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Chapter 1

Introduction - The arrival time :
problem and context

In this short introduction, we would like to give some details about the problem we
would like to study in this dissertation. Our primary interest here is what we call here
the arrival time problem. It consists in finding what is the probability that a particle
crosses a specific coordinate during a time interval. At first the question may seem
easy, but a closer look to the question (60 pages of closer look that you are about to
read...) will reveal that it has many extraordinary counter-intuitive aspects, and some
of them are just very difficult, and many questions remain unsolved today.

One of the primary aims of this work is to review the main directions that have
been or still are investigated in the exploration of this question. We will particularly
emphasize the fact that there seems now to exist a consistent framework of converging
results through very different methods. This is particularly important, because, as
we will see, one of the most important early research papers on the topic came to the
conclusion that arrival time couldn’t be a quantity having consistent meaning, at least
from an apparatus independent point of view.

It is worh to mention the potential importance of this topic. Let us mention two areas
where the investigation of the arrival time problem can have a potentially high impact:
experimental particle physics, and theoretical physics. In experimental physics know-
ing during which interval of time a particle has the most chance to cross a coordinate
(for example the coordinate that defines the position of a detector) can allow to set up
optimized devices. In theoretical physics, the arrival time problem is important in the
foundation of quantum mechanics, in the sense that any new information about time
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CHAPTER 1. INTRODUCTION - THE ARRIVAL TIME : PROBLEM AND CONTEXT2

in general can shed some light on quantization methods can effectively be set up, for
example,in extensions of traditional quantum mechanics, such as quantum field theory.

This dissertation is essentially a litterature review, and a snapshot of the current
research in the area. We have divided our work in four main chapters, from chapter
two to chapter five: the second chapter explores in great detail some of the major
results done by early physicists. In particular, we extensively cover Allcock’s work,
who published a set of three of the most important papers on the topic. We also study
in detail the Kijowski distribution and the contributions of the Aharonov-Bohm group.
The third chapter is devoted to a very modern and elegant approach using what we
call path integrals. The chapter four then uses what we call the decoherent histories
approach, which is very simple mathematically speaking, and provides very insightful
results, finally the fifth chapter covers what we call the backflow effect, which is the
fact that under some conditions, a wave packet with positive momenta can be subject
to a propagation in the negative direction (identified with an increasing probability in
that negative direction).

This work is far from being exhaustive, and the amount of research papers on this
topic covers much more than we we can explain in a short review like this.

Finally, before to start, it is worth to mention what would be the ideal background
knowledge of the reader, particularly if he is a advanced undergraduate student or MSc
student. In the explanations that have been given, it is of course assumed a good com-
mand of quantum mechanics. This includes things like solving eigenvalues equations,
matching eigenstates and their derivatives and solving Schrödinger equation under
a split domain, transmitted/reflected wavefunctions,etc. Mathematically speaking,
some basic concept of complex analysis such as the principal part, the wick rotation,
convolution/deconvolution, some basics on Laplace Transforms etc are assumed here.
Familiarity with Green functions is also required. However, path integrals are not a
prerequsite, as we have given an extensive explanation on how to build them.



Chapter 2

Early investigations

2.1 The Classical case

Let us consider the elementary case of a point particle of position q and momentum p,
being subject to a one-dimensional motion.

We will work first the free case, which means there will be no interaction/potential
term.

We know from basic mechanics that p = mv, and from which we immediatly have
that a particle crosses the point X at the moment:

T =
(X − q0)m

p0
(2.1)

where q0 and p0 are the initial position and momentum respectively. Let us notice
that this equation implies that the point X is not crossed between the start of the motion
and the time T, we say it is a "‘first-time crossing"’ of the point X, or "‘first arrival times"’.

We will consider first a phase-space distribution,(an object that we find in amny
areas of physics, typically in statistical physics for example) which is a function of
position, momentum and time, but defined here such that

F(q, p ≤ 0, t) = 0 (2.2)

this means than momentum are all positive, that is, all particles move in the same
positive direction (same one because we assumed the motion to be one-dimensional).

The phase-space distribution will give us the probability current

Π(T; X) = J(T; X) =

∫
∞

0
dp F(X,T, p)

p
m

(2.3)

3



CHAPTER 2. EARLY INVESTIGATIONS 4

where the last integral can easily be rewritten using a delta function:

J(T; X) =

∫
∞

0
dp

∫
∞

−∞

F(q,T, p)
p
m
δ(q − X) (2.4)

it is clear from the last equation that J(X,T) is a function of time only, since X
is a constant in the problem studied. In fact, this equation gives us the probability
distribution of first-time crossings. Hence, we have for example that the proportion of
particles crossing X between T and T + dT is simply:

J(X,T)dT
We also see from the previous equation that J(X,T) can be considered as an average

of the space phase function p
mδ(q − X), calculated with F.

Now, there are two tools we can use. First, we have the famous equation

x = x0 + vt (2.5)

which in our context, reads

q(q0, p0, t) = q0 + p0
t
m

(2.6)

and that we will use together with Liouville’s theorem, stating that:

F(q0, p0, 0) = F(X, p = p0,T) (2.7)

∫
∞

−∞

dT Π(T; X) T =

∫
∞

−∞

dT J(T; X)T

=

∫
∞

−∞

dq0

∫
∞

0
dp0 F(q0,T, p0)

(X − q0)m
p0

(2.8)

in the last equation, we see that the factor p
m disappears, this is because it is absorbed

in the change of variable when going from the dT integral to the dq0 integral.
We see here that there is a potential problem, since we have a denominator in p0,

while the value p0 = 0 is allowed to be integrated upon. We will have therefore to
assume that this pathology can be compensated by some conditions on the phase space
distribution (for example, it can be a function such that F = Q.p0, where Q itself has no
p0 denominator).

It has been proven that this classical result can be obained in a more mathematical
way, by setting a set of axioms on Π: we choose it positive, normalized to 1 with
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respect to time, having some specific symetries properties to ensure a good definition
of the arrival point X, and finally, we want it to have a minimum variance. All those
properties are purely mathematical and lead to the same result that the one we just
derived.

If the condition 2.2 does not hold, meaning, with we have a set of particles subject
to a one-dimensional motion, but not going necessarily in the same direction, then
we have to reformulate our previous result regarding J(X,T): as formulated earlier, it
does not give us the arrival time, because we can have, as a set of particle going i the
+q direction, another set of particles going in the −q direction, and combining in such
a way that the integral gives us zero, while the arrival time should obviously not be
equal to zero. In this case, what we do is to separate the contribution from each sign,
positive and negative, and treat them separately. We can take this into account in the
integral by integrating over the absolute values of the momenta.

The positive contribution is given for positive p’s:

J+ =

∫
∞

0
dpF(X,T, p)

p
m

(2.9)

while for the negative contribution, the momenta runs down from 0 to −∞:

J− =

∫ 0

−∞

dpF(X,T, p)
p
m

(2.10)

splitΠ(X, t) =

∫
∞

−∞

dpF(X,T, p)
p
m

= J+ − J− = Π+ + Π−

(2.11)

with of course

J = Π+ −Π− (2.12)

2.2 Allcock’s work

In this section, we will review the foundation work done by Allcock [1] in his famous
set of articles published in 1969. Allcock basically arrived to the conclusion that it
was not possible to build consistently an apparatus-independent (we also say "‘ideal"’)
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arrival time. If that was all, there would have been no further research, but obvioulsy
things are not so simple, and the idea is that many subsequent authors arrived to
results that sometimes confirmed in some aspects, sometimes contradicted, Allcock’s
work. Many of analytical and numerical work that have been done by these subsequent
authors is based on relaxing some hypothesis, or assuming different behaviors than
Allcock for some equations. It is therefore essential to have a reasonable background
understanding of what Allcock did and how he obtained his result. This will help us
to appreciate better the results of physicists who came after him. It is worth to mention
that Allcok was not the only physicist that arrival to a negative conclusion, as Pauli,
in the Encyclopaedia of Physics published in Berlin in 1958, also published a short
note where he explained the impossibility of building a self-adjoint time operator, as
if it was so, the spectrum of the hamiltonian wouldn’t be bounded [2]. We will not
talk further about Pauli’s contribution; however, we will have an in-depth analysis of
Allcock’s work wonsidering its critical importance in the history of the subject.

He starts first with the simple case of a free wave packet, without source, nor
detector, and of course no potential. Here it is assumed we have a set of states which
are arrival times eigenfunctions

ψT(x, t)| 0 ≤ E ≤ ∞ (2.13)

where E is simply the energy

E =
~2k2

2m
(2.14)

That energy is positive, as we see from the boundaries of the integral. Now, because
we would like to be able to use the traditional methods of measurement theory, we
require states labelled by different T’s to be orthogonal. But we must first set up an
explicit template expression for these states:

ψT(x, t) =
m1/4

~1/2

∫
∞

0

dE
(2π)1/2

ψT(E)
(2E)1/4 exp[i(2mE)1/2x/~ − iEt/~] (2.15)

Then, time covariance allows us to write:

ψT(E) = exp(iET/~)ψ0(E) (2.16)

And then, our orthogonality condition reads:

< ψT′ |ψT >=

∫
∞

0
dE exp(iEz)|ψ0(E)|2 (2.17)
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with z = (T − T′)/~
Now, a critical remark is that this equation 2.17 is always greater than zero when

z = 0 (that is, when T = T′). Since E is ≥ 0, it is in fact possible to build an analytic
continuation of this equation on z with the required boundariy values. Now, if we
build up such an analytic continuation, this will mean that the scalar product in 2.17
will be zero for T , T′ , which is what we want. But the problem is that this analytic
continuation will necesarily imply that this scalar product will also be zero for T = T′,
which is something we don’t want! And we can’t do otherwise because we know from
complex analysis that the analytical continuation of a specified function with specific
boundary values is unique. What we can then say, based on this contradiction, is that
the concept of arrival time for a free article in a system without source nor detector ,
has no meaning. The next stage is then to try to relax one of those conditions to see if
we can get something more interesting. Let us for example assume that there is now a
source term, that we will write

ρS(x, t)θ(xS − x) (2.18)

which will be confined to x ≤ xs < leqX, and that keeps the potential V(x) to zero
when x ≥ xs, which is thus a region where we can still can use the free Schrödinger
equation.

The wave function will then be:

ψT(x ≥ xs, t) =
m1/4

~1/2

∫
∞

−∞

dE
(2π)1/2

ψ

(2E)1/4 exp[i(2mE)1/2x/~ − iEt/~] (2.19)

in this last equation, we see that the range of integration includes negative energies,
but at the same time we have square- and fourth- roots of E: this justifies the need for
analytical continuation. Based on this formula, we can calculate the probability for the
particle to be located in the following regions, asymptotically in time:

limt→∞

∫ X

xS

dx|ψ(x, t)|2 = 0 (2.20)

for the region [xs,X], and

limt→∞

∫
∞

X
dx|ψ(x, t)|2 =

∫
∞

0
dE |ψ(E)|2 (2.21)

for the region [X,∞]
and hence, the probability of arriving at X ≥ xS asymptotically in time will be
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P(∞) =

∫
∞

0
dE |ψ(E)|2 (2.22)

with all these results, if everything is right, we should be able to set up an experiment
where we could, as we would wish, use traditional measurement theory. Again we
would like the orthogonality of states to be satisfied. We should then be able to
decompose ψ(E) over the eigenstates and write

ψ(E) =

∫
∞

−∞

dTc(T)ψT(E) (2.23)

which would then mean that

< ψ|ψ > =

∫
∞

−∞

dEψ∗(E)ψ(E)

=

∫
∞

−∞

dT|c(T)|2 > 0
(2.24)

but this equation is always positive, while 2.22 must be zero for any state defined
exclusively with negative E’s. Again we have not been able to escape contradiction,
and Allcock, on the basis of this, finally comes to think that the usual language of
eigenstates and scalar products (in other words, the usual quantum mechanical mea-
surement theory) cannot help in defining a consistent arrival time definition. So, to
summarize, building a "‘free model without source nor detector"’, didn’t work, then
building a "‘free model without detector but with source"’ didnt’t work either. The ob-
vious next stage is to see what if we add a detector in the theory. Here also, we cannot
escape the contradiction of getting positive contribution from negative energies, that is
, again, contradicting 2.22. So Allcock ends his work by declaring that it is not possible
to define arrival time when having sources.

