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Abstract

In this MSc dissertation, we explore the improvement of our understanding of the

AdS/CFT correspondence during the last years from studies of the by far most ex-

plored case of the duality, which is the one in which the gravity or string theory lives

in a curved background consisting on 5 dimensional anti de Sitter spacetime times a

5-sphere and the dual conformal field theory is the maximally supersymmetric QFT,

that is, the one with 4 supercharges. A further restriction takes us to the limit in which

the duality appears to be more reliable, namely the planar limit for the conformal field

theory and the correspondingly free string theory on the gravity side.

After a very general, brief and focused review of the AdS/CFT duality, we present

the techniques than one uses to put the correspondence to work and test it by direct

comparison of what are expected to be equivalent results on both sides of the duality.

The duality states that the energy of string states should be equal to the scaling di-

mension of the dual gauge operators. For the time being, this can only be reasonably

computed under certain conditions and by means of the techniques that we expose in

this dissertation, namely the semiclassical approach to the string states to calculate

their energy and the spin-chain analogy to obtain the scaling dimension of gauge oper-

ators.

The underlying reason why so much progress has been made in this area of research in

the last decade is the discovery of some hidden symmetries that simplify the resolution

of the problems. These hidden symmetries stem from the integrability of the theories
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under certain limits and could be an open door to the full solution of the theory on both

sides of the correspondence. In other words, for the first time we could be on the verge

of completely solving a quantum interacting theory, and this would probably have some

consequences as far as interesting cases of them, such as quantum electrodynamics, are

concerned.

The general aim is to check and better understand the duality by finding which gauge

operators correspond to which string states. The community would like to use this to

learn more about how the duality works and how it might be extended to less symmetric

cases.
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1 Introduction

String theory was originally formulated as a theory for the Physics of the strong in-

teraction [1]. After the advent of gauge field theories and in particular of quantum

chromodynamics to model the interactions between quarks, the especticism about the

possibilities of success of string theory quickly fell and the theory was mostly aban-

doned for a while. Later on string theory started being seen by many as a promising

candidate for a unifyied theory of everything, that is of quantum gravity along with

existing gauge theories that describe all other interactions in nature. In this interpre-

tation quantum chromodynamics is conceived as a low energy limit of its dynamics.

The gauge fields though are understood as secondary objects which follow from the

fundamental strings. A crucial step into a rather novel path was made by t’Hooft [2].

T’Hooft’s insight was that perturbative expansions of SU(N) gauge field theories in

the limit of very large N (number of colours) take after the genus expansion that string

theorists were familiar with. In other words, it looked like for N → ∞ with a given

parameter fixed (the so-called t’Hooft parameter λ ≡ g2
YMN), expansions in terms of

Feynman diagrams turn out to be expansions in different topologies, which is exactly

what one has when considerin a string perturbative expansion over Riemann surfaces,

whereby 1/N plays the role of the string coupling. At the same time, works on lattice

gauge theory by Wilson [3] and Polyakov [4] also pointed out that the strong coupling

expansions can be seen as propagating closed strings.

All this paved the way to the strong belief that gauge theories and string theories
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are nothing but two sides of the same coin and hence gave birth to the concept of

gauge/string dualities. By that time this was nothing but a well grounded physical in-

tuition but a mathematical formalism, let alone a formal proof, were lacking. Nowadays,

most of the community shares the opinion that further exploring this exciting duality

might give us new insights into both of its sides. On the one hand, we could profit from

our knowledge about perturbative string theory to learn more about strongly coupled

quantum field theories. On the other hand, our techniques in perturbative quantum

field theries might help us understanding how to include gravity consistently in a quan-

tum field theory.

Another crucial impulse to the field was given by Witten and his realization that a

stack of N coincident D-branes gives place to a U(N) symmetric gauge theory [5]. This

incredible idea of gauge/string dualities would then be established in a more formal way

in the late 1990s by [6]. Maldacena presented a concrete conjecture realization of such

a duality. He showed that the four dimensional N = 4 supersymmetric gauge theory

with a gauge group SU(N) is equivalent to type IIB string theory on an AdS5 × S5

background. In particular, he showed that if considering the geometry of a stack of

D3-branes, the gauge theory emerging for open strings stretching between the branes

is N=4 SYM , while the geomtry sourced by the branes is nothing but AdS5 × S5

spacetime. Now a four dimensional scenario can be envisaged as the boundary of AdS5

, where the gauge theory would live, while the S5 part of the geomtry can be seen

to arise due to the internal supersymmetry of the gauge theory. Hence the relation

between gauge/gravity dualities and the concept of holography.

This puts string theory and quantum gauge theories on the same footing as funda-

mental theories that arise at a time. Ever since all these discoveries took place, lots

of efforts have been devoted to the improvement of our understanding of this mar-

velous duality between some gravity theories and some quantum field theories. The

AdS/CFT correspondence, whereby gravitational theories in an Anti de Sitter back-

ground are dual to quantum field theories with conformal symmetry, is by far the most
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known and studied case of such a duality. In this dissertation, we explore the advances

that have been made in this field by using the semiclassical approach to a theory of

strings on the so called “AdS side” and the spin chain analogy that arises when trying

to compute scaling dimensions on the gauge side.

The semiclassical approach to strings in the context of the AdS/CFT duality is based

on the simple idea of finding perturbative corrections around classical solutions of the

string equations of motion in the AdS5×S5 background. Given the technical problems

involved in the solution and the quantization of the string action in AdS5×S5 this tech-

nique gave the first formal checks of the duality (in the sense of computing a quantity

in both sides of the duality) beyond the supergravity approximation. This conceptually

simple approach was precluded by the works of Berenstein, Maldacena and Nastase in

[7] and also of Gubser, Klebanov and Polyakov in [8] and formally launched by Frolov

and Tseytlin in [9]. The technique uses classical solutions as a starting point, about

which perturbative corrections are calculated. In particular, an expression for the en-

ergy in terms of other quantum numbers (spins) can be found, first at a classical level

and then in a quantum corrected version. This quantum corrected energy should then

be compared to the dual anomalous dimension for the corresponding gauge operator

and a proper check of the duality would be given by an agreement of both quantities.

The key assumption of the semiclassical approach relies on the fact that in the N →∞

approximation spins must be large (J →∞), while keeping the ratio J2/N fixed. This

limit can make the semiclassical perturbative approach or even the classical one quan-

tum exact, since in this limit quantum corrections can get cancelations (see [10], [11]).

This means that all-loop predictions for the scaling dimension of the dual gauge theory

can be made in some cases.

Studies in this field of research aim at a quantitative check of the duality beyond the

well known supersymmetric sector as well as at an improvement of our understanding

of the role played by the integrable structures which have been recently discovered on
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both sides of the correspondence. Integrability has now posed serious hopes of making

considerable steps forwards in our search for the complete solution of the theory. Inte-

grability manifests itself in the weak coupling limit via the analogy established between

the dilatation operator sof N=4 SYM and the hamiltonian of a 1-dimensional spin

chain, which is an integrable structure and which we shall be reviewing further below.

In the strong coupling limit, integrability can be seen in the sigma model formulation

of the string worldsheet action in AdS5 × S5 . As a result of this integrability on both

sides of the duality, it seems like several important features of the theory can be learn

by means of the so-called Bethe ansatz.

In more concrete terms, on the gauge side of the duality, the first traces of integra-

bility were revealed by Minahan and Zarembo [12]. They related for the first time the

one-loop dilatation operator to a spin-chain, which is a well-known integrable system.

This was nothing but the reflection on the theory side of the classical integrability of the

string sigma model of Metsaev and Tseytlin, which would shortly after be discovered

by Bena, Polchinski and Roiban [13]. Integrability was then extended to all one-loop

operators and later on to two-loop and three-loop orders in N=4 SYM . Soon it was

conjectured that integrability could be an all-loop feature [14]

An additional technique which was launched by Kazakov, Marshakov, Minahan and

Zarembo in [15] is that of the algebraic curve. They realised that classical solutions in

the su(2) subsector can be expressed using algebraic curves, which is a general and an

elegant formal way of solving the problem. Since algebraic curves are also obtained on

the gauge side approach as a continuum limit of the Bethe ansatz equations, it looks

once more like we are looking at different sides of the same coin. So integrability has

brought new hopes of a complete solution of the theory, which might be perceived both

as a way of understanding how strongly coupled quantum field theories behave and as

a way of understanding quantum free strings in curved backgrounds.
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Some important aspects of this research field have been intentionally let aside on behalf

of conciseness and brevity. Those are for example the pure spinor formalism originally

presented in [16] and didactically explained and related to the content of this disser-

tation in [17] and [18]. Also the Yangian symmetry structure related to N = 4 SYM,

[19], [20]. Other cases will be mentioned below.
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2 The AdS5 × S5 / N = 4 SYM

correspondence

The AdS/CFT correspondence ([6], [21], [22]) is the best known example of a gauge/gravity

duality, which states that N=4 SYM theory is dynamically equivalent to type IIB su-

perstring theory on AdS5 × S5 , as long as the parameters of both theories are related

by the relations

gs =
4πg2

N
,

R2

α′
= 4πg (2.1)

whereby R stands for the radi of AdS5 and of S5 , gs denotes the string coupling con-

stant and g is the coupling of the gauge theory. From the point of view of symmetries it

can be shown that both theories share the same symmetry group, PSU(2, 2|4), which

contains the maximal bosonic subgroup SO(2, 4)×SO(6). SO(2, 4) can be understood

on the gauge side as the conformal group in four spacetime dimensions, while on the

string side it is seen as the group of isometries of the AdS5 metric. Meanwhile, SO(6)

may be seen as the R-symmetry group for a theory with four supercharges1 and as

the group of isometries of S5 respectively. Taking the supersymmetri generators into

account does indeed enchance the symmetry grop to the full PSU(2, 2|4) for N=4 SYM

. For the string side this enhancement stems from the fact that 16 of the 32 Poincaré

supersymmetries are preserved by the array of N D3-branes, which are supplemented

by another 16 supersymmetries [23]. The formal proof of this equality of the full sym-

metries was given by Metsaev and Tseytlin in [24], where they used the sigma-model

1N=4 SYM has four fermionic supercharges for which the symmetry group is given by SU(4) ∼= SO(6)
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approach to show that its symmetry group is in fact PSU(2, 2|4).

Both SO(2, 4) and SO(6) are rank three groups, so each gauge operator or string

state will be labelled by six quantum numbers. In the case of a string state, the three

quantum numbers corresponding to SO(2, 4) will be the energy (recall that the time

direction in AdS5 haas been decompactified) and two spins and the three quantum

numbers corresponding to SO(6) will be three spins accounting for the rotation of the

string in S5

|string state〉 = |E, J1, J2;S1, S2, S3〉 (2.2)

For a gauge operator, the three labels given by the SO(2, 4) symmetry are understood

as the scaling dimension and two spins, while the three S5 labels are the R-charges:

O = O(∆, s1, s2;R1, R2, R3) (2.3)

From this analogy, it is readily seen as a consequence of the duality, that the energy of

a given string state should conincide with the scaling dimension of the corresponding

dual gauge operator. Gauge-invariant local operators are just traces taken over the

colour indices of products of the fundamental fields contained in the theory.

We know that the energy is nothing but the eigenvalue of the Hamiltonian operator,

which generates time translations in AdS5 . The scaling dimension ∆ is the parameter

that measures how an operator transforms under scale transformations

x→ Λx ⇒ O(x)→ Λ−∆O(x)

and it normally gets quantum corrections under renormalization. So in general we have

∆ = ∆0 + gγ, whereby ∆0 is the bare scaling dimension and γ contains the quantum

corrections and goes under the name of anomalous dimension. g is just the coupling.

