Having assembled all the prerequisites, we aim to formulate equations 3.10-3.13 as a hyperbolic
boundary value problem. As one approaches the point D = 1 with increasing ζ, a degeneracy
occurs. This region is referred to as “sonic” line and, since radial null geodesics obey

dζ
dϕ

= −
∆

2πz
(−1 ± D−1), (3.16)

it is the intersection of a null geodesic and a surface of constant ζ. However, the solution can be
analytically continued beyond this sonic line by shifting it to ζ = 0 and power-expanding in ζ.
Regular data close to ζ = 0 is then determined by ξ0(ϕ) and another free function X+0(ϕ)

X+0(ϕ) ≡ X(ϕ, ζ = 0) + Y(ϕ, ζ = 0). (3.17)

This framework gives rise to a hyperbolic boundary value problem on a rectangle, whose two sides
are identified by a cylinder. After choosing three independent fields, e.g. g, X+ and X−, a count of
degrees of freedom suggests a locally unique solution.

Gundlach solved this problem numerically using pseudo-spectral and relaxation methods [28].
However, since we do not implement his algorithm, we waive a discussion and refer to [17, 18].
Instead of that we find it more important to discuss input data and results. Trial simulations indicate
a small region of convergence. As a consequence, any input data has to be sufficiently close to
the critical solution to ensure convergence. Since Gundlach aims to construct Choptuik’s critical
solution, it is obvious to set any input data to Choptuik’s numerical results for a nearly critical
collapse. More specifically, Choptuik provided initial data [11]

Y0 = −2.3 sinϕ − 0.6 sin 3ϕ, ∆ = 3.44. (3.18)

Before quoting any results, we once again stress the difference between Choptuik’s pioneer
work [9, 10] and Gundlach’s papers [17–19]. While Choptuik solves a collapse of a spherically
symmetric scalar field by fine-tuning of Cauchy-data, Gundlach imposes symmetries found by
Choptuik and constructs the critical solution as a hyperbolic boundary value problem, which is
then solved numerically. The results confirm this ansatz to find the critical solution. According to
table 1 in [17] the solution’s echoing period is determined to ∆ = 3.4439 ± 0.0004. This result
does not only agree with [9,10], but it is more accurate and thus has a smaller error estimate. More
specifically, a comparison of the fields a, α, X, and Y shows that Gundlach’s construction of the
critical solution improved the precision of Choptuik’s spacetime by one to two orders of magnitude
[17].
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3.2 Critical exponent

In this section the critical exponent γ is determined by using Gundlach’s construction of the critical
solution. The ansatz is as in section 2.3, except for an adapted coordinate system. We interpret Z
as a shorthand notation for (a, X+, X−, g) and then linearly perturb the critical solution to get

δZ(τ, ζ) =

∞∑
i=1

Ci eλiτ δiZ(τ, ζ), (3.19)

where the expansion coefficients Ci are given by initial data. The range of the complex frequencies
of the modes λi is limited to 0 ≤ Im λi <

π
∆

. It is important that the perturbation ansatz 3.19 breaks
discrete homotheticity such that δZ no longer obeys this symmetry. However, homotheticity with
period ∆ of each single mode remains unbroken.

In order to determine the critical exponent, the variation of Z is expanded to yield an equation
for each component δia, δiX±, δig. The idea is to start with

δZ, ζ = A δZ + B δZ, τ, (3.20)

which then leads to an equation for δiZ:

δiZ, ζ = (A + λiB) δiZ + B δiZ, τ (3.21)

The resultant equations are tedious, as is the numerical method used to solve it. This is why we
refer to [17] for those details. Instead of that we better focus on results.

Since we are analysing scaling behaviour at criticality, we are interested in growing modes close
to the singularity at τ = −∞. This limits frequencies to the left half plane of λi. As already de-
scribed in section 2.3, from a phase space perspective only a single non-tangential growing mode
is expected, whereas all other modes should decrease and become irrelevant. Numerical results
[17, 18] indeed confirm this. More specifically, the frequency of the unique growing mode is
λ0 = −2.674 ± 0.009. Its reciprocal value determines the critical exponent to γ = 0.374 ± 0.001,
which numerically agrees on all digits beyond the decimal point with the most accurate value [21]
experimentally found so far.

In summary, success of the critical solution is connected to Choptuik’s discovery of critical
phenomena. By imposing the newfound discrete symmetry, a hyperbolic boundary value problem
is constructed and then numerically solved. Owing to a small region of convergence, this requires
an estimation [9] of the period ∆ and the free function Y0 as input. The critical solution’s values of
both the echoing period ∆ and the scaling exponent γ numerically agree with the values obtained
by fine-tuning of initial data. In particular, precision of knowledge of the Choptuik spacetime is
increased by one to two orders of magnitude.
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4 Collapse in anti-de Sitter space

In this chapter we explore gravitational collapse in anti-de Sitter space. Until recently simulations
were only performed in 2+1 dimensions and entirely focused on solutions before any reflection off

the boundary [29]. The remaining features are treated on its own in chapter 5.
The structure is as follows. After an introduction to Einstein’s equations, we recap important

features of the geometry of AdS. We then quote metric and evolution equations, which also includes
a discussion of initial and regularity conditions. Since no concrete simulation is performed in
this chapter, the numerical scheme - except for singularity excision - is only briefly mentioned.
Therefore, we place more importance on results. As proposed in chapter 2, we find a scaling
behaviour with a universal exponent γ. Furthermore, it is pointed out why the associated mass
scaling in AdS is difficult to measure. As a consequence, the maximum Ricci curvature scalar is
used instead to determine γ. After introducing self-similarity adapted coordinates, we observe the
field’s second derivative in terms of those. It turns out that the profiles of Gaussian, Gaussian-
squared and kink initial data are indistinguishable in the critical limit.

4.1 Introduction

Einstein’s equations in 2+1 dimensions for a circularly symmetric massless scalar field with cos-
mological constant Λ ≡ − 1

l2 are

Gµν + Λgµν = Rµν −
1
2

gµνR + Λgµν = 4πTµν. (4.1)

The scalar field’s energy-momentum tensor is

Tµν = φ, µφ, ν −
1
2

gµνgαβφ, αφ, β. (4.2)

Its orbitally symmetric field equation is given by

�φ = 0. (4.3)

Since we focus on a non-rotating collapse, the scalar field only depends on radial r and time t co-
ordinate in symmetry-adapted coordinates (r, t, θ). Before quoting metric and evolution equations,
we find it important to discuss the geometry of anti-de Sitter space. Some of its geometric features,
especially causal structure and boundary properties, are peculiar and require special treatment.
Hence, basic knowledge of AdS geometry is essential before we go any further.
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4.1.1 Geometry of AdS

This section is based on [1,4] and reviews the geometry of AdS in order to prepare for a simulation
of a gravitational collapse. Key properties of AdS, e.g. that light rays, as seen by an observer on a
geodesic, travel to and bounce off the timelike boundary in finite proper time, are only understood
after discussing AdS geometry. Apart from acting as a preparation for later chapters, geometric
features of the AdS/CFT correspondence are pointed out. Even though the actual correspondence
(refer to [1]) is not included in this dissertation, it is important to motivate the conjecture from a
geometric point of view; particularly because the origins of research in AdS dynamics lie in this
correspondence.

We begin by discussing conformal structure of Minkowski space to eventually point out that the
isometry group of AdSd+2 is the conformal symmetry of flat space R1,d. It is further shown that
a conformal transformation maps a half plane of R1,d into a triangular region, whose maximally
extended space has the geometry R× Sd of the Einstein static universe. We then define AdS space,
discuss its properties and find that the conformal compactification of AdS has the geometry of one
half of the Einstein static universe, where its dimension is higher by one than in the flat space case.
In conclusion, the boundary of the conformal compactification of AdSd+2 equals the conformally
compactified R1,d space, which is a key point in the AdSd+2/CFTd+1 correspondence.

Conformal transformation

A conformal transformation is a change of a physical metric ds2 by a factor Ω ∈ R which then
yields an unphysical metric

ds′2 = Ω2ds2. (4.4)

Since the sign of a vector’s norm does not change under such a transformation, causal structure,
i.e. the notion of timelike and spacelike, is invariant. We are dealing with infinite spaces and thus
conformal transformations that compactify these spaces such that the boundaries are mapped to
finite distance are of particular interest. A first example is two-dimensional Minkowski space R1,1.

Minkowski space

The two-dimensional Minkowski metric is

ds2 = −dt2 + dx2, −∞ < t, x < ∞. (4.5)

We conformally map R1,1 into a (compact) rectangle (c.f. figure 4.1.1) by a series of coordinate
transformations

ds2 = −dudv =
1

4 cos2 û cos2 v̂

(
−dτ2 + dθ2

)
, (4.6)

where we changed variables (u = t − x, v = t + x) in the first and (u = tan û, v = tan v̂; û = τ−θ
2 , v̂ =

τ+θ
2 ) in the second step. The former spatial infinities x = ±∞ are mapped to finite distance at the

corners of a rectangle (τ = 0, θ = ±π). We refer to any conformally compactified space with same
boundary structure as asymptotically flat spacetime.
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Fig. 4.1.1 The conformal compactification of two-dimensional Minkowski space in (τ, θ) coordinates is a rectangle.
The (t, r) half plane of higher-dimensional Minkowski space is conformally mapped into the red triangle.

For higher-dimensional Minkowski space R1,d, the physical metric in spherical coordinates is

ds2 = −dt2 + dr2 + r2dΩ2
d−1, (4.7)

where dΩ2
d−1 is the line element of the d-1 sphere. As before, a similar series of coordinate trans-

formations yields

ds2 =
1

4 cos2 û cos2 v̂

(
−dτ2 + dθ2 + sin2 θ dΩ2

d−1

)
. (4.8)

Since this metric diverges at either û = π
2 or v̂ = π

2 , we multiply by a conformal factor Ω which
vanishes at the boundary as it is required. This yields the unphysical metric

ds′2 = −dτ2 + dθ2 + sin2 θ dΩ2
d−1, (4.9)

which again has same causal structure. We are interested in its maximal extension, so the confor-
mally scaled metric is analytically extended to

0 ≤ θ ≤ π, −∞ < τ < ∞. (4.10)

If we further identify the points (τ = 0, θ = 0) and (τ = 0, θ = π) with the poles of Sd, then
the geometry of the extended space is R × Sd and therefore equals the Einstein static universe. In
particular, the maximally compact subgroup SO(2) × SO(d+1) of the conformal SO(2,d+1) group
of R1,d is the isometry of the Einstein static universe.
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Anti-de Sitter space

AdSd+2 is a hypersurface in d+3 dimensional flat space R2,d+1 with metric

ds2 = −dX2
0 − dX2

d+2 +

d+1∑
i=1

dX2
i . (4.11)

AdSd+2 is then defined by

−X2
0 − X2

d+2 +

d+1∑
i=1

X2
i = −R2, (4.12)

which is a hyperboloid (c.f. figure 4.1.11). To derive the AdS metric, we find that the following
parameterisation (so-called global coordinates on AdS) solves equation 4.12

X0 = R cosh r cos τ,

Xd+2 = R cosh r sin τ,

Xi = R sinh r Ωi,
∑

i

Ω2
i = 1,

(4.13)

where r ≥ 0 and 0 ≤ τ < 2π. Substituting these global coordinates into 4.11 yields the AdSd+2
metric

ds2 = R2
(
− cosh2 r dτ2 + dr2 + sinh2 r dΩ2

)
= R2 sec2 θ

(
−dτ2 + dθ2 + sin2 θ dΩ2

)
,

(4.14)

where we changed coordinates sinh r = tan θ which limits the range of θ to 0 ≤ θ ≤ π
2 .

Since the AdS hyperboloid has the geometry S1 ×Rd+1, its topology is not simply connected. In
particular, since S1 represents a closed curve in time direction (c.f. figure 4.1.11), the spacetime
is not causal. Thus, we have to decompactify the τ coordinate to −∞ < τ < ∞ to remove closed
timelike curves. So from now on, we regard this universal cover of AdS instead of AdS itself.
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Fig. 4.1.11 AdS2 is a one-sheeted hyperboloid in R2,1. Due to closed timelike curves along τ, we usually unwrap it
along the closed circle to allow proper causal structure. This is referred to as universal cover of AdS.

The isometry group of AdSd+2 is SO(2,d+1) and has the maximally compact subgroup SO(2)
× SO(d+1). The symmetry properties again resemble the ones of the Einstein static universe. To
investigate this further, we already have transformed the AdSd+2 metric to θ coordinates in equation
4.14. Conformally rescaling yields

ds′2 = −dτ2 + dθ2 + sin2 θ dΩ2, (4.15)

where we stress that the limited range of θ is 0 ≤ θ < π
2 . Thus, the conformal compactification of

AdS corresponds to one half of the Einstein static universe. Comparing to conformally compacti-
fied Minkowski space, the dimension of the Einstein static universe related to AdS is one dimension
higher. It turns out that the boundary of the conformal compactification of AdSd+2 equals the con-
formally compactified Minkowski space R1,d. The AdSd+2/CFTd+1 correspondence is based on
this relationship and we again refer to [1] for a detailed discussion.

