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1 Introduction

Since the seminal works of Fisher, Wilson, and others on the underlying structure of field

theory in the 1970’s, as exemplified by [1, 2], the physics community has witnessed an

explosive development of field-theoretic methods with applications in many branches of

physics. In the area of condensed matter, for example, field-theoretical approaches are

becoming almost indispensable [3]. Since it was developed primarily to handle quantum
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interactions of elementary particles, an area rife with probability, its success in statistical

physics might not have been entirely unanticipated, but the elegance and adaptability

of the framework to classical calculations is certainly worth admiring. We will omit

the modifier “quantum” when talking about field theory from now on, as all of our

calculations will lack the defining characteristic of quantum probability. We will be

dealing with entirely classical Kolmogorovian probability and not quantum probability

amplitudes.

The primary focus of this paper will be a subclass of classical statistical systems that

readily subject themselves to field theoretic analysis, reaction-diffusion systems (some-

times referred to as RD systems from now on). The basic idea of these systems is best

exposed with an intuitive picture of one or several types of particles, such as molecules of

chemical compounds, immersed in a liquid or other setting, undergoing ordinary Brow-

nian diffusion. In addition there are reactions between these particles, analogous to

chemical reactions, in which two or more particles, after they have come into close prox-

imity of each other, react to produce a new set of particles, e.g. a third type of molecule.1

The basic types of questions we will be interested in are closely related to the notion of

universality, the independence of phenomena on their microscopic details. Field theory

comes very handy in calculating asymptotic decay exponents of reactant densities in

great generality, covering a wide range of seemingly distinct physical situations. There

is still notable dependence on qualitatively different initial conditions and the techniques

presented in this thesis are also suited to calculating the evolution characteristics of spe-

cific configurations, but as mentioned above they also seem to excel in their generality.

Through the renormalisation group flow, field theory also becomes a powerful tool for

studying scaling relations. There are of course countless other mathematical tools with

which one can approach RD systems and about as many parameters that can be tuned
1If the reader is left unmoved by this intuitive, but inherently chemical illustration, I should point out
that the formalism presented in this dissertation has also been applied to the recombination of holes
and electrons in semiconductors [4] and the annihilation of primordial magnetic monopoles in the
early Universe [5].
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in the analysis. Some of these are presented in section 2 in which RD systems are further

introduced, pre-field-theoretical approaches are discussed and their limitations, as well

as occasional benefits, are presented.

In section 3the field theoretic description of reaction-diffusion, originally due to Doi[6]

and then revived by Peliti[7], is introduced with emphasis on renormalisation group

techniques. I believe the procedure has great pedagogical value as it allows one to

appreciate the structure of field theory in a classical setting. Since quantum physics

has the potential to obscure calculations of perfectly observable phenomena for a lot

of people, a classical analogue of QFT is useful in gaining an intuitive grasp on field

theory calculations and in recognising the elements of field theory that have nothing to

do with quantum phenomena but rather probability in general. Having said that, the

correspondence should not be taken too far, as there are key differences involved as well,

which I will attempt to point out, and the whole lot of similarities could be considered to

be largely a consequence of using functional integration in both quantum and classical

field theory. It could be argued that functional integration is a much more fundamental

mathematical underpinning of both variants of field theory.

In the following section 4 I will present some key theoretical and experimental results

in the field, though the latter are quite scarce. Fortunately the former make up for

that fact as there are links to other important areas of modern statistical physics, and

physics in general, interspersed throughout the field. There is a particularly strong

connection to percolation, more specifically directed percolation and to a lesser degree

directed isotropic percolation. It has been found that a mesoscopic action related to a

certain branching and decaying process is equivalent to a stochastic process describing

directed percolation. This process also undergoes a phase transition as the individual

reaction rates are independently varied. As we are using field-theoretic techniques,

identifying critical exponents of the phase transition is a breeze. And there are many

other systems exhibiting such and potentially much richer phase transition behaviour,
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alongside numerous other properties of interest. After roughly covering the universality

class of directed percolation, I will then present what might be called classical results in

the field, data relating to the annihilation of two particles of different species. This is by

far not trivial, yet serves as a good illustration of our adopted formalism. I will continue

by tackling a less typical field, diffusion-reaction systems on complex networks. This is

a relatively young field, active only during the last 10 years or so and I will attempt to

present a concise summary of its achievements up to now. Theoretical considerations are

rounded up with an exposition of Lévy flights which are a type of superdiffusive motion,

important in itself, but that also enable us to consider cases where the field-theoretical

results converge extremely well, thus providing a valuable testing ground. I will attempt

to supplement the list of theoretical results with my own insights and I will finally list

some open problems and possible directions of further research in section 5.

This review is largely based on a review by Howard et al. [8] and the references contained

therein. The theoretical machinery is based on standard introductory accounts of field

theory [9, 10] and the exposition of renormalisation and renormalisation group flows

along with critical exponents in the classic textbook by Peskin & Schroeder [11]. The

latter operates within a quantum setting, but the techniques covered are perfectly appli-

cable to our procedures. The specific application of the field formalism to RD systems

is mostly based on Cardy’s lecture notes, available online.[12]

2 Reaction-Diffusion systems

2.1 Reaction-diffusion preliminaries

There are numerous processes in nature that fall conveniently under the reaction-diffusion

paradigm. First and foremost the type of process we are dealing with is characterised

by the types of particles involved. We could have, say, three species of particles as in
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the example above. These particles then undergo reactions such as A + B → C or

A+A→ B+C. There can of course be an arbitrary number of particle species, though

most theoretical results focus on small numbers of these. Each reaction has an associated

rate. A system of N particle species is specified by a list of all of its reactions, of the form∑N
j=1 kjAj →

∑N
j=1 ljAj , along with their rates. Let there be altogether M reactions.

The kj and lj for the i-th reaction can be put in a matrix (kij , lij) of dimensionsM×2N

with no two rows the same. This fully captures the reaction data.

The rate for a reaction is defined so that if it were the only reaction taking place and

there were no stochastic fluctuations, the local particle densities aj (t) would satisfy

∂tai (t) = −λ (ki − li)
N∏
j=1

aj (t)kj (1)

The parameter λ is the rate. E.g. in a two particle annihilation A + B → 0 we would

have ∂ta = −λab and ∂tb = −λab.

The equation defining λ above is also called the mean field approximation. This neglects

possible statistical fluctuations as irrelevant. In fact each reaction-diffusion a parameter

range for which this approximation is valid in order to be able to define a renormalisation

group expansion [8]. Most often it is justified above a so-called critical dimension. The

derivation of it is shown in Section 2.1.1. The mean field approximation is usually taken

to be true locally but can also be taken to hold globally, i.e. for the averaged particle

densities, when the particles are homogeneously mixed.

An important property of the mean field approximation is that it comprises the tree-level

sum of Feynman diagrams, as it satisfies the corresponding Dyson equation [8]. This

might seem cryptic now but it will be important in obtaining results for asymptotic

properties of A+A→ 0.

The particles also diffuse, so each species is characterised by its diffusion constant DAj .
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The latter is technically defined through the correlations in a stochastic Langevin equa-

tion dual to our field theory description, of the noise term at different times, but can

be thought of as the quantity such that the average distance traveled by a particle

undergoing diffusion after time t is2
√
Dt.

The simplest and most analytically accessible reactions are single-species, of which some

have been studied very extensively and are sometimes referred to by their name, e.g.

annihilation A+A→ 0 and coagulation A+A→ A. [8] We can build a very complete and

accessible theoretical picture for processes of type kA → lA with k > l which we shall

do as an example in the next section. These of course do not fit the chemical analogy

very well. They might still thrive in slightly more convoluted biological or sociological

analogies, but are at any rate useful for elucidating the basic concepts of our framework.

As mentioned in the introduction we will be primarily interested in asymptotic scaling

exponents and amplitudes for long times and large distances. These apply to the den-

sities of reacting particles as well as the magnitudes of fluctuations. Some of these are

sometimes tractable throughout the evolution of the system. In multi-species reactions

final distributions sometimes demonstrate interesting phenomena such as segregation or

depletion. These results can depend strongly on system parameters, some of which are

listed in section 2.3.

2.1.1 Critical dimension

For simple reaction-diffusion processes, the dimension above which fluctuations become

important is easily determined by considering the properties of random walks in d di-

mensions, which is what diffusion amounts to. Two random walkers are almost certainly

going to meet in finite time in d = 1 or d = 2 dimensions, while they are almost certainly

not going to meet in d ≥ 3 dimensions. We thus identify dc as the critical dimension.

This additionally sheds light on the universality of the process. In dimensions d ≤ 2, the
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asymptotic properties of the process, that is properties at late times, when the particles

are very distant from each other and we can ignore any microscopic length scales, are

completely determined by the probability of two faraway random walkers diffusing into

each other, a universal quantity. Above the critical dimension particles would almost

certainly never meet and hence there would be no reaction had it not been for their

microscopic details, notably length scales. With the introduction of these universality is

lost.

In a reaction with three reacting particles dc = 1, as three random walkers are likely to

meet in a finite time only in d = 1.

Later we will be able obtain the critical dimension from the scaling of the coupling in

our action, which in general depends on dimension. Beneath the critical dimension we

will obtain IR divergences, while above it we will have ultraviolet divergences and both

exactly at dc. It can be thus shown that the critical dimension for a kA → lA reaction

is dc = 2/ (k − 1).[8]

2.2 Mathematical approaches

There are several alternatives to field theory in approaching these types of problems.

It should be noted straight away that we are primarily interested in systems out of

equilibrium. In a lot of reaction-diffusion systems of interest the equilibrium condition

is rather boring anyway, e.g. in pair annihilation A+A→ 0 the steady state is either an

empty lattice or one diffusing particle. In cases where we are nevertheless interested in

the equilibrium statistics, there are very elegant and powerful techniques at our disposals,

such as the various canonical ensembles.

However in the more interesting case of analysing the approach to equilibrium we have

as of yet less knowledge and consequently methods at our disposal. There is of course

Monte Carlo simulation, which, in most areas of RD systems, serves as a substitute
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for experimental verification of analytical findings and can also be used to solve specific

brute force without any interference of analytical results. It can also be used with a pure

research mindset to discover new phenomena. It is usually defined on a lattice with a

characteristic spacing. It will be useful to first consider the dynamics on a lattice with

particles hopping between lattice sites and reacting when on the same site with given

probabilities in our field theoretic approach as well. Only later will we take a continuum

limit and transform particle numbers into slightly more abstract particle densities.

The remaining techniques do not require a lattice. For two reacting particles, as in e.g.

annihilation, we can define a stochastic Langevin equation and proceed with stochastic

calculus analysis. There are two types of such Langevin equations, the mesoscopic,

whose validity diminishes as we move further out of equilibrium and hinges on the a

priori identification of slow variables[13, 8]. Nevertheless, they can yield important

additional insight and are also amenable to being solved with the tools of stochastic

calculus in the region of their validity. For reactions of no more than two particles we

can also obtain a different Langevin equation, analogous to that for the evolution of

particle densities, directly from field-theoretic action ([8], sec. 3.5). It turns out that

this describes a complex quantity, so the presence of a field-theoretical framework seems

necessary for its consistent interpretation, but regardless of that, it doubtlessly increases

our calculational possibilities.

Mean field theory is for all practical purposes exact above the critical dimension. It

is usually much simpler than any of the other available analytical methods. A more

involved approximation is that of Smoluchowski [14, 15], roughly corresponding to an

extended mean field formalism with an additional mean two-point correlation function.

This can also be used below critical dimension in specific cases. It is a very successful

approximation in theories where propagators and fields do not get renormalized. The

prime examples of RD processes, A+A→ 0 and A+B → 0 are such, so Smoluchowski

theory can be applied to them.
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2.3 Tunable parameters

There is an abundance of tweakable parameters in the problems described above. First

we can choose whether we’re analysing a continuum or lattice, in discrete or continuous

time. In this thesis we will mostly be concerned with spatial and temporal continuums,

as they provide the most straightforward route to universal results and are the natural

setting of field theory calculations. When utilising the Doi-Peliti field-theoretical for-

malism we will however always pass to the continuum through an intermediate stage on

a lattice. The parameters of the lattice are thus important as well. In fact we will touch

upon an area where the lattice structure is of utmost importance, while discussing RD

processes on complex networks in section 4.3.

As for the lattice properties, we can tweak the lattice type, making it either (hyper-)cubic

or triangular, for example. We can also modify occupancy restrictions, e.g. we would

allow at most n particles at a site or reduce the probabilty of hopping to a site with many

particles on it already. A rough continuum analogue of occupancy restrictions is the size

of the reaction region, i.e. how close particles have to be to each other to react, or the

radius of a hard-sphere particle, though these present one of the outstanding problems

of the field-theoretic approach, as they haven’t been adequately implemented yet.2

RD systems can be classified into groups of qualitatively different behaviour, closely

related to their universality classes, the collection of critical exponents when there is

a phase transition. The ones we will touch upon are directed percolation and its vari-

ants, branching and annihilating random walkers and simple systems without phase

transitions [8] which we proceed to analyse in the following section. By adjusting the

reactants and rates of typical representatives of these groups new interesting processes

can be obtained.

