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Chapter 1

Introduction

In this Introduction we briefly present what are conformal field theories, how do

black holes on AdS space times behave and the connection between these 2 com-

pletely different subjects -the AdS/CFT correspondence-, and we will mention why

physicists find this correspondence interesting and my motivation to study a very

specific part of this correspondence.

1.1 The AdS/CFT Correspondence

Suppose we have a quantum field theory in d spatial dimensions and a gravity theory

in d+1 dimensions which has a d dimensional asymptotic boundary (see figure 1.1),

then there is an equality between these two theories which is named the gauge/gravity

duality, because quantum field theories are gauge theories [1]. It can also be called

the gauge/string duality, since gravity theories are string theories. The fact that a

d+1 dimensional theory “projects” into a field theory of a lower dimension resembles

the optical hologram, sometimes it is also identified as holography. Perhaps the most

common name for this duality is the AdS/CFT correspondence which is just a name

given to the simplest dualities -rather, the least complicated-, which are between

anti-de Sitter spaces and conformal field theories. From now on, we shall always

refer to the duality by this name, since we are only going to focus on the less

complicated examples, but it is important to remark that the duality exist even for

non conformal theories.
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1.1.1 Black Holes in an AdS spacetime

As stated above, AdS stands for anti-de Sitter space, which is a space that solves

Einstein’s equations with a negative cosmological constant. A d + 1 dimensional

AdS space-time has a metric

ds2
AdSd+1

= R2

[
−(r2 + 1)dt2 +

dr2

r2 + 1
+ r2dΩ2

d−1

]
(1.1)

Where R is the radius of curvature of our space-time and dΩ2
d−1 is the metric

of the unit d − 1 -sphere. This metric can be seen as a gas of gravitons and has

a so(2, d) symmetry algebra -once you compactify the time direction-. Another

important property of the AdS space-time is that it has no ‘centre’, in other words,

we can boost any massive particle to find a frame where the particle is at rest [1].

A black hole in AdS would have the form:

ds2
AdSd+1

= R2

[
−(r2 + 1− 2gm

rd − 2
)dt2 +

dr2

r2 + 1− 2gm
rd−2

+ r2dΩ2
d−1

]
(1.2)

where g is Newton’s constant in terms of the radius of the AdS and can be seen

as the effective gravitational coupling [1], i.e. a measure of the interactions between

gravitons, and is given by

g ∝ Gd+1
N

Rd−1
(1.3)

The value of r where the first term of 1.2 vanishes is called the horizon radius r+.

Bekenstein and Hawking ([2], [3]) proposed that one could associate a temperature

1/β to a black hole, which is -in case of a big black hole- proportional to its horizon

radius. They also state that entropy of a black hole S is proportional to its horizon

area A, in the case of big black hole on an AdS space the entropy would be [1]

SBH ∼
1

g

1

βd−1
(1.4)

We can study black holes from two statistically different points of view [4]. The

micro-canonical and the canonical ensemble. In the micro-canonical one, the system
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with the largest entropy for a given energy is thermodynamically preferred. In the

canonical ensemble the system with the smallest free energy for a given temperature

would dominate.

1.1.2 Conformal Field Theories

A conformal field theory (CFT) is a quantum field theory that is invariant under

conformal transformations. A conformal transformation is one that preserves angles,

this transformations include: poincare transformations, dilatation processes and

‘special conformal transformation’ (the composition of a reflection and an inversion

in a sphere). This CFT’s have several properties but the most relevant for our

discussion are [1]: they have no dimensionfull parameter, namely is scale invariant,

and their stress energy momentum tensor is traceless, i.e.

T aa = 0 (1.5)

Suppose we have a d-dimensional CFT, specifically a CFT on a space that goes

like R × Sd−1 with massless fields, then we can associate an effective temperature

1/β to this theory, and expect an entropy proportional to the temperature and to

the volume of the d−1 sphere [1]. Then if we take the large temperature limit (large

compared to the radius of the sphere) β � 0, we can anticipate that the entropy

will be

SCFT ∝ c
1

βd−1
(1.6)

Where c is just a quantity that tells us the effective number of massless fields we

have in our theory.

1.1.3 The duality

The AdS/CFT correspondence states that the physics of an asymptotically anti-

de Sitter space-time can be described by a quantum field theory that lives in the

boundary, boundary given by R × Sd−1 [1] (see figure 1.1). The symmetries of the

AdS space act also in the boundary, and take points in the boundary to points in
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the boundary, making those transformations conformal on the boundary, thus the

quantum field theory in the boundary must be conformal. Note that the metric of

the boundary field theory is not dynamical [1].

Figure 1.1: Penrose diagram of an AdS space. The boundary contains the time direction and
the sphere Sd−1 represented here as a circle. Image taken from [1]

For the CFT and the gravity theory to be equivalent, the entropy of the black

hole 1.4 and the entropy of the CFT 1.6 must match [1], then

c ∝ 1

g
(1.7)

This equation is saying that the number of fields scales like the inverse of New-

ton’s constant. To make things simpler, we expect the gravitons don’t interact

between each others, namely, that the coupling g is small, hence we need that the

number N of fields on our CFT to be large.

Another feature that both theories must have, in order for them to match is the

existence of a Fock space -or an analog- [1], namely, in string theory we can talk

of single particles, two particles and so on. It is easy to see that a weakly coupled

gravity theory does have this feature and that the space of operators in a large N

CFT has a similar structure 1. The AdS/CFT duality connects an operator in the

1For a brief explanation the reader is referred to [1]
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field theory to a state in the bulk string theory, more specifically it associates single

trace operators to single particle states and multitrace operators to multi particle

states in the bulk in a one-to-one correspondence. The most direct example of such

relation is the graviton-stress tensor duality.

We are now going to use a string theory point of view for the gravity theory.

The lowest excitation of the string is the graviton, of size ls -the string length-, and

the coupling g explained above measures the strength of the interaction between

strings. We want to ignore the massive states of this theory, and in order to ignore

this we need that

RAdS

ls
� 1 (1.8)

Which is just stating that the radius of the AdS space must be much bigger that

the string length in order for Einstein’s gravity to be a good approximation. The

massive states with higher spin (S > 2) of string theory are dual to single trace

operators with higher spin. At weak field theory coupling, this operators give rise to

particles in the bulk of mass comparable to the inverse of RAdS, which contradicts

1.8, then we can conclude that in order to use gravity, the field theory should be

strongly coupled [1].

Another relation that the AdS/CFT dictionary states is that, for a field φ in our

gravity theory related to an operator O in the CFT, we have

〈O(x1) · · ·O(xn)〉 =
δ

δφ0(x1)
· · · δ

δφ0(xn)
ZGravity[φ0(x)] (1.9)

Where ZGravity is the partition function in the gravity theory [1].

An Additional interesting relation between this two theories is the case of a gauge

field in the AdS which corresponds to a conserved current on the boundary CFT,

in other words, a gauge symmetry in the gravity theory corresponds to a global

symmetry on the boundary [1].
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1.1.3.1 A -not so complicated- example

We will now revise a particular example of the AdS/CFT correspondence: the N = 4

Super Yang Mills/AdS5×S5 example. We do this example with the solely purpose of

showing an explicit relation and not because we will use it in the following chapters.

If the reader is not interested in such relation, he should skip directly to next section

and if he would like to see a more careful explanation, he should refer to [1].

Suppose that we have a quantum field theory and we want to make it a super-

symmetric field theory, then the bosons and their fermonic partners would transform

under the same representation of the gauge group, so if we add only one majorana

fermion, we would get a N = 1 supersymmetric theory. If instead we add four

fermions and six scalars, with special couplings, we sill get a maximally supersym-

metric N = 4 theory [1], with a action given by

S = − 1

4g2
YM

∫
d4xTr

[
F 2 + 2(DµΦI)2 + χ /Dχ+ χ[Φ, χ]−

∑
IJ

[ΦI ,ΦJ ]2

]

+
θ

8π2

∫
Tr[F ∧ F ]

(1.10)

Where gYM is the field theory coupling and θ is an angle. All the fields in 1.10

are in the same supermultiplet under supersymmetry transformations. This theory

is classically and quantum mechanically conformally invariant, this means that the

field coupling will remain fixed -constant- at all energies, which is a great difference

with QCD -a N = 1 CFT that is not quantum mechanically conformal invariant-

that has a field coupling that varies depending on the energy one is working on. The

-effective- coupling of the theory is then

λ = g2
YMN (1.11)

Known as the ’t Hooft coupling and can be thought of as proportional to 1.8 for

this specific example [1].

We now study the gravitational part. Because we worked with a supersymmetric

6



field theory it is natural to expect that it’s gravitational dual will be supersymmetric

as well. Type IIB supergravity (SUGRA) is a supersymmetric string theory that

adjusts to our needs. This theory has a self dual five form, F5 = ?F5 and has

electrically/magnetically charged black holes as solutions. The near horizon solution

has the geometry of AdS5 × S5 [1], which is electrically charged if the five form is

along the AdS5 or magnetically if it is along the S5. The action of motion of this

spacetime can be written as

S =
1

(2π)7l8p

∫
d10x
√
g(R + F 2

5 ) (1.12)

Where lp = ls g
1/4
s is Planck’s length and can be compared to the radius of the

S5, and R is the radius of the AdS. The relation between both radius is given by

4πN =
R4

l4p
(1.13)

With N the number of colours of out gauge theory. This theory has a compact

massless scalar field called the axion χ→ χ+ 2π, and so we find two parameters in

type IIB SUGRA, χ and gs, which can be related to our field theory’s parameters,

θ and gYM . It is just natural to identify χ with θ and the coupling gYM with the

string coupling gs, i.e. g2
YM = 4πgs.

Then, in order to trust Einstein’s gravity we need a large λ and to have a weakly

coupled gravity theory we need large number of fields, N � 1. In [1], they explicitly

compute the free energies of Super Yang Mills theory and of AdS5×S5 showing that

they agree up to a factor of 3/4 which accounts for the change in free energy when

we go from weak to strong coupling. They also describe thoroughly the construction

of states in the string theory using D-branes and compare the spectrum of states in

the gravity sector and the spectrum of operators of the CFT.

1.2 Why the AdS/CFT correspondence?

As we shall see in this dissertation, many gravitational systems are very complicated

and poorly understood, this translates into huge gaps in the information we have
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about them. The complications reside in the fact that many solutions cannot be

find analytically and that the complexity of the numerical approximation is such,

that the amount of physics we obtain from them is very limited. There was a point

were it was thought that all it was to be understood about black holes and gravity

was already done, and that the all the other knowledge on those systems was simply

unreachable.

When the AdS/CFT correspondence was proposed a new path was created: Since

the field theory has been long studied and far better understood than the gravity

theories, we expect to be able to retrieve some of that gravitational lost knowledge

by looking at it’s conformal field dual. As seen in the previous section we saw that a

large N strong coupled conformal field theory is dual to a weakly coupled black hole

in AdS space-time, that a single traced operator in the field theory corresponds to

a single particle state, in particular the metric/graviton is dual to the stress energy

tensor and we also saw that the correlation functions of this CFT is related to the

partition function of our gravitational system.

In chapter 2 we will see that this correspondence places constraints on the field

theories that can be dual to the gravitational theories. The AdS/CFT matching tells

us: how different temperature ranges in the field theory correspond to different grav-

ity backgrounds, specifically what are the duals to the confinement/deconfinement

phases of our field theory, also we will study other restrictions on our field theory,

such as how the mass gap in the string theory translates to the dual field theory.

The advantages that we can take from the AdS/CFT correspondence go even

further. So far, we have only talked about gravitational and field theory systems

that do not evolve in time, but as a direct outcome of the duality, it turns out that

a certain dynamics in one systems translates in a particular dynamical evolution

in the other system. This relation between the evolution of systems is called the

fluid/gravity correspondence, since the dynamics of the field theory can be thought

of as the dynamics of fluid. This duality states that the dynamics of the stress

energy tensor of our boundary/field theory are governed by Einstein’s equations.

This correspondence will also give us an algorithm to find the gravitational dual

systems to a certain fluid, which is a powerful weapon to tackle the difficulties in
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the gravitational system. This fluid/gravity correspondence will be the main topic

of Chapter 3.

There’s a specific case of correspondence that is specially interesting: the equality

between plasma ball and localised black holes, as we will see in Chapter 4. A plasma

ball is just a spherically symmetric lump of matter that is in both the confinement

and the deconfinement phases and depending the temperature of the ball is which

phase dominates. A localised black hole is a solution to Einstein’s equations which

resembles a black brane over some critical temperature and a gas of gravitons at

lower temperatures but, that at this critical temperature there is another solution

called the domain wall that interpolates between these two previous solutions. We

will also see, that after joining them via the AdS/CFT duality, we can learn from

both systems that will help us to understand the other one.

In the last chapter we study one of the most important upshots of our duality and

one of the main goals of this dissertation: the duality between the Rayleigh-Plaeau

instability in a fluid tube and the Gregory-Laflamme instability on a black string.

This means that the phase transitions in both the CFT part and the gravitational

part are equivalent. It is almost unbelievable how a purely hydrodynamic instabil-

ity is dual to a entirely gravitational instability, and is, I think, one of the most

intriguing and exciting topics, since if there is a duality between a specific type of

instabilities, then most surely there exists other dualities between other instabilities.

I would like to emphasise that there are many interesting topics regarding the

AdS/CFT correspondence which I do not talk about in this dissertation, due to lack

of both time and space. In addition I would like to stress that this dissertation is

intended to give the reader a big picture of a small part of the current position on

the AdS/CFT duality, and by no means it is to be taken as an exhaustive review,

the reader who wishes to go further in the topics here analysed should turn to the

references here cited and the citations within those references.
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Chapter 2

Conformal Field Theories and

Black Holes

The AdS/CFT correspondence revealed an amazing relation between conformal field

theories and supergravity theories in an Anti-de Sitter (AdS) space, a space that has

a cosmological constant with a negative value. There are many ways of describing

this relationship and in this chapter we will be using the following: a conformal field

theory on a n-dimensional manifold M can be studied by analysing a manifold B of

dimension n+ 1 but that -at infinity- have the manifold M as a conformal boundary

[5].

2.1 The confinement phase

There are two different background manifolds with which we can review an N = 4

field theory (a field theory with at finite temperature), S3 and R3. In this section

section we will study the theory in S3 and in the following sections we will study

the R3 by taking the limit where the radius of our S3 goes to infinity.

For such study we need to examine the partition function on S3 × S1, where

S1 represents the Euclidean time and we represent each circumference by β′ and

β. Because our theory is conformally invariant, and as such, it should have a di-

mensionless parameter, we could expect that the only parameter that really takes
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importance is the -dimensionless- ratio β/β′.