We finish this section with a remark about boundary properties of the AdS geometry. The bound-
ary C at θ = π

2 is a timelike surface, which is quite different from what we are used to work with.
In particular, interior and boundary behaviour are not related. In other words information is con-
sistently entering from this timelike boundary. As a consequence, it is not possible to evolve the
solution on a specific time slice to the whole future. The Cauchy problem on AdS is therefore not
well-posed unless we set boundary conditions on the timelike θ = π

2 boundary.

4.1.2 Metric and evolution equations

As just discussed, the geometry of AdS has unusual properties which make numerical simulations
of a gravitational collapse in 2+1 dimensional anti-de Sitter space more challenging. E.g., the
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timelike null infinity surface C demands for Dirichlet conditions for the scalar field φ. It turns out
that a reasonable choice of metric is [29]

ds2 =
e2A(r,t)

cos2(r/l)

(
dr2 − dt2

)
+ l2 tan2(r/l) e2B(r,t) dθ2. (4.16)

Owing to the symmetry, the metric functions A(r, t) and B(r, t) only depend on radial r and time t
coordinate. The singularity of the metric at null infinity (r = πl

2 ) is cured by choosing values of A
and B on C such that the space asymptotically equals anti-de Sitter. Obviously, the metric solves
Einstein’s equations 4.1 for Tµν = 0 if we set A = B = 0. Using this metric and defining gradients
Φ(r, t) = φ,r and Π(r, t) = φ,t of the scalar field, Einstein’s field equations expand into

−A,tt + A,rr +
1 − e2A

l2 cos2(r/l)
+ 2π

(
Φ2 − Π2

)
= 0, (4.17)

−B,tt + B,rr − B2
,t + B,r

(
B,r +

2
l cos(r/l) sin(r/l)

)
+

2
(
1 − e2A

)
l2 cos2(r/l)

= 0, (4.18)

B,rr − A,tB,t + B,r

(
B,r − A,r +

1 + cos2(r/l)
l cos(r/l) sin(r/l)

)
+

+
1 − e2A

l2 cos2(r/l)
−

A,r
l cos(r/l) sin(r/l)

+ 2π
(
Φ2 + Π2

)
= 0,

(4.19)

B,tr − A,t

(
B,r +

1
l sin(r/l) cos(r/l)

)
+ B,t

(
B,r − A,r +

cot(r/l)
l

)
+ 4πΦΠ = 0. (4.20)

The Ricci curvature scalar has the form

R =
4π cos2(r/l)

e2A l2
(
Φ2 − Π2

)
−

6
l2
. (4.21)

While the former two field equations describe the evolution, the latter two characterise constraints.
Since we only have to determine two unknown variables, it is sufficient to solve for A and B in 4.17
and 4.18. Equations 4.19 and 4.20 are then used to monitor the error. The set is completed by the
scalar field equation (

tan(r/l) eB Φ
)
,r
− tan(r/l)

(
Π eB

)
,t

= 0. (4.22)

Regularity and initial conditions for the equations are quoted in connection with the numerical
scheme. Both of which is discussed in the next section.

4.2 Numerical scheme

We aim to keep this section brief, primarily because we do not perform any concrete simulations.
We quote the numerical scheme together with its initial and regularity conditions used in [29] and
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highlight numerical challenges that Pretorius and Choptuik have experienced. Finally, detecting
black holes and consequently excising singularities is discussed in more detail1.

The subset 4.17 and 4.18 of Einstein’s equations and the scalar field equation 4.22 are finite-
differenced on a uniform grid and then solved by a second-order predictor-corrector method. The
number of grid points is chosen such that the Courant factor is 0.1. The integration moves from
r = 0 outwards, initially A,t(0, 0) = 0. It turns out that high-frequency components and solutions
close to the boundary at r = πl

2 are numerically challenging [29]. While the former is resolved
by Kreiss-Oliger dissipation [25], instabilities in proximity to the boundary spread out and lead
to failures in the black hole formation process. Pretorius and Choptuik fixed this issue by using
higher-order finite-differencing (6-point 4th-order approximation) and by solving for the metric
value A in equation 4.20 (instead of 4.17 and 4.18) in the second to last step before the boundary.

4.2.1 Initial and regularity conditions

The system of equations 4.17, 4.18 and 4.22 requires initial conditions for Φ(r, 0), Π(r, 0), B(r, 0)
and B,t(r, 0) in order to solve numerically for A(r, 0) and A,t(r, 0). Since we consider evolutions
without any trapped surfaces, we can set B,t(r, 0) = B(r, 0). To confirm that critical phenomena
are independent of the family of the initial field, we examine the collapse of an ingoing nth power
Gaussian curve (c.f. figure 4.2.1)

φ(r, 0) = Pe((r−r0)/σ)2n
, (4.23)

and an ingoing kink-like curve with gradient

∂φ

∂r
(r, 0) =

−2P
√
σ sin(r/l) cos(r/l)

(
2(r − r0)(1 − 2 sin2(r/l)) − l sin(r/l) cos(r/l)

)
πl

(
σ sin4(r/l) cos4(r/l) + (r − r0)2

) e−(r−r0)2/σ2
.

(4.24)

1 This subsection is covered in more detail because excision strategies are not contained in the self-written code (c.f.
chapter 7) and thus do not occur again in this dissertation.
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Fig. 4.2.1 Gradient Φ(r, 0) = φ,r(r, 0) for Gaussian (black) and kink-like (red) initial data centered around r = 0.25.

Regularity of A(r, t), B(r, t), Φ(r, t) and Π(r, t) at r = 0 and r = πl
2 requires the following Dirichlet

and Neumann boundary conditions:

A,t(0, t) = B,t(0, t), A,t

(
πl
2
, t
)

= A
(
πl
2
, t
)

= 0, (4.25)

A,r(0, t) = 0, A,r

(
πl
2
, t
)

= A
(
πl
2
, t
)

= 0, (4.26)

B,r(0, t) = 0, B,r

(
πl
2
, t
)

= 0, (4.27)

Φ(0, t) = 0, Φ

(
πl
2
, t
)

= 0, (4.28)

Π,r(0, t) = 0, Π

(
πl
2
, t
)

= 0. (4.29)

Variables A and B are overdetermined and thus not all of the constraints above have to be imple-
mented. A possible choice (as in [29]) is to place Neumann boundary conditions at the origin and
Dirichlet conditions at the C boundary. The remaining constraints are then checked for consistency.
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4.2.2 Singularity excision

For supercritical initial data, a spacelike [7] curvature singularity forms inside an apparent horizon.
Eventually, diverging metric variables cause the simulation to fail. Whilst black hole excision
techniques cut out significant regions inside the event horizon, singularity excision only removes
the causal future of the singularity and thus resolves its surrounding structure.

Developing black holes are indicated by the formation of trapped surfaces, which occur if

1 + l sin(r/l) cos(r/l) (B,r + B,t) < 0. (4.30)

At the apparent horizon, the black hole mass mBH can be estimated from a general mass aspect
function M(r, t), which is derived from the BTZ metric

ds2 = −

(
r̂2

l2
− M

)
dt̂2 +

1
r̂2/l2 − M2 dr̂2 + r̂2dθ2. (4.31)

In these coordinates the mass M is defined by

|∇r̂|2 ≡
r̂2

l2
− M(r̂, t̂). (4.32)

Switching back to (r, t) coordinates, 4.32 yields

M(r, t) =
(
tan2(r/l)e2A + l2 sin2(r/l)(B2

,t − B2
,r) − 2l tan(r/l)B,r − sec2(r/l)

)
e2(B−A). (4.33)

Eventually, the black hole mass mBH at the apparent horizon rAH is approximated by

mBH ≈ tan2(rAH/l) e2B(rAH , t). (4.34)

Equation 4.34 will later be useful to confirm the scaling behaviour of the black hole mass.
If black hole formation is detected, the values of the metric variables have to be carefully ob-

served. Once those exceed a critical threshold, the simulation breaks down unless singularity exci-
sion is implemented: Removing grid points, whose metric variables are sufficiently large, together
with its direct surroundings (∼ 5 grid points) avoids an otherwise imminent crash. At the boundary,
finite-differenced operators have to be either adapted forward or backward to become independent
of the excised region. In addition, we remove the unphysical causal future of the excised region.
In theory multiple excised zones are possible, but in 2+1 dimensional AdS collapse it is sufficient
to cut out one region. Depending on choice of coordinates and metric, it can be challenging to im-
plement singularity excision. However, owing to conventions used in [29], this is relatively simple.
E.g., since radial null curves have constant speed, the excised causal future expands by one grid
point per time step. Anyway, a check that should be done on any singularity excision scheme is to
ensure that evolutions with a single excised light cone yield the regular solution for small r.
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4.3 Results

The results [29] of a 2+1 dimensional collapse in AdS mainly focus on the black hole threshold
before any reflection off the C boundary. After a brief introduction on how to locate the threshold,
we explore the mass behaviour in terms of the initial field amplitude p. Of particular interest is
to demonstrate universal scaling behaviour. However, it turns out that mass scaling only yields
an estimation of the value of the scaling exponent. Since it is more accurate, the maximum Ricci
curvature scalar Rmax is used to determine the exponent γ. We further discuss critical phenomena by
showing that the field function Φ(Z,T ) in the critical limit, where (Z,T ) are self-similarity adapted
coordinates, is independent of initial field configuration. Note as an aside that we set Λ = −π

2

4
such that the boundary C is at r = 1. While this is convenient for visualisation, the solution can be
extrapolated to other (non-zero) values of Λ by a rescaling of metric variables and scalar fields.

4.3.1 Critical regime and mass behaviour

We evolve ingoing Gaussian and kink curves and discuss the asymptotic mass behaviour M(p). To
locate the threshold value p∗, large numbers of simulations with different amplitudes are performed.
Then the amplitude p∗ is the field strength that separates field dispersal from black hole formation.
Since only the initial strength of the field is important, one could in principle also change the width
of the curve. Both leads to the same distinctive asymptotic mass behaviour [29]. We stress once
again that the discussion in this chapter only refers to black hole formation before any reflection off

theC boundary. Resolving AdS collapse after several reflections off the boundary is mathematically
much more challenging. The pioneer work in this field [6] is reviewed in chapter 5.

Fig. 4.3.1 Asymptotic mass (dots) and initial mass estimate (line) at the apparent horizon as a function of the initial
amplitude p for a Gaussian curve (n = 1) where Λ = − π2

4 . The mass is only estimated in case of formation of an
apparent horizon within simulation time. (taken from [29])2

2 Since future figures in this chapter are taken from the same source [29], we only explicitly mention it once.
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Figure 4.3.1 shows the asymptotic mass as a function of initial amplitude p. As a reference for
future figures in this chapter, the Gaussian curve with n = 1 has width 0.05 and is centered around
r = 0.2, the cosmological constant is Λ = −π

2

4 . The amplitude is tuned from fairly subcritical to
supercritical values. In case that an apparent horizon forms within the simulation time, the mass
is estimated at the AH by equation 4.34. We are particularly interested in these values for slightly
supercritical amplitudes. The strong increase above p∗ supposes a universal scaling behaviour
proportional to (p − p∗)2γ.

In [29] the exponent γ = 1.2 ± 0.05 is determined by the maximum Ricci curvature’s scaling
behaviour (c.f. section 4.3.2). The mass scaling discussion is slightly vague and conjectures that it
roughly obeys the same scaling exponent. Thus, using their results, we checked that the slope in
double log scale agrees with this numerical value of γ. However, the values only coincide over a
short range very close to the threshold. The physical reason why the mass scaling is hard to observe
lies in the reflecting boundary properties of AdS. Any outgoing components that do not collapse in
first instance bounce off the boundary and falsify the measurement.

4.3.2 Universal phenomena and scaling exponent

To confirm universality, we begin by quoting (Z,T ) coordinates that are well-adapted to self-
similarity. In addition, a plot of the scale-invariant function φ,ZZ(Z,T ) reveals the wave nature
of the critical solution. We then show that profiles of Gaussian, Gaussian-squared and kink initial
data are locally indistinguishable in the critical limit. This section finishes with a determination of
the scaling exponent γ, which is as expected independent of initial data.

To reveal the underlying continuous self-similarity, we introduce adapted coordinates. Numeri-
cal experimentation yields the (unique) scale-invariant variable [29]

x =
r̂
tc
, r̂ = l tan(r/l) eB, where (4.35)

tc is proper time measured by an observer along the r = 0 axis. The adapted coordinates are then
expressed in log scale

Z ≡ log(r̂), T ≡ − log(tc). (4.36)

The outcome of switching to (Z,T ) variables becomes clear in figures 4.3.2 and 4.3.21 which show
the second derivative of the field φ(Z,T ) for the same nearly critical solution as before. Apart from
revealing the solution’s wave nature, the first figure already suggests a universal behaviour. This is
confirmed in the second figure, which shows an enlargement of the critical regime. In this limit,
profiles of Gaussian, Gaussian-squared and kink initial data are indistinguishable and thus confirm
universality.
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Fig. 4.3.2 The field’s second derivative φ,ZZ(Z,T ) shows a universal wave behaviour. (initial data as before)

Fig. 4.3.21 Compares φ,ZZ(Z,T ) for marginally subcritical Gaussian, Gaussian-squared and kink initial data in the
critical limit at T = 13. The profiles are indistinguishable.

