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1 INTRODUCTION AND OUTLINE

1 Introduction and outline

It is a generic feature of many areas of modern physics that the fundamental equations

underlying the theory have been found. Nevertheless, solving those equations analytically

is usually impossible for all but the most simple cases. In practice, numerical methods

or approximation schemes have therefore to be employed.

An example of such a scenario is perturbation theory in quantum mechanics and quantum

field theory: One begins with a free system whose exact solution is known and then

calculates perturbative corrections order by order in some coupling parameter of the

interaction. Despite the many successes of this approach, it turns out that, maybe

unsurprisingly, some properties of the system cannot be described perturbatively. In

some cases, the inclusion of non-perturbative effects can alter the qualitative behavior

of a theory drastically, therefore justifying their detailed study.

1.1 A simple quantum mechanical example

In order to illustrate the importance of non-perturbative effects in quantum theory, we for

now restrict ourselves to quantum mechanics and the phenomenon of barrier penetration.

As is known from standard courses of quantum mechanics, there is a non-zero probability

for a particle to penetrate areas that would classically be forbidden. This effect is usually

quantified using the WKB approximation and one obtains a transmission probability of

|T | = exp
(

−1
~

∫ x2

x1
dx
√

2(V −E)
)
. (1.1)

Note the dependence on ~: Doing perturbation theory in powers of ~ one would never

have encountered this contribution. We will now follow Coleman’s lucid discussion [10]

in order to reproduce this result.

Consider a particle of unit mass sitting at the bottom of an even double-well potential

V (x) and let V (x) be shifted such that V (±a) = 0 at its minima as illustrated in Figure
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1 INTRODUCTION AND OUTLINE

1. We are interested in the matrix element

〈−a| e−iHT/~ |a〉 =
∑

n

e−iEnT/~〈xf |n〉〈n|xi〉 , (1.2)

where H = p2

2 + V (x) is the usual Hamilton operator and {|n〉} is the corresponding set

of eigenstates.

Our approach will use the Feynman path integral to rewrite this expression as

〈−a| e−iHT/~ |a〉 = N

∫
[dx] exp

(
i

~
S̃[x(t)]

)
. (1.3)

Here S̃ is the classical action, N is a normalization constant and by
∫

[dx] we mean

functional integration over all paths x(t) satisfying x(−T/2) = −a and x(T/2) = a. For

convenience, let us now perform a Wick rotation to imaginary time by replacing t → −it.

Doing so gives

〈−a| e−HT/~ |a〉 = N

∫
[dx] exp

(
−1
~
S[x(t)]

)
, (1.4)

where the Wick rotation has the effect of inverting the sign of the potential, so that the

Euclidean action reads

S = p2

2
+ V (x) . (1.5)

Let us try to perform the path integral. For a generic potential V (x), this cannot be

done and one is therefore led to approximate S[x] by expanding it up to quadratic order

around its stationary points:

S[x(t)] ≈ S[x̄(t)] +
∫

dt1 δx(t1) δS

δx(t1)
+ 1

2

∫
dt1 dt2 δx(t1) δ2S

δx(t1)δx(t2)
δx(t2)

= S[x̄(t)] + 1
2

∫
dt1dt2 δx(t1)δ(t1 − t2)

(
− ∂2

∂t22
+ V ′′(x)

)
δx(t2) (1.6)

Note that the paths x̄(t) are precisely the solutions to the classical motion in the inverted
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1 INTRODUCTION AND OUTLINE

Figure 1: Example of a double well potential V (x) in blue and its inversion below

potential −V (x) with a total energy of

E = 1
2

˙̄x2 − V (x̄) . (1.7)

Imagine a classical particle sitting at the bottom of one of the wells. Its energy will

be close to zero and, integrating the above equation, its classical motion will therefore

approximately satisfy

t− t1 =
∫ x̄

−a
dx
√

2V (x) . (1.8)

For t− t1 >> 1 the particle’s position will be close to a and one therefore has

dx̄
dt

≈
√
V ′′(a)(a− x̄)2 = ω(a− x̄) , (1.9)

where V ′′(a) = ω2. Hence

a− x̄ = e−ω(t−t1) and S0 ≡ S[x̄(t)] =
∫ a

−a
dx
√

2V (x) (1.10)

and we see that our solution corresponds to the classical particle rolling down the hill

once, or, equivalently, the quantum mechanical particle penetrating the barrier once. Its
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1 INTRODUCTION AND OUTLINE

motion is localized in time and has a size of about 1/ω. Having obtained this solution,

we can produce arbitrarily many more by adding paths that correspond to the classical

particle rolling back and forth n times. If we assume that the times

−T/2 < t1 < . . . < t2n+1 < T/2

at which this happens are well separated, then the solutions will not interfere and the

resulting action will be roughly equal to (2n+ 1) · S0.

With this result at our hands, we can finally evaluate the path integral. In order to

account for the different classical solutions, we sum over all natural numbers n and

integrate over the times t1, . . . , t2n+1 around which the motion is centered. The integral

over the centers gives rise to a factor of

∫ T/2

−T/2
dt1

∫ t1

−T/2
dt2 . . .

∫ t2n

−T/2
dt2n+1 = T 2n+1

(2n+ 1)!
. (1.11)

One then calculates

〈−a| e−HT/~ |a〉 =
∞∑

n=1

(
e−S0T

)2n+1

(2n+ 1)!
N [det

(
−∂2

t + ω2
)
]−

1
2 [1 + O(~)] . (1.12)

Care must be taken to evaluate the functional determinant in the right background, but

essentially the calculation boils down to arguing that for almost all times t the particle

will be sitting at the bottom of one of the wells and that the correction coming from

the movement of the particle only contributes by a multiplicative factor K2n+1. For the

“static” case the functional determinant can be evaluated to give N [det
(
−∂2

t + ω2)]− 1
2 ≈(

ω
π~
) 1

2 e−ωT/2.

Putting it all together and performing the sum, one therefore arrives at

〈−a| e−HT/~ |a〉 =
(
ω

π~

) 1
2

e−ωT/2 1
2

[
exp

(
Ke−S0/~

)
+ exp

(
−Ke−S0/~

)]
. (1.13)

Direct comparison of this expression with Eq. (1.2) shows that two eigenstates contribute,

namely the odd and the even superpositions of harmonic oscillator ground states centered
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1 INTRODUCTION AND OUTLINE

around the two different wells. Their energy differs by a factor proportional to e−S0/~,

thereby reproducing Eq. (1.1). A more detailed discussion of this result including an

evaluation of K is contained in [10], but for now we would like to summarize a few key

points:

• A semi-classical approximation of the path integral leads to classical solutions lo-

calized in time. Because of that property, they were dubbed instantons by ’t Hooft

[39, 38].

• Instanton solutions can give non-perturbative contributions in ~.

• The instanton solutions are parametrized by a continuous parameter t1, the time

around which they are centered. This space of solutions is called the instanton

moduli space. A more careful derivation shows that the parameter t1 is related

to a zero mode of −∂2
t + V ′′(x) which has to be removed before calculating the

determinant. In order to evaluate the path integral one has to integrate over all

possible parameters.

• We did not need the exact form of the path x̄(t), but only its action and the

dependence on external parameters.

1.2 Outline of the dissertation

A natural generalization is now to apply the same reasoning to quantum field theory and

search for classical solutions around which to perform the semi-classical approximation

of the path integral. As a matter of fact, the solutions that we will encounter share many

features with the toy example discussed in the previous section, but before we begin in

earnest, let us give a short overview of the structure of this thesis:

• Chapter 2 is concerned solely with classical instanton solutions in various gauge

theories. Compared to our simple toy model, the structure will be much richer and

therefore deserves a more detailed treatment. Nevertheless, many of the features

one encounters in doing so will be similar to what we have seen in the previous

section. Among other things, the instanton moduli space will turn out to carry

all the information we are interested in and will hence be the main object of our
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1 INTRODUCTION AND OUTLINE

study.

We review the ADHM construction of instanton solutions, touch upon the geo-

metric properties of the instanton moduli space and explore their connections to

supersymmetric gauge theories appearing naturally in certain brane constructions

of Type II string theory. As an application of this connection, we report on recent

attempts to study instanton moduli spaces using methods developed in the context

of supersymmetric gauge theories [7, 20].

• Having analyzed the classical properties of instantons, Chapter 3 clearly puts the

emphasis on their implications for a quantum theory. To do so, we summarize some

of the applications they have found in quantum field theory. Among other things,

we describe the relation to anomalies and vacuum energy.

• Ordinarily, determining all instanton contributions in a quantum field theory would

appear to be a hopeless endeavor. Yet progress has been made in the more con-

trolled scenarios of supersymmetric gauge theories. Chapter 4 is therefore devoted

to presenting the ingenious solution of the low-energy N = 2 supersymmetric field

theory by Seiberg and Witten [34], in which they exploited symmetry arguments

in order to determine all instanton corrections without the help of the usual field-

theoretical machinery.

• Last of all, we give a very brief sketch of Nekrasov’s work [32] to apply localization

techniques from topological field theory in order to reproduce the result of Seiberg

and Witten. Unlike the rest of the dissertation, the discussion of Nekrasov’s parti-

tion function will omit some calculations as they could easily occupy a review by

themselves.

Before diving into the subject, let it be very clear that none of the results reviewed below

are original work, but they only represent the author’s attempt to understand some of

the fascinating features arising non-perturbatively in quantum field theories. Instantons

seem to have found many rich applications in the almost four decades after their first

discovery [4] and we can therefore only scratch the surface of this topic. There also seem

to be many relations to string theory, as well as pure topology and geometry which we

will try to highlight. Nevertheless, this is only a small selection of topics and much of
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1 INTRODUCTION AND OUTLINE

what is covered will only be superficial. For that we apologize in advance and we will

try to give references to more complete reviews at the beginning of each chapter.
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During this year, we regularly had interesting and fun discussions in our class, but with

respect to this thesis, I am especially grateful to Colin Rylands for discussions about

Seiberg-Witten theory. Last, but certainly not least, I would like to thank Amihay

Hanany for the numerous “lunch meetings” and the many occasions he gave me advise

and support, both related to physics and not. I thoroughly enjoyed these times and I

will certainly miss them.
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2 INSTANTONS AND THEIR MODULI SPACES

2 Instantons and their moduli spaces

In this chapter we obtain classical instanton solutions to various gauge theories and

examine the geometrical properties of the respective instanton moduli spaces. There are

several good reviews of varying difficulty. David Tong’s lecture notes [40] give a very

intuitive introduction to the topic and emphasize the connections to supersymmetry

and string theory. A much more thorough and fairly technical account of instanton

calculations in various supersymmetric is provided by Dorey, Hollowood, Khoze, and

Mattis [12].

2.1 Winding numbers and instanton equations

In the first chapter we hinted at some of the properties that can emerge when considering

non-perturbative contributions to the path integral. Let us now try to generalize this

concept by looking at quantum field theories and the corresponding path integral in

Euclidean spacetime

Z(Jm(x)) =
∫

DA exp
(

−S[A(x)] +
∫

d4xTrJm(x)Am(x)
)

(2.1)

with an arbitrary source term Jm. We use Latin indices ranging from 1 to 4 in order

to indicate that we are not in Minkowski space. Raising or lowering indices does not

have any effect and we use the notation with one index downstairs and another upstairs

purely to indicate that these indices are summed over.

In order to perform a semi-classical approximation, we would again expand the action

up to quadratic powers in Am, yielding

S[Am(x)] = S[Ām(x)] + 1
2

∫
d4x1d4x2 δAm(x1) δ2S

δAm(x1)δAn(x2)
δAn(x2) + . . . , (2.2)

where δAm(x) = Am(x) − Ām(x) and Ām(x) is a solution to the classical equations of

motion with finite action.

For the time being we restrict ourselves to pure SU(N) Yang-Mills gauge theories.

We take our gauge fields Am(x) to be Anti-Hermitian and pick a basis of the ad-
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2 INSTANTONS AND THEIR MODULI SPACES

joint representation of SU(N) such that Am(x) = Aa
m(x)T a, Tr(T aT b) = −1

2δ
ab and

[T a, T b] = fabcT c. Absorbing the coupling constant g into the fields Am, the covariant

derivative in the fundamental representation reads Dm = ∂m+Am and Fmn = [Dm,Dn] =

∂µAν − ∂nAm + [Am, An].

Last of all, gauge transformations U(x) ∈ SU(N) act on Am as

Am → UAmU
−1 + U∂mU

−1 . (2.3)

With these choices the gauge theory action reads

S = − 1
2g2

∫
d4xTrFmnF

mn (2.4)

and the classical equations of motion are

DmFmn = 0 . (2.5)

Note that this implies that contributions to Z(J) arising from configurations with non-

zero action S0 are weighted by a factor of e−S0 . Since their contribution contains inverse

powers of g, it could never be reproduced by an ordinary perturbation expansion in

powers of g.

2.1.1 Homotopy

Before we begin to derive actual instanton equations, one can make a very useful ob-

servation which helps to classify potential classical solutions to the equations of motion.

Since we are solely interested in finite action solutions to Eq. (2.5), Fmn must vanish as

we approach the boundary of spacetime R4. According to Eq. (2.3) this translates into

the condition that

Am
r→∞−−−→ U∂mU

−1 with U(x) ∈ SU(N) (2.6)

and the restriction of any gauge field Am to spatial infinity therefore represents a map

from ∂R4 = S3 to SU(N). Fortunately, smooth maps from Sn to spaces M are classified

according to their nth homotopy class. This is a well-known mathematical result, but let

12



2 INSTANTONS AND THEIR MODULI SPACES

us quickly recapitulate the basics:

Consider two maps f, g from S1 to M. We consider f and g to be equivalent if there is

another map F : [0, 1] × S1 → M such that

F (0, t) = f(t) and F (1, t) = g(t) ∀t ∈ S1 (2.7)

and F is smooth. f and g therefore share the same first homotopy class [f ] = [g] ∈

π1(M) if they can smoothly be deformed into each other. The generalization to maps

from Sn follows along analogous lines and the respective homotopy groups πn(M) are a

topological property of M. A more detailed discussion is for example contained in [29],

but here we simply quote the relevant result:

π3(SU(N)) ∼= Z (2.8)

This implies that every classical solution carries an integer k ∈ Z called instanton charge

and the instanton moduli space must therefore be partitioned into infinitely many dis-

connected subspaces

M =
k=∞⊕

k=−∞
Mk . (2.9)

Intuitively, k can be imagined as counting the number of times the group SU(N) is

wrapped around spatial infinity S3 and a further result from mathematics states that

this is measured by the following integral:

k = 1
24π2

∫
S3

d3Smε
mnrs Tr

(
(∂nU

−1)U(∂rU
−1)U(∂sU

−1)U
)

(2.10)

Clearly, the ordinary gauge field background Am ≡ 0 has zero instanton charge and zero

action. But what about solutions with non-zero k? A simple argument, given e.g. in [40]

goes as follows: Picture R4 as a cone over S3. At the origin, Am must be single-valued

and therefore have homotopy class [0]. If [A|∞] 6= [0], then at some point in space, Am

must stop being pure gauge. We would therefore expect its action to be non-zero.
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2 INSTANTONS AND THEIR MODULI SPACES

Figure 2: Paths of different homotopy classes on the punctured 2-sphere with homotopy
group Z.

2.1.2 Instanton equations

Having made the observation that the instanton charge is really a topological quantity,

one can employ a trick first used in [4] to derive actual equations of motion by finding a

lower bound for the gauge field action.

Exploiting the fact that the square to the dual field string tensor ?Fmn = 1
2εmnrsF

rs is

equal to the square of Fmn, we can rewrite S by completing the square:

S = − 1
2g2

∫
d4xTrFmnF

mn

= − 1
4g2

∫
d4xTr

(
(Fmn ∓ ?Fmn)2 ± 2Fmn ? F

mn
)

≥ ∓ 1
2g2

∫
d4xTrFmn ? F

mn

The last integrand turns out to be a total derivative and can be rewritten as a surface

integral over spatial infinity.