A key reasoning that has been made by some subsequent authors, especially Muga
[3] is that the expression 2.22 for P(inf) is not correct. One way to see it is to realize first
that for negative E’s, the wave number

k = i
2m|E|1/2

~
(2.25)

leads to evanescence and gives a contribution tied to the source. In this context, it
definitely makes sense to consider a system with source. Now, the problem comes from
the fact that, because P(inf) includes contributions from all first arrival times at x=X
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(over all t’s), we cannot guarantee that there will be no negative energy contribution
to P(inf). Some of the possible candidates for such contributions might indeed come
from the evanescent part.

What we need to remember from all this, is that, according to Allcock, we cannot
thus, at this stage, build an "‘ideal"’ (apparatus-independent) model for arrival time.
The idea then is to see if it would be possible to build an arrival time concept that could
be "‘extracted"’ from measurement, that is, build an aparatus-dependent model. He
therefore set up a very simple θ-function type potential of the form

−iV0θ(x) (2.26)

where V0 > 0
and expressed the response in terms of an incident state φin(E) = ψ(E) (this incident

state being of course defined in absence of apparatus) is given by

φin(xS ≤ x ≤ 0, t) =
m1/4

~1/2

∫
∞

−∞

dE
(2π)1/2

φin(E)
(2E)1/4 exp[i(2mE)1/2x/~ − iEt/~] (2.27)

The Schrödinger equation is obvioulsy given by

i~
∂φ(x, t)
∂t

= −
~2

2m
∂2φ(x, t)
∂x2 − iV0Θ(x)φ(x, t) (2.28)

and we can then calculate the transmitted and reflected waves, like we do in basic
quantum mechanics problems:

φtr(x ≥ 0, t) =
m1/4

~1/2

∫
∞

−∞

dE
(2π)1/2

φtr(E)
(2E)1/4 exp[i(2m(E + iV0))1/2x/~ − iEt/~] (2.29)

φre f (xS ≤ x ≤ 0, t) ==
m1/4

~1/2

∫
∞

−∞

dE
(2π)1/2

φre f (E)
(2E)1/4 exp[−i(2mE)1/2x/~ − iEt/~] (2.30)

the usual continuity conditions on these function and their derivatives help us to
then deduce the energy amplitudes:

φtr(E) =
2

1 + E−1/2(E + iV0)1/2ψ(E) (2.31)

φre f (E) =
1 − E−1/2(E + iV0)1/2

1 + E−1/2(E + iV0)1/2ψ(E) (2.32)
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We can also calculate the absorbtion rate of the probability density, since we are
using an absorbing potential:

−
dN(t)

dt
=

2V0

~

∫
∞

0
dx|φtr|

2 (2.33)

we substitute the expression for φtr(x ≥ 0, t) in this last equation and integrate, and
find

−
dN(t)

dt
=

1
2π~

∫
∞

−∞

dE
(E)∗1/4

∫
∞

−∞

dE′

(E′)∗1/4
iV0[(E′ + iV0)1/2 + (E + iV0)∗1/2]

E′ − E + 2iV0

. φ∗tr(E)φtr(E′) exp[i(E − E′)t/~]
(2.34)

and if we further insert here the expression for the transmitted energy amplitude,
we get

P̃(∞) =

∫
∞

−∞

dEA(E,V0)|ψ(E)|2 (2.35)

where we have defined the acceptance function A(E,V0)

A(E,V0) =
Re[(E + iV0)1/2]

|E|1/2

∣∣∣∣∣ 2E1/2

E1/2 + (E + iV0)1/2

∣∣∣∣∣2 (2.36)

We clearly see the dependence to the apparatus in this equation, through V0. At
this stage, it is useful to define the resolution time:

δT =
~

2V0
(2.37)

(notice that this expression is directly inspired by the time-uncertainty expression).
We can then wonder in which case this dependence to the apparatus can vanish, or
at least become negligible. They are indeed two potentially interesting limit cases:
V0 → ∞ and V0 → 0. In the first case, the response of the apparatus becomes zero
because the dominant behavior for particles is to be reflected and not absorbed. In the
second case, because V0 → 0 , the resolution time tends to infinity. In practice, this
would mean that chances are great for the particle to be absorbed far from the point
we study. As a result, in both cases, the apparatus response as we have expressed it,
doesn’t seem to provide an interesting way to solve our problem.

Finally, we would like to mention another result of Allcock that turned out to
be very interesting. Allcok wondered if it would be possible to obtain an arrival
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time ditribution through the apparatus response using a deconvolution. For this, he
assumed a specific relation between the arrival time amplitude χ(T) and ψ(E), that
same ψ(E) that we used before. The assumed relation is:

χ(T) =
1
~1/2

∫
∞

−∞

dE h(E)ψ(E) exp(−iET/~) (2.38)

he inserts the arrival time amplitude in the formula that we would expect to be
statisfied for a well-designed arrival tim apparatus:∫

∞

−∞

dT′ R(V0,T − T′) |χ(T′)|2 (2.39)

where R(V0,T−T′) is the apparatus resolution function. The result after integration
is ∫

∞

−∞

dE
∫
∞

−∞

dE′ h∗(E) h(E′)R̃(V0,E′ − E)ψ∗(E)ψ(E′)ei(E−E′)T/~ (2.40)

where R̃(V0,E′ − E is the Fourier transform of R(V0,T − T′)
Now, the key thing to notice, is that, if E’ E » V0, we get

−
dN(t)

dt
≈

∫
∞

−∞

dt′ R(V0, t − t′) |χ(t′)|2 (2.41)

where

R(V0, t) = 2V0Θ(t) exp(−2V0t) (2.42)

In this case, the arrival time distribution is given by

Π(T) = |χ(T)|2 =
1

2π~

∣∣∣∣∣ ∫ ∞

0
dEψ(E)exp(−iET/~)

∣∣∣∣∣2 (2.43)

and if we then change the integration variable from E to k, we finally obtain:

Π(T) =
~

2πm

∣∣∣∣∣ ∫ ∞

0
dk k2φ(k)exp(−i~k2t/2m)

∣∣∣∣∣2 (2.44)

this expression is of fundamental importance for the rest of this issertation, because
we will see that it is exactly what many other physicists obtained through totally
different means, among which we can mention Kijowski [4], whose work will be
studied in the next section, Grot et al. [5] or Delgado and Muga [6]. The fact that many
research groups managed to find the same result through unrelated methods seems to
support the existence of a conistent underlying candidate concept for arrival time.
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2.3 Kijowski’s arrival time distribution

Kijowski’s orginal motivation was to investigate which meaning should be given to
the time-energy uncertainty relations. His approach was relatively straightforward:
he started from the classical case,saw what kind of "conditions/axioms" it could be
deduced from, and required them for the probability density in quantum mechanics.
All this correspondence has been set in the free case.

Mathematically speaking, he used a theorem he proved on positive bilinear func-
tionals F and the conditions they must satisfy to minimize the variance∫

∞

−∞

dt t2 F[ψt] −
(∫

∞

−∞

dt t F[ψt]
)2

(2.45)

He showed that if the functionals F of wave functions ψ over positive momenta,
satisfy

∫
F[ψt] = 1( with ψt being normalized state at all time having evolved an initial

stateψ0) and F[ψ̄] = F[ψ], then thre exist a specific functional F0 for which this variance
will be minimum, and F0 has the form

F0[ψ] =

∫
dp1 dp2

2πm~
ψ̄(p1)

√
p1 p2ψ(p2) (2.46)

In fact, F0 defines a class a functional, for which the averaging will be constant. The
integral ranges only over positive p’s since this is the condition that the theorem states
regarding the wave functions. The probability for such described states will then be:

ΠK
+(t) = ΠK

+(t, ψ) = F0[ψ] =

∣∣∣∣∣ ∫ ∞

0
dp

√
p

2πm~
e−ip2t/2m~ψ(p)

∣∣∣∣∣ (2.47)

where the evolved state is simply obtained by setting the hamiltonian as p2/2m,
since we are in a free case, and this state will thus be given by

ψt(p) = e−ip2t/2m~ψ(p) (2.48)

if we want to include also arrivals from the right,to get the total probability dentity
for arrivals at time t at the position x = 0, we just add another term with the range of
integration that goes now from −∞ to 0:

ΠK
+(t, ψ) =

∣∣∣∣∣ ∫ ∞

0
dp

√
p

2πm~
e−ip2t/2m~ψ(p)

∣∣∣∣∣2 +

∣∣∣∣∣ ∫ 0

−∞

dp

√
−p

2πm~
e−ip2t/2m~ψ(p)

∣∣∣∣∣2 (2.49)
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This result is beautiful because it matches what we have found at the end of our
previous section about Allcock’s work, and we see that indeed the results agree with
each other, because the equation is exactly the same than Allcock’s. However a new
problem is raised: even though this probability density seems to be consistent and
to make sense, the arrival time operator will not be self-adjoint, nor even having a
self-adjoint extension. And we know from all our basic quantum mechanics that self-
adjoint operators are essential objects that help us in finding observed results, since
eigenvalues of self-adjoint operators are real. On another hand, a more deep reason
why operators should usually be self-adjoint comes from the probabilistic nature of
qantum mechanics, and more exactly from the spectral theorem, which says that when
we measure an observable, if the operator that describes it is self-adjoint, then the
moments of probability distribution will be given by the moments of the operator.
What we will do in the subsequent sections is to work in this more sophisticated
probabilistic mindset and try to find a solution to our problem through the exploration
of a new concept: the concept of positive operator valued measure, or, in short, POVM.

2.4 Positive operator valued measures

Let σ be the subset of a bigger set giving all the possible values of an observable. Let
us call pσ the probability associated to it. That probability is linear with respect to the
density operator ρ̂, so we must have an operator Âσ such that

pσ = Tr(Âσρ̂) (2.50)

Now, the idea is that we want those probabilities to be additive for sets of σ’s that
do not cross, but at the same time, if they cross, we don’t want the probabilities to be
counted twice. This means we want:

Âσ∪σ′ = Âσ + Â′σ ⇔ σ ∩ σ′ = 0

Âσ∪σ′ = Âσ ⇔ σ′ ⊂ σ
(2.51)

this will allow us to sum all the probabilities to 1:

1 =
∑
σ

pσ = Tr

∑
σ

Âσρ̂

 (2.52)

and since this is valid for all ρ̂, we can write:
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1̂ =
∑
σ

Âσ (2.53)

The key remark now is that all the probabilities being positive, Âσ must be a pos-
itive operator. That is, our observable maps subsets σ’s to to the space of positive
operators, with the the conditions we just stated on additivity and summing to unity
being satisfied. We say that the observable is associated to a "‘positive operator valued
measure"’ [7].