2While it is true that Van Wijland [16] has introduced a method that allows us to treat hard-core
potential particles bosonically so that they never appear on the same site, the particles can still pass
through each other, which leads to notably erroneous results in 1 dimension.[8]
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One can also introduce external elements with a more or less direct physical interpreta-

tion. One can consider systems with particle input in which the steady state becomes

interesting as it is a driven out-of-equilibrium state. One can also introduce things

like shear flows which contribute to the mixing of particles and thus add new terms to

the path integral action. It is possible to generalise ordinary diffusion to Lévy flights

which turns out to be very useful as we can consider cases when the convergence of

the dimensional regularisation perturbation is much quicker than usually. Finally one

can redefine the entire dynamics by moving the process to a complex network (simpler

topological constructs more reminiscent of Euclidean space are also acceptable). These

modifications and their implications will be elaborated on in section 4.

3 Field Theory in Reaction-Diffusion Systems

We will illustrate the translation of the problem into field-theory language on the ex-

ample of the A+ A→ 0 process. The main steps of the procedure are first considering

particles on a discrete lattice with a probability distribution over the space of possible

configurations of site occupation numbers. This can be worded in terms of states and

the corresponding master equation can be interpreted as a quasi-Schrödinger equation.

We then introduce creation and annihilation operators for individual sites and express

all observables, including the quasi-Hamiltonian, in terms of these operators. What fol-

lows is an analogue of transforming the wavefunction formulation of quantum mechanics

into Feynman’s path integral approach. This step employs a clever trick that involves

inserting a complete set of coherent states after each infinitesimal time interval, allowing

us to replace the creation and annihilation operators with values of two distinct scalar

fields. We can do the same for observables and calculate their expectation values by

integrating over all configurations of the two fields. There are some unnecessary leftover

terms from the initial and final contributions to the action which we can dispose of by

12



shifting one of the fields.

We then identify the part of the action bilinear in the fields as the free action, which is

basically the action of pure diffusion, and expand the remaining terms in the exponential

into a perturbation expansion, given that coupling constants are small3. We then analyse

the appearance of ultraviolet and infrared divergences with respect to the dimension.

We set scale dependent renormalisation conditions, calculate the beta function of the

dimensionless coupling and identify a non-trivial IR-stable fixed point that finally yields

the IR scaling laws which are what we are after.

3.1 Setting up field theory on the lattice

3.1.1 States and normalisation

Consider first particles residing on a lattice. The particles can hop to neighbouring sites

and if there are several particles at the same site they have a given probability of anni-

hilating. The idea is to introduce states analogous to wavevectors in second-quantized

quantum theories. Our basis states will correspond to distinct sets of occupation num-

bers of lattice sites. Consider, for example, a somewhat artificial scenario with three

lattice sites. Our basis vectors will then be labeled |{n1, n2, n3}〉 with ni = 0, 1, 2, . . .

Of course if there is a conserved number of particles N only basis states with
∑
i ni = N

will be allowed and there might be other constraints. Physical states are then associated

with vectors of the form

|ψ〉 =
∑
~n

P (~n) |~n〉 (2)

3The coupling constants could easily be dimensionful and so we cannot speak of them being large
or small just yet, but rather have to wait until we introduce the dimensionless coupling g0 =
(λ0/D)κ−2ε/dc with κ an arbitrary momentum scale. Since κ is completely arbitrary and since
we are guaranteed that this expression becomes small with time due to the RG flow we can conclude
that such an expansion is justified.
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with the constraint that

∑
~n

P (~n) = 1 (3)

where ~n is a vector in a space of dimension equal to the number of lattice sites. We will

interpret P (~n) as the probability that the system is in state |~n〉. From the constraint

we can recognise the principal difference from quantum computations in that we are not

dealing with probability amplitudes but direct probabilities. Our normalisation must

thus differ from the quantum conventions.

Our goal is to write a master equation for the evolution of the states and interpret it as

a quasi-Schrödinger equation. We are looking for an expression of the form

d
dt |ψ〉 = −H |ψ〉 (4)

We have to introduce some further structure resembling second-quantized theories before

we can continue. We can think of global states as tensor products of individual lattice

site states. In our three site example this means |{n1, n2, n3}〉 = |n1〉1 |n2〉2 |n3〉3. Label

the state with no particles |0〉 and introduce creation and annihilation operators a†i and

ai satisfying

[
ai, a

†
j

]
= δij (5)

with other commutators vanishing. Finally define

|n〉i =
(
a†i

)n
|0〉 (6)

Again note the non-standard normalisation.
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3.1.2 Generating the Hamiltonian

With this formalism in place we can start recasting known master equations into Hamil-

tonian form. Let us consider the master equation for particles hopping form one lattice

site to another unidirectionally. This case is very simple to generalize to bidirectional

hopping between several pairs of neighbouring sites. Let P (n1, n2) denote the probabil-

ity that the system is in state |n1, n2〉. The probability for hopping from site 1 to site

2 is proportional to a constant rate D and the number of particles at site 1. We thus

have:

d
dtP (n1, n2) = λ (n1 + 1)P (n1 + 1, n2 − 1)− λn1P (n1, n2) (7)

Recalling the definition of our state, we can write its evolution as

d
dt |ψ〉 =

∞∑
n1=n2=0

d
dtP (n1, n2) |n1, n2〉

=
∑

(D (n1 + 1)P (n1 + 1, n2 − 1)−Dn1P (n1, n2)) |n1, n2〉

=
∑

Dn1P (n1, n2) |n1 − 1, n2 + 1〉 −
∑

Dn1P (n1, n2) |n1, n2〉

= D
(
a†2a1 − a†1a1

)∑
P (n1, n2) |n1, n2〉 = −H |ψ〉 (8)

In the third line we have renamed summation indices and used ai |. . . , ni, . . .〉 =

= ni |. . . , ni − 1, . . .〉 and a†i |. . . , ni, . . .〉 = |. . . , ni + 1, . . .〉 in the fourth line. These

identities follow from the definition of n states and the commutation relations of a. We

see the Hamiltonian equals H = −λ
(
a†2 − a

†
1

)
a1. In the bidirectional case it equals

H = λ
(
a†2 − a

†
1

)
(a2 − a1) and when there are more than two lattice sites we obtain the

diffusion Hamiltonian in its most general form:4

4It might not be immediately clear that we can add different Hamiltonians together. We can do so
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Hdiff = D
∑
〈ij〉

(
a†i − a

†
j

)
(ai − aj) (9)

where the sum is taken over pairs of neighbouring sites.

The second relevant process is pair annihilation at a single site and by similar propor-

tionality arguments as for particle hopping we deduce its master equation to be

d
dtPn = µ (n+ 2) (n+ 1)Pn+2 − µn (n− 1)Pn (10)

By again differentiating |ψ〉 =
∑
Pn |n〉 with respect to t, shifting the summation indices

and using properties of a’s and a†’s we obtain the annihilation Hamiltonian for a single

site, Hi = −λ
(
1− a†2i

)
a2
i . The complete Hamiltonian for our lattice model is then:

H = Hdiff −
∑
i

λ
(
1− a†2i

)
a2
i (11)

In fact it is easy to generalise these observations to a Hamiltonian of a general reaction

kAA . . .→ lAA . . .

d
dtPn = µ

(n+ k − l)!
(n− l)! Pen+k−l − µ

n!
(n− k)!Pn (12)

Upon going through the differentiation of |ψ〉 again we can derive the following heuris-

tic rule. For each kA → lA reaction we get two normal-ordered terms in the quasi-

Hamiltonian, multiplied by the rate µ. The first one is always positive and represents

only the left hand side of the equation, a†kak. There will always be the same number

of creation and annihilation operators in this term as the information is basically dupli-

cated. The second term is negative and takes into account both sides of the equation,
because the only constraint Hamiltonians have to obey, the conservation of total probabilty, is linear
and homogeneous. Viewing Hamiltonians as linear operators on the vector space of states in the
basis identified near the beginning of this section we can phrase the constraint as

∑
α
Hαβ = 0. See

Cardy [12]. This will obviously be satisfied by any linear combination of appropriate Hamiltonians.
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−a†lak. It can be shown [8] that this generalises to equations with several participating

species, i.e. for equation A + B + C → D + 2A at rate ι we would obtain a quasi-

Hamiltonian term ι
(
abc− d†a†2abc

)
. This heuristic rule will be useful in later analysis

of more complex reactions.

3.1.3 Initial conditions

It is physically reasonable to consider initial conditions where the number of particles at

each site is described by an independent Poissonian distribution. This means we have

excluded scenarios where there is, for example, a known number of particles present in

the entire lattice, as the probabilty distributions must then be appropriately correlated to

satisfy this global constraint. However this is hardly a severe blow for our programme of

deducing asymptotic scaling laws. In addition we would probably use other mathematical

tools in cases where the system is small enough for the overall number of particles to be

tractable. For a large number of sites the overall deviation from the mean number of

particles will also be relatively small. At any rate, independent Poissonian distributions

seem justified. The nice thing about these is that they can be quantum mechanically

compactly represented by coherent states, i.e. eigenstates of the annihilation operator.

We thus have:

|ψ (t = 0)〉 =
∏
i

eρ0e−ρ0a
†
j |0〉 (13)

The normalisation again differs from quantum conventions. ρ0 is the average number of

particles per site.

In the subsequent steps of the derivation the following identities, which follow from the

commutation relations 5, are used ubiquitously:
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eφ∗a F
(
a, a†

)
= F

(
a, a† + φ∗

)
eφ∗a

F
(
a, a†

)
eφa† = eφa†F

(
a+ φ, a†

)
(14)

We must also define the expectation values of observables in our formalism. All the

observables that we will consider can be thought of as depending on the number of

particles, though we might need a Fourier transform or two along the way. Therefore

the basis vectors
⊗
i |ni〉 are “eigenstates” of the observable and we can consider our

observables to be operators acting on |ψ〉 =
∑
P (~n) |~n〉 as

A |ψ〉 =
∑

A (~n)P (~n) |~n〉 (15)

To obtain the average A =
∑
A (~n)P (~n) we must project A |ψ〉 onto a reference bra. In

our normalisation conventions this turns out to be 〈0|
∏

eaj . The complete expression

for averages of observables is thus

A = 〈0|
∏

eajAe−Ht |ψ (0)〉 (16)

This expression will now be converted into path integral form.

3.2 Path integrals

As in ordinary accounts of deriving Feynman path integrals from the wavefunction for-

mulation of quantum mechanics, we first acknowledge the limit

e−Ht = lim
δt→0

(1−H δt)t/δt (17)
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and proceed by writing the e−Ht in 16 as a product of t/δt terms of the form(
1−H

(
a, a†

)
δt
)
. As usual we insert a complete set of states between each pair of

factors, only this time we insert a set of coherent states of the form

1 =
ˆ dφ dφ∗

2π e−φφ∗eφa† |0〉 〈0| eφ∗a (18)

This is for one lattice site, whereas we actually insert a product for all the sites. The

integration measure equals dφdφ∗ = d(Reφ) d (Imφ), but it is useful to formally consider

φ and φ∗ as independent quantities, as they will be interpreted as such later. Doing so

is rather analogous to regarding the two as independent in a quantum complex scalar

field theory and so should not be problematic. The fields φ and φ∗ will also carry a time

label indicating at which point in the product expansion of the exponent 17 they were

inserted.

The motivation for inserting coherent instead of some other states is that they fit nicely

into our second-quantized formalism, as a and a† even appear in their definition, so

we are justified in hoping this might simplify our calculation significantly. Since the

ρ0 in the exponent of the initial state corresponds to the average number of particles

per lattice or, in other words and in anticipation of taking the continuum limit, to the

generalized particle density, we see that the φ fields will roughly correspond to particle

densities at a given time and location. The coherent states are in fact overcomplete but

one can easily show that the inserted sets are exactly complete. For this and a more

detailed derivation of the following few results the reader is directed to [17].