S ≥ ∓ 1
2g2

∫
d3Sm εmnrs Tr

(
AnFrs + 2

3
AnArAs

)
(2.11)

14



2 INSTANTONS AND THEIR MODULI SPACES

Inserting the expression (2.6) for Am at infinity, this again turns out to be proportional

to Eq. (2.10) and S is therefore bounded by

S ≥ 8π2

g2 |k|. (2.12)

The inequality is saturated if and only if

Fmn = sgn(k) ? Fmn . (2.13)

In fact, we have obtained more than just a lower bound for the action corresponding to

a certain instanton charge. Solutions satisfying Eq. (2.13) will necessarily be minima of

the action for a certain value of k and therefore be solutions to the classical equations

of motion. Note further that parity maps solutions with instanton charge k to solutions

having the opposite charge −k (so-called anti-instantons), allowing us to concentrate on

those with positive charge.

As a side remark, it should be noted that finding a clever way of completing the square

turns out to be a handy tool not only for instantons. Indeed, it can be used to derive

similar equations of motion for other topological defects such as monopoles or vortices.

2.1.3 An SU(2) solution

Naturally, the next question one would now ask is whether solutions to Eq. (2.13) have

been found, and indeed, they have been. Before writing down the actual solution, let

us introduce some more notation. As will be seen shortly, instantons are most naturally

described by quaternionic objects. It is convenient to exploit that so(4) = su(2) × su(2)

which in turn implies that the covering group of SO(4) is SU(2)L × SU(2)R. Using an

intertwiner between the vector representation [1, 0] of SO(4) and the [1; 1] representation

of SU(2)L × SU(2)R we can rewrite any spacetime vector as

xαα̇ = xmσmαα̇ or, equivalently, x̄α̇α = xmσ̄α̇α
m , (2.14)

where the respective SU(2)L and SU(2)R indices α and α̇ run from 1 to 2. Furthermore

σnαα̇ = (i~σ, 1l) and σ̄α̇α
n = (−i~σ, 1l) are the Euclidean four-dimensional version of the
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2 INSTANTONS AND THEIR MODULI SPACES

usual 2 × 2 Pauli matrices ~σ. One can then define self-dual and anti-self-dual matrices

σmn = 1
4

(σmσ̄n − σnσ̄m) and σ̄mn = 1
4

(σ̄mσn − σ̄nσm) (2.15)

satisfying

σmn = 1
2
εmnklσ

kl and σ̄mn = 1
2
εmnklσ̄

kl . (2.16)

We can now write down the solution for the simplest possible case of an SU(2) instanton

with charge k = 1. The so-called BPST instanton [4] reads

An = 2ρ2(x−X)mσ̄mn

(x−X)2 ((x−X)2 + ρ2)
(2.17)

and has a field strength of

Fmn = 4ρ2σmn

((x−X)2 + ρ2)2 . (2.18)

There are several things to note about this solution:

• The solution is a co-dimension four object, with the suppression of the field strength

behaving as (x − X)−4 where Xm is the center of the instanton. It is therefore

localized both at a point in space and an instant in time, which justifies its name.

• The fact that An looks singular around Xm is a gauge artifact as long as ρ > 0

and can be removed by choosing a different gauge, such as

An = 2(x−X)mσmn

(x−X)2 + ρ2 (2.19)

obtained by gauging with U−1(x) = (x−X)mσ̄m

|x−X| . For ρ = 0 there is an actual

singularity as revealed by the field strength, which will be discussed later.

• Equation (2.17) possesses several parameters that one can choose freely, namely

four real numbers Xm parametrizing the position of the instanton and another one,
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2 INSTANTONS AND THEIR MODULI SPACES

ρ, controlling its size. In fact, one can also perform global gauge transformations

such that the most general form for An reads

An = 2ρ2(x−X)mUσ̄mnU
−1

(x−X)2 ((x−X)2 + ρ2)
with U ∈ SU(2) . (2.20)

Although these global gauge transformations leave the field strength invariant, they

represent symmetries of the physical theory rather than redundancies of our descrip-

tion and their inclusion leads to richer mathematical structure. In total, there are

eight real number called generalized coordinates. They parametrize M, the instan-

ton moduli space, and are a generalization of the coordinate t1 encountered in the

introduction.

One could now ask how to extend this solution to more general cases. Having found

the solution for SU(2), it turns out to be easy to find solutions of the same instanton

charge for higher-rank gauge groups SU(N) simply by embedding the SU(2) solution.

The space of inequivalent embeddings is given by

SU(N)
S (U(N − 2) × U(2))

, (2.21)

where SU(N) acts by rotating the SU(2) solution and the stabilizer S (U(N − 2) × U(2))

acts either by rotating the complement of the embedded solution or by global gauge

transformations already contained in Eq. (2.20). This coset space has dimension N2 −

1 −
(
(N − 2)2 + 22 − 1

)
= 4N − 8, adding up to a total of 4N coordinates. Later on, we

will see that these are indeed all solutions, but before we do so, let us study the instanton

moduli space in its own right.

2.2 General properties of M

Until now, all we have seen is that solutions to Eq. (2.5) with non-zero winding number

have several parameters. In this section we explain that the instanton moduli space M

has an interesting geometrical structure that already contains much of the information

we are interested in. We already know that M is partitioned into subspaces Mk, but let

us now ask what their geometry looks like: What is dimMk? How much structure does

it admit? Is there a canonical metric? In order to answer these questions, one has to
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introduce a few more tools.

2.2.1 Zero modes

The most convenient way of defining the dimension of Mk is by counting in how many

inequivalent directions one can perturb Am ∈ Mk such that Am + δAm is still a solution

to the equations of motion. Linearizing Eq. (2.5) one finds that δAm must satisfy

DmδAn − DnδAm = εmnrsDrδAs . (2.22)

Naturally, any local gauge transformation U(x) ∈ SU(N) will also be a solution to the

linearized equations of motion and should be excluded. One therefore requires the zero

mode δAn to be orthogonal to all gauge transformations with respect to some inner

product. We choose

0 = 〈DnΩ, δAn〉 ≡ −2
∫

d4xTr (DnΩδAn) ∀Ω(x) ∈ SU(N) . (2.23)

Integration by parts then gives

DnδAn = 0 . (2.24)

Defining /D = Dnσn and /̄D = Dnσ̄n, (2.22) and (2.24) combine nicely into

/̄D
α̇α
Aαβ̇ = 0 . (2.25)

If we write our zero mode as

δαAm = ∂Am

∂Xα
− DmΩ , (2.26)

where α is an index running over all generalized coordinates Xα, then Eq. (2.24) implies

that D2Ω = Dm ∂Am
∂Xα .

In order to count the number of solutions to Eq. (2.25) one then uses the Atiyah-Singer
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index theorem and obtains [8] that for SU(N) instantons

dimRMk = 4kN , (2.27)

in accordance with our observations so far.

2.2.2 Moduli space metric and quaternionic structure

The next step is to introduce a metric on the moduli space component Mk implicitly

used above when defining the orthogonality condition. It turns out that

gαβ = 〈δαA, δβA〉 = −2
∫

d4xTr (δαA
mδβAm) (2.28)

is a proper metric containing information crucial to evaluating the path integral. Recall-

ing that for our toy model we had to integrate over all values of the generalized coordinate

t1 (see Eq. (1.11)), it is natural to expect an integral over the instanton moduli space.

Since the metric (2.28) provides Mk with a natural volume-form, it is the quantity we

need when integrating over all zero modes.

In addition to being a Riemannian manifold, Mk turns out to have even more structure.

In fact, it is an, albeit singular, complex Hyper-Kähler manifold, meaning that there are

three different complex structures Ia, a = 1, 2, 3 satisfying

IaIb = −δab + εabcIc . (2.29)

The key to obtaining the different complex structures is noting that Eq. (2.25) has two

free indices α̇ and β̇. Given a zero mode δAαα̇, δAαα̇G
α̇
β̇

is also a zero mode for any 2 × 2

matrix G. Let us therefore define

(Ia · δµA)αα̇ = δµAαβ̇

(
iσaβ̇

α̇

)
= δνAαα̇(Ia)ν

µ , (2.30)

where we view the second line of the above equation as a definition of the coefficients
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(Ia)ν
µ. Their existence is guaranteed, since the zero modes are solution to the linear

differential equation (2.25) and must therefore form a vector space. With this definition,

the three 4kN × 4kN matrices (Ia)ν
µ satisfy Eq. (2.29).

In Section 2.4 we will then see that these structures are integrable as well.

2.3 A stringy motivation of the ADHM construction

After this detour on the geometry of the instanton moduli space, it is time to return

to the question raised in Section 2.1.3: How can one find and classify solutions to Eq.

(2.13) for arbitrary values of k and any gauge group SU(N)? At first sight, solving

the system of non-linear PDEs may look daunting, but, surprisingly, only three years

after the discovery of the BPST instanton, Atiyah, Drinfeld, Hitchin and Manin found

a way to construct all possible instanton solutions by reducing Eq. (2.13) to a system of

algebraic equations using twistor spaces and complex algebraic geometry [3].

In this section we review their construction, although we do not present it in their original

form. Rather, we first follow Douglas’ interpretation of the ADHM construction in terms

of brane configurations in Type II string theory [13, 14]. Background information on how

to construct different classes of supersymmetric gauge theories on D-branes can e.g. be

found in [18].

2.3.1 A system of branes

The key to seeing how instantons arise from stringy brane constructions lies in thinking

of instantons as codimension four objects. An instanton solution embedded in p + 1

dimensions will then be a solitonic object extending in p − 3 spacetime directions. A

natural setting for such a scenario is given by a set of Dp- and D(p − 4)-branes in

Type II string theory and, as the following heuristic argument suggests, it gives rise to

instantons as we know from our familiar gauge theory on R4.

The low energy effective theory living on the world-volume of the Dp-branes is U(N)

SYM-theory with 16 supercharges in p + 1 dimensions with certain couplings between

fields localized on the branes and those living in the bulk of spacetime. Douglas showed
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0 1 2 3 4 5 6 7 8 9
D3 x - - - - x x x - -
D7 x x x x x x x x - -

Table 1: Configuration of the D3-D7 brane system. Crosses indicate that the object is
extended in the respective direction.

Field U(k)gauge U(N)global SU(2)R × U(1)R

Φ [1, 0, . . . , 0, 1]0 [0, . . . , 0]0 [0]0
(B1, B2) [1, 0, . . . , 0, 1]0 [0, . . . , 0]0 [1]1

I [1, 0, . . . , 0]1 [0, . . . , 1]−1 [0]1
J [0, . . . , 0, 1]−1 [1, 0, . . . , 0]1 [0]1

Table 2: Scalar field content of the Dp-D(p − 4) brane system with representations de-
noted by their Dynkin labels.

that there is a term

∫
dp+1xC(p−3) ∧ F ∧ F . (2.31)

Recalling that instantons are objects with non-zero localized instanton charge density

F ∧ F ≈ c · δ(4)(x) for some constant c , an instanton in the gauge theory on the Dp-

branes will roughly contribute a term proportional to

∫
dp−3xC(p−3) (2.32)

to the total action, where the integral ranges over some p−3-dimensional subspace. This,

however, is the same contribution that a D(p− 4)-brane sourcing the Ramond-Ramond

field C(p−3) would give! Working out the precise factors, this can rigorously be shown to

be true.

In principle, one could now consider various choices of p to examine the implications

of this new point of view, but to study the vacuum structure of our theory, let us for

concreteness take p = 7, since it gives the sort of 3 + 1-dimensional field theory on the

D(p−4)-branes that we are the most comfortable with. We choose a brane configuration

with k D3-branes and N D7-branes and position them as listed in Table 1. To examine

the gauge theory living on the set of D3-branes, one should first determine the field

content. Without the presence of the D7-branes, the theory would be an N = 4 U(N)
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Figure 3: Brane set-up with (B1, B2) in visualized as red strings and (I, J) sketched as
green strings. D3-branes are shown as black dots.

SYM theory with one N = 4 vector multiplet. In N = 1 language, this amounts to one

vector multiplet V and three chiral multiplets B1, B2 and Φ in the adjoint representation.

The D7-branes, on the other hand, break another half of the supersymmetry by giving rise

to another set of matter fields, namely two chiral N = 1 multiplets, transforming in the

(anti-)fundamental representation of U(k). These can be visualized as strings stretching

from a D7-brane to a D3-brane and hence carry two Chan-Paton factors ranging from

1 to k and 1 to N respectively. The additional U(N) symmetry introduced by the D7-

branes acts globally due to the fact that the D7-branes are extended in more directions

than the D3-branes and fields localized on them appear static from the point of view of

an observer on a D3-brane.

Summing up, we find an N = 2 supersymmetric gauge theory with the scalar matter

content and R-symmetry given by Table 2. Since the set-up does not introduce further

masses, we can write down the Lagrangian density up to a coupling constant g:

L =
∫

d4θ Tr
(
Φ†e−2V Φ+B†

1e2V B1 +B†
2e−2V B2

)
+
∫

d2θ

(
Tr(JΦI) + Tr(B1[Φ,B2]) − 1

2g2 Tr(WαW
α)
)

+ h.c. (2.33)

For our purposes, the gauge coupling can be ignored and after some manipulations one
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obtains the following scalar potential:

V = Tr
(
|[Φ,B1]|2 + |[Φ,B2]|2 + |ΦI|2 + |JΦ|2

)
+

Tr
(
|[Φ,Φ†] + [B1, B

†
1] + [B2, B

†
2] + II† − J†J |2 + |[B1, B2] + IJ |2

)
(2.34)

Before trying to find all possible vacua, it makes sense to look for the physical mean-

ing of the various scalar fields appearing in the potential. Since the complex scalar

fields B1, B2 and Φ all descended from the N = 4 vector multiplet, they can be under-

stood as parametrizing the coordinates of the D4-branes in the space transverse to their

world-volumes. Because of its transformation behavior under the R-symmetry, Φ is on a

different footing than B1 and B2. Its real and imaginary parts must therefore be associ-

ated with the position of the D3-branes transverse to the D7-branes, i.e. Φ = X8 + iX9,

while B1 = X1 + iX2 and B2 = X3 − iX4 are coordinates on the world-volume of the

D7-branes.

In order to set Eq. (2.34) to zero, there are two options:

1. Set B1 = B2 = 0, I = J† = 0 and choose Φ to be diagonal. This part of the moduli

spaces is called the Coulomb branch of the moduli space and it corresponds to the

D3-branes being transversely separated from the D7-branes with a U(1)k gauge

theory on their world-volume.

2. Set Φ = 0 and satisfy:

[B1, B
†
1] + [B2, B

†
2] + II† − J†J = 0 (2.35)

[B1, B2] + IJ = 0 (2.36)

With the above choice of vacua, all gauge symmetry is broken and after dividing

out the U(k) gauge transformations one therefore calls this part of the moduli space

the Higgs branch:

MHiggs ∼= {I, J,B1, B2|V (I, J,B1, B2, Φ = 0) = 0}/U(k) (2.37)

The Higgs branch describes the situation in which the D3-branes lie on top of the
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D7-branes, which is precisely when we would expect them to appear as instantons

in the D7-word-volume theory.

Indeed, Equations (2.35) and (2.36) are precisely the equations appearing in the original

ADHM construction and they prove that

MHiggs ∼= Minst . (2.38)

2.3.2 Constructing instanton solutions

Even though the statement in Eq. (2.38) is already very powerful, since it provides

much geometrical information about Minst, Atiyah, Drinfeld, Hitchin, and Manin went

considerably further in their analysis. We now show how to explicitly construct instanton

solutions. In order to do so, we rewrite our fields in a form more akin to that usually

used when dealing with the ADHM construction.