We have said in the previous section that the purpose of introducing POVM’s was
to help getting more insight on the pathology of no-self ajointness of potentially inter-
esting operators candidates. A good intermediate step is to see if it can help with some
more elementary operators, and then only, once we will have gained more confidence
with a simple case, study properly what POVM’s bring us in our understanding of
the arrival time problem. As an example then, let us have a look to the momentum
operator p̂ = −i~∂x, defined on H> = L2(R+, dx) ≡ D(p̂) [8]. The set of eigenfunction we
can define from this, typically forms a complete basis:∫

∞

−∞

dpψ̄p(x′)ψp(x) = δ(x − x′) (2.54)

but we do not have orthogonality due to the existence of a principal part in the
scalar product: ∫

∞

0
dxψ̄p′(x)ψp(x) =

1
2
δ(p − p′) +

i
2π

P
i

p − p′
(2.55)

Now, if we consider the operator x̂, defined on functions that are square integrable
on the half line, we have that indeed it will be self-adjoint. But we have [x̂, p̂] = i~ on
any dense domain. Because the x operator is bounded from below, we can use Pauli’s
theorem we mentioned briefly previously in this work, to deduce that indeed the mo-
mentum operator defined on the half-line is not self-adjoint and admits no self-adjoint
extension on H>. So here we have a simpler case of our previous problem, let us see
how POVM’s can help.

In this case, the POVM maps intervals of the real line (because our domain is the
half-line) to positive operators that satify the properties we have stated from them.
The map is simply, for φ, ψ ∈ H>:
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< φ|F([a, b])ψ >=

∫ b

a
dp

∫
∞

0
dx

∫
∞

0
dyψ̄(x)ψp(x)ψ̄p(y)ψ(y) (2.56)

we can reconstruct the action of the operator

(p̂φ)(x) =

∫
∞

−∞

dp
∫
∞

0
dy pψ(x)ψ̄p(y)φ(y) (2.57)

and this will give us the probability distribution associated to a state φ

Πφ(p) =

∣∣∣∣∣ ∫ ∞

0
dx ψ̄p(x)φ(x)

∣∣∣∣∣2 (2.58)

one way to better see the connection between POVM and the probability distribu-
tion is to write the expectation value on a specific state φ as intermediate step:

< φ|F(dp)φ > =

∫
∞

0
dx

∫
∞

0
dyφ̄(x)

eip(x−y)/~

2π~
φ(y) dp

= Πφ(p) dp
(2.59)

where we have symbolically written F(dp)
finally, it is worth to mention an important property of POVM’s which is covariance

under displacements:

< φ|eiqx̂/~F([a, b])e−iqx̂/~ψ >=< φ|F([a + q, b + q])ψ > (2.60)

this can be written more simply in terms of probability density

Πψq(p) = Πψ(p + q) (2.61)

here ψq = e−iqx̂/~ψ is the shifted state
so far, that was for pure state. in the case of mixed states, the generalization is quite

easy and will only require to now use the density operator. In position reprsentation,
we will have:

Πρ(p) =

∫
∞

0
dx

∫
∞

0
dy

eip(x−y)/~

2π~
ρ(x, y) (2.62)

The next stage in our reasoning is to make use of a very powerfyl theorem called
Naimark’s Dilation Theorem. It is a unicity theorem. In essence, it says that is we
manage to build a POVM’s over a certain domain, and that we extend that domain,
and then try to build a new POVM on that new domain, this newly built POVM’s will
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have exactly the same form than the initial one when restricted to the old domain (up
to isomorphisms). Mathematically speaking, we assume that the operator Â over a cer-
tain Hilbert space, and under the condition that this operator is maximally symmetric
over the domain, there will be a unique POVM FA such that the first operator moment
coincides with the operator.The important point here to notice is that the number of
extensions are potentially infinite, but not the POVM.

Now, the momentum operator defined on the half-line is indeed maximally sym-
metric. The natural extension we can think of is the entire real line

L2(R, dx) = L2(R+, dx) ⊕ L2(R−, dx) (2.63)

and over the full line, the momentum operator will be self-adjoint, so we can use
spectral theory we are familiar with, and we will have of course for the projection
valued measure E

< φ|E([a, b])ψ >=

∫ b

a
dp

∫
∞

−∞

dx
∫
∞

−∞

dyψ̄(x)ψp(x)ψ̄p(y)ψ(y) (2.64)

to summarize, we have set up the following recipe :

1) check that the operator is maximally symmetric, to make sure we are satisfying
the conditions of the theorem 2) we then consider an extension through a certain
ismorphism 3) we get the probability density on that extension , using usual spectral
theory 4) the restricted probability density will give then the right POVM, guaranteed
by the unicity stated by Naimark’s Theorem 5) being a POVM in nature, it contains
in essence the information regarding the actual experiment results (cf. the σ we used
above and how they were associated to probabilities)

2.5 A short note on the concept of deficiency

We can have more insight on the self-adjointness of an operator by using the concept of
"‘deficiency"’[8]. Let us denote N(b) the space of eigenvectors of eigenvalue b. We will
illustrate the concept of deficency by studying the operator adjoint to p̂ defined over
the half-line. Its domain must be D(p̂) ⊕ N(i) ⊕ N(−i). From this information we can
construct a set of two numbers (dim(N(i)), dim(N(-i))), where dim(...) simply means
the dimension of the mentioned space. Those dimensions are called deficiency indices.
In the case of the operator p̂, it gives (1,0). A self-adjoint operator would have had
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deficiency indices of (0,0), as well as "‘essentially self adjoint"’ operator, that is, those
which are not self adjoint but that can be uniquely extended into self-adjoint ones.
The analysis of deficiencies is a simple way to check the self-adjointness. In this case,
since one of the indices is zero, while both are different, and that p̂ is symmetric over
its domain, we say that it is a maximally symmetric operator, and from what we have
seen before, it has no self adjoint extension over its domain.

D(p̂) ⊕N(i) ⊕N(−i) (2.65)

2.6 Aharonov-Bohm operator

Aharonov and Bohm [9] investigated the construction of time operators in a study of
time-energy uncertainty relations. The basic inspiration is a symmetrization of the
classical expression for time t=mx/p. The arrival time at x=0 will classically be t =

-mx/p, and this will naturally give us the symmetrized operator:

T̂AB = −
m
2

(x̂p̂−1 + p̂−1x̂) (2.66)

it is worth to have a close look at the commutation relation of this Aharonov-Bohm
operator with the free operator, and we find:

[Ĥ0, T̂AB] = i~ (2.67)

using this with the Heisenberg equation of motion, this will give the temporal
dependency of de Aharonov-bohm operator, we straightforwardly get dT̂/dt = −1

to understand what it actually means, we can imagine this simple situation: if we
have a particle moving in space, at some time t, the arrival time associated to it will
have a certain value T, but then, later (that is, at t’>t), the arrival time associated to
this new position will be shorter since it the particle gets closer to the target-position
we are interested in. From this perspective, the arrival time must naturally flow at an
opposite rate with respect to teh usual parametric time, and this is exactly the meaning
of dT̂/dt = −1.

Now, one thing to notice is that this operator, again, is not self-adjoint. We will
therefore use the tools we have previoulsy developped to cure this pathology. The
first aspect we have to have a look at is the domain of this time operator. Is is more
convenient to study it in momentum representation
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T̂AB →
i~m

2

(
1
p2 −

2
p
∂
∂p

)
(2.68)

there is a clear singularity at p=0, so we will need wavefunctions that makes this
singularity irrelevant. We can show that suitable ψ’s are those such that

p→ 0 ⇔ ψ(p)/p3/2
→ 0 (2.69)

and we require also the symmetry of the time operator, which is the case as it is in
fact maximally symmetric.

Now, we would like to have a look at the deficiencies. For this, we first study the
expression

< ψ|
(
T̂AB + i

)
φ >= 0 (2.70)

which is satisfied if ψisaneigenvectoro f +
AB of eigenvalue i.We find two eigenvectors:

ψ±(p) = Θ(±p)
√
±pe−p2/2m~ (2.71)

We then do the same with the eigenvalue -i and it appears that there are none.
Therefore, the deficiencies are (2,0) and we see that no self-adjoint extension exists. We
will then have to do the same analysis that what we did previously for the momentum
defined on the half line. To make our study simpler, we will first switch to the energy
representation. This will also make easier to compare with some of the previous re-
sults, as for example, we remember that Allcock wrote some of his results in energy
representation.

We first decompose the Hilbert space Hp in two subspaces that will be associated
in positive and negative momenta:

L2(R, dp) = L2(R+, dE) ⊕ L2(R−, dE)

= H+ + H−
(2.72)

the correspondence between the momentum and energy description is given by:

ψ±(E) =
( m
2E

)1/4

ψ(±
√

2mE)

ψ(p) =

(
|p|
m

)1/2 [
Θ(p)ψ+

(
p2

2m

)
+ Θ(−p)ψ−

(
p2

2m

)] (2.73)
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in fact, it appears that under this isomorphism, the switch to energy representation
makes the time operator to become simply −i~∂E, leading to the isomorphism:

T̂AB = (−i~∂E) ⊕ (−i~∂E)

= T̂+ ⊕ T̂−
(2.74)

we should bear in mind that in energy representation, we have degenerate states:

ψ(t)
+ (E) =

(
1
√

2π~
eiEt/~, 0

)
ψ(t)
−

(E) =

(
0,

1
√

2π~
eiEt/~

) (2.75)

which give through the isomorphism the form

ψ̃(t)
α (p) = Θ(αp)

( αp
2πm~

)1/2

eip2t/2m~ (2.76)

a good idea is to use Dirac’s notation

< p|t, α >= ψ̃(t)
α (p) (2.77)

we have obviously ∑
α

∫
∞

−∞

dt|t, α >< t, α| = 1 (2.78)

but the states are not orthogonal due to the exisence of a principal part, a problem
we are now familiar with:

< t′, α′|t, α > =

∫
∞

0
dEψ(t′)

α′ (E)ψ(t)
α (E)

=

∫
∞

−∞

dpψ̃(t′)
α′ (p) ψ̃(t)

α (p)

=
1
2
δαα′

(
δ(t − t′) +

i
π

P
1

t − t′

) (2.79)

the natural step at this stage is to calculate the POVM for the measures of the
Aharonov-Bohm time operator. In energy representation, it is:

ΠK
(ψ+,ψ−)(t) =

∣∣∣∣∣ ∫ ∞

0
dE

e−iEt/~

√
2π~

ψ+(E)
∣∣∣∣∣2 +

∣∣∣∣∣ ∫ ∞

0
dE

e−iEt/~

√
2π~

ψ−(E)
∣∣∣∣∣2 (2.80)
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while in momentum representation it reads

ΠK
(ψ)(t) =

∣∣∣∣∣ ∫ ∞

0
dp

( p
2πm~

)1/2

e−ip2t/2m~ψ(p)
∣∣∣∣∣2 +

∣∣∣∣∣ ∫ 0

−∞

dp
(
−p

2πm~

)1/2

e−ip2t/2m~ψ(p)
∣∣∣∣∣2 (2.81)

which we can write more simply:

ΠK
(ψ)(t) = | < t,+|ψ > |2 + | < t,−|ψ > |2 (2.82)

again, we have found the now familiar Kijowski distribution. We see thus that
the Aharonov-Bohm time operator in the free case agrees with Kijowski distribution,
itself completey agreeing with the last result we mentioned in our section regarding
Allcock’s work.