Due to the inserted states, Eq. 16 will consist of a large number of factors of the form

e−φ(t+δt)φ∗(t+δt) 〈0| eφ∗(t+δt)a
(
1−H

(
a, a†

)
δt
)

eφ(t)a† |0〉 (19)

along with the contributions from the first and the last time slice which need to be taken
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care of separately. By using relations 14 to commute the exponents involving a and a†

all the way through the expression where they give eφ∗(t+δt)a |0〉 = 1 and similarly on

the 〈0| side of the expression, we obtain

e−φ(t+δt)φ∗(t+δt)eφ(t)φ∗(t+δt) 〈0| 1−H
(
a+ φ (t) , a† + φ∗ (t+ δt)

)
δt |0〉 (20)

By taking into account that the Hamiltonians are normal ordered, as can be seen from 9

and 11 and as is further advocated in [8], we can drop the a and a† terms from the

Hamiltonian altogether and retain only the φ and φ∗ fields. Since these are c-numbers

we can also eliminate the bracketing 〈0|0〉 = 1 factors. Because δt is infinitesimal we can

also reexponentiate the 1−Hδt term, yielding final factors of the form

e−φ∗(t+δt)(φ(t+δt)−φ(t))e−H(φ(t), φ∗(t+δt))δt δt→0= e−(φ∗(t)∂tφ(t)+H(φ(t), φ∗(t)))δt (21)

These will feature in the final result for 16 in a long chain of similar factors and one such

chain for each lattice site. Since we’re multiplying exponentials the product of factors

will be absorbed into a sum of their exponents and in the limit δt→ 0 this will change

into an integral over time. We can still schematically discuss only one lattice site and

only in the very end extend the result to several sites, even though the factors are not

entirely independent - the Hamiltonians include pairwise interactions between particles

at different lattice sites. Nevertheless, these only appear in very benign places and do

not affect the argument. Abbreviating dφ dφ∗
2π by d̄φ, we see that 16 will be of the form

A = N−1
ˆ ˆ

d̄φ (t) d̄φ (δt) 〈0| eaAe−φ(t)φ∗(t)eφ(t)a† |0〉 · (22)

· exp
(
−
ˆ

dt (φ∗ (t) ∂tφ (t) +H (φ (t) , φ∗ (t)))
)
〈0| eφ∗(δt)aeρ0e−ρ0a† |0〉 (23)

= N−1
ˆ
DφDφ∗A exp (−S [φ, φ∗]) (24)
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The functional S is readily interpreted as an action and it contains the time integral

from 22 as well as terms coming from the initial and final factors that are discussed to

some length in section 3.3 of [8]. These cancel for various reasons, one of them being

causality of the propagators. There is also a more stubborn −φ (t) factor that has to be

eliminated by a field shift φ∗ → φ∗+ 1. Let us forget about it for now and implement it

in a few lines. The field φ∗ is to be treated as independent from now on and so can be

relabeled to avoid confusion, φ∗ relabel→ φ̃. The only additional term left over is −φ̃ (0) ρ0

which imposes initial conditions.

Finally let us take into account the spatial extent of the fields φ and φ̃ by multiplying

the functional integrals for individual lattice sites together. We obtain

A = N−1
(∏

i

ˆ
DφiDφ̃i

)
A e
−S
(
~φ(t), ~̃φ(t)

)
(25)

S

(
~φ (t) , ~̃φ (t)

)
=

∑
i

ˆ
dt
(
φ̃i∂tφi − λ

(
1− φ̃2

i

)
φ2
i

)
+D

∑
〈ij〉

ˆ
dt
(
φ̃i − φ̃j

)
(φi − φj)(26)

Here we have explicitly written out H as the full Hamiltonian from Eq. 11. Let us

now take a continuum limit by promoting φ and φ̃ from (roughly) the average number

of particles per lattice site to roughly the average particle density. For simplicity let’s

assume we are working in a d-dimensional (hyper)cubic lattice with spacing h. Then

φi (t) → φ (x, t)hd in the vicinity of xi, the location of the i-th lattice site in the

newly established coordinate system, while φ̃i (t) → φ̃ (x, t). The sums are promoted

to integrals ,
∑
i →

´
ddxh−d, and field differences are promoted to gradients with

constants rescaling to absorb potential factors of h floating around.5 The full action,

5We have chosen φi (t) → φ (x, t)hd because of convention and because it is at times convenient to
think of φ as a particle density and the response field φ̃ as merely an artifact of our calculation.
But the allusion of φ to the particle density should not be taken too far, as it is in fact in general
complex. What is true is that its expectation value is the expected particle density [12]. We could
have thus also chosen φi → φha, φ̃i → φ̃hb with the only constraint, enforced by the diffusion term,
that a+ b = d. The rest of the dimensions can be absorbed into parameters such as λ.
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e.g. the argument of the exponential in 25, thus becomes

S
[
φ, φ̃

]
=
ˆ

ddx
ˆ

dt
(
φ̃∂tφ+D∇φ̃∇φ− λ

(
1− φ̃2

)
φ2
)

(27)

We can integrate the gradient term by parts to get ∇φ̃∇φ → −φ̃∇2φ. Recall from a

couple of paragraphs ago that we still have to perform the shift φ̃→ φ̃+ 1 to get rid of

a final term and that an initial term is thus left over. This is caused by the first term

in the action, which we can consequently leave unchanged. This leaves us with the final

expressions

S
[
φ, φ̃

]
=
ˆ

ddx
ˆ (

dt
(
φ̃
(
∂t −D∇2

)
φ+ 2λφ̃φ2 + λφ̃2φ2

)
− φ̃ (0) ρ0

)
(28)

A = N−1
ˆ
DφDφ̃A

[
φ, φ̃

]
e−S[φ, φ̃]

Finally note that the normalisation factor N in 22 is determined by demanding 1 = 1,

so N =
´
DφDφ̃e−S[φ, φ̃].

A word on general kA → lA reactions. As we have mentioned below equation 12, the

reactive parts of their Hamiltonians look like

Hreact = λ0
∑(

a†ki − a
†l
i

)
aki (29)

upon substituting a → φ, a† → φ̃ + 1 and some elementary algebraic manipulation we

obtain reactive terms in the action of the form

k∑
i=1

λiφ̃
iφk (30)

with
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λi =


λ0
((k

i

)
−
(l
i

))
i ≤ l

λ0
(k
i

)
i > l

(31)

We can interpret this as a set of Feynman vertices, which are however all related through

λ0 and thus undergo the same renormalization. This is good since we do not wish to

introduce new parameters upon renormalisation and somewhat equivalent to analysing

Lagrangians with broken symmetry.6

3.3 Expansion in terms of Feynman diagrams

The most insightful part of deriving the field theory formalism is the instating of pertur-

bation theory and the ensuing Feynman diagrams. There are at least two equivalently

powerful ways of thinking about diagrams when implementing them. We will occa-

sionally be using a partially Fourier transformed propagator G0 (~p, t) which will make

expressions look like multidimensional convolutions and will thus emphasize the role of

G as a Green’s function and elucidate some structure of perturbative calculations. We

of course again encounter ultraviolet divergences due to unbounded internal momenta

in loop calculations, which we can regulate by absorbing the poles into the couplings.

What’s more surprising is that we also encounter infra-red divergences for ~p→ 0 (which

we shall assume throughout this section when needed) and ω → 0 which corresponds to

long times t→∞. From our physical intuition we do not expect meek tabletop diffusion

experiments to explode if we wait long enough, so these infra-red divergences have to be

regulated. This is achieved by means of summing the perturbation series at an earlier

time, when it converges, and using the running couplings of renormalisation group flows,

quantitatively got at by solving the Callan-Symanzik equation for the particle density,

6The shift φ̃ → φ∗ + 1 is in fact not completely harmless. It can conceal e.g. inversion symmetry
φ̃→ −φ̃ and in some cases, e.g. with branching and annihilating random walkers (section 6.4 of [8]),
this is not always optimal as it can lead us down the wrong path.
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to investigate its asymptotic infra-red behaviour, which turns out to be regular. RD sys-

tems also offer a curious way to intuitively approach renormalisation group (RG) flows,

since the couplings are literally flowing in time.

3.3.1 Feynman diagrams from the action

The standard way of approaching Feynman diagrams is to consider the part of the action

bilinear in fields φ and φ̃ as the action of the free theory, expanding the rest of the action

as a perturbation series in the small coupling constants and averaging with respect to the

Gaussian free action. This yields all the convenient properties of Gaussian integration

at our disposal, including Wick’s theorem. Continuing the derivation for A+A→ 0, we

can read the propagator and interaction vertices directly from the action in 28. It is a

well know theorem that the propagator is the inverse of the bilinear functional form in

the quadratic term of the action, the free action. The propagator in our case is purely

diffusive and is straightforward to calculate by ordinary inversion in Fourier space which

yields

G (p; t) =
ˆ

ddp eip·x
〈
φ̃ (x, t) , φ (0, 0)

〉
= e−Dp2tΘ (t) (32)

There are two distinct vertices represented in figure 1. The interesting thing about pro-

cesses without branching, which cover a wide array of distinct natural phenomena, is

that the propagator and hence both the diffusivity D and the field strength of φ, φ̃ do

not get renormalised. In A+A→ 0 this is evident from the fact that all vertices require

two φ̃ input fields while the propagator only provides one such output branch. Conse-

quently there is no way of forming any loops within propagators. As has been mentioned

before, this is the reason approximations of the Smoluchowski type are so successful in

capturing the essence of RD calculations.
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Figure 1: The vertices of the theory described by action 28. Time is flowing right to left,
as marked. We will adopt this convention throughout this text.

3.3.2 Feynman diagrams from Green’s functions

A conceptually different approach for systems close enough to equilibrium is to transform

the field theory description of the system into a corresponding Langevin equation, that

is a stochastic differential equation for the field φ, usually with multiplicative noise.

This is only possible in systems with reactions of at most two input reactants. There

is a straightforward mapping between an action, such as in 28, and a corresponding

Langevin equation. Demonstrating its validity is not difficult, but involves some long

and cumbersome functional integration calculations. The reader is directed to [12] for a

more complete derivation. The Langevin equation in the A+A→ 0 case is

∂tφ−D∇2φ = −2λφ2 + ξ + ρ0δ (t) (33)

where ξ is a Gaussian noise term characterised by

〈
ξ
(
x′, t′

)
ξ (x, t)

〉
= −2λφ2δ

(
x′ − x

) (
t′ − t

)
(34)

By again using the diffusive propagator G, e.g. Green’s function of the diffusive differ-
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Figure 2: The recursive definition of φ.

Figure 3: Sum of tree level diagrams with an arbitrary number of initial fields.

ential operator in Eq. 33, we can formally write the solution as

φ (x, t) =
ˆ
G
(
x− x′; t− t′

) (
−2λφ

(
x′, t′

)2 + ξ
(
x′, t′

)
+ ρ0δ

(
t′
))

(35)

This lends itself to a recursive definition, which can be neatly presented diagrammatically

as in figure 2. These diagrams are exactly the Feynman diagrams.

The noise terms in Eq. 35 refer to a specific realisation of the noise that we can know

nothing about unless it’s measured. In the case of no noise the, φ is equal to the sum of

all tree diagrams beginning with any number of ρ0 terms, as in figure 3, which is thus

seen to roughly correspond to the mean-field analysis. In the case of noise we can analyse

the average value 〈φ (x, t)〉. As can be seen if we expand 35 to a couple of terms we soon

get terms involving products of the noise at different times. Since the noise is Gaussian,

a variant of Wick’s theorem holds, schematically
〈
ξ2n〉 =

∑
all pairings

〈
ξ2〉n and we know

the form of the right hand side from 34. This gives rise to a new interaction vertex with

two outgoing lines, as
〈
ξ2〉 ∝ φ2 corresponding to the leftmost vertex in figure 1.
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Figure 4: Sum over loops for the renormalisation of the three point vertex in A+A→ 0

This somewhat more intuitive approach to Feynman diagrams will be best demonstrated

in the next section when we calculate the renormalised coupling associated with λ.

3.4 Renormalisation

In A+A→ 0, all of the possible loop corrections to say the three point vertex are rather

easy to visualise and can remarkably be summed exactly. This sum is shown in figure 4.

Going into Fourier space, the convolutions associated with the diagrams transform into

products whereas the sum stays in place due to the linearity of the Fourier transform.

The entire string is a summable geometric series. But we need not limit ourselves to the

case of double particle same-species annihilation. This situation arises in any kA→ lA

type of reaction. The loop expansion of a single vertex in a kA→ lA reaction is similar

to that shown in figure 4, just that there are now k instead of 2 propagators connecting

each pair of adjacent vertices. Let us review the general procedure for any reaction of

this type.

We are interested in the spatially homogeneous case, which is a valid assumption even in

the two species segregated case, as the characteristic sizes of segregation zones are much

bigger than distances between individual particles. Taking ω → 0 as well we encounter

the IR divergences when the dimensionality of the system d < 2. as the critical dimension

of the system is dc = 2.
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3.4.1 Loop integral and scaling

The addition of loops and the subsequent renormalisation of vertices with k ingoing and

m outgoing legs is described by a vertex function Γ(m,k) (t), where t is the total time-

span of the propagators of which it is composed, the horizontal distance in figure 4 At

tree level it is just λm ∝ λ0. Denote the single loop integral from t1 to t2 as I (t2 − t1).

It is a rather complicated expression, consisting of an integral over k − 1 independent

d-dimensional momentum vectors of the product of k momentum-dependent propagators

from t1to t2. We then have:

Γ(m,k) (t2 − t1) = λmδ (t2 − t1)−λmλ0I (t2 − t1)+λmλ
2
0

ˆ t2

t1

dt′I
(
t2 − t′

)
I
(
t′ − t1

)
− . . .

(36)

The following results are quoted from [8] I (t) = Bk (Dt)−d/dc whereBk = k!k−d/2 (4π)−d/dc

and dc = 2/ (k − 1).

Instead of going to momentum space by Fourier transforming, [8]use the Laplace trans-

form7 which also turns convolutions into products, but is in this case somewhat simpler.