Let i and j be Latin indices running from 1 to k and let u run from 1 to N . Then,

neglecting whether indices are downstairs or upstairs, let

wuj1̇ = Ij
u and wuj2̇ = J†j

u or wuj =

 Ij
u

J†j
u

 . (2.39)

In terms of w, the real equation (2.35) and the complex equation (2.36) can be repackaged

into the k × k matrix equations

N∑
u=1

w†
uσ

iwu − i[Xm, Xn]η̄a
mn = 0 a = 1, 2, 3 , (2.40)

where η̄a
mn are the anti-self-dual ’t Hooft symbols1. Now define the (N + 2k) × 2k matrix

∆ as

∆ =

 wT

Xmσ
m + xmσ

m

 . (2.41)

∆ has the nice property that the product with its Hermitean conjugate factorizes in the

1The self-dual and anti-self-dual ’t Hooft symbols are defined as ηa
mn = εa

mn4 + δa
mδn4 − δa

nδm4 and
η̄a

mn = εa
mn4 − δa

mδn4 + δa
nδm4, respectively.
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spinor indices, i.e.

∆†∆ = w†w +X†X +X†x+ x†X + x†x

= f−1 ⊗ 1l2 (2.42)

for some k × k matrix f . Factorization of the terms linear and quadratic in x can be

seen using the identity σ̄(mσn) = δmn1l2. For the terms independent of x, requiring

factorization is equivalent to asking that Tr
(
σa(w†w +X†X)

)
vanishes for a = 1, 2, 3,

which is guaranteed by comparing

Tr
(
σa(ww† +X†X)

)
= (2.43)

Tr
(
w†σaw +X†

mXnσ̄
mσaσn

)
(2.44)

to Eq. (2.40) and using that σ̄mσ
aσn = 2iη̄a

mn.

Even though it does not look like we have gained much, we are almost there. Considering

∆ as a map from CN+2k to C2k, its kernel ker(∆) is an N -dimensional complex vector

space. Now pick U be an (N + 2k) ×N matrix that contains a suitably normalized basis

of ker(∆), i.e.

∆†U = 0 and U †U = 1lN , (2.45)

then the gauge field

Am = U †∂mU (2.46)

is a SU(N) instanton of charge k.
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To see that Eq. (2.46) indeed defines an instanton solution one calculates

Fmn = ∂mAn − ∂nAm + [Am, An] = ∂[mAn] +A[mAn]

= ∂[mU
†∂n]U + U †(∂[mU)U †(∂n]U)

= ∂[mU
†∂n]U − (∂[mU

†)UU †(∂n]U)

= ∂[mU
†(1 − UU †)∂n]U (2.47)

and uses that by combining Equations (2.42) and (2.46) UU † can be shown to be a

projection operator satisfying

UU †∆ = U(∆†U)† = 0 and UU †U = U . (2.48)

The same holds for 1 −∆f∆† as

(1 −∆f∆†)∆ = ∆−∆ff−1 = 0 and (1 −∆f∆†)U = U (2.49)

and therefore UU † = 1 −∆f∆†. One can therefore simplify (2.47) further by writing

Fmn = ∂[mU
†∆f∆†∂n]U

= (∂[mU
†)∆f∆†∂n]U + U †∂[m∆f∆

†∂n]U

= U †∂[m∆f∂n](∆†)U + U †∂[m∆f∆
†∂n]U

= U †∂[m∆f∂n]∆
†U

= U †σ[mfσ̄n]U

= U †fσ[mσ̄n]U

= 4U †fσmnU . (2.50)

Since σmn is clearly self-dual, so is the field strength Fmn.

Having shown that one obtains self-dual field strengths by the above method, it remains

to be seen that this procedure gives the right instanton charge. Doing so requires more

matrix algebra and, in particular, an identity discovered by Osborn [33]. Additionally,
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one can show that the above construction provides all instanton solution. For sake of

brevity, we will do neither here and refer e.g. to [12] for more details.

2.4 The instanton moduli space revisited

In the previous section we introduced the instanton moduli space as a certain branch

of the moduli space of a supersymmetric gauge theory. Let us now explore this new

point of few a bit further and see how reconcile the notions of a metric and the complex

structures introduced in Section 2.2 with the ADHM construction.

2.4.1 The instanton moduli space as a Hyper-Kähler quotient

Defining the instanton moduli space as in Eq. (2.37) by restricting and then quotienting

a bigger space, is called a Hyper-Kähler quotient. This definition has certain advantages

over considering zero modes of some operator as it gives the possibility to derive geomet-

rical properties from a parent space that might have simpler structure. To understand

this procedure better, let us quickly review some properties of Hyper-Kähler spaces.

Any complex manifold M admits a complex structure I, which is a linear map acting on

the tangent space TxM that squares to −1, i.e. I2 = −1l and is integrable:

[IX, IY ] − [X,Y ] − I[X, IY ] − I[IX,Y ] = 0 ∀X,Y ∈ TxM (2.51)

A metric g on M is called Hermitian if it satisfies g(IX, IY ) = g(X,Y ) and it defines a

fundamental 2-form ω

ω(X,Y ) = g(I, Y ) . (2.52)

Its definition implies that ω is antisymmetric and, picking complex coordinates on M,

I, g and ω can locally be written as

I =

i δi
j 0

0 −i δī
j̄

 , g = gij̄dzidz̄j̄ and ω = igij̄dzi ∧ dz̄j̄ . (2.53)

If dω = 0, then M is called Kähler, ω its Kähler form and the metric can be derived
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from a Kähler potential K via

gij̄ = ∂

∂zi

∂

∂z̄j̄
K . (2.54)

Furthermore, it can be shown that a Kähler manifold M of real dimension 4n has a

reduced holonomy group of U(2n). As mentioned before, a Hyper-Kähler manifold has

even more structure, namely it has three complex structures obeying the quaternionic

algebra of Eq. (2.29). If M is Hyper-Kähler, then the holonomy is reduced even fur-

ther and the tangent space TxM admits a SU(2) × Sp(n) structure. In terms of real

coordinates xµ µ = 1 . . . 4n on M the metric can be written as

g = hiα̇
µh

jβ̇
ν Ωij εα̇β̇ dxµdxν (2.55)

and the three complex structures with their respective Kähler forms as

(I(c) · h)iα̇
µ = −iσ(c)α̇

β̇h
iβ̇

µ and ω(c) = iσ(c)α̇
γ̇h

iβ̇
µh

jγ̇
ν Ωij εα̇β̇ dxµ ∧ dxν . (2.56)

In the above expressions Ωij is an Sp(n) 2-form and i, j run from 1 to 2n.

Let us now see how the Hyper-Kähler quotient works: Its basic idea is the one already

introduced in Eq. (2.37). We are interested in Hyper-Kähler spaces M admitting isome-

tries that form some lie group G. Pick a set of Hermitian generators T r r = 1 . . .dimG,

whose action on the tangent space defines vector fields Xr in the usual way. If G preserves

both metric and complex structure, then

LXrg = LXr I(c) = 0 for c = 1, 2, 3 , (2.57)

which implies that LXrω
(c) = 0, since ω is defined solely in terms of I(c) and g. But since

LX = ιXd + dιX for Lie derivatives of forms, LXrω
(c) = d(ιXrω

(c)) = 0 and there exist

Hamiltonian functions µ(c) such that

ιXrω
(c) = dµXr

(c) . (2.58)

If one requires further that these transform equivariantly, i.e. X[µY
(c)] = µ

[X,Y ]
(c) ∀X,Y ,
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then µXr

(c) are called moment maps. One can arrange the moment maps to take values in

the Lie algebra g of G to obtain

µ(c) =
dim G∑
r=1

µXr

(c)T
r . (2.59)

The actual quotienting consists of two steps. First, one restricts to the level set {x ∈

M|µ(c)(x) = 0 ∀c}. After that, one further quotients this set by the group G to obtain

N = ~µ−1(0)/G , (2.60)

where we grouped the three maps µ(c) into a vector ~µ. N is then another Hyper-Kähler

space of dimension dimM − 4 dimG.

By direct comparison to our treatment of the instanton moduli space in terms of a

supersymmetric gauge theory, we see that this is exactly the same procedure that we

encountered above. While the gauge group G corresponds to isometries of M, the three

moment maps are just the conditions for minimizing the scalar potential. Eq. (2.35) is

one moment map, while (2.36), being a complex equation, gives rise to two real moment

maps.

What is left to see is how to take advantage of this construction in order to find the

metric Minst inherits from its mother space. Let us perform a small change notation and

denote by M̃ the mother space, by M the level set and by N the final quotiented space.

Then it turns out that locally one can divide TM̃ into

TM̃ = P ⊕ Q , (2.61)

where Q is the 3 · dimG dimensional linear hull of I(c)Xr and P is its orthogonal com-

plement. Viewing M as a G-bundle over M/G ∼= N , P, in turn, can locally be inter-

preted as the tangent space TM. TM can again be divided into two parts, namely the

dimG-dimensional space V spanned by the vectors Xr and its orthogonal complement
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H. Finally, one therefore has

TM̃ = H ⊕ V ⊕ Q . (2.62)

The tangent space of N , our instanton moduli space, is then TM/V ∼= H. The crucial

point here is that elements of TN have a unique lift to H ⊂ TM̃ and therefore the metric

on Minst is simply the pull-back of the flat metric on R4(kN+k2) which reads schematically

ds2 = Tr
(
|dI|2 + |dJ |2 + |dB1|2 + |dB2|2

)
. (2.63)

Alternatively, for the special class of Hyper-Kähler spaces whose three Kähler forms share

the same potential, one can introduce a Hyper-Kähler potential χ. Since flat Euclidean

space whose dimension is a multiple of 4 naturally carries such a structure, it has a trivial

Hyper-Kähler potential

χ ∼ Tr
(
|I|2 + |J |2 + |B1|2 + |B2|2

)
. (2.64)

By simply inserting parametrization of the coordinates I, J,B1 and B2 in terms of coor-

dinates on Minst one then obtains the Hyper-Kähler potential of the instanton moduli

space. Doing all the ADHM algebra rigorously, χ can be shown to be

χ = −1
4

∫
d4xx2 Tr(F 2

mn) , (2.65)

which is also known as Maciocia’s potential [27]. Following Maciocia’s analysis, one can

show that the metric and the complex structures obtained from χ are equal to those

introduced in the previous section.

2.4.2 Singularities and their resolution

As we saw very briefly by looking at the BPST instanton in Eq. (2.20), the solution stops

being well behaved as the size ρ of the instanton goes to zero. In order to see what effect

this has on the instanton moduli space, let us take this concrete example to calculate

the metric on M1 for the SU(2) instanton. To do so, one simply has to take derivatives

of Eq. (2.20) with respect to the collective coordinates and check that the gauge fixing
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condition Eq. (2.24) is met. In this case, there are 4 + 1 + 3 = 8 collective coordinates:

1. For the positions Xm the respective zero mode is just the field strength, i.e.

δmAn = Fmn , (2.66)

since its gauge fixing condition are just the equations of motion for the field strength.

One finds that

−
∫

d4x Tr (δmArδnA
s) = 4Sinst δmn . (2.67)

2. The zero mode corresponding to the size of the instanton, δAm = ∂Am
∂ρ already

fulfills the gauge fixing condition and

−
∫

d4x Tr (δAmδA
m) = 8Sinst . (2.68)

3. Lastly, one can choose the zero modes for the global gauge transformations to

be δiAm = DmΛi where Λi must not vanish at infinity. In particular, Λi =
2(x−X)2

((x−X)2+ρ2)2σ
i satisfy (2.24) and yield

−
∫

d4x Tr (δiAmδjA
m) = 8Sinst ρ

2 . (2.69)

All other components of the metric vanish, but there is one more caveat: Since Am

transforms according to Eq. (2.3) under gauge transformations, it is invariant un-

der the Z2 ⊂ SU(2) and therefore the inequivalent global gauge transformations form

SU(2)/Z2 ∼= S3/Z2 instead of S3. Pairing up S3 with the R+ parametrized by ρ, one

arrives at

Mk=1,SU(2) = R4 × R4/Z2 . (2.70)

Since Z2 does not act freely on the origin of R4, the instanton moduli space has a singu-

larity associated to the instanton of zero size. It turns out that this is a general feature

even also for k > 1. Since instantons of charge k can at least in the limit of large separa-
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tion be considered as k singly charged instantons, the singularities of Mk become worse

for increasing k and can be shown to correspond to loci on which 1 ≤ m ≤ k instantons

shrink to zero size.

Let us now look at how these singularities can be cured. Since instanton moduli spaces

found rich applications in Mathematics not long after their discovery in Physics, there

has been considerable interest in resolving their singularities. Here, however, we will

concentrate on one particular resolution that can be physically motivated, even though

we will give this motivation only a posteriori. An easy way of resolving the singularities

of Minst is by reconsidering its Hyper-Kähler quotient discussed in the previous section.

If one considers more generally

M
~ζ
k = ~µ−1(~ζ)/G (2.71)

with ~ζ = (ζ(1), ζ(2), ζ(3)) where ζ(c) takes values only in the Lie algebra of the U(1) factor

of G, then for non-zero ~ζ one obtains smooth resolutions of Minst instead.

Let us see how this works for the k = 1 case of G = U(N). On the D3-brane, we find a

U(1) gauge theory with N charged hypermultiplets and a neutral hypermultiplet which

does not appear in the potential and can, as usual, be considered to parametrize the

position of the instanton. Since k = 1, the matrices I and J become N -dimensional

vectors. Choosing ~ζ = (0, 0, ζ), the modified ADHM constraints (2.40) read

N∑
a=1

(
|Ia|2 − |Ja|2

)
= ζ,

N∑
a=1

IaJa = 0 (2.72)

and the U(1) by which we have to quotient acts as

Ia → eiαIa and Ja → e−iαJa . (2.73)

To identify this space, it is useful [40] to first set Ja = 0. Then, writing Ia = xa +iya with

real xa, ya, (2.73) is simply the definition of a sphere S2N−1 with radius
√
ζ. Quotienting

by the U(1) action reduces the sphere to complex projective space CPN−1 with size ζ.

If one allows non-zero Ja, then the second condition of Eq. (2.73) ensures that J must
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be orthogonal to I. One thus obtains the cotangent bundle of CPN−1, and, adding the

position of the instanton, one finds

Mζ
k=1,U(N)

∼= R4 × T ∗CPN−1 . (2.74)

In particular, since S2 ∼= CP1, Mζ
k=1,U(2)

∼= R4 ×T ∗S2, which turns out to be the smooth

resolution of the singular manifold R4 × R4/Z2. In this special case, even the metric

is known: It is the Eguchi-Hanson metric [15] and for ζ → 0 one recovers the original

singularity.

After working through this concrete example and suggesting that the instanton moduli

space singularities can be removed without much effort, let us show how to interpret the

parameters ~ζ physically. It turns out that they arise when considering instantons not on

ordinary spacetime, but on a non-commutative space, namely one whose coordinates xm

satisfy

[xm, xn] = iθmn . (2.75)

An simple way of implementing such an algebra on a space is by replacing ordinary

multiplication of function by a Moyal-type product defined as

f(x) ? g(x) = exp
(
i

2
θmn

∂

∂xm

∂

∂yn

)
f(x)g(y)

∣∣∣∣∣
x=y

. (2.76)

Splitting θmn into

θmn = ξiηi
mn + ζiη̄i

mn , (2.77)

the instanton equation F = ?F is affected only by the anti-self-dual part of θmn, while

the converse statement holds for anti-instantons. Working through the whole ADHM

construction and replacing ordinary multiplication by star-type multiplication, Nekrasov
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and Schwarz found [30] that the factorization requirement in Eq. (2.42) is modified to

∆† ? ∆ = f−1 ⊗ 1l2, (2.78)

which is satisfied exactly by the modified ADHM constraints considered above. There is

much more that can be said on non-commutative geometry and interested readers can

e.g. consult [31] for a review.

2.5 A word or two on Hilbert series

To conclude the chapter on instantons and their moduli spaces, we present another ap-

proach to take advantage of being able to regard the instanton moduli space as the

moduli space of vacua of a certain supersymmetric gauge theory. Being described by

algebraic equations, supersymmetric moduli spaces are predisposed to be treated by

algebro-geometric methods [19]. Hence there may be much to be learned by studying

the algebras of functions defined on them and for the past years there has been consid-

erable activity in this area. More concretely, one can study the space of gauge-invariant

BPS operators (GIO’s) of a supersymmetric gauge theory and compute certain charac-

teristic quantities. One of these quantities is called the Hilbert series and the remainder

of this section will be dedicated to it.