In particular the scaling dimension can be identified as the eigenvalue of the dilatation

operator D of N=4 SYM . So in other words, if |O〉 is a string state (eigenstate of the

corresponding Hamiltonian) and O(x) is its corresponding gauge dual operator with
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scaling dimension ∆, the AdS/CFT correspodence establishes [25], [26]

Hstr|O〉 = E

(
R2

α′
, gS

)
|O〉 DO(x) = ∆ (g, 1/N)O(x) (2.4)

so assuming the duality and hence the correspondence of both elements amounts to the

assumption

E

(
R2

α′
, gS

)
= ∆ (g, 1/N) (2.5)

In principle, checking this correspondence should look like a hopeless enterprise. Com-

puting the spectrum of a given string state for an arbitrary value of N to all-loop

orders is almost technically impossible. The planar limit, where N → ∞ provides a

convenient limit where things turn out to be more tractabel and the duality can indeed

be tested. In this limit, strings become free strings while our quantum field theory

reduces to a theory consisting of planar Feynman diagrams alone. From the point of

view of topology, a Riemann sphere can be rapidly seen on both sides by thinking of

the worldsheet of strings or of the topology of the diagrams in this limit.

We will restrict ourselves to the planar limit all along this work. So our duality will be

actually that between free type IIB string theory in AdS5 and planar N=4 SYM .

But even after this convenient approximation has been assumed, we still have to face

the crude reality of this correspondence having a weak/strong nature. After all, our

calculations are mostly based on perturbative methods and this weak/strong character

of the duality means that perturbative regimes on both sides of the duality are non-

overlapping, which in princple would make any check of the duality by means of real

computations hopeless. An important exception is given by states that are protected

from getting quantum corrections by the high amount of symmetry available. They are

the so-called BPS states. String energies of BPS states do not get quantum corrections

and correspondingly, the scaling dimension of the dual gauge operators do not depend

on the coupling. All the early checks of the duality were restricted to such states, since

they posed the only possible way of performing real calculations on both sides of the
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duality. As we will see below, this situation changed drastically in the early 2000s

thanks to a series of discoveries that we will be covering in this work.

It is worth pointing out now that the duality goes far beyond an equality of symmetries

and the corresponding duality of representations. Its dynamical statement foresees that

to each string state in AdS5 × S5 there exists a gauge dual in N=4 SYM such that

all associated physical quantites coincide [23]. Still symmetries will catch most of our

atention here, since we will be mainly interested in the spectral correspondence 2.5.
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3 Integrability

We would like to use this chapter as a brief introduction to the concept of integra-

bility both at a classical and at a quantum level. Physics is all about symmetries.

Global symmetries lead to conserved quantities and these allow for the establishment

of general physical laws, like the conservation of energy for time invariant systems or

angular momentum for rotation invariant theories. The symmetries of a theory play a

very relevant role in its resolution, since they significantly simplify the problem and the

computations by reducing the amount of independent degrees of freedom. So the more

symmetries a system possesses, the simpler its resolution. A perfect situation is that in

which symmetry allows for a complete resolution of the theory, and this only happens

when the number of symmetries is large enough. Some theories have the privilege to

be in this situation and they go under the name of integrable theories.

The concept of integrability has been extensively used in classical theories for a very

long time in Physics. In plain words, a theory is said to be classically integrable when

there is a sufficient number of conserved charges, making it exactly solvable. Integra-

bility is a phenomenon typically restricted to two-dimensional theories.

For a very good review on everything related to integrability in the AdS/CFT corre-

spondence we refer the reader to [27].
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3.1 Classical integrability

In particular, we will be interested in the method used to solve integrable systems1 in-

volving nonlinear partial differential equations, the so called inverse scattering method.

In two dimensions (τ, σ), imagine we start form an overdetermined system of partial

differential equations of the form [28]

∂Ψ

∂τ
= Lτ (σ, τ, z)Ψ

∂Ψ

∂σ
= Lσ(σ, τ, z)Ψ (3.1)

Now differentiating the first equation with respect to σ and the second equation with

respect to τ and equating the results

∂2Ψ

∂σ∂τ
= ∂σLτ (σ, τ, z)Ψ + Lτ (σ, τ, z)∂σΨ = ∂τLσ(σ, τ, z)Ψ + Lσ(σ, τ, z)∂τΨ

which taking the previous equation into account implies

∂τLσ − ∂σLτ + [Lσ, Lτ ] = 0 (3.2)

So if Lα, α = τ, σ is understood as a non-Abelian connection, the previous equation is

just the requirement that it be flat for all values of z, known as the spectral parameter.

This is also known as the zero curvature condition of the connection. Furthermore, the

matrices Lα must be chosen in such a way that the fulfilment of the zero curvature con-

dition implies the validity of the initial equations for all values of z. Such a connection

is called a Lax connection or a Lax pair and is defined up to gauge transformations.

Note that equation 3.2 can be reestated in the language of differential forms as

dL− L ∧ L = 0 (3.3)

The Lax connection is a key element to realize the integrability of a theory since it

provides a way of finding all conservation laws (related to the equations of motion) by

1For a good review of the different uses and techniques of integrable systems, see the lecture notes by
G. Arutyunov.
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defining the so called monodromy matrix

T (z) = P exp

∫ 2π

0
dσLσ(σ, z) (3.4)

whereby P signals the path-ordering. We assume that the σ coordinate is circular

0 ≥ σ ≥ 2π, but this does not necessarily need to be the case [29]. Let us now derive

the previous equation with respect to our time coordinate

∂tT (z) =

∫ 2π

0
dσPe

∫ 2π
σ dχLσ (∂tLσ)Pe

∫ σ
0 dχLσ

=

∫ 2π

0
dσPe

∫ 2π
σ dχLσ (∂σLτ + [Lτ , Lσ]) Pe

∫ σ
0 dχLσ

=

∫ 2π

0
dσ ∂σ

(
Pe

∫ 2π
σ dχLσ Lτ e

∫ σ
0 dχLσ

) (3.5)

which summing up means

∂τT (z) = [Lτ (0, τ, z), T (z)] (3.6)

which means that the eigenvalues of the monodromy matrix T (z), which are given by

Γ(z, µ) = det(T (z)− µI) = 0 (3.7)

form an infinite set of conserved quantities (one for each value of the spectral param-

eter), or in other words, an infinite set of equations of motion. So the monodromy

matrix contains all the information about the spectrum of the theory. The equation

3.7 defines an algebraic curve in C2 called the spectral curve [28].

So we have seen that if a theory admits the definition of a Lax connection, whose zero

curvature condition is equivalent to the equations of motion of the system, the theory

has an infinite number of conserved quantities and so it is classically integrable.

Very recently Beisert and Lücker [30] found a new method for generally construct-

ing a Lax connection of a 2d relativistic integrable sigma model on coset space which
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also poses a test for integrability for a theory formulated in terms of a coset sigma

model. Normally the Lax connection of a theory is found by formulating a sensible

ansatz in terms of the fields and then impose the flatness condition. The authors of

[30] propose the construction of the Lax connection in a more general way:

L(x, t, λ) = exp(λΣ)J (3.8)

whereby J is the Maurer-Cartan form, taking values in the Lie algebra corresponding

to the group manifold in which a sigma model for the theory can be formulated and

Σ is a newly defined operator whose significance is explored in the paper, and it turns

out to act on the Lax connection as a shift operator. After spliting J into its chiral

components

J± =
1

2
(J ± ∗J), J = J+ + J− (3.9)

and from here define

Σ(J±) = Σ±(J±) (3.10)

then from the last two equations and from 3.8, the connection takes now the form

L(λ) = exp(λΣ+)(J+) + exp(λΣ−)(J−) (3.11)

using now the flatness condition the authors of [30] show that it the connection is flat

to order O(λ3) is exactly flat for all λ. They also show that the map Σ± defines an

action for a sigma model.

3.2 Quantum integrability

At a classical level, we have seen that an integrable theory is that for which N conserved

charges can be found for a phase space that is N-dimensional. In other words, for an

integrable theory we would be able to find N quantities Q1, ...,QN satisfying

{Qi,Qj} = 0 ∀i, j, {H,Qi} = 0 ∀i (3.12)
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whereby H is the Hamiltonian of the theory. The normal prodedure to translate all this

into the quantum language is usually the substitution of Poisson brackets by common

commutators, but in this case this procedure turns out not to be enough [31]. A better

and more intuitive description of integrability at a quantum level can be obtained from

the point of view of scattering of particles. These particles need not be physical at

all. Several physica problems can be understood in terms of virtual particles scattering

against one another. Imagine we have two particles with asymptotic (far from their

intersection point) momenta p1 and ‘p2 respectively. They might be represented by an

incoming wavefunction

Ψin(x1, x2) = ei(p1x1+p2x2) x1 � x2 (3.13)

We may know call upon the conservation of energy and momentum, implying

E =
1

2
(p2

1 + p2
2) = constant P = p1 + p2 = constant (3.14)

So if both particles scatter against each other, the momenta after the collision can only

be a permutation of the original momenta

p′1 = p2 p′2 = p1 (3.15)

All the above can be summed up using an S-matrix by

Ψ(x1, x2) ∝ ei(p1x1+p2x2) + S(p1, p2)ei(p2x1+p1x2) (3.16)

Now if instead of dealing with just two particles, we are scattering three or more, things

change. The predictability of the above model was based on the fact that in a two-

particle collision respecting the conservation of energy and momentum, momenta can

be at most exchanged between the two particles. With three or more particles involved

in the interaction this is no longer true, so we can split up the asymptotic wave function

and epxress it as a sum of a wave function for which only two-particle interactions are
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taken into account and a second part for which many-particle interactions do play a

role [31] (again, consider the asymptotic region xn � xn−1 � ...):

Ψ(x1, x2, ..., xn) ∝
∑
P

(
Ψtwoe

i(pP(1)x1)+pP(2)x2+...+pP(n)xn
)

+ Ψmany(x1, x2, ..., xn)

(3.17)

where we have sum over all possible permutations of the particles for the first part of

the wave function, since it describes a sequence of two-particle interactions. This first

part of the wave function is therefore completely determined by the two-body S-matrix.

This opens the door to a new definition of quantum integrability. A system is said to be

quantum integrable when only two-particle interactions are relevant. In other words,

the asymptotic wavefunction can be expressed as

Ψ(x1, x2, ..., xn) ∝
∑
P

Ψtwoe
i(pP(1)x1)+pP(2)x2+...+pP(n)xn (3.18)

which is equivalent to the statement that the n→ n S-matrix factorises into a product

of 2→ S-matrices.

It is very intuitive to consider which consequences this has for the resolution of the

system in terms of conserved charges. For the two-particle interaction, we have seen

that the theory is integrable given the existence of the two conserved charges related

to the equations of motion, namely the energy and the momentum. If we assumed the

conservation of a third-charge, say for example
∑

i p
2
i , this would turn a three-body

interaction into a permutation of the initial momenta again. The existence of the third

conserved charge then implies the solvability (integrabiltiy) of the model. So when the

requirement of integrability is satisfied, and interactions are only pairwise for a set of n

particles, n conserved charges must exist. Of course the additional n− 2 charges need

not be related to the equations of motion and that is why sometimes they are refered

to as “hidden” conserved charges. They are eigenvalues of the generators of the hid-

den symmetries and no general method is known to find them for a general integrable

system2.

2Some exceptions to this regarding spin chains are covered in [32]
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Of course the quantum regime should take us to the classical regime for the corre-

sponding (continuum) limit. This means that it must be possible to recover the idea

of classical integrability discussed in the previous section from this quantum picture of

integrability. In other words, we should be able to rephrase our definition of quantum

integrability in terms of a Lax connection. This can indeed be done. We want to end

this chapter by noting that it could be interesting to explore the possibility of using the

new method shown by Beisert and Lücker in [30] for finding the Lax connection to find

a general method of computing the hidden conserved charges of an integrable system.