Since the scaling behaviour of the mass estimate is hard to measure, the scaling exponent γ is
determined by the maximum Ricci curvature scalar Rmax in the critical regime. According to [20],
we expect a behaviour of

Rmax ∝
(
p∗ − p

)2γ . (4.37)

The factor of two occurs due to the quadratic length scale of curvature. Figure 4.3.22 shows a
double log scale plot of Rmax as a function of (p∗− p). The linear regression functions for Gaussian

28



and kink initial data have slope k1 = −2.35 and k2 = −2.48. Even though the uncertainties are larger
than in the non-AdS simulation (c.f. chapter 7), the results confirm a universal scaling behaviour
with γ = 1.2 ± 0.05. Since previous work focused on other types of matter, a comparison of the
numerical value is not possible.

Fig. 4.3.22 Maximum Ricci curvature scalar Rmax as a function of the aberration from the threshold in double log scale
for nearly critical data. The least square method yields approximately coinciding slopes, which fix the value of the

scaling exponent to γ = 1.2 ± 0.05.

At the end of this chapter we remind us once again that peculiar geometric features of AdS
make simulations more challenging. Even though the choice of coordinates and metric in [29]
is tailored to particular needs of 2+1 dimensional AdS collapse, it is still difficult to observe e.g.
mass scaling. Therefore, the scaling exponent is better determined by the maximum Ricci curvature
scalar. The same approach is taken in chapter 7 where we solve the analogue non-AdS problem. In
the context of universality we emphasise that transformation to self-similarity adapted coordinates
(Z,T ) revealed identical profiles in the critical regime for the field’s second derivative for Gaussian,
Gaussian-squared and kink initial data.
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5 Weakly turbulent instability of AdS

While Minkowski and de Sitter space are stable under small perturbations, the maximally symmet-
ric solution of Einstein’s equations with negative cosmological constant is qualitatively different.
Even though no-flux conditions on the timelike boundary ensure that anti-de Sitter space is asymp-
totically stable, local stability of AdS has until recently only been discussed in [2]. However a
short time ago, Bizoń and Rostworowski took up this work and presented further results [6]. In fact
they investigate the collapse in AdS similarly as in chapter 4, but with the difference of observing
long-term field evolutions. Concretely, up to 10 reflections off the timelike boundary are resolved.

The second part of this paper entirely focuses on stability issues. We kept the structure similar to
the original work due to rather complicated contents. Since an outline of the structure is found at the
beginning of each section, we only state key results at this point. Bizoń and Rostworowski discover
that the Ricci curvature scalar at the centre, a good indicator of stability, grows exponentially. Since
the steady increase can not be cured by a rescaling of ε−2, it is conjectured that anti-de Sitter space is
unstable. By applying nonlinear perturbations to the solution, it turns out that unremovable resonant
modes are responsible for this steady increase. Previous work on nonlinear wave equations on
bounded domains [8,14] suggests that this is connected with a shift of the energy spectrum towards
high frequencies, which is indeed confirmed at the end of the chapter.

5.1 Metric and evolution equations

We solve the 4 dimensional Einstein equations with negative cosmological constant Λ for a real
spherically symmetric massless scalar field

Gµν + Λgµν = 8πG
(
∂µφ∂νφ −

1
2

gµν(∂φ)2
)
. (5.1)

The scalar field equation is
gµν∇µ∇νφ = 0. (5.2)

The metric chosen in [6]

ds2 =
l2

cos2 x

(
−Ae−2δdt2 + A−1dx2 + sin2 x dΩ2

)
, where l2 = −

3
Λ
, (5.3)

depends on the variables A(t, x), δ(t, x) and φ(t, x). Its values for the pure AdS solution are A(t, x) =

1, δ(t, x) = 0 and φ(t, x) = 0. At the boundaries, smoothness and finiteness of the total mass give
rise to a power series expansion of the metric variables. If we specify t to be proper time at the
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centre, which implies δ(t, 0) = 0, then the expansion close to x = 0 depends on a single function
f0(t):

φ(t, x) = f0(t) + O(x2), δ(t, x) = O(x2), A(t, x) = 1 + O(x2) (5.4)

The approximation near x = π
2 is better expressed in terms of the auxiliary variable ρ = π

2 − x and
is determined by two free functions f∞(t) and δ∞(t) to

φ(t, x) = f∞(t)ρ3 + O(ρ5), δ(t, x) = δ∞(t) + O(ρ6), (5.5)

A(t, x) = 1 − 2Mρ3 + O(ρ6). (5.6)

Since we consider the universal cover of AdS, the range of coordinates is (−∞ < t < ∞, 0 ≤ x < π
2 ).

Defining auxiliary variables (Φ = ∂xφ,Π = A−1 eδ ∂tφ) and substituting the metric 5.3 into the
field equations, yields the wave equations

∂tΦ = ∂x(A e−δ Π), ∂tΠ =
1

tan2 x
∂x(A e−δ Φ tan2 x), (5.7)

and constraint equations

∂xA = (1 − A)
1 + 2 sin2 x
sin x cos x

− sin x cos x A(Φ2 + Π2), (5.8)

∂xδ = − sin x cos x (Φ2 + Π2), (5.9)

∂tA + 2 sin x cos x A2 e−δ ΦΠ = 0. (5.10)

While equations 5.7-5.9 are solved with a 4th-order finite-difference scheme, accuracy is monitored
by the momentum constraint 5.10. Even though the problem is numerically challenging, Bizoń and
Rostworowski do not reveal any details of their code. They only mention the use of the method of
lines together with a 4th-order Runge-Kutta scheme to solve 5.7. As usual, the metric variables are
corrected in each step by the constraints 5.8 and 5.9.

5.2 Results

We consider solutions to Einstein’s equations for Gaussian-like initial data

Φ(0, x) = 0, Π(0, x) =
2ε
π

exp
(
−

4 tan2 x
π2σ2

)
, where σ =

1
16
. (5.11)

As in chapter 4, the field evolution collapses for amplitudes above a critical value ε0. This is
indicated by the formation of an apparent horizon at x = xH , where the metric function A(t, x) goes
to zero. The horizon radius xH then vanishes at the critical amplitude ε0. So far nothing new, but
in [6] the amplitude is now further decreased. Owing to the peculiar geometry of AdS, the wave
packet with ε < ε0 travels to and bounces off the timelike AdS boundary. Eventually, it collapses on
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its way back to the centre. If the decrease of the amplitude is continued, a second critical amplitude
ε1 is found, where the horizon radius xH again drops to zero. As shown in figure 5.2, continuously
lowering the amplitude leads to a series of critical points εn. The subscript n counts the number of
reflections off the boundary.

In principle the behaviour described above is not influenced by the cosmological constant. In
other words the solution at ε0 goes towards Choptuik’s self-similar solution (Λ = 0). In particular
the scaling behaviour of the horizon radius xH in close proximity of each critical amplitude εn

satisfies
xH(ε) ∝ (ε − εn)γ, γ ≈ 0.37. (5.12)

The numerical value of the scaling exponent γ agrees with [9] and the result obtained in our simu-
lation (c.f. section 7.4.4).

Fig. 5.2 Horizon radius xH as a function of the amplitude ε of initial data 5.11. The number above each peak counts the
reflections off the boundary before collapse. (taken from [6])1

In theory we expect an arbitrary number of critical amplitudes such that limn→∞ εn = 0. This
suggests the absence of a lower black hole threshold. In practice it is difficult to confirm this
numerically, because computational cost significantly increases in long-term field observations. In
fact it is remarkable that Bizoń and Rostworowski can resolve 10 reflections off the AdS boundary.
Most other work as presented in chapter 4 almost entirely focuses on solutions before any reflection.

For completion of this section, we advert the reader to another critical behaviour illustrated in
figure 5.2. Comparing the time in between any two neighbouring collapses, it turns out that the
value ∆T ≈ π is universal.

1 Since future figures in this chapter are taken from the same source [6], we only explicitly mention it once.
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5.2.1 Instability of AdS

This section focuses on results concerning instability of anti-de Sitter space. We begin by dis-
cussing the Ricci curvature scalar at x = 0, an indicator of instability, for weak Gaussian initial
data. The observed exponential growth, which can not be cured by a rescaling of ε−2R(ε2t, 0), sug-
gests that AdS space is unstable. Bizoń and Rostworowski apply weakly nonlinear perturbations
to understand this feature. The solutions of the resultant differential equations give rise to unre-
movable resonant modes for higher-order initial data and thus confirm exponential instability. The
conjecture in [6] is that these growing terms occur due to resonant mode mixing which focuses
energy on higher frequencies only. This change of the energy spectrum is visualised at the end of
the section.

The Ricci scalar at x = 0 is given by

R(t, 0) = −
2Π2(t, 0)

l2
−

12
l2
. (5.13)

The value of the curvature scalar oscillates, because the wave packet continuously travels in be-
tween the boundary and centre. Since we are interested in its instability behaviour, figure 5.2.1
depicts the upper envelope of the Ricci scalar. Even though initial amplitudes are weak, the cur-
vature strongly increases after a constant phase at the beginning. Eventually, all solutions collapse
after sufficiently large numbers (500 for lowest, 50 for highest amplitude) of reflections.

Fig. 5.2.1 Upper envelope of Π2(t, 0) for weak initial data 5.11.
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Fig. 5.2.11 Rescaled version of figure 5.2.1.

Figure 5.2.11 again shows the upper envelope of the curvature scalar for the same initial data.
However, the data is rescaled by ε−2R(ε2t, 0). Since the rescaling does not remove steeper and
steeper growth, infinitesimally small perturbations result in a steady increase. This is an indication
of instability of AdS, which is best analysed by applying weakly nonlinear perturbations.

Nonlinear perturbations

In order to approximately solve equations 5.7-5.9 for weak initial data (φ, ∂tφ)t=0 = (ε f (x), εg(x)),
we perturb the metric variables to [6]

A = 1 −
∞∑
j=1

A2 jε
2 j, δ =

∞∑
j=1

δ2 jε
2 j, φ =

∞∑
j=0

φ2 j+1ε
2 j+1, where (5.14)

all but the first mode (φ1, ∂tφ1)t=0 = ( f (x), g(x)) are set to zero. Substituting this ansatz into the
field equations leads to a differential equation at each order. We find at lowest order

∂2
t φ1 + Lφ1 = 0, L = −

1
tan2 x

∂x(tan2 x ∂x). (5.15)

The self-adjoint Sturm-Liouville operator on L2([0, π2 ], tan2 x dx) gives rise to the inner product

( f , g) :=
π/2∫
0

f (x)g(x) tan2 x dx on this Hilbert space. The normalised eigenfunctions of the operator

are

e j(x) =

√
16( j + 1)( j + 2)

π
cos3 x F1(− j, j + 3,

3
2

; sin2 x). (5.16)
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The associated non-negative eigenvalues (ω2
j = (3 + 2 j)2, j ≥ 0) ensure that AdS is stable at first

order.
However, the solution at third order is qualitatively different. The projection of the inhomoge-

neous ODE

∂2
t φ3 + Lφ3 = S (φ1, A2, δ2) := −2(A2 + δ2)∂2

t φ1 − (∂tA2 + ∂tδ2)∂tφ1 − (∂xA2 + ∂xδ2)∂xφ1 (5.17)

onto the e j basis of the Sturm-Liouville operator leads to an infinite number of harmonic oscillators

∂2
t c j + ω2

jc j = S j := (S , e j). (5.18)

A lengthy calculation [6] then shows that a set of three indices ji, whose linear solution modes of
equation 5.15 are non-vanishing and whose eigenvalues satisfy ω j = ω j1 +ω j2 −ω j3 , are a resonant
solution of 5.18. Thus, arbitrarily small perturbations result in steeper and steeper growth, which
indicates that anti-de Sitter space is unstable. While resonant terms can be removed for one-mode
data, higher-order initial data leads to a growing number of unremovable secular terms.

Fig. 5.2.12 Fraction of the total energy incorporated in the first (k + 1) modes Σk := 1
M

k∑
j=0

E j for two-mode initial data

5.21.

Previous work on related problems, e.g. the nonlinear Schrödinger equation on a torus [8, 14],
suggests that this instability is connected with a shift of energy towards higher frequencies. In fact
this feature actually occurs and is visualised by measuring the fraction of the total energy contained
in the first (k + 1) modes. The energy of the jth mode, where Φ j := (

√
AΦ, e

′

j) and Π j := (
√

AΠ, e j)
are projections of the auxiliary variables, is

E j(t) = Π2
j + ω−2

j Φ2
j . (5.19)
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The total energy is then given by

M =
1
2

π/2∫
0

(AΦ2 + AΠ2) tan2 x dx =

∞∑
j=0

E j(t) :=
∞∑
j=0

Π2
j + ω−2

j Φ2
j . (5.20)

The results in figure 5.2.12 confirm this shift of energy for initial data

φ(0, x) = ε

(
1
d0

e0(x) +
1
d1

e1(x)
)

with ε = 0.088. (5.21)
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6 A summary for elementary numerical
methods

Since it is hard to solve Einstein’s field equations analytically, numerical methods are widely used
in general relativity. While in special relativity the evolution of a scalar field is exactly known,
the analogous problem including matter-geometry coupling is better solved numerically. In this
chapter we therefore briefly review numerical integration and differentiation based on [27]. In
addition the Euler method, a first-order scheme for integrating ordinary differential equations, is
introduced. Since Einstein’s equations are reformulated as an ODE system in chapter 7, we waive
a discussion of partial differential equations and refer to [3] for a review in the context of general
relativity.