Chapter 3

The path integral approach

3.1 The concept of path integral

Path integrals are a very powerful tool that is used in todays research as an alternative
method to the canonical quantization in quantum field theory. It is mathematicaly less
heavy, and physically more meaningful. It also provides an elegant mindset that gives
answers to some philosophical questions which arised at the time of the Enlightement,
especially regarding the reason for the existence of least action principles. An exten-
sive coverage of this concept can be found in a now classical book written by Feynman
and Hibbs. Here we will give an outline of what it is, and how it can be expressed
mathematically. We will later use a tool called "‘path integral expansion"’ that will be
one of our first-hand tool in our investigations on the arrival time problem.

Let us first make clear what we mean by the word "‘path"’. One of the approaches
is based on a heuristic generalization of the well-known double slit experiment. In
that famous experiment, we have a source A, and, say, a detector B, separated by a
screen that contains two slits A1 and A2. Particles are emitted from the source, and
are supposed to arrive at the detector after having gone through the slits. Now, this
experiment can be generalized in two ways:

(i) first, we can increase the number of screens between the source and the detector
indexed, say, with a letter j screens
(ii) second, we can also decide to put more than two slits in a screen, and put, a number
of them indexed by a letter n

21
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As a result, the history of a detected particle will be both a function of j and n, a
particular A j,n (nth slit of the screen A j. To go from the source A to the detector B,
the particle will have to go through a sequence of such A j,n. Now the idea is to take
a double limit where both the number of slits,and number of screens, go to infinite.
Then, the limit of the sequence A j,n is a "‘path"’.

What we will need in this work is a path integral expression for the fundamental
quantity we need, that is, the amplitude from xa to xb in a duration of T:

U(xa, xb,T) =< xb|Û(T)|xa > (3.1)

with of course

Û(T) = e−iTĤ/~ (3.2)

and Ĥ being the usual non-relativistic hamiltonian.

Now the idea is to set

T = ε.N (3.3)

we have thus N short intervals of duration ε. This will give us:

Û(T) = Û(ε)N (3.4)

we can then rewrite the evolution operator in terms of N different products:

U(xa, xb,T) =< xb|Û(ε)Û(ε)...Û(ε)|xa > (3.5)

But because we have the completeness

1 =

∫
dxk |xk >< xk| (3.6)

we have

U(xa, xb,T) =

∫
dx1...dxN−1

∏
< xk+1|Û(ε)|xk > (3.7)

here the product runs from k = 0 to k = N − 1.

Because the intervals are small enough, we can approximate the evolution operator
by its first order Taylor expansion:
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< xk+1|Û(ε)|xk >≈< xk+1|(1 − iεĤ/~)|xk > (3.8)

Let us remember that the hamiltonian is typically a function of not only the coordi-
nates but also the conjugate momentum, so a good idea at this stage is to insert a set of
momentum states, which we can do since they are also subject to completeness. The
Hamilton term of the above expression can thus be written:

< xk+1|Ĥ|xk > =

∫
dpk < xk+1|Ĥ|pk >< pk|xk >

=

∫
dpk H < xk+1|pk >< pk|xk >

(3.9)

here we can use

< pk|xk >=
1
√

2π~
exp(−ipx/~) (3.10)

which leads to

< xk+1|Ĥ|xk >=

∫
dpk

2π~
H e

i
~pk(xk+1−xk) (3.11)

This last equation gives us the infinitesimal evolution operator:

< xk+1|Û(ε)|xk >=

∫
dpk

2π~
e

i
~pk(xk+1−xk)−εH (3.12)

this will finally give us the "‘macroscopical"’ amplitude U(xa, xb,T):

U(xa, xb,T) =

∫ N−1∏
j=1

dx j

N−1∏
k=0

dpk

2π~
{ e

i
~ pk(xk+1−xk)−εH

} (3.13)

the x and p integrals are often writen
∫
DxDp. We can write the argument of the

exponential in a more meaningful way by noticing that xk+1 − xk can be replaced by εẋ.
This will make appear a dt integral:

U(xa, xb,T) =

∫
DxDp{ e

∫ T
0 dt i

~pẋ−H
} (3.14)

This integral can be calculated explicitly in the case of a non-relativistic hamiltonian,
which is just the familiar total energy:

H =
p2

2m
+ V (3.15)
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and we finally obtain, after some algebra:

U(qa, qb,T) =

∫ q(T)=qb

q(0)=qa

Dq(t)exp{
i
~

∫ T

0
dtL(q, q̇)} (3.16)

This formula gives what we call a "‘path integral"’ giving the amplitude from qa to
qb. Notice that we have replaced our x’s by the generalized coordinated q’z, but there
will not be any confusion here about this. This path integral can easily be extended to
the many-particles case. The key thing to notice, is that the integrand here is nothing
else than the action S! This integrand have a huge oscillation behavior when the action
is non negligible, but most of the contributions will actually cancel the integral except
those for which the variation of the action with respect to q is zero. This is exactly the
least action principle that we knew from classical mechanics. From this perspective,
the least action principle and its corollaries (like Maupertuis principle) can be seen as
a consequence of the relevance of the concept of path integrals.

3.2 Introduction to path decomposition expansions

The path decomposition expansion (simply called PDX), in essence, is a method that
is based on the partitioning of the configuration space in several regions, for which we
individually define a suitable Green function [10], that we calculate using an adequate
approximation. Because of this splitting into different regions, each one having its own
description, we easily understand why this method is quite powerful.

Because it is based directly in Green functions, it is good to have a first look into
PDX’s in terms of Green functions, to see how these two mathematical concepts relate
to each other. After that, we will give a path integral derivation for what we will
call from now the "‘PDX formula"’. The derivation of that formula will be the main
objective of this section, as this is the very tool we will use later in this dissertation in
analysing path integral methods in the arrival time problem.

Because we would like to explore a situation where the configuration space is
divided into two regions, we can consider the typical case of an electromagnetic field.
The Hamiltonian will be given by:

H =
1

2m

(
~

i
∂
∂x
−

e
c

A(x)
)2

+ V(x) (3.17)
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As we know, the Green’s function will be defined as follows:

(H(x) − E)G(x, y,E) = (H(y)∗ − E)G(x, y,E) = ~δ(x − y) (3.18)

or, in operator form:

G(E) =
1

H − E − iε
(3.19)

We will denote Σ the surface that separates the two regions we will study. We can
obviously make a distinction in two classes of points: those which are inside Σ, and
those which are outside.

If x and y are outside of Σ, and writing:

G(r)(y, z,E) ((H(z) − E)G(z, x,E) − ~δ(z − x))

=
(
(H(z)∗ − E)G(r)(y, z,E) − ~δ(y − z)

)
G(z, x,E)

(3.20)

we can z-integrate outside Σ and obtain:

G(y, x,E) = G(r)(y, x,E) +

∫
Σ

dΣzG(r)(y, z,E)[Σ(z)]G(z, x,E) (3.21)

where we have used the condensed notations:

[Σ(z)] =
i
2

n(z).(
−−→
p(z) −

←−−
p(z)∗)

p(z) =
1
m

(
~

i
∂
∂z
−

e
c

A(z)
) (3.22)

Here n(z) is just the vector perpendiculat to the surface and pointing outward,
defining its orientation.

Now, the thing to notice, is that the first term of the right-member in 3.21 is zero if
x in inside the surface and y is outside:

G(y, x,E) =

∫
Σ

dΣzG(r)(y, z,E)[Σ(z)]G(z, x,E) (3.23)

that last formula is the generic form of a path integral expansion. It can be gener-
alized to any type of partitioning of the configuration space.
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We will now derive that formula in another way, using path integrals. We will
actually find the same formula that the generic one above, but in a simpler form that
will be more suitable to our needs in this dissertation. We know that the evolution
kernel K(y,x,t) satisfies

(H − i~∂t)K = 0

limt→0K(y, x, t) = δ(y − x)
(3.24)

and this kernel relates to the Green’s function through a Laplace transform:

G(y, x,E) = i
∫
∞

0
dtK(y, x, t)eiE(t+iε)/~ (3.25)

which means that we can write Green’s functions in terms of kernels. For example,
if we consider again the case where x is inside the surface and y is outside, we get:

K(y, x,T) = i
∫ T

0
dt

∫
Σ

dΣzK(r)(y, z, t)[Σ]K(z, x,T − t) (3.26)

which is obviously again a PDX-type formula. Here, K(r) is, like G(r), a restriction
of K. This equation can be interpreted in terms of probability of going from x to y,
splitting it into the probability of going from x to z, and from z to y, without crossing
te surface once it has been crossed once (hence the meaning of the restriction).

Now, working in terms of kernel or working in terms of evolution operators being
equivalent, we can use the path integral formalism, since, as we have seen in the
previous section, its foundation object is indeed the evolution operator. We use in fact:

K(y, x,T) =

∫ x(T)=y

x(0)=x
Dx(t) exp[iS(x(t))/~] (3.27)

Similarly to what we have seen for G(r) before, K(r) will give zero at the surface, so
that the path integral for K(r) will only deals with paths that don’t cross the surface.

Now, we can have more insight on the probability aspect by doing a Wick rotation
on time in the equation for K. We apply the transformation t → −it. This procedure
is quite standard in physics. It is used, for example, in showing striking correspon-
dences between statistical mechanics and some areas of quantum field theory, like the
existence of critical exponents or other thermodynamics-type properties, by switching
into euclidean quantities. Here, we obtain an euclidean kernel and action:
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Keucl(y, x,T) ≡ K(y, x,−iT)

=

∫ x(T)=y

x(0)=x
Dx(t) exp[−Seuclidian(x(t))/~]

(3.28)

and the PDX equation we had for K becomes

Keucl(y, x,T) = −

∫ T

0
dt

∫
Σ

dΣz K(r)
eucl(y, x, t)[Σ]K(z, x,T − t) (3.29)

it is this last equation that will be of interest to us. Let us consider first a discrete
one-dimensional situation:

KN(y, x,T) =
( m
2π~ε

)N/2 ∫ ∞

−∞

N−1∏
i=1

dxi exp(−
1
~

N−1∑
j=0

Uε(x j, x j+1))

Uε(x j, x j+1) =
m
2ε

(x j+1 − x j)2 + εV(x j)

(3.30)

we must have of course that KN(y, x,T) = limN→∞Keucl(y, x,T). Denoting x0 = x,
xN = y and T = εN (a trick we already used in the previous section , when we
introduced the concept of path integration), we notice that for each interval [iε, (i+1)ε],
there is the possibility of a last crossing. This allows us to write then:

KN(y, x,T) =

N−1∑
i=0

( m
2π~ε

)N/2 ∫ ∞

−∞

i−1∏
j=1

dx jexp(−
1
~

i−1∑
j=0

Uε(x j, x j+1))

.

∫ z

−∞

dxiexp(−
1
~

Uε(xi, xi+1))

.