In a field theory with small N there is no phase transitions as function of β -or

temperature in that case-. But if we take the large N limit of a field theory then

it is possible to have a phase transition [5] as a function of the ratio β/β′ 1 . If we

take the radius of the S1 to be large, i.e. large β with β′ fixed, analogous to taking

the low temperature limit, our theory has certain analogies with the confining phase

in certain gauge theories, and, as we will see, if we take the small limit for β -high

temperatures- we can also find analogies but to a deconfining phase of such gauge

theories [4].

In the large N limit, a measure of the confinement of our theory is to check the

order of such theories free energy: if it is of order N2, it implies deconfinement,

since this order shows the contributions given by the gluons themselves, whilst if it

is of order one, it implies confinement, because it reflects the action of the hadrons

(singlets under colour) [4].

In large N gauge theories on S3, the solution with lowest energy can be made by

fixing the gauge field, the scalars and the fermions to zero, which makes this config-

uration invariant to a global SU(N) gauge transformation, i.e. the state is unique

up to a gauge transformation. The Gauss law in a finite volume limits the physical

states -traces of fields- to be invariant under global SU(N) transformations. To cal-

culate the free energy of the lowest energy states, we need to know its multiplicity,

which is given by the number of traces we can make with the creation operators of

the fields in our theory. Since such number of traces is independent of N, then the

free energy is also independent of N [4] and therefore our theory living on S3 is in

the “confinement” phase.

2.1.1 AdS-Schwarzschild black holes and confinement phases

Suppose we have a classical, static, stationary black hole embedded on an n-dimensional

AdS spacetime (with n − 1 spatial dimensions), then we shall call it an AdS-

1More specifically this statement is valid for finite N , but when we take the large N limit this
statement breaks due to the Mermin Wagner theorem [6]
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Schwarzschild black hole -in n dimensions.

As stated above, to study an n-dimensional field theory on a manifold M , we

need to solve Einstein’s equations for a n+1-dimensional spacetime B. Since, in this

section, we are primarily interested in studying the confinement phase of a gauge

theory, then we should start with such a theory on a manifold M like Sn−1 × S1.

This configuration can be identified with two different spacetimes B’s [7]. One

spacetime Y1 is just AdS space (with Euclidean time), it’s topology is Rn × S1 and

the metric of such manifold is:

ds2 =

(
r2

b2
+ 1

)
dt2 +

dr2(
r2

b2
+ 1
) + r2dΩ2 (2.1)

Which is the same as the metric 1.1 if we change r → r/b. In equation 2.1 b is

the radius of curvature of the Anti-de Sitter space, dΩ2 is the metic of a unit radius

round sphere Sn−1 and t is a periodic variable (the value of such a period will soon

be clarified). Note there is no horizon in 2.1, so there’s no black hole and, therefore,

we shall refer to this manifold as the AdS spacetime. The second manifold Y2, is

the AdS-Schwarzschild black hole with metric:

ds2 =

(
r2

b2
+ 1− wnM

rn−2

)
dt2 +

dr2(
r2

b2
+ 1− wnM

rn−2

) + r2dΩ2 (2.2)

where

wn =
16πGN

(n− 1)Vol(Sn−1)
(2.3)

is a constant factor included so that M has mass units, GN is the n + 1-

dimensional Newton’s constant and Vol(Sn−1) is the volume of a unit radius n − 1

sphere. It’s a black hole because there is a horizon that can be by obtained taking

the largest root r+ of gtt = 0. Note that because of the metric 2.2, our spacetime

will be restricted to r ≥ r+ and this metric has Euclidean time as 2.1. In order to
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get a smooth metric 2.2, the period of t must be [5]:

β0 =
4πb2r+

nr2
+ + (n− 2)b2

(2.4)

Observe that β0 has a maximum, so the AdS-Schwazschild black hole -manifold

Y2- will only be seen if β is small enough -or the temperature is high enough-. The

topology of Y2 is R2 × Sn−1, is simply connected and if we include the boundary

points it would be B2 × Sn−1, where B2 is the 2-ball .

We should make a couple of remarks now. Both manifolds -Y1 and Y2- contribute

to the standard (canonical) thermal ensemble Tre−βH . Also, note that Y1 dominates

at low temperatures while Y2 dominates at -sufficiently- high temperatures.

2.2 Entropy of AdS-Schwarzschild black holes

We will now calculate the entropy of a Schwarzschild black hole on an n-dimensional

AdS space and see that it agrees with Hawking’s entropy which is proportional to

the area of the horizon [3]. We will calculate the value of the action and then derive

it by the inverse of the temperature to obtain the energy and thus work out the

entropy. For the action of a spacetime with a negative cosmological constant can be

written as follows

I = − 1

16πGN

∫
dn+1x

√
g

(
R +

n(n− 1)

2b2

)
(2.5)

Where g is the determinant of the metric and R is Ricci scalar. Since the

corrections to the AdS metric given by the black hole vanish very quickly at infinity,

there is no surface term in the integral. When we solve Einstein’s equations we see

that R = −n(n+ 1)/2b2 so the integrand of 2.5 simplifies to −2n
√
gdn+1x which is

the volume form of a n+ 1 spacetime -times −2n-.

As both Y1 and Y2 have infinite volumes, [7] showed that we can subtract both

volumes to get a finite value. The integrals will have the same form but different
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limits, i.e. the time upper limit of the volume of Y1 is β′ while the value of the

period of the black hole for it to be smooth has to be β0( 2.4), also the black hole

covers only the space where r ≥ r+ whilst the AdS spacetime covers the hole r ≥ 0

region. Then, we have

V1(R) =

∫ β′

0

dt

∫ R

0

dr

∫
Sn−1

dΩrn−1 (2.6)

for the AdS spacetime, and for the black hole we have

V2(R) =

∫ β0

0

dt

∫ R

r+

dr

∫
Sn−1

dΩrn−1 (2.7)

Note that we have put an upper cutoff R to avoid problems. Seeing that the

geometry of both manifolds has to be the same in the limit r = R, it is necessary

to adjust β′ and set it to [5]

β′
√
r2

b2
+ 1 = β0

√
r2

b2
+ 1− wnM

rn−2
(2.8)

so at r = R

β′ = β0

(
1− wnM

Rn−2(R2 + b2)

)1/2

(2.9)

after doing such adjustments, we can calculate the integrals 2.6 and 2.7

V1(R) = β′
Rn

n
Vol(Sn−1) = β0

Rn

n
Vol(Sn−1)

(
1− wnM

Rn−2(R2 + b2)

)1/2

(2.10)

V2(R) = β0

Rn − rn+
n

Vol(Sn−1) (2.11)
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and so, subtracting these two volumes

V2(R)− V1(R) = β0Vol(Sn−1)

[
Rn

n

(
1−

(
1− wnM

Rn−2(R2 + b2)

)1/2
)
−
rn+
n

]
(2.12)

taking the limit of this subtraction when R→∞ we get

lim
R→∞

(V2(R)− V1(R)) =
β0Vol(Sn−1)

n

(
wnMb2

2
− rn+

)
(2.13)

But since we need the action solely as a function of r+, we substitute β0 with 2.4

and also the solution of gtt = 0 (wn as a function of r+) into this last equation, then

lim
R→∞

(V2(R)− V1(R)) = Vol(Sn−1)
4π

n(nr2
+ + (n− 2)b2)

(
wnMb2

2
− rn+1

+ b2

)
(2.14)

= Vol(Sn−1)
2π

n

(
b2rn−1

+ − rn+1
+

nr2
+ + (n− 2)b2

)
(2.15)

finally multiplying this by n/8πGN we get the complete value of the action 2.5

after solving Einstein’s equations, obtaining

I =
Vol(Sn−1)(b2rn−1

+ − rn+1
+ )

4GN(nr2
+ + (n− 2)b2)

(2.16)

From thermodynamics, we know that, in a standard Euclidean procedure, to

compute the energy of our system, we need to derive the action by β0, so

E =
∂I

∂β0

=
∂I

∂r+

∂r+

∂β0

=
(n− 1)Vol(Sn−1)(rn+b

−2 + rn+2
+ )

16πGN

(2.17)
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=
(n− 1)Vol(Sn−1)wnM

16πGN

= M (2.18)

Where in the penultimate equality we have solved gtt = 0 for M and in the last

equality we have used 2.3. Now, the entropy is calculated (by analogy to thermody-

namics second law) subtracting the action to the energy divided by the temperature

(1/β0), then combining 2.17, 2.4 and 2.16

S = Eβ0 − I =
1

4GN

Vol(Sn−1)rn−1
+ (2.19)

As we will note later, this is just Hawking’s entropy [3]. Note that this discussion

applies only to black holes whose Schwarzschild radius is much greater than the

radius of curvature of the AdS space, i.e. r+ � b. I would like to comment that

the canonical ensemble uses the free energy rather than the entropy, and this can

be easily calculated from the entropy calculated here.

2.3 The deconfinement phases

In this section we are going to study the relation between the deconfinement phase

of gauge theories and the black holes. In previous sections, we studied a N = 4

gauge theory on S3 via the partition function on S3 × S1 and declared that due to

conformal invariance the only parameter of interest was the ratio β/β′. If we take

the large β′ limit, this changes our space to R3 × S1 and here, once again we can

scale out β on account of conformal invariance, giving us a N = 4 gauge theory on

R3 which cannot have a phase transition.

When we go to R3 × S1 by taking β′ →∞ for fixed β, we get β/β′ → 0, which

states that the only nonzero temperature phase of the gauge theory on R3 is on

high temperatures side of the phase transition, then it should be compared to the

deconfining phase of the gauge theories.

As before, a measure of the confinement of our theory is to check the order
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of such theories free energy, so, in order for a theory to in a deconfinement phase

it’s free energy should scale as N2. In S3 × S1, if we take β′ → ∞ with fixed β,

we are in the high temperature region, also, the fee energy is proportional to the

volume of S3 times the ground state energy density of the theory that is obtained by

compactification on S1. Doing this compactfication breaks supersymmetry making

the cancellation of bosons and fermions unbalanced -even at one-loop level- and the

one loop contribution is of order N2, consequently the free energy of the compactified

S1 is proportional to N2. The volume of S3 is of order β′3 and so the free energy on

S3 × S1 is of order N2β′3. Then, we have sketched the proof that the large β′ limit

is in the deconfinement phase of the gauge theory.

2.3.1 AdS-Schwarzschild black holes at large r

To understand the relation between black holes and deconfinement phase first we

need to understand the behaviour of black holes at large r. For such goal we return

to 2.1 and 2.2 and explain their behaviour.

The radius of S1 is -approximately- β = (r/b)β0 whilst the radius of the Sn−1 is

β′ = r/b, then β/β′ = β0. At the limit where β/β′ → 0 we are in the Rn−1 × S1

region, i.e. β0 → 0. If we observe 2.4, it is obvious that we can get to this limit

either by taking r+ → 0 to r+ → ∞, but the last branch is thermodynamically

preferred due to it’s larger action. Observe that large r+ also implies large M and

we can take this limit of 2.4 and get

β0 ∼
4πb2

nr+

∼ 4πb2

n(wnb2)1/nM1/n
(2.20)

Setting r = (wnM/bn−2)1/nρ and t = (wnM/bn−2)−1/nτ 1, taking the large M

and substituting in 2.2 we get:

ds2 =

(
ρ2

b2
− bn−2

ρn−2

)
dτ 2 +

dρ2

ρ2

b2
− bn−2

ρn−2

+

(
wnM

bn−2

)2/n

ρ2dΩ2 (2.21)

1This substitution was taken from [5]
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As the radius of the Sn−1 gets larger, this makes M →∞ and makes our space

look locally flat, which means that we can introduce -at a point on Sn−1- a change

of coordinates, such that dΩ2 =
∑
dy2

i , then we can rewrite 2.21 as

ds2 =

(
ρ2

b2
− bn−2

ρn−2

)
dτ 2 +

dρ2

ρ2

b2
− bn−2

ρn−2

+ ρ2

n−1∑
i=1

dx2
i (2.22)

This is the solution wanted for a Rn−1 × S1 instead of a Sn−1 × S1. The topology

of this manifold (including the boundary) is Rn−1 ×B2 where B2 denotes the 2-ball.

In [3] it is shown that from the entropy density that can be calculated from 2.19,

we find a relation to the volume of the horizon (hyper surface at r = r+) of the

black hole, i.e.

S =
1

4GN

Vol(Sn−1)rn−1
+ =

A

4GN

(2.23)

Where A is the volume of the horizon. We need to compare this entropy with

the entropy calculated from the dual conformal field theory living on Sn−1 × S1

[5]. Conformal invariance implies that, when the limit β0 → 0 is taken -the high

temperature region in the field theory and the large radius region in the black hole-,

the entropy density on Sn−1 scales as β
−(n−1)
0 , then the entropy of the boundary field

theory is of order rn−1
+ and, therefore, it is a multiple of the horizon volume A in

equation 2.23. Hence, we have verified that the entropies of both the large N N = 4

gauge theory and the AdS-Schwarzschild black hole match up to a factor in the large

radius -high temperature- region. To give the exact factor more information about

the quantum field theory in the boundary is needed. As in the previous section this

discussion applies only to black holes whose Schwarzschild radius is much greater

than the radius of curvature of the AdS space.
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2.4 Consequences of the AdS/CFT correspondence

In the infinite volume limit -high temperature/large radius-, the AdS/CFT corre-

spondence implies that the quantum filed theory should have, among others, three

key properties: nonzero expectation value of the temporal Wilson loop (symmetry

breaking), an area law for spatial Wilson lines (confinement) and a mass gap.

With this in mind, lets give a brief explanation about Wilson loops in N = 4

gauge theories in three spatial dimensions. Suppose you want to study a field theory

on a four-dimensional manifold M that is the boundary of a five-dimensional AdS

manifold B (which complies with Einstein’s equations). Remember that the N = 4

gauge theories AdS/CFT duals are -in our case- type IIB string theories, hence to

understand a Wilson loop associated to a contour C ⊂ M , we study strings on

B with the characteristic that C is a boundary for the string’s world sheet D i.e.

∂D = C. Since the area of D is infinite, we can define a regularized area α(D) [5].

Then the expectation value of the Wilson loop is

〈W (C)〉 =

∫
K

dµe−α(D) (2.24)

Where K is the space of string world sheets D that obey the boundary conditions

and dµ is the measure of the world sheet path integral. Equation 2.24 has two

important outcomes: if C is not a boundary in B the expectation value 〈W (C)〉
will vanish and Wilson loops on R4 will obey an area law, i.e. the minimum value

of α(D) scales as a positive multiple of the area enclosed by C, in other words, the

smallest of α(D) grows with C. For a much more detailed and fulfilling explanation,

the reader should refer to [8].