They thus obtain the Laplace transformed vertex function as

Γ̃(m,k) (s) = λm

1 + λ0Ĩ (s)
; Ĩ (s) = BkΓ (ε/dc)D−d/dcs−ε/dc (37)

where ε = dc − d and the Γ function in Ĩ (s) is Euler’s gamma unfortunately sharing a

label with the vertex function. The statements t→∞ and s→ 0 are equivalent so the

divergence Γ̃(m,k) in the latter case is the UV divergence.

We must then introduce a dimensionless coupling. Before we do so, a comment about

scaling dimensions of quantities appearing in our framework is in order. Let us consider

7The Laplace transform g̃ (s) of a function g (t) is defined as g̃ (s) =
´∞

0 g (t) e−st dt
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an arbitrary momentum scale κ. Distances scale inversely to momentum, as in ordinary

quantum field theory, but since this is a diffusive setting with characteristic length

∼ (Dt)1/2, times scale as κ−2. The action must be dimensionless and hence, since

there is no relevant scale to compare it to, invariant under scaling. So all terms under

the integral in the action must scale as κd+2. Our continuum limit conventions under

Eq. 25 imply that φ scales as κd and that φ̃ is invariant. From the interaction terms in

the action we can thus deduce that the effective coupling λ0/D must scale as κ2−(k−1)d.

Taking into account ε = dc − d and dc = 2/ (k − 1) this is equivalent to κ2ε/dc .

3.4.2 Dimensionless coupling and its beta function

We can thus introduce a dimensionless parameter g0 = (λ0/D)κ−2ε/dc , corresponding

to bare dimensionful parameters. The value of the momentum scale κ doesn’t matter,

what will matter in a moment is that it varies with time in diffusive fashion as κ ∼ t−1/2.

For the time being we continue defining the theory “at momentum κ” by defining the

renormalised coupling gR as

gR = Γ̃(k,k)
(
Dκ2

)
κ−2ε/dc/D = Zgg0 (38)

where Z−1
g = 1 + g0BkΓ (ε/dc). This is analogous to defining renormalisation conditions

at spacelike momenta of magnitude typical for the problem at hand, but for infrared

divergences.

We continue our march towards quantitative renormalisation group results, most notably

in the form of a solution of the Callan-Symanzik equation, by noticing that particle

densities must be independent of the renormalisation scale κ. In the case of a single

species let us denote its density by a. Then we have
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(
κ
∂

∂κ
+ βg (gR) ∂

∂gR

)
a (t, n0, κ, gR) (39)

where n0 is the initial density, previously denoted ρ0. In the most general case we

would have to include D among the arguments as well, but we have seen that it is not

renormalised in the type of reactions we’re interested so this is not necessary. βg is the

standard β function, which in our case can be computed explicitly from Eq. 38:

βg (gR) = κ
∂

∂κ
gR = 2gR

(
− ε

dc
+BkΓ

(
1 + ε

dc

)
gR

)
(40)

The crucial insight here is that it has an infrared stable fixed point at

g∗R =
(
BkΓ

(
ε

dc

))−1
∼ O (ε) (41)

As we will see shortly, running couplings will all reach this fixed point in subcritical

dimensions, regardless of their initial value, for long times and this will non-trivially

affect their asymptotic time dependences.

3.4.3 Callan-Symanzik equation and running couplings

Returning to the scale independence equation 39, we note that dimensional analysis

yields a suggested form of the particle density:

a (t, n0, κ, gR) = κdâ
(
t/t0, n0/κ

d, gR
)

= κdâ
(
Dtκ2, n0/κ

d, gR
)

(42)

where t0 = 1/
(
Dκ2). The form of κ dependence of the first and second term tell us

we can exchange κ ∂
∂κ with 2t ∂∂t − dn0

∂
∂n0

. We also obtain a d from the κd before the

dimensionless â function. Inserting this into equation 39 yields the final form of the

Callan Symanzik equation.
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(
2t ∂
∂t
− dn0

∂

∂n0
+ βg (gR) ∂

∂gR
+ d

)
a (t, n0, κ, gR) = 0 (43)

This is solved by the method of characteristics as described in any standard textbook

covering RG techniques.log t1/2 is the parameter with respect to which the couplings

will run. We will have two running couplings, g̃R (t), technically g̃R
(
log t1/2

)
, but this

is rather cluttered, with an implicit dependence on the initially chosen gR, and ñ0 (t),

again with an implicit n0 dependence. The running couplings satisfy equations

dñ0
d log t1/2

= dñ0; dg̃R
d log t1/2

= −βg (g̃R) (44)

for which exact solutions can easily be found:

ñ0 (t) = (t/t0)d/2 n0

g̃R (t) = g∗R

(
1 + g∗R − gR

gR

(
t0
t

)ε/dc)−1

(45)

Thus we have confirmed the statement that g̃R (t) → g∗R as t → ∞ regardless of initial

conditions ñ0 (t0) = n0, g̃R (t0) = gR

The additional d in the CS equation gives us the following relation

a (t, n0, t0, gR) =
(
t0
t

)d/2
a′ (ñ0 (t) , g̃R (t)) (46)

where a′ is a function that needs to be determined in a characteristic method of charac-

teristics fashion. We could obtain an expansion in g̃R of a at some early time as there

is no sign of infrared divergences then and set the dependence of a′ on g̃R (t) so that

when g̃R (t) is expressed in terms of gR as per Eq. 45, the two expressions match to the
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desired order. We must however come up with an exact a′ dependence on ñ0 since this

diverges for late times and a perturbation expansion is thus no good.

An idea that turns out to work is to insert the sum of all tree-level diagrams that, as

we briefly commented on in section 2, roughly coincides with the mean-field behaviour.

For a kA→ lA reaction the mean field equation is simply

∂ta = −λ0 (k − l) ak (47)

which has an analytic solution

a (t) = a0(
1 + ak−1

0 (k − 1) (k − l)λ0t
)1/(k−1) (48)

with asymptotic behaviour independent of initial conditions. Taking into account the

time dependence of the effective reaction rate λ (t) ∼ D (κ (t))2ε/dc g̃R (t) = D (Dt)−ε/dc g̃R (t)

the idea is thus to consider an a′ of the form

a′ (n, g) = n(
1 + nk−1 (k − 1) (k − l) (Dt)1−ε/dc g

)1/(k−1) (49)

Then the inverse dependences of ñ0 on n0 and a on a′ cancel and the final form of the

result is

a (t) = n0(
1 + n

2/dc
0 (k − 1) (k − l) g∗R (Dt)d/dc

)dc/2 → Ãkl (Dt)−d/2 (50)

Here Ãkl is a universal amplitude that depends only on the dimensionality of the prob-

lem. Adding higher loop-order diagrams turns out to modify only the amplitude and

provides an expansion in successive powers of ε, but the uniform RG flow for all cou-
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plings guarantees that the exponent stays the same and it is therefore determined solely

by the tree-level diagrams.

3.4.4 Asymptotic decay exponents and amplitude

Some inspiring results can already be obtained from only the form of the effective cou-

pling, λ (t) ∼ D (Dt)−ε/dc g̃R (t). For d > dc ⇒ ε < 0, g̃R (t) ∼ tε/dc for long times

and so asymptotically tends to a constant value. Below the critical dimension, g̃R(t)

flows to g∗R relatively fast, so the asymptotic effective rate dependence is of the form

λ (t) ∼ D (Dt)−ε/dc g∗R. At the critical dimension we have instead λ (t) ∼ D
log(t/t0) .

Replacing constant λ’s in mean field equations, such as Eq. 47, with expressions of the

above time dependence agrees with asymptotic particle densities obtained with com-

pletely different techniques for k = 2 and k = 3, d = dc = 1. These results are

a (t) ∼



(8πDt)1/2 k = 2, d = 1

log(Dt)
8πDt k = 2, d = 2(
log(Dt)
Dt

)1/2
k = 3, d = 1

(51)

The k = 2 results were obtained by Bramson and Griffeath by analytical methods. [18]

This is the final output of our analysis. The most important and also the most field-

theoretic piece of information obtained is confirmation that the decay amplitude is uni-

versal, independent of microscopic details. The ε series is poorly convergent in the only

physical dimension below the critical dimension, d = 1, so it has to be calculated using

other methods, but it would be very hard to obtain even a hint of universality using

other methods.
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4 Theoretical Results and Further Applications

The RD formalism hasn’t been developed to address any pressing issues in need of

a quick resolution and can as such be seen as an exercise in Mathematics, or rather

Mathematical Physics, due to the large amount of approximations involved. Due to

its intuitive nature it seems that the formalism is just calling for applications and like

most intuitive mathematical models it has spawned countless picturesque analogies in

the literature. And there truly is no limit to how picturesque things can get. The results

of an A+A→ A reaction along with a much slower A+A→ 0 in d = 2 on a bounded

elliptic region could be of much help to historians in shedding light on the everyday lives

and deaths of blind gladiators, for example.

Suggestions for more serious applications are fortunately ever more frequent, as should

be evident from the remainder of this section. Even if they were not, non-equilibrium

processes, of which the reaction-diffusion systems are a part, constitute a much bigger

part of our lives than ideal heat-baths, so their study appears rather natural. There

are great theoretical insights to be had in pushing the frontiers of our understanding of

non-equilibrium dynamics further. As will become obvious, modern research in the field

is also plagued with a fair amount of rather obvious problems which dictate especially

intensive directions of further investigation. These will also be touched upon in the

closing section of this dissertation.

4.1 Percolation

4.1.1 Phase transitions

The RD phenomenology and especially the RG field-theoretic approaches are found

to be intimately connected with other areas of modern statistical physics. Especially

interesting are connections with directed percolation and the recent investigations into
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branching and annihilating random walkers. Whereas the kA → lA processes of the

previous section are pedagogically instructive, they are very specific. Particularly, due

to there being no branching processes, the propagators and hence diffusion constants do

not get renormalised.

A branching process alone is rather boring as it leads merely to a most likely exponential

runaway increase in particle densities. When we add counterweight reactions reducing

the numbers of particles things begin to look more interesting. In all but very specific

cases the reaction rates of the competing reactions can be taken to be independent.

This gives us a phase space in which interesting phase transitions can occur. These

are characterised by a set of critical exponents, describing the power law behaviour of

thermodynamic quantities as we approach the transition as measured by an appropriate

parameter.

The same exponents can characterise a variety of physically seemingly distinct situations.

This makes sense, as one of the properties of second order phase transitions, for which

one can define critical exponents, is a diverging correlation length as we approach the

critical point. At the critical point therefore the finite lengths involved in the accurate

microscopic description of our system do not matter, as the dynamics and scaling are

determined by an essentially infinite correlation length, similarly to what we encountered

in investigating the origin of universal properties associated with the asymptotic decay

of particles in section 2.1.1.

Sets of phenomena with equal universal quantities, such as critical exponents below

critical dimension, are known as universality classes. The asymptotic densities and

decay rates of many RD processes with tunable rates have been found to exhibit such

critical behaviour. The universality classes encountered in RD research include the

directed percolation class, associated with the reactions A→ 0 and A→ A+A, and the

parity conserving class, associated with branching and annihilating random walkers with

an even number of offspring, i.e. the reactions A → (m+ 1)A with even m. I will not
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Figure 5: Directed bond percolation on a lattice. Time flows to the right. Image taken
from [19]

repeat the actual calculations of critical exponents in this text, as without the comfort of

an unrenormalised propagator, a larger number of parameters needs to be renormalised,

4 in particular for DP [19]. This leads to very long-winded and cumbersome algebra,

particularly in the Callan Symanzik equation, so I will only outline the methods of

calculation and the implications of the findings.

4.1.2 Percolation basics

Percolation primarily refers to phenomena associated with transport through porous

media. When one has a lattice where each site can be either traversable or not and the

probabilistic distribution of different types of sites is parametrized by a set of parameters,

varying these parameters will often lead to a phase transition. In one of the phases, a

fluid will not be able to traverse the entire length of the lattice, whereas in the other,

there exists a path or a cluster along the entire lattice. The word percolation nowadays

also refers to similar problems involving randomly populated lattices and traversability.

For a summary, see e.g. [20]. In effect we speak of many types of percolation.

The type we are mostly concerned with in relation to RD processes is Directed Percola-

tion (DP) and to a lesser degree Isotropic Percolation (IP). The former can most easily

be illustrated in the following manner in two dimensions: suppose we have a rhombic

lattice as shown in figure 5. There are diagonal bonds arranged randomly between lat-
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tice sites. A bond corresponds to a traversable site in the example from the previous

paragraph, so the lattice in our case is complementary to the lattice from the example

(edges become vertices). Agents moving on this lattice can only move diagonally to the

right and only if there is a bond present in one of the possible directions.

We can think of this percolation process as modeling a spreading of a disease. In fact

many modern research articles use this terminology, both for the colourful imagery it

incites and because most actual applications of the field are in epidemiology8. Directed

bond percolation is sometimes also referred to as a simple epidemic process or epidemic

with recovery [19]. We can think of the horizontal direction as time, flowing to the right,

while the transverse dimension are, say, people arranged in 1 dimension. The propagating

agents represent infections. In every time step the neighbours of an infected individual

can get infected (branching bonds) or an individual may recover (terminating nodes).