Although to our knowledge there does not yet exist a comprehensive review on this topic,

there are numerous original articles (for a small excerpt e.g. [19, 6, 16, 21]) introducing

the relevant techniques while going much beyond this little peek at Hilbert series.

2.5.1 The Hilbert Series and Plethystics

One of the natural properties of a topological space is its dimension. In this case, the

space of interest consists of multitrace GIO’s, i.e. something like

O = Tr
(
Ai1Ai2 . . . Ain1

)
· . . . · Tr

(
Aink−1+1 . . . Aink

)
(2.79)

for some set of operators Ai. Unfortunately for us, this space, let us call it M, is infinite-

dimensional and there is no information to be gained. On the bright side, it does admit
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a natural grading by partitioning it into subspaces consisting of operators with a fixed

number k of Ai’s:

M =
∞⊕

k=1
Mk (2.80)

These subspaces turn out to be finite-dimensional and their dimensions dim Mk consti-

tute the first piece of information we are interested in. Furthermore, there is usually a set

of global continuous symmetries of the theory and therefore the operators Ai must trans-

form in some representation of the global symmetry group G. To refine our counting, we

therefore aim to calculate the characters of the respective representations, i.e.

ck ≡ TrMk
(h) , (2.81)

where h is an arbitrary element of the global gauge group. The set {ck}, which is

generically infinite, can be packaged into a generating function

g({zi(h)}; t) =
∞∑

k=0
ckt

k , (2.82)

where tk is a fugacity counting the number of operators, and zi are weights taking values

in the maximal torus of the global gauge group. Note that by setting h equal to the iden-

tity element of G, or equivalently zi = 1 ∀ i = 1, . . . , rkG, one recovers the dimension of

Mk. This function g({zi}; t) is called the Hilbert series.

In order to apply this to the ADHM construction, we must introduce two more tools.

First of all, one needs a procedure to obtain the Hilbert series of multitrace operators

given the Hilbert series for singletrace operators. Since the kth power of a singletrace

operator in the representation R of G transforms under the symmetric product Symk[R],

one has to look for a function generating symmetrizations. The function accomplishing

that is called the Plethystic exponential and it is defined as

PE[g(t1, . . . , tk)] = exp
( ∞∑

r=1

g(tr1, . . . , trk)
r

)
, (2.83)
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where g(t1, . . . , tk) is a multivariable function vanishing at the origin (0, . . . , 0).

The second part deals with realizing the constraints appearing when taking the Hyper-

Kähler potential. Rewriting the problem in terms of the language of N = 1 supersymmet-

ric gauge theories, those constraints can be divided into two classes, namely F-Terms and

D-terms. F-terms can be derived using a superpotential W while the D-terms originate

from the generators of the gauge group. Schematically,

V =
∑

i

|fi|2 + 1
2
g2∑

a

(Da)2 (2.84)

where

fi = ∂W

∂φi
and Da =

∑
i

φ†
iT

aφi (2.85)

and T a are the (Hermitean) generators of the gauge group H. The vacuum moduli space

consists of those field configurations satisfying fi = 0 and Da = 0 for all values of a

and i. It can further be shown that the D-terms are simply gauge-fixing conditions and

one can obtain the vacuum moduli space by quotienting the space of field configurations

satisfying the F-term constraints only, F [ by the complexified gauge group HC, i.e.

M = F [//HC . (2.86)

Calculating the Hilbert series of the space of functions defined on the moduli space M

(which, for simplicity we call the Hilbert series of M) can therefore be divided into two

smaller tasks. First, one can determine gF[ , the Hilbert series of the space of functions

on F [. In a second step, one can then eliminate those functions not invariant under local

gauge transformations to end up with only the GIO’s that we are interested in.

In order to perform the first step, it is helpful if F [ is a complete intersection, i.e. the

number of constraints equals the codimension of F [ when embedded in the space of all

possible field configurations. If this is the case, then the Hilbert series can be expressed

as a quotient of the Hilbert series generated by the embedding space of F [ by the Hilbert

series generated by the constraints. We will see this in more detail below.
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To eliminate gauge-dependent operators, recall from Group theory that there is a natural

inner product on the space of character functions and that the characters of irreducible

representations are orthogonal with respect to this inner product, i.e.

〈χRi({zi}), χRj ({zj})〉H ≡
∫

dµH χRi({zi})∗χRj ({zj})

= δij , (2.87)

where dµH is the Haar measure of the group H and {zi} are the fugacities taking values

in U(1)rk H . Since the character of the trivial representation is by definition 1, the

projection onto the subspace of gauge-invariant operators simply reads

gM({yi}; t) =
∫

dµH gF[({yi}; {zi}; t) , (2.88)

where {yi} and {zi} are the respective fugacities of the global symmetry group G and

the local gauge group H and the integration is with respect to the latter group.

2.5.2 Reproducing the results for SU(N)

Having dealt with the formalism, let us try and apply it to the case of SU(N) instantons.

As explained in Section 2.3, the relevant gauge theory is an N = 2 gauge theory with

the scalar field content of Table 2. Let us assign fugacities {yi} to the global symmetry

group U(N), fugacities {zi} to the local gauge symmetry U(k), fugacity x to the SU(2)

R-symmetry and t to U(1)R. Note that t will also be counting the number of fields since

Φ will be set to zero on the Higgs branch relevant to our computations. Furthermore,

one observes that the U(1) charges of the fields with respect to the U(1) ⊂ U(k) and

the U(1) ⊂ U(N) are related by a minus sign. We can therefore drop the latter since it

contains no additional information.

From Equation (2.33), one easily reads off the superpotential

W = Tr (JΦI) + Tr (B1[Φ,B2]) (2.89)
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and, since Φ = 0 everywhere on the Higgs branch, the only relevant equation is

0 = ∂W

∂Φi
j

=
N∑

u=1
Ju

iI
j
u + [B1, B2]j i . (2.90)

Either from Equation (2.27) or from counting degrees of freedom on the Higgs branch of

this theory we have that the real dimension of the SU(N) instanton moduli space is 4kN .

The hypermultiplets transforming in the bi-fundamental representation of U(N) × U(k)

have 2kN complex degrees of freedom and the hypermultiplets from the N = 4 vector

multiplet give another 2k2 complex degrees freedom. On the other hand, both the F-

terms and the D-terms contain k2 complex equations and therefore MHiggs ∼= Minst is

indeed a complete intersection.

We can now write down the Hilbert series of F [:

gF[

k,SU(N)(x; {yi}; {za}; t) = PE[
∑k

a=1 za[0, . . . , 0, 1]yt+
∑k

a=1 z
−1
a [1, 0, . . . , 0]yt]

PE[
∑k

a,b=1 za · z−1
b t2]

× PE[
k∑

a,b=1
za · z−1

b [1]xt] (2.91)

In writing down this equation we used that the character of the fundamental represen-

tation of U(k) can be written as
∑k

j=1 zk and that PE[f(t) + g(t)] = PE[f(t)] · PE[g(t)].

The denominator is determined by Eq. (2.90), which transforms in the adjoint represen-

tation of U(k) and is second order in the fields. Note that we denote characters χR of

representations R simply by the Dynkin labels of the representation.

Using that [1, 0, . . . , 0]y =
∑N

i=1
yi

yi−1
for y0 = yN = 1 and hence [1, 0, . . . , 0]y =

∑N
i=1

yi−1
yi

,

we can evaluate the Plethystic exponential. Since PE[t] = 1
1−t , one obtains

gF[

k,SU(N) =
∏

1≤a,b≤k

(
1 − za

zb
t2
)

[∏N
i=1

∏k
a=1

(
1 − tza

yi−1
yi

) (
1 − t

za

yi
yi−1

)] [∏
δ=±1

∏
1≤a,b≤k

(
1 − za

zb
txδ
)] .
(2.92)

The last step is to integrate over the local group U(k)

gHiggs
k,SU(N)(x; {yi}; t) =

∫
dµU(k) g

F[

k,SU(N) , (2.93)
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where the Haar measure for U(k) is given by

∫
dµU(k) = 1

k!
1

(2πi)k

∮
|z1|=1

1
z1
. . .

∮
|zk|=1

1
zk

k∏
a,b=1

(1 − za)
(
1 − z−1

b

)
. (2.94)

Equation (2.93) with the expression for gHiggs inserted is sometimes called the Molien-

Weyl formula.

In principle one could now evaluate the multiple contour integrals using the residue

theorem. Practically, though, this becomes very challenging even for small values of k.

The cases k = 1 and k = 2 were treated in [7] and [20], but we quote only the former

result. Evaluating the integral above, one finds for a SU(N) instanton of charge k = 1

that its Hilbert series can be written as

gHiggs
k=1,SU(N)(x; {yi}; t) = 1

(1 − xt)
(
1 − t

x

) ∞∑
k=0

[k, 0, . . . , 0, k]SU(N) t
2k . (2.95)

One observes that the Hilbert series of the instanton moduli space factorizes and, indeed,

this is the expected behavior. Since we noted above that

Minst ∼= R4 × M̃inst

∼= C2 × M̃inst , (2.96)

where the first factor describes the position of the instanton in spacetime. C2 has a

symmetry group U(2) and this symmetry group gives a factor of 1
(1−xt)(1− t

x ) .

Lastly, one can check that the Hilbert series gives the right dimension of the moduli

space. Unrefining the Hilbert series by setting x = yi = 1, one obtains [7]

gHiggs
k=1,SU(N)(t) = 1

(1 − t)2

∑N−1
k=0

(N−1
k

)2
t2k

(1 − t2)2(N−1) (2.97)

Using one more mathematical fact, namely that the order of the pole of the Hilbert series

equals the complex dimension of the space, we see that dimCMk=1,SU(N) = 2N agrees

with Eq. (2.27).
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2.5.3 Generalization to other gauge groups

Even though we have to far restricted ourselves to considering SU(N) instantons for

matters of simplicity, one can easily generalize most of the above discussion. In particular,

one can extend the ADHM construction presented above to any classical Lie group SO(n)

or Sp(n) by modifying the gauge theory living on the D7 branes such that it obeys the

respective gauge symmetry. Key to obtaining orthogonal or symplectic gauge groups is

the introduction of O7 orbifold planes (see e.g. [18] for a review) and they have been

studied extensively.

By an analogous treatment as above, one can show [7] for k = 1 that the Hilbert series

Lie group G Dynkin label of AdjkG Dual Coxeter number h∨
G

AN = SU(N + 1) [k, 0, . . . , 0, k] N + 1
BN≥3 = SO(2N + 1) [0, k, 0, . . . , 0] 2N − 1
CN≥2 = Sp(2N) [2k, 0, . . . , 0] N + 1
DN≥4 = SO(2N) [0, k, 0, . . . , 0] 2N − 2

Table 3: Dynkin labels and dual Coxeter numbers of the classical Lie groups

of the instanton moduli space for a classical Lie group G ∈ {AN , BN , CN , DN } is given

by

gHiggs
k=1,G = 1

(1 − xt)
(
1 − t

x

) ∞∑
k=0

AdjkG t2k , (2.98)

where Adjk is the representation with Dynkin labels listed in Table 3. Furthermore one

can reproduce another result known from index calculations, namely that

dimMk=1,G = 4h∨
G , (2.99)

where h∨
G is the dual Coxeter number of the Lie group G.

Lie group G Dynkin label of AdjkG Dual Coxeter number h∨
G

E6 [0, k, 0, 0, 0, 0] 12
E7 [k, 0, 0, 0, 0, 0, 0] 18
E8 [k, 0, 0, 0, 0, 0, 0, 0] 30
F4 [k, 0, 0, 0] 9
G2 [0, k] 4

Table 4: Dynkin labels and dual Coxeter numbers of the exceptional Lie groups
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For exceptional Lie groups, the situation becomes considerably more involved, as there

is no known ADHM construction. In fact, even a Lagrangian description of a gauge

theory exhibiting exceptional symmetries is lacking. For the case of E6,7,8, theories with

respective flavor symmetries arise from the low-energy effective action of 3, 4 and 6 M5-

branes wrapping two-spheres with three punctures, the properties of which depend on

the respective group [17, 5]. For the case of F4 and G2 not even such a description

is known. Nevertheless, building on the systematic structure observed for classical Lie

groups, the authors of [7] conjecture that the same pattern continues to hold, with the

respective representations given by Table 4. To non-trivially check this conjecture, one

can exploit certain dualities of the these strongly coupled SCFT’s and we refer to the

original paper for details.
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3 Instanton effects in Quantum Field Theory

In partial constrast to the previous chapter, which focused on the study of instantons

and their moduli spaces mainly for its own sake, this chapter will highlight some of

the physical implications that instantons have. Even though the actual calculation of

instanton effects has often been challenging, the inclusion of non-perturbative effects has

greatly improved the qualitative understanding of modern quantum field theory.

Although we have already encountered similarities between instanton solutions in gauge

theories and the quantum mechanical example of tunneling studied in the introduction,

we start out by reconsidering our initial instanton set-up in order to make it clear that

instantons can indeed be considered a tunneling effect. Having done that, we explore

some rather straight-forward implications for the quantum theory. We then explain in

more detail how to perform the semi-classical approximation of the path integral in an

instanton background before finally concluding with a few comments on supersymmetric

field theories.

Readers interested in more detail of the physical applications can consult for example [10]

or [42]. A very recently published textbook covering the same ground is [37], which also

contains some discussions of supersymmetry. For details on instanton calculus mainly

with, but also without supersymmetry, we again refer to [12].

3.1 Tunneling interpretation of instantons

Maybe the first question one should ask in order to understand in what sense instantons

are related to tunneling is which degree of freedom of the field theory can tunnel through

a potential. Even though most degrees of freedom are confined by quadratic potentials,

there exists one that is not. To see which degree that is, let us consider the Yang-

Mills fields Aa
m where a = 1, . . .dimSU(N) in temporal gauge, i.e. Aa

4 = 0. Then the

Hamiltonian is

H = 1
2

∫
d3x (Ea

i E
a
i +Ba

i B
a
i ) , (3.1)

where the “electric” fields Ea
i arise as conjugate momenta of the gauge field Aa

i and

i = 1, 2, 3 only runs over spatial components. Since a gauge field only contains two
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degrees of freedom, the description in Eq. (3.1) in terms of three components is not com-

pletely gauged yet - gauge transformations independent of time x4 are still unrestricted.

Nevertheless, it is important not to impose an additional gauge condition, as we are to

study different topological sectors of gauge transformations.

Just as in the previous chapter, we are interested in classical vacuum solutions and at

any given time t,

Am(xi) = U(xi)∂mU
−1(xi) (3.2)

is such a solution for xi ∈ R3, as already stated in Eq. (2.6) with the slight restriction

that U ∈ SU(N) must now be independent of time. As we are interested in tunneling

between different vacua, we restrict to such states that can be connected by finite actions.

Hence one additionally demands that

U(xi) → 1l as |xi| → ∞ , (3.3)

thereby compactifying R3 to S3 by adding the additional point at infinity. Those

constraints should be familiar from earlier on and one finds again that solutions to

these two equations are classified by their homotopy class and therefore carry a charge

k ∈ π3(S3) ∼= Z. In Eq. (2.10) we saw that one can obtain k by integration. Writing out

the components, one has

k = 1
32π2

∫
d3xK0 , (3.4)

where the Chern-Simons-current

Km = 2εmnrs
(
Aa

n∂rA
a
s + 1

3
fabcAa

nA
b
rA

c
s

)
(3.5)

is the same as in Eq. (2.11), only that the boundary is now the spatial slice at a fixed

time t.

While for k ∈ Z the field A is pure gauge, one can obtain any real k for field configurations
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Figure 4: Schematic visualization of the periodic potential in k direction

with non-zero energy. At the same time, two field configurations whose charges k1, k2

satisfy k1 − k2 ∈ Z are related by a gauge transformation and therefore describe the

same physical situation. Our gauge theory therefore has one physical direction with the

topology of a circle and k is a coordinate on the covering space R of this circle S1. One

can therefore describe this situation by a potential that is periodic in k direction and

has zeros for integer values of k, see Figure 4. Quantum mechanical tunneling occurs

between different minima of the potential, i.e. one and the same point on S1, but not

on its covering space.