Before closing this chapter on integrability, it is mandatory to point out the most

comprehensive reference on this topic within the framework of AdS/CFT, which was

written by Beisert et. al. in 2010: [33].
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4 Strings on AdS5 × S5

Type IIB superstring theory in a curved spacetime is normally described using either

the NSR or the GS approach (see [34] for an introduction to both formalisms). For type

IIB superstrings in AdS5 × S5 the presence of the self-dual five form makes the NSR

approach unfeasible. So type IIB superstrings in AdS5×S5 are best described using the

Green-Schwarz formalism ([35], [24]), which makes spacetime supersymmetry manifest

(in the NSR approach, supersymmetry is restricted to the string worldsheet). It turns

out though, that constructing a GS action for superstrings in an arbitray background

is terribly hard [28]. But fortune happens to be on our side once again. The special

symmetries of the flat background and of AdS5×S5 make the situation much better. In

such backgrounds, a non-linear sigma model can be used on the coset superspace that

reflects the symmetry of the background. For the flat background Henneaux and Mez-

incescu [36] used a coset space that was nothing but the 10-dimensional super Poincaré

group modulo the Lorentz group SO(9, 1). Based on this, Metsaev and Tseytlin man-

aged to build a string sigma model of the type IIB superstring in AdS5× S5 [24] using

the coset superspace

PSU(2, 2|4)

SO(4, 1)× SO(5)

and which fulfilled the required conditions they had in mind. Those were that the

bosonic part of their action should be the standard sigma model for AdS5 × S5 , that

the theory should be invariant under a global SU(2, 2|4) symmetry, that κ-symmetry

should be verified and that the sigma model should reduce to the flat space one in the

limit R→∞. And not only did they succeed in finding such an action, but also showed
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that it is unique.

To understand their construction, which is very well explained in [28], we need some

previous concepts (see also [27]). The superalgebra sl(4|4) can be thought of as the set

of 4|4× 4|4 complex matrices with vanishing supertrace. That is, matrix of the form

M =

a θ

η b

 (4.1)

whereby a, b are bosonic matrices (even) and θ, η are fermionic grassmanian (odd)

matrices and

STr M = Tr a− Tr b = 0 (4.2)

The non-compact real form of sl(4|4), which is su(2, 2|4) is a restriction to the former

by the condition

M †H +HM = 0 (4.3)

with

H =


I2 0 0

0 −I2 0

0 0 I4

 (4.4)

It is worth mentioning that the algebra PSU(2, 2|4)is what we obtain if the identity is

removed from su(2, 2|4) [27]. Let us now introduce the supertransposition of matrices.

M st =

aT −θT

ηT bT

 (4.5)

If we now introduce the matrix

K = diag(σ, σ, σ, σ) σ =

0 −1

1 0

 (4.6)
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which allows us to build the fourth-order auromorphism

M → Ω(M) = −KM stK−1 (4.7)

which endows sl(4|4) with a Z4 grading, since Ω4 = 1. We can now define

G(k) = {M ∈ sl(4|4) |Ω(M) = ikM} (4.8)

which automatically allows us to decompose the algebra vector space as a sum of graded

subspaces

sl(4|4) = G(0) ⊕ G(1) ⊕ G(2) ⊕ G(3) (4.9)

Note that G(0) is the fixed point of the automorphism Ω and it coincides with with the

algrebra so(4, 1)⊕so(5) [27]. Given any matrix M ∈ sl(4|4), tis projection M (k) ∈ G(k)

can be built as [28]

M (k) =
1

4

(
M + i3kΩ(M) + i2kΩ2(M) + ikΩ3(M)

)
(4.10)

which makes manifest that while M (0) and M (2) are even, M (1) and M (3) are odd.

Let us now assume that g ∈ SU(2, 2|4). We can define an associated one-form A

that will live in the corresponding algebra su(2, 2|4)

A = −gdg−1 = A(0) +A(1) +A(2) +A(3) (4.11)

the reason why we define A this way is that it automatically has the property of being

flat

∂αAβ − ∂βAα − [Aα, Aβ] = 0 α, β = τ, σ (4.12)
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The Lagrangian density describing a type IIB superstring in AdS5 × S5 is then postu-

lated to be

L = −
√
λ

4π

[√
−hhαβ STr(A(2)

α A
(2)
β ) + κεαβ STr(A(1)

α A
(3)
β )
]

(4.13)

with εστ = 1 and hαβ being the world-sheet induced metric. In the conformal gauge

hαβ = diag(−1, 1). The first term in the action is just a non-linear sigma model on

AdS5 × S5 . The second term corresponds to a Wess-Zumino term steming from the

Z4-grading. The coefficient κ is required to be ±1 by the κ symmetry [29].

Let us now consider a transformation of our postulated action of the form g → gh, with

h ∈ so(4, 1)× so(5). The effect of this transformation on our one-form A is

A(i) → h−1A(i)h i = 1, 2, 3 (4.14)

that is they undergo a similarity transformation that leaves their contributions to the

action invariant. But

A(0) → h−1A(0)h− h−1dh (4.15)

which can be seen as a gauge transformation. This means that SO(4, 1)× SO(5) acts

as a stabilizer so rather than depending on g ∈ SU(2, 2|4), our action depends on a

coset element of the group SU(2,2|4)
SO(4,1)×SO(5) . Moreover, if we take into account that the

Lagrangian is also invariant under a shift by the identity matrix, we get the final coset

group that reflects the symmetry of the sigma model

PSU(2, 2|4)

SO(4, 1)× SO(5)
(4.16)

It should be no surprise that the stabilizer of the AdS part of the symmetry group be

SO(1, 4), since there is only 1 physical timelike direction and we embedded AdS5 in

R2,d−1 by introducing an additional timelike direction, pretty much the same way we

normally introduce an additional spacelike direction to embed spheres. So for example

it is widely known that S2 can be described as SO(3)/SO(2). In other words, S2 is
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what we get by counting all SO(3) rotations that are not different by just an SO(2)

rotation. Thus equivalent AdS configurations with respect to the additional timelike

direction must be counted only once and this implied taking the modulo with respect

to the left SO(1, 4) symmetry, which can be understood as the gorup of local Lorentz

transformations. It is not then hard to visualise that AdS5 can be seen as the coset

SO(4,2)
SO(4,1) whereas S5 can be seen as SO(6)

SO(5 , which together build the bosonic partialof the

full symmetry group.

A natural question to ask is hwo to formulate the equations of motion corresponding

to our Lagrangian. An elegant way of formulating them is by defining [28]

Wα =

√
λ

2π

[√
hhαβA

(2)
β −

1

2
κεαβ

(
A

(1)
β −A

(3)
β

)]
(4.17)

The equations of motion can then be shown to be

∂αW
α − [Aα,W

α] = 0 (4.18)

Furthermore, it can also be shown that the conserved Noether current corresponding

to the global PSU(2, 2|4)symmetry of the theory is given by

Jα = gWαg−1, ∂αJ
α = 0 (4.19)

which allow us to define the conserved charges

Q =

∫
dσJτ =

√
λ

2π

∫
dσg

(
A(2)
τ −

κ

2
(A(1)

σ −A(3)
σ )
)

(4.20)

where the conformal gauge has been assumed. Also, the equation of motion for the

world-sheet metric delievers the Virasoro constraints, which take the form

STr(A(2)
α A

(2)
β )− 1

2
hαβh

ρδ STr(A(2)
ρ A

(2)
δ ) = 0 (4.21)
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Up to now our considerations have been very formal and general to present the sigma

model for type IIB superstrings in AdS5×S5 . Of course when one has to make physical

computations it is mandatory to pick a given parametrization, in this case of the coset

representative, to get an explicit form of the action. This is done in [24], where the

authors present an explicit action. that takes the form

I = −
√
λ

2π

∫
d2ξ [LB(X,Y ) + LF (X,Y, θ)] ,

√
λ ≡ R2

α′
(4.22)

whereby ξa = (τ, σ), σ = σ + 2π and given the conformal gauge convention
√
−hhab =

ηab. Also

LB =
1

2

√
−hhab

[
G(AdS5)
mn (X)∂aX

m∂bX
n +G

(S5)
ij (Y )∂aY

i∂bY
j
]

(4.23)

and the fermionic part is

LF = i
(√
−hhabδIJ − εabsIJ

)
θ̂IρaDbθ

J +O(θ4) (4.24)

with I, J = 1, 2, sIJ = diag(1,-1) and ρa are the projected 10-dimensional Dirac matri-

ces

ρa = ΓMe
M
N ∂ax

N = (Γie
i
N + Γje

j
N )∂ax

M (4.25)

eMN being the vielbein of the target space metric, xM = (Xm, Y m′
) are the coordinates

and i, j are tangent space indices for AdS5 and S5 . Db is the projection of the 10-

dimensional derivative, which can be put into the form

Dbθ
J =

(
δJKDb −

i

2
εJKΓ∗ρb

)
θK , Γ∗ = iΓ01234, Γ2

∗ = 1 (4.26)

The metric of AdS5 × S5 has a direct product structure. As a consequence of this, the

bosonic part of the action is a sum of the AdS5 and S5 sigma models ([37]).
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4.1 Classical strings

Classical strings can be described by just taking bosonic fields into account, most

conveniently taking a given parametrization of the coordinates that accounts for the

AdS5 × S5 geometry. A five sphere can be easily described by embedding it in R6

δABX
AXB = XAX

A = X2
0 + ...+X2

5 = 1 (4.27)

Five dimensional AdS space can be thought of as an hyperboloid in R6

−ηMNY
MY N = Y 2

0 − Y 2
1 − ...− Y 2

4 + Y 2
5 = 1 (4.28)

with

η = (−1,+1, ...,+1,−1) (4.29)

Note that the radius of both the sphere and the hyperboloid have been set to 1 on behalf

of simplicity (even if the fact that they be equal is given by the correspondence). It is

also worth mentioningf how explicit the symmetry groups SO(6) for S5 and SO(2, 4)

for AdS5 are made in this parametrization. Now a parametrization of the coordinates

is just a given solution to the two last equations. The parametrization which is most

often used and shown in the literature is given by 5+5 independent global coordinates:

Y1 + iY2 = sinh ρ cos θeiφ1 , Y3 + iY4 = sinh ρ sin θeiφ2 ,

Y5 + iY0 = cosh ρeit, X0 + iX1 = sin γ cosψeiϕ1

X2 + iX3 = sin γ sinψeiϕ2 , X4 + iX5 = cos γeϕ3

(4.30)

With such a parametrization, equations 4.27 and 4.28 can be rewritten in a new form

ds2
AdS5

= dρ2 − cosh2 ρ dt2 + sinh2 ρ
(
dθ2 + cos2 θ dφ2

1 + sin2 θ dφ2
2

)
(4.31)

ds2
S5 = dγ2 + cos2 γ dϕ2

3 + sin2 γ
(
dψ2 + cos2 ψ dϕ2

1 + sin2 ψ dϕ2
2

)
(4.32)
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Figure 4.1: Taking 4.33 into account, AdS5 × S5 can be thought of as the product
space of a cylinder and a five-sphere, whereby the boundary of the cylinder
is R× S3.

The t coordinate in the hyperboloid is normally decompactified to avoid closed time-

like curves, so instead of having 0 < t < 2π we assume −∞ < t < ∞. So rather

than the hyperboloid described by 4.28, this modified version of it or universal cover is

used. Of ocurse, this parametrization is just a convenient choice of the many we might

have taken. Other coordinate descriptions and parametrizations might be found in the

literature. Note that keeping 4.31 in mind, two important limits can be noticed for

big and small AdS radius. For big AdS radius, namely far from the center of AdS the

geometry is perceived by a local observer as that of R1 × S3

lim
ρ→∞

ds2
AdS5

= − cosh2 ρdt2︸ ︷︷ ︸
R1

+ sin2 ρdΩ2
3︸ ︷︷ ︸

S3

(4.33)

where as for an observer close to the center of AdS, the geometry observed is R1 ×R4

lim
ρ→0

ds2
AdS5

= −dt2︸ ︷︷ ︸
R1

+ dρ2 + ρ2dΩ2
3︸ ︷︷ ︸

R4

(4.34)

Bearing this in mind, it may be useful to picture AdS5 × S5 as a product space, the

AdS5 part being a bulk cylinder with a boundary which is R×S3 as depicted in figure

4.1.