A slightly more pessimistic version of this is the Isotropic Percolation, where the time

direction is not incorporated into the lattice. Rather, infections, or bonds, spread out

from a central seed. Again, branching represents infections of new carriers and the termi-

nation of bond sequences represents carriers who die on the spot and form untraversable

debris. This universality class is not quite as studied and illustrative, so we shall focus

on DP from now on.

These two processes connect with the field-theoretical study of RD processes in a rather

remarkable way. The field-theoretical action that we assign to the aforementioned RD

reactions associated with the DP universality class, analogous to the action in Eq. 28,

first appeared in the study of elementary particles by the name of Reggeon field theory,

a then “very powerful tool for studying the complex angular momentum structure of

high energy scattering amplitudes” [21]. In two papers by Grassberger et al. [22, 23], the

authors argued that the action is better viewed as a stochastic process (with the Langevin

equation obtained from the action in the standard way [24]), a stochastic version of the
8See section 4.1.7
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so called Schlögl’s first reaction [25], X + A 
 2X. They named the process after

Gribov, a researcher in Reggeon Field Theory. A couple more papers established the

equivalence between this process and a certain type of DP dynamics, including a very

elegant exposition by Cardy and Sugar [26].

The correspondence has been verbalised in the slightly technical DP conjecture: “the

critical behavior of an order parameter field with Markovian stochastic dynamics, de-

coupled from any other slow variable, that describes a transition from an active to an

inactive, absorbing state (where all dynamics ceases) should be in the DP universal-

ity class” [19]. Because the RD approach with the appropriate reactions satisfies these

criteria, it can be used to calculate the critical exponents.

4.1.3 Calculation of critical exponents by means of the reaction-diffusion paradigm

As we have mentioned before, there exist two reactions which upon adjusting their

reaction rates give a second order phase transition in the DP universality class, that

are therefore usually referred to as just DP. These are the spontaneous decay A → 0,

with reaction rate µ, corresponding to a terminating bond sequence, and the branching

A → A + A, with rate σ corresponding to an infection or a vertex with two bonds in

figure 5.

The two regimes, active and absorbing, between which there is a phase transition, cor-

respond to the cases σ > µ, where the branching process dominates, and µ > σ, where

the decay dominates and the dynamics eventually dies out without any possibility of re-

activating, respectively. The final state in the absorbing state is an empty lattice, while

the active state would result in an exponential runaway if we don’t impose additional

restrictions. There’s two ways of going about this, a) introducing additional annihila-

tion/coagulation reactions and b) implementing site occupancy restrictions in the sense

of Wijland [16]. Let us first consider a).
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4.1.4 Directed percolation with regulating annihilation/coagulation

Let us therefore impose additional reactions A+A→ (0, A) with rates (λ, λ′) and allow

ourselves a general mean-field description at first, valid in supercritical dimensions. The

mean field rate equation is now, referring to 1:

∂ta (t) = (σ − µ) a (t)−
(
2λ+ λ′

)
a (t)2 (52)

The final density can be calculated by setting ∂ta to 0 and finding the solutions to the

right hand side. a = 0 corresponds to the absorbing state, while

a∞ = σ − µ
2λ+ λ′

(53)

corresponds to the active state (this would have been negative in the absorbing state

with σ < µ). This is rather similar to ordinary annihilation/coagulation encountered in

the previous section with the additional linear term and we can generalize this to a local

mean field rate equation with standard diffusion. Let r = (µ− σ) /D

∂ta (~x, t) = −D
(
r −∇2

)
a (~x, t)−

(
2λ+ λ′

)
a (t)2 (54)

We are interested in the correlation length ξ, which near a critical point will depend

on the diffusive part. Observing the dimensions of parameters appearing in it we infer

ξ ∼ |r|−1/2 and the corresponding time scale is tc ∼ ξ2/D. We then define the critical

exponents in standard fashion[8]:

〈a∞〉 ∼ (−r)β (r < 0) , 〈a (t)〉 ∼ t−α (r = 0)

ξ ∼ |r|−v (r 6= 0) , tc ∼ ξ2/D ∼ |r|−zν (r 6= 0) (55)
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From the mean field equations we can already establish mean field exponent values. We

just need to additionally consider the α exponent. At r = 0, equation 54 becomes the

equation for standard annihilation/coagulation and we know its time dependence to be

t−1 in supercritical dimensions. Therefore:

β = 1, α = 1, ν = 1/2, z = 2 (56)

We then use the heuristic arguments stated below Eq. 12 to write down the (unshifted)

action for the set of reactions A→ A+A with rate σ, A→ 0 with rate µ and A+A→

(A, 0) with rates (λ, λ′):

S [φ, φ∗] =
ˆ

ddx
ˆ

dt (φ∗
(
∂t −∇2

)
φµ (1− φ∗)φ+ σ (1− φ∗)φ∗φ

−λ
(
1− φ∗2

)
φ2 − λ′ (1− φ∗)φ∗φ2)

plus initial and final terms which we can neglect due to the rapid fluctuations [8]. The

shifted action with φ∗ → φ̃+ 1 is then

S
[
φ, φ̃

]
=
ˆ

ddx
ˆ

dt(φ̃
(
∂t +D

(
r −∇2

))
φ− σφ̃2φ+ (57)

+
(
2λ+ λ′

)
φ̃φ2 +

(
λ+ λ′

)
φ̃2φ2)

This turns out to be overdetailed as some of the terms are relatively irrelevant under

RG transformations. We can also notice that the scaling is not optimal. Following

similar basic Fourier transformation, inversion and inverse transformation step as for

the A+A→ 0 annihilation propagator we find the tree level propagator to be
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Figure 6: Left: vertices; Right: 1-loop diagrams of DP field theory. Taken from [8]

G0 (~p, ω) = 1
−iω +D (r + p2) (58)

and its lowest loop order correction containing two three-point vertices, as shown in

figure 6, one with coupling σ and one with coupling 2λ + λ′. We would like both

of these to scale equally under the RG transformations which would cause the one-

loop propagator correction to scale equally (otherwise the scaling is complicated, not

simply multiplicative). We can achieve this by choosing s̃ = φ̃
√

(2λ+ λ′) /σ and s =

φ
√
σ/ (2λ+ λ′). The terms −σφ̃2φ and (2λ+ λ′) φ̃φ2 then go into u (s− s̃) s̃s while

the (λ+ λ′) φ̃2φ2 term remains in the form (λ+ λ′) s̃2s2. u =
√
σ (2λ+ λ′) is the new

effective coupling and it scales as κ2−d/2. Similarly to the annihilation case we thus

expect the critical dimension to be dc = 4. However we also find that the relative

coupling, (λ+ λ′) /u scales as κ−d/2 and becomes irrelevant under RG transformations,

which means we can neglect the s̃2s2 terms altogether to obtain the final DP action.

S [s, s̃] =
ˆ

ddx
ˆ

dt
(
s̃
(
∂t +D

(
r −∇2

)
s− u (s̃− s) s̃s

))
(59)

This is also the action of the deprecated Reggeon field theory.
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4.1.5 Van Wijland’s occupancy restrictions

As we have said before we can also consider occupancy restrictions instead of additional

coagulation/annihilation reactions. The beauty of DP lies in the fact that we obtain

the same effective (sometimes called mesoscopic [8]) action. In numerical simulations

occupancy restrictions are the simplest thing to implement, while they present a slightly

more formidable challenge in the field-theoretical approach if we are not to clutter the

action beyond recognition. One way of going about it is discarding the bosonic second-

quantized framework we’ve been utilising throughout section 3 and implement fermionic

annihilation and creation operators. Luckily there’s a simple way in which we can

retain the bosonic formalism, demonstrated by Van Wijland [16]. This was achieved

by modifying the diffusion part of the quasi-Hamiltonian by including operator delta

functions of the form δ
â†i âi,n

|m〉 = δm,n |m〉, representing the spatial exclusion due to

the particles’ hard-core potential. When passing to a coherent state representation, these

have to be normal ordered, which is achieved by normal ordering its transformed form

δn̂,m =
ˆ π

−π

du
2π eiu(n̂−m) (60)

a considerable combinatorical exercise. For m = 0, 1 it turns out there are always

exponentials left over which contribute to the action. In the case of processes A →

(0, 2A), we obtain

Srest
[
φ, φ̃

]
=
ˆ

ddx
ˆ

dt
(
−µ

(
1− φ̃

)
φe−vφ̃φ + σ

(
1− φ̃

)
φ̃φe−2vφ̃φ

)
(61)

omitting the diffusion part of the action. Originally, there are terms such as φ̃iφi present

in the exponentials and v is a parameter that originates from taking the continuum

limit. As φ̃iφi scales as κd, v thus scales as κ−d, consequently goes to 0 after a couple of

RG and this finally implies we can expand the exponential and retain only the first few
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terms. By a suitable relabelling of coupling constants it turns out we recover the form

of the effective Reggeon action 59.

This can be transformed into a Langevin equation of the form of the form

∂ts = D
(
∇2 − r

)
s− us2 + η (62)

with a noise term η, 〈η〉 = 0, 〈η (~x, t) η (~x′, t′)〉 = 2usδ (~x− ~x′) δ (t− t′). This is a special

case of a more general Langevin equation, namely

∂ts = D
(
∇2 −R [s]

)
s+ η,

〈
η (~x, t) η

(
~x′, t′

)〉
= 2N [s] sδ

(
~x− ~x′

)
δ
(
t− t′

)
(63)

which represents the general Langevin equation for systems exhibiting active-absorbing

phase transitions [19]. Thinking in terms of power expansions of N [s] and R [s] in

powers of s, our case corresponds to the first few terms of each N [s] = u + . . . and

R [s] = r + us+ . . .

4.1.6 Renormalisation

As said before we shall not go into the details of renormalisation here, only a qualitative

account will be given. To one-loop order we can write down the loop integral which will

consist of a product of two propagators of the type 58 with appropriate loop momenta

and frequency such that they add up to the external momenta. Due to the diverging

correlation length we the demand that G (~p = 0, ω = 0) diverges at the critical point,

hence the trivial vertex function Γ(1,1), which can also be thought of as G−1, must equal

0. We then invert the one-loop corrected G, demand that it equals 0 at ~p, ω = 0 and

hence obtain a constraint for the renormalised rc of the critical point, which is easy
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to solve to order O
(
u2). We then introduce the true distance from the critical point,

r − rc and rewrite the expression for a general Γ(1,1) (~p, ω). We find three parameters

need renormalising plus the field strength. We absorb all the UV divergences into their

Z factors, which all contain appear as expansions of the quantity u2/D2 that we hence

identify with the effective coupling with its renormalised dimensionless counterpart

vR = ZvvAdκ
d−4 (64)

where Ad is a constant dependent on the dimensionality and Zv = Z2
u/Z

2
D, the latter

being the multiplicative factors of u and D.

Now using dimensional analysis to exchange κ derivatives for derivatives with respect

to the renormalised parameters DR, τR and vr, we can again write the Callan-Symanzik

equation, analogous to 43, this time for the asymptotic density in the active phase and the

propagator. For d < dc the β function yields a non-trivial fixed point v∗r = ε/3 +O
(
ε2
)
.

The upshot is that we can again obtain a scaling law in the vicinity of the fixed point,

from which it is possible to infer the critical exponents 55 in terms of ε. To O (ε) they

turn out to be

β = 1− ε

6
α = 1− ε

4
v = 1

2 + ε

16
z = 2− ε

12

As is standard with field-theoretic calculations, this firmly establishes universality, but

does not converge or does so very poorly for physical dimensions d = 1, 2, 3 as ε =

dc − d = 4 − d is quite large there. It does however predict logarithmic corrections at
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dc [27, 28] and this agrees with the calculated values [29].

4.1.7 Further Applications

Most of these are epidemiological in nature, such as [30], that implements long-range time

correlations, which can be interpreted as incubation times or [31] that implements immu-

nisation. There has also been a lot of research into DP with several species. Upon intro-

ducing appropriate reactions coupling different species, one obtains multicriticality[32,

33], where species exhibit a hierarchy of phase transitions.

4.1.8 Branching and annihilating random walkers

I briefly present another curious set of reactions, that has attracted much attention,

due to its defining yet another universality class. These are the so called branching and

annihilating random walkers, the theory of which was largely established by Cardy and

Täuber in [34] and [35]. These deal with similar equations, e.g. one has the branching

process A → (m+ 1)A with rate σ and the annihilation process kA → 0 with rate λ.

In this case the mean field theory predicts only an active absorbing state, but σc = 0

can be thought of as a degenerate critical point, only approachable from one side, where

the dynamics becomes that of ordinary annihilation. Due to the annihilation, one would

expect the mean field discourse to be valid above dc = 2/ (k − 1), however this turns out

to be false, as demonstrated by Monte-Carlo simulations [36].