6.1 Numerical integration

A one-dimensional definite integral
∫ b

a f (x) dx is usually solved by finding the antiderivative F(x).

Then the fundamental theorem of calculus yields
∫ b

a f (x) dx = F(b) − F(a). However, if the an-
tiderivative is either not an elementary function or if the values of the function f (x) are only known
at specific points, then the integral has to be solved numerically.

Quadrature rules

Numerical integration locally approximates an integral by a weighted sum of function values at s
integration points ci

1∫
0

f (x) dx ≈
s∑

i=1

bi f (ci). (6.1)

Since smooth well-behaved functions can be Taylor-expanded, a quadrature rule should lead to
an accurate integration result for a polynomial of sufficiently high order while only requiring few
integration points. The idea of the value of a definite integral being the area below the graph of the
function f (x) suggests to approximate the integral by the area of a trapezoid. This is achieved by
choosing the integration points c1 = 0, c2 = 1 and the weights b1 = 1

2 , b2 = 1
2 . This quadrature

formula is referred to as trapezoid rule and accurately integrates polynomials up to order one. It
turns out that we can do much better.

The most efficient quadrature rules are Gaussian quadrature rules. A Gaussian quadrature
rule with s integration points, whose values are given by the zeros of the Legendre polynomial
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Ps, accurately integrates polynomials up to order p = 2s − 1. A sample code of the Gaus-
sian quadrature rule of order 5 for MATLAB is found in Annex. The integration points are
c1 = 1

2 −
√

15
10 , c2 = 1

2 , c3 = 1
2 +

√
15

10 , the weights are given by b1 = 5
18 , b2 = 8

18 , b3 = 5
18 .

To numerically integrate
∫ b

a f (x) dx, we divide the integration interval [a, b] into N subintervals
(bounded by x j, x j+1), transform the overall limit to [0, 1] and apply equation 6.1. Transforming
back to the initial interval yields

b∫
a

f (x) dx =

N−1∑
j=0

x j+1∫
x j

f (x) dx ≈
N−1∑
j=0

h j

s∑
i=1

bi f (x j + cih j), (6.2)

where h j denotes the length of each subinterval.

6.1.1 Adaptive stepsize control

In practice we often require accurate results up to a tolerance TOL. Apart from using suitable
quadrature rules, the choice of subintervals in equation 6.2 is crucial. Intuitively, whenever the
function f (x) changes considerably, the stepsize h has to be reduced to maintain accuracy. A way
to implement this is as follows.

For each subinterval, we compute the value of the integral and its error using a quadrature rule.
If the sum of the errors is larger than the tolerance, the subinterval with the biggest error is divided
into two halves. This process is repeated until a required accuracy is achieved. A possibility to
code this procedure in MATLAB is by storing the data of each subinterval in a row of a matrix.
The endpoints are saved in the first two columns; the last two columns correspond to the values of
the integral and the error. While |error| > TOL, we apply the command sortrows to determine the
subinterval of largest error and then divide it into two halves. Since error estimates are not needed
in this dissertation, it is sufficient to name Richardson extrapolation and embedding of quadrature
rules as common techniques for one-dimensional integration. Further discussion including source
codes for C and FORTRAN is found in [28].

6.2 Numerical differentiation

As with numerical integration, the main application of numerical differentiation is the computation
of the derivative of a function whose values are only numerically known. Formulas for numerical
approximations of derivatives are derived by Taylor-expanding

f (x + h) = f (x) + h f ′(x) +
h2

2
f ′′(ξ), x < ξ < x + h. (6.3)

Rearranging leads to

f ′(x) =
f (x + h) − f (x)

h
−

h
2

f ′′(ξ). (6.4)
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The term proportional to h is the error of approximation. Together with the round-off error, which
is proportional to machine epsilon over h, the ideal choice of h is if the two errors are equal (c.f.
figure 6.2).

Fig. 6.2 Stepsize dependence of the accuracy of the first-order derivative approximation.

Taylor-expanding f (x + h) and f (x − h) yields the second-order approximation

f ′(x) =
f (x + h) − f (x − h)

2h
−

h2

6
f ′′′(ξ). (6.5)

Formulas for higher-order derivatives are determined analogously. In addition, these ideas extend
to functions of two variables by separately finite differencing in the direction of each variable.

6.3 Numerical ordinary differential equations

Numerical schemes for ordinary differential equations are required if analytic solutions do not exist.
The intuitive approach is as follows. Starting from a given initial value at time t = 0, we extrapolate
to later times by the rate of change. As the rate of change is time-dependent, the interval has to
be divided into sufficiently small subintervals. We derive the simplest explicit first-order method
for solving ODE’s which is referred to as Euler method. Small modifications lead to the implicit
second-order Crank-Nicolson scheme.

6.3.1 Euler method

Since we are looking for an approximate solution to the initial value problem

y′(x) = f (x, y(x)), y(x0) = y0, (6.6)
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the interval [x0, xmax] is divided into subintervals of length h. One way to derive the Euler method
is to integrate equation 6.6

y(x0 + h) − y(x0) =

x0+h∫
x0

f (x, y(x)) dx ≈ h f (x0, y(x0)), (6.7)

and to approximate by the left-hand rectangle quadrature rule (c1 = 1, c2 = 0). Rearranging leads
to the Euler method

y(xn+1) = y(xn) + h f (xn, yn), xn = x0 + nh. (6.8)

Even though the Euler scheme is simple in derivation and implementation, poor accuracy and
stability problems often demand for more sophisticated methods.

6.3.2 Crank-Nicolson method

The Crank-Nicolson method is an implicit second-order finite difference method which combines
the forward- and backward Euler method. The forward Euler scheme is the one considered so far,
the backward one is obtained by using the right-hand rectangle quadrature rule (c1 = 0, c2 = 1) in
equation 6.7:

y(xn+1) = y(xn) + h f (xn+1, yn+1) (6.9)

Combining equations 6.8 and 6.9 yields the Crank-Nicolson method

y(xn+1) = y(xn) +
h
2

(
f (xn, yn) + f (xn+1, yn+1)

)
. (6.10)

The difficulty with equation 6.10 is that yn+1 occurs on both sides. One approach is to predict yn+1
on the right-hand side using the forward Euler method and to correct the value with equation 6.10.
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7 Spherically symmetric collapse code for a
massless scalar field

The collapse of a massless self-gravitating scalar field has amongst others earlier been discussed
by Choptuik [9, 10], Christodoulou [12, 13] and Garfinkle [15]. Their work mainly focused on
solutions close to the black hole threshold separating black hole formation from field dispersal
and concluded that in this critical limit the field evolution at late times obeys a “ringing” solution
independent of initial data. If black holes form, the mass satisfies a power law mBH = K(p − p∗)γ

with γ fixed and K being a constant dependent on the black hole family. Both results also agree
with the theoretical prediction of critical phenomena (c.f. chapter 2). In addition, it is shown that
curvature scalar and field energy density increase unconfined near the axis, which can even be seen
by distant observers.

In this chapter we simulate the spherically symmetric collapse of a massless scalar field in flat
space based on an algorithm suggested by Hamadé and Stewart [21]. We extend their code to
include a cosmological constant and this is the first time the problem is solved using double null
coordinates. By introducing a set of auxiliary variables, Einstein’s field equations are formulated
as a first-order system, which is solved with both the Euler and a second-order predictor-corrector
method. We reproduce Hamadé’s and Stewart’s results of the scalar field, the metric function and
the Ricci curvature scalar on the r = 0 axis. In the context of universality it is further confirmed that
the maximum Ricci curvature scalar and the black hole mass obey a power law with an exponent
independent of the cosmological constant and the black hole family.

7.1 Line element and coordinates

We solve Einstein’s field equations

Gµν + Λgµν = Rµν −
1
2

Rgµν + Λgµν = 8πGTµν (7.1)

for a real spherically symmetric massless scalar field. The energy-momentum tensor is

Tµν = ψ, µψ, ν −
1
2

gµνgαβψ, αψ, β . (7.2)

Energy conservation or the contracted Bianchi identities yield the scalar field equation

�ψ = 0. (7.3)

41



First numerical results were published by Choptuik who suggested using time t and physical area
radius r coordinates with the line element

ds2 = −α2(t, r)dt2 + a2(t, r)dr2 + r2dΩ2, (7.4)

where dΩ2 is the usual round two-sphere metric S2 in polar coordinates (θ, φ). This line element
breaks down at an apparent horizon and is therefore not suitable for studying strong-field regions.
Garfinkle [15] proposed null coordinates to solve this issue. While a line element with one null co-
ordinate is unstable for critical field configurations, double null coordinates (u, v) maintain stability
and do not break down:

ds2 = −a2(u, v)dudv + r2(u, v)dΩ2. (7.5)

The related spherically symmetric spacetime manifold isM = N×S2 whereN is a two-dimensional
Riemannian manifold. Since each point of N lies on either a past or future null cone, (u, v) and
(u, θ, φ, v) provide coordinate charts on N andM. The scalar field equation 7.3 in this chart is

rψuv + ruψv + rvψu = 0. (7.6)

To rewrite Einstein’s equations in terms of the coordinates (u, θ, φ, v), we compute the Riemann
and Ricci tensor by using the values of the non-vanishing Christoffel symbols Γu

uu, Γu
θθ, Γu

φφ, Γθuθ,

Γθφφ, Γθθv, Γ
φ
uφ, Γ

φ
vφ, Γ

φ
θφ, Γv

θθ, Γv
φφ, Γv

vv. These yield the components of the Einstein tensor (subscripts
on the right side abbreviate derivatives):

Guv = r−2
(
1
2

a2 + 2rurv + 2rruv

)
, (7.7)

Guu = 2r−1
(
2ruau

a
− ruu

)
, (7.8)

Gvv = 2r−1
(
2rvav

a
− rvv

)
, (7.9)

Gφφ = sin(θ)2Gθθ = sin(θ)2
(
2r2a−2

(auav

a
− auv

)
−

4rruv

a

)
, (7.10)

the corresponding Einstein equations are

rruv + rurv +
1
4

(
1 − Λr2

)
a2 = 0, (7.11)

ruu − 2a−1ruau + 4πGrψ2
u = 0, (7.12)

rvv − 2a−1rvav + 4πGrψ2
v = 0, (7.13)

a−1auv − a−2auav + r−1ruv + 4πGψuψv −
1
4

Λa2 = 0. (7.14)
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These equations are not independent and thus evaluating a subset is sufficient. However, it is
hard to achieve numerical stability for equation 7.14, which must not be omitted. From this point
on there are different ways to proceed. We follow the idea in [21] and introduce various auxiliary
variables in order to rewrite the equations above as a first-order differential system. Even though
the problem expands to a high number of equations, the proposed algorithm is conceptually simple
and numerically stable. Both will be discussed in the next two sections.

7.2 Auxiliary variables and equations, physical quantities

We introduce auxiliary variables

c =
au

a
, d =

av

a
, f = ru, g = rv, s =

√
4πGψ, p = su, q = sv. (7.15)

Important physical quantities in terms of these variables are the Ricci curvature

R(u, v) = −
8pq
a2 , (7.16)

the scalar field’s energy density

ρ(u, v) =
1

8πGa2 (p2 + q2), (7.17)

and for strong fields the Hawking mass

m(u, v) =
r
2

(
1 +

4 f g
a2

)
. (7.18)

To visualise the evolution of the scalar field, the metric function and the Ricci curvature on the
r = 0 axis, we require the proper time T experienced by an observer moving along it

T (u, u)|r=0 =

u∫
0

a(x, x) dx. (7.19)
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The scalar and Einstein field equations expand into a first-order differential system of 14 equations.
Since some are dependent, only these 8 equations are relevant for the algorithm we use:

F1 : qu = −
f q + gp

r
,

F2 : du =
f g + 1

4 a2

r2 − pq,

F3 : av = ad,

F4 : rv = g,

F5 : sv = q,

F6 : pv = −
f q + gp

r
,

F7 : fv = −
f g + 1

4 a2

r
+

1
4

Λra2,

F8 : gv = 2dg − rq2.

(7.20)

It is to note that equations F1 and F2 evolve in u-direction, whereas the remainder formulas contain
only v-derivatives. Particular care is needed with equations F1, F2, F6 and F7 since these diverge
on the r = 0 axis.