∫
∞

z

N−1∏
j=i+1

dx jexp(−
1
~

N−1∑
j=i+1

Uε(x j, x j+1))

(3.31)

will now use an identity without proof [11]:

√
m

2π~ε
exp(−

m(xi+1 − xi)2

2~ε
) =

∫ ε

0
dτ

√
m

2π~τ
exp(−

m(z − xi)2

2~τ
)

.
~

m
∂
∂z

(√
m

2π~(ε − τ)
exp(−

m(xi+1 − z)2

2~(ε − τ)
)
) (3.32)

and we obtain
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KN(y, x,T) =

N−1∑
i=0

∫ ε

0
dτ

( m
2π~ε

)i/2
√

m
2π~τ

∫
∞

−∞

i−1∏
j=1

dx j

∫ z

−∞

dxi

.exp(−
1
~

[Uτ(xi, z) +

i−1∑
j=0

Uε(x j, x j+1)])
~

m
∂
∂z

(R(
m

2π~ε
)N−i−1/2

√
m

2π~(ε − τ)

.

∫
∞

z

N−1∏
j=i+1

dx jexp(−
1
~

[Uε−τ(z, xi+1) +

N−1∑
j=i+1

Uε(x j, x j+1)]) )

(3.33)

where we have set R = exp(−(ε − τ)[V(xi) − V(z)]/~. When we take the continuous
limit, R will be equal to one, that is, not contributing as a factor. Also, we have∫

∞

z
dxiexp(−Uτ(xi, z)/~) =

∫ z

−∞

dxiexp(−Uτ(xi, z)/~)R̂ (3.34)

where we have set R̂ = exp(−τ[V(2z − xi) − v(xi)]/~, which will also give 1 at the
continuous limit. As a result of all this,

∫
∞

z
dxi can be rewritten (1/2)

∫
∞

−∞
dxi, and we

get

KN(y, x,T) =

∫ T

0
dtKN1(z, x, t)

~

2m
∂
∂z

K(r)
N2(y, z,T − t) (3.35)

with is what we were looking for. It is this formula that we will now use, but with
propagators.

3.3 path decompositions and complex potentials

What we will do now is to use the path integral techniques we have developped to
calculate propagators of the type

g(x1, τ|x0, 0) =< x1|exp(−iH0τ − V0θ(−x̂) f (x̂)τ|x0 > (3.36)

where x1 can be positive and negative, but x0 will always be chosen positive.

From what we have seen in previous sections, we can write:

g(x1, τ|x0, 0) =

∫
Dx exp(iS) (3.37)

with
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S =

∫ τ

0
dt

(1
2

mẋ2 + iV0θ(−x) f (x)
)

(3.38)

Now, because there is a θ-function, we will need to split between x<0 and x>0. For
this we will use the PDX methods [13].

Let us first imagine that we have x1 ≤ 0 and x0 ≥ 0. Since a path that crosses
x=0 must have a first crossing, this means that, between the initial time and the first
crossing, the portion of that path is all contained in the positive x’s, and we can therefore
write

g(x1, τ|x0, 0) =
i

2m

∫ τ

0
dt1 g(x1, τ|0, t1)

∂gr

∂x
(x, t1|x0, 0)|x=0 (3.39)

Similarly, if we would like now to write an expression involving the last crossing,
then it means we are talking about a portion of path that is entirely restricted between
x=0 and x1. The restriction guarantees that the path does actually not change sign,
meaning, it stays in the required interval, hence the fact that the corresponding crossing
at x=0 is a "‘last crossing"’. We can thus write:

g(x1, τ|x0, 0) = −
i

2m

∫ τ

0
dt2

∂gr

∂x
(x1, τ|x, t2)|x=0 g(0, t2|x0, 0) (3.40)

We can even write a more exotic expression, involving a first and last crossing:
there will be a restriction between the initial point and x=0, a restriction of the path
between x=0 and the final point, and, also, a propagator that will carry the information
that relates to what happened between the first and last crossing of x=0, and which
mathematically takes the form of a propagator "‘between zero and zero"’, so to say:

g(x1, τ|x0, 0) =
1

4m2

∫ τ

0
dt2

∫ t2

0
dt1

∂gr

∂x
(x1, τ|x, t2)|x=0 g(0, t2|0, t1)

∂gr

∂x
(x, t1|x0, 0)|x=0

(3.41)
Now, imagine that both the initial and final point are > 0, then we will have two

class of possibilities of travelling between those two points: either we remain in the
same side of x=0 (and thus we are in a "fully restricted path"’ case), or we can also
travel somewhere else in space, crossing x=0 one or many times, and coming back to
reach our final point. Mathematically this means we have:

g(x1, τ|x0, 0) =
1

2m

∫ τ

0
dt1 g(x1, τ|0, t1)

∂gr

∂x
(x, t1|x0, 0)|x=0 + gr(x1, t|x0, 0) (3.42)
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the second term of this equation is the fully restricted propagator that correspond
to paths without crossing ("‘direct paths"’). It can be written, using the method of
images:

gr(x1, τ|x0, 0) = θ(x1)θ(x0)(g f (x1, τ|x0, 0) − g f (−x1, τ|x0, 0)) (3.43)

with g f the propagator fo the free particle

g f (x1, τ|x0, 0) =
( m
i2πτ

)1/2

exp(im(x1 − x0)2/2τ) (3.44)

as a result, we have:

∂gr

∂x
(x, t1|x0, 0)|x=0 = 2

∂g f

∂x
(0, t1|x0)θ(x0) (3.45)

The propagator from x=0 to x=0 is given in [14]:

g(0, t|0, 0) =
( m
i2π

)1/2 1 − exp(−V0t)
V0t3/2 (3.46)

the full solution will therefore have the form

ψ(x, τ) = θ(−x)ψtr(x, τ) + θ(x)(ψre f (x, τ) + ψ f (x, τ)) (3.47)

Here we have ψtr, transsmitted part of the wavefunction, ψre f the reflected part,
and ψ f the free part. the free part correspond to the portion of the wave packet that
has not reached yet x=0 within the elapsed time [0, τ]. Since, if we wait long enough,
it is expected that all the wave packet crosses x=0, we can see that ψ f goes to zero with
large τ”

3.4 Example: scattering solutions of Schrödinger Equa-
tion

What we will do now is to calculate the scattering solutions of Schrödinger equation
using PDX methods. One of our motivations for doing this, is that, once we will have
derived these solutions, we will see that these solutions can be found within a certain
approximation of semiclassical nature. By comparing the solutions obtained with PDX
methods and those obtained with the semiclassical approximation, we will know what
are the limits of validity of this approximation, and we will use it later in this work in
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our calculation of the arrival time distribution.

Let us assume that τ is large enough so that we can assume ψ f to be zero. Starting
with ψtr, we have:

ψtr(x, τ) =
1

m2

∫ τ

0
ds

∫ τ−s

0
dv < x|exp(−iH0s)p̂|0 > e−V0s

. < 0|exp(−iHv)|0 >< 0|p̂exp(−iH0(τ − v − s))|0 >
(3.48)

where |0> is the position eigenstate at x=0, s = τ − t1 and v=t2 − t1, and H is just
the total hamiltonian (free hamiltonian + complex potential). Then we decompose the
initial state over momentum states |p>, and using E = p2/2m:

ψtr(x, τ) =
1

m2

∫
dp

∫
∞

0
ds < x|exp(−iH0s)p̂|0 > ei(E+iV0)s

.

∫
∞

0
dv < 0|exp(−iHv)|0 > eiEv p < 0|p > eiEτψ(p)

(3.49)

we need the following formula [17] to compute the above integral with respect to s:∫
∞

0
ds

( m
2πis

)1/2

exp
(
i[λs +

mx2

2s
]
)

=
( m
2λ

)1/2

exp(i|x|
√

2mλ) (3.50)

differentiating with respect to x and substituting λ = E + iV0:∫
∞

0
ds < x|exp(−iH0s)p̂|0 > ei(E+iV0)s = m exp(i|x|[2m(E + iV0)]1/2) (3.51)

using then the formula

( m
2πi

)1/2 ∫ ∞

0
dv

1 − e−V0v

V0v3/2 eiEv =

√
2m

(E + iV0)1/2 + E1/2 (3.52)

we can finally perform the integration of ψtr(x, τ) and get

ψtr(x, τ) =

∫
dp
√

2π
exp(−ix[2m(E + iV0)]1/2

− iEτ)ψtr(p) (3.53)

where we have

ψtr(p) =
2

1 + E−1/2(E + iV0)1/2ψ(p) (3.54)
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The case of ψre f is different: because it corresponds to a portion of the wave packet
that is reflected, it means that both points, initial and final, are of same side with respect
to x=0, but with V0 in the last segment of propagation. We obtain:

ψre f (x, τ) =

∫
dp
√

2π
exp(ixp − iEτ)ψre f (p) (3.55)

with

ψre f (p) = ψtr(p) − ψ(p)

=
1 − E−1/2(E + iV0)1/2

1 + E−1/2(E + iV0)1/2ψ(p)
(3.56)

Now that we have these exact result, we would like to test an approximation of
the propagator based on the assumption we have a very small V0 with respect to the
energy scales, and write

< x|exp(−iHs)|0 >≈< x|exp(−iH0s)|0 > exp(−V0s) (3.57)

we will first calculate the transmitted wave packet:

ψtr(x, τ) = −
1
m

∫ τ

0
ds < x|e−iH0s

|0 > e−V0s < 0|p̂e−iH0(τ − s)|ψ > (3.58)

again here we have s= τ− t1. Then we take the limit for τ going to infinity and after
this, we integrate. We then need to calculate

∫
∞

0
ds < x|e−iH0s

|0 > ei(E+iV0)s =

(
m

2(E + iV0)

)1/2

exp(−ix[2m(E + iV0)]1/2) (3.59)

which gives

ψtr(p) =
1

E−1/2(E + iV0)1/2ψ(p) (3.60)

Comparing with the expression we obtained for ψtr(p) with the PDX method, we
see that the two answers are the same only when V0 = 0, so we can infer that the
approximation is valid for small V0 with respect to the energy scale.
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3.5 Classical case with a complex potential

We start with a classical phase space distribution wt(p, q) of initial w0(p, q) located in
the region q>0 and with negative momenta. The evolution equation is

∂w
∂t

=
p
m
∂w
∂q
− 2V(q)w (3.61)

where V(q) is such that:

V(q) = V0θ(−q) (3.62)

Solving the evolution equation, we get:

wτ(p, q) = exp
(
−2

∫ τ

0
dsV(q − ps/m)

)
w0(p, q − pτ/m) (3.63)

and then doing like in the chapter 2, we find the probability

N(τ) =

∫
∞

−∞

dp
∫
∞

−∞

dq wτ(p, q) (3.64)

and we deduce the arrival time through a simple differentiation

Π(τ) = −
dN
dτ

= 2V0

∫
∞

−∞

dp
∫
∞

−∞

dq wτ(p, q)
(3.65)

it appears that Π(τ) satisfies the equation

dΠ

dτ
+ 2V0Π = −2V0

∫
∞

−∞

dp
p
m

wτ(p, 0) (3.66)

which has the solution

Π(τ) = −2V0

∫ τ

0
dtexp(−2V0(τ − t))

∫
∞

−∞

dp
p
m

wτ(p, 0) (3.67)

so we finally find

wτ(p, 0) = e−2V0
∫ t

0 dsθ( ps
m )w0(p,

−pt
m

) (3.68)

and thus

Π(τ) = 2V0

∫ τ

0
dt exp(−2V0(τ − t)) J(t) (3.69)
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with

J(t) = −

∫
∞

−∞

dp
p
m

w0(p,
−pt
m

) (3.70)

these last two equations are very important because this is what we obtain in the
quantum case , in the section on the calculation of arrival time distribution.