2.4.1 Symmetry Breaking and temporal Wilson lines

We already mentioned that a good measure to recognise the phase of our gauge field

is the way the free energy scales with respect to N . Another good order parameter

for the deconfinement is the vacuum expectation value of the centre of the gauge

group ([5]). In this section we will study how this symmetry breaking -with some
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help from Wilson lines- can define our deconfinement.

Suppose we have a gauge theory, which’s gauge group is G, then the centre Γ of

a group can be defined as follows:

Γ = {g ∈ G | gz = zg ∀z ∈ G} (2.25)

In other words, the set of elements that commute with every element inG. Taking

G = SU(N) and the center to be Γ = ZN , note that the centre acts trivially on all

fields [5]. Consider a SU(N) gauge theory on Y×S1, with Y any spatial manifold and

take g to be a general gauge transformation that complies with g(y, z) = g(y, z+β).

As all fields transform trivially under the centre of G, we can write such a map as

follows:

g(y, z) = g(y, z)h = g(y, z + β) = g(y, z + β)h (2.26)

Where h can be any element of the centre of G. Observe that Γ acts trivially

on fields but not in observables and that the action of Γ over G is a symmetry of

our theory. An order parameter for the spontaneous breaking of the centre Γ is the

vacuum expectation value of a temporal Wilson line [5], which is an operator defined

as follows:

W (C) = TrP exp

∫
C

A (2.27)

Where C is an oriented closed path of the form y × S1, the trace is taken in the

N -dimensional fundamental representation of SU(N) and A is the gauge field. If

we now do a transformation such as 2.26 this multiplies the holonomy of A around

C by h, then

W (C)→ hW (C) (2.28)
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Then the expectation value 〈W (C)〉 of the Wilson line before and after the trans-

formation will spontaneously break the symmetry of Γ unless, the such expectation

value is zero, i.e.

if 〈W (C)〉 6= 0⇒ 〈W (C)〉 6= 〈hW (C)〉 (2.29)

Such spontaneous symmetry breaking will not happen in a finite volume since

the expectation value of the Wilson loops will always vanish [5]. Now it is evident

that, the expectation value of the temporal Wilson line is an order parameter for the

spontaneous breaking of the Γ symmetry. But, how does the spontaneous breaking

of the centre’s symmetry in the infinite volume becomes a parameter for the de-

confinement? The following can be used as a heuristic explanation [5]: inserting a

Wilson line W (C) is equal to include an external static quark to the system, and

an expectation value of the Wilson line translates as the fact that the cost -in free

energy- of perturbing the system with an external charge is finite, so if the system

is in the confinement phase, the free energy cost to put an external charge in the

system would be infinite, you can’t have it there, so 〈W (C)〉 = 0.

Lets talk about these temporal Wilson lines a bit more formally. For the sake

of objectivity (we want to study three-dimensional N = 4 gauge theories) we take

our spacetime to be R3 × S1 and take C = P × S1 where P is a point in R3. For

completeness we will consider also S3 × S1 and in that case P is a point in S3.

At low temperatures, field theories on S3 × S1 are dominated by the topology

of R4 × S1 (recall 2.1), and the contour C that we have chosen is not a boundary

of any whorldsheet in the Y1 [5], thus, as a consequence of equation 2.24 at the

beginning of the section, the expectation value of the Wilson loop vanishes which

avoids symmetry breaking, meaning that we are in the confinement phase. This

agrees with what we concluded in the previous section, so far, so good. At the

high temperatures limit, the field theories on S3 × S1 are dominated by Y2 with a

topology of S3 × B2 -after including the boundary points at r =∞-. In this phase

our contour is a boundary of D = P × B2 [5], thus the expectation value will not

vanish and there will be spontaneous symmetry breaking.
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So at first glance it looks like we have a disagreement with our statements above,

since we had asserted that there was no spontaneous symmetry breaking in finite

volume. As it turns out, the integral 2.24 is not quite complete, we have to add a

term eiψ ([9]), where ψ is an ”angle” that accounts for the freedom that comes from

the fact that the two form field that sources the string worldsheet D has a symmetry

-it can be shifted by 2π-. This term makes that the integral 2.24 vanishes on the

high temperature limit of out field theory. And again, so far so good.

In the infinite volume regime -R3×S1-, ψ can be understood as a massless scalar

field in the field theory on R3 [5]. In this case, the integral 2.24 does not vanish and

the expectation value is proportional, and hence dependant, to eiψ, so then there

is symmetry breaking, throwing as result that we are in the deconfinement phase,

which is in sympathy with what we concluded in previous sections.

2.4.2 The area law and spatial Wilson loops

The area law is an important property that the field theory -in the high temperature

limit- should comply in order to fulfil the AdS/CFT correspondence.

A description of area law is the following: Let C be an oriented closed loop

encircling an area A in R3 at a fixed point on S1, a spatial loop. The area law states

that if C is scaled up, keeping its shape fixed and increasing A, then the expectation

value of W (C) vanishes exponentially with A.

We will start with the zero temperature region of a field theory on S3 × S1. In

this case, the area of D does not need to be proportional to the area enclosed by C

and so the expectation value will not vanish when we scale up C and therefore the

area law does not apply in this phase [5].

When the theory is at a nonzero temperature, the metric of our supergravity

system is 2.22 with n = 4

ds2 =

(
ρ2

b2
− b2

ρ2

)
dτ 2 +

dρ2

ρ2

b2
− b2

ρ2

+ ρ2

3∑
i=1

dx2
i (2.30)
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Since the area enclosed by the horizon is the last factor of the metric and ρ range

is [b,∞], then the minimum value of the area enclosed by the contour α(D) is b2A,

where A is the area enclosed by a -finite size- curve on flat 3D space [5]. Therefore,

there is an area law for nonzero temperature field theories. Consequently the spatial

Wilson loops obey an area law, which connects the field theory Wilson loop with

the tension of the string in the supergravity theory -which translates as the area of

the black hole horizon-.

2.4.3 The mass gap

The mass gap is the third property that the AdS/CFT correspondence asks for a

N = 4 three-dimensional gauge theory in the high temperature limit in order to

concur with it’s dual in string theory. One way to interpret the mass gap is that the

correlation functions 〈O(y, z), O′(y′, z)〉 vanish exponentially for |y − y′| → ∞ [5].

The interpretation used in the following is not the simplest but a more direct than

the correlation one, and we will identify quantum states in the supergravity theory

with the ones in the boundary (in the field theory).

Start with a spacetime that has a metric such as 2.30, we can see this spacetime

as a warped product (since the last term is ρ dependant) of two different space times.

One flat 3D space R3 with coordinates xi’s and a space K parametrized by ρ and

τ . The goal is to show that a free field propagating in 5D gives rise to a discrete

spectrum of positive particle masses. We can do so (as done in [5]) by considering

the propagation of a Type IIB dilation field in spacetime 2.30, where translation in

τ is a symmetry and modes with different momentum in the τ direction decouple

and their spectrum is discrete. We want a field of the form φ(ρ, x) = f(ρ)eik·x, thus

the effective action is

I(f) =
1

2

∫ ∞
b

dρρ3

((
ρ2

b2
− b2

ρ2

)(
df

dρ

)2

+ ρ−2k2f 2

)
(2.31)

and the equation of motion for f is
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−ρ−1 d

dρ

(
ρ3

(
ρ2

b2
− b2

ρ2

)
df

dρ

)
+ k2f = 0 (2.32)

A mode of momentum k has mass m -as in 3D where m2 = −k2-. The solutions

to the equation of motion should obey two boundary conditions, at ρ = b, df
dρ

= 0

since at b, ρ behaves as an origin and smoothness requires the vanishing or the

derivative. The second boundary condition is that for ρ → ∞ then f ∼ ρ−4 [5].

As in quantum mechanical problems, for a given k2, there is a unique normalizable

solution they obeys both boundary conditions, which in turn determines a discrete

set of values of k2. There are not such normalizable solutions for k2 ≥ 0, so the

discrete set of values of k2 at which there are formalisable solutions are all negative,

then the masses are all positive and thus we have confirmed the existence of a mass

gap.

If instead of using 2.30 we used 2.1, the spectrum of normalizable solutions is

continuous for all k2 < 0, so as expected, there is no mass gap in the confinement

phase of the field theory. Then as said at the beginning of the section, a large N ,

N = 4 field theory in the deconfinement phase does comply with the three constraints

that the AdS/CFT correspondence sets upon it.

25



26



Chapter 3

Fluids and Black Holes

3.1 The fluid/gravity correspondence

In the previous chapter we noticed that due to AdS/CFT correspondence we could

associate the high temperature region of a large N three-dimensional N = 4 gauge

theory with the four-dimensional AdS-Schwarzschild space-time as we take r →∞,

but this correspondence goes even further. As a very important outcome of this

relation between gauge theories and gravity theories, there is a relation between

dynamical equations in both the gauge and the gravity theories, the fluid/gravity

correspondence. Lets set the table first, to properly describe this correspondence.

Recall that according to AdS/CFT correspondence there is a one-to-one corre-

spondence between single particle states in classical string theories and the single

trace operators in the gauge theory, e.g. the graviton -a single particle state- on the

AdS space is dual to the stress energy tensor at the boundary field theory. The fluid

gravity correspondence states, among other things, that the dynamics of the stress

tensor in certain n-dimensional conformal quantum field theories (at strong coupling)

are controlled by the dynamics of Einstein’s equations in an n+ 1-dimensional AdS

space-time.

Normally physicists study either the gauge theory or the supergravity theory to

understand bits and parts that are not quite comprehended from the other theory.

The problem is that -even classically- string theory dynamics are very complicated,
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but in the strong field theory coupling limit -and large N -, the massive string states

decouple and our theory simplifies to Type IIB supergravity [10].

We are going to look for the dynamical equations that rule our gauge theory.

To simplify our problem we need to look for a set of single traced operators that

decouples from the rest of operators, taking at the same time the large λ limit, in

order for the massive string states to decouple and we can reduce our whole string

theory to Type IIB supergravity. For the rest of this Chapter we will be working

with Type IIB supergravity theory on AdS5 × S5 as our gravity theory, large N

N = 4 super Yang-Mills (SYM) theory as our gauge theory and in the ’t Hooft limit

(N →∞ keeping λ fixed). Note that this is not the only gauge theory that couples

to an AdS space-time that follows Einstein’s equations -actually, there’s an infinite

number of them [10] - but N = 4 SYM is the simplest one.

The dynamics of Type IIB theory on AdS5 × S5 are given by the solutions to

Einstein’s equations

Eµν ≡ Rµν −
1

2
Rgµν + Λgµν = 0 (3.1)

where, Rµν is the Ricci tensor, Λ is the -negative- cosmological defined as follows

Λ ≡ −n(n− 1)

2
(3.2)

Where in this case n = 10. Note that the formal definition of Λ is divided by

R2
AdS, which is the squared radius of curvature of the AdS and we have stetted it to

one for convenience. Also observe that, for hydrodynamics, the S5 sector is irrelevant

from a gauge theory point of view [10]. The hydrodynamics of nearly equilibrated

systems at high temperature is governed by the conservation of the stress energy

tensor

∇aT
ab = 0 (3.3)

Now we are ready to formally define the fluid/gravity correspondence. As stated

before, the AdS/CFT correspondence claims that the decoupled stress tensor dy-

namics is governed by 3.1, then we can conclude that, in suitable high temperature

and long distance regime, equation 3.1 reduces to the equations of hydrodynam-
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ics controlled by 3.3. More specifically, given any solution to the fluid dynamical

equations, the correspondence explicitly yields a solution to 3.1, which turns out to

be nothing else but time dependant black holes with -slowly- varying horizons. An

example of this is that in the bulk, a configuration will -in time- settle down to an

AdS-Schwarzschild black hole, while in the boundary any excitation will eventually

thermalise.

Now that we have stated the fluid/gravity correspondence, lets dig deeper to see

if we can gather more information about this relationship. In the field theory, one

characterises thermal equilibrium by a choice of static frame and a temperature field,

while in the gravity side we characterise the equilibrium solution with stationary

black holes. In addition , the temperature and the dynamical velocity of the fluid

are given by the Hawking temperature and the horizon boost velocity of the black

hole respectively.

This is a good point to stop to make some remarks. Note that the bulk stress

tensor is different to the boundary stress tensor T ab. The bulk one, is the one that

appears in the right hand side of equation 3.1 and in this case is zero, whilst the

boundary stress tensor is non-zero and is closely related to the bulk metric. Also

note that -as in the previous chapter- we will take the radius of the horizon to be

much larger than the AdS curvature radius, i.e. r+ > R, so we will be talking about

large AdS-Schwarzschild black holes.

3.2 The fluid point of view

In this section we will study only the boundary stress energy tensor part of our

duality when the fluid is relativistic -moves at scales of light speed c-. We will

find explicitly an expression for the stress tensor and a complete set of dynamical

equations, in the process we will find out that the setting proposed demands the

existence of a entropy current. At the end of the section we study the small velocity

perturbation of a static fluid to see that it follows the Navier-Stokes equations.

As said before, at high temperatures, all quantum field theories equilibrates into

a fluid phase, in other words, it equilibrates to a phase where you don’t need force
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to adiabatic displace two adjacent particles. This equilibrium is parametrized by

the temperature T (x) and the fluid velocity field ua(x), but there are two scales

worth mentioning, the mean free time tm and the mean free length `m, which are

simply the average time and length scale that a particle has before it collides with

another particle. Note that both T (x) and ua(x) are effective variables for dynamics

at length and time scales large compared to tm and `m, and that the system will

always equilibrate locally over a finite time which is of the same order as tm [10].