7.2.1 Initial and boundary data

We want to solve the system 7.20 on the (u, v)-grid bounded by the u = v (or r = 0) axis. The
algorithm in section 7.3 requires both initial and boundary data. Since the geometry is flat on the
initial null cone C+(u = 0, v), we have d(0, v) = 0. In other words the geometry on the initial slice
is set independently of the cosmological constant Λ. The shape of the ingoing scalar field specifies
s(0, v) from which its gradient q|(0,v) = sv|(0,v) is computed. In addition, we need boundary values
for the variables a, s, f , g and p. While a and s boundary data are harder to compute, equations
7.20 immediately yield g = − f = 1

2 a and p = q for r = 0.
The remaining variables on the axis, i.e. values for the scalar field s and the metric function a,

are determined by the condition
∂s
r

=
∂a
r

= 0. (7.21)

The predictor-corrector method requires a second-order approximation of 7.21 linking s at r =

0, dr and 2dr. Since the algorithm starts on the null cone C+(0, v), s(2dr) and s(dr) are computed
first and then used to determine s(0). The required formula is derived by imposing 7.21 and s(0) =

s0, s(dr) = s1, s(2dr) = s2 on an arbitrary second-order polynomial. This leads to a system of two
equations which is solved for s0

s0 =
1
3

(4s1 − s2). (7.22)

The metric function a is treated similarly. While all the required data are now assembled, this might
not be clear until we reveal in the next section how the algorithm moves through the (u, v)-grid.
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7.3 Algorithm: second-order predictor-corrector method

The structure of 7.20 suggests to separately evolve in u- (F1 and F2) and v-direction (remaining
equations). In compact notation, 7.20 is rewritten as

yu = F(y, z), zv = G(y, z), where y = {q, d} , z = {a, r, s, p, f , g} . (7.23)

The algorithm proposed in [21] computes values at each point n = (u, v) in terms of values at
e = (u− h, v) and w = (u, v− h). To assure stability, a second-order predictor-corrector method (c.f.
section 6.3.2) is used. In the predictor step y- and z-values are explicitly computed by

ŷn = ye + hF(ye, ze), (7.24)

and
ẑn = zw +

1
2

h (G(yw, zw) + G(ŷn, ẑn)) . (7.25)

Even though it is not obvious, the implicit equation 7.25 can be rearranged into an explicit form.
In the corrector step these values are corrected by

yn =
1
2

(ye + ŷn + hF(ŷn, ẑn)) , (7.26)

and
zn =

1
2

(zw + ẑn + hG(ŷn, ẑn)) . (7.27)

The method presented above suggests to move through the (u, v)-grid along a set of null cones
C+(u = nh, v). While F1 and F2 predict the (q, d)-values onto each future null cone, radial integra-
tions from v = 0 to vmax using the remaining equations complete the solution.

We have implemented the algorithm above and a second version using a first-order explicit Euler
method in MATLAB. Both codes simulate the spherically symmetric collapse of a massless scalar
field. While the predictor-corrector scheme should lead to better stability properties, our code
occasionally fails in regions close to the r = 0 axis. It is too sensitive to the choice of initial
data, number of grid-points and stepsize to work with it in practice. Due to the high number and
complexity of the equations, it is difficult to judge why the code fails. Anyway, for non-critical
data the results of the two versions agree with each other. A consequence of using the first-order
code is that less oscillations of the fields (c.f. section 7.4) are resolved before the computer runs
out of memory.

However, for the purposes we require, the first-order code works well enough. In addition,
precise results for highly-critical initial data require much more effort. While our code uses a
uniform grid, Hamadé and Stewart work with adaptive mesh refinement based on [5]. Even though
a simplified version for a spherically symmetric collapse was found, it is still too difficult to include
it in this dissertation. However, the fundamental idea is the same as for one-dimensional integration
(c.f. section 6.1.1). To obtain accurate data, the grid is refined in regions where the variables change
much. In regions of less activity, the grid remains coarse.
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Fig. 7.3 A sketch of the (u, v)-grid. Initial data of d, q and s are specified on the null cone C+(u = 0, v) (green),
boundary values of a, s, f , g and p are required along the r = 0 axis (red). The algorithm moves through the grid from

the bottom-left to the top-right as indicated by arrows.

In the next section the collapse is simulated with 3 different MATLAB codes (c.f. Annex).
While the idea of our codes is described in section 7.3, Toby Wiseman’s sample code collapsenull
(as presented in the QFFF special topic lectures) uses non-linear recursion to solve the problem.
Even though the results agree with each other, resolution and computational cost differ significantly.
Computations with the non-linear recursion version take much longer and yield only a coarse res-
olution. However, we could resolve 4 field oscillations on axis. The first-order code shows less
peaks due to the missing mesh-refinement (c.f. section 7.4), but with high resolution. In addition,
it allows a non-zero cosmological constant Λ in Einstein’s equations.

7.4 Results

We begin the discussion of the results of the simulation of the spherically symmetric collapse
of a massless scalar field by pointing out the differences in the evolution of a scalar field with
and without matter-geometry coupling. Then the scalar field, the metric function and the Ricci
curvature scalar are plotted on axis. We also argue why the unconfined increase of the curvature
scalar and the field energy density near the axis is seen by a distant observer. The final subsection
focuses on universal phenomena. We confirm that both the maximum Ricci curvature scalar and
the black hole mass follow a power law with an exponent independent of the black hole family.
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7.4.1 Influence of matter-geometry coupling

Fig. 7.4.1 Evolution of a marginally subcritical scalar field including matter-geometry coupling (Λ = 0).

Evolving a scalar field in Minkowski spacetime is achieved by solving the non-linear wave equa-
tion. In double null coordinates (u = t − r, v = t + r) the initial pulse specified on C+(u = 0, v)
travels towards the r = 0 axis, bounces off and leaves to future null infinity. The shape of each
pulse depends on initial data. The late field configuration is flat. In the case of matter-geometry
coupling, the scalar field either disperses (p < p∗) or forms a black hole (p > p∗). P∗ is referred to
as critical parameter and defined as the value separating those two events. Its value is determined
by a sequence of simulations around the threshold of black hole formation. While a solution of a
finally dispersing field is clearly subcritical, the formation of an apparent horizon and of a singu-
larity in the supercritical case makes it more difficult to visualise these solutions. It turns out that
if matter geometry-coupling is switched on, the evolution heavily depends on the choice of initial
data. In case of a weak field on the C+(u = 0, v) cone, the effects of the coupling are negligible and
we find a similar behaviour as before.

Figure 7.4.1 depicts the evolution of a marginally subcritical Gaussian scalar field. It moves from
past (right) to future (left) timelike infinity. The incoming Gaussian function reflects off the r = 0
axis (background boundary) and continues towards future null infinity. Due to matter-geometry
coupling, we see another peak on the axis, with a third one just building up. At late times the scalar
field is not zero, but we expect a “ringing” solution independent (universal) of the ingoing pulse.
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7.4.2 Scalar field, metric function and Ricci curvature on axis

By plotting the scalar field s on the r = 0 axis, we find that the smaller p∗ − p gets, the more
peaks build up. This proposes that an arbitrary number of oscillations is seen for sufficiently small
deviations from the threshold. Since the exactly critical case will never be achieved in numerical
simulations, no proof for this statement has been found yet. Thus, an alternative approach for
discussing late time evolution right on the threshold would be some nice future work. Anyway,
in [21] up to 5 peaks are resolved on axis. The code collapsenull computes 4 oscillations after
specifying 14 (sic!) digits beyond the decimal point. However, the resolution is low. Figure 7.4.2
shows two field oscillations on axis for the same marginally subcritical Gaussian initial data as in
figure 7.4.1. The universal time between the peaks is ∆τ ≈ 1.46 and roughly agrees with the value
∆τ ≈ 1.49 in [21]. As mentioned before, more difficult codes are required for precise results in
proximity of the black hole threshold.

Fig. 7.4.2 Scalar field s (with fixed amplitude p) on axis in terms of τ = − log10(T ∗ − T ) for Λ = 0 (black crosses),
Λ = 100 (red circles) and Λ = −100 (blue triangles) where T ∗ is critical time.

To interpret the influence of the cosmological constant Λ, we recap that it only occurs in equation
F7

fv = −
f g + 1

4 a2

r
+

1
4

Λra2, where f = ru. (7.28)

A large positive Λ (expanding) implies a rapid change of r along the (u, v)-grid and increases the
threshold value p∗. Since we do not adjust p, the solution with a positive cosmological constant (c.f.
figure 7.4.2, red circles) is subcritical and therefore has less oscillations. A negative Λ corresponds
to an attractive geometry and supports the gravitational collapse such that the evolution breaks
down earlier. Since p is very close to the critical parameter p∗ for Λ = −100, the amplitude of the
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second peak (blue triangles) is significantly larger. However, if the cosmological constant is further
decreased, the field collapses. In addition it is worth of note that, as expected due to universality,
the time in between the field oscillations is not affected by the cosmological constant.

Other important physical quantities are the metric function and the Ricci curvature. In figure
7.4.21 the metric function a is plotted on axis as a function of τ for the same initial data. Since a
is quadratic in the derivatives of the scalar field s, we see the double number of oscillations. The
more critical the initial data, the faster a drops. The metric function a goes towards zero at the
singularity.

Fig. 7.4.21 Metric function a on axis in terms of τ = − log10(T ∗ − T ) for Λ = 0.

Its values are not only used to compute the proper time T of an observer on the axis

T (u, u)|r=0 =

u∫
0

a(x, x) dx, (7.29)

but the metric function a also occurs in the denominator of the Ricci scalar

R(u, u) = −
8p2

a2 = −32πG
d2ψ

dT 2 . (7.30)
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Fig. 7.4.22 Ricci curvature R on axis in terms of τ = − log10(T ∗ − T ) for Λ = 0.

The evolution of the Ricci curvature scalar R is visualised in figure 7.4.22. As it is evident from
equation 7.30, its value increases with each field oscillation. Since we expect an infinite number
of peaks, the Ricci curvature probably grows without bound in a region close to the axis. The field
energy density on axis in terms of Ricci is

ρ(u, u) =
p2

4πGa2 = −
R

32πG
. (7.31)

Thus, in strong field regions the density ρ also becomes arbitrarily large.

7.4.3 Strong field regions at far distance

An interesting question is whether these regions are observed at far distance. For an observer sitting
at constant area radius r, equation 7.29 generalises to

T (u, r = const) =

u∫
0

a(x, v(x, r))

√
∂v
∂u

∣∣∣∣∣
r

dx. (7.32)

This integral clearly diverges in the supercritical case due to the formation of an apparent horizon.
However, the proper time does not become arbitrarily large for subcritical initial data, which is in
contrast to what one might expect due to continuity.
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Fig. 7.4.3 Light cone structure in quasi-Eddington-Finkelstein coordinates for marginally subcritical (dashed) and
supercritical (solid) data which differ by one part in 1015. (taken from [21])

Fig. 7.4.31 Proper time required to reach an observer at constant r = 0.1 in terms of log10(p∗ − p) for subcritical initial
data where u is specified to 3.4. (taken from [21])

The null cone structure of subcritical and supercritical solutions is compared in [21]. By perform-
ing a series of evolutions, the critical parameter p is determined with an accuracy of one part in
1015. Figure 7.4.3 depicts the evolution for both choices of initial data in ingoing quasi-Eddington-
Finkelstein coordinates with constant u-spacing. While the solutions agree with each other at the
beginning, the late time behaviour is different. In the supercritical case light cones change direction

51



and return to r = 0 due to the formation of the horizon. Thus, photons can not escape and are not
seen by a distant observer. In the subcritical case, however, lines do not turn around, but the slope
descends. This is not what a continuity argument would suggest and as a consequence strong field
regions reach a distant observer located at fixed r in finite proper time. Figure 7.4.31 confirms this
statement. Even in the p→ p∗ limit, the proper time measured at r = 0.1 remains finite.

7.4.4 Critical phenomena

In chapter 2 it was thoroughly discussed that universal phenomena occur for field configurations
close to p∗. In this subsection we give concrete examples in which the maximum Ricci curvature
scalar and the black hole mass obey a power law with an exponent independent of the black hole
family. For the former case, the evolution is simulated twice using different initial field configura-

tions on the C+(u = 0, v) cone. In figure 7.4.4 the initial Gaussian curve exp
[
−104

(
hn −

hmax
4hn

)2
]

is

compared to the second initial field configuration h−5
n

[
exp

(
1
hn
− 1

)]−1
, where hn = nh.

Fig. 7.4.4 Initial field configuration on the null cone C+(u = 0, v). The Gaussian curve (black) is

exp
[
−104

(
hn −

hmax
4hn

)2
]
. The red curve depicts h−5

n

[
exp

(
1

hn
− 1

)]−1
.

We focus on marginally subcritical solutions and determine the maximum Ricci curvature scalar
Rmax in terms of the aberration from the threshold. Figure 7.4.41 shows a linear relationship in
double log10 scale with a universal slope of k1 = −0.751 for Gaussian initial data and k2 = −0.768
for the second choice of initial data. This confirms that for fine-tuned initial data the maximum
curvature scales as [16, 20]

Rmax = L
(
p∗ − p

)2γ . (7.33)
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As it will be soon revealed in more detail, the numerical value of γ is approximately 0.374 and thus
agrees with our result.

Fig. 7.4.41 Maximum curvature Rmax in terms of (p∗ − p) in double log10 scale for subcritical Gaussian (black crosses)

and exp
[
−104

(
hn −

hmax
4hn

)2
]

(red circles) initial data. The straight lines were determined by the least square method and
have approximately slope −0.76.

Fig. 7.4.42 The width of the Gaussian initial data is 1
100 . The maximum coordinate range is 0.1
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Before checking the implication of a non-negative cosmological constant on the scaling behaviour,
the size of Λ should be characterised. We work on a uniform grid with 100 points and distance

h = 10−3. Thus, the coordinate range is 0.1. The Gaussian initial data exp
[
−104

(
hn −

hmax
4hn

)2
]

has width 1
100 , which fixes the order of magnitude of the curvature length. Since Λ ∼ R−2, a

cosmological constant of 100 means a radius of 0.1. In conclusion, Λ ∼ 100 is about the right
scale. Whilst not being too large, the cosmological constant clearly changes the patch we are
taking.