Consider now two field configurations at times t− and t+ with charges k− and k+ and

take spacetime to be [t−, t+] × S3. The boundary of spacetime then just consists of two

S3 with opposite orientations, and, performing the integral in Eq. (2.11), we find an

instanton charge of k = k+ − k−. Instantons can therefore be considered to be the least

action field configurations connecting two degenerate vacua belonging to two different

topological sectors.

Note that there are infinitely many classical vacua parametrized by an integer number.

They are sometimes called pre-vacua.
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3.1.1 Theta vacua

To extend this purely classical discussion to quantum mechanics, recall how to deal with

a periodic system e.g. from condensed matter. In particular, Bloch’s theorem states that

a wavefunction on a circle with angular coordinate 2π · k must obey

Ψ(k + 1) = eiθΨ(k) (3.6)

with some fixed angle θ ∈ [0, 2π). Extending the analogy to quantum field theory by trad-

ing wave functions for wave functionals, one therefore finds that the quantum eigenstates

must be

Ψθ =
∑
n∈Z

einθΨn , (3.7)

where Ψn are the wave functions corresponding to the classical pre-vacua. θ, the vacuum

angle parametrizing the different quantum mechanical vacua, is a new and purely quan-

tum parameter of the theory.

To incorporate θ into the Lagrangian description of quantum field theory, one must

modify the action (2.4) to

S = − 1
2g2

∫
d4xTr (FmnF

mn) − iθ

16π2

∫
d4x Tr (Fmn ? F

mn) . (3.8)

In the case of QCD, it is important to note that this additional term breaks both P

and CP invariance unless θ is a multiple of π. Since P and CP violation of the strong

interaction have to this date not been observed, there are strong experimental bounds

on θ [24]:

θ ≤ 10−11 (3.9)

There exist several proposals to avoid fine-tuning, among them the promotion of θ to be

the expectation value of a new field, the axion [41, 43], relaxing to zero in its potential.

So far, this hypothetical particle has not been detected and estimates [24] place it well
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above energies reachable in current accelerators.

3.1.2 Chiral anomaly

Moving away from considering pure Yang-Mills gauge theories, let us quickly mention

some of the implications that the introduction of fermions can have. Consider the addi-

tion of a Dirac fermion, which results in an extra term

SF =
∫

d4xψ̄A (−iγmDm − im)ψA , (3.10)

where A is a flavour index running from 1 to Nf . Performing the path integral over

Grassmannian variables ψA and ψ̄A, there is now an additional term proportional to

det (−iγmDm − im)Nf . (3.11)

One can show [10] that −iγmDm has only real eigenvalues λi. For every solution ui with

eigenvalue λi one can then define another solution ūi ≡ γ5ui whose eigenvalue is −λi as

one sees directly using {γm, γ5} = 0. Every non-zero eigenvalue λi therefore comes paired

with another eigenvalue of the opposite sign. Writing the determinant as a product of

eigenvalues, one has

det (−iγmDm − im) =
∏
n

(λn + im)

∼ ml
∏

n s.t. λn>0

(
λ2

n +m2
)
, (3.12)

where the proportionality constant is an irrelevant sign and l is the number of zero eigen-

values of −iγmDm, which remains to be determined. Since both summands in Eq. (3.12)

are positive for m > 0, the addition of a massive Dirac fermion does not crucially change

the discussion of the above section.

On the other hand, massless fermions could potentially lead to zero modes in the deter-

minant and indeed, using the index theorem by Atiyah and Singer, one can show [10]
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that there are

l = k (3.13)

zero modes in a background with instanton charge k. Does this zero mode mean that

there are no instanton contributions in the case of massless fermions and we have to drop

our tunneling interpretation altogether? It turns out that it does not.

In order to see why, recall that classically, massless fermions satisfy an additional sym-

metry, namely invariance under chiral rotations:

ψA → exp (iαAγ5)ψA (3.14)

Quantum mechanically, this symmetry is anomalous, meaning that although the action

remains invariant under chiral transformations, the integration measure of the path in-

tegral does not. In fact, performing rotations as in Eq. (3.14) has the effect of shifting

the vacuum angle [42]

θ → θ + 2
Nf∑

A=1
αA . (3.15)

Since θ can be removed by a simple change of integration variables, it cannot be an

observable anymore, confirming what we found above. However, instead of having a

conserved axial current ∂mjaxial
m = 0 associated with chiral transformations, the anomaly

introduces a new term

∂mjaxial
m = Nf

16π2F
a
mn ? F

amn . (3.16)

Instantons are therefore responsible for violating the conservation of the axial current.

Indeed, they can still be considered as a tunneling transition from one vacuum to another,

but one also has to take into account that they change jaxial
0 , the fermionic chiral charge
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density. Integrating

∫ ∞

−∞
dt
∫

d3x ∂0jaxial
0 = Nf

16π2

∫
d4xF a

mn ? F
amn = 2kNf (3.17)

one finds that an instanton of charge k changes the chiral charge by 2kNf units. An

instanton in a theory with Nf flavours can therefore be interpreted as an object changing

the chirality of k ·Nf Weyl fermions, giving rise to the so-called ’t Hooft vertex [38].

3.2 Semi-classical instanton corrections

Having recovered the tunneling interpretation of instantons, let us return to the starting

point of our instanton discussion: The saddle point approximation of the gauge theory

path integral. Becoming slightly more formal, we make use of the knowledge about in-

stanton solutions gathered in the previous chapter to give a few more details on how

to actually perform the semi-classical approximation around instanton solutions in Eq.

(2.2). We largely follow [12].

To account for the newly justified θ-term, we introduce the complexified gauge coupling

τ = 4πi
g2 + θ

2π
(3.18)

and rewrite (2.2) in the quaternionic basis from Section 2.2.1 using Eq. (2.12).

S = −2πikτ + 1
2

∫
d4x1d4x2 δAm(x1) δ2S

δAm(x1)δAn(x2)
δAn(x2) + . . .

= −2πikτ − 1
2

∫
d4xTr

(
δĀα̇α∆(+)

α
β
δAβα̇

)
+ . . . , (3.19)

We assumed that k is non-negative and defined the operator appearing in the quadratic

variation of the action to be

∆(+) ≡ −/D /̄D = −D2 − Fmnσmn . (3.20)
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One must further include ghost fields arising from the gauge-fixing

Sghosts = 2
∫

d4xTr
(
bD2c

)
. (3.21)

In order to have a well-defined functional determinant, we split up δAn into zero modes

δµAn and non-zero modes Ãn of ∆(+)

δAn =
∑

µ

ζµδµAn + Ãn , (3.22)

where as before Greek indices run from 1 to dimMk. The zero modes are orthogonal

to the non-zero modes, and therefore it is straightforward to split up the functional

integration. Howecer, the zero modes need not form an orthonormal basis with respect

to the metric on the instanton moduli space and therefore we must include a factor of
√
g:

∫
[dAn] =

∫ (√
det g(X)

∏
µ

dζµ

√
2π

)
[dÃn] (3.23)

In this formula, X are coordinates on the instanton moduli space and g(X) is the respec-

tive metric. The spectrum of ∆(+) is now suitably split up and, at least in principle, one

could perform the usual Gaussian path integral over the remaining functions:

∫
[db][dc][dÃn] exp

(1
2

Tr
∫

d4x ˜̄Aα̇α∆(+)
α

β
Ãβα̇ − 4bD2c

)
= det

(
−D2)

det′ (
∆(+)) (3.24)

Here the prime on the determinant indicates that zero modes are to be excluded when

evaluating the operator in the instanton background.

Instead of integrating over expansion coefficients ζµ it would be preferrable to integrate

over the moduli space itself. Using an insertion of unity reminiscent of the Fadeev-Popov

gauge fixing trick, i.e.

1 ≡
∏
µ

dXµ

∣∣∣∣∣det ∂ζ
σgσν

∂Xµ

∣∣∣∣∣∏
ν

δ (ζσgσν(X)) , (3.25)
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one can show [12] that to leading order in the coupling constant g one has

∫
[db][dc][dAn]

∣∣∣
k

e−S[An,b,c] = e2πikτ
∫
Mk

ω
det

(
−D2)

det′ (
∆(+)) + O(g) (3.26)

where ω is the canonical volume form of the Hyper-Kähler space Mk

∫
Mk

ω ≡
∫ √

det g(X)
∏
µ

dXµ

√
2π

. (3.27)

Having derived Mk explicitly as a Hyper-Kähler quotient in the previous chapter, one

can determine ω in a straightforward fashion. Nevertheless, since we will not need it

for the remaining discussion we once again refer to [12] for a concrete formula and close

with a more qualitative consideration instead. Before doing so, however, note that both

operators appearing in the functional determinants must be evaluated in the respective

instanton backgrounds and will therefore depend non-trivially on the collective coordi-

nates Xµ. Although the determinant factor can be computed from ADHM data [33] its

calculation is tedious. Fortunately, supersymmetry simplifies the discussion greatly: In

a supersymmetry theory the fluctuation determinant is an irrelevant constant [38].

3.2.1 The clustering limit

Even though most of our discussion treated the instanton moduli spaces Mk associated

to different charges on an equal footing, we only saw concrete solutions for the case of

k = 1. Hence one naturally wonders how to interpret solutions with higher charge and

how to relate them to the BPST instanton. It turns out that an instanton of charge

k can roughly be thought of k charge 1 instantons. In the limit of large separations of

the individual BPST instantons, the clustering limit, the instanton solution with charge

k is then the superposition of the different BPST instantons. Similarly, the instanton

measure on Mk must split up into k integrations over M1

∫
Mk

ω
clustering−−−−−−→ 1

k!

∫
M1

ω × . . .×
∫
M1

ω . (3.28)
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Since calculating the Hilbert series of the instanton moduli space increases very quickly

in difficulty for higher k, one can in principle try to use the same approximation there,

namely that

Mk
clustering−−−−−−→ Symk M1 (3.29)

in the clustering limit. In this limit the Hilbert series can therefore be approximated by

gHiggs
k,G (t;x; {z}) = SymkgHiggs

1,G (t;x; {z})

=
∑

mi s.t.∑
i

imi=k

∏
i

f(ti;xi; {zi})mi

imi ·mi!
. (3.30)

In the simplest case of k = 2 the above formula only contains two summands

gHiggs
2,G (t) = 1

2

[(
gHiggs

1,G (t)
)2

+ gHiggs
1,G (t2)

]
(3.31)

and, using that gHiggs
k,G has a reducible component 1

(1−xt)(1− t
x

) for all values of k, one finds

that the two summands contribute as residues at x = ±t. This statement generalizes

to higher instanton charges for which one finds poles at x = eiαlt for finitely many αl

[20]. Although only approximate, this approach provides a convenient way of making

consistency checks.

3.3 Instantons and supersymmetry

In the last part of this chapter, we touch upon a few properties of instantons in super-

symmetric gauge theories. Having seen in the last section that instanton calculus can

simplify tremendously in the presence of supersymmetry, we discover that the inclusion

of both scalar and fermionic fields can at the same time lead to extra complications.

Last of all, we take a short look at the chiral U(1) R-symmetry of gauge theories with 8

supercharges and find again that it is anomalous.

Please be reminded that there are plenty more applications one could review, among

them the lifting of four-dimensional instanton solutions in supersymmetric theories to

extended objects in higher dimensions, e.g. instantons in N = 4 Super-Yang-Mills theory
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to the related theory with N = 1 in ten dimensions, in which they appear as branes.

Viewing the same problem in different theories can give valuable insights and simplify

calculations.

Before treating the most general supersymmetric case, let us extend the discussion of

fermions and consider the addition of a adjoint Weyl fermion instead of a fundamental

Dirac fermion to the usual SU(N) Yang-Mills gauge theory. This scenario corresponds

to the simplest N = 1 Super-Yang-Mills (SYM) theory without additional matter. We

again try to minimize the action by setting the gauge field to its ADHM value before

looking for zero modes of the Dirac operator

/̄DλA = 0 and /Dλ̄A = 0 . (3.32)

Here the covariant derivatives are evaluated in the adjoint representation with an instan-

ton background of charge k. Using once again the Atiyah-Singer index theorem, one

can show that for k ≥ 0 /D is a positive definite operator, but /̄D is not. In fact, we

encountered the same equation before in (2.25) and, since there is no open index this

time, know that there must be exactly 2kN zero modes. One calls the solutions to Eq.

(3.32) fermion zero modes of the instanton solution and the whole solution satisfying the

full equations of motion is sometimes referred to as a super-instanton.

Denoting the linearly independent solutions to Eq. (3.32) by Λα,i, the most general

fermionic solution reads

λα =
2kN∑
i=1

ψiλα,i , λ̄α̇ = 0 , (3.33)

where ψi are Grassmann variables. Just as the bosonic collective coordinates can be

interpreted as coordinates on the instanton moduli space Mk, the fermionic collective

coordinates can be associated with symplectic tangent vectors of Mk due to its Hyper-

Kähler structure.
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3.3.1 Supersymmetry and Quasi-Instantons

Progressing either to the case of more than 4 supercharges or the addition of matter to

the N = 1 theory, it becomes necessary to include scalar fields φ with Yukawa couplings

∼ λ̄φλ to fermions. As above, our approach is to set to gauge fields and fermions to

the same values they would have in a setting without scalars. The new equation for

the scalars is the usual Laplace equation with a source term bilinear in the fermions. If

scalars acquire non-zero VEV’s, then suddenly they “backreact”: Unlike in the purely

fermionic case above, the scalars modify the equations of motion both for the gauge fields

and the fermions and invalidate the original ADHM solutions. At least for the BPST in-

stanton, there is an intuitive way of understanding this behaviour. By introducing scalar

VEVs the theory gains a mass scale and hence loses its conformal invariance. Without

scale invariance, we would not expect the size ρ to be a free parameter of our solution

anymore.

To make matters worse, scalars can acquire bilinear Grassmann components from the

Yukawa couplings, thereby modifying the equations of motion for An and λ even in the

absence of “non-Grassmann” VEVs.

Generically, these corrections occur whenever they are not forbidden by symmetries of

the theory, as is example the case for N = 2 SYM without scalar VEVs. Nevertheless, not

all hope is lost. It turns out that the original solutions still solve the instanton equations

to lowest order in the coupling constant g and is therefore called a quasi-instanton. It can

be described by an effective action with the corrections appearing as interaction terms,

which reads in the case of N = 4 SYM

Seffective = 8π2k

g2 − ikθ + εABCD

96
Rijklψ

iAψjBψkCψlD . (3.34)

Here, Rijkl is the curvature tensor on the instanton moduli space and depends on the

bosonic collective coordinates Xµ.

In order to account for scalar VEVs, Affleck developed a formalism and called the corre-

sponding quasi-instantons constrained instantons. Roughly speaking, the effective action
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for the instanton contains a potential whose minima correspond to sending the instanton

size to zero, e.g.

Seffective = 8π2

g2 − iθ + 4π2ρ2〈Tr
(
φ2
)
〉 (3.35)

for the simplest case of SU(2) with an adjoint scalar φ. The integration over the instanton

moduli space in Eq. (3.26) is then modified:

∫
Mk

ω →
∫
Mk

ω e−Seffective (3.36)

Much more detail on constrained instantons can be found in Affleck’s original paper [1].

3.3.2 Anomalies in the abelian R-symmetry

To conclude this chapter, we include another short application of instanton calculus very

similar to the one of Section 3.1.2. As above we encounter a chiral anomaly due to

instanton effects, but this time we use a simple counting argument based on zero mode

counting in order to determine the anomalous term that we could equally well have used

before, too.