The stress tensor for a relativistic fluid in a local thermal equilibrium can be

formulated as a function of T (x) and ua(x). If the fluid is in a n-dimensional

background with metric γab, then the expression for the stress tender is

T ab = [P (x) + ρ(x)]ua(x)ub(x) + P (x)γab + Πab(x) (3.4)

Where P (x) = P (T (x)) is the pressure, ρ(x) = ρ(T (x)) is the energy density and

Πab(x) represents the contributions of the derivatives of T (x) and ua(x). Observe

that 3.3 and 3.4 constitute a complete set of dynamical equations, which will govern

the behaviour of our fluid. We can expand Πab as [10]

Πab =
∞∑
k=1

`kmΠab
(k) (3.5)

where Πab
(k) are kth order derivatives of the fluid’s equilibrium parameters. The

constitutive relations are relations between two dynamical variables that are specific

for the fluid we are studying, e.g. pressure and shear modulus. In general it is pos-

sible to give an expression for some constitutive relations because of the constraints

the Πab
(k) puts on them, for example for the pressure of our fluid, we have [10]

Π
〈ab〉
(1) ≡ P a

c P
b
dΠcd

(1) −
1

d− 1
P abPcdΠ

cd
(1) = −2ησab (3.6)

1

d− 1
Πab

(1)Pab −
∂P

∂ρ

(
uaubΠ

ab
(1)

)
= −ζθ (3.7)

Where 〈ab〉 is the symmetric part of the expression, η and ζ are the shear and
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the bulk viscosity 1, here we will call them the transport coefficients. Also we have

Pab ≡ uaub + γab (3.8)

However, observe that the explicit form of Πab
(k) depends on the dynamics of the

specific system. In addition, all equations in fluid dynamics must be invariant under

redefinitions of T (x) and ua(x) that shrink to the identity at an equilibrium stage, we

shall refer to such equations as “field redefinition invariant” [10]. Since equations 3.4

to 4.1 are local and thermodynamical, they should follow a local form of the second

law of thermodynamics, i.e. there must be an entropy -or entropy current- which

should always be non-negative. Due to the thermodynamical constraints and the

fact that it has to be field redefinition invariant -at least at first order- the entropy

current is forced to take the form [10]

Jas = sua − 1

T
ubΠ

ab
(1), ∇Jas = −∇a

(ua
T

)
Πab

(1) (3.9)

Where in the last relation was obtained by using Euler and Gibbs-Duhem rela-

tions. Because Π
〈ab〉
(1) ∼ −η and Πab

(1) ∼ −ζ, it is easy to verify that in order for the

entropy to be positive that η ≥ 0 and ζ ≥ 0. It is important to clarify that the

entropy current and the constitutive relations here cited are results obtained in [10]

by doing calculations at first order, in addition it can be noticed that in expansions

at second order the calculations get highly complicated.

Our interest does not lie in any kind of field theory but in conformal field theories,

for which the expressions obtained above simplify greatly. Because of the traceless-

ness of the stress tensor in a CFT, the constraint ζ = 0 is imposed [10]. Furthermore,

a CFT cannot have dimensionless parameter, the dependence of physical quantities

on the temperature can be deduced using-dimensional analysis, i.e.

P = αT d, ρ = (d− 1)αT d, η = η′T d−1 (3.10)

Additionally, the stress tensor should transform covariantly under Weyl trans-

1The definitions of these quantities can be found in [10]
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formations, then 3.4 reduces -again, to first order [10]- to

T ab = αT d
(
nuaub + γab

)
− η′T d−1σab (3.11)

So far we have figured out the properties of the stress tensor of a relativistic

fluid, which in turn governs the dynamics of the fluid. A last property that we are

going to see is that this equation (3.4) reduces to the Navier-Stokes equations when

the velocity is scaled down and you fine tune some other aspects.

Consider a perturbation (parametrized by ε) of fluid at rest, where the fluctuation

in the amplitude of the velocity is of order O(ε), the fluctuations in the temperature

are of order O(ε2) and the wavelength fluctuations are at least of order O(1/ε). If we

take the limit where ε→∞, then the fluid will have four key properties [10]. It will

be non-relativistic and incompressible, the temporal energy conservation equation

reduces to ~∇ · ~v = 0 where ~v is the non-relativistic spatial velocity.

The last property is that the spatial energy conservation equations reduce -al

leading order O(ε3)−, to the Navier-Stokes equations:

~̇v + ~v · ~∇~v = −~∇P + ν∇2~v (3.12)

where ν is the kinematic viscosity given by

ν =
η

ρ0 + P0

(3.13)

with ρ0 and P0 are the background values of the density and pressure of the fluid.

One of the corollaries of equation 3.13 is that the pressure is not an independent

degree of freedom, this is because pressure may be solved in terms of the fluid velocity

at any time which can be seen by taking the divergence of 3.13 [10]. There is much to

be understood about the fluids that follow the Navier-Stokes equations 3.13, hence,

the importance of the fact that this equations can be seen as a reduction of the

dynamics of a relativistic fluid. This is one of many reasons of why the fluid/gravity

correspondence is generating expectation, in the hope that by studying certain types

of black holes in AdS space times we are able to throw some light into the dynamics

of non-relativistic fluids, or viceversa.
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3.3 The gravitational point of view

In this section has the aim to construct gravitational solutions dual to fluids by

making an algorithm to construct -slowly- varying black hole space times that solve

3.1.

Lets consider a CFT on Minkowski space (γab = ηab), the AdS/CFT correspon-

dence tells us that its gravity dual is the planar AdSn+1-Schwarzschild black hole,

with metric

ds2 = −r2f(r/T )dt2 +
dr2

r2f(r/t)
+ r2δijdy

idyj, f(x) ≡ 1−
(

4π

nx

)n
(3.14)

This space-time has a horizon at r+ ≡ 4πT
n

and is a n-parameter family of

solutions, after a boost along yi, with parameters T and ua. As seen in the previous

section, this solution to Einstein’s equations will induce on its Minkowski boundary

a stress tensor which will have the form of an ideal fluid stress tensor and will have

parameters spelled out by 3.10 with the constant scaling as α ∼ G
(n+1)
N [10]. All

the planar AdSn+1-Schwarzschild black holes of this family of solutions are dual to

a conformal (ideal) fluid living on Rn−1,1 supplied with a Minkowski metric.

This fluid is in equilibrium and one should be able to describe the long wavelength

fluctuations using the hydrodynamics just studied. This class of fluctuations in the

fluid translates into AdSn+1 black holes which are inhomogeneous and dynamical.

3.3.1 The gradient expansion and the corrected metric

We will now describe the algorithm needed to construct black holes such as the

described in the previous section, such an algorithm is obtained in [10] via a gradient

expansion. An approximate solution to Einstein’s equations is obtained only if ua

and T are slowly varying and satisfy the conservation equations of fluid dynamics.

Take the metric 3.14 and rewrite it in ingoing coordinates, replace parameters ua

and T by functions of the boundary xa and fix the gauge by setting grr = 0 and
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gra = −ua, then it would yield

ds2 = −2uadx
adr − r2(f(r/T )uaub + Pab)dx

adxb (3.15)

We are going to call this metric g
(0)
µν , which is not a solution to equation 3.1 but

has two peculiar attributes: it is regular for all r > 0 and if ua and T have small

derivatives, then it can be expanded to be locally approximated by boosted black

hole solutions. The book-keeping parameter for a gradient expansion is ε (is useful

to keep track of the derivatives with respect to the boundary coordinates xa), and

after such expansion we have this expressions

gµν =
∞∑
k=0

εkg(k)
µν , ua =

∞∑
k=0

εkua(k)(εx), T =
∞∑
k=0

εkT (k)(εx) (3.16)

Where g
(k)
µν depends on ua(εx) and T (εx) and it should be determined, at the

same time as ua(k) and T (k) by solving equation 3.1 to the kth order in gradient

expansion. What follows is to find the associated partial differential equations that

solve 3.16 at the desired order, say j.

Note that -after the gauge fixing- if we expand to order n, then there are n(n+1)
2

equations but only n(n−1)
2

variables. Such behaviour can be explained in the following

manner [10]. You can divide equations 3.1 in three parts, Err, Era and Eab, the

Era sector are momentum constraint equations for evolution in the radial directions

which have only to be satisfied at a given r, while the Eab equations are the dynamical

equations and have to be solved in r “by slices”. Finally the Err equations provides

a constraint int the radial direction related to the Hamiltonian. It is natural to

study the Eab sector at the boundary region, where they are simply reduced to

the conservation of the stress tensor equations 3.3 and since the metric g
(n)
µν is not

involved in those equations, it can be seen as a constraint on the solution.

Once you have the constraints at order j you can calculate the “corrected” metric

at order j + 1, next you use this corrected metric to find the constraints at order

j + 1 that will help you solve the partial differential equations and then again you
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calculate the corrected metric at order j + 2 by solving such PDE’s, and so on, and

so forth. This algorithm will render you the solution to Einstein’s equations at any

order.

In summary, a sector of Einstein’s equations actually becomes the stress tensor

conservation equations and are considered constraints on our system, with such con-

straints you can solve the partial differential equations that gives you a corrected

metric and so the space-time that was not a solution for Einstein’s equations, after

gradient expansion, becomes a solution -at order j- since it complies with the bound-

ary stress tensor conservation equations. Note that even though in this case we have

used obtained a result for a flat boundary metric, this procedure can be generalised

to any slowly varying curved boundary metric due to locality of the perturbation

theory [10].

3.4 Expansion at second order

We now present a second order expansion that in contrast with what we did in the

last section it is generalised for a non-flat boundary metric. The results here shown

were obtained in [10] and they use a rather different but simpler structure, the Weyl

covariant formalism.

If we are interested in the hydrodynamics of a CFT living on a different manifold

Bn, rather that in flat manifold, then, to simplify the results for conformal fluids,

we should focus on the conformal class of metrics (Bn,C), which has a naturally

associated derivative defined with the Weyl connection. A Weyl transformation and

a Weyl covariant tensor are defined as follows

γab = e2φγ̃ab, Q = ewφQ̃ (3.17)

Where w is the weight of the tensor. A Weyl connection is a class of torcion-

less connection, which captures the fact that every metric in the conformal class C

transforms homogeneously under conformal transformations

∇Weyl
a γbc = 2 Aaγbc (3.18)
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Where Aa is the one form that characterises the connection, and which together

with the connection defines the Weyl covariant derivative

Da = ∇Weyl
a + wAa (3.19)

This derivative will act on a conformally covariant tensor in such a way that the

derivative has the same weight as the tensor its actin upon, i.e.

DcQ
a...
b... ≡ ∇c + wQa...b... + wAcQ

a...
b...

+ (γcdAa − δacAd − δadAc)Q
b...
d... + · · ·

− (γcbAd − δdcAb − δdbAc)Q
d...
a... − · · ·

(3.20)

The relation between the Weyl covariant derivative and the “usual” covariant

derivative is given by

DaT
ab = ∇aT

ab + T aaA
b (3.21)

Because in a conformal fluid the stress tensor has to be traceless, then it is clear

that we can rewrite 3.3 as

DaT
ab = 0 (3.22)

We are now ready to redefine the bulk metric 3.15 in order to get a different

boundary metric that Minkowski,

ds2 = −2ua(x)dxadr + (−2ua(x)Gb(r, x) + Jab(r, x))dxadxb (3.23)

where Gb(r, x) and Jab(r, x) are fields that admit an expansion in the boundary

derivatives. In [10; 11] they parametrize both fields at second order which contain

Weyl covariant derivatives (Gb(r, x)) or Weyl covariant basis tensors (Jab(r, x)). The

Weyl Covariant basis tensors are functions of the vorticity and shear tensors and

the velocity vector of the fluid

Tab1 = 2ucDcσ
ab, Tab2 = Cacbducud,

Tab3 = 4σc〈aσb〉c , Tab4 = 4σc〈awb〉c , Tab5 = wc〈awb〉c
(3.24)
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where

σab = D(aub), wab = −D[aub] (3.25)

are the shear and vorticity tensors [10]. we can define our boundary metric -used

to lower and raise indices of boundary tensors- as

γab = lim
r→∞

1

r2
(Jab − 2u(aGb)) (3.26)

We now have a metric (3.23) that solves Einstein’s equations to second order in

gradient expansion, provided that 3.11 satisfies equation 3.22. Note, that since it

is possible to determine the location of the black hole horizon within our gradient

expansion, the metric 3.23 is regular and we then can calculate an entropy current

like 3.9 for our fluid [10]. Remember, that for the planar AdSn+1-Schwarzschild

black hole, the horizon was located at r+ = 4πT
n

. Then locally the gradient expanded

horizon radius is

rH =
4πT (x)

n
+
∑
k

εkr(k)(x) (3.27)

the functions r(k)(x) are computed by solving the null condition

gµν∂µSH∂νSH = 0 (3.28)

where SH = r − rH(x) = 0

Knowing the event horizon of a black holes implies being able to calculate the

entropy of such black hole [2]. This can be done by taking the bulk area (n−1)-form

aH that characterises the horizon and pulling it back to the boundary where the dual

fluid lives [10]. Since a (n − 1) form has a 1-form dual, the area form has a dual

1-form -or current- which is the entropy current in the boundary. Because of the

area law that rules black holes, we are granted the non negativity of such an entropy

current which satisfies the thermodynamic’s second law. A general expression for
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this current is

Jas = sua +
sn2

(4πT )2
ua
(
A1σcdσ

cd + A2wcdw
cd + A3R

)
+

sn2

(4πT )2
ua (B1Dcσ

ac +B2Dcwac)

(3.29)

Where s is the entropy density

s =
1

4πGn+1
N

(
4πT

n

)n−1

(3.30)

and the coefficients A1,2,3, B1,2 are defined a-priori. Note that 3.29 doesn’t con-

straint such numerical coefficients but DcJ
c
s = 0 and equations 3.23 do and fix

completely their values, given in [10].

Given an asymptotically locally AdSd+1 metric, one can construct a “local”

boundary tensor which is conserved and is associated to the stress tensor of the

CFT which is dual to such space-time [10]. We now want to state this association

and by doing so, tie some knots between this section and the previous one. The

boundary stress tensor is given by -at second order- [10]

Tab = lim
r→∞

−rd

8πG
(n−1)
N

(
Kab + (n− (K + 1))γab −

1

n− 2

(
Rγ
ab −

1

2
Rγγab

))
(3.31)

Where Rγ are the curvatures of the boundary metric and K are the extrinsic

curvatures of the surface, from 3.31 we can obtain explicit expressions for Πab
(1) and

Πab
(2), namely

Πab
(1) = −2ησab, Πab

(2) = τπηT
ab
1 + κTab2 +

3∑
i=1

λiT
ab
i+2 (3.32)
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where the six transport coefficients for conformal in n-dimensional boundary are

η =
1

16πG
n+1)
N

(
4πT

n

)n−1

, τπ =
n

4πT

(
1 +

1

n
Harmonic

(
2− n
n

))
,

κ =
n

2π(n− 1)

η

T
, λ1 =

n

8π

η

T
, λ2 =

1

2π
Harmonic

(
2− n
n

)
η

T
,

(3.33)

and λ3 = 0. Here Harmonic is the harmonic number function. If we take n = 4

one can obtain the transport coefficients for SU(N) N = 4SYM theory. There is

a bound between viscosity and entropy density [10; 12] given by η
s
≥ 1

4π
and an

immediate consequence from equations 3.30 and 3.33 we see that such an inequality

is saturated [10].