To explore the scaling behaviour of the curvature in case of a non-negative cosmological con-
stant, we have to adjust the amplitude p of the Gaussian initial data due to a shift of the threshold
value p∗. Figure 7.4.43 shows the maximum curvature Rmax dependent on the same aberration from
the threshold as before for a positive (Λ = 100, black crosses) and negative (Λ = −100, red circles)
cosmological constant. In double log10 scale, the linear regression functions approximately have
slope k3 = −0.71 and k4 = −0.73. Taking the uncertainties into account (e.g. a non-accurate value
of p∗), this confirms that the critical exponent γ does not depend on Λ. This is what we expect from
the phase space picture of critical phenomena. At criticality the cosmological constant is irrelevant.

Fig. 7.4.43 Maximum curvature Rmax in double log10 scale for Gaussian initial data with the same aberration from the
threshold as in figure 7.4.41 (Λ , 0). The slopes of the straight lines for Λ = 100 (black crosses) and Λ = −100 (red

circles) suggest that the critical exponent γ is independent of the cosmological constant.
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Fig. 7.4.44 Black hole mass mBH in terms of log10(p − p∗) for supercritical initial data. The straight line was
determined by the least square method and has slope γ = 0.374. (taken from [21])

We have so far avoided a detailed discussion of supercritical solutions; primarily because it is
challenging to achieve accurate results. However, a quantity that has to be discussed in the context
of universality is the black hole’s Hawking mass

mBH(u0, v0) =
r
2

(
1 +

4 f g
a2

)
. (7.34)

For slightly supercritical solutions, the formation of an apparent horizon is indicated by g = rv

going towards zero. For each fixed v0, the value of u0 is chosen such that the apparent horizon
intersects with the point (u0, v0). However, this is not as simple as it seems to be. Computations
so close to the black hole threshold are challenging. In near proximity to p∗ the computer can
run out of memory before the late time evolution is resolved. While our code does not achieve the
required accuracy, Hamadé and Stewart locate p∗ up to one part in 1015 and then determine the point
(u0, v0). Figure 7.4.44 depicts the Hawking mass mBH in terms of the deviation from the threshold.
A straight line with slope γ = 0.374 in double log10 scale is a good approximation. This confirms
Choptuik’s conclusion in [9, 10] that black hole masses follow a power law mBH = K(p − p∗)γ,
where γ is a universal constant. K is constant as well and only depends on the family of the black
hole.

There exist three independent results for the numerical value of γ. Choptuik obtained γ ≈ 0.37
using a metric in (t, r) coordinates. Figure 7.4.44 yields γ ≈ 0.374. Garfinkle, who used null coor-
dinates, computed γ ≈ 0.38. The reason why we quote all three numerical values is that Kaiser [24]
indicated the closeness of γ to 1

e = 0.367. Choptuik did not find any theoretical explanation that
supports this suggestion. Since we now have three slightly higher values, a numerical agreement is
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also unlikely.

We close this chapter with the remark that its concept was inspired by Hamadé and Stewart. Their
work in [21] enabled us to do genuine numerical simulations despite the limited time available.
While key results could be reproduced with our code, precise solutions for highly-critical initial
data require time and effort beyond the means of this dissertation. This is why we also presented
figures taken from [21]. We have extended the discussion to Einstein’s equations with cosmological
constant Λ and thus created a link to the collapse in anti-de Sitter space.
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8 Conclusion

We first summarise results of the gravitational collapse of a spherically symmetric massless scalar
field discovered in this dissertation. The second section then discusses possible extensions and
future work. Since it is a good preparation for the gravitational collapse in anti-de Sitter space,
we begin by reviewing the findings of the implementation of a gravitational collapse in Minkowski
space.

The code proposed in [21] is extended to include a cosmological constant in Einstein’s equations
and then implemented in MATLAB. The underlying algorithm is a second-order predictor-corrector
method. Due to complexity, we do not use adapted mesh refinement. Since highly critical evolu-
tions can only be resolved on finer grids, the simulation is therefore limited to nearly critical initial
data. Except for the mass scaling behaviour, however, we succeed in reproducing (and extending
some of) the results presented in [21].

We find that an initial ingoing pulse travels towards the r = 0 axis, bounces off and leaves to
future null infinity. Depending on the critical parameter, i.e. the initial amplitude p, the scalar field
either disperses or forms a black hole. We approach the critical solution by fine-tuning of initial
data and observe the scalar field on axis. The field oscillates with a universal frequency. While
the first peak depicts the initial field configuration, all further peaks are independent of initial data.
The better the fine-tuning, the more oscillations are resolved. Hamadé and Stewart reveal up to
5 oscillations, the code collapsenull resolves 4 peaks after specifying 14 (sic!) digits beyond the
decimal point. A non-negative cosmological constant shifts the threshold amplitude p∗, but does
not affect the position of peaks. Thus, the universal frequency remains invariant. In addition, we
compute the metric function and Ricci curvature on axis. The former goes towards zero at the
singularity, the latter increases with each field oscillation. Since we expect an arbitrary number of
peaks for critical initial data, we conjecture that the curvature grows without bound.

In the context of critical phenomena, the theoretical discussion suggests a universal scaling be-
haviour for the maximum Ricci curvature of the form

Rmax ∝
∣∣∣p∗ − p

∣∣∣2γ , (8.1)

where γ is a universal constant. This scaling behaviour should hold for both marginally subcritical
and supercritical amplitudes. Except for the factor of two in the exponent, which occurs due to the
quadratic length scale of curvature, similar scaling relations exist for other physical quantities like
black hole charge and mass. We then compute the maximum Ricci curvature for marginally sub-
critical Gaussian and kink-like initial data. In double log scale, the maximum curvature depends
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linearly on the aberration from the threshold. As expected, we observe a slope of k ≈ −0.76 inde-
pendent of the family of initial data. The most accurate value of the scaling exponent [21], which
is determined by measuring the black hole mass for supercritical data, is γ1 = 0.374 and thus ap-
proximately agrees with our result. After choosing a non-zero cosmological constant Λ1,2 = ±100
and carefully readjusting p∗, slopes of k1 = −0.71 and k2 = −0.73 are determined. This confirms
that the exponent γ at criticality is independent of the cosmological constant.

We now focus on the maximally symmetric solution of Einstein’s equations with negative cos-
mological constant. In particular due to peculiar boundary properties, a simulation of gravitational
collapse in anti-de Sitter space is more challenging and extra care is required. Hence, we included
an introduction to the geometry of AdS (c.f. section 4.1.1) in this dissertation. A consequence of
the geometric properties is that light rays, as seen by an observer on a geodesic, travel to and bounce
off the timelike boundary in finite proper time. We begin by summarising results of a collapse in
2+1 dimensional AdS before any reflections off the boundary.

Whilst it should be stressed that metric, coordinates and numerical scheme are adapted to the
characteristics of this problem, this conclusion focuses on findings of critical phenomena. Ini-
tially, in case that an apparent horizon forms within the simulation time, the asymptotic mass is
estimated at the AH. Tuning the initial field amplitude from fairly subcritical to supercritical val-
ues, suggests a universal scaling behaviour above the black hole threshold. Since the mass scaling
discussion in [29] is somewhat vague, we use their numerical data to check the slope in double
log scale. It turns out that the asymptotic mass roughly obeys the expected scaling relation only
slightly above the threshold. The physical reason is that any non-collapsing outgoing components
reflect off the AdS boundary and falsify the measurement. It is more suitable to determine the
critical scaling exponent γ by measuring the maximum Ricci curvature for subcritical initial data.
The exponent’s value γ2 = 1.2, which differs from γ1 (as it should), is again independent of initial
data. Larger uncertainties indicate the challenge faced in simulating a collapse in AdS. Another
important result is the visualisation of continuous self-similarity. After introducing scale-invariant
variables, a comparison of the field’s first and second derivatives confirms that the profiles of Gaus-
sian, Gaussian-squared and kink initial data are indistinguishable in the critical limit.

Finally, a briefer but more technical chapter discusses stability properties of AdS. While de
Sitter space and Minkowski are known to be stable under small perturbations, anti-de Sitter space
(with no-flux boundary conditions) is only asymptotically stable. Stability issues of gravitational
collapse in AdS have not been discussed for a long time, but Bizoń and Rostworowski have recently
presented notable results [6]. Their approach is similar as in [29], except for focusing on evolutions
after reflections off the timelike AdS boundary. This requires long-term field observations at high
computational cost and thus is numerically challenging. To reveal critical phenomena, the initial
amplitude is tuned from above the black hole threshold before any reflection off the boundary
down to weak amplitudes. The radius xH of the apparent horizon, which forms before a collapse,
is monitored before it goes to zero at a critical amplitude ε0. So far nothing new, but - due to the
peculiar geometry of AdS - a wave packet with ε < ε0 travels to and bounces off the boundary.
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For further decreased amplitudes, the scenario described above repeats itself and we find a series
of critical amplitudes εn. In addition, the horizon radius xH slightly above each critical amplitude
scales as

xH(ε) ∝ (ε − εn)γ, γ ≈ 0.37. (8.2)

At criticality, the scaling behaviour is not influenced by the cosmological constant and goes towards
Choptuik’s self-similar solution. An arbitrary number of critical amplitudes is expected in theory,
which suggests a missing lower black hole threshold. However, in practice only 10 reflections off

the boundary are resolved.
To explore instability of AdS, it is argued that the Ricci curvature scalar at the centre is an

indicator of stability. Since we observe exponential growth for weak initial data, which can not
be cured by a rescaling of ε−2R(ε2t, 0), instability is expected. A more rigorous understanding is
developed by applying weakly nonlinear perturbations to the metric variables. While at first order
solutions of the resultant differential equations are stable, at higher orders resonant terms occur
and lead to unremovable secular terms causing instability. In analogy to the nonlinear Schrödinger
equation on a torus, it is found that this instability is connected with a shift of energy towards higher
frequencies.

8.1 Extensions and future work

Regarding future work, the first thing to do is to enhance the self-written code. Probably, minor
improvements of the treatment of boundary conditions on the r = 0 axis are possible. In addition,
the rearrangement of the implicit equation 7.25 in the predictor step of the two-variable scheme into
an explicit form should be checked. This step is not at all described in [21], and there are arbitrary
ways to deal with it. However, it is more important to add adaptive mesh refinement [5] to the
code. Owing to the results in the original paper, we expect significant improvements, especially
in proximity of the black hole threshold. The downside is that the implementation of adaptive
refinement is rather challenging. Since numerical results in [21] have high precision, introducing
auxiliary variables to rewrite Einstein’s equations as a set of first-order differential equations proved
to be effective. Even though success is not guaranteed, a similar code for the gravitational collapse
in AdS would be a nice piece of future work.

Regarding critical phenomena in AdS collapse, the appearance has been experimentally con-
firmed. However, in theory a critical solution is yet to be found. In particular, it is unclear what
kind of symmetry occurs at criticality. A global homothetic Killing vector is not consistent with
Einstein’s field equations with Λ , 0. Furthermore, the critical solution is expected to be one-mode
unstable, but experimental evidence is still missing. In addition, consequences of the reflecting
timelike boundary should be explored in more detail. E.g., will any field configuration with an
asymptotic mass M > 0 eventually form a black hole? Even though notable results suggesting AdS
instability exist, the influence of the cosmological constant is not fully understood. On the one
hand Λ could only limit the evolution to within the boundary, or more importantly the cosmolog-
ical constant may be controlling instability. Lastly, an understanding of critical phenomena in the
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context of the AdSd+2/CFTd+1 would be interesting.
The final but obvious extension of this dissertation is to include other types of matter in the

discussion, e.g. perfect fluids or massive complex scalar fields. This should go along with a broader
analysis of critical phenomena, which are much more general than presented in this dissertation.
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A Annex

A.1 MATLAB codes

function int = gaussian order5(fun)

%Gaussian order5 computes the integral of a function over the interval
%[0,1] by using the Gaussian quadrature rule of order 5.

%input:
%fun: integrand (function)

%output:
%int: approximation of the integral using the Gaussian
%quadrature rule of order 5.

x = [1/2−sqrt(15)/10,1/2,1/2+sqrt(15)/10]; %integration points
y = fun(x); %function values at these points

int = 1/18*(5*y(1)+8*y(2)+5*y(3)); %Gaussian quadrature rule of order 5

end

function erg = collapse cosm const(max,h,lambda)

%Simulation of the spherically symmetric collapse of a massless scalar
%field using a first order explicit method (Euler scheme). The Einstein
%equations include a cosmological constant lambda.