Let us now focus on the bosonic part of the above Lagrangian for reasons that will

later become clear. As a consequence of the conformal gauge, the so called Virasoro

constraints which are requried for the independent auxiliary metric to coincide with
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the induced metric (see [38]), apply

ẊMX ′M + Ẏ NY ′N = 0 (4.35)

ẊMẊM + Ẏ N ẎN +X ′MX ′M + Y ′NY ′N = 0 (4.36)

where the contractions are to be made using the metrics in the embeddings 4.27 and

4.28. A dot signals a time derivative whereas the prime stands for a ∂σ derivative.

These Virasoro constraints play a crucial role when it comes to computing the energy

of a given string state in terms of the other quantum numbers (spins) as we will see

below. Now recovering the embeddings shown above the bosonic part of the action may

be written as (see [37] for more details)

T

2

∫
dτ

∫ 2π

0
dσ
(
−∂aYM∂aYM −Θ(YMY

M + 1)− ∂aXN∂aXN + Λ(XNX
N − 1)

)
(4.37)

whereby T = R2/2πα′ =
√
λ/2π note that the embedding in a six-dimensional space-

time makes calculations simpler by introducing plane metrics but also requires the

introduction of the Lagrange multipliers Θ and Λ which impose the corresponding hy-

persurface conditions. Also, notice that in our integration over σ we have assumed that

our strings are closed and hence periodic. The equations of motion that follow from

this action are

∂a∂
aYM −ΘYM = 0, YMY

M = −1 (4.38)

∂a∂
aXN + ΛXN = 0, XNX

N = 1 (4.39)

and from them one finds

Θ = ∂aYM∂aY
M , Λ = ∂aXN∂aX

N (4.40)

So for the equations of motion the starting point is non-linear (nothing like � x = 0

reflecting the strong coupling situation. So canonical quantization procedures are far

from being trivial or straightaway.

31



Now looking agian at equations 4.32 and 4.31 one identifies that the cyclic coordinates of

the action are (t, φ1, φ2, ϕ1, ϕ2, ϕ3) from which looking at 4.30 we see that this cyclicity

corresponds to pairwise rotations in the (X,Y )-coordinates. It is then not hard to see

that the conserved charges corresponding to the six Cartan generators are of the form

JIJ =
√
λ

∫ 2π

0

dσ

2π

(
YI ẎJ − YJ ẎI

)
, SMN =

√
λ

∫ 2π

0

dσ

2π

(
XMẊN −XN

˙XM

)
(4.41)

and in particular correspond to the choices (recall 2.2)

J0 ≡ J05 = E, J1 ≡ J12, J2 ≡ J34, S1 ≡ S01, S2 ≡ S23, S3 ≡ S45 (4.42)

So in particular we have

E =
√
λ

∫ 2π

0

dσ

2π
GAdS5
tt ∂τ t = sqrtλ

∫ 2π

0

dσ

2π

(
Y5Ẏ0 − Y0Ẏ5

)
=
√
λ

∫ 2π

0

dσ

2π
cosh2 ρ ∂τ t

(4.43)

Note that for a classical string solution to have a consistent interpretation, we whould

be able to find a dual gauge operator that carries the same quantum numbers, and in

particular that has a definite scaling dimension. We will see below that this means that

the gauge operator has to be a highest weight state of the symmetry algebra.

4.2 The semiclassical approach

Quantization of the action 4.22 is beyond current methods. Hence our best approach to

quantum strings in AdS5 is then derived from a perturbative approach around classical

solutions, expanding in powers of the effective string tension
√
λ. For our purporses,

the semiclassical approach departs from a classical expression for the energy of a given

string state, E(Ji, Sj , kr)
1, and then computes the quantum corrections to it as an

expansion in large tension for the limit of large spins and fixed rescaled charges of the

1kr stand for additional hidden charges like number of folds, spikes or winding numbers
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form J/
√
λ. The energy is then understood as

E =
√
λ

(
E0(Ji, Sj , kr) +

1√
λ
E1(Ji, Sj , kr) +

1

λ
E2(Ji, Sj , kr) + ...

)
(4.44)

Problems derived from gauge fixing, kappa gauge invariance and the conformal anomaly

are avoided thanks to cancelation of UV divergences, as explained in [39]. The mis-

sion of checking the AdS/CFT duality beyond the most symmetric cases looked almost

hopeless given its weak/strong. The situation changed drastically in 2002, when new

limits were explored in which quantum numbers become large in a given way and the

large N limit is kept.

In general to compute quantum corrections around a definite classical solution, one

can fix a physical gauge, solve the corresponding constraints and quantise the remain-

ing degrees of freedom. In particular, to compute quantum corrections to the energy at

1-loop for a given classical string state we first try to find an expression for the energy in

terms of the fluctuation fields. The gauge constraints then should allow to express the

energy in terms of the other quantum numbers (momenta and other conserved charges)

and a term quadratic in the fluctuation fields. If the fluctuation fields are quantised

using the quadratic part of the strin action, then the computation of the expectation

value of the energy might be possible. This is nicely explained in appendix A of [9] for

the conformal gauge case, which we follow now for a while.

Recall the general expression for the classical energy of a string 4.43, which we are

trying to find quantum corrections for. Let us now introduce the density of the 2d

Hamiltonian

H(X,Y ) =
1

2
G(AdS5)
mn (X) [∂τX

m∂τX
n + ∂σX

m∂σX
n]

+
1

2
G

(S5)
ij (Y )

[
∂τY

i∂τY
j + ∂σY

i∂σY
j
]

= −1

2
Gtt (∂τ t∂τ t+ ∂σt∂σt) + ...

(4.45)
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from the conformal gauge condition 4.36, which is proportional to the hamiltonian

density above, we get the condition H = 0. So if we let the field t fluctuate and rewrite

it as κτ + t̃ we get (time translations are an isometry)

Gtt∂τ t =
1

2
κGtt +

1

κ
H(t→ t̃) (4.46)

Of course our aim is to get the corrected version of the energy in terms of the other

charges. In particular, if we stick to [9] and consider a string which has 1 spin in AdS5

and 1 spin in S5 , which are given by

J =
√
λ

∫
dσ

2π
Gφφ∂τφ S =

√
λ

∫
dσ

2π
GϕϕGϕϕ∂τϕ (4.47)

whereby the metric components are the ones in 4.30-4.32. We now let the fields φ and

ϕ fluctuate around their classical values as we did for t, substitute in the expressions,

taking into account again that the metric is invariant under translations of these fields

φ→ ωτ + φ̃ ϕ→ ντ + ϕ̃ (4.48)

So considering now the full expression for the Hamiltonian density up to relevant order

in the fields and the last expressions for E, J, S one is able to find

E =
ω

κ
J +

ν

κ
S +

√
λ

κ

∫
dσ

2π

(
1

2
κ2Gtt −

1

2
ω2Gφφ −

1

2
ν2Gϕϕ + H̃

)
(4.49)

where by H̃ we mean the hamiltonian density evaluated for the fluctuation fields con-

sidered (t̃, φ̃, ϕ̃). All other fields (the ones that do not couple to conserved charges) can

now be expanded around their classical values and substituted in the previous expres-

sion. By doing this, one obtains the final expression (see [9] for a complete derivation)

E = E0 +
ω

κ
(J − J0) +

ν

κ
(S − S0) +

1

κ

∫
dσ

2π
H̃2d (4.50)
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and by H̃2d we mean the 2-d hamiltonian density corresponding to the quadratic fluctu-

ation action evaluated. Note that classical relations can provide us with an expression

for ν, κ, ω in terms of the charges J, S.

However this procedure can get very tedious for non simple string configurations or

just for higher loop orders. In such situations, there is a more convenient method

based on a worldsheet effective action that resembles thermodynamic computations

(see [40] for more details on this thermodynamic analogy). In any quantum field the-

ory we know that the expectation value of a source term J(x) conjugated to a field

ϕ(x) is given by the functional derivative of the corresponding effective action Γ[ϕ(x)],

defined as the Legendre transform

Γ[ϕ(x)] = −E(J)−
∫
d4xJ(x)ϕ(x) E(J) = i ln[Z(J)] (4.51)

with Z(J) being the generating functional. In our cases, the sources are the conserved

charges E,S, J (or rather their densities), which are conjugate to time derivatives of

the corresponding fields, so we have [39]

1

T
Γ(κ, ω, ν) = − i

T
ln
〈
eiH2dT

〉
+ κ 〈E〉+ ω 〈J〉+ ν 〈S〉 (4.52)

whereby T is just the worldsheet time interval (which we let go to infinity)2. As we

have seen some lines further up, the first of Virasoro conditions implies the vanishing

of the 2d-Hamiltonian. Furthermore not all paramters are independent, so we can have

for example κ = κ(ω, ν). Taking this into accounta allows us to find expressions of the

form

1

T

∂Γ

∂ν
=
∂κ(ων)

∂ν
〈E〉 − 〈S〉 (4.53)

So knowledge of the effective worldsheet action Γ suffices to compute quantum correc-

tions to the energy. In particular the leading quantum correction Γ1 is normally found

by expanding the Lagrangian about a classical solution (introducing again fluctuating

2In the thermodynamic analogy, this is equivalent to taking the zero temperature limit.
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fields like we did before, ϕ → ϕ + ϕ̃) and performing the Gaussian integral (see for

example the lecture notes [41] for many more intermediate steps leading to this result)

Γ1 = − i
2

log det

[
− δ2L

δϕ̃δϕ̃

]
= − i

2
Tr log

[
− δ2L

δϕ̃δϕ̃

]
(4.54)

Note that when our quantum field theory is a string theory we will also have to consider

fermonic fields and ghosts.

Semiclassical string energies can potentially yield information about the quantum spec-

trum of the string in the limit of very large spins and hence give an all-loop prediction

for the scaling dimension of the corresponding dual gauge operators, which are eigen-

values of the dilatation operator. Furthermore, the semiclassical analysis can in some

cases be applied to short strings (dual to “short“ gauge operators). Expansions for

large t’Hooft coupling can be made while keeping J/
√
λ fixed. After this, we can try

to expand our results in the limit of small spin J �
√
λ. We will come back to both

situation further below.

4.3 Integrability of the classical sigma model

Using now what we have learnt about integrability in the previous chapter and the

notions of classical strings reviewed in the preceeding sections, we are now ready to

show that the string sigma model for classical strings is indeed an integrable model and

accepts a formulation in terms of a Lax connection that satisfies the required conditions.

This was first shown by Bena, Polchinski and Roiban in [13]. See also [29] for a good

review.

The method is based on an educated guess for the form of the Lax connection

L(z)α = c0(z)A(0)
α + c1(z)A(2)

α + c2(z) ∗A(2)
α + c3(z)A(1)

α + c4(z)A(3)
α (4.55)
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The flatness condition for this connection is equivalent to the equations of motion as

long as the kappa symmetry is respected (κ = ±1) [27] and the coefficients are

c0 = 1 c1 =
1

2

(
z2 +

1

z2

)
c2 = − 1

2κ

(
z2 − 1

z2

)
, c3 = z, c4 =

1

z

(4.56)

Note that the requirement that κ be ± encodes the striking result that the fermionic

kappa symmetry is a result of the integrability of the equations of motion, namely of

the existence of a suitable Lax connection. Another relevant observation made in [28]

is that when performing a κ-symmetry transformation, the Lax connection continues

to be flat if and only if the Virasoro constraints are satisfied. This confirms that the

local symmetries of the model are very thightly related to the existence of the Lax

connection.

Once it has been shown that the sigma model for strings on AdS5×S5 is equivalent to

a classical two-dimensional integrable system, we can expect to use all the techniques

from integrable systems for its resolution.

4.4 The spectral curve

As we have just seen, classical integrability of the string sigma model implies the exis-

tence of a Lax pair or connection, which is flat, and from which an infinite number of

conserved charges can be found. So it looks like a complete classical description of the

theory should be possible but in practice computing particular solutions is a very in-

volved task and happens to be restricted to a reduced number of simple configurations.