Now, this classical result can help in shedding some light on the resolution function
R, taht we have met in the chapter 2, it describes actually a sort of "‘coarse graining in
time"’ (hence the name resolution function). To understand why, let us consider the
prbability to arrive between τ1 and τ2. We have:

p(τ2, τ1) =

∫ τ2

τ1

dτΠ(τ)

= 2V0

∫ τ2

τ1

dτ
∫ τ

0
dt exp(−2V0(τ − t)) J(t)

(3.71)

because we can reorder these integrals, we can write:

p(τ2, τ1) = 2V0

∫ τ1

0
dt

∫ τ2

τ1

dτexp(−2V0(τ − t)) J(t)

+ 2V0

∫ τ2

τ1

dt
∫ τ2

t
dτexp(−2V0(τ − t)) J(t)

=

∫ τ1

0
dt

(
exp(−2V0(τ1 − t)) − exp(−2V0(τ2 − t))

)
J(t)

+

∫ τ2

τ1

dt(1 − exp(−2V0(τ2 − t)))J(t)

(3.72)

Now, in this formula, we see that if we could, in some way, neglect the exponential
terms, the expression would greatly simplify and just be

∫
dtJ. For this to happen, we

need the argument of the exponential to be very big, that is, V0τ >> 1, which implies
a relation between τ and V0, namely, that the timescales are much greater than V0

p(τ2, τ1) ≈
∫ τ2

τ1

dt J(t) (3.73)

3.6 the arrival time distribution

We would like to calculate the following expression
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Π(τ) = 2V0 < ψτ|θ(−x̂)|ψτ > (3.74)

where we have

|ψτ > = exp(−iHτ)|ψ >

= exp(−iH0τ − V0θ(−x̂)τ)|ψ >
(3.75)

We will be interested in the regime of small V0, which will allow us to use the
semiclassical approximation we have talked earlier.

Using the PDX formula involving first crossing, we can write:

< x|exp(−iHτ)|ψ >= −
1
m

∫ τ

0
dt < x|exp(−iH(τ − t))δ(x̂)p̂exp(−iH0t)|ψ > (3.76)

using the fact that δ(x̂) has the following property (for any operator A):

δ(x̂)Aδ(x̂) = δ(x̂) < 0|A|0 > (3.77)

we obtain then (again writing s = τ − t, s′ = τ − t′

Π(τ) =
2V0

m2

∫ τ

0
ds′

∫ τ

0
ds

∫ 0

−∞

dx

. < 0|exp(iH+s′)|x >< x|exp(−iHs)|0 >

. < ψ|exp(iH0(τ − s′)) p̂ δ(x̂) p̂ exp(iH0(τ − s))|ψ >

(3.78)

This relabelling of our integrals will make things easier to be computed. We start
with the dx-integral, and we use here the semiclassical approximation we had men-
tioned before:

< x|exp(−iHs)|0 >≈
( m
2πis

)1/2

exp(
imx2

2s
− V0s) (3.79)

which gives us after integration:

Π(τ) =
V0

m2

∫ τ

0
ds′

∫ τ

0
ds

( m
2πi

)1/2 e−V0(s+s′)

(s − s′)1/2

. < ψτ|exp(−iH0s′) p̂ δ(x̂) p̂ exp(iH0s)|ψτ >
(3.80)
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Now, let us have a look to the two ds/ds’ integrals. Geometrically, we can see that∫ τ

0
ds′

∫ τ

0
ds =

∫ τ

0
ds′

∫ τ

s′
ds +

∫ τ

0
ds

∫ τ

s
ds′ (3.81)

performing then the relabelling u=s’,v=s-s’ in the first integral, and u=s,v=s-s’ in
the second one, we get

Π(τ) =
V0

m2

( m
2π

)1/2 ∫ τ

0
due−2V0u

∫ τ−u

0
dv

e−V0v

v1/2

.(
1
√

i
< ψτ|exp(−iH0u) p̂ δ(x̂) p̂ exp(iH0(u + v))|ψτ >

+
1
√
−i
< ψτ|exp(−iH0(u + v)) p̂ δ(x̂) p̂ exp(iH0u)|ψτ >)

(3.82)

the final result is

Π(τ) = 2V0

∫ τ

0
du e−2V0u

.
1

2m
< ψτ−u|p̂ δ(x̂)Σ(p̂) + Σ+(p̂)δ(x̂) p̂|ψτ−u >

(3.83)

here Σ(p̂) is

Σ(p̂) =
p̂

[2m(H0 + iV0)]1/2 (3.84)

and if V0 is very small

Σ(p̂) ≈ p̂/|p̂| (3.85)

so that sigma is in fact just a sign function of the momentum. Now, if we write
u = τ − t, we find

Π(τ) = 2V0

∫ τ

0
dt e−2V0(τ−t)−1

2m
< ψt|p̂ δ(x̂) + δ(x̂) p̂|ψt >

= 2V0

∫ τ

0
dt e−2V0(τ−t)J(t)

(3.86)

which is exactly what we obtained classically (the only difference being the range
of integration)!!



Chapter 4

Decoherence of histories

4.1 Introduction to the concept of decoherent histories

The purpose of this section is to introduce what we call the decoherent histories ap-
proach to the arival problem.

The fundamental tools we use to describe a "‘history"’ are probabilities defined such
that

p(α1, α2, α3, ...) = Tr(CαρC†α) (4.1)

here the Cα are class operators, which are time ordered chains of projectors:

Cα = Pαn e−iH(tn−tn−1)...e−iH(t2−t1)Pα1 (4.2)

The class operators are such that:∑
α

Cα = e−iHτ (4.3)

where τ = [t1, tn] .
Such histories can sometimes "‘interfer"’ and we describe this interference with

what is named a decoherence functional:

D(α, α′) = Tr(CαρC†α′) (4.4)

Decoherence functionals satisfy the three following identities:

D(α, α′) = D ∗ (α′, α) (4.5)

37
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∑
α,α′

D(α, α′) = 1 (4.6)

∑
α

D(α, α) =
∑
α

p(α) = 1 (4.7)

Now, if histories don’t interfer, the decoherence function is zero:

D(α, α′) = 0 ⇔ (α , α′) (4.8)

It is generally not easy to have situations where the decoherence are exactly zero,
also, we are interested in knowing when we can indeed considering D as a negligible
quantity. A hint is provided by the following relation [18]

|D(α, α′)|2 ≤ p(α)p(α′) (4.9)

which allows us to decide that we will consider histories to be decoherent if we
have

|D(α, α′)|2 << p(α)p(α′) (4.10)

Now, in addition to probabilities, we can also define quasi-probabilities. They are
of the form:

q(α) = Tr(CαρeiHτ) (4.11)

It is straightforward to see that

q(α) =
∑
α′

Tr(CαρC†α′)

= p(α) +
∑
α′,α′

D(α, α′)
(4.12)

So, when we have decoherence, then quasi-probabilities and probabilities are equal.
However in the most general case it is not necessarily the case, as quasi-probabilities
can be negative, or even imaginary.

Our aim now is to manage to describe arrival time in terms of these new concepts.
We will need for this some more precise expressions and definitions of the class opera-
tors. We will use two class operators, that will corresponds to the two types of histories
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we can get: either crossing x=0 or not crossing it. A possible definition for the "‘not
crossing"’ class operator could be

Cnc = limε→0Pe−iHεP...e−iHεP (4.13)

which takes, in the continuous limit, the form of the restricted operator we have
already met:

Cnc = gr(τ, 0) (4.14)

which itself relates to the path integral:

< x1|gr(τ, 0)|x0 >=

∫
r
DxeiS (4.15)

we can then deduce the "‘crossing"’ class operator:

Cc = e−iHτ
− Cnc (4.16)

There is, however, a problem with our Cnc: it is subject to the Zeno effect, that is,
too many projections will generate a total reflection, and this leads that x=0 is never
crossed, that is,

pnc = Tr(CncρC†nc) (4.17)

a possible way to get rid of this problem is either to avoid taking the limit as we
did, ot chosing a more suitable operator (by taking for example POVM’s instead of
projectors). What we will do is a mix of both. First, we will not take the limit, and
simply work with

Cε
nc = Pe−iHεP...e−iHεP (4.18)

it can then be proven that Zeno effect can be avoided if

ε >
1

∆H0
(4.19)

Then, following a result of Echanobe al. [19], we will use the following approxi-
mation

Pe−iHεP...e−iHεP ≈ e−iH0τ−V0θ(−x̂)τ (4.20)

this approximation is based on the fact that we can write
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P = θ(x̂) ≈ exp(−V0θ(−x̂)ε) (4.21)

when

V0ε >> 1 (4.22)

On another hand, we have similarly

exp(−iH0ε)exp(−V0θ(−x̂)ε) ≈ (−iH0ε − V0θ(−x̂)ε) (4.23)

under the condition

V0ε
2
| < [H0, θ(−x̂)] > | << 1 (4.24)

assuming that

V0 >> ∆H0 (4.25)

We then have finally an interesting form for our not-crossing class operator:

Cnc = exp(−iH0τ − V0θ(−x̂)τ) (4.26)

what we will show in the subsequent sections is that the class operator for crossing
takes the form

Ck
c = e−iH0τ

∫ tk+1

tk

dt
−1
2m

(p̂δ(x̂t) + δ(x̂t)p̂)

= e−iH0τ(θ(x̂(tk)) − θ(x̂(tk+1)))
(4.27)

and that, if decoherence is satisfied, the (quasi)probabilities take the form

q(tk, tk+1) =

∫ tk+1

tk

dt J(t) (4.28)

which completely agrees all result shown in other chapters.