3.5 Different fluid flows and their gravitational

duals

Conformal theories are rather special fluids and the “common” fluids deviate notably

from this behaviour. Thankfully the construction presented above can be generalised

for many cases. In this section we shall discuss some special and interesting cases,

stopping in some of them to solve explicitly the fluid equations rather than just

proving the existence of a map from the dynamics of a fluid to the dynamics of

gravity.

Before going into different fluid cases, an important point but somehow detached

from the aim of this section is worth mentioning. Due to the presence of a horizon,

no normal modes are admitted in the black holes, but because the future horizon

has to be regular, one can find perturbations/quasi normal modes -modes with

complex frequencies that characterise the decay of perturbations- [10]. This modes

delineate the timescale for the return of thermal equilibrium of a field theory once

it has been perturbed. Asymptotically AdS black holes can have an infinite family

of perturbations, specifically planar black holes admit only a certain (finite) amount

of massless perturbations. These massless perturbation are called hydrodynamical
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modes and since they can have arbitrarily long spatial wavelengths, they fall in the

long wavelength regime.

3.5.1 AdS Rotating black holes

Besides the planar AdS-Schwarzschild black hole, there is a second class of examples

with explicit solutions corresponding to stationary configurations in hydrodynamics.

This class is a bit more interesting than the past one, because it has non-trivial fluid

flows. Suppose a conformal relativistic n-dimensional fluid on a spatial Sn−1, then

its fluid flows conserve both angular momentum and energy. Since the Sn−1 has a

SO(n) symmetry, the number of independent parameters will be [n/2]. For each

choice of these d = [n/2] momentum and energy there will be an arbitrary fluid that

will settle into an equilibrium stationary configuration. The metric of the S2d−1 will

be

ds2
S2d−1 =

d∑
i=1

µ2
i dφ

2
i + dµ2

i , where
d∑
i=1

µ2
i = 1 (3.34)

The complete metric of such field theory would be [10]

ds2 = γ2(−dt2 + ds2
S2d−1), where γ =

(
1−

d∑
i=1

w2
i µ

2
i

)− 1
2

(3.35)

where wi is the chemical potential for angular potential. According to the

AdS/CFT correspondence, the dual description of a CFT on R×Sn−1 is asymptot-

ically Ad(S)n+1. But if enough energy and angular momentum are injected to this

gravitational system we would eventually reach equilibrium in the form of a large

rotating black hole. If we follow the algorithm for the fluid/gravity map considered

in the above sections, it should yield a metric for large rotating AdSn+1 black hole

-to second order-. It is possible [13] to transform the metric of a rotating AdSn+1
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black hole into a form as 3.23, by taking the fields as

Ga(r, x) = rAa − Sacu
c − r2ua(4Tπ)n

2n2det[rδbc − wbc]
,

Jab(r, x) = r2Pab − wcawcb
(3.36)

Where Sab is the Schouten tensor, a function of the Ricci scalar, the tensor of the

bulk and the metric in the boundary. It is rather remarkable and not a generality

that when expanded -at second order- this metric in derivatives the exact metric

dual to the fluid flow 3.35 is recovered.

3.5.2 Non-relativistic fluids

We are interested in non-relativistic fluids, because the majority of the fluids we

handle on a daily basis aren’t relativistic. As stated in the previous section, the

non-relativistic limit of the fluid/gravity correspondence yields the Navier-Stokes

equations 3.13. The following is just a flavour of a deep and not at all understood

subject, for more details the reader should address to the original paper from where

the following equations where taken, namely [14].

Since the Navier-Stokes equations solve the stress energy conservation equations

and are obtained in the limit of small amplitude on the velocity and the temperature

perturbation, it is natural to suspect that the gravity dual of these equations will

also be a small perturbation on the gravitational theory which will solve Einstein’s

equations -to cubic order-. Suppose we have a metric gµν and we perturb it with a

“perturbation metric” Hµν , i.e. g̃µν = gµν +Hµν . We can write the perturbed metric

of such a gravitational theory -up to first order in derivatives- as ds2 = ds2
0 + ds2

1

(the zeroth and the first order expansion metrics) where

ds2
0 = −2uadx

adr +

(
1

bnrn−2
uaub + r2gab

)
dxadxb (3.37)

ds2
1 =

(
−2rua(u

c~∇c)ub − 2br2rF (br)σab +
2

n− 1
r(~∇cu

c)uaub
)
dxadxb (3.38)
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with

F (x) =

∫ ∞
x

dy
yn−1 − 1

y(yn − 1)
, σab = σab(u

a,∇au
a, gab), b =

n

4πT
(3.39)

We can express the spatial sector of the metric -gij- as follows

b0r
2F (b0r)(~∇ivj + ~∇jvi) +

1

rn−2
(Ai + vi)(Aj + vj) (3.40)

Where Ai = H0i is part of the perturbing metric and vi are the spatial compo-

nents of the velocity ua . The first part of 3.40 is the dual of the viscous part of

the Navier-Stokes equations 3.13, whilst the second factor is dual to the convective

sector of the 3.13. Thus, we see that even in the non-relativistic limit the duality

holds.

3.5.3 Non-conformal fluids

Until this point all the cases we have examined, even the Navier-Stokes non-relativistic

limit have been all conformal field theories. When exploring some non-conformal

field theories there is an advantage of the AdS/CFT correspondence that we can

one in our favour, in theories that naturally arise on the world volume of Dp-branes,

one finds classes of non-conformal fluids [10].

Suppose we are analysing the M-Theory -11dimensional supergravity theory -. In

such a theory the near horizon geometry of the M5 brane is AdS7×S4, and Einstein’s

equations 3.1 in 11 dimensions, accept a cut shot to 7-dimensional equations [10].

If we compactify M-theory on an S1 we get to a 10-dimensional supergravity theory

known as Type IIA Theory. If the M5 brane is wrapped the S1, then it’s dimensional

reduction is the D4-brane. Also when we compactify, the 7-dimensional Einstein

equations truncate even further to a -consistent- 6-dimensional set of equations

known as the Einstein-dilaton equations of the D4-brane background. It turns out

that the fluid dynamics dual to fluctuations on the thermal M5 brane solution is the

solution computed above when n = 6.

A very interesting fact is that the fluid dynamics of the D4-brane world volume
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theory is a dimensional reduction of the conformal fluid dynamics on the world

volume of an M5 brane, but note that the dimensional reduction of a conformal

theory is non-conformal [10]. Also the gravitational duals to the flows on the D4-

brane world volume are obtained from the Kaluza-Klein reduction of the results

obtained in Section 3.4. These features generalise to Dp-branes for all p, i.e. you

can always find an Einstein-dilaton system that can be thought of as a dimensional

reduction of the -negative cosmological constant- Einstein’s equations in a higher

dimension [10].

3.5.4 Charged fluids

Due to the fact that most of the “common” fluids carry one or more conserved

charges, it makes sense to study a CFT with a global symmetry which has a grav-

itational dual that is a gauge symmetry in the bulk. This leads us to think that

the dual of charged AdS black holes are charged fluids. In fact, if one performs a

gradient expansion -as done in Section 3.4 - in a charged fluid stress energy tensor

conservation equations, an analogous algorithm to that presented in Section 3.3 con-

structs the gravitational solutions to Einstien-Maxwell-Chern-Simons theory dual to

the charged fluid flows order by order [10].

Together with equation 3.3 a charged fluid has a charge current conservation

equation, namely

∇aJ
a = 0 (3.41)

As done for the stress tensor and for the entropy current in Section 3.1, we have

to perturb also the charge current since it is a conserved quantity, i.e.

Ja = qua + Jadiss (3.42)

Where Jadiss represents the contribution of the derivatives of T (x) and ua(x) to

the charge current, then -as before 3.5- we gradient expand the charge current

Jadiss =
∞∑
k=1

`kmj
a
(k) (3.43)
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and so the constitutive relations are 3.6 in addition to

P a
c

(
jc(1) +

q

ρ+ P
(ubΠ

ab
(1))

)
= κV a

1 , where V a
1 ≡ −P ab∇b

µ

T
+
F abub
T

(3.44)

and
1

n− 1
Πab

(1)Pab −
∂P

∂ρ
(uaubΠ

ab
(1) +

∂P

∂q
(uaj

a
(1)) = −βδcuc (3.45)

Where µ is the chemical potential of the fluid, and F ab is the background elec-

tromagnetic field that couples to Ja in 3.41. As before, the non negativity of the

entropy current,

Jas = sua − 1

T
ubΠ

ab
(1) −

µ

T
ja(1) (3.46)

then

∇aJ
a
s = −∇a

ub
T

Πab
(1) −

(
∇a

µ

T
− Fabu

b

T

)
ja(1) (3.47)

implies that η, κ, and β ≥ 0. Further research ([10]) revealed that the actual

constitutive relations of the fluid dual to AdS-Einstien-Maxwell-Chern-Simons are

different that 3.44 and 3.45. This is because when a theory is anomalous -as the

Chern-Simons theory is- there should be an additional term in 3.47 that accounts

for such anomaly. One could think that this compromises the non negativity of the

entropy current but corrections to 3.44 and 3.45 due to the anomaly ensures the

positivity of the current.

3.5.5 Superfluids

When a charged scalar field, interacts with a charged asymptotically AdS5 black

hole, it makes the black hole unstable which’s endpoint is the hairy black hole -a

black hole immersed in a charged scalars condensate. The CFT dual of a hairy black

hole is a phase in which there is a spontaneous breaking of a global U(1) symmetry

by the presence of an expectation value of a charged scalar [10; 15]. In condensed

matter this is known as a superfluid.
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The variables of a relativistic superfluid are: a normal fluid velocity ua, a super-

fluid velocity uas , the temperature and the chemical potential. The fact that ξa -the

gradient of the phase condensate- is curl free, together with the stress tensor and

share current conservation equations are the equations of a superfluid’s dynamics

and in conjunction with the respective constitutive relations form a closed dynam-

ical system. Note that the superfluid velocity uas is the unit vector in the direction

of −ξa and that the phase of the condensed is an “analogue” to a Goldstone modes,

since it is the result of spontaneous symmetry breaking.

In [15] it has been proved that it is possible to apply the fluid/gravity correspon-

dence for hairy black holes and get the holographic superfluid. They have found

solutions to a 4-dimensional gravity theory which is dual to holographic superfluids

with a super current density and shown that the dynamics of such superfluid is dic-

tated by the relativistic Landau-Tiszca two fluid model. Here, we will merely write

down the results obtained in that paper, for o much more detailed description of the

construction of such equations the reader should address [15].

We are interested in black holes with flat horizon sections, then the metric will

have the form

ds2
0 = −2huadx

adr − r2

`2
(fuaub −∆ab)dx

adxb (3.48)

where, h and f are bulk functions that will define the holographic superfluid.

Also

∆ab = uaub + lim
r→∞

`2

r2
γab (3.49)

with γab is the boundary’s metric. After “turning” the super current on, the

modified metric will be

ds2 = ds2
0 +

r2

`2
(2Cu(anb) −Bnanb)dx

adxb +
2Ch

f
nadx

adr (3.50)

where na is a constant vector of unit magnitude that obeys

naub lim
r→∞

`2

r2
γab = 0 (3.51)
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and C and B are functions are bulk functions that depend on r only. Using 3.50,

setting the constraints on the boundary stress tensor, [15] was able to find the stress

energy tensor and the super current that describes the dynamics of the holographic

superfluid, namely

Tab = (ε+ P )uaub + Pηab −B(3)nanb + 2C(3)u(anb)

Ja = ρua − Jsna
(3.52)

where ρ is the fluid density.

3.5.6 Fluids with a confinement phase

This subsection was placed until the very end of this Chapter because it contains

interesting features with will be central in the following chapters. There are various

field theories that have a confinement phase at a finite temperature and they can be

distinguished form one to another because -in general- they have different geometries

-as seen in the previous chapter-. The AdS/CFT correspondence leads us to think

that we can find a different gravitational dual to each of these theories. Furthermore

the fluid/gravitiy correspondence gives us the relation between the dynamics of

each of the field theories and it’s dual and that instabilities in one theory lead to

instabilities in is dual.

As we saw in Chapter 2 when a we take a field theory at high enough tempera-

tures it will be in a deconfinement phase, and so far in this Chapter we have only

considered theories which are “deconfined” at all temperatures. As we did previ-

ously , if we consider a pure Yang Mills which has a first order phase transition at

finite temperature and is the deconfinement is dual to a black hole only above the

deconfinement temperature. The low temperature phase is given by glue balls and

indistinguishable from the vacuum, has free energy of order one and therefore is in

the confinement phase.

The Scherk-Schwarz reduction -antiperiodic boundary conditions for fermions-

of N = 4 Yang Mills on a circle of radius R undergoes a deconfinement phase

transition when TR = 2π, this theory at high temperatures -much higher that the

transition phase- the effective 3-dimensional theory is a dimensional reduction of the
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4-dimensional conformal field theory. Its gravitational match at high temperatures

is the S1 compactification of the AdS5 black hole, but at low temperatures its dual

is the AdS-soliton [10].

So, something new happened here, from a gravitational point of view there are

two possible solutions at the transition temperature, and as we will see in future

chapters, there is a domain wall between the AdS-soliton and the compactification

and the AdS5 black hole. such intermediate solution -the domain wall- has been

constructed numerically in [16]. From the CFT point of view this translates as

a fluid with a boundary and can be parametrized by the surface tension of the

boundary -if it is an ideal fluid-. There are solutions to the fluid equations and with

the right boundary conditions which are stationary called plasma-balls and plasma-

rings, which have duals as black holes and black rings among others [16; 17] and we

shall study them in detail later.

One of this configurations is the fluid tube which is a two-dimensional analogue

of the three-dimensional cylindrical tube of fluid, which undergoes a dynamical

instability called the Rayleigh instability. At the same time, the dual of the fluid

tube, the infinite black string in 5 dimension also has a well known instability called

the Gregory-Laflamme instability, which is said to be dual to the Rayleigh instability

[18]. This will be the main topic of Chapter 5.
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Chapter 4

Matching the Plasma-Ball and the

Black Hole

In the first chapter we have already seen that a field theory can be in the confinement

or deconfinement phase, depending on its temperature and that, thanks to the

AdS/CFT correspondence, this theories have their own gravity duals, depending

on which field theory we are studying. In this chapter we will study large N gauge

theories with a confining phase and propose it’s gravitational dual, that will turn

out to be static black holes with a domain wall.