However, sometimes we do not worry that much about explicit solutions. What we are

mostly interested in in this dissertation is the so-called spectral AdS/CFT, namely the

existing duality between the energy of string states in AdS5×S5 and the scaling dimen-

sion of the dual conformal gauge operators in N=4 SYM . The possibility of finding

spectral curves is a direct consequence of integrability and plays a very interesting role

as long as this area of research is concerned, since it can provide us with a shortcut
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towards our final aim at least for classical and semi-classical string states. Specifically,

using spectral curve techniques, the 1-loop energy for string states can be computed

without having to solve explicitly the equations of motion.

Using the eigenvalues of the monodromy matrix, which go under the name of quasi-

momenta, a spectral curve can be constructed that helps characterising the different

possible classical solutions. This turns out to be a very powerful tool when it comes

to describe the space of possible classical solutions. Furthermore, the semiclassical ap-

proach can also be taken here. The quasi-momenta can be semiclassically quantised

in order to get corrections to interesting quantities related to the strings such as the

energy and what is more, this can be done in a very powerful way.

Recall that given an integrable theory, a Lax connection can be found which is planar

and from which the equations of motion of the system can be recovered. Using the Lax

connection we can build a monodromy matrix, whose eigenvalues (equation 3.7) are

a continuum set of conserved charges, namely a spectral (complex) curve. Since the

Lax connection for classical string theory in AdS5 × S5 contains singular points (recall

equations 4.55, 4.56), it is to expect, that the eigenvalues of the monodromy matrix

ξi(z) do exhibit singularities in the spectral parameter as well. Therefore we prefer to

work with the so-called quasimomenta, ξi(z) = eipi(z). [25] presents lots of details about

the way we can relate quasimomenta to the eigenvalues of the monodromy matrix. The

last expression will be enough for us here.

Given the symmetry group of the string worldsheet 4.16, we know that the Lax con-

nection must be super-traceless and hence the monodromy matrix

T (z) = P exp

(∮
L(z)

)
(4.57)

will have SDet T (z) = 1. So if we think of diagonalising T (z), we can think of it as

T (z) ∝ diag
(
eip1(z), eip2(z), eip3(z), eip4(z)|eiq5(z), eiq6(z), eiq7(z), eiq8(z)

)
(4.58)
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So the condition SDet T (z) = 1 can be rewritten as

4∑
i=1

(pi − qi) = 2πn, n ∈ Z (4.59)

So we see that the quasimomenta define an algebraic curve consisting of cuts connecting

eight sheets of a Riemann surface. Note that the number of sheets is given by the degree

of the characteristic polynomial, which in this case of strings in AdS5 × S5 is eight .

So the algebraic curve can be thought of as of cuts connecting the eight Riemann sheets.

The quasimomenta will hence have discontinuities along such cuts, so if let Cij denote

a cut between the sheets i and j, we have for example

Pi(z + iε)−Qj(z − iε) = 2πnij (4.60)

Since four of the quasimomenta or sheets correspond to the AdS5 part of the string

target metric pi and four correspond to the S5 part qi, Pi and Qj take the following

values in the previous equation:

Pi = (p1, p2, q1, q2) Qj = (p3, p4, q3, q4) (4.61)

Cuts stretching between sheets of various types can be associated to different polar-

izations [42]:

S5 : (q1, q3), (q1, q4), (q2, q3), (q2, q4)

AdS5 : (p1, p3), (p1, p4), (p2, p3), (p2, p4)

Fermions : (p1, q3), (p1, q4), (p2, q3), (p2, q4)

(q1, p3), (q1, p4), (q2, p3), (q2, p4)

(4.62)

where we have used the quasimomenta to denote the corresponding cuts. This is

depicted in figure 4.2.

As we had already anticipated, the singularities in the Lax connection are reflected

as simple poles of the quasimomenta for x = ±1. The corresponding residues are
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Figure 4.2: (From [42]). The picture shows the spectral curve of superstrings on AdS5×
S5 . The green cuts connecting sheets characterise classical solutions. In
red are depicted polarization of bosonic fluctuations in S5 . In blue are
depicted bosonic fluctuations in AdS5 . In green and purple are shown
fermionic fluctuations.

correlated via the Virasoro constraint:

(p1, p2, p3, p4|q1, q2, q3, q4) =
(α±, α±, β±, β±|α±, α±, β±, β±)

x± 1
(4.63)

An additional constaint on the quasimomenta is given by the automorphism in 4.7

which defines an inversion symmetry ([42], [27]).

p1,2(z) = −p2,1(1/z)− 2πm

p3,4(z) = −p4,3(1/z)− 2πm

q1,2,3,4 = −q2,1,4,3(1/z)

(4.64)

Finally if we focus on the limit z → ∞ one can see ([43]) that the asymptotics of the
quasimomenta are given by global charges. This is no surprise if we take into account
that in this limit the Lax connection happens to be the Noether current associated to
those charges:
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

p1

p2

p3

p4

q1

q2

q3

q4


=

2π

z
√
λ



E − J1 + J2

E + J1 − J2

−E − J1 − J2

−E + J1 + J2

S1 + S2 − S3

S1 − S2 + S3

−S1 + S2 + S3

−S1 − S2 − S3


(4.65)

And note the possibility of expressing the energy as

E =

√
λ

4π
lim
z→∞

z (p1(z) + p2(z)) (4.66)

which is of course very useful for the spectral problem.

Another important concept is that of the filling fraction, which is defined as []

Sij = ±
√
λ

8π2i

∮
Cij

(
1− 1

x2

)
Pi(x)dx (4.67)

whereby the plus sign is used when Pi is a pi and the minus sign is used for qi. The

filling fractions are integers that roughly measure the length of the cut. They are also

identified as the action angle variables of the theory [44].

All the considerations above led to the realization by the authors of [15] that the quasi-

momenta (namely their algebraic curve) can be used to characterise classical string

solutions. This means a subtle change in our perspective. Earlier we have characterised

classical string solutions by means of their Cartan charges, that is (E, J1, J2;S1, S2, S3).

Now the characterisation is made via asymptotical constraints on the quasimomenta,

which will be given by the Cartan charges.

As we anticipated above, the spectral curve does not only help in characterising the

classical string solutions of the theory. It also allows us to compute quantum corrections

in a semiclassical way. Ssee [45] for detailed description.
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5 N=4 super Yang-Mills and spin chains

N=4 super Yang-Mills is the gauge theory with the maximal possible amount of su-

persymmetry in four spacetime dimensions. It also has the very relevant characteristic

of being a conformal theory, namely a theory with no physical scale. This conformal

symmetry does not only hold at the classical level but also at the quantum level, as

can be seen from the vanishing of its β-function. As widely known N=4 SYM has

a simple field content consisting of the gauge field Aµ, four chiral fermions λα, four

anti-chiral fermions λ̄α̇ and six real scalars φ. All fields transform in the adjoint repre-

sentation of the gauge group, which for us will always be SU(N). Given the existence

of four fermionic supersymmetry generators that can be rotated into one another an

SU(4) R-symmetry is also present. So summing up the theory satisfies a conformal

symmetry in four spacetime timensions given by the conformal group SO(2, 4), an

SU(4) R-symmetry, the Poincaré supersymmetry generated by the supercharges and

the conformal supersymmetries, which are all enclosed in the superconformal group

PSU(2, 2|4), which contains the bosonic subgroup SO(2, 4) × SO(6). The theory is

completely described by its Lagrangian, which is [27]

L =
1

4
Tr F 2 +

1

2
Tr DµφiD

µφi −
g2
YM

4
Tr [φi, φj ][φ

i, φj ] + Tr ψ̄aσµDµψa

− igYM
2

Tr σabi ψa[φ
i, ψb]−

igYM
2

Tr σiabψ̄
a[φi, ψ̄

b]

(5.1)

Many excellent reviews on N=4 SYM exist in the bibliography, among which we may

point out the presentations contained in [23] and in [46]. We will now follow the latter

for a brief presentation of the superconformal algebra. For a more detailed description
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of PSU(2, 2|4) we refer the reader to [47]

5.1 The algebra of N=4 SYM

The bosonic symmetry group of N=4 SYM , SO(2, 4) × SO(6), is generated by 15

generators, 10 of which correspond to the Poincaré generators in four dimensions, (4

generators for spacetime translations Pµ + 6 generators for Lorentz transformations,

Mµν), 4 being the generators of special conformal transformations, Kµ and one of them

generating dilatations, D. This last generator plays a crucial role in the spectral study

of N=4 SYM . For a comprehensive paper on the dilatation operator see Niklas Beis-

ert’s PhD Thesis, [48]. As already pointed out above N=4 SYM can be shown to be a

fully conformal theory, even at the quantum level and at all-loop level by computing its

β-function (see [49] for formal review and [46] for a more simplistic and intuitive one).

The algebra of PSU(2, 2|4)can summarised by having a look at the commutation rela-

tions between its generators

[D,Pµ] = −iPµ [D,Mµν ] = 0 [D,Kµ] = iKµ

[Mµν , Pλ] = −i (ηµλPν − ηλνPµ) [Mµν ,Kλ] = −i (ηµλKν − ηλνKµ)

[Pµ,Kν ] = 2i (Mµν − ηµνD)

(5.2)

If we now assume that O(x) is a local operator in our gauge theory N=4 SYM with

scaling dimension ∆, we are implicitly assuming that under a coordinate rescaling the

behaviour of the operator is given by this parameter [46]

x→ λx⇒ O(x)→ λ−∆O(λx) (5.3)

Recall that coordinate rescalings are generated by the scaling operator D

O(x)→ λ−iDO(x)λiD (5.4)
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so when acting on O(x) (transforming in the adjoint representation), the scaling oper-

ator gives place to

[D,O(x)] = i

(
−∆ + x

∂

∂x

)
O(x) (5.5)

5.2 Primary operators

Let us now consider the operator resulting from the action of Kµ upon O(0)1 and let

D act on it using the Jacobi identity

[D, [Kµ,O(0)]] = [[D,Kµ],O(0)]] + [Kµ, [D,O(0)]]

= i[Kµ,O(0)]− i∆[Kµ,O(0)]

(5.6)

If one compares this last expression to 5.5 at x = 0, we see that the effect of Kµ upon

the gauge operator has been a lowering of its scaling dimension by 1. We can now use

our “holographic intuition” and think that if ∆ is to be dual to an energy, it should

always remain a positive quantity. Still, by consequtive actions of the special conformal

operators Kµ it looks like their scaling dimension would always become lower. It is then

easy to believe that there must be an operator that stops the trend by satisfying

[Kµ,O(0)] = 0 (5.7)

such operators are the basis of the tower (they have the lowest possible scaling di-

mension) and are usually called primary operators. Operators than do not satisfy the

previous equation and which can be obtained from a primary operator via the action

of Kµ are called descendants. This resembles the role played by a highest weight state

in a representation of a group. Well indeed primary operators are highest weights

of irreducible representations of PSU(2, 2|4), the descendants being all other weights.

Of course we are free to increase ∆ as many times as we want, which means that

such representations are inifinite dimensional, as we could have expected from the non-

compactness of PSU(2, 2|4).

1As pointed out by [46] the gauge operator must be evaluated at the origin. Were it not, commutation
relations would have to be different.
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It is revealing for our purposes to consider what happens when we further restrict

our operators and pick just those that satisfy the requirement

[Qaα,O(0)] = 0 for some α, a (5.8)

namely that it commute with some of the supercharges. It turns out that the theory

does not only contain the generators listed in 5.2 and the supercharges. From the

action of the special conformal generators Kµ upon the supercharges (that is from

their commutation relations), new charges are found, which go under the name of

superconformal charges. So from

[Kµ, Qαa] = γµαα̇ε
α̇β̇S̄β̇a [Kµ, Q̄aα̇] = γµαα̇ε

αβSaβ (5.9)

From it, it can be shown [46] that the commutators between the supercharges and the

superconformal charges are

{Qαa, Sbβ} = −iεαβσAB
b
a RAB + γµναβδ

b
a Mµν −

1

2
εαβδ

b
a D

{Q̄aα̇, S̄β̇b} = +iεα̇β̇σ
ABa

bRAB + γµν
α̇β̇
δabMµν −

1

2
εα̇β̇δ

a
bD

{Qαa, S̄β̇b} = {Q̄aα̇, Sbβ} = 0

(5.10)

whereby RAB stands for the R-symmetry generators, which recall that for N=4 SYM

are the generators of SO(6). Of course the supersymmetry generators transform under

the two spin representations of SO(6), which are also the fundamental representation

of SU(4). The σ-matrices carry indices in both representations. We have also used

γµναβ = γ
[µ
αα̇γ

ν]

ββ̇
εα̇β̇.