%input:
%max: # of grid−points in u,v − direction
%h: step size
%lambda: cosmological constant

%output:
%mesh(uarr,varr,s): 3−D mesh surface plot; s is scalar field
%erg: metric function a on u = v axis

imax = max;
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for i = 1:max %constructs grid in u and v direction

uarr(i,1:max) = (i−1)*h;
varr(1:max,i) = (i−1)*h;

end

%each matrix corresponds to the value of the variable on the grid

a = zeros(max,max);
d = zeros(max,max);
f = zeros(max,max);
g = zeros(max,max);
p = zeros(max,max);
q = zeros(max,max);
r = zeros(max,max);
s = zeros(max,max);

%initial field configuration
s(1,1:max) = 3.14445*10ˆ(−1)*exp(−10ˆ4*((0:h:(max−1)*h)−max/4*h).ˆ2);

%\frac{df}{dv}|(u=0,v)
q(1,1:max) = −2*3.14445*10ˆ(3)*((0:h:(max−1)*h)−max/4*h).* ...
.*exp(−10ˆ4*((0:h:(max−1)*h)−max/4*h).ˆ2);

%inital values on (u=0,v=0)
a(1,1) = 1;
p(1,1) = q(1,1);
g(1,1) = 1/2*a(1,1);
f(1,1) = −1/2*a(1,1);

%assigns minor value of r on u=v axis to avoid singularity
for k = 1:max

r(k,k) = 10ˆ(−5);

end

for i = 2:imax %solution on (u=0,v)

a(1,i) = a(1,i−1)+h*a(1,i−1)*d(1,i−1);
r(1,i) = r(1,i−1)+h*g(1,i−1);
g(1,i) = g(1,i−1)+h*(2*d(1,i−1)*g(1,i−1)−r(1,i−1)*q(1,i−1)ˆ2);
f(1,i) = f(1,i−1)−h*(f(1,i−1)*g(1,i−1)+1/4*a(1,i−1)ˆ2)/r(1,i−1)+...
+h/4*lambda*r(1,i−1)*a(1,i−1)ˆ2; %due to cosmological constant
p(1,i) = p(1,i−1)−h*(f(1,i−1)*q(1,i−1)+g(1,i−1)*p(1,i−1))/r(1,i−1);

end

for j = 2:max−1 %solution on the remaining grid (u less or equal than v)
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for i = 1:imax−1

%values on (u,u) with first order approximation
if (i == 1) && ((j == 2) | | (j == max−1))

%\frac{da}{dr}|(u,u) = 0 as first order approximation
a(j,j) = a(j−1,j+1);
%\frac{ds}{dr}|(u,u) = 0 as first order approximation
s(j,j) = s(j−1,j+1);
g(j,j)=1/2*a(j,j);
f(j,j)=−1/2*a(j,j);

q(j,i+j−1) = q(j−1,i+j−1)−h*(f(j−1,i+j−1)*q(j−1,i+j−1)+...
+g(j−1,i+j−1)*p(j−1,i+j−1))/r(j−1,i+j−1);
d(j,i+j−1) = d(j−1,i+j−1)+h*((f(j−1,i+j−1)*g(j−1,i+j−1)+...
+1/4*a(j−1,i+j−1)ˆ2)/r(j−1,i+j−1)ˆ2−p(j−1,i+j−1)*q(j−1,i+j−1));
p(j,j) = q(j,j);

%values on (u,u) with second order approximation
elseif i == 1

%\frac{da}{dr}|(u,u) = 0 as second order approximation
a(j,j) = 1/3*(4*a(j−1,j+1)−a(j−2,j+2));
%\frac{ds}{dr}|(u,u) = 0 as second order approximation
s(j,j) = 1/3*(4*s(j−1,j+1)−s(j−2,j+2));
g(j,j)=1/2*a(j,j);
f(j,j)=−1/2*a(j,j);

q(j,i+j−1) = q(j−1,i+j−1)−h*(f(j−1,i+j−1)*q(j−1,i+j−1)+...
+g(j−1,i+j−1)*p(j−1,i+j−1))/r(j−1,i+j−1);
d(j,i+j−1) = d(j−1,i+j−1)+h*((f(j−1,i+j−1)*g(j−1,i+j−1)+...
+1/4*a(j−1,i+j−1)ˆ2)/r(j−1,i+j−1)ˆ2−p(j−1,i+j−1)*q(j−1,i+j−1));
p(j,j) = q(j,j);

else

q(j,i+j−1) = q(j−1,i+j−1)−h*(f(j−1,i+j−1)*q(j−1,i+j−1)+...
g(j−1,i+j−1)*p(j−1,i+j−1))/r(j−1,i+j−1);
d(j,i+j−1) = d(j−1,i+j−1)+h*((f(j−1,i+j−1)*g(j−1,i+j−1)+...
+1/4*a(j−1,i+j−1)ˆ2)/r(j−1,i+j−1)ˆ2−p(j−1,i+j−1)*q(j−1,i+j−1));

a(j,i+j−1) = a(j,i+j−2)+h*a(j,i+j−2)*d(j,i+j−2);
r(j,i+j−1) = r(j,i+j−2)+h*g(j,i+j−2);
g(j,i+j−1) = g(j,i+j−2)+h*(2*d(j,i+j−2)*g(j,i+j−2)−...
−r(j,i+j−2)*q(j,i+j−2)ˆ2);
s(j,i+j−1) = s(j,i+j−2)+h*q(j,i+j−2);
f(j,i+j−1) = f(j,i+j−2)−h*(f(j,i+j−2)*g(j,i+j−2)+...
+1/4*a(j,i+j−2)ˆ2)/r(j,i+j−2)+...
+h/4*lambda*r(j,i+j−2)*a(j,i+j−2)ˆ2; %due to cosmolog. constant
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p(j,i+j−1) = p(j,i+j−2)−h*(f(j,i+j−2)*q(j,i+j−2)+...
+g(j,i+j−2)*p(j,i+j−2))/r(j,i+j−2);

end

end

imax = imax−1;

end

mesh(uarr,varr,s); % 3−D mesh surface plot

erg = diag(a);

%run: collapse cosm const(100,10ˆ(−3),0)

end

function erg = collapse2(max,h)

%Simulation of the spherically symmetric collapse of a massless scalar
%field using a second order explicit method with predictor−corrector.

%input:
%max: # of grid−points in u,v − direction
%h: step size

%output:
%mesh(uarr,varr,s): 3−D mesh surface plot; s is scalar field

for i = 1:max %constructs grid in u and v direction

uarr(i,1:max) = (i−1)*h;
varr(1:max,i) = (i−1)*h;

end

%each matrix corresponds to the value of the variable on the grid

a = zeros(max,max);
d = zeros(max,max);
f = zeros(max,max);
g = zeros(max,max);
p = zeros(max,max);
q = zeros(max,max);
r = zeros(max,max);
s = zeros(max,max);
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%initial field configuration
s(1,1:max) = 10ˆ(−1)*exp(−10ˆ4*((0:h:(max−1)*h)−max/4*h).ˆ2);

%\frac{df}{dv}|(u=0,v)
q(1,1:max) = −2*10ˆ(3)*((0:h:(max−1)*h)−max/4*h).*...

.*exp(−10ˆ4*((0:h:(max−1)*h)−max/4*h).ˆ2);

%inital values on (u=0,v=0)
a(1,1) = 1;
p(1,1) = q(1,1);
g(1,1) = 1/2*a(1,1);
f(1,1) = −1/2*a(1,1);

%assigns minor value of r on u=v axis to avoid singularity
for k = 1:max

r(k,k) = 10ˆ(−5);

end

for i = 2:max %solution on (u=0,v)

a(1,i) = a(1,i−1)+h*a(1,i−1)*d(1,i−1);
r(1,i) = r(1,i−1)+h*g(1,i−1);
g(1,i) = g(1,i−1)+h*(2*d(1,i−1)*g(1,i−1)−r(1,i−1)*q(1,i−1)ˆ2);
f(1,i) = f(1,i−1)−h*(f(1,i−1)*g(1,i−1)+1/4*a(1,i−1)ˆ2)/r(1,i−1);
p(1,i) = p(1,i−1)−h*(f(1,i−1)*q(1,i−1)+g(1,i−1)*p(1,i−1))/r(1,i−1);

end

b = 0;

for j = 2:max %solution on the remaining grid (u less or equal than v)

for i = (3+b):max

%values on (u,u) with first order approximation
if i == (3+b) && ((j == 2) | | (j == max−1))

%\frac{da}{dr}|(u,u) = 0 as first order approximation
a(i−1,i−1) = a(i−2,i);
%\frac{ds}{dr}|(u,u) = 0 as first order approximation
s(i−1,i−1) = s(i−2,i);
g(i−1,i−1) = 1/2*a(i−1,i−1);
f(i−1,i−1) = −1/2*a(i−1,i−1);

%values on (u,u) (step 0)
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q(i−1,i−1) = q(i−2,i−1)−h*(f(i−2,i−1)*q(i−2,i−1)+...
+g(i−2,i−1)*p(i−2,i−1))/r(i−2,i−1);
d(i−1,i−1) = d(i−2,i−1)+h*((f(i−2,i−1)*g(i−2,i−1)+...
+1/4*a(i−2,i−1)ˆ2)/r(i−2,i−1)ˆ2−p(i−2,i−1)*q(i−2,i−1));
p(i−1,i−1) = q(i−1,i−1);

%predicted values in u − direction (step 1)
q(j,i) = q(j−1,i)−h*(f(j−1,i)*q(j−1,i)+g(j−1,i)*...

*p(j−1,i))/r(j−1,i);
d(j,i) = d(j−1,i)+h*((f(j−1,i)*g(j−1,i)+1/4*a(j−1,i)ˆ2)/...
/r(j−1,i)ˆ2−p(j−1,i)*q(j−1,i));

%predicted values in v − direction (step 2)
a(j,i) = (a(j,i−1)+1/2*h*a(j,i−1)*d(j,i−1))/(1−1/2*h*d(j,i));
r(j,i) = −(2*d(j,i−1)*g(j,i−1)*hˆ2 − 2*d(j,i)*h*...

*(g(j,i−1)*h+2*r(j,i−1))+4*g(j,i−1)*h−r(j,i−1)*...

*(hˆ2*q(j,i−1)ˆ2−4))/(4*d(j,i)*h−hˆ2*q(j,i)ˆ2−4);
s(j,i) = s(j,i−1)+1/2*h*(q(j,i−1)+q(j,i));
g(j,i) = −(4*d(j,i−1)*g(j,i−1)*h + g(j,i−1)*...

*(4−hˆ2*q(j,i)ˆ2)−2*h*r(j,i−1)*(q(j,i−1)ˆ2+q(j,i)ˆ2))/...
/(4*d(j,i)*h−hˆ2*q(j,i)ˆ2−4);
f(j,i) = −(a(j,i−1)ˆ2*h*r(j,i)+4*f(j,i−1)*r(j,i)*(g(j,i−1)*h...
−2*r(j,i−1))+h*r(j,i−1)*a(j,i)ˆ2)/(4*r(j,i−1)*...

*(h*g(j,i)+2*r(j,i)));
p(j,i) = −(h*r(j,i−1)*q(j,i)*f(j,i)+r(j,i)*(f(j,i−1)*h*...

*q(j,i−1)+p(j,i−1)*(g(j,i−1)*h−2*r(j,i−1))))/...
/(r(j,i−1)*(h*g(j,i)+2*r(j,i)));

%intermediate step to save predicted values (in u−direction)
q old = q(j,i);
d old = d(j,i);

a old = a(j,i);
r old = r(j,i);
g old = g(j,i);
f old = f(j,i);

%corrected values in u − direction (step 3)
q(j,i) = 1/2*(q old+q(j−1,i)−h*(f(j,i)*...

*q(j,i)+g(j,i)*p(j,i))/r(j,i)); %yn
d(j,i) = 1/2*(d old+d(j−1,i)+h*((f(j,i)*g(j,i)+...
+1/4*a(j,i)ˆ2)/r(j,i)ˆ2−p(j,i)*q old));

%corrected values in v − direction (step 4)
a(j,i) = 1/2*(a(j,i)+a(j,i−1)+h*a(j,i)*d old);
r(j,i) = 1/2*(r old+r(j,i−1)+h*g(j,i));
s(j,i) = 1/2*(s(j,i)+s(j,i−1)+h*q old);
g(j,i) = 1/2*(g old+g(j,i−1)+h*(2*d old*g old−r old*q oldˆ2));
f(j,i) = 1/2*(f old+f(j,i−1)−h*(f old*g old+1/4*a oldˆ2)/r old)
p(j,i) = 1/2*(p(j,i)+p(j,i−1)−h*(f old*q old+g old*p(j,i))/...

68



/r old);

%values on (u,u) with second order approximation
elseif i == (3+b)

%\frac{da}{dr}|(u,u) = 0 as second order approximation
a(i−1,i−1) = 1/3*(4*a(i−2,i)−a(i−3,i+1));
%\frac{ds}{dr}|(u,u) = 0 as second order approximation
s(i−1,i−1) = 1/3*(4*s(i−2,i)−s(i−3,i+1));
g(i−1,i−1) = 1/2*a(i−1,i−1);
f(i−1,i−1) = −1/2*a(i−1,i−1);

%values on (u,u) (step 0)
q(i−1,i−1) = q(i−2,i−1)−h*(f(i−2,i−1)*q(i−2,i−1)+...
+g(i−2,i−1)*p(i−2,i−1))/r(i−2,i−1);
d(i−1,i−1) = d(i−2,i−1)+h*((f(i−2,i−1)*g(i−2,i−1)+...
+1/4*a(i−2,i−1)ˆ2)/r(i−2,i−1)ˆ2−p(i−2,i−1)*q(i−2,i−1));
p(i−1,i−1) = q(i−1,i−1);

%predicted values in u − direction (step 1)
q(j,i) = q(j−1,i)−h*(f(j−1,i)*q(j−1,i)+g(j−1,i)*...