4.1 Large N gauge theories and plasma-balls

In the first sections of Chapter 1, we superficially explained the reasons and conse-

quences of having a gauge theory in the confinement or deconfinement phase. We

now proceed to do a much formal review on the subject. Recall that it is believed

that large NSU(N) gauge theories are dual to string theories with gs α 1/N and

that the duals of the strings can be in different states, each of which we shall call

glue balls.

Consider a large N gauge theory, then as seen in the first chapter, to agree with

the AdS/CFT correspondence, it must have a mass gap Λgap at high temperatures

with a first order phase transition -from confined to deconfined- and with long lived
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excitations. This configuration is a spherical homogenous bulge of deconfined plasma

fluid, it’s energy density is just above the density -called the critical energy density-

at the deconfinement temperature (the temperature mentioned in the first chapter

at which the deconfinement starts), in other words, our configuration is just above

the energy necessary to deconfine, we call to this configuration the plasma-ball, it is

static because the pressure of the plasma recedes at the critical energy density and

most importantly it contains the confined and deconfined phases at the same time.

However, these plasma balls are meta-stable, which means that they will even-

tually decay into a gas of hadrons [16]. As seen before, the energy density of the

deconfinement phase of a gauge theory is of order N2 and therefore 1/N2 of all the

glue balls formed in the gluon-gluon collisions can escape the plasma ball, causing

it’s -slow- decay. The thermal nature of our configuration indicates that the decay

rate obeys the Boltzmann factor, yielding a lifetime for a plasma ball of order N2R

where R is the radius of the plasma ball and it complies that R� 1/Λgap [16].

4.1.1 The Plasma ball as a phase of the gauge theory

We said that the plasma ball is a phase of some large N gauge theories, which is

a static, meta stable lump of plasma fluid, but what constraints does this system

have? In this subsection we will try to clarify this point.

Suppose a p-dimensional spherical ball of plasma fluid of radius R � 1/Λgap

with uniform bulk pressure and temperature. In order for it to be static, the surface

tension of the ’domain wall’ that separates the plasma ball from the gas of hadrons

must be balanced with the pressure of the plasma in the ball, i.e.

P =
(p− 1)Σ

R
(4.1)

with

Σ =
1

p− 1

∫ ∞
0

dr(gijTij − pTrr) (4.2)

Where Σ is the surface tension, T is the stress energy tensor, g is the metric

and i, j are summed over all spatial coordinates. Since the ball is in the deconfined
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phase, both its pressure and the surface tension are both of order N2, this is due

to the fact that the pressure is just minus the free energy. From equation 4.1 we

can infer that static plasma balls at large R can only exist if the pressure of the

deconfined phase vanishes at finite temperature.

There are some important thermodynamical considerations to ensure the plasma

ball is static [16]: the pressure increases with temperature (if the specific heat is

positive), it is continuous throughout the phase transition and it is of order one at

the deconfinement temperature Td. Since it is a first order transition, the specific

heat, hence dP/dT , are positive at Td and of order N2, and so, the pressure of the

plasma ball vanishes at T = Td − O(1/N2).

We can then conclude that, in large N gauge theories with a first order transition,

the uniform plasma balls are static at the temperature Td. The large plasma balls

can also live at temperatures slightly higher than Td, provided that the surface

tension is positive and will have a slightly greater energy density than the critical

one. Observe that 4.1 says that the pressure with positive surface tensions is a

decreasing function of its radius, and therefore will have negative specific heat. This

is not a contradiction with the stated in the previous paragraph, since this is the

specific heat of the plasma ball as an object and the previous was the specific heat

per unit volume of the deconfined phase, of which the plasma ball is composed.

In addition to being static, plasma balls are also hydrodynamically stable. Since

we have assumed the transition to be of first order, this means that the decon-

finement phase remains even at temperatures lower than Td. Then the pressure at

temperatures higher that Td is positive and negative when the temperature drops

below the critical temperature, making the plasma balls hydrodynamically stable,

i.e. stable against contractions and expansions.

So far we have only considered plasma balls that don’t have conserved charges,

but the generalisation to stationary plasma balls is simple and will be reminded

towards the end of this chapter. Consider a spherically symmetric bulge of plasma
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rotating at angular velocity w, then the force balance implies that

dP

dr
= ρ(r)w2r (4.3)

Where P (r) and ρ(r) are the pressure and density at r and the velocity w is

non-relativistic. Using the equation of state for P (r) we obtain∫ Σ/R

P (r)

dP

ρ(P )
=
w2

2
(R2 − r2) (4.4)

This equation may have two distinct classes of solutions: a solution where the

variable r has a range (0, R) which may be thought of as a rotating plasma ball

and a solution where r has the range (R1, R) which can be imagined as a rotating

plasma ring. In this dissertation we will focus on the first kind of solutions, if the

reader wishes to learn about the rotating plasma rings and their duals, he should

refer to [17].

4.1.2 The decay of the plasma balls

In this section we will determine the dependence of the decay -hadronization- of

the plasma ball on N (using [16] as reference), such hadronization happens when a

glue ball escapes from the plasma ball. We will model the decay of a gas of gluons

which don’t interact with each other unless they collide, this collisions can sometimes

produce glue balls. To determine the dependence on N we first need to understand

this dependence form a point of view of Feynman diagrams that produce a glue ball.

Consider a Feynman graph that has n initial gluons scattering into m gluons

and k glue balls. This graph will the have n + m external gluon lines and will

include k insertions of glue ball creation operators, each of the insertion of this

operators will give add an extra factor 1/N compared to an insertion of a normal

interaction vertex. Suppose this Feynman graph and its CPT conjugate, if we ’sew’

this two graphs together (each free gluon line together with its corresponding CPT

conjugate) we will get a Feynman diagram such as 4.1

This graph has no free gluons, then the dependence on N of the contribution of
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Figure 4.1: Feynman diagram of colliding gluons, using a double line notation. Taken from [16]

this graph to a glue ball production can be obtained by adding over all indices and

it is proportional to

N2−2g−2k (4.5)

The leading behaviour of the production of glue balls is driven by the planar

Feynman diagrams (g = 0) which is the type of diagram drawn in 4.1, then

N2−2k (4.6)

We now study what happens for different cases of k

k = 0, This value of k means that there is no glue ball production and therefore it

will tell us about the interaction of gluons and how often they collide. Accord-

ing to 4.6, the number of gluon-gluon collisions in a plasma ball of volume V

is of order is of order N2, then the rate at which a gluon undergoes a collition

is of order N0. Therefore the time scale of a plasma fluid’s relaxation is N0.

k = 1, With k = 1, equation 4.6 will tell us how often is a glue ball produced.

There are two mechanisms of how a glue ball can be produced and radiated:

the first is when two gluons with the same -but alternated- indices collide near

the surface, form a glue ball and then this shoot out form the plasma ball.
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The second one consists on a really energetic gluon which has a great velocity

on the radial direction of our plasma ball, enough to go through the surface

of the ball, at that point the string that attaches the gluon to the plasma

ball breaks, letting the gluon scape as a glue ball. The glue ball creation is

dominated [16] -at large N - is of order one according to 4.6.

It is important to note, that as well as a glue ball can escape from a plasma

ball, an external glue ball can get into the plasma ball, dissolve inside of it and

obey 4.6. If a glue ball is produced far away from the surface of the plasma

ball will disintegrate before it reaches the surface, then the decay rate is not

proportional to the volume of the plasma ball but to its surface area.

k = 2, This value of k will have a term that indicates the interaction between two

-already formed- glue balls, as well as a term that describes the collisions

of such glue balls with the gluons in the plasma ball. These collisions will

eventually slow down the glue ball and deflect it’s path and are interactions

of order 1/N2 [16].

4.2 Localised Black Holes

Once we have discussed the physics of the plasma balls, we now start to study the

physics of their gravitational dual, the localised black holes. To this end let’s first

consider Einstein’s equations with coupled matter fields, i.e. a metric like

ds2 = α′L2(W 2(u)dx2
µ + ds2

int) (4.7)

Where µ = 0, 1, · · · , p, ds2
int is the metric of an internal manifold one of which’s

coordinates is u (compact and with range u0 < u < ∞) and α′L2 is a constant. In

the rest of this chapter we will make some assumptions: the metric 4.7 is smooth

and without boundaries, including u = u0, and that the space-time we work in has

a well defined thermodynamics and the fluctuations about the metric is gapped, i.e.

it can include confined backgrounds.

In addition we expect 4.7 to have another stable solution -when its energy density
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is above the critical ρc-, called a black brane, which has finite energy. If we call Td

to the temperature of the black brane with energy density ρc, then the graviton gas

4.7 dominates for T < Td, the black brane dominates for T > Td and the system will

undergo a first order phase transition for T = Td (assuming only these two phases

exist) [16].

The spaces that obey the conditions stated above, have a family of - p-dimensional

spherical- black hole solutions which are completely defined by their mass, and in

the large mass limit will have the following attributes: their volume in p dimensions

is proportional to their mass, i.e. r ∼ (m/ρc)
1/p [16], away from the edges of the

Rp (in the interior) these solutions approximate the black brane at energy density

ρc and near the edges of the Rp the solutions reduce to a domain wall in the Rp

directions that mediates between the critical black brane and the graviton gas.

4.2.1 Black holes in warped backgrounds

At low energies, the ten-dimensional Schwarzschild solution black hole of radius

Rs =
√
α′L is a solution for 4.7, but at higher energies, the story goes a bit different.

It is a natural step to assume that a black hole with a very large energy (not infinite

as before) is a large spherical bulge in Rp which in the interior closely resembles the

translationally invariant black brane. Then taking the energy to infinity imposes

the same three conditions on the black hole as it did for the black brane [16] stated

in the above paragraph and we shall call to this configuration the localised black

hole , this can be better depicted as it is in figure 4.2.

In the previous section we saw that the plasma ball can exist at different tem-

peratures but that is a static meta-stable phase if and only if the the force between

the pressure and the surface tension on the domain wall are precisely balanced. In

this case, the same must happen if we want the homogeneous black brane to be

static, i.e. the pressure of the domain wall of the black brane solution must vanish

at large radius and this happened precisely at the deconfinement temperature Td.

Note that these arguments apply since it is a warped background that contains a

well defined boundary stress tensor. For these reasons, we expect that large black
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Figure 4.2: The localised black holes also referred as the “pancake” model. The vertical axis is
the radial coordinate and the horizontal is any of the other spatial coordinates. Taken from [16]

holes will reduce -at the interior- to a homogeneous black brane at the deconfinement

temperature.

It’s is a good moment to do a few notes and remarks about the above. We

anticipate that the width of the domain wall is of order of the mass gap Λgap.

Warped backgrounds of the form seen here always host a pancake-shaped black hole

of the form of figure 4.2. The temperature Td of the black holes here described is

finite, even in the large mass limit. Additionally, if we assume the surface tension as

positive, the black hole has negative specific heat, whilst if the tension was negative,

we would expect it to have a instability of the type Gregory-Laflamme [19] which is

the centre of next chapter.

As we did in for the plasma ball, we can also generalise the black hole solution

for solutions that host a non vanishing angular momentum -or other charges-. This

could be rotation black holes or black rings, with the purpose of keeping this disser-

tation not so long, the reader is referred to [20] for rotating black holes and to [21]

for black ring further explanations.
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4.2.2 A specific case

Since in the past chapters we have talked about space times with a Scherk-Schwarz

compactifications, we now -very palely- construct the solutions to Einstein’s equa-

tions that also comply with the constrictions we need on our space and we do so

taking [16] as a reference.

Suppose a space-time warped in such a way that it’s metric looks like

ds2 = α′L2

(
e2u(−dt2 + T2π(u)dθ2 + dw2

i ) +
1

T2π(u)
du2

)
(4.8)

with

Tx(u) = 1−
( x

4π
(d+ 1)eu

)−(d+1)

(4.9)

and i = 1, · · · , d− 1, θ ≡ θ + 2π. This metric is known as the AdS Soliton and

is a solution d+ 2-dimensional Einstein’s equations with a cosmological constant

Rµν = −d+ 1

L2α′
gµν (4.10)

It can also be thought as an AdSd+2 with a Scherk-Schwarz compactification

on a a circle. Recall that a Scherk-Schwarz compactification is just an extremely

special kind of compactification of one dimension in which the spacetime fermions

are chosen antiperiodic along one circle of the compactification manifold [16]. So,

the metric 4.8 at large u reduces to AdSd+2 in Poincaré-patch coordinates, taking u

as a radial coordinate and with θ compactified in a circle, this can be easily seen in

this limit, Tx(u) ' 1. Note that this metric has a cutoff of the IR region, since at

finite u, the θ circle shrinks to zero size.

If we change to Euclidean coordinates, compactifying the time τ ≡ τ + β on the

metric 4.8 (after Euclidean continuation), we get the solution known as the thermal

gas solution, a thermal gas of gravitons at temperature β−1, i.e.

ds2 = α′L2

(
e2u(dτ 2 + T2π(u)dθ2 + dw2

i ) +
1

T2π(u)
du2

)
(4.11)

Another solution to the Euclidean space is the black brane at temperature β−1,
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and can be obtained by doing a continuation to Lorentzian space, where the metric

has a horizon, namely

ds2 = α′L2

(
e2u(Tβ(u)dτ 2 + dθ2 + dw2

i ) +
1

Tβ(u)
du2

)
(4.12)

It is obvious that if we take the temperature of the black brane to be β = 2π it

has the same free energy as the thermal gas 4.11, since we can identify the τ circle

with the θ circle.

In [16] they calculate the free energy at every temperature and find that the

thermal gas is thermodynamically preferred for β > 2π whilst the black brane has

lower free energy for higher temperatures and that -as anticipated- the pressure of

the black brane vanishes at the phase transition temperature Td = 1/2π. In that

same paper, they show that the thickness of the brane -at Td- is of order one.

One of the principal attributes of a metric like 4.8 is that it is a simple warped

background that appears when some string theories are compactified (by ’appears’

we mean that there are solutions of string theory of the form M×4.8). This is of

notable importance, since these string theories are dual to d+ 1dimensional CFT’s

with one dimension compactified on a Scherk-Schwarz circle. Related to what we

saw in Chapter 1, when we make d = 3 and take M = S5 is N = 4 supersymmetric

Yang Mills theory -with a Scherk-Schwarz compactification-.

So far, we have talked about the black brane and the graviton gas metrics, but

we haven’t said anything about the domain wall. As seen in the previous sections

we need a solution that interpolates between 4.11 and 4.12 at the deconfinement

temperature. When we take the energy and the radius of this lumps to be very

large, the edge should resemble a domain wall joining these to solutions. To date,

there has not been found an analytic solution to this problem, and all progress done

so far has been numerical [16].