Now from the relations 5.9 and from

[D,Qαa] = − i
2
Qαa [D, Q̄aα̇] = − i

2
Q̄aα̇ (5.11)
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we learn that since the supercharges Q have dimension 1/2, the superconformal charges

must have dimension -1/2. This automatically means that successive application of the

superconformal charges to any gauge operator will lower its scaling dimension by 1/2.

We could now repeat the same argumentation as for the definition of primary operators

in the previous section to realise that there must be a lower bound on the tower of states.

Hence we define a conformal primary operator to be an operator that satisfies

[Saα, Ō(0)] = [S̄α̇a, Ō(0)] = 0 (5.12)

Note that this is a stronger restriction than that of the operator being a primary opera-

tor. All superconformal primary operators are also primary operators, but the opposite

is not true. As with the primary operators, other operators, also called descendants,

can be obtained from a superconformal primary operator by letting the supercharges

Q act upon. The superconformal primary operator an its descendants belong to the

same irreducible infinite dimensional representation of PSU(2, 2|4).

Primary operators (operators that commute with all Kµs) are highest weights of irre-

ducible representations of PSU(2, 2|4). All other members of the representations are

descendants that can be obtained from the primary operator. As a consequence of the

non-compactness of PSU(2, 2|4), such representations are infintely dimensional.

5.2.1 BPS operators

Of course we are free to further restrict the kind of gauge operators on which we focus

our attention by placing new restrictions. A remarkable case is that of operators that

commute with some of the supercharges, that is, operators which fulfill

[Q,O(0)] = 0 (5.13)
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Figure 5.1: Dynkin diagram of SO(6) and hence of SU(4) too.

for some of the supercharges. It then follows from the relations 5.10 that such an

operator must also satisfy [46]

σAB
b
a [RAB,O(0)] = ∆δ b

a O(0) (5.14)

We now that SO(6) is a rank three group (see the corresponding Dynkin diagram in

figure 5.1), so we can take three of the R-generators to be the mutuallty commuting

Cartan generators, say R12, R34 and R56. Let us now take Ji with i = 1, 2, 3 to be

the corresponding charges. As a consequence of the conrete form of the σ matrices

(see [46]), one can see that for those operators that have Cartan charges equal to their

scaling dimension (that is for example (J1 = ∆, J2 = 0, J3 = 0)) the relation 5.14 is ful-

filled for half of the supercharges. Such operators go under the name of BPS operators

and will be relevant for us. The most relevant feature of such operators is that their

scaling dimension ∆ is independent of the gauge theory coupling gYM . In other words,

they have no anomalous dimension. This follows from the fact that the R-charges do

not depend on the coupling. Furthermore, this extends to all descendants, since if

for a BPS primary operator we have ∆ = ∆0 + λγ, for the descendants we will have

∆ = ∆0 + λγ + n(1/2). So if γ = 0 for the BPS primary operator, so must it be for all

descendants.

In principle primary gauge operators could be made up of any of the fundamental

fields present in the theory. Still, if we take into account the condition 5.13 and the

effect of the supercharges on the different fundamental fields [23]

{Q,λ} = F+ + [X,X] {Q, λ̄} = DX

[Q,X] = λ [Q,F ] = Dλ

(5.15)
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Since primary operators cannot contain commmutators of a supercharge with any other

field (per definition), we now that they cannot contain any of the fields on the right hand

sides of the previous expressions, which leaves us just with symmetrised2 combinations

of scalars. So for example the simplest primary operators will be of the form

str
(
Xi1Xi2 ...Xin

)
(5.16)

where “str” denotes a symmetrised trace. One of the biggest insights in this research

field stems from the realisation that we can think of such operators as of states of a

spin chain, where each spin takes valuees from 1 to 6, corresponding to the number of

different scalar in N=4 SYM . We will come back to this soon.

5.3 The anomalous dimension

The scaling dimension takes a relevant role in conformal QFTs, since it enters the two-

point function. Consider a two-point function or propagator of two operators of the

CFT. Poincaré symmetry dictates that the function can only depend on the interval

between the two spacetime points in which the operators are defined. Furthermore, in-

variance under scaling dimensions and under special conformal transformations, which

complete the conformal symmetry, force the propagator to take the form

〈O(x)Ō(y)〉 ≈ 1

|x− y|2∆(g)
(5.17)

When renormalizing, we must recall the presence in the action of a quartic term in the

scalars and notice that as long as the bosonic part is concerned, only the scalar vertex

needs to be taken into account. Gauge bosons do not carry a colour index and hence

their effect on the anomalous dimension can be determined a posteriori by exploiting

the strength of the superconformal algebra [46]. In the weak coupling limit we can

2Commutators are antisymmetrisations
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perform an expansion of the above propagator to get

〈OA(x)ŌB(y)〉 ≈ 1

|x− y|2∆0

(
δAB − g2γAB ln Λ2|x− y|2

)
+ ... (5.18)

whereby Λ is the cut-off. With the definitions

∆ = ∆0 + gγ Oren = Λ−gγ (5.19)

5.18 can be rewritten as

〈Oren
A (x)Ōren

B (y)〉 =
1

|x− y|2∆
(5.20)

which basically is the statement that renormalization and anomalous dimension mean

the same thing. If we know how to renormalize (namely what power of the cut-off Λ

O must be multiplied by) the guage operator we are dealing with, we then know its

scaling dimension ∆ and viceversa.

In general we will be interested in computing the correction to the bare scaling di-

mension given by the quantum (interacting) nature of the theory. So the question

we must ask ourselves is how to compute ∆ for a given configuration in the quantum

theory rhather than how to individualise particular states that solve the correspond-

ing equations of motion. In particular we know that the scaling dimension is closely

related to renormalization. Let us elaborate a to-do list when it comes to computing

the scaling dimension and the corrections it receives, from what we have just reviewed

in this section:

1. Compute the renormalized 2-point function or propagator.

2. Find the logarithmic divergence. Its coefficient is the correction to the scaling

dimension.

Let us now turn to N=4 SYM and notice first of all that different fields can share

the same ∆0 without actually being the same field. Think for example of the following
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gauge operators, made up of the complex scalar operators Z = φ1+iφ2 and X = φ3+iφ4

Tr (ZXZX) Tr (ZZXX) (5.21)

They will both have ∆0 = 4. So we can actually recover expression 5.18 and note that

the indices A and B run over the different possibilites when picking a field, in this case

either Z or X. At this step, diagonalising the operators is a sensible thing to do. So we

can linearly combine our different fields, which share the same bare scaling dimension

Odiag
A = TABOB (5.22)

so that

γOdiag
B = γBOdiag

B (5.23)

whereby the first γ is meant to be a matrix, while the second one is a number. So we

have

〈Odiag
A (x)Odiag

B (y)〉 ≈ 1

|x− y|2∆0

(
δAB − g2γA ln Λ2|x− y|2

)
+ ... (5.24)

So in other words, we are working in the vector space of operators that share the same

scaling dimension and diagonalise the matrix γ. Its eigenvalues are the corrections to

each scaling dimension and the eigenvectors are the operators whose correction to the

scaling dimension are in each case the corresponding eigenvalue.

5.4 Spin chains

Let us try to compute the scaling dimension of a primary operator of the kind in 5.16

Ψ =
(4π2)L/2√
LNL/2

Tr (ZZ...ZZ︸ ︷︷ ︸
L

) (5.25)
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where we have chosen the right prefactors for normalization purposes. N=4 SYM is a

conformal field theory and so we know that the scalar propagator at tree-level will be

〈ZAB(x)Z̄CD(y)〉0 =
δADδ

C
B

4π2|x− y|2
(5.26)

so for the correlator of the Ψ operator then we will have to contract all component

fields Z in all different ways (pairings), including

...ZA
′

A ZAA′ZB
′

B ZBB′ZC
′

C ZCC′ ... (5.27)

but also pairings like

...ZA
′

A ZAB′ZC
′

B ZBA′ZB
′

C ZCC′ ... (5.28)

and with more crossings but is a good point to observe that whereas the first kind

of pairings will scale like NL the second kind will scale like NL−2 and so this and

more complicated pairings will be supressed in the large N limit we are interested in.

Contractions of the first structure are called planar and they are the only ones to

consider in the large N limit3 So in the large N limit the propagator for our gauge

operator Ψ will be given by

〈Ψ(x)Ψ̄(y)〉 =
1

|x− y|2L
(5.29)

The expression can be generalised for any properly normalized scalar operator (based

on the trace of a combination of scalars)

〈OI1,...,IL(x)ŌJ1,...,JL(y)〉 ∝ (δJ1I1 ...δ
JL
IL

+ shifts )
1

|x− y|2L
(5.30)

where by “shifts” we mean the L−1 cyclic planar contractions of the deltas, which can

be represented schematically by figure 5.2. We now want to take a step further and

look at the 1-loop contribution to the propagator. For this purpose, we need to take

a second and closer look at the Lagrangian 5.1. We are focusing our atention on the

3We are assuming thought that L� N , see [46]
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Figure 5.2: Planar contraction of the scalar fields and cyclic shifts. There are L − 1
such shifts. Horizontal lines represent the operatos and vertical lines the
correlators that contract them.

Figure 5.3: Contraction of the two incoming and two outgoing scalar fields at the scalar
vertex given by 5.32. The figures stand for the possible permutation of the
fields, where as the relative sign are given by the commutator in 5.31.

scalars of the theory, so we will only need the part of the Lagrangian involving only

scalars, namely

1

2
Tr DµφiD

µφi −
g2
YM

4
Tr [φi, φj ][φ

i, φj ] (5.31)

other fields will also have their contribution at 1-loop level but the superconformal

algebra allows us to derive it from just the scalar contribution. What is more, the

symmetry allows to consider just the scalar vertex, namely the second term in the

previous equation. So to get the contribution to the 1-loop correlator, we must take

the scalar vertex and Wick contract it with two incoming scalar and two outgoing

scalars. The scalar interaction vertex can be expanded as

φiφjφ
iφj − φiφjφjφi (5.32)

which schematically and taking into account the possible permutations of incoming and

outgoing the fields in each diagram can be displayed as in figure 5.3. In more formal

terms, what we have represented in figure 5.3 can be written, taking propagators into
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account but forgetting about prefactors as

〈φ(x)φ(x)| φ(z)4︸ ︷︷ ︸
scalar vertex

|φ(y)φ(y)〉 ∝ δj1i1 δ
j2
i2
...δjLiL︸ ︷︷ ︸

other legs

×
(

4δ
jk+1

ik
δjkik+1

− 2δikik+1
δjkjk+1 − 2δjkik δ

jk+1

ik+1

) 1

|x− y|2(L−2)
λ

∫
dz

|x− z|4|y − z|4

(5.33)

where the integral is originated by the propagators and the powers of 4 in the denomi-

nator come from each propagator involving two scalars and from the two copies of each

propagator. Of course the integral has UV divergences at x = z and at y = z. Imagina

for example that we are at x = z, then we get from the integrals above

(∫
dz

|x− z|4

)
1

|x− y|4
(5.34)

so that the total power of |x − y| in the denominator is 2L, which is exactly what we

could have expected according to 5.24, since in this case of course ∆0 = L. So we

are now left with the task of computing the coefficient of the logarithmic divergence in

5.24. It will be given by the integral in 5.34, which can be computed by performing a

change of variables (x − z) → ξ and inserting an UV cutoff Λ to integrate out short

distances ∫
dz

|x− z|4
=

∫
1/Λ

ξ3dξ

ξ4
∝ ln Λ (5.35)

We have been leaving lots of prefactors apart. Doing everything rigurously, we would

have got for 5.33

〈φ(x)φ(x)|φ(z)4|φ(y)φ(y)〉 ∝ − λ

8π2

(
2δ
jk+1

ik
δjkik+1

− δikik+1
δjkjk+1 − δjkik δ

jk+1

ik+1

) ln Λ2|x− y|2

|x− y|2L
(5.36)

And from this we can immediately extract the matrix γ in 5.24 and which gives us the

1-loop corrections to the scaling dimension of our operator.