Again using arguments from the end of section 3.1.2, we can arrive at an action for

k = 2,

S
[
φ, φ̃

]
=
ˆ

ddx
ˆ

dt
(
φ̃
(
∂t −D∇2

)
φ+

(
1− φ̃m

)
φ̃φ− λ

(
1− φ̃2

)
φ2
)

(65)

This gives a rich set of Feynman diagrams that must be renormalised but, more im-
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portantly, also generate diagrams for all of the A→ (m+ 1− l)A processes with small

enough, even l. The renormalisation shifts are negative and proportional to to a combi-

natoric factor, which makes the branching process with the lowest number of products

the most relevant. For odd m this is A → A + A and since the decay A → 0 is also

generated, we should expect this process to be in the DP universality class.

For m even things are drastically different as the parity of particle number is always

conserved so the above processes cannot be generated. This process turns out to ex-

hibit very interesting phase-space behaviour as it possesses an absorbing phase only

below a certain inverted lower critical dimension, unlike with prototypical second-order

phase transitions such as those of DP, where subcritical fluctuations prevent the phase

transition from occurring [8].

4.2 Several-species reactions

While percolation, phase transitions, universality and the likes are all lively directions

of intense research at the moment, with such diverse concepts as tricriticality and phase

space topologies emerging [37, 38], one does not have to stray so considerably from the

paradigm described in the previous section. A simple A + B → 0 reaction already

exhibits many effects not present in the original A+A→ 0 reaction, some of which have

yet to receive appropriate analytic and numerical treatment. This is due to a conserved

quantity, the difference of A and B reactant densities a−b, which can be thought of as a

novel contribution to the zero-frequency Fourier mode, heavily influencing the late-time

dynamics.

There seems to be a lack of consensus in the literature over what the critical dimension

is. There are now two qualitative shifts in the asymptotic behaviour, one at d = 2,

corresponding to the same shift we saw in the A+A→ 0 reaction, and a shift at d = 4

in the case of equal and homogeneous initial densities. I argue, along with [8], that
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d = 2 should be regarded as the critical dimension, as the qualitative shift at d = 4

is also predicted by the mean field analysis. Let us proceed to describe these different

asymptotic regimes.

4.2.1 Homogeneous initial conditions

Consider first the case when A and B particles are initially heavily and homogeneously

mixed. In the unequal densities case suppose without loss of generality that bo > ao,

where b0 and a0 are the initial densities of B and A particles, respectively. Then above

d = 2 mean field equations yield the correct asymptotic behaviour of an exponential

decay. The dynamics has been analysed by exact methods by Bramson and Lebowitz [39],

who employed a continuous time technique on a lattice without occupation restrictions

but with an infinite reaction rate so that particles annihilated immediately upon meeting

at a site, and also by Blythe and Bray [40, 41]. These techniques can only provide

rigorous upper and lower bonds, but in fortunate cases, such as these, they turn out to

have an equal time dependence, which establishes the time dependence unambiguously.

In the overlap of results from the above articles, the authors have obtained asymptotic

exponents for all dimensionalities, which agree with mean field predictions for d > dc = 2.

The result is

a (t) ∼



exp (−c1t) d > dc

exp (−c2t/ ln t) d = dc

exp
(
−c3
√
t
)

d < dc

(66)

where the constants ci haven’t been determined. This is already qualitatively very

different from the power-law decays of A+A→ 0.

In the case of equal densities these exact methods, along with [42], demonstrate that

below d = 4, the asymptotic density is proportional to t−d/4 and demonstrates no
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transition at the critical dimension dc = 2. For d > 4 the density goes as ∼ t−1.

This problem was first studied by Toussaint and Wilczek [43], who obtained the t−d/4

result by assuming that in the initial equal densities case, only the fluctuations in the

initial conditions are relevant to the final result and that after time t there will remain

only particles that were initially dominant in all regions of linear scale up to the diffusion

length, i.e. ∼ t1/2. This is also known as the segregation of particles. This assumption

was later verified by Cardy and Lee’s field-theoretical treatment of the equal initial

densities case [44, 45]. Toussaint and Wilczek obtained the asymptotic result

a (t) ∼ b (t) ∼
√
n0

√
π (8πDt)d/4

(67)

The transition at d = 4 is best imagined in the way that both the t−d/4 decay and the

t−1 decay modes are present and that at late times the slower of the two dominates.

Below d = 4, the former is slower, while for d > 4, the latter is.

The field theoretical machinery is very similar to the one used for the A+A→ 0 reaction.

As can be read from the action, the reaction rate parameter λ still scales as κ2−d, so

dc = 2. In fact the renormalisation of the diagrams is completely equivalent to the one

encountered in the single-species case. The propagators cannot get renormalised as there

are no branching diagrams and the renormalisation of a vertex is the same as shown in

figure 4 just that one branch of each loop belongs to an A particle propagator and the

other one to a B particle propagator. We also obtain the same results for the time

dependence of the effective reaction rate due to the RG flow towards the fixed point

for d < dc = 2, λ (t) ∼ t−1+d/2 and λ (t) ∼ 1/ ln t for d = dc. Plugging this into the

tree-level, i.e. mean field expression for the densities yields exactly the results 66.

There have been many field-theoretical investigations into the problem, yet nobody has

performed a full RG field-theoretical analysis of the case of unequal initial densities

yet [8]. For equal densities, Cardy’s and Lee’s [44, 45] approach remains the norm.
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They have constructed an effective theory that takes into account randomly generated

“surface terms” that reflect the fluctuations in the initial state. However this is of little

use below dc, as the sum over initial terms has to be performed unperturbatively.9

In the analyses [40, 41], the terminology used often refers to A particles as diffusing

through a sea of mobile traps, represented by B particles, much in the spirit of earlier

investigations of particles diffusing through a sea of fixed randomly placed traps [47,

48]. This might have inspired investigations into the asymptotic decay properties of

subdiffusive A particles in a sea of diffusive B traps, diffusive A particles in a sea of

superdiffusive B traps and all such combinations. The case of superdiffusive motion

will be covered to a certain extent in section 4.4, where we consider Lévy flights. In

short, sub- or superdiffusive motion is characterised by the mean value of the particle

displacement’s squared increasing slower or faster than in ordinary diffusion, i.e
〈
l2
〉
∼ t,

respectively. We will instead have
〈
l2
〉
∼ tα with α < 1 for subdiffusive and α > 1 for

superdiffusive motion. A variety of modified ensues. For example, the authors of [49]

considered a diffusive particle propagating in the presence of subdiffusive traps with〈
l2
〉
∼ tγ and have found that for γ ≤ 2/ (d+ 2) the asymptotic properties are exactly

equal to those of fixed traps, a (t) ∼ exp
(
−ct2/(d+2)

)
, similarly [50], while [51] have

further classified the subdiffusive regimes with different values of γ, γ′ of particles and

traps.

There has also been work on a generalisation of the simple two particle reaction, that

is mA+ nB → 0. The authors of [52] have found a t−d/4 decay for d < 4/ (m+ n− 1),

while Kwon et al. [53] have studied the case of driven particles with the restriction of

hard-core repulsion, which in one dimension implies that particles cannot switch places,

and found that densities decay as t−(n+m) in contrast to the predictions of any mean

field model.

9Given the increasing amount of work on nonperturbative renormalisation group techniques, see
e.g. [46], this might eventually become possible.
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Let us also mention the case where the particles are diffusing amidst a shear flow, that

is in a parallel velocity field where the magnitude of velocity is increasing in a direction

transverse to the direction of the velocity itself, such as ~v = v0y~x. The shear flow

serves to mix the reactants better, which is a regime in which the original arguments by

Toussaint and Wilczek, about asymptotic segregation, are particularly strong. This was

studied in [54] in a field-theoretic setting, where the shear flow contributed terms of the

form ãv0y∂xa and similarly for b to the action, serving to modify the propagator. It was

established that for t� tc = v−1
0 , the scaling is the same as without the shear flow, i.e.

∼ t−d/4, while at t� tc the densities scale as t−(d+2)/4.

4.2.2 Heterogeneous initial conditions and other generalizations

There have also been studies where the A and B particles are initially segregated, sepa-

rated by either a hyperplane [55] or a hyper-spherical boundary [56]. Let us first consider

the former case. Here each half-space separates into three different regions: the reaction

region of width ωat the interface where actual reactions are taking place, the depletion

region of width υ besides the reaction region where there is a diminished density of

particles, and the remaining half-space, where the density is still essentially equal to

the initial density. It was calculated by [55] in the local mean field approximation that

the reaction region grows as ω ∼ t1/6, the depletion region as υ ∼ t1/2 and the particle

densities in the reaction region decay as t−1/3.

We can also study cases where particles are flowing towards each other with currents of

equal size J and opposite direction. The authors of [57] found that at long times the

width of the reaction region scales as ω ∼ J−1/3 and the reaction zone densities scale

as J2/3, still in mean field. There is a neat translation between the two systems since

we can think of particles obtaining a velocity while traversing the depleted region in the

first case. The particle current will then roughly equal J ∼ −∇a ≈ −a0/υ ∼ t−1/2,

giving us a dictionary between the two cases.
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A field-theoretic approach was then developed in [58] and in [59], the latter also gener-

alizing it to mA+ nB → 0. RG methods yielded that for the case d ≤ 2 the asymptotic

behaviour is independent of the reaction rate, which gave credence to the above scal-

ing results. Cardy and Lee [60] also noticed that one can study reaction fronts arising

from the asymptotic segregation in the case of equal initial densities and demonstrated

that the width of the reaction zones becomes comparable with the width of the deple-

tion zones as one approached d → 4 from below, corresponding to the breakdown of

segregation.

The case of the spherical boundary was covered in great detail by Shipilevsky [56, 61, 62,

63]. The results are too numerous and detailed to list here, but as an example, in [56]

he demonstrated that at large enough numbers of A particles comprising an island in

the B sea, a universal scenario arises: ∼ 4/5 of the A particles are annihilated during

the island’s growth and the remaining ∼ 1/5 during its collapse.

There has even been an investigation into the properties of reaction fronts in several

scenarios with particles’ diffusivity dependent on densities [64]. Altered asymptotic

scaling exponents were obtained.

There have also been investigations into reactions with more than two species, that are

too abundant to attempt to describe in detail in this dissertation. Let us just mention

the directions of research. One can be interested in the asymptotic decay exponents and

segregation properties of multi-species annihilation generalisations of the two species

case, i.e. Ai + Aj → 0 for i, j = 0, 1, . . . , q, i 6= j, as in [65]. Another promising line

of research are models of “vicious random walkers”, where we have diffusing particles

annihilating upon contact and we are interested in the probability of no annihilations

having occurred yet, as in [66]. This line of research also overlaps with tackling difficult

existential issues, such as those of [67].

51



4.3 Reaction-diffusion on complex networks

4.3.1 Brief introduction to complex networks10

Complex networks as a research field could be summarized as a physics-influenced ap-

proach on an ancient mathematical field, graph theory. It deals with sets of abstract

point, not living in any imaginable metric or topological space, though they can be em-

bedded in one if necessary, connected by edges. We will mostly be concerned with simple

graphs, i.e. such that there can be at most one edge between any two vertices and such

that no vertex can have an edge with itself. They will also be undirected, so that each

edge can be traversed both ways. Another property that will mostly hold is that the

graphs are sparse, i.e. that the number of edges E is of the same order of magnitude as

the number of vertices N . The edges can carry additional properties, “weights”. When

we identify the points of the abstract graph with actual entities, these can represent

distances between actual points in space, the number of minutes two individuals spent

on the phone, etc. We can summarize the edges present with an adjacency matrix Aij ,

whose fields are generated by

Aij =


1 points iand jare connected

0 points iand jare not connected
(68)

If the edges are weighted, the weights are to be put in place of the 1’s. Since we’re

dealing with undirected graphs Aij is symmetric.

Two prototypical types of networks are important for the elucidation of the basic concepts

we will be dealing with. The first is the regular d-dimensional lattice, which we can

imagine as points on a hypercubic lattice embedded in a d-dimensional Euclidean space.

The second is the random graph. There are actually many types of those, but consider

10This style of exposition of this section and the technical data is primarily based on [68].
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first the homogeneous Erdős-Rényi type. This is generated by starting with a set of

abstract points and then generating edges between them probabilistically - each possible

edge has a probability p of being generated. In order to ensure the sparsity of the graph,

p has to be of order p ∼ N/N(N+1)
2 ∼ 1/N , where N(N+1)

2 is the number of all possible

edges. In order to properly speak about random networks, we must in fact consider

either an infinite network of this type or an ensemble of networks, otherwise we just

get a specific network. But for real life purposes, classifying graphs as “random” when

they posses properties of a typical representative of such ensembles will be completely

adequate. We shall now describe these properties.

The most important differences between lattices and random networks arise when we

study their local structure and size. We say that a network has a lot of local structure if

for many points of the graph it holds true that neighbours of that point are themselves

neighbours, e.g. on social networks a lot of friends of a given person often tend to be

friends amongst each other as well. The actual quantitative measure of local structure

can be defined in several ways [69], but a prototypical measure is a clustering coefficient

at a point which is defined as follows: take the subnetwork composed of all the points

connected to the given point but not the point itself. Then divide the number of edges

in this subnetwork with the number of all possible edges.