Field SU(2)R × U(1)R U(1)J × U(1)R

An [0]0 (0; 0)
λ [1]1

(1; 1)
ψ (−1; 1)
φ [0]2 (0; 2)

Table 5: Field content of N = 2 vector multiplet and its charges

We are interested in the anomalies of the SU(2) × U(1) R-symmetry of N = 2 SYM-

theory and restrict to pure gauge theory without matter multiplets. The field content of

the respective vector multiplet is listed in Table 5, where U(1)J is the diagonal subgroup

of SU(2)R. All the fields also transform under the adjoint representation of the gauge

group G. The key point is that after combining the two Weyl fermions into one four-
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component Dirac spinor

ψD =

λα

ψ̄α̇

 (3.37)

the transformation under U(1)J × U(1)R can be written as

ψD
U(1)J−−−−→ eiαψD and ψD

U(1)R−−−−→ eiαγ5ψD . (3.38)

Therefore U(1)R is a chiral symmetry prone to anomalies. To determine the first fermionic

correlator with instanton corrections, recall that there are 2N fermionic zero modes for

every left-handed fermion in the adjoint representation of SU(N). With every fermion

zero mode comes and integration over Grassmann variables ψi and, since

∫
dψi = 0 and

∫
dψi ψj = δij (3.39)

only correlators with as many fermionic insertions as there are zero modes will contribute.

The first non-vanishing correlator is therefore

G(4N) = 〈λ(x1) . . . λ(x2N )ψ(x2N+1) . . . ψ(x4N )〉 , (3.40)

which transforms under U(1)R as

G(4N) → ei4Nα ·G(4N) with α ∈ [0, 2π) . (3.41)

Since G(4N) remains invariant only for α = nπ
2N , n = 1, . . . , 4N , instanton effects break

U(1)R to the discrete subgroup Z4N . On the other hand, the center Z2 ⊂ SU(2) acts

as (λ, ψ) → −(λ, ψ) and is therefore already contained in Z4N . The true R-symmetry

group of N = 2 SYM-theory is hence

SU(2) × Z4N

Z2
. (3.42)

There is one more restriction: The operator Trφ2 has charge 4 under U(1)R and for

non-zero vacuum expectation values of Trψ2 Z4N breaks to Z4. In this case one ends up
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with

SU(2) × Z4
Z2

∼= SU(2) × Z2 (3.43)

with the Z2 acting as Trφ2 → − Trφ2.
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4 The Seiberg-Witten approach to N = 2 SUSY

In this chapter, we present the approach to obtaining the low-energy effective action of

a pure N = 2 Super-Yang-Mills theory discovered by Seiberg and Witten [34]. Even

though the introduction of the so-called Seiberg-Witten curve, which we will explain

shortly, made a generalization of their first result to higher-rank gauge groups and the

inclusion of matter [35] relatively straight-forward, we limit ourselves to the simplest

possible case.

Compared to the previous chapters, this one differs in quite a few aspects. Most im-

portantly, the majority of the machinery developed above will not be of any use to us.

Apart from some general knowledge about instantons, such as the general structure of

instanton contributions and their role in the anomaly of the U(1)R symmetry, we do not

need instanton techniques. In particular, we will not use the semi-classical approxima-

tion of the path integral outlined in Section 3.2, as the analysis by the above two authors

relies mainly on global properties of the theory. Despite all of that, we believe that this

chapter fits in nicely with the rest, as it is a rare example of an interacting field theory

whose instanton corrections can be determined to all orders.

Apart from the original papers, there exist several reviews of the topic, e.g. [2] or [26]

and in the following we will borrow from all of them.

4.1 The set-up for pure SU(2) SYM

Let us now explain the concrete set-up. For the time being, we revert back to Minkowski

spacetime in order to follow the conventions of [34, 2]. The problem at hand is the

following: Consider pure N = 2 Super-Yang-Mills theory with gauge group G = SU(2).

Then the field content of the theory is an N = 2 vector multiplet containing a vector

field Aµ, a complex scalar φ and two fermionic fields λ and ψ, all of which transform in

the adjoint representation of SU(2) (see also Table 5). In N = 1 language, these fields

can be packaged into a vector multiplet and a chiral multiplet for which the Lagrangian
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density is given by

L = 1
8π

= Tr
[
τ

(∫
d2 θWαWα + 2

∫
d2θd2θ̄ Φ†e2V Φ

)]
. (4.1)

Inserting the component expressions for the superfields Wα and Φ, this yields the scalar

potential

V = 1
2g2 Tr

(
[φ, φ†]2

)
, (4.2)

which is minimized if and only if φ takes values in the Cartan subalgebra H ⊂ SU(2).

Without loss of generality, one can take φ to be

φ = aσ3 =

a 0

0 −a

 , (4.3)

since all other choices of a Cartan subalgebra can be related to this one by a gauge

transformation. To eliminate the remaining redundancy under the gauge transformation

a → −a one chooses the Casimir operator of SU(2),

u = 1
2

〈Trφ2〉 , (4.4)

as a coordinate on M, the space of vacua. Classically, u = 1
2a

2 and one observes that

for generic values of u, the gauge group SU(2) is broken down to U(1) and the gauge

bosons W± corresponding to linear combinations of A1 and A2 become massive. In the

absence of quantum effects, there is exactly one singular point, u = 0, at which the full

gauge symmetry is restored.

To determine the true quantum low-energy effective action, we take a Wilsonian ap-

proach. For renormalization scales µ much larger than the symmetry breaking scale a,

we have an asymptotically free SU(2) theory with negative β-function, while for µ � a

the W± bosons are integrated out and effectively one obtains a U(1) theory with vanish-

ing β-function. We set µ = a and search for the gauge coupling of the effective theory

for any value of u.
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Due to the asymptotic freedom of the SU(2) theory and the fact that the gauge coupling

“freezes out” at the symmetry breaking scale a, we can expect the theory to be weakly

coupled and semi-classical methods to work only in the region u
Λ2 → ∞. It is the

achievement of Seiberg and Witten to nevertheless determine the effective gauge coupling

for all values of u and we review their argument.

4.1.1 General form of the action

A general result from supersymmetry states that the low-energy action for N = 2 U(1)

gauge theory is completely determined by a preprotential F(A), which is a holomorphic

function of the chiral superfield A. Given F , the Lagrangian density takes the form

Leff = 1
4π

=
[∫

d2θd2θ̄
∂F(A)
∂A

Ā+
∫

d2θ
1
2
∂2F
∂A2W

αWα

]
, (4.5)

where Ā is the conjugate of A instead of a classical solution to the equations of motion

as in Chapter 2. Comparison with Eq. (4.1) shows that the complexified gauge coupling

is given by

τ(a) = ∂2F(A)
∂A2 , (4.6)

where a is as above the scalar component of the chiral multiplet. The metric on the field

space can then be written as

ds2 = τ(a)dadā . (4.7)

On general grounds, the prepotential will be

F = Fpert + Fnon-pert , (4.8)

while classically one would expect to have F = 1
2τ0A

2 with τ0 the bare coupling. To

determine the one loop contribution one simply integrates the β-function of the theory,

which is β(g) = −g3

4π2 . Using the scale at which g “freezes out” as integration limit, one

59



4 THE SEIBERG-WITTEN APPROACH TO N = 2 SUSY

finds

Fpert = i

2π
A2 log

(
A2

Λ2

)
. (4.9)

Making use of N = 2 supersymmetry, it can then be shown [36] that F does not receive

higher perturbative corrections. On the other hand, non-perturbative corrections can

occur and will be proportional to e−8π2k/g2 . Using the β-function again, this can be

rewritten as

e−8π2k/g2 =
(
Λ

A

)4k

. (4.10)

Finally, one argues that the anomalous U(1)R symmetry is restored if one assigns Λ a

charge of two. In order for F to transform homogeneously, there must be an additional

factor of A2 in the non-perturbative correction.

Putting everything together, one therefore arrives at the following expression for the

prepotential:

F = i

2π
A2 log

(
A2

Λ2

)
+A2

∞∑
k=1

Fk

(
Λ

A

)4k

(4.11)

As a closing remark, note that =τ(a) = ∂2F
∂A2 is a harmonic function and, as such, it has

a global minimum if and only if it is constant. Discarding that possibility, one finds that

τ(a) cannot be well-defined globally, but only on a local patch. We must therefore look

for alternative descriptions of our theory and in the next section we do so.

4.1.2 Duality

For classical electromagnetism, it has long been known that after introducing a magnetic

current, the equations of motion exhibit a Z2 symmetry, the so-called electromagnetic

duality, swapping electric and magnetic sources and fields.

∂µ ? F
µν = jν

el , ∂µF
µν = jν

mag (4.12)
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Here the duality acts as Fµν → ?Fµν and ?Fµν → −Fµν accompanied by jν
el → −jν

mag

and jν
mag → jν

el. Note that the change to Minkowski spacetime implies that now ??Fµν =

−Fµν .

We now implement the same duality at the level of a path integral and extend it to an

abelian superfield. Let us start with an electric description F = dA without magnetic

sources, or more precisely its superfield generalization W = DV . To be able to treat Wα

as an independent chiral field, we must introduce a Lagrange multiplier VD enforcing the

Bianchi identity DW = 0. The kinetic term

1
8π

=
∫

d2θ τ(A)WαWα (4.13)

is therefore accompanied by

1
4π

=
∫

d4xd2θd2θ̄ VDDW = − 1
4π

=
∫

d4xd2θd2θ̄ Wα
DWα , (4.14)

where WD = DVD. Since these terms are only quadratic, one can perform the path

integral over Wα exactly and obtains an equivalent kinetic term

1
8π

=
∫

d2θ
−1
τ(A)

Wα
DWDα . (4.15)

Having rewritten the kinetic term for the gauge field, let us focus on the chiral Higgs

field A and find its magnetic dual AD. Following conventions and defining h(A) = ∂F(A)
∂A ,

the term for the chiral field reads

=
∫

d2θd2θ̄ h(A)Ā . (4.16)

By simply setting AD = h(A), this term becomes

=
∫

d2θd2θ̄ hD(AD)ĀD , (4.17)

61



4 THE SEIBERG-WITTEN APPROACH TO N = 2 SUSY

with hD(AD) = hD(hA) = −A. Using further that

−1
τ(A)

= −1
dh(A)

dA

= − dA
dh(A)

= h′
D(AD) = τD(AD) , (4.18)

finally yields the same Lagrangian as in Eq. (4.5) with A and τ replaced by AD and τD.

Summarizing, we have found that we can express the original Lagrangian coupling elec-

trically to a matter field A by an equivalent description coupling magnetically to AD. At

the same time, the coupling constant τ is transformed to τD via

τD = −1
τ
. (4.19)

Note further that the action is also invariant under a shift τ → τ + 1, or equivalently

θ → θ + 2π. Since these two maps generate the group SL(2,Z), we find that there

are infinitely many equivalent descriptions of the same physical theory, all of which are

related by some SL(2,Z) map. These transformations act on the coupling constant as

τ → ατ + β

γτ + δ
where αδ − βγ = 1 and α, β, γ, δ ∈ Z (4.20)

and on the fields via

AD

A

 →

α β

γ δ


AD

A

 . (4.21)

In order to make this SL(2,Z)-symmetry more manifest, it is helpful to find a suitable

mathematical description of the variables aD(u) and a(u). They are, of course, functions

of the coordinate u parametrizing the moduli space M. Take X ∼= C2 to be the space in

which (aD, a) takes values, then f : M → X with f = (aD(u), a(u)).

X can further be endowed with a symplectic form ω = =daD ∧ dā. Since any symplectic

form written in local coordinates as

ω = i

2
∑
j,k

hjk̄dzj ∧ dz̄k̄ (4.22)
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defines a Kähler metric hjk̄, so does our ω. Using the map f , we can therefore use the

pull-back f∗(ω) as a natural metric on M. Written in coordinates, on has

ds2 = = daD

du
dā
dū

dudū = − i

2

(daD

du
dā
dū

− dāD

dū
da
du

)
dudū

= − i

2
εαβ

daα

du
dāβ

dū
dudū , (4.23)

where in the final expression aα = (aD, a) and the invariant tensor of SL(2,Z) with

ε12 = 1 makes the invariance that we found above obvious.

Hence, the appropriate mathematical structure describing the triplet a, aD and u is that

of an SL(2,Z)-bundle over the base space M, which is parametrized by u. (aD, a) is a

section of this bundle taking values in its fiber X.

4.1.3 Central charges

Due to the constraints imposed by supersymmetry, there is a useful formula one can

use in order to obtain lower bounds for the masses of the fields appearing in our theory.

Although this is usually taught in standard supersymmetry courses, we quickly repeat

the argument. For N = 2 supersymmetry, the supercharges Qa
α and Q̄β̇b satisfy

{Qa
α, Q̄β̇b} = 2σµ

αβ̇
Pµδ

a
b (4.24a)

{Qa
α, Q

b
β} = 2

√
2εαβεabZ (4.24b)

{Q̄α̇a, Q̄β̇b} = 2
√

2εα̇β̇εabZ , (4.24c)

where the central charge Z is a constant operator taken to commute with all other

generators. Q and Q̄ can be linearly combined into operators

aα = 1
2

(
Q1

α + εαβ(Q2
β)†
)

and bα = 1
2

(
Q1

α − εαβ(Q2
β)†
)

(4.25)

satisfying the fermionic Clifford algebrae

{aα, a
†
β} = δαβ

(
M +

√
2Z
)

and {bα, b
†
β} = δαβ

(
M −

√
2Z
)
. (4.26)
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Here we chose the rest frame for a massive particle to be such that Pµ = (M, 0, 0, 0).

Since

〈ψ|{bα, b
†
α}|ψ〉 = |bα |ψ〉 |2 + |b†

α |ψ〉 |2 ≥ 0 ∀ψ ∈ H (4.27)

{bα, b
†
α} is a positive operator. Therefore the mass of the multiplet is bounded by

M ≥
√

2Z , (4.28)

which is known as the BPS bound. In particular, fields saturating this bound correspond

to lower-dimensional representations, so-called short multiplets, which are annihilated by

bα. Since these fields lie in different representations than those with higher masses, small

perturbations will not change this structure and their masses are therfore protected from

quantum corrections.

Determining the value of the central charge is straight-forward, but lengthy and we refer

to [2] for details. The main idea is that the charges Q appearing on the left hand side of

Eq. (4.24) are given by the space integral over the time component of the supercurrents

Saµ
α associated with the supersymmetry transformations, i.e.

Qa
α =

∫
d3xSaµ

α (4.29)

Going through all the algebra, one finds that the resulting integral is that over a to-

tal derivative and therefore only boundary terms contribute. Evaluating those for the

effective action of Eq. (4.5) then yields

Z = ane + aDnm (4.30)

for a particle of electric charge ne and magnetic charge nm, where a is the vacuum ex-

pectation value of the electrically charged Higgs field and aD that of its magnetic dual.

With the knowledge of the central charge of our N = 2 gauge theory, there is one more
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observation to be made. As we saw in the previous section, the chiral fields (AD, A)

transform under a duality transformation M ∈ SL(2,Z) as in Eq. (4.21) and therefore

so do their scalar components aα = (aD, a). At the same time, a physically equivalent de-

scription must have the same observable masses and therefore the charges nα = (nm, ne)

of the fields must transform as

n → n ·M−1 M ∈ SL(2,Z) . (4.31)

4.2 Monodromies

Up to this point, we have explored different ways of formulating one and the same theory

in terms of different sets of fields. In doing so, we discovered that all these descriptions

are related by SL(2,Z) transformations and we saw evidence that any such description

can only be valid in a local patch of the whole moduli space M. Nevertheless, we have

not made much tangible progress in exploring M, since the only region under control is

that satisfying u
Λ2 → ∞. In this section, we will present the physical arguments given

by Seiberg and Witten to derive similar statements about other patches of M, using

SL(2,Z) transformations to rewrite the theory in terms of variables in which it is weakly

coupled. Fortunately, and somewhat miraculously, it turns out that - up to irrelevant

ambiguities - there is a unique way of patching together these different local patches and

we thereby control of all regions of M.