Specifically we are searching for a solution to 4.10 that has translational and

rotational symmetry in (d−2) spatial dimensions wi which we call ra (a = 1, · · · , (d−
2)) and a translational symmetry as well as a reflection symmetry in the θ and τ
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directions. This can be done in with a metric like

ds2 = A2dτ 2 +B2dθ2 + e2Cdr2
a + e2D(dx2 + dy2) (4.13)

where x and y are combinations of the direction of the domain wall and the radial

coordinate in the bulk space. We should tweak the functions A,B,C,D -functions

of x and y- to make 4.13 interpolate between the black brane and the thermal gas.

Note the the actual radii of θ and τ are not of physical relevance. Much more details

and formal explanations can be found in [16]. At large x and y the geometry should

tend to one of the homogeneous solutions 4.11 and 4.12 when the appropriate circle

shrinks (figure 4.3).

Figure 4.3: x, y plane sketching the domain wall situation. Taken from [16]

If we concentrate on as small enough region near the origin, we can ignore the

bulk cosmological constant. Then the metric 4.13 is simply a (d + 2)-dimensional

flat space written as a product of four-dimensional flat space (with coordinates A,

B, τ and θ) and the flat (d− 2)-dimensional space (with coordinates ra), namely

ds2 =
[
A2dτ 2 +B2dθ2 + dA2 + dB2

]
+ e2Cdr2

a + O(A2, B2) (4.14)

This is the form of the metric of our domain wall.
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4.3 The Plasma-Ball/Localised Black Hole dual-

ity

The AdS/CFT correspondence tells us, as seen in the Introduction, that there are

several confined gauge theories that have a gravitational duals, such as the one

treated in the Section 5.1 and according to this correspondence we know that the

duals will be localised black brane solutions which approximate the deconfined black

brane at it’s centre [16]. Therefore, the plasma balls-localised lumps of plasma at

Td- are dual to the localised black holes referred in the past section.

Figure 4.4: The plasma-ball and its decay via hadronization and its dual, the localised black hole
and its decay via Hawking radiation. Taken from [16]

Let us explain this duality more explicitly rather than just state it. Suppose

a plasma ball that is scattered by a glue ball, the glue ball can then be either

reflected, absorbed or transmitted along the surface of the plasma ball. The gravi-

tational counterpart of this is easy to imagine, consider a localised black hole in a

p-dimensional space and the scattering of the black hole and a graviton in certain

state. The wave function of the scattering has four components: the incident part,

the transmitted part, the absorbed part (into the black hole) and the reflected part.

We can then conclude that the gravitons outside the horizon of the black brane

sector map to glue balls inside the plasma ball, whilst gravitons near the horizon

map to gluons -which are deconfined- [16].
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Now, at finite -but large- N , the lumps of gluon plasma overlap with the glue

balls, this explains the decay of plasma-balls by hadronization. This can be seen

from a gravitational point of view as the fact that at finite gs the gravitons and the

black holes mix and therefore the non-extremal black hole decays due to Hawking

radiation.

4.3.1 From gravity to the field theory

In this subsection we will see two aspects of plasma balls that are better understood

when studied from their gravitational counterpart: the hadronization of a plasma

ball viewed as Hawking radiation of the localised black hole and the production

plasma balls as collisions of gravitons.

As seen in Section 4.1, a plasma ball can decay via hadronization, which means

that hadrons -glueballs- escape form the ball. From a gauge theory point of view,

this process is very difficult to study even numerically, therefore we appeal to the

large λ AdS/CFT dual of the plasma ball decay: the Hawking radiation.

Classically a localised black hole is a stable solution to Einstein’s equations, but

quantum mechanically it decays via Hawking radiation [16]. This radiation from

the “flat” part of the pancake solution (figure 4.2) which goes in the radial direction

is simply bounced back into the black hole, in other words, there is no radiation

in this direction, it only loses energy form Hawking radiation at the edge. In the

same manner, when a glue ball is created via the collision of gluons in the bulk it is

dissolved before it can escape out of the plasma ball, i.e. it only decay via the glue

balls produced in a collision near the surface of the plasma ball [16].

So far, in this chapter we have only talked of the geometry, the physics and

specially evolution of the plasma ball but we have not mentioned how the actually

create, the most simple way of creating this plasma balls is via hadron-hadron

collisions.

Consider a collision of two glue balls with centre of mass energy large compared

to N2Λgap. In the large λ string theory these glue balls map to gravitons, hence
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we shall study the collision of two light gravitons because this phenomena is much

better understood than the dual glue ball collision. It is easy to set an upper bound

of the scattering cross section, by assuming that the gravitational force dominate at

high energies [16]. The force between the two gravitons will ten be of the form

G4E
2

b2
e−Λgapb (4.15)

Where b is an impact parameter, which is the separation between the particles

colliding. Then, the incident particles would pass each other if b is larger than a

number of order ln (E)/Λgap with a cross section of the form

σ ∼ ln2E

Λ2
gap

(4.16)

With this knowledge and the AdS/CFT duality, this implies that at large N

and λ, two glue balls will most likely (with probability close to one when E �
N2Λgap) merge into a plasma ball if the impact parameter is smaller than ln (E)/Λgap

[16]. Such plasma ball will have a very long lifetime and will decay as pointed out

throughout this chapter.

At small λ, the glue balls will be formed by partons, each of which carries a good

part of the energy of the glue ball. In the large N limit, the string that makes the

gluons stick together cannot be broken, so one may think that when two partons

collide they would form a plasma ball. As it turns out ([16]), since the smallest

energy to form a plasma ball is of order N2, then the partons actually carry enough

energy to snap the string and do not form a plasma ball. So, in this limit the very

energetic partons interact very weakly and their interactions will not form a plasma.

4.3.2 From the field theory to gravity

In contrast with what the previous subsections talks, we now invert the order, mean-

ingly, we go from the things we know about in the plasma ball sector and try to

understand some obscure parts about the localised black holes.

As the localised black holes (figure 4.2) at large λ starts to lose some energy

due to radiation, they start shrinking in size until they reach a size of the same
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scale as the length of -negative- curvature of the space-time of the form 4.7. At this

point they localise on the internal manifold by a transition of the type Gregory-

Laflamme. If they still continue to radiate, they keep on shrinking until their size

is much smaller than the scale of the background curvature, and in that moment,

it would resemble the simple ten-dimensional Schwarzschild solution [16] and it’s

evolution is the same as the black holes in a flat ten-dimensional space.

This ever contracting black holes have duals as plasma balls in large λ gauge

theories that are hadronizing. Provided that the black hole further keeps radiating

and loosing energy, they would eventually contract to string scale, here the black

hole’s dual would be a small plasma ball [16]. Here is were the plasma balls and the

AdS/CFT correspondence would -and probably will- play a very important role, as

this part of the gravity sector is not well understood.

One of the most straight forward consequences of the existence of black holes, is

that any particle shot into a black hole is always absorbed regardless of its energy.

But if we look at it’s dual, at first sight it looks like a particle incident on the

plasma ball at an energy much larger than Td would just go across it, challenging

it’s AdS/CFT dual.

What happens is that we are not taking into account one important fact. The

only objects one can shoot to a plasma ball are glue balls. At large λ glue balls may

be thought as consisting of many low energy partons [16], where the energy of each

parton is given by

Eparton ≈ E

(
Λgap

E

)λ
(4.17)

Observe that even in the limit where E →∞, Epart � Λgap, therefore glue balls

may always be absorbed by plasma balls, regardless its energy. As explained before,

at small λ the glue balls can be thought as consisting of a small number of high

energetic partons, and we could anticipate that they would pass throughout the

plasma ball, then the plasma balls at low λ cannot be dual to a black hole, since

it does not absorb all glue balls that are shot at them [16]. An interesting point in

this subject is if this can be translated into a decrease in the absorption of particles
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of a black hole when it’s curvatures are of string scale order.

Finally, there’s a subtlety that we have ignored, but that has been a constant

question that physicist have failed to answer. The fact that at quantum mechanical

level Hawking’s radiation is present in the black holes, is something that is called the

information paradox, since the fact of the existence of Hawking’s radiations breaks

unitarity, one of the most important restriction that mathematics puts on physics

as a price for using it’s commodities.

Let’s explain this a bit further. The AdS/CFT correspondence checks that the

black hole evaporation is a unitary process, this is because the production of a

plasma ball in a gluball-glueball collision and its hadronization is clearly a unitary

process. So even though Hawking’s radiation dual predicts unitarity, the actual

precept of Hawking breaks this same rule. This can be thought from two points

of view: Either we use plasma ball’s physics to understand the flaw in Hawking’s

argument, or Hawking’s radiation has another dual in the field theory which is

non-unitary.

To finalise this chapter, I would like to emphasise that this chapter is meant to

be brief explanation, to show the landscape of the plasma ball-localised black hole

duality and by no means it is to be taken as a complete explanation of the subject,

for much more information, the reader is remitted to [16] and [22]. There is, as well,

a duality between the plasma ring and the black black ring [23] and between the

rotating black hole and the axially symmetric rotating plasma ball [17], which is a

very interesting topic as well.
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Chapter 5

The Rayleigh-Plateau/Gregory

Laflamme duality

In this chapter we are going to find out that due to the fluid/gravity correspondence

studied in the previous chapter, there is a relation between the instabilities in the

conformal field theory (the Rayleigh-Plateau instability) and the instabilities in

the gravitational theory (the Gregory-Laflamme instability). We do so by finding

solutions to the relativistic Navier-Stokes equations and see which of them have

an axisymmetric equilibrium configuration. Next, we study the phase transition

between solutions and prove their instabilities, which we find to be the Rayleigh-

Plateau instability. Afterwards we look for solutions for Einsteins equations on

a higher-dimensional AdS space that has certain compactifications, and study the

phase transition between this solutions. Finally we study the instabilities of the

solutions, to find that they are the Gregory-Laflamme instability.

5.1 The Rayleigh-Plateau instability

We will first study the relativistic Navier Stokes equations. The dynamics of a given

fluid is given the the conservation of the stress tensor of a conformal field theory that

lives in a boundary, i.e. equation 3.3. Suppose our fluid lives on a d-dimensional

flat space time and that the fluid configuration we want is axisymmetric, then it is
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Figure 5.1: Axisymmetric static equilibrium of a fluid in a d-dimensional flat spacetime. Taken
from [4]

convenient to express it cylindrical coordinates, namely

ds2 = ηµνdx
µdxν + r2γijdφ

idφj (5.1)

Where xµ = (t, z, r), γji is the metric of d − 3 unit sphere. The boundary

stress tensor is composed of three parts: a perfect fluid part, a surface part and a

dissipative part. It can be proven ([4]) that for static fluids, the dissipative part of

the stress tensor does not contribute to the equations of motion, then

T ab = T abperf + T absurf (5.2)

With

T abperf = (ρ+ P )uaub + Pgab, T absurf = σ(nanb − gab)
√
∂Φ · ∂Φ δ(Φ) (5.3)

Where -as always- P is the pressure, ρ is the energy density, ua is the fluid velocity

gab is the metric 5.1, also σ is the tension of the boundary. The surface is given by the

equation Φ(r, z) = r− h(z) = 0, with a normal unit vector na : = ∂aΦ(∂Φ · ∂Φ)−1/2

[4]. After substitution in 5.3, the perfect fluid component of the stress tensor is

T abperf =


ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 r−2Pγij

 (5.4)
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and

∇aT
ab
perf =

(
0 ,

∂P

∂z
,
∂P

∂r
, 0

)
, using ∇̃iγjk ≡ 0 (5.5)

To calculate the surface part of the stress tensor we first need to work out the

unit normal vectors na for a single valued height function h(z), so

na =
1√

1 + h′2
(δar − h′δaz ), where h′ : = ∂zh (5.6)

then

T absurf =
σδ(r − h)√

1 + h′2


1 + h′2 0 0 0

0 −1 −h′ 0

0 −h′ −h′2 0

0 0 0 r−2(1 + h′2)γij

 (5.7)

and a divergence that goes as

∇aT
ab
surf = σδ(r − h) (0,−(d− 2)h′H, (d− 2)H, 0) (5.8)

Where H is the mean curvature of the surface. From equations 3.3 we obtain [4]

∂P

∂z
= (d− 2)σδ(r − h)h′H

∂P

∂r
= −(d− 2)σδ(r − h)H

(5.9)

From here it is obvious that in the bulk -away from the boundary- the pressure

is constant. If we integrate 5.9, we get an expression for the pressure -just- inside

P− and outside P+ the boundary

P+ − P− = −(d− 2)σH(z) (5.10)

If, for simplicity, P+ is set to zero

P−
(d− 2)σ

=
1

d− 2

(
− h′′

(1 + h′2)3/2
+

n

h
√

1 + h′2

)
= H0 (5.11)

Where in the first equality, the definition of H was substituted and H0 is a
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constant mean curvature. It is worth indicating that there is an alternate way of

getting equation 5.11. Suppose a d-dimensional space, and consider the z direction

as compactified on a circle, z ∈ [−L/2, L/2], then you can get the equations of

motion ([4]) of the configuration you are looking for by varying the action I[h] =

σA[h]−P−V [h] where A[h] and V [h] are the surface area and the interior volume of

a fluid body. The Euler-Lagrange equation obtained by varying I[h] is equivalent to

5.11 and is the governing equation to determine the axisymmetric equilibrium states

of the fluid, there are two trivial functions that solve this equation, the uniform tube

and the spherical ball

hUT = r0 HUT =
d− 3

(d− 2)r0

hSB =
√
R2

0 − z2
0 HSB =

1

R0

(5.12)

Where R0 is the radius of the spherical ball and r0 is the radius of the cylindrical

solution. Observe that the spherical ball’s mean curvature has no dependance in the

dimensions whilst the uniform tube’s has. The Rayleigh-Plateau instability is the

instability in a -4-dimensional spacetime- that overcomes a cylindrical configuration

when it’s linear dimension is longer than its circumference [4]. This instability is

easily generalised to higher dimensions. Suppose a perturbation on the function

h(z) of the uniform tube of the form

h(z) = r0 + εh1(z) + O(ε2) (5.13)

Then -at order O(ε)- substituting on equation 5.11 and with the boundary con-

dition that h′1(0) = 0 (meaning that the boundary of the fluid at z=0 will remain

constant) we get the function

h1(z) = h(1) cos (kRP z), with kRP =

√
d− 3

r0

(5.14)

If we substitute 5.14 in 5.13 we get the marginally stable mode of the Rayleigh-

Plateau instability and then the uniform tube is unstable if the length of the cylinder

L satisfies L > LRP = 2π/kRP , i.e. if the radius r0 < rRP =
√
d− 3L/2π [4]. Ob-

serve that if we make d = 4 this condition gives rise to the definition of the Rayleigh-
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Plateau instability given before and that there is a -dimensional dependence of the

critical mode.