A lattice has a lot of local structure, as is evident from any basic visualisation of it. Yet

it requires a slight generalization of the clustering coefficient, as the simple definition

from the previous paragraph return a misleading value of 0. The new definition considers

the subnetwork generated by taking neighbours of neighbours except the original point

instead of just neighbours. A random network, on the other hand, has a very small

probability that neighbours of neighbours will be connected, essentially still the original

p as nothing guarantees the closeness in any metric sense of two connected points.

For the other property, the size of the network, to be defined in a sensible manner, we

must first ensure, that the network is connected, that is, following the edges of the graph
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we can reach each point from each other point of the network. The lattice is clearly such,

although we could have taken an infinite lattice and then the number of steps would not

be finite, but to avoid such technicalities let us consider a periodic lattice, where the

connectedness obviously holds. Random graphs, on the other hand, are not necessarily

connected, but it has been shown by Erdős and Rényi[70] that there is an analogue

of a phase transition above a certain threshold probability p = N ln (N) /2 where the

the network is very likely to be connected, not unlike in the description of directed

percolation above.

With this interesting, but for our purposes irrelevant, technical result out of the way,

let’s proceed to define the size of the network. Again, several measures are in use [69].

Consider the measure of average shortest distance, in which the length of the shortest

path for each pair of points is calculated, using e.g. Dijkstra’s algorithm [71], and their

arithmetic mean taken.

It turns out that lattices have large graph sizes that scale with the number of points

roughly as ∼ N1/d. Random graphs turn out to be smaller, scaling only as lnN11. If

we tried embedding them in a metric space, regardless of the inappropriateness of such

demeanor, we would have found that our space is riddled with wormholes connecting

distant points. Thus the distance we need to travel on average is much shorter than in

a more causality-friendly lattice.

There are also intermediate types of networks that traditional graph theory has not

studied extensively but that became a central interest with the advent of the network

perspective. These have a lot of local structure and yet their size is relatively small.

Such networks are important as they represent a lot of real-life networks, though not

necessarily in traditional areas of physics. Prime and by now thoroughly washed up

11It is interesting to sloppily interpret this result in the following way: random graphs are essentially
dimensionless, but perhaps a more accurate statement would be, that they are analogous to an
infinite-dimensional metric space. Rewrite N1/d =

(
elnN)1/d = e 1

d
lnN . Since d → ∞, 1

d
lnN → 0

for any N , we can expand the exponential to obtain N1/d ≈ 1 + 1
d

lnN ∼ lnN .
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examples include human social networks and the Internet, though there are also lesser

known examples of protein networks and other subfields of biology. [72]. The prototypical

way of constructing a random graph has been demonstrated by Watts and Strogatz [73],

who considered a sort of double leveled lattice, where each point is connected to its

ordinary lattice neighbours and the ordinary lattice neighbours of these. One then

randomly rewires these edges to obtain a small world network.

But the most relevant type of network for reaction-diffusion systems is the so called-

scale free network. The most important piece of introductory theoretical machinery of

complex networks we will need is the degree distribution of a network. In a random graph

different points will in general have different numbers of neighbours or edges emanating

from them, called the degree of the vertex. The degree distribution is a map between

natural numbers and the proportion of vertices in our network of this degree. Viewed

as a property of the entire ensemble of random networks this becomes a probability

distribution. An Erdős-Rényi graph will have a binomial, or in the limit of large N ,

Poissonian distribution:

n (k) = e−µµ
k

k! (69)

Here n is the probability mass function of the distribution itself, k is the degree and

µ is the average degree. Due to the exponential fall off we can identify a largest value

for which it is extremely unlikely that we will find a vertex with a higher degree in our

network.

It has been found that the efficient solutions of many network-based problems require

the existence of hubs, vertices with a much greater degree than average. Again, the world

wide web is certainly such an example. This requires a heavy-tailed degree distribution,

for which we can identify two characteristic values: the degree after which points of

this degree will occur very rarely and the degree, after which there will be no more
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such points. This is most simply realised through a power-law degree distribution,

n (k) ∼ k−γ , with γ typically in the range 2 < γ < 3 [74]. These graphs are also called

scale free because they have no characteristic degree to distinguish them, also visible

from the fact that ratios such as n (2k) /n (k) are independent of k.

This however does not immediately imply that the networks will actually be invariant

under a network analogy of renormalisation. This can be defined as grouping nearby

vertices together, with their closeness described by an appropriate network measure,

and taking the groups as vertices of a new graph. A lot of realistic networks are both

scale-free (in the sense of a power law degree distribution) and small-world. Since the

number of nodes increases exponentially with the size of a small-world network, such

networks were thought to not exhibit self-similarity, as one would naively expect a power

law relation in that case. It has been shown in [72] that self-similarity is nevertheless the

case for many realistic networks. Such networks are often called fractal to distinguish

them from the broader class of scale-free networks that have an underlying power law

degree distribution but are not necessarily self similar. An important qualitative feature

of such networks is that their hubs repel each other on all length scales, so that they end

up being very dispersed[75]. Several synthetic scale-free networks, such as the example

by Albert and Barabási [76], are not fractal [77].

It would also be convenient if while studying realistic weighted networks we would not

always have to insert weights of edges by hand but rather would find a network-wide rule

or relation that would connect them with other local and global properties of the graph.

This has also been achieved, via the so-called weight parameter θ, through which the

weight wij of an edge (inserted into the matrix Aij , wij is just a temporary denotation)

is defined as wij = (kikj)θ, where ki and kj are the degrees of the adjoining vertices.[78]

This is seen to hold true for classes of real-life networks.
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4.3.2 Diffusion on complex networks

In section 3 before we took the continuum limit, our theory was defined on a regular

hypercubic lattice. We can generalise this lattice to a complex network, but the rules for

particle hopping between sites, i.e. diffusion, may now become local. Also it becomes

obvious that it will become difficult to define continuous limits in most cases, except for

those, where the vertices and edges are a subset of a triangulation of a topological space,

and even then we are not obliged to think of it that way.

An important concept for defining diffusion is the Laplacian. In d-dimensional Euclidean

space it is denoted by a squared nabla operator and denotes ∇2 =
∑ ∂2

∂2ξi
, where ξi

are the labels of coordinates associated with a standard orthonormal Euclidean basis,

i = 1, . . . , d. The Laplacian is present in the ordinary continuous diffusion action term

φ̃
(
∂t −D∇2)φ and it gets there through an integral by parts of the term ∇φ̃∇φ, which

in turn gets there through substituting a’s and a†’s in the Hamiltonian and taking

the continuum limit. Its origin is thus the diffusion term in the quasi-Hamiltonian,

Hdiff = µ
∑(

a†i − a
†
j

)
(ai − aj). We could have already performed a discrete analogue

of integration by parts, summation by parts, if you will, before taking the continuum

limit. This is exactly what we will need for complex networks, as we most certainly will

not introduce this limit. Let us thus delve deeper into this mathematical trick. If we

have a 1-dimensional sequence xi and we recursively define it’s n’th difference as ∆n

(not to be confused with the Laplacian) as: ∆xi = ∆1xi = xi+1 − xi and ∆n+1xi =

(∆nxi+1 −∆nxi) then we have

∑
i

∆xi∆yi = boundary terms−
∑
i

xi∆2yi (70)

This is achieved by splitting the summation in half where each term gets its own factor

of x, shifting the summation indices in the xi+1 term to change it to xi and then bringing

the two terms terms back together with the second difference of yi appearing besides xi.
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This can be generalised to higher differences. The second difference is closely related

to the Laplacian, denote it L, and so we shall argue that performing a similar trick in

higher-dimensional analogues should yield the Laplacian. In equation form this means a

sum over neighbours should yield
∑(

a†i − a
†
j

)
(ai − aj) ∼ −

∑
a†iLijaj . Let us therefore

try to implement this trick in the case of networks and see what we obtain. Let us drop

the constant µ in the following derivation. Begin by noticing that

Hdiff =
∑
〈ij〉

(
a†i − a

†
j

)
(ai − aj) (71)

where 〈ij〉 denote connected pairs can be rewritten more concretely with the adjacency

matrix

∑
i, j

(
a†i − a

†
j

)
(ai − aj)Aij (72)

This makes sense in the unweighted case, as it is simply 0 if the pair is not connected

and 1 otherwise. In the connected case we can take this as part of the definition of the

Laplacian. We now split the summation

Hdiff =
∑
i, j

a†i (ai − aj)Aij −
∑
i, j

a†j (ai − aj)Aij (73)

In the second term we switch the summation indices and take into account the undirect-

edness of the graph Aij = Aji and get

Hdiff =
∑
i, j

a†i (ai − aj)Aij −
∑
i, j

a†i (aj − ai)Aij

= 2
∑
i, j

a†i (ai − aj)Aij = 2
∑
i, j

a†iaiAij − 2
∑
i, j

a†iajAij
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In the first term of the last equation we could perform the summation over j and so

obtain the degree of the i-th vertex ki or, in cases of weighted graphs, the so called

strength of the vertex si. But we want to retain the sum over all indices so substitute

Aij with kiδij where δij is the usual Kronecker delta. We now have

Hdiff = 2
∑
i, j

a†iaikiδij − 2
∑
i, j

a†iajAij (74)

and we can change an arbitrary number of i’s into j’s in the first term due to the delta

enforcing equality. In order to obtain an expression of a relevant form change it to∑
a†iajkjδij . We can add the terms to get

Hdiff = −2
∑
i, j

a†i (Aij − δijki) aj (75)

We hence infer Lij = 2 (Aij − δijki). The factor of 2 is usually dropped [79] and in the

case of weighted graphs we have ki → si.

To further strengthen the appropriateness of calling this quantity the Laplacian, let us

consider a 1-dimensional lattice in ordinary Euclidean space with evenly spaced vertices.

Suppose the n-th vertex has temperature Tn and we are trying to solve the diffusion equa-

tion in discrete time. Then in a single step we have ∆Tn = ∆Qn/C = (Pn − Pn+1) ∆t/C.

But we also know that the heat current is proportional to the gradient of temperature

Pn = a (Tn − Tn+1). Tweaking the indices a bit and absorbing all the constants into D

we obtain ∆Tn/∆t = D (Tn+1 + Tn−1 − 2Tn). We can think of the lattice as a network

now and fill its adjacency matrix with Ai,i+1 = 1 for all i where-from it automatically

also holds that Ai−1,i = 1. All other entries are 0. All vertices have degree k = 2. We

can thus write our previous result as ∆Tn/∆t = D (Anm − δnmk)Tm = DLnmTm. In

the continuous case the diffusion equation is ∂T
∂t = D∇2T . We hence see that the matrix

Lij corresponds to the Laplacian in this case.
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The spatial analogy should not be taken too far, as it would become rather unaesthetic

if we had a weighted graph with lengths in Euclidean space as its weights (it might

work if they were inverse weights, but that’s not how one would usually think about

them). We are best advised not to approach such problems with complex networks, as

better tools are at hand, such as the field-theoretical approach in ordinary Euclidean

space developed in the rest of this dissertation.. However, we are free to invent a new

generalised type of diffusion that does not obey Euclidean space logic and interprets

weights in its own way if they are present. After all, we can easily talk about an Internet

search robot “diffusing” through the Internet even though it has very little to do with

ordinary spatial diffusion.

4.3.3 Reaction-diffusion processes on complex networks

Since this is a relatively new field in which results are still being debated and where

they are constantly being updated, I will take the historical perspective in describing its

developments.

Reaction-diffusion systems on a complex network, in particular a scale-free network, was

first studied by Gallos and Argyrakis [80], although studies of the geometric properties of

the spatial distribution of leftover particles in the A+B → 0 reaction, that also described

the behaviour of the reactants on a fractal substrate [81] and a related article [82]

might be considered predecessors. Gallos and Argyrakis discovered through numerical

simulations that particle densities for the reactions A+A→ 0 and A+B → 0 on complex

networks decay with an exponent t−α, where α > 1, therefore faster than in ordinary

space. It was argued that this is due to the segregation of particles not occurring.

Instead, clusters of reactants form around the hubs of the network.

Catanzaro et al. [83] then devised a systematic approach to mean-field calculations on

through the consideration of the A+A→ 0 process on uncorrelated complex networks.
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Uncorrelated here means that in the underlying network ensemble of the random graph,

the degrees of different vertices are not correlated, i.e. are independent random variables.

They consider both homogeneous networks where they recover the Euclidean result,

a ∼ t−1, while in the case of scale-free graphs the result is shown to depend on the degree

distribution. Using exact manipulation of the probability mass function, the asymptotic

form of the density of an infinite network is shown to have the form a ∼ t−α(γ) (ln t)−β(γ),

where α and β satisfy:

α (γ) =


1/ (γ − 2) 2 < γ < 3

1 γ ≥ 3
(76)

β (γ) =



0 2 < γ < 3

1 γ = 3

0 γ > 3

where γ is the exponent of the degree distribution n ∼ k−γ . They also consider finite-

size effects and show that due to them, asymptotically the result will be that of a

homogeneous network, i.e. a ∼ t−1 with an amplitude proportional to N3−γ , where N is

the number of points. This is the mean field behaviour, and supposedly it always arises

in finite scale-free networks. This seems to shed bad light on the prospects of using the

Doi-Peliti formalism on complex networks. There are a few remedies, though. First that

it does not seem to be entirely true [84] and second, that there are still infinite graphs.