There is still an important thing to notice, which is that we cannot neglect one-loop

planar diagrams with internal gluons and fermions, like the ones in figure 5.4. Such

diagrams cannot add new terms to our computation, since they leave the R-charges
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of the scalars unchanged. So they just contribute by shifting the third term in the

diagram 5.3. This means that a constant α must replace the 2 coefficient in this term

and it will have to be determined. Fortunately it is not hard to determine that α has

to be exaclty 2, [46].

So summing up we have found that the γ matrix in 5.24 we were looking form is

γ =
1

16π2

L∑
l=1

(Kl,l+1 − 2Pl,l+1 + 2) (5.37)

whereby we have defined the operators Pl,l+1, which is the exchange operator that

exchanges the flavour indices of the l and l + 1 sites of the trace and Kl,l+1, which is

the trace operator contracting the flavours of neighbouring sites in the trace.

This is what inspired Minahan and Zarembo to change the way we look at our gauge

operator. They suggested taking the change of perspective

Tr (φi1 ...φiL)→ |i1, ..., iL〉 (5.38)

and then interpreting gauge operators as states in a spin chain. Then they went on to

suggest

γO → H|O〉 (5.39)

that is of considering the gamma operator for the gauge operators as a Hamiltonian

operator for the spin chain. Where now we have

H =
1

16π2

L∑
l=1

(Kl,l+1 − 2Pl,l+1 + 2) (5.40)

with

P |i, j〉 = |j, i〉 K|i, j〉 = δij

6∑
k=1

|kk〉 (5.41)

So our hope of finding the eigenvalues of the γ matrix to get the anomalous dimensions

of the corresponding gauge operators has now translated in the problem of diagonalising

the Hamiltonian of a spin chain! Diagonalizing the Hamiltonian of N=4 SYM at 1-loop
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Figure 5.4: Such diagrams must be taken into account, since they do contribute to
the anomalous dimension, but given that they leave flavors unchanged, the
only think they can do is shifting the term in 5.3 that is proportional to the
identity by a fixed amount.

for the SO(6) sector would in principle require the diagonalization of a 6L× 6L matrix,

which might be quite involved. So only a miracle could prevent us from abandoning

any hopes of going further on into this. Well it turns out this miracle does indeed

happen and it goes under the name of integrability!

5.5 The SU(2) sector and the Bethe ansatz

If we restrict our spin chains to the SO(6) sector, this amounts on the string side

to letting the string move just on the S5 part. If we further restrict to an SU(2)

subsector, taking the effect of the supercharges rotating into one another, we see that

this is equivalent to taking just two complex scalars into account and forgetting about

the rest of the field content of N=4 SYM . On the gravity side this can be understood

as letting our strings having just two spins in S5 . Now since only two different type

os scalar fields are present in the gauge theory, the two scalar fields can be represented

via a shorthand notation that resembles the one usually employed to deal with spin

chains:

| ↑〉 ≡ Z = φ1 + iφ2 | ↓〉 ≡ X = φ3 + iφ4 (5.42)
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We can now realise how the operators present in the Hamiltonian affect the different

possible pairings

P | ↑↓〉 = | ↓↑〉

K| ↑↓〉 = 0

K| ↑↑〉 = K|φ1φ1〉 −K|φ2φ2〉 = 0

(5.43)

which means that the Hamiltonian is reduced to an effective version for the SU(2)

sector of N=4 SYM

HSU(2) =
λ

8π2

L∑
l=1

(Il,l+1 − Pl,l+1) (5.44)

which is the Hamiltonian of the Heisenberg spin-chain with L lattice sites. The solution

to this spin-chain can be found by means of the Bethe ansatz, which was first introduced

by Hans Bethe in [50]. We start with the ground state of such a spin chain, which is

| ↑↑ ... ↑〉 and from which the whole Hilbert space can be generated by reversing an

arbitray number of spins. Such a spin chain represents a BPS gauge operator of the

form Tr ZL Each fliped spin is called a magnon. The SU(2) Hamiltonian conserves the

number of spins and so it can be diagonalised for a fixed number of magnons in the

spin chain. Let us think first of 1-magnon states

Ψ(p) =

L∑
k=1

eipl| ↑ ...
l
↓ ... ↑〉 (5.45)

such states are eigenstates of the SU(2) Hamiltonian as far as p = 2πn/L, which implies

the periodicity of the spin chain, with

HSU(2)|Ψ(p)〉 = ε(p)|Ψ(p)〉, ε(p) =
λ

2π2
sin2 p

2
(5.46)

but recall that our spin chain describes a trace gauge operator, and this introduces the

requirement that the spin chain be invariant under shifts of all fields by one position,

given the ciclicity if the trace. This forces the 1-magnon state to have p = 0 and hence

ε = 0. This implies that 1-magnon states do not have corrections to the anomalous
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dimensions as we could have expected from their being descendants of the BPS operator

represented by the ground state of the spin chain.

So the first non-trivial case is that of the 2-magnon state, which we define by (neglecting

normalization factors)

Ψ(p1, p2) =
∑

1<l1<l2<L

ψ(l1, l2)|l1, l2〉 (5.47)

where |l1, l− 2〉 stands for the state where the spins at sites l1 and l2 have been fliped.

A sensible guess for the two particle wave function ψ(l1, l2) is

ψ(l1, l2) = ei(p1l1+p2l2) + s(p1, p2)ei(p2l1+p1l2) (5.48)

where the second therm, that includes the S-matrix must be included to allow for the

two magnons to interact and the only possible way they can interact is by exchanging

their momenta. Since energy is conserved in the interaction, it can be measured far

away from the interaction and hance it is clear that the total energy will be the sum

of the individual 1-magnon energies.

E(p1, p2) = ε(p1) + ε(p2) (5.49)

Nonetheless note that when we try to solve the eigenvalue equation for the Hamiltonian,

the presence of the P operator forces us to consider two different possibilities. If l1 and

l2 are not next to each other we have

Hψ(l1, l2) = 2ψ(l1, l2)−ψ(l1−1, l2)−ψ(l1 +1, l2)+2ψ(l1, l2)−ψ(l1, l2−1)−ψ(l1−1, l2)

(5.50)

whereas in case they are indeed next to each other we have

Hψ(l1, l2) = 2ψ(l1, l2)− ψ(l1 − 1, l2)− ψ(l1, l2 − 1) (5.51)
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Combining the last equation with 5.49, requiring that the two-magnon state be an

eigenfunction of the Hamiltonian everywhere, one finds a defining condition for the

S-matrix:

S(p1, p2) =
1
2 cot p12 −

1
2 cot p22 + i

1
2 cot p12 −

1
2 cot p22 − i

=
u1 − u2 − i
u1 − u2 + i

(5.52)

where we have introduced in the second equality the so-called Bethe rapidities ui =

1
2 cot pi2 on behalf of comodity. The 1-magnon state energy can also be redefined in

terms of u

ε(u) =
λ

8π2

1

u2 + 1/4
(5.53)

Now the invariance under translations that we must impose on the spin chain bring up

the requirements

eip1L = S(p1, p2) eip2L = S(p2, p1) (5.54)

which pose algebraic equations whose solutions determine the corresponding energies

when plugged into 5.49.

Let us now move on to the N-magnon state, which will not be hard to understand

once we have understood the 2-magnon case. Again, since scattering does not change

momenta, we can measure the energy of the N-magnon state when particles are far

apart and will get

E =
N∑
j=1

ε(pj) =
N∑
j=1

λ

8π2

1

u2
j + 1/4

(5.55)

This is were the magic of integrability shows up. We see that since the interactions in the

SU(2) Hamiltonian can at most exchange pairwise the momenta and any permutation

can be built from a product of transpositions, what we have here is exactly the situation

of factorised scattering that we described in our chapter on integrability as the definition

of what we think quantum integrability is. and in this case the ciclicity of the spin chain

will amount to the requirement

eipjL =

(
uj + i/2

uj − i/2

)L
=

N∏
k 6=j

uj − uk + i

uj − uk − i
(5.56)
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and again this is a set of algebraic equations that can be solved. They are called the

Bethe equations. This is a much better situation that when one has to diagonalise a

6L × 6L matrix like the one we were afraid of! When the set of algebraic equations is

solved, we can plug the Bethe rapidities into the corresponding expression for the energy

and hence get the 1-loop correction to the anomalous dimension of the corresponding

gauge operator

∆ = L+
λ

8π2

N∑
j=1

λ

8π2

1

u2
j + 1/4

+O(λ2) (5.57)

The momentum constraint now takes the form

N∏
k=1

uk + i/2

uk − i/2
= 1 (5.58)

So we have seen in the SU(2) subsector the problem of finding the eigenvalues of the

dilatation operator in N=4 SYM can be reformulated as the problem of solving the

energy eigenvalues of a Heisenberg spin chain.

All along the last lines we have focused on the SU(2) subsector. Well it turns out that

the whole SO(6) was shown to be integrable by Reshetikhin in [51]. Later on Beisert

computed the 1-loop dilatation operator for the full PSU(2, 2|4)sector in [52].

5.5.1 Thermodynamic Bethe ansatz

If we want to aim at contrasting results of the Bethe ansatz for gauge operators with

results obtained from the semiclassical calculations to the correction of the energy of the

dual strings we must make both regimes compatible. This can be achieved by letting

the number of fields in our gauge operators, and consequently the lenght of our spin

chains to grow to infinity so as to fulfill the requirements of the semiclassical regime

for strings. This takes us to the so-called thermodynamic Bethe ansatz, for which both

the number of fields L and the number of magnons N are large. This thermodynamic

limit is obtained by taking the logarithm [26] of 5.56

L ln

(
uj + i/2

uj − i/2

)
=

N∑
k 6=j

(
uj − uk + i

uj − uk − i

)
− 2πini (5.59)
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with a set of arbitrary integers ni associated to the different rapidities. Since momenta

scale as p ∼ 1/L, the Bethe roots u scale as u ∼ L, so in the L→∞ limit the equation

reduces to

1

ui
= 2πnj +

2

L

N∑
k 6=j

1

uj − uk
(5.60)

In this limit, the Bethe roots condensate on contours in the complex plane which

transform the set of algebraic Bethe equations into an integral equation (see for example

[53].
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6 Conclusion and outlook

We now could set up to put everything we have reviewed this far into work, that is

to really make calculation on both sides of the duality with the above elucidated tools

and testing the expected matchings.

Remember that the main problem we come across when trying to test the AdS/CFT

duality is its weak/strong nature. String calculations can only be trusted for a large

value of the ’t Hooft coupling, while the gauge theory calculations we can do are only

realiable for small values of this same coupling. There are two basic sets of operators

that escape this trouble. One the one side, we have seen that BPS operators (chiral

primaries and their descendants) have a scaling dimension that does not get quantum

corrected. On the ohter side, states that are dual to semiclassical string states can

be used to check whether quantities match. Since the semiclassical approach requires

large global charges, gauge operators dual to semiclassical string states must contain a

large number of fields. This normally would make our life harder, since a large number

of operator normally means operator mixing (given the degeneracy of classical scaling

dimensions). Of course the larger the operator the more mixing of operators we expect

to have. Therefore the situation would be completely hopeless were it not for the fact

that as we have seen in the previous chapter, the mixing matrix can be seen as the

Hamiltonian of an integrable spin chain. So it all looks like precisely what we have

reviewed in this dissertation this far enables us to test the duality! The trick consists

in realising that whereas our semiclassical calculations with strings can be done when

both the global charge (dual to the bare dimension of the gauge operator, i.e. the length
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of the spin chain) and the ’t Hoof coupling are large but the ratio λ/J2 is finite. This

ratio acts as an effective coupling λ′. The good thing is that we can make calculations

for strong coupling and still remain in a regime of small λ′, which sometimes makes

direct comparisons to results from the gauge theory possible.