4.2 single large time interval analysis

Let us suppose we have a wave packet going to the origin from positive x’s. We are
looking for the probability to cross te origin during a time interval.
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We know that the not-crossing and crossing class operators are given by

Cnc = exp(−iH0τ − V(x)τ) (4.29)

Cc = exp(−iH0τ) − exp(−iH0τ − V(x)τ) (4.30)

and the sum of them satisfies

Cnc + CC = e−iH0τ (4.31)

we want to calculate the two probabilities

pnc(τ) = Tr(CncρC+
nc) (4.32)

pc(τ) = Tr(CcρC+
c ) (4.33)

and the off-diagonal components of the decoherence functional:

Dc,nc = Tr(CncρC+
c )

= Tr(Cncρe−iH0τ) − pnc
(4.34)

it is straightforward to see that

pnc + pc + Dc,nc + D∗c,nc = 1 (4.35)

We have to remember that the interesting situations are those where we have
decoherence:

Dc,nc = 0 (4.36)

because then we obtain a simple sum rule for the probabilities:

pnc(τ) + pc(τ) = 1 (4.37)

Now, if we notice that pnc is nothing else than the survival probability N, we can
immediatly see that

pnc(τ) = 1 +

∫ τ

0
dt

dpnc

dt
(4.38)

and thus
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pnc(τ) = 1 −
∫ τ

0
dtΠ(t) (4.39)

which, when there is decoherence, just allow us to write

pc(τ) =

∫ τ

0
dtΠ(t) (4.40)

We will now carry a careful calculation of the decoherence functional in the case
of a single large interval [0, τ]. Let us remember that we have seen previously the
expressions for the transmitted and reflected wave packet, and using them, we have
that:

Cnc|ψ >= θ(−x̂)|ψtr > +θ(x̂)(|ψre f > +|ψ f >) (4.41)

Cc|ψ >= θ(−x̂)(|ψ f > −|ψtr > ) − θ(x̂)|ψre f > (4.42)

so that the probabilities and off-diagonal terms of the decoherence functional are

pnc =< ψtr|ψtr > + < ψre f |ψre f>+ < ψre f |ψ f > + < ψ f |θ(x̂)|ψ f >

pc =< ψtr|ψtr > + < ψre f |ψre f > − < ψtr|ψ f > − < ψ f |ψtr > − < ψ f |θ(x̂)|ψ f >

Dc,nc =< ψtr|ψ f > − < ψtr|ψtr > − < ψre f |ψre f > − < ψ f |ψre f >

(4.43)

Now, what we will do is to use the quasi-probability for not-crossing

qnc(τ) = Tr(Cncρe−iH0τ) (4.44)

and we know that the difference between the quasi-probability and the probability
is just the decoherence functional:

Dc,nc = qnc(τ) − pnc(τ) (4.45)

So, the most intuitive way to see if there is decoherence is to see if p and q are the
same or not. This is basically the direction of reasoning we will follow, however we
will write our equations in a more suggestive way. For this, we write:

qnc(τ) = 1 +

∫ τ

0
dt

dqnc

dt
(4.46)

and name
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Π̃(t) ≡
dqnc

dt
(4.47)

we have thus

qnc(τ) = 1 +

∫ τ

0
dt Π̃(t) (4.48)

and the decoherence functional becomes simply

Dc,nc =

∫ τ

0
dt (Π(t) − Π̃(t)) (4.49)

now, the explicit expression for Π̃ is

Π̃(t) = V0 < ψ|exp(iH0t)θ(−x̂)exp(−iH0t − V0θ(−x̂)t)|ψ > (4.50)

but we have seen how to solve this type of equation in the previous chapter, and
we get finally

Π̃(t) = V0

∫ t

0
ds e−V0(τ−s)J(s) (4.51)

we can also calculate that ∫ τ

0
dt Π(t) ≈

∫ τ

0
dt J(t) (4.52)

We musnt’t forget that all these calculations are carried under the semiclassical
approximation we mentioned in the previous chapter, which is itself valid if V0 is very
small,and that, as the same time, we are here in the hypothesis of a single large time
interval, so that Π and Π̃ give the same result, that is, the decoherence functional vanish.
This shows that the hypothesis that describe the study of the arrival time problem we
carried in the previous chapter corresponds to situation where decoherence is satisfied,
at least in the case of a single large interval. We will now study the more complex case
of an arbitrary set of time intervals.

4.3 Arbitrary set of time interval analysis

The idea here to split the overall time interval we are considering [0; τ] into small
infinitesimal times dt’s, during each of which we are interested to know whether the
particle has crossed. In order to do that, we will write, like we dit many times,τ = ε.n.
Like we had so far, we can obviously write:
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e−iH0ε = Cnc(ε) + Cc(ε) (4.53)

Since τ = ε.n, we have then

e−iH0τ = (e−iH0ε)n

= (e−iH0ε)n−1(Cnc(ε) + Cc(ε))

= (e−iH0ε)n−1Cnc(ε) + e−iH0(τ−ε)Cc(ε)

(4.54)

repeating this same steps in the first term, we have

e−iH0τ = (e−iH0ε)n−2Cnc(2ε) + e−iH0(τ−2ε)Cc(ε)Cnc(ε) + e−iH0(τ−ε)Cc(ε) (4.55)

by iterating the process:

e−iH0τ = Cnc(τ) +

n−1∑
k=0

e−iH0(τ−(k+1)ε)Cc(ε)Cnc(kε) (4.56)

As a result, we see that the probability to cross x=0 the first time during [kε, (k + 1)ε]
is just

Cc((k + 1)ε, kε) = e−iH0(τ−(k+1)ε)Cc(ε)Cnc(kε) (4.57)

Now, we take the continuum limit of e−iH0τ and insert the expression for Cnc:

e−iH0τ = e−iH0τ−Vτ +

∫ τ

0
dt e−iH0(τ−t)Ve−iH0t−Vt (4.58)

the probability for first crossing during [t,t+dt] will be

Cc(t) = e−iH0(τ−t)V e−iH0t−Vt (4.59)

however, since there is no reason to think there will be no decoherence, we consider
the more general "‘coarse-grained"’ expression

Ck
c =

∫ tk+1

tk

dt Cc(t) (4.60)

as a result, the overall number of class operators will be N+1: one for not crossing,
and N for a possibility of crossing at each of the N intervals that we called epsilons:

Cα =
{
Cnc,Ck

c

}
(4.61)
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and they must all satisfy, like usual:

e−iH0τ = Cnc +

N−1∑
k=0

Ck
c (4.62)

The decoherence here will be more tricky because now we have two types of
relations to check:

Dkk′ = Tr(Ck
cρ(Ck′

c )+) (4.63)

and

Dk,nc = Tr(Ck
cρ(Cnc)+) (4.64)

Now, what we will do is to write in a simpler way the class operator that describes
the crossing. We start with

< x|eiH0τCc(t)|ψ >= V0 < x|eiH0tθ(−x̂)e−iH0t−Vt
|ψ > (4.65)

by doing exactly the same type of calculation that what we did when we computer
the arrival time distribution in the previous chapter, we find that

< x|eiH0τCc(t)|ψ >= V0

∫ t

0
ds e−V0(t−s)−1

2m
< x|(p̂δ(x̂s) + δ(x̂s)p̂)|ψ > (4.66)

with similar hypothesis, that is, V0 much smaller than energy scales. After interating
over time, we get

eiH0τCk
c =

∫ tk+1

tk

dt
−1
2m

(p̂δ(x̂t) + δ(x̂t)p̂) (4.67)

which can elegantly take the form

eiH0τCk
c = θ(x̂(tk)) − θ(x̂(tk+1)) (4.68)

We are now ready to compute the probability for crossing. It is

p(tk, tk+1) = Tr(Ck
cρ(Ck

c)
+) (4.69)

which becomes in the case of decoherence
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p(tk, tk+1) = Tr(Ck
cρeiH0τ)

=

∫ tk+1

tk

dt
−1
2m

< ψ|(p̂δ(x̂t) + δ(x̂t)p̂)|ψ >

=

∫ tk+1

tk

dt J(t)

(4.70)

and this matches exactly all our previous results!

4.4 Decoherence and backflow

In this section we would like to adress an important question which is the relation
between backflow and decoherence. We consider in a simple approach, histories that
either cross or don’t during a certain time interval. If crossing is just written C, then
the not crossing operator can be written just 1-C, with

C = θ(x̂1) − θ(x̂2) (4.71)

where we focus on the meaning here, and not really on technical aspect like the
exponential, etc, which have no importance for what we want to explain.

We can calculate the decoherence functional:

D =< C(1 − C) >

=< C > − < C2 >
(4.72)

or, written differently:

C = − < θ(−x̂1)θ(x̂2) + θ(x̂2)θ(−x̂1) > (4.73)

Having decoherence means having D=0, that is:

p(t1, t2) =< C2 >=< C > (4.74)

So what does it mean? When we have decoherence, <C2 > and < C > mustbeequal, but <
C2 > beingpositive, thismeansthat < C > ispositiveaswell.Nowletusimaginewehaveback f low.Then <
C > isnegative, buti f itisnegative, itcannotcancel < C2 >, andtherecannotbedecoherence!So, animportantresultisthatwhenwehaveback f low,wecanneverhavedecoherenceo f histories.Thenextchapterwillgivemoredetailsonthisconcepto f back f lowandexplainsomeo f itsmainproperties.



Chapter 5

The backflow problem

5.1 Introduction

The backflow effect is a physical process where we hve a negative current despite
having positive momenta. It is an actual quantum phenomenon, despite the fact that
we can show that, suprisingly, it does not depend on Planck’s constant, unlike many
quantum effects. Being a quantum process, it is expressed through the behavior of
the probability density. Explicitly, , if we have a wave function located in the negative
x-region, and propagating toward the positive x’s,it appears that the probability of
staying in the negative x’s region increases with time, under certain conditions that we
will develop in the following pages. What we can say already is that this backflow can
be described by some quantities that some authors suggest to correspond to new quan-
tum number, and it seems that the increase of the probability with time is bounded.
This has been, and is still now, intensively explored, mainly through numerical work,
and, when possible, analytically.

The problem can be expressed mathematically as follows. We start with a wave
function located in x<0, and with positive momenta, as we just said. By "‘located in
x<0"’ it should be understood "‘centred in the negative region"’. Then, the amount of
probability flux F that crosses the origin during a time interval is given by

F(t1, t2) =

∫ 0

−∞

dx |ψ(x, t1)|2 −
∫ 0

−∞

dx |ψ(x, t2)|2

=

∫ t2

t1

dt J(t)
(5.1)

with the familiar current at x=0:

47
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J(t) = −
i~

2m

(
ψ∗(0, t)

∂ψ(0, t)
∂x

−
∂ψ∗(0, t)
∂x

ψ(0, t)
)

(5.2)

as we have seen many times in the early sections of the second chapter, this flux
can be written

F(t1, t2) =

∫ t2

t1

dt
∫

dpdq
p
m
δ(q)Wt(p, q) (5.3)

what we will do now it to rewrite this flux in operator form. The motivation for this
is that we would like to study the backflow effect by trying to setting up a eigenvalue
problem, which would considerably makes things simpler. So, to write these formula
in operator form, we use the projector P = θ(x̂), projecting on the positive x’s, and its
complement P̄ = 1 − P = θ(−x̂). We have then the flux operator F̃(t1, t2)

F̃(t1, t2) = P(t2) − P(t1)

=

∫ t2

t1

dt Ṗ(t)

=

∫ t2

t1

dt
i
~

[H, θ(x̂)]

=

∫ t2

t1

dt Ĵ(t)

(5.4)

with the current opetator, that we have also met many times previously in this
dissertation:

Ĵ(t) =
1

2m
(p̂δ(x̂) + δ(x̂)p̂) (5.5)

we have thus

F(t1, t2) =< F̂(t1, t2) >

=< P̄(t1) > − < P̄(t2) >

=< P(t2) > − < P(t1) >

=

∫ t2

t1

dt < ψ| Ĵ(t)|ψ >

(5.6)

with J(t)=< ψ| Ĵ(t)|ψ >
it is worth to wonder under which condition this flux can possibly be negative

for certain states. A first possibility is that it can happen when the function W itself
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is negative. This answer is quite intuitive indeed, but the integral that expresses F
in terms of W can sometimes be positive even for negative W, so this condition, if it
happens seems to happen along with another cause. Another possibility may come
from the exploration of the current operator, where a negative Ĵ may be caused by teh
non-commutativity of δ(x̂) and p̂.