We did not deal with bounding our Euclidean space either.

This was followed up by [85] in their study on the A + B → 0 reaction, where they

demonstrated that for any set of annihilating species, the asymptotic decays on scale-

free networks are independent of each other and with the same α exponent as established
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in [83]. In [86] the authors then argued that the properties of complex networks imply

that a large amount of pattern formation, which in the A + B → 0 reaction would

correspond to segregation, can increase the rate of reaction in stark contradiction to

the regular Euclidean case. They illustrated this on the case of evolving species under

competing evolutionary pressures, nicely exemplifying the main area where these results

are applied, mathematical biology.

So far only fermionic interactions had been covered. Baronchelli et al.[87] developed a

bosonic formalism. They found that using either the bosonic or fermionic formalism

hasn’t been does not alter the time evolution and critical properties of single-species

reactions, but that it does, perhaps surprisingly, shift the distribution of particles over

classes of vertices with a given degree.

Yun, Kahng and Kim [88] argued that if the network is not a synthetic random scale-free

graph but rather a proper fractal network, the exponents 76, implied by [85] to be the

same for A+B → 0, are incorrect. Rather one should take the result implied by [81, 82]

into account, which states:

a ∼ td/ds (77)

where ds is the spectral dimension of the fractal structure, related to the fractal di-

mension and random walk dimension, which both have rigorous definitions. For fractal

scale-free networks with n ∼ k−γ , the spectral dimensions are [80, 88]:

ds =


2(γ−1)
2γ−3 2 < γ < 3

4/3 γ > 3
(78)

For non-fractal scale-free networks previous results still apply.

Kwon, Choi and Kim extended the analysis to weighted scalefree networks in the sense
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described at the end of section 4.3.1. They established that the processes A+A→ 0 are

again identical in the thermodynamic limit and that there are three independent regimes,

identified by two crossover values of the network parameter θ in which the density

decays with different exponents or exponentially. They also show that the kinetics of a

weighted scale free network can be mapped onto an unweighted scale free network with

γ′ = (θ + γ) / (θ + 1), an important result for our preceding discussion of diffusion; the

weights don’t really matter as we can always find a map to an unweighted network. That

is however proven only for “naturally” weighted networks with a parameter θ.

The authors of [89] opposed previous claims that segregation, whatever its effects may

be, is caused by the fractal structure of the network and that the diffusion-annihilation

processes dynamics are fully determined by the weight and degree distribution and that

the knowledge of further details is unnecessary, by providing a counterexample to both.

There has also been a very basic study of percolation [90] on complex networks.

It is perhaps somewhat discouraging that I haven’t been able to come across a single

paper that would apply the Doi-Peliti formalism, or attempt demonstrating its incom-

patibility with complex networks, although many of them seem to be on the way. As

we’ve seen, having local diffusion rules governed by weights in the adjacency matrix

should not be a problem, as we can map the dynamics to an unweighted network, at

least for the natural weights. It would however be nice to take a continuum limit. It is

hard to see how this would work right now, as the dimensionality is effectively different

in the vicinity of each point, but perhaps there could be a way to obtain a coarse grained

action in a fractally-dimensioned space. In that case one could also make sense of epsilon

expansions for non-physical dimensions and additionally study many regimes where ε is

genuinely small. But of course it might not be possible. The investigation of diffusion

on networks is however fascinating in itself.
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4.4 Lévy flights

While field-theoretical techniques are very suited to demonstrating universality and to

certain specific problems, it is more than obvious that numerical results are not its strong

point. The ε expansions, that are usually the final output of RG calculations in RD

processes, often behave extremely badly. In the critical dimension they are replaced by

logarithmic corrections to exponents and amplitudes, whereas there are usually very few

physical (e.g. integer) dimensions below the critical dimension. The critical dimensions

of most simple systems are 2 or less, due to the aforementioned reentrance properties

of random walks in different dimensions. If dc = 2, the highest dimension, besides the

critical, in principle accessible to our calculations is 1, but ε there equals 1, so the series

converges very poorly. In fact we can only thank Nature that she provided us with the

occasional series whose radius of convergence is ≥ 1 so that we can sum it up at all.

A question arises: Can we calculate any results in d = 1 efficiently using the Doi-Peliti

formalism? We could if there was either a system whose critical dimension, that need

not be integer, was slightly above 1, s.t. that the ε parameter in which we performed

our expansion would actually be small and the resulting series would converge. But

traditional diffusion limited systems don’t seem to be of that type. For example, in

kA → lA reactions we have dc = 2/ (k − 1) which equals dc = 2, 1, 2/3, 1/2, . . . for

k = 2, 3, 4, 5, . . . respectively. After dc = 1 for k = 3, which again isn’t analysed in

terms of an ε expansion, as ε = 0, all critical dimensions are smaller than 1 and we can

only calculate universal quantities in d = 0. This is not entirely useless, as there exist

non-trivial problems in 0 dimensions [91], but we would usually like to do more. For

DP and other processes we can get higher critical dimensions, but they are still mostly

integer and hence subject to these same problems.

There are however systems where we can tune the critical dimension. These are systems

characterised by the so called Lévy flights, which are analogous to Brownian motion,
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i.e. ordinary random walk diffusion, but are discontinuous. As Brownian motion is

associated with a Wiener stochastic process, so Lévy flights have an underlying Lévy

stochastic process. To sketch the differences between the two, consider a discrete time

Lévy process in order to prevent unnecessary excursions into rigorous stochastic calculus,

càdlàg function spaces, etc. Then the main difference is that in Lévy diffusion, the

distribution of jump lengths in a single time step has a much fatter tail than in the

corresponding Brownian case. We usually consider a power law tail. This can remind

one of scale-free networks discussed in the previous section and indeed, the similar effects

have been acknowledged by [83]. We choose a power law with tails heavy enough so that

the second moment of the jump length diverges. In general we will thus have a much more

thouroughly mixed system than in standard diffusion. Lévy processes are ubiquitous

in physical, biological and even financial systems. For a list of phenomena where an

understanding of Lévy statistics is indispensable and a comprehensive introduction to

the mathematical theory, see [92]. Even when we let the time-step go towards zero, i.e.

we take a continuum limit, the discontinuities remain. In mesoscopic systems such as the

ones considered in this dissertation, we can take the discontinuities to be unphysical and

only effective. The lack of reality makes this point somewhat more subtle in quantum

phenomena, but we fortunately don’t have to deal with it here.

For our purposes a qualitative exposition based on [94] will suffice: the probability of

jumping a length l is proportional to P ∝ l−d−σ, where σ < 2 characterises the Lévy

power law. Due to additional terms in the Langevin equation and/or the diffusion

sector of the master equation, the propagator becomes G0 (~p, ω) = (−iω +Dpσ)−1.

Since iω ∼ t−1 and Dpσ appear in a sum, meaning they must have the same dimensions

and hence scaling properties, we see that if p ∼ κ, time intervals scales as t ∼ κ−σ.

Invoking the arguments of dimensionless action again, like in section 3.4, we can read off

the dimensions of coupling constants from the Lagrangian. We obtain [λ] = κσ−d, and

by considering the relevance of the interaction under RG flow, this immediately implies
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Figure 7: The comparison between a numerical simulation of standard diffusion and the
value of an analytic ε expansion for a Lévy flight with σ slightly above 1 with
the remaining parameters equal. The agreement is approximate at best. Taken
from [93].

dc = σ. Thus if we are interested in the behaviour in one dimension, we can study the

process with anomalous diffusion characterised by a σ slightly larger than 1 and obtain

a quickly converging ε expansion. This of course is by no means the same process as

ordinary diffusion and there is a considerable amount of discrepancy between the two,

as is shown in figure 7. Yet it is at least of the same order and potentially smaller as

the discrepancy in a usual ε expansion with ε ∼ 1 as in [95]. Additionally, had we tried

analysing a process that can actually be described by σ slightly larger than one, there

would obviously be no discrepancy, but that partly depends on luck.

The performance of utilising Lévy processes to aid ε convergence is described in [93] on

the example of a A + A → (0, A) reaction, finding the performance favourable. These

methods have then been used to study the A + A → 0 annihilation with quenched dis-

order in [96]. Whereas quenched disorder (random irregularities frozen into the lattice)

tends to drive a reaction into the sub-diffusive regime (i.e. diffusion playing a smaller
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part, which typically leads to an increased overall reaction rate), Lévy flights are su-

perdiffusive. The overall effect of the interplay still depends on the parameters of the

disorder and Lévy statistics. The mechanism was also proposed as a viable model of

turbulent fluid transport, further acknowledged in [97]. There have also been investiga-

tions into vicious walkers, as briefly exposed in section 4.2.2, obeying Lévy statistics [98],

indicating that walkers with smaller σ, i.e. longer average jump lengths, have a greater

survival probability.

There are also many results on Lévy flights generalisations of processes in the DP class.

Hinrichsen and Howard [94] calculated the variation of some of the critical exponents

with σ. Olla has recently applied this to study a demographic model [99] and identi-

fied the regimes where the model is equivalent to a set of Brownian walkers and other

demographic models.

4.5 Other applications

There are many areas of research besides the ones listed that I did not have time or

space to go into. For example there is the work on persistence by John Cardy [100],

which again beautifully employs an operator delta function, much like Wijland did in

his hard-core repulsion paper [16], which through the retainment of additional terms in

the coherent state integral step leads to an elegant expression for the probability that a

particle hasn’t visited a particular site yet.. There are numerous studies of the effects of

different types of disorder [101, 102, 103, 104] and there is the Pair Contact Process with

diffusion. The latter consists of the reactions A + A → (0, A) and A + A → (n+ 2)A,

which qualitatively differs from BARW in that they don’t include any processes involving

a single reactant. It is an active research area as the renormalizable action of the model

diverges under RG flow and because it’s universality class is not fully understood yet [8].
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5 Conclusion

I have presented a general survey of the area of reaction-diffusion systems with an em-

phasis on field-theoretical techniques. These are fascinating in themselves from several

perspectives, from the elegance of the coherent state path integral representation to the

continuous wonder at how a tool with such shaky mathematical foundations manages

to predict facts about the world so well. This might be more of a point in quantum

field theory, as non-equilibrium physics is experimentally not quite on its level yet and

is therefore still struggling with more approximate quantities. However, the possibility

of extracting information from something as ill defined as an ε expansion is definitely

something nobody would take for granted before learning field theory. Field theory and

especially the renormalisation group associated with it also give us a powerful language

to pose and answer problems related to scaling. Our whole non-equilibrium statistical

treatment also enables us to present field theory gradually and pedagogically, clearly

demonstrating its probabilistic framework without mixing in quantum probability. This

also makes it easier to spot and easily appreciate the distinguishing characteristics of

quantum probability upon taking up quantum field theory.

We focused mainly on reaction-diffusion processes which is a broad enough area to cover

a variety of topics without straying from it. Besides a pedagogical introduction to the

technical implementation of field theory and its relation to other statistical tools, we also

touched briefly on directed percolation and phase transition in general, multi-species

reactions, reaction-diffusion on networks, Lévy flights and have indicated what other

areas also fall under reaction-diffusion research.

Directed percolation is important as a universality class and also because it can be used

to build realistic models of infection. The simple A + B → 0 embodies the history of

RD research and is not yet fully settled, also reminding us of how little we still know

about non-equilibrium dynamics. Reaction diffusion on networks is a relatively new area
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and while there are currently no publications describing field-theoretical techniques on

complex network in circulation, there might one day be. Even so the collection of results

points towards it as a field with a lot of possibilities. Lévy flights are another type of

process that can be really neatly incorporated into the field-theoretic framework, allow

us to regulate the critical dimension and are important for generalisations of diffusive

motion that seem to be pervading RD research at the moment.

The possible directions of further research are so vast that one needs strict additional

criteria in suggesting a subset of them. Unsolved problems, such as listed at the end of [8],

including better understanding and classifying BARW and DP, and even performing

merely performing a full RG analysis of the A+B → 0 in the case of unequal densities,

have all remained unsolved by today. Nonperturbative renormalisation group ideas [105,

106, 46] might yield some insight here. On the other hand the unrepayed stubbornness

with these problems might incite us to focus our resources elsewhere and count on a

spurious connection with a new area of physics or at least a new method in an old

area arising to elucidate the hard problems left behind. Personally I would also like to

see the field of reaction-diffusion processes on complex networks grow somewhat and to

have more researchers tinker around with field theory in fractal dimension, and fail, if

necessary.

Finally promoting multidisciplinarity seems to be a worthy goal in the area these days,

as the main applications of it come from mathematical biology, where e.g. polymer

research relies heavily on the paradigm[107], evolution and the related game theory,

epidemiology and, in comparison, the somewhat unexotic condensed matter physics. The

investigation of reaction-diffusion processes and field-theoretical techniques are bound

to remain firm pillars of our increasing our knowledge on statistics far from equilibrium

for the foreseeable future and I am sure these methods will undoubtedly be applied to

elegant resolutions of exciting new problems, spanning nearly all the sciences.
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