Let us begin by a reinspection of the patch u
Λ2 → ∞ for which we obtain an asymptotically

free theory with u = 1
2a

2. In this regime, non-perturbative corrections to the prepotential

are supressed and Eq. (4.11) simplifies to

F(a) = i

2π
a2 log

(
a2

Λ2

)
, (4.32)

where we exchanged the chiral field A by its scalar component a. Since aD = ∂F(a)
∂a , we

also have

aD = ia

π
log

(
a2

Λ2

)
+ ia

π
. (4.33)
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Consider now a closed loop on the u-plane around the origin u = 0, i.e. u → e2πi · u.

Then we have the transformation

a → −a (4.34)

therefore log(a) → log(a) + iπ. From Eq. (4.33) one has that aD transforms as

aD → −2ia
π

(
log

(
a

Λ

)
+ iπ

)
− ia

π

= −2ia
π

log
(
a

Λ

)
− ia

π
+ 2a

= −aD + 2a . (4.35)

In compact form, (aD, a) transforms as (aD, a)T → M∞(aD, a)T with the monodromy

matrix around infinity given by

M∞ =

−1 2

0 −1

 . (4.36)

A bit more abstractly, let M′ be the moduli space with singularities removed. Then,

as argued by Seiberg and Witten, the monodromies must form a representation of the

fundamental group π1(M′). If M has only a single puncture at infinity, then the funda-

mental group is abelian and necessarily so are its representations. In this case, however,

a2 would be a good global coordinate since M2
∞ = 1l, which is in contradiction to what

we found in Section 4.1.1.

In order to have non-abelian monodromies, one needs at least two more punctures. Re-

call from Section 3.3.2 that there is a discrete Z2 symmetry acting on u = 1
2a

2 by

u → −u. The minimal assumption is hence that there must be two more singularities re-

lated by the Z2 action. As it turns out, this minimal guess leads to very plausible results.

Physically, singularities are caused by additional states becoming massless, which we

falsely integrate out in our Wilsonian approach, thereby making M singular. Classically,

this is what one would expect to happen at u = 0, where the gauge symmetry is enhanced

from U(1) to SU(2), since the corresponding gauge bosons W± do not gain masses
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through the Higgs mechanism.

Quantum mechanically, this is not what happens. Indeed, Seiberg and Witten used

purely physical arguments to show that at one of the singularities a magnetic monopole

must become massles. Instead of their insightful physical reasoning [34], there is a

simpler, albeit less enlightening mathematical argument, which we give here. Assume

that the additional two singularities are at ±Λ2. Then the corresponding monodromy

matrices must satisfy

M∞ = MΛ2 ·M−Λ2 . (4.37)

Even though Eq. (4.37) has infinitely many solutions, they are all related by conjugation

and lead to physically equivalent results. We can therefore pick an arbitrary pair and

the simplest one to choose is

MΛ2 =

 1 0

−2 1

 and

−1 2

−2 3

 . (4.38)

To interpret these two matrices physically, let us determine the monodromy around a

singularity where a dyon with charge (nm, ne) becomes massless, which we denote by

M (nm,ne). Following [2] we first determine the monodromy around the point where a

particle of single electric charge becomes massless. Assuming that this happens at a

point u = u0, we know from the BPS bound and Eq. (4.30) that a(u) u→u0−−−→ 0. Hence,

a(u) is an appropriate local coordinate and can be expanded as

a(u) = c(u− u0) + . . . (4.39)

From the β-function of the U(1) theory one further knows that around u0

τ(a) = − i

π
log

(
a

Λ

)
, (4.40)

which gives after integration

aD = − ia

π
log

(
a

Λ

)
+ ia

π
. (4.41)
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To determine the monodromy, one moves in a loop around u0 such that a → e2πia and

hence

aD

a

 →

1 2

0 1


aD

a

 = M (1,0) ·

aD

a

 . (4.42)

Having foundM (1,0), one can use SL(2,Z) duality to find all other monodromies. Assume

now that at u0 a dyon of charge n = (nm, ne) becomes massless. To find a dual description

in which this dyon appears to have charge (0, 1), one uses that under a transformation

S =

α β

γ δ

 ∈ SL(2,Z) (4.43)

the charge transforms as n̂ = n·
(
S−1). Here we denote the dual charges n̂ by a hat. Since

we already know the monodromy M (0,1), we obtain M (nm,ne) simply by conjugation:

M (nm,ne) = S−1M (0,1)S (4.44)

Setting n̂ = (0, 1), one can determine the components of S to be

S =

1+βnm

ne
β

nm ne

 , (4.45)

which, after insertion into Eq. (4.44), finally yields

M (nm,ne) =

1 + 2nmne 2n2
e

−2n2
m 1 − 2nmne

 . (4.46)

As a general feature, observe that TrM (nm,ne) = 2 ∀(nm, ne). Therefore the SL(2,Z) ele-

ment corresponding to weak/strong coupling duality S =

1 0

0 −1

 does not correspond

to a monodromy.

Comparing the general formula to the two monodromy matrices in Eq. (4.38), we find

that at u = Λ2 a magnetic monopole becomes massless, while the massless state corre-

sponding to the singularity at u = −Λ2 is a dyon of charge (1,−1).
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4.3 Solution in terms of a curve

Having made all the previous observations about the low-energy effective action of our

N = 2 gauge theory in different local patches of the moduli space, the time has come

to put all the different pieces together to gain a global picture of the theory. To do so,

recall that we viewed (aD, a) as a section of an SL(2,Z) bundle over the moduli space

M and search for a better geometrical understanding of this structure. We know the

monodromies under which (aD, a) transforms as one circles the punctures of M and the

surviving piece of the U(1)R symmetry ensures that there is a Z2 symmetry acting a

u → −u. Last of all, we require =∂aD
∂a to be positive.

The key insight by Seiberg and Witten was that this moduli space M can be represented

in a form well-known to mathematicians, namely as

M ∼= H/Γ (2) (4.47)

where H is the complex upper half plane and Γ (2) ⊂ SL(2,Z) is the subgroup generated

by the monodromy matrices. It is a mathematical fact that the same space describes a

certain class of Riemann surfaces of genus one, namely those parametrized as

y2 = (x− Λ2)(x+ Λ2)(x− u) . (4.48)

The moduli space of vacua can therefore equally well be interpreted as being the moduli

space of a certain class of curves. Somewhat miraculously, one can exploit this correspon-

dence further and determine all relevant properties of the low-energy effective quantum

theory by considering the different geometric properties of the corresponding curve.

First of all, note that y appears quadratically and that the square root has two branches.

Hence the total space Eu is a double cover of the complex plane with branch cuts from

−1 to 1 and u to ∞ linking the two sheets. In order to see that this corresponds to

a genus one surface, consider two homologically equivalent cycles on a torus. Squash-

ing those cycles such that they become lines, one obtains recovers our space with ∞

shifted to some finite value of x. Furthermore, Eq. (4.48) admits a Z4 symmetry act-
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ing as Z(x, y, u) = (−x, iy,−u), of which only a Z2 subgroup acts non-trivially, since

Z2(x,−y, u) does not have any effect relevant to us, thereby reproducing the U(1)R rem-

nant of the quantum theory.

Let us now come to the crucial point, namely the geometrical interpretation of the section

(aD, a). Recall our search for a quantity τ satisfying =τ > 0. As we will see shortly, this

requirement suggests that we pick

a =
∫

γ1
λSW and aD =

∫
γ2
λSW (4.49)

for a canonical basis γi of the first homology group H1(Eu,C), i.e. one whose intersection

number satisfies

γ1 · γ2 = 1 . (4.50)

From our interpretation of Eu as a torus with two homologically equivalent, but trans-

lated cycles reduced to lines, it follows that one can take γ1 to be the contour surrounding

the branch cut from −1 to 1 and γ2 a contour enclosing the singularities at 1 and u and

intersecting the two different branch cuts. Observe now that as u approaches −1, 1 or

∞, two branch points collide and cause the curve to become singular.

Furthermore, λSW ∈ H1(Eu,C) must be such that

dλSW
du

∼ ω1 = dx
y
, (4.51)

where the proportionality constant is some function independent of x and y and ω1 is

the unique holomorphic differential on our curve Eu. Lastly, λSW, although allowed to

have poles, should not have non-vanishing residues.

Let us now explain the reasons for these choices. Requiring Eq. (4.51) guarantees that
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Riemann’s second relation holds, namely that

=τ = =daD

da
= =

daD
du
da
du

= =
∫

γ1
ω1∫

γ2
ω1

> 0. (4.52)

Therefore every elliptic curve gives rise to an appropriately behaved coupling constant.

As noted by [34], the converse case is also true: Given τ with =τ > 0 ∀u, then the trans-

formation of τ and (aD, a) under monodromies around singularities uniquely determines

the family of curves, leading once again to the conclusion that there is a 1 : 1 relation

between the low-energy effective theory for some u and a curve as in Eq. (4.48) with the

same parameter.

In order to determine the proportionality constant of Eq. (4.51), one uses the known

behaviour of (aD, a) around one of the singularities, which fixes it uniquely. It then

remains to be shown that (aD, a) behave as expected around the other singularities as

well. The correct choice turns out to be

λSW = ω2 − uω1√
2π

= dx√
2πy

(x− u) . (4.53)

Take γi as above, then

a =
√

2
π

∫ Λ2

−Λ2
dx

√
x− u√
x2 − Λ4

u→∞−−−→
√

2u
π

∫ Λ2

−Λ2

dx√
Λ4 − x2

=
√

2u (4.54)

and

aD =
√

2
π

∫ u

Λ2
dx

√
x− u√
x2 − Λ4

=
√

2
π

∫ 1

Λ2/u
dz u

√
uz − u√

u2z2 − Λ4

=
√

2u
π

∫ 1

Λ2/u

√
z − 1√

z2 − Λ4/u2
u→∞−−−→

√
2u i
π

log
(
u

Λ2

)
. (4.55)

Analogously, for u → 1 one finds that

a = 4Λ
π

− (u− Λ2) log(u− Λ2)
2π

and aD = i

2Λ
(u− Λ2) , (4.56)

thereby reproducing the monodromies expected from Eq. (4.38).
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In fact, one can evaluate both integrals in terms of hypergeometric functions, namely

a =
√

2(u+ 1)F
(

−1
2
,
1
2
, 1; 2

u/Λ2 + 1

)
(4.57)

aD = i

2Λ
(u− Λ2)F

(
1
2
,
1
2
, 2; 1 − u/Λ2

2

)
, (4.58)

whose inversion gives u(a), aD(a) and F(a). From the last term, one can then easily

read off the coefficients of the instanton contributions.

Having found explicit expressions for a(u) and aD(u), let us summarize the findings by

Seiberg and Witten: The low-energy effective action of N = 2 Super-Yangs-Mills theory

with gauge group SU(2) is a U(1) theory, whose prepotential F is severely constrained by

supersymmetry. F further exhibits an SL(2,Z) duality relating infinitely many different

descriptions of the same physical theory by transformations on the fields (aD, a). The

moduli space M of the theory is shown to be the same as the moduli space of a certain

class of genus one Riemann surfaces and many geometric properties can be interpreted

as gauge theory features. Among these are the variables (aD, a), which are determined

by calculating the integral of a (up to exact forms) uniquely defined Seiberg-Witten dif-

ferential λSW over a basis of 1-cycles of the Riemann surface. Having found (aD, a) the

coupling constant τ can be determined.

Physically, singularities of the curves, i.e. points in the moduli space of the Seiberg-

Witten curve at which some cycle degenerates, correspond to additional particles be-

coming massless. Unlike in the classical case, there is no point in the moduli space at

which gauge bosons become massless and the full gauge symmetry is restored. Instead,

monopoles or dyons have zero mass at the singularities of M corresponding to u → ±Λ2.

Remarkly, the whole analysis relied mainly on global properties of the moduli space and

used almost no information about the instanton solutions or even their moduli spaces

themselves.
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5 Reproducing Seiberg-Witten from field theory

After the unexpected solution by Seiberg and Witten, interest increased in verifying their

results independently by determining the instanton contributions using a more conven-

tional field theoretic approach. Due to the technical difficulty of the computation, it

took eight years and a series of works until Nekrasov succeeded in doing so.

In his calculation, Nekrasov uses a variety of fairly advanced techniques from pure math-

ematics and topological field theory in addition to the instanton techniques we have

studied. Due to the constraints of time and space, we only try to point out the gist of his

calculation, hoping to make the concepts behind it somewhat accessible. To introduce

the necessary background, this chapter first summarizes the key points of cohomological

field theory and presents Witten’s twisted N = 2 field theory, which is an interesting

subject in its own right. Readers interested in more detail can consult the reviews [9, 11].

Afterwards, we outline the concept of Nekrasov’s own work, namely [32] and references

therein.

5.1 Cohomological field theory

Let us now explain in crude terms what is required for a quantum field theory in order

to be a cohomological field theory by roughly following the exposition in [9].

Given a field theory on some arbitrary manifold M, we call it cohomological if there is a

fermionic operator Q whose action on some functional V gives the action of the theory

S = {Q, V } . (5.1)

Furthermore, Q is required to be nilpotent and the path integral measure invariant under

its action. Q therefore generates a symmetry of the theory, since

δS = {Q, S} = 0 . (5.2)

Since the vacuum should be invariant under any unbroken symmetry, it satisfies

Q |0〉 = 0 . (5.3)
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To see why these requirements have rather drastic implications for the theory, begin by

noting that any operator O, which can be expressed as O = {Q, χ} for some χ, has zero

expectation value:

〈O〉 = 〈0| {Q, χ} |0〉 = 〈0| (Qχ+ χQ) |0〉 = 0 . (5.4)

Consider now the partition function of the theory

Z =
∫

[dΦ] e−S[Φ,g] , (5.5)

where Φ denotes the set of all fields and g is the metric on M. Varying g infinitesimally

and assuming that the path integral measure is independent of g, one obtains

δgZ = −
∫

[dΦ] e−S[Φ,g] δgS

= −
∫

[dΦ] e−S[Φ,g] {Q, δV
δgαβ

δgαβ}

= 〈{Q, δV
δgαβ

δgαβ}〉

= 0 . (5.6)

Hence, the partition function is independent of the metric on M and must therefore

be a topological invariant of the underlying manifold. For that reason, cohomological

field theories are a special class of topological field theories and were first examined by

Witten [44]. To see why they deserve their name, let us ask whether there are additional

topological invariants defined by the expectation value of some operator O. Varying the

metric, one finds

δg〈O〉 =
∫

[dΦ] e−S[Φ,g] (δgO − δgS · O)

= 〈(δgO − δgS · O)〉 . (5.7)

If O further fulfills

{Q,O} = 0 and δgO = {Q, R} (5.8)
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for some operator R, then

δg〈O〉 = 〈{Q, R+ V · O}〉 = 0 (5.9)

and 〈O〉 is indeed another metric independent quantity. On the other hand, we saw in

Eq. (5.4) that operators that can be expressed as Q acting on some other operator, the

Q-exact operators, give trivial observables. We are therefore interested in operators O

which are annihilated by Q, so-called Q-closed operators, which are not Q-exact.

Mathematically speaking, we are studying the cohomology of Q: Two topological invari-

ants are the same if their corresponding operators belong to the same cohomology class,

i.e. they differ only by a Q-exact term.

Last but not least, let us point out another crucial property of cohomological field theories,

namely the fact that their semi-classical approximation is exact. To see how this feature

emerges, rescale the action by a dimensionless parameter t. Consider now the variation

with respect to t:

δtZ(t) = δt

∫
[dΦ] e−t·S[φ,g]

= 〈{Q, V }〉δt

= 0 (5.10)

Since Z(t) is independent of t, one can evaluate the path integral limit t → ∞, where

Z(t) localizes on the minima of the action, which correspond to the classical solutions.