We would like to point out that the techniques reviewed in this dissertation are not

only applicable in the context of spectral AdS/CFT. Fields that are currently being

intesively researched like that of scattering amplitudes do profit from all the things we

have seen in this work and in particular it looks like a hidden integrability symmetry

has been unvailed in them [54].

Also, our skills of integrability and of the AdS/CFT correspondence could turn out to

be useful for other theories that appear to be dual to each other. In more concrete

terms, N = 6 super-conformal Chern-Simons theory in 2+1 dimensions seems to be

dual to string theory in AdS4 × CP 3 [55]. Very recently, the same techniques as in

using the algebraic curve to compute the spectrum of configurations in AdS5×S5 have

been used to quantize the classical solution of a folded type IIA string in this back-

ground. In more concrete terms, a string spinning in the AdS part and with angular

momentum in CP 3 is analysed. This configuration is relevant because its gauge dual

are twist operators in the ABJM superconformal theory, as the authors point out. In

that paper they also find the first semiclassical correction to the energy and the slope

function for short string configurations. Other suspected dualities are the one between

type IIB strings in AdS3 × S3 × T4 or AdS3 × S3 × S3 × S1 backgrounds and some

2-dimensional conformal field theories [56]. Such theories could also contain integrable

structures in the large N limit [57], in which case our efforts in the case of AdS5 × S5

would be highgly rewarded.

62



Acknowledgements

I would like to thank the Theory Group of the Physics Department at Imperial College

London for running the MSc program Quantum Fields and Fundamental Forces. Spe-

cially I would like to thank Prof. Arkady Tseytlin for supervising this dissertation. I

am also thankful to Prof. Jerome Gauntlett and Prof. Amihay Hanany for their advice,

orientation and support throughout the year. Many thanks to Prof. Bartomeu Fiol,

without whose encouragement I would have never even applied to this MSc program.

Last but not least I would like to thank my classmates Adam, Colin, Esteban, Jan,

Nick and Rob for helping me in a better understanding of Physics.

63



Bibliography

[1] G. Veneziano, Construction of a crossing - symmetric, Regge behaved amplitude

for linearly rising trajectories, Nuovo Cim. A57 (1968) 190–197.

[2] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl.Phys. B72

(1974) 461.

[3] K. G. Wilson, Confinement of Quarks, Phys.Rev. D10 (1974) 2445–2459.

[4] A. Polyakov, From Quarks to Strings, arXiv:0812.0183.

[5] E. Witten, Small instantons in string theory, Nucl.Phys. B460 (1996) 541–559,

[hep-th/9511030].

[6] J. M. Maldacena, The Large N limit of superconformal field theories and

supergravity, Adv.Theor.Math.Phys. 2 (1998) 231–252, [hep-th/9711200].

[7] D. E. Berenstein, J. M. Maldacena, and H. S. Nastase, Strings in flat space and

pp waves from N=4 superYang-Mills, JHEP 0204 (2002) 013, [hep-th/0202021].

[8] S. Gubser, I. Klebanov, and A. M. Polyakov, A Semiclassical limit of the gauge /

string correspondence, Nucl.Phys. B636 (2002) 99–114, [hep-th/0204051].

[9] S. Frolov and A. A. Tseytlin, Semiclassical quantization of rotating superstring in

AdS(5) x S**5, JHEP 0206 (2002) 007, [hep-th/0204226].

[10] S. Frolov and A. A. Tseytlin, Multispin string solutions in AdS(5) x S**5,

Nucl.Phys. B668 (2003) 77–110, [hep-th/0304255].

64



[11] S. Frolov and A. A. Tseytlin, Quantizing three spin string solution in AdS(5) x

S**5, JHEP 0307 (2003) 016, [hep-th/0306130].

[12] J. Minahan and K. Zarembo, The Bethe ansatz for N=4 superYang-Mills, JHEP

0303 (2003) 013, [hep-th/0212208].

[13] I. Bena, J. Polchinski, and R. Roiban, Hidden symmetries of the AdS(5) x S**5

superstring, Phys.Rev. D69 (2004) 046002, [hep-th/0305116].

[14] N. Beisert, C. Kristjansen, and M. Staudacher, The Dilatation operator of

conformal N=4 superYang-Mills theory, Nucl.Phys. B664 (2003) 131–184,

[hep-th/0303060].

[15] V. Kazakov, A. Marshakov, J. Minahan, and K. Zarembo, Classical/quantum

integrability in AdS/CFT, JHEP 0405 (2004) 024, [hep-th/0402207].

[16] N. Berkovits, ”Super Poincare covariant quantization of the superstring”, JHEP

0004 (2000) 018, [hep-th/0001035].

[17] Y. Aisaka, L. I. Bevilaqua, and B. C. Vallilo, On semiclassical analysis of pure

spinor superstring in an AdS5 × S5 background, arXiv:1206.5134.

[18] L. Mazzucato, Superstrings in AdS, arXiv:1104.2604.

[19] L. Ferro, Yangian Symmetry in N=4 super Yang-Mills, arXiv:1107.1776.

[20] A. Torrielli, Review of AdS/CFT Integrability, Chapter VI.2: Yangian Algebra,

Lett.Math.Phys. 99 (2012) 547–565, [arXiv:1012.4005].

[21] S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from

noncritical string theory, Phys.Lett. B428 (1998) 105–114, [hep-th/9802109].

[22] E. Witten, Anti-de Sitter space and holography, Adv.Theor.Math.Phys. 2 (1998)

253–291, [hep-th/9802150].

[23] E. D’Hoker and D. Z. Freedman, Supersymmetric gauge theories and the AdS /

CFT correspondence, hep-th/0201253.

65



[24] R. Metsaev and A. A. Tseytlin, Type IIB superstring action in AdS(5) x S**5

background, Nucl.Phys. B533 (1998) 109–126, [hep-th/9805028].

[25] B. Vicedo, Finite-g Strings, J.Phys.A 44 (2011) 124002, [arXiv:0810.3402].

[26] J. Plefka, Spinning strings and integrable spin chains in the AdS/CFT

correspondence, Living Rev.Rel. 8 (2005) 9, [hep-th/0507136].

[27] D. Serban, Integrability and the AdS/CFT correspondence, J.Phys.A A44 (2011)

124001, [arXiv:1003.4214].

[28] G. Arutyunov and S. Frolov, Foundations of the AdS5 × S5 Superstring. Part I,

J.Phys.A A42 (2009) 254003, [arXiv:0901.4937].

[29] M. Magro, Review of AdS/CFT Integrability, Chapter II.3: Sigma Model, Gauge

Fixing, Lett.Math.Phys. 99 (2012) 149–167, [arXiv:1012.3988].

[30] N. Beisert and F. Luecker, Construction of Lax Connections by Exponentiation,

arXiv:1207.3325.

[31] A. Rej, Integrability and the AdS/CFT correspondence, J.Phys.A A42 (2009)

254002, [arXiv:0907.3468].

[32] M. Grabowski and P. Mathieu, Integrability test for spin chains, J.Phys.A A28

(1995) 4777–4798, [hep-th/9412039].

[33] N. Beisert, C. Ahn, L. F. Alday, Z. Bajnok, J. M. Drummond, et al., Review of

AdS/CFT Integrability: An Overview, Lett.Math.Phys. 99 (2012) 3–32,

[arXiv:1012.3982].

[34] Green M B, Schwarz J H and Witten E, Superstring Theory: Introduction

(Cambridge Monographs On Mathematical Physics vol 1. Cambridge University

Press, 1987.

[35] M. B. Green and J. H. Schwarz, Covariant Description of Superstrings,

Phys.Lett. B136 (1984) 367–370.

66



[36] M. Henneaux and L. Mezincescu, A Sigma Model Interpretation of

Green-Schwarz Covariant Superstring Action, Phys.Lett. B152 (1985) 340.

[37] A. Tseytlin, Review of AdS/CFT Integrability, Chapter II.1: Classical AdS5xS5

string solutions, Lett.Math.Phys. 99 (2012) 103–125, [arXiv:1012.3986].

[38] A. A. Tseytlin, Introductory Lectures on String Theory, arXiv:0808.0663.

[39] T. McLoughlin, Review of AdS/CFT Integrability, Chapter II.2: Quantum

Strings in AdS5xS5, Lett.Math.Phys. 99 (2012) 127–148, [arXiv:1012.3987].

[40] R. Roiban and A. A. Tseytlin, Spinning superstrings at two loops:

Strong-coupling corrections to dimensions of large-twist SYM operators,

Phys.Rev. D77 (2008) 066006, [arXiv:0712.2479].

[41] C. Scrucca, “Advanced quantum field theory.” Doctoral School in Physics, EPFL.

[42] S. Schafer-Nameki, Review of AdS/CFT Integrability, Chapter II.4: The Spectral

Curve, Lett.Math.Phys. 99 (2012) 169–190, [arXiv:1012.3989].

[43] N. Beisert, V. Kazakov, K. Sakai, and K. Zarembo, The Algebraic curve of

classical superstrings on AdS(5) x S**5, Commun.Math.Phys. 263 (2006)

659–710, [hep-th/0502226].

[44] N. Dorey and B. Vicedo, On the dynamics of finite-gap solutions in classical

string theory, JHEP 0607 (2006) 014, [hep-th/0601194].

[45] N. Gromov and P. Vieira, The AdS(5) x S**5 superstring quantum spectrum

from the algebraic curve, Nucl.Phys. B789 (2008) 175–208, [hep-th/0703191].

[46] J. A. Minahan, Review of AdS/CFT Integrability, Chapter I.1: Spin Chains in

N=4 Super Yang-Mills, Lett.Math.Phys. 99 (2012) 33–58, [arXiv:1012.3983].

[47] N. Beisert, Review of AdS/CFT Integrability, Chapter VI.1: Superconformal

Symmetry, Lett.Math.Phys. 99 (2012) 529–545, [arXiv:1012.4004].

67



[48] N. Beisert, The Dilatation operator of N=4 super Yang-Mills theory and

integrability, Phys.Rept. 405 (2005) 1–202, [hep-th/0407277].

[49] S. Mandelstam, Light Cone Superspace and the Ultraviolet Finiteness of the N=4

Model, Nucl.Phys. B213 (1983) 149–168.

[50] H. Bethe, On the theory of metals. 1. Eigenvalues and eigenfunctions for the

linear atomic chain, Z.Phys. 71 (1931) 205–226.

[51] N. Y. Reshetikhin, INTEGRABLE MODELS OF QUANTUM

ONE-DIMENSIONAL MAGNETS WITH O(N) AND SP(2K) SYMMETRY,

Theor.Math.Phys. 63 (1985) 555–569.

[52] N. Beisert, The complete one loop dilatation operator of N=4 superYang-Mills

theory, Nucl.Phys. B676 (2004) 3–42, [hep-th/0307015].

[53] Z. Bajnok, Review of AdS/CFT Integrability, Chapter III.6: Thermodynamic

Bethe Ansatz, Lett.Math.Phys. 99 (2012) 299–320, [arXiv:1012.3995].

[54] B. Eden, P. Heslop, G. P. Korchemsky, and E. Sokatchev, Hidden symmetry of

four-point correlation functions and amplitudes in N=4 SYM, Nucl.Phys. B862

(2012) 193–231, [arXiv:1108.3557].

[55] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, N=6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 0810

(2008) 091, [arXiv:0806.1218].

[56] A. Babichenko, J. Stefanski, B., and K. Zarembo, Integrability and the

AdS(3)/CFT(2) correspondence, JHEP 1003 (2010) 058, [arXiv:0912.1723].

[57] J. Minahan and K. Zarembo, The Bethe ansatz for superconformal

Chern-Simons, JHEP 0809 (2008) 040, [arXiv:0806.3951].

68