At this stage, we are ready for the eigenvalue problem, and the corresponding
equation will be given by

θ(p̂)F̂(t1, t2)|Φ >= λ|Φ > (5.7)

In this equation, backflow will correspond to states |Φ > of positive momenta, and
with negative eigenvalues λ. For convenience, we will write the time interval [-T/2,T/2]
instead of F(t1, t2), so that we will have a single time quantity T.Also, because we would
like to see explicitly in our equation that we are working with positive momenta, it is
a good idea to switch our equation to momentum space. Positive momenta will then
obviously correspond to a range of integration that go from zero to infinity, and we
will thus have

1
π

∫
∞

0
dk

sin[(p2
− k2)T/4m~]
p − k

Φ(k) = λΦ(p) (5.8)

a further good idea is to do a rescaling through the change of variables p = 2
√

m~Tu
and k = 2

√
m~Tv, and our equation then reads

1
π

∫
∞

0
dv

sin(u2
− v2)

u − v
Φ(v) = λΦ(u) (5.9)

with Φ(u) = (m~/4T)1/4Φ(p) dimensionless. A critically important thing to notice is
that, at the light of all these change of variable, it appears that the eigenvalue λ is in
fact dimensionless.

In terms of these change of variables, we can also write the flux:

F(−T/2,T/2) =
1
π

∫
∞

0
du

∫
∞

0
dvφ∗(u)

sin(u2
− v2)

u − v
φ(v) (5.10)

Since the eigenvalue equation is real, we expect the eigenfunctions to be real as
well, so we should have:

ψ∗(x, t) = ψ(−x,−t) (5.11)



CHAPTER 5. THE BACKFLOW PROBLEM 50

and it appears that the numerical solutions of this eigenvalue equation is described
with the interval

−cbm ≤ λ ≤ 1 (5.12)

here, cbm is a number that has the same dimension than λ, meaning, it is dimension-
less, and in particular, because of the change of variable we performed above, it does
not depend on ~, which is at first unexpected. This special number has been explored
intensively by Bracken and Melloy [20],[21],[22](hence the name of this number), and
it seems to be a constant of value

cbm ≈ 0.0384 (5.13)

Now, another thing that appears agin from the change of variable we did, is that
this number does not depend on T either. as a result, a period of negative current can
be arbitrarily long, as long as we still have∫ T/2

−T/2
dt J(t) ≥ −cbm (5.14)

which implies a relationship

T J(ξ) ≥ −cbm (5.15)

for a certain ξ ∈ [-T/2,T/2]

5.2 superposition of gaussians

In this section, we would like to review the study that has been carried [23] regarding
the amount of backflow effect that can be obtained from superposition of gaussians.
First, the reason why we straight consider superposition of gaussian rather than a
single one, is that a single gaussian have necessarily a positive current, because its
function W is positive. Now, regarding the case of superposition of gaussians, we
know that there is a negative current contribution that comes from the wavepackets
themselves, and this has of course nothing to do with backflow. It will be worth to
see then what is the exact proportion of this geometry-related negative current with
respect to the backflow itself. To make equations simpler, we will set ~ = 1 and m=1

We start with the state
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ψ′(x, t) =
∑
k=1,2

Ak exp[i pk(x − pkt)] (5.16)

with the Ak’s are real. The current at the origin will be

J(t) = A2
1p1 + A2

2p2 + A1A2(p1 + p2)cos[(E1 − E2)t] (5.17)

The cos function generates an oscillation between (A1p1+A2p2)(A1+A2)asmaximumand(A1p1−

A2p2)(A1 −A2) as minimum. Therefore we will have backflow for many values that are
easy to deduce, for example from the minimum of the oscillation.

What we will do now is to consider the sum of two initially gaussian wavepackets
of equal with σ:

ψ(x, t) =
∑
k=1,2

Ak
1

√
4σ2 + 2it

exp
(
i pk(x − pkt) −

(x − pkt)2

4σ2 + 2it

)
(5.18)

Let us have a look to some parameters and the corresponding plots taken from [23]:
for the following set of parameters

p1 = 0.5

p2 = 2

σ = 10

A1 = 1.7

A2 = 1

(5.19)

we clearly see that the plot of the current reveals intervals where this current is negative:
and plotting the probability for remaining in x<0 reveals that despite the fact that

this probability decreases, it has some local increases with time:
The same type of phenomena can be obtained with other set of parameters, for

example

p1 = 0.3

p2 = 1.4

σ = 10

A1 = 1.8

A2 = 1

(5.20)
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Figure 5.1:

Figure 5.2:

where again we see intervals of negative current:
and intervals of increasing probability of remaining in the negative region:
from all this, we can try to calculate the largest period of backflow:

F =

∫ t2

t1

dt J(t) (5.21)

and we find
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Figure 5.3:

Figure 5.4:

F ≈ −0.0061 (5.22)

which is indeed very small. Now, as we have said in the beginning of this section, we
should make sure that this negative current is not caused by the gaussian-geometry
of the wavepacket. In fact, we can calculate, for example, that for the wavepacket
centered around p=0.3, the associated probability to have a negative current will be



CHAPTER 5. THE BACKFLOW PROBLEM 54

Probability(p < 0) ≈
∫ 0

−∞

dp exp(−200(p − 0.3)2)

≈ 10−10

(5.23)

this is ridiculously small, and we can therefore infer that indeed our negative
current is essentialy caused by backflow.

5.3 classical limit of backflow

We would like now to come back to a previous result we have talked about and which
require some deeper exloration, namely, the fact that the eigenvalues that allow back-
flow to happen don’t depend on ~. This is puzzling because if it is really so, then
taking the naive classical limit ~→ 0 wouldn’t annihilate the backflow effect, while we
know that it is actually a quantum process. There seems to be some apparent problem.
Thankfully, we can get some inspiration from some other processes in physics where a
similar problem occurs. One of them is the scattering off a step potential, where have
also a quantity that does not seem to depend on ~ and which seems to block us to work
efficiently a naive classical limit. In that case, the problem comes from the fact that
considering a real step function potential is actually unphysical, and it can be show
that it is sufficient to sliglty smoothen it to restore completely the dependence into ~,
allowing us to take a classical limit that annihilates the effect.

The idea here is broadly the same, and we can thus legitimely suspect that there is a
quantity that should be (at least) slightly modified to show that eigenvalues are indeed
functions of ~. Following our inspiration from the scattering example we mentioned,
let us try to see if defining the flux with quasiprojectors instead of exact projectors as
we did, could be helpful. As quasiprojector let us take

Q =

∫
∞

0
dy δσ(x̂ − y) (5.24)

where δσ(x̂ − y) is a smoothed delta-function of the form

δσ(x̂ − y) =
1

(2πσ2)1/2 exp(−
(x̂ − y)2

2σ2 ) (5.25)

which goes to zero when σ → 0, making the quasiprojector beccoming an exact
projector.
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with this smoothed δ-function, the current operator becomes

Ĵ =
1

2m
(p̂δσ(x̂) + δσ(x̂)p̂) (5.26)

the interesting consequence of this rewriting is that now, the flux contains a new
factor, that is exponential, and depending on a certain quantity a = 2mσ2/~T

F(−T/2,T/2) =
1
π

∫
∞

0
du

∫
∞

0
dvφ∗(u)

sin(u2
− v2)

u − v
e−a2(u−v)2

φ(v) (5.27)

and this factor appears also in the eigenvalue equation:

1
π

∫
∞

0
dvφ∗(u)

sin(u2
− v2)

u − v
e−a2(u−v)2

φ(v) = λφ(u) (5.28)

this means that the eigenvalue now depends on the parameter a, which itself
depends on ~. So we actually do have a dependence on ~! This allow us to take the
classical limit in the naive sense ~ → 0. In fact, it is possible to show numerically
that the eigenvalues that are solutions of our eigenvalue equation, are bounded from
below:

λ(a) ≥ −cbm (5.29)

and increase according to the expression

λ(a) ≈ −
1
a2 (5.30)

In fact, it can be shown numerically under the assumption of the eigenvalues being a
function of this parameters a, that the backflow effect goes to zero in the classical limit,
while the positive eigenvalue are only little affected. This proves that the apparent
independence of the eigenvalues with respect to Planck’s constant is only an artificial
artefact coming from our mathematical description chosen to model the backflow, and
that, with a more accurate model ((namely, involving this parameter a), it is possible to
restore a reasonable behavior coherent with what we expect to happen for a behavior
that is quantum in its very nature: to disappear in the classical limit.

5.4 backflow and arrival time

In this last section of our work, we would like to say some words about how we can
establish a simple connection between backflow and arrival time. The idea we will
develop is simple: we will see that arrival time can be used to show if backflow is



CHAPTER 5. THE BACKFLOW PROBLEM 56

present or not. We will need to pay attention to the method we decide to model this
arrival time. We will use in this section many of the information we have talked about
throughout this dissertation. In the simplest case, we just do a measure to see if a
particle is present in x<0 at time t1andi f itispresentatx>0attimet2. The probability will
then be

p(t1, t2) =< ψ|P̄(t1)P(t2)P̄(t1)|ψ > (5.31)

which becomes, in terms of the flux operator Ĵ:

p(t1, t2) =< ψ|P̄(t1)(P(t2) − P(t1))P̄(t1)|ψ >

=

∫ t2

t1

dt < ψ|P̄(t1) Ĵ(t)P̄(t1)|ψ >
(5.32)

this last equation is positive. In this simple case, backflow will be present if we
have a negative flux despite having a positive probability.

Now we can use a more detailed model, using a complex potential, as we did many
times previously in this work. We already know that in this case, the arrival time
distribution will be

Π(τ) = −
dN
dτ

= 2V0 < ψ|e(iH0−V0θ(x̂))τθ(x̂)e(−iH0−V0θ(x̂))τ
|ψ >

(5.33)

to find the expression that relates Pi(τ) to Ĵ, we first differentiate with restpect to τ:

dΠ

dτ
= −2V0Π + 2V0 < ψ|e(iH0−V0θ(x̂))τ Ĵe(−iH0−V0θ(x̂))τ

|ψ > (5.34)

and then we simply solve the obtained differential equation, which gives us

Π(τ) = 2V0

∫ τ

−∞

dt e−2V0(τ−t) < ψ|e(iH0−V0θ(x̂))t Ĵe(−iH0−V0θ(x̂))t
|ψ > (5.35)

the probability for crossing between [t1, t2] will then be

p(t1, t2) =

∫ t2

t1

dt Π(t) (5.36)

let us work in the approximation of small V0. We then get
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Π(τ) ≈ 2V0

∫ τ

−∞

dt e−2V0(τ−t) < ψt| Ĵ|ψt > (5.37)

The current can be extracted from this last equation by deconvolution, and from
there we get the flux, allowing us to deduce the presence of backflow.



Chapter 6

Conclusion

We have finally arrived at the end of our work. It seems now clear that there is some
consistency in the various approaches we have covered through this dissertation, in the
sens that arrival time appears to be a concept that can be studied with apparently veru
different methods, through not necessarily completely disjoint: for example, we have
briefly mentioned the fact that there is a deep correspondenc between the path integral
approach and the decoherent histories one. this meakes sense since, from a certain
point of view, we can say that to a certain history must correspond a certain path. Even
though, it is very reassuring to see the consisetnce our the model we have talked about.

Now, they are indeed man problems tha we could have talked about but that
we didn’t study by lack of time and space, and it should be understood that this
dissertation covers only a little drop in the sea of research regarding this topic.
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