5.2 Twisted N = 2 theory

Heaving specified what is meant by a cohomological field theory, let us now present

what is possibly the most famous example, the so-called Donaldson-Witten-theory. First
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written down by Witten [45], its action reads as follows:

S =
∫

M

√
g d4x Tr

(
1
4
FmnF

mn + 1
2
φ†DmD

mφ− iηDmψ
m + iDmψnχ

+mn

− i

8
φ[χ+

mn, χ
+mn] − i

2
φ†[ψm, ψ

m] − i

2
φ[η, η] − 1

8
[φ, φ†]2 + 1

4√
g
FmnF̃

mn

)
(5.11)

In this expression all fields transform in the adjoint representation of the gauge group

and at least the bosonic fields look fairly ordinary: φ is a complex scalar field and Fmn

is the usual field strength tensor. On the other hand, the fermionic fields η, ψm and

χ+
mn transform in the scalar, vector and self-dual second antisymmetric representation

respectively.

As it is a cohomological field theory, its action can be expressed as S = {Q, V }, where

V = Tr
(1

4
Fmnχ+

mn + 1
2
ψmD

mφ† − 1
4
η[φ, φ†]

)
(5.12)

and Q is a nilpotent operator that we will specify shortly.

Despite its unconventional appearance, this action is related to the well-known N = 2

pure Super-Yang-Mills theory by a pure change of notation and the inclusion of the

topological term FmnF̃
mn. Let us now see how this arises.

From the previous chapter, we are familiar with both the field content and the global

symmetry group of N = 2 SYM. Dropping the anomalous U(1) part of the R-symmetry,

the symmetry group is SU(2)L × SU(2)R × SU(2)I . Consider now to replace SU(2)R ×

SU(2)I by its diagonal subgroup, which we call SU(2)R′ . Under the new “Lorentz group”

the bosonic fields retain their transformation behavior, but the fermions transform under

different representations, since the two spin 1/2 fields split up into a scalar, a vector and

a self-dual part, as can be seen from Table 6. Since the supercharges of the original

theory split analogously, one can identify the operator Q with the scalar supercharge

part. We therefore see that the Donaldson-Witten action can be obtained from ordinary

N = 2 SYM theory by a simple twist and it is therefore sometimes called twisted N = 2

theory.
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Old field SU(2)L SU(2)R SU(2)I SU(2)L × SU(2)R′ New field(s)
Am [1] [1] [0] [1; 1] Am

φ [0] [0] [0] [0; 0] φ
ψα [1] [0] [1] [1; 1] ψm

λα̇ [0] [1] [1] [0; 0] + [0; 2] η + χ+
mn

Table 6: Pure N = 2 field content in untwisted and twisted notation

By varying the action one finds that the classical equations of motion are

Fmn = −F̃mn (5.13)

and

Dmψn −Dnψm + εmnrsD
rψs = 0 (5.14)

Dmψ
m = 0 (5.15)

for the fermions. Recalling the results from Chapter 2 we hence see that the path integral

reduces to an integral over the anti-instanton moduli space.

Having defined the action, we know that the first non-trivial topological invariant is

the partition function of the theory. On the other hand, it remains to be seen which

other invariants there are. As discussed in the previous section, we are looking for

representatives of non-trivial cohomology classes of Q which transform by Q-exact terms

under variations of the metric.

It turns out that choosing gauge invariant polynomials of φ gives such operators, since

φ does not depend on g and is invariant under Q. Nevertheless, one can argue that it

is not Q-exact and it is therefore a suitable choice. Since gauge invariant polynomials

are in one to one correspondence with Casimir operators of the respective gauge group,

there are exactly rk(G) independent polynomials. In the simplest case of SU(2) there is

only the one known from the previous chapter and we define

O(0)(x) = 1
2

Trφ2(x) . (5.16)

Given O(0) and a choice of k points {x1, . . . , xk} on M, we can then define the following
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topological invariant

Z(k) = 〈O(0)(x1) . . .O(0)(xk)〉 . (5.17)

Since Z(k) is metric independent, it cannot depend on the choice of points. This obser-

vation led Witten to find that

dx1Z(k) = 〈dO(0)(x1) . . .O(0)(xk) = 0 (5.18)

implies that

dO(0)(x) = i{Q,O(1)(x)} (5.19)

for some one-form O(1)(x). In fact, this process can be continued recursively up to

O(4)(x) by solving

dO(k)(x) = i{Q,O(k+1)(x)} (5.20)

for k ∈ {0, 1, 2, 3}. One finds

O(1) = Tr (φ ∧ ψ) O(2) = Tr
(1

2
ψ ∧ ψ + iφ ∧ F

)
O(3) = iTr (ψ ∧ F ) O(4) = −1

2
Tr (F ∧ F ) , (5.21)

where ψ and F are taken to be 1- and 2-forms. Using these new forms, one can define

additional operators as follows: Take γ to be a homology cycle of dimension k and let

I(γ) =
∫

γ
O(k) , (5.22)

then this defines another Q-closed operator:

i{Q, I(γ)} =
∫

γ
i{Q,O(k)} =

∫
γ

dO(k−1) =
∫

∂γ
O(k−1) = 0 (5.23)

78



5 REPRODUCING SEIBERG-WITTEN FROM FIELD THEORY

Furthermore, if γ is a homology boundary, i.e. γ = ∂β for some β, then I is Q-exact:

I(γ) =
∫

∂β
O(k) =

∫
β

dO(k) = i{Q,
∫

β
O(k−1)} (5.24)

Topological invariants associated with I(γ) therefore only depend on the homology class

of γ and we can define our most general invariant:

Z(γ1, . . . , γr) = 〈I(γ1) . . . I(γr)〉 (5.25)

The significance of this field theory and its observables lies in the connection to Donaldson

theory. One of Donaldson’s great achievements was his discovery of certain topological

invariants of four-manifolds, which he found by studying certain instanton solutions on

those manifolds. Witten showed that these invariants are the same as those arising from

the twisted N = 2 SYM-theory.

Due to the connection to pure mathematics, there are many more things one could

say about Donaldson-Witten theory and we refer to [9] for more details and further

references.

5.3 Calculating the full prepotential from field theory

Having discovered that N = 2 gauge theory can be twisted such that various observables

become topological invariants, one could hope to perform the localized integral. In fact,

Hollowood used the twisted supercharge to show [22] that the integral of Eq. (3.36)

localizes on the minima of the effective instanton action, i.e. those points at which all

instantons shrink to zero size. Nevertheless, there remains a variety of problems, since

the resulting spaces are both non-compact and singular. Although these problem can

be overcome using the resolved instanton moduli spaces mentioned in Section 2.4.2, the

resulting integrals remain difficult and were only evaluated for the case of one and two

instantons [23].

In this last section, we sketch Nekrasov’s solution of the problem. The additional in-

gredient of his computation is to use more symmetries of the moduli space Mk. As we

noted in Chapter 2, instantons with gauge group G have a natural action of G× SO(4)

on their moduli space, where G corresponds to global gauge transformations and SO(4)
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is the usual group of four-dimensional rotations. Instead of examining Mk, Nekrasov

instead decided to study the cohomology of Mk/(G × T2), where T2 is the maximal

torus of SO(4). The proper framework of studying the cohomology of this singular space

is called equivariant cohomology and one denotes the respective cohomology groups by

H∗
G×T2(Mk).

In the following, we will completely neglect all issues arising due to zero size instantons

and assume implicitly that we are considering the smoothly resolved instanton moduli

spaces instead (see [32] for a justification).

5.3.1 Defining UV and IR observables

Without going into more detail on the mathematical side, let us show how the invariants

of the conventional twisted N = 2 theory are modified:

As before, the field content is given in Table 6, but let us pay a bit more respect to the

supercharges and superspace this time. Since they transform in the same representations

as the fermions, they split up in the same way and one obtains the twisted supercharges

and superspace coordinates

Q,Q+
mn, Gm and θm, θ̄, θ̄+mn . (5.26)

In terms of the twisted superspace, a superfield can be expanded as

Φ = φ+ θmψm + 1
2
Fmnθ

mθn + . . . , (5.27)

or, using form notation:

Φ = φ+ ψ + F + . . . (5.28)

Studying equivariant cohomology means that our nilpotent operator becomes

Q̃ = Q + EaΩ
a
mnx

nGm , (5.29)

where Ωa
mnx

n∂m, a = 1, . . . , 6 are the vector fields generating rotations of SO(4) and

Ea ∈ so(4). Given Q̃, one can proceed in the spirit of cohomological field theory and
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construct Q̃-closed operators:

OΩ(E)
P =

∫
R4
Ω(E) ∧ P (Φ) (5.30)

There are several comments to be made about this formula:

1. Ω(E) is an inhomogeneous form on R4 that must transform equivariantly under

SO(4), i.e.

g∗Ω(E) = Ω(g−1Eg) ∀ g ∈ SO(4) . (5.31)

It is further required to be closed under the equivariant differential

DΩ(E) = (d + ιV (E))Ω(E) = 0 , (5.32)

where V (E) is the vector field EaΩ
a
mnx

n∂m generating rotations on R4.

2. P (Φ) must be a gauge invariant polynomial and all terms in the integrand of Eq.

(5.30) are understood to be dropped if their total degree is not equal to four.

Next of all, let us find a form Ω(E) satisfying the above conditions. As discussed in

[32], it turns out that requiring SO(4) invariance is too strong a restriction: There are

no non-constant forms. One therefore breaks the SO(4) symmetry down to U(2) by

choosing a symplectic structure on R4:

ω = dx1 ∧ dx2 + dx3 ∧ dx4 (5.33)

At the same time, ω defines a complex structure on R4, turning it into C2 by assigning

complex coordinates z1 = x1 + ix2 and z2 = x3 + ix4. To construct an equivariantly

closed form, one can now exploit the standard fact that the symplectic form defines a

moment map µ(C2) → u(2)∗ via

dµ(E) = ιV (E)ω . (5.34)

Parametrizing the maximal torus of SO(2)×SO(2) ⊂ SO(4) by E = (ε1, ε2), the moment
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map is given as

H(E) = µ(E) = ε1|z1|2 + ε2|z2|2 . (5.35)

From Eq. (5.34) and ιV (E)H(E) = dω = 0 it follows that the inhomogeneous form

Ω(E) = ω −H(E) (5.36)

is indeed closed under D.

Let us choose P (Φ) = Tr(Φ2) and define

Z(a, ε1, ε2) =
〈

exp
(

− 1
4π2

∫
R4

(ω −H) ∧ Tr(Φ2)
)〉

a

=
〈

exp
(

− 1
4π2

∫
R4
ω ∧ Tr

(
φ ∧ F + 1

2
ψ ∧ ψ

)
−H ∧ Tr (F ∧ F )

)〉
a

(5.37)

Here a is the expectation value of the scalar field which takes value in the Cartan subal-

gebra of g and the path integral is to be evaluated in a background such that 〈φ〉 = a.

Restricting to G = SU(2), it can hence be identified with the variable of Seiberg and

Witten denoted by the same letter.

Eq. (5.37) is precisely the topological invariant we are after and one can show [32] that

it has in fact trivial cohomology. Its crucial advantage is that it also has a nice interpre-

tation in the strongly coupled IR regime, which we will now explain.

In fact, if H were constant, then its insertion in Eq. (5.37) would correspond only to

rescaling the effective coupling constant of the theory by a factor of e−H . Since it varies

in reality, this picture is correct only up to derivatives of H. Additionally, ω must be

taken into account, too. Schematically, they renormalize the energy scale of the theory

as

Λ → Λ · e−H+ω , (5.38)
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where ω is really a function on the twisted superspace. Inserting this renormalization

into the prepotential of the low-energy effective theory and expanding one finds

F(a;Λe−H+ω) = F(a;Λe−H) + ω
∂F(a;Λe−H)
∂ log(Λ)

+ 1
2
ω ∧ ω

∂2F(a;Λe−H)
∂ log(Λ)2 . (5.39)

Of these terms, all but the last one become coupled to the gauge field after integrating

over superspace. Going to long distances, they become suppressed. Using that derivatives

of H are proportional to εi and evaluating Eq. (5.37) in the far IR, one therefore finds

that

Z(a; ε1, ε2) = exp
(

− 1
8π2

∫
R4
ω ∧ ω

∂2F(a;Λe−H)
∂ log(Λ)2

)
+ O(εi) , (5.40)

since all other terms vanish. Now one can insert the expressions for ω and H, perform

the integral over R4 and compare with Eq. (4.11) to find:

Z(a; ε1, ε2) = exp
(Finst(a;Λ)

ε1ε2
+ O(1)

)
(5.41)

5.3.2 Integrating over the instanton moduli space

Having found the relation between Z(a; ε1, ε2) and the non-perturbative part of the pre-

potential, what remains to be done is the integration over the instanton moduli space,

since we saw in the previous subsection that this is the locus on which the path integral

localizes. This can be achieved in various ways, but for instanton numbers larger than

two, they all rely on localization principles and are fairly technical. One method to per-

form the integration is to make use of the ADHM construction presented in Chapter 2

and its stringy interpretation as the Higgs branch of the moduli space of a certain N = 2

gauge theory. As we discussed, the resulting instanton moduli space is a Hyperkähler

quotient with moment maps given by Eqs. (2.35) and (2.36). In order to determine the

equivariant volume of such spaces, Moore, Nekrasov and Shatashvili developed integra-

tion techniques and actually computed the equivariant volume of the instanton moduli

spaces [28] five years before Nekrasov’s paper.
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Instead of repeating their derivation, we only present their result:

Zk(a; ε1, ε2) = 1
k!

(ε1 + ε2)k

εk1ε
k
2

∮ k∏
i=1

dφi

2πi

k∏
j=1

1
(φ2

j − a2)((φj + ε1 + ε2)2 − a2)

×
k∏

m6=n

φmn(φmn + ε1 + ε2)
(φmn + ε1)(φmn + ε2)

(5.42)

Here φij = φi − φj and we split the partition function Z(a; ε1, ε2) into the different

contributions of definite instanton charge:

Z(a; ε1, ε2) =
∞∑

k=1
Λ4kZk(a; ε1, ε2) (5.43)

Note that the integral in Eq. (5.42) is to be understood as a contour integral, picking

up residues at the poles of the integrand.

Despite the fact that the integral can be evaluated in terms of a sum over Young tableaux

(see [28, 32]), direct comparison with the results by Seiberg and Witten still remains a

challenge. In a tour de force, Nekrasov determined the three instanton contribution for

any gauge group SU(N) as well as the five instanton contribution for SU(2) and SU(3)

and found perfect agreement.
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6 Summary

The main objective of this dissertation was to study instanton solutions in quantum field

theory and the connection to other topics arising in this context. In doing so, one is

quickly led to the rich geometrical structure of the instanton moduli space and, via the

stringy interpretation of the ADHM construction, a helpful connection to string theory.

Even though the focus of this thesis was put on studying instantons for their own sake,

we noted in Chapter 3 that they do appear in a variety of physical applications. Despite

the fact that instanton effect can be difficult to compute quantitatively, we found that

their inclusion improves the qualitative understanding of quantum field theory.

Nevertheless, as is frequently the case, exact statements about instantons can be made

in the much more restricted cases of supersymmetric gauge theories and Chapters 4 and

5 solely dealt with pure N = 2 SYM theory. Again, we encountered a plethora of highly

non-trivial mathematical structures that, at least naively, one might not have expected,

such as for example the emergence of a class of Riemann surfaces.

As we have pointed out before, this review is incomplete in a variety of ways. While in-

stantons and their moduli space have been under study for several decades by now, there

is still much to be understood. As we illustrated in Chapter 2, there exists a rich inter-

play between supersymmetry and instanton moduli spaces. Over the past two decades,

much has been learned about supersymmetric gauge theory and one can therefore hope

that techniques that are newly discovered in the their study may shed more light on

instantons as well.

Before closing, let us point out that there are many directions left unexplored by this

thesis. Among other things, we omitted the generalization of Seiberg and Witten’s dis-

cussion to other gauge groups and the inclusion of matter and the corresponding work by

Nekrasov. Maybe more importantly, there is a beautiful geometrical interpretation of the

Seiberg-Witten curve in terms of M-theory [25, 46] and a number of recent developments

[17] that would have been interesting to examine more closely.

Nevertheless, we hope to have given a somewhat instructive introduction to the fascinat-

ing topic of instantons that can serve as a starting point for reading some of the more

advanced literature.
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