*p(j−1,i))/r(j−1,i);
d(j,i) = d(j−1,i)+h*((f(j−1,i)*g(j−1,i)+1/4*a(j−1,i)ˆ2)/...
/r(j−1,i)ˆ2−p(j−1,i)*q(j−1,i));

%predicted values in v − direction (step 2)
a(j,i) = (a(j,i−1)+1/2*h*a(j,i−1)*d(j,i−1))/(1−1/2*h*d(j,i));
r(j,i) = −(2*d(j,i−1)*g(j,i−1)*hˆ2 − 2*d(j,i)*h*...

*(g(j,i−1)*h+2*r(j,i−1))+4*g(j,i−1)*h−r(j,i−1)*(hˆ2*q(j,i−1)ˆ2−4))/(4*d(j,i)*h−hˆ2*q(j,i)ˆ2−4);
s(j,i) = s(j,i−1)+1/2*h*(q(j,i−1)+q(j,i));
g(j,i) =−(4*d(j,i−1)*g(j,i−1)*h + g(j,i−1)*(4−hˆ2*q(j,i)ˆ2)−...
2*h*r(j,i−1)*(q(j,i−1)ˆ2+q(j,i)ˆ2))/(4*d(j,i)*h−hˆ2*q(j,i)ˆ2−4)
f(j,i) = −(a(j,i−1)ˆ2*h*r(j,i)+4*f(j,i−1)*r(j,i)*(g(j,i−1)*h...
−2*r(j,i−1))+h*r(j,i−1)*a(j,i)ˆ2)/(4*r(j,i−1)*...

*(h*g(j,i)+2*r(j,i)));
p(j,i) = −(h*r(j,i−1)*q(j,i)*f(j,i)+r(j,i)*(f(j,i−1)*h*...

*q(j,i−1)+p(j,i−1)*(g(j,i−1)*h−2*r(j,i−1))))/(r(j,i−1)*...

*(h*g(j,i)+2*r(j,i)));

%intermediate step to save predicted values (in u−direction)
q old = q(j,i);
d old = d(j,i);

a old = a(j,i);
r old = r(j,i);
g old = g(j,i);
f old = f(j,i);

%corrected values in u − direction (step 3)
q(j,i) = 1/2*(q old+q(j−1,i)−h*(f(j,i)*q(j,i)+...
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+g(j,i)*p(j,i))/r(j,i));
d(j,i) = 1/2*(d old+d(j−1,i)+h*((f(j,i)*g(j,i)+1/...
/4*a(j,i)ˆ2)/r(j,i)ˆ2−p(j,i)*q old));

%corrected values in v − direction (step 4)
a(j,i) = 1/2*(a(j,i)+a(j,i−1)+h*a(j,i)*d old);
r(j,i) = 1/2*(r old+r(j,i−1)+h*g(j,i));
s(j,i) = 1/2*(s(j,i)+s(j,i−1)+h*q old);
g(j,i) = 1/2*(g old+g(j,i−1)+h*(2*d old*g old−r old*q oldˆ2));
f(j,i) = 1/2*(f old+f(j,i−1)−h*(f old*g old+1/4*a oldˆ2)/r old)
p(j,i)=1/2*(p(j,i)+p(j,i−1)−h*(f old*q old+g old*p(j,i))/r old)

else

%predicted values in u − direction (step 1)
q(j,i) = q(j−1,i)−h*(f(j−1,i)*q(j−1,i)+g(j−1,i)*...

*p(j−1,i))/r(j−1,i);
d(j,i) = d(j−1,i)+h*((f(j−1,i)*g(j−1,i)+1/4*a(j−1,i)ˆ2)/...
/r(j−1,i)ˆ2−p(j−1,i)*q(j−1,i));

%predicted values in v − direction (step 2)
a(j,i) = (a(j,i−1)+1/2*h*a(j,i−1)*d(j,i−1))/(1−1/2*h*d(j,i));
r(j,i) = −(2*d(j,i−1)*g(j,i−1)*hˆ2 − 2*d(j,i)*h*(g(j,i−1)*h+...
+2*r(j,i−1))+4*g(j,i−1)*h−r(j,i−1)*(hˆ2*q(j,i−1)ˆ2−4))/(4*d(j,i)*h−hˆ2*q(j,i)ˆ2−4);
s(j,i) = s(j,i−1)+1/2*h*(q(j,i−1)+q(j,i));
g(j,i) = −(4*d(j,i−1)*g(j,i−1)*h + g(j,i−1)*(4−hˆ2*q(j,i)ˆ2)−...
2*h*r(j,i−1)*(q(j,i−1)ˆ2+q(j,i)ˆ2))/(4*d(j,i)*h−hˆ2*q(j,i)ˆ2−4)
f(j,i) = −(a(j,i−1)ˆ2*h*r(j,i)+4*f(j,i−1)*r(j,i)*(g(j,i−1)*h...
−2*r(j,i−1))+h*r(j,i−1)*a(j,i)ˆ2)/(4*r(j,i−1)*...

*(h*g(j,i)+2*r(j,i)));
p(j,i) = −(h*r(j,i−1)*q(j,i)*f(j,i)+r(j,i)*(f(j,i−1)*h*...

*q(j,i−1)+p(j,i−1)*(g(j,i−1)*h−2*r(j,i−1))))/(r(j,i−1)*...

*(h*g(j,i)+2*r(j,i)));

%intermediate step to save predicted values (in u−direction)
q old = q(j,i);
d old = d(j,i);

a old = a(j,i);
r old = r(j,i);
g old = g(j,i);
f old = f(j,i);

%corrected values in u − direction (step 3)
q(j,i) = 1/2*(q old+q(j−1,i)−h*(f(j,i)*q(j,i)+...
+g(j,i)*p(j,i))/r(j,i));
d(j,i) = 1/2*(d old+d(j−1,i)+h*((f(j,i)*g(j,i)+...
+1/4*a(j,i)ˆ2)/r(j,i)ˆ2−p(j,i)*q old));
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%corrected values in v − direction (step 4)
a(j,i) = 1/2*(a(j,i)+a(j,i−1)+h*a(j,i)*d old);
r(j,i) = 1/2*(r old+r(j,i−1)+h*g(j,i));
s(j,i) = 1/2*(s(j,i)+s(j,i−1)+h*q old);
g(j,i) = 1/2*(g old+g(j,i−1)+h*(2*d old*g old−r old*q oldˆ2));
f(j,i) = 1/2*(f old+f(j,i−1)−h*(f old*g old+1/4*a oldˆ2)/r old)
p(j,i) = 1/2*(p(j,i)+p(j,i−1)−h*...

*(f old*q old+g old*p(j,i))/r old);

end

end

b = b+1;

end

erg = mesh(uarr,varr,s); % 3−D mesh surface plot

%run: collapse2(100,10ˆ(−3))

end

%Toby Wiseman's version
%Special Topic lectures on 'Numerical Relativity'
%
%Spherical collapse − null coordinates
%
function [ uarr, varr, parr, Aarr, Barr ] = collapsenull( Nin )

global N u v du dv p A B ;

N = Nin ;

maxu = 10. ;

u = 0:(maxu/(N−1)):maxu ;

v = u ;

du = u(2) ; dv = du ;

p = 9.591930865673*10ˆ(−2)*(v−u(1)).ˆ2.*exp(−2*(v−2.).ˆ2) ;

B = 0.5*v ;

A(1) = 0 ;
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for ii=2:N

pv = ( p(ii) − p(ii−1) )/dv ;

Bval = 0.5*(B(ii) + B(ii−1)) ;

A(ii) = A(ii−1) + dv*0.5*( pv*pv*Bval ) ;

end

uarr = zeros([N N]) ;
varr = zeros([N N]) ;
parr = zeros([N N]) ;
Aarr = zeros([N N]) ;
Barr = zeros([N N]) ;

uarr(1,:) = u ;
varr(1,:) = u(1) ;
parr(1,:) = p ;
Aarr(1,:) = A ;
Barr(1,:) = B ;

dval = 1.e−8 ;

sing = N ;

for ii=2:N−2

v = u(ii) ;

for jj=1:ii−1

pnew(jj) = 0 ;
Anew(jj) = 0 ;
Bnew(jj) = 0 ;

end

if( ii == 2 )

pnew(ii) = p(ii+1) ;
Anew(ii) = log(B(ii+1)/dv) ;
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Bnew(ii) = 0 ;

else

pnew(ii) = 2*p(ii+1) − pold(ii+2) ;
Anew(ii) = log(B(ii+1)/dv) ;
Bnew(ii) = 0 ;

end

for jj=ii+1:N

pnew(jj) = p(jj) ;
Anew(jj) = A(jj) ;
Bnew(jj) = B(jj) ;

end

fprintf(1,' ii = %d\n',ii) ;

for jj=ii+1:sing

count=0 ;

eq = [ 1 1 1 ] ;

while( norm(eq)>1.e−10 && count<200 )

count=count+1;

vec00 = [ p(jj−1) A(jj−1) B(jj−1) ] ;

vec10 = [ p(jj) A(jj) B(jj) ] ;

vec01 = [ pnew(jj−1) Anew(jj−1) Bnew(jj−1) ] ;

vec11 = [ pnew(jj) Anew(jj) Bnew(jj) ] ;

[ eq(1) eq(2) eq(3) ] = update( ii, jj, vec00, vec10, vec01, vec11) ;

linop = zeros([3 3]) ;

for var=1:3

tmpvec11 = vec11 ;

tmpvec11(var) = vec11(var) − dval ;
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[ eq0(1) eq0(2) eq0(3) ] = update( ii, jj, vec00, vec10, vec01, tmpvec11) ;

tmpvec11(var) = vec11(var) + dval ;

[ eq1(1) eq1(2) eq1(3) ] = update( ii, jj, vec00, vec10, vec01, tmpvec11) ;

linop(:,var) = (eq1−eq0)/dval ;

end

vec11 = vec11 − transpose(inv(linop)*transpose(eq)) ;

pnew(jj) = vec11(1) ;
Anew(jj) = vec11(2) ;
Bnew(jj) = vec11(3) ;

end

if(count>100)

fprintf(1,'\n ** Cant solve at %d\n\n',jj) ;

sing = jj ;

end

end

for jj=sing+1:N

pnew(jj) = 0 ;
Anew(jj) = 0 ;
Bnew(jj) = 0 ;

end

uarr(ii,:) = u ;
varr(ii,:) = u(ii) ;
parr(ii,:) = pnew ;
Aarr(ii,:) = Anew ;
Barr(ii,:) = Bnew ;

pold = p ;
Aold = A ;
Bold = B ;

p = pnew ;
A = Anew ;
B = Bnew ;
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end

subplot(1,3,1) ;

mesh(uarr(:,:),varr(:,:),parr(:,:))

subplot(1,3,2) ;

mesh(uarr(:,:),varr(:,:),Aarr(:,:))

subplot(1,3,3) ;

mesh(uarr(:,:),varr(:,:),Barr(:,:))

end

function [ eq1 eq2 eq3 ] = update( ii, jj, vec00, vec10, vec01, vec11 )

global N u du ;

p00 = vec00(1) ; A00 = vec00(2) ; B00 = vec00(3) ;
p10 = vec10(1) ; A10 = vec10(2) ; B10 = vec10(3) ;
p01 = vec01(1) ; A01 = vec01(2) ; B01 = vec01(3) ;
p11 = vec11(1) ; A11 = vec11(2) ; B11 = vec11(3) ;

p = 0.25*( p00 + p10 + p01 + p11 ) ;
A = 0.25*( A00 + A10 + A01 + A11 ) ;
B = 0.25*( B00 + B10 + B01 + B11 ) ;

pv = 0.5*( ( p10 − p00 ) + ( p11 − p01 ) )/du ;
Av = 0.5*( ( A10 − A00 ) + ( A11 − A01 ) )/du ;
Bv = 0.5*( ( B10 − B00 ) + ( B11 − B01 ) )/du ;

pu = 0.5*( ( p01 − p00 ) + ( p11 − p10 ) )/du ;
Au = 0.5*( ( A01 − A00 ) + ( A11 − A10 ) )/du ;
Bu = 0.5*( ( B01 − B00 ) + ( B11 − B10 ) )/du ;

pvu = ( p11 − p10 − p01 + p00 )/(du*du) ;
Avu = ( A11 − A10 − A01 + A00 )/(du*du) ;
Bvu = ( B11 − B10 − B01 + B00 )/(du*du) ;

eq1 = pvu + (Bv*pu + Bu*pv)*power(B,−1) ;

eq2 = Avu + (2*pu*pv − (4*Bu*Bv + exp(2*A))*power(B+duˆ2,−2))/4. ;

eq3 = Bvu + ((4*Bu*Bv + exp(2*A))*power(B+duˆ2,−1))/4. ;

end
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function int = trapezoidal rule propertime(a,h)

%Trapezoidal rule propertime computes the proper time T experienced by an
%observer moving along the u = v axis by integrating the metric function
%'a' on axis using the trapezoidal rule.

%input:
%a: values of the metric function on axis [diag(a)]; can be
%computed by running a = collapse1(100,h)
%h: step size of u−v grid

%output:
%int: proper time T experienced by an observer moving along the
%u = v axis

int(length(a)) = 0;

int(1) = sqrt(2)*h*a(1);

for j = 2:length(a)

int(j) = 1/sqrt(2)*h*(a(j−1)+a(j))+int(j−1); %trapezoidal rule

end

end
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