5.1.1 Three phases of an axisymmetric fluid in flat space-

time

We need to derive the equations of state of each configuration to learn about the

thermodynamic properties of the fluid, with that in mind we obtain the equations of

state by making a Scherk-Schwarz compactification (a compactification in which the

spacetime fermions are chosen antiperiodic along one circle of the compactification

manifold) of a (d + 1) -dimensional CFT and define the characteristic length scale,

the temperature and entropy density

l0 =
σ

ρ0

, Tc =
(ρ0

α

)1/(d+1)

, s0 =
(
αρd0
)1/(d+1)

(5.15)

Where ρ0 is the vacuum energy, α is a constant and Tc is the critical temperature

of the deconfinement that we saw in Chapter 2. The energy density and entropy

density will be defined as [4]

T tt = ρ+ σδ(r − h)
√

1 + h′2 (5.16)

s = (d+ 1)s0

(
T

Tc

)d
(5.17)

When we integrate the above densities we can get the energy, entropy and

(Helmholtz) free energy 1. This quantities for the uniform tube case are functions

of a -dimensionless- parameter r0/L and can be written as

EUT = ρ0
ΩnL

n+2

n

[
(n2 + 4n+ 1)T̃ n+4

UT − 1
] (r0

L

)n+1

, TUT = Tc

[
1 + nl̃0

(
L

r0

)]1/(n+4)

FUT = ρ0
ΩnL

n+2

n

(
T̃ n+4
UT − 1

)(r0

L

)n+1

, SUT = s0(n+ 4)ΩnL
n+2T̃ n+3

UT

(r0

L

)n+1

(5.18)

1The following expressions (5.18 - 5.23) were taken from [4]
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Where l̃0 = l0/L is a dimensionless parameter and for simplicity we have taken

n = d − 3. For the spherical ball we use a -dimensionless- parameter R0/L, so we

have

SSB = s0(n+ 4)Ωn+1L
n+2T̃ n+3

SB

(
R0

L

)n+2

, TSB = Tc

[
1 + (n+ 1)l̃0

(
L

R0

)]1/(n+4)

FSB = ρ0
Ωn+1L

n+2

n+ 1

(
T̃ n+4
SB − 1

)(R0

L

)n+2

ESB = ρ0
Ωn+1L

n+2

n+ 1

[
(n2 + 5n+ 5)T̃ n+4

SB − 1
](R0

L

)n+2

(5.19)

Note that, as one would find natural, the uniform tube thermodynamical vari-

ables depend of the dimensions, while the spherical ball’s ones don’t and since

R0 ≤ L/2, the spherical ball has an upper energy bound and a lower tempera-

ture bound. For convenience -when drawing phase diagrams- we define four new

“normalised” quantities and a dimensionless parameter,

Ê =
E

ERP
, T̂ =

T

TRP
, Ŝ =

S

SSB
, F̂ =

F

FSB
, l̃0 =

l0
L

(5.20)

Where the subscripts “RP” stand for critical uniform tube and “SB” for spherical

ball and this quantities are given by

ERP = ρ0
ΩnL

n+2

n

(√
n

2π

)n+1 [
(n2 + 4n+ 1)T̃ n+4

RP − 1
]

with T̃RP =
TRP
Tc

TRP = Tc

(
1 + 2π

√
nl̃0

)1/(n+4)

(5.21)

Observe, that for each value of l̃0, we’ll get the thermodynamical relations Ŝ =

Ŝ(Ê) and F̂ = F̂ (T̂ ). In the previous subsection we saw that there were only two

trivial solutions to equation 5.11, the spherical ball and the uniform tube, but there

is one constant mean curvature nontrivial solution called the non-uniform tube [4].

When solving the PDE’s from equation 5.11, the first integral can be written in a
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potential form, with potential

U(w) = 1−
(

wn

wn+1 +K

)2

(5.22)

where K is an integration constant and w = H0h(z). Such potential has two

-positive- roots w− and w+ and correspond to the smallest and largest radius of the

non-uniform tube, respectively. We can use a dimensionless parameter λ = w−/w+

to parametrize our solution (in analogy with r0/L and R0/L) [4]. The -normalised-

thermodynamical variables of this fluid configuration are

ŜNUT =
Ωn

Ωn+1

[
1 + (n+ 1)l̃0L̃

1 + (n+ 1)l̃0L/R0

](n+3)/(n+4)
Ṽ

L̃n+2

(
L

R0

)n+2

T̂NUT =
Ωn

(n+ 1)n+1Ωn+1

(
T̃ n+4
NUT − 1

)n+2 Ã− Ṽ
l̃n+2
0 L̃n+2

F̂SB =
n+ 1

nn

(
T̃ n+4
NUT − 1

)n
(Ã− Ṽ )

l̃n0 L̃
n+1

ÊSB = n

(
2π√
n

n+1
)

[(n+ 3)Ṽ + Ã][1 + (n+ 1)l̃0L̃] + Ṽ − Ã
[(n2 + 4n+ 1)(1 + 2π

√
nl̃0 − 1)]L̃n+2

(5.23)

where T̃NUT = TNUT/Tc and L̃(λ), Ã(λ) and Ṽ (λ) are dimensionless parameter

[4]. Before going to next subsection we would like to remind the reader that the range

of the parameters of each solution. For the uniform tube we have r0/L ∈ [0,∞), the

sphere has a parameter R0/L ∈ [0, 1/2] and the non-uniform tube has a parameter

λ ∈ (0, 1).

5.1.2 Phase Transitions

To study phase transitions we first need to specify l0. Up to this point we have not

mentioned the thickness of the boundary of the fluid surface and we have assumed

it to be sharp, but it isn’t. So, to be able to use the variables here derived, the

thickness of the boundary needs to be in a limit where it can be ignored, and since

it is of order T−c 1 ∼ l0, then we need to work in the limit l0 � L [4]. Observe that
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-in this limit- l0 can be regarded as measure of the thickness of the boundary.

We will study the microcanonical ensemble, where we study the function Ŝ =

Ŝ(Ê) or the (Ê, Ŝ) phase diagrams and the preferred phase is the one with the largest

value of entropy for a given energy, specifically we are going to study what happens

when we let the energy decrease. We will also study the canonical ensemble, where

we study the function F̂ = F̂ (T̂ ) or the (T̂ , F̂ ) phase diagrams and the preferred

phase is the one with the smallest value of free energy for a given temperature, in

particular the case where we increase the temperature.

As shown before, the functions we are talking about depend on the dimension

we are considering. Instead of showing each dimension, we will study d = 5, d = 11

and d = 13 since are the most outstanding and we shall comment about the other

dimensions along the discussion. The figures displayed below were taken from [4].

5.1.2.1 d = 5

In the microcanonical ensemble, we can observe (figure 5.2) that the non-uniform

branch begins at Ê = 1, i.e. at the Rayleigh-Plateau critical point. The most im-

portant feature of this dimension is that the non-uniform branch always has smaller

entropy than the other two, thus it is not thermodynamically preferred. If we start

with a uniform tube, when we decrease the energy, at the point A of figure 5.2, it

will transform into a spherical ball, thus going under a phase transition. In this case

is a first order transition because the transition between both phases is not smooth,

it’s discontinuous.

In the canonical ensemble, we begin with a uniform tube and increase the tem-

perature, the uniform tube transits discretily into a spherical ball at point A in figure

5.3, making a first order transition, again the non-uniform phase transition don’t

play any part in this phase transitions (in this d = 5). Fluids living in spactimes

with dimensions 4 ≤ d ≥ 9 have qualitatively the same phase diagrams as figure 5.2

and 5.3
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Figure 5.2: The energy-entropy diagram for d = 5, containing the phases of the spherical ball
(SB, solid line), uniform tube (UT, dashed curve), and non-uniform tube (NUT, dotted line). The
arrows show the evolution of the system when we start with an uniform tube and decrease the
energy. The maximum entropy state for a given energy is favoured. Taken from [4].

Figure 5.3: The temperature-free energy diagram for d = 5, containing the phases of the spherical
ball (SB, solid line), uniform tube (UT, dashed curve), and non-uniform tube (NUT, dotted line).
The arrows show the evolution of the system when we start with an uniform tube and increase the
temperature. The minimum free energy state for a given temperature is favoured. Taken from [4].

5.1.2.2 d = 11

In the microcanonical, the first thing we notice is that figure 5.4 has two cusps,

namely, we can divide the non-uniform branch in to three parts: The first leaves

the uniform tube at the Rayleigh-Plateau critical point, the second one is connected

to the endpoint of the energy of the spherical ball and the third one is the one

that connect the previous two branches, the one “in between”. We also note that

it is the first time where the entropy of the non-uniform branch is -in some regions-

greater than both of the other branches, meaning that it is the thermodynamically

favoured. Observe that in this dimension, the uniform tube and the spherical ball

don’t intersect anymore, this is the lowest dimension where this can be seen for this
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case .

Figure 5.4: The energy-entropy diagram for d = 11, note the appearance of a second cusp. Taken
from [4].

If we begin with a uniform tube and decrease the energy, the uniform tube

transits to the non-uniform branch at the point C in figure 5.4 with a discrete tube,

if we continue to decrease the energy, the non-uniform tube eventually transits to a

spherical ball at the point B with other discrete jump.

In the canonical ensemble if we begin with a uniform tube and increase the

temperature, the uniform tube transits smoothly into a non-uniform tube at the

Rayleigh-Plateau critical point . As it transits in a smooth manner, this phase tran-

sition is called a second order or higher. When we keep increasing the temperature,

the non-uniform transforms into a spherical ball at point B in figure 5.5 in a discrete

way, being a first order phase transition. The first dimension where we see a second

order phase transition is called the critical dimension, in the canonical ensemble in

this case, the critical dimension is dcan∗ = 11.

In d = 10 the canonical ensemble the non-uniform branch has no part in the phase

transition and in the microcanonical ensemble the spherical ball and the uniform

tube do intersect, whilst in d = 11 and d = 12 they don’t.

5.1.2.3 d = 13

In the microcanonical ensemble the cusp near to the Rayleigh-Plateau critical point

disappears from d = 13 on (the one near point B in figure 5.6 disappears from

d = 15 on). If we begin with a uniform tube and decrease the energy, the uniform
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Figure 5.5: The temperature-free energy diagram for d = 11, this dimension presents a second
order transition for the first time (in the canonical ensemble). Taken from [4].

tube transits to a non-uniform bench at the Rayleigh-Plateau critical point, this

phase transition is not accompanied by a discrete jump, therefore is of second order

or higher. If we keep decreasing the energy the non-uniform tube branch intersects

the ball at the point B in a first order phase transition. Thus we infer that the

critical dimension in the microcanonical ensemble is dcan∗ = 13.

Figure 5.6: The energy-entropy diagram for d = 13, this dimension presents a second order
transition for the first time (in the microcanonical ensemble). Taken from [4].

In the canonical ensemble d = 11 is the canonical ensemble, therefore d ≥ 12 are

not of interest as well as d ≥ 14 for the microcanonical ensemble.

Finally I would like to make clear the conditions that must be fulfilled to make

the calculations here presented valid [4]. Firstly the radius of curvature of the fluid

surface in all directions must be much larger that the thickness of the surface, i.e.

L� l0. Secondly, the temperature needs to be in the neighbourhood of the critical
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temperature, if not, the surface tension σ can not be regarded as a constant. Lastly,

the temperature and pressure must vary in a length scale larger than the mean free

path of the ’particles’ of the theory, which in the large ’t Hooft limit is ∼ T−1
c .

5.2 The Gregory-Laflamme instability

In this section we are going to study the Gregory-Laflamme instability and in later

sections try to connect it with the Rayleigh-Plateau instability. The Gregory-

Laflamme was originally described in a flat space-time that has more than 4 di-

mensions and it has been extensively studied in such space [24]. The reader might

wonder how are this and the Rayleigh-Plateau instabilities connected if the Gregory-

Laflamme instability is not on and AdS space-time. As it turns out an unusual prop-

erty about the black hole-black string system in flat space is qualitatively similar

to the black hole-black string system in AdS with a Scherk-Schwarz compactifica-

tion [17]. As so, we will, for simplicity, study the black hole-black string in a flat

space-time.

Suppose we are in a 5-dimensional flat spacetime, then Einstein’s equation’s 3.1

are re-expressed as

Rab = 0 (5.24)

The simplest and most forward solution for this equations is the 5-dimensional

spherical symmetric Schwarzschild black hole [24] with metric

ds2 = −
(

1− r2
5

r2

)
dt2 +

dr2(
1− r25

r2

) + r2dΩ2
3 (5.25)

Where the r5 is the horizon radius with definition

r2
5 =

8G5M5

3π
(5.26)

But suppose that nothing depends in the extra dimension, then another solution
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to 5.24 is the metric

ds2 = gµν(x
µ)dxµdxν + dz2 (5.27)

Where gµν is such that it solves R5a = 0, more explicitly

ds2 = −
(

1− r+

r

)
dt2 +

dr2(
1− r+

r

) + r2dΩ2
2 + dz2 (5.28)

Where the first three terms are the solution to the 4-dimensional black hole and

the last factor accounts for the extra dimension. We will call 5.28 the black string

metric. So now, we have two different metrics that solve 5.24, the black hole 5.25

and the black string 5.28, and it can be concluded that in higher dimensions event

horizons need not be spherical. When this was first realised, it came as a shock to

many physicist, because it was believed that -in flat space- the only static stable non

charged black hole was the Schwarzschild solution (the uniqueness theorem). It is

now known that, this is uniqueness a rather remarkable feature of the 4-dimensional

flat space time, and that it those not follow through as we go to higher dimensions

[25].

If our extra dimension -z- is compact with length L, the black string then corre-

sponds simply to a Kaluza-Klein black hole, which does not depends on the geometry

of the extra dimension, and from a 4-dimensional point of view it just looks like a

Schwarzschild black hole. At energies of order L−1 this extra dimension geometry

is expected to play a part, so we can ask if -at this level of energy- there are more

solutions to 5.24.

Let us begin with a 5-dimensional black holes, metric 5.25, since z is finite, there

is no 5-dimensional spherical symmetry. When r+ � L the black hole is still a

good solution for Einsteins equations, but as the mass of the black hole increases

further it can no longer fit inside the extra dimension and must become a string-like

solution. Tis solutions are not analytic and have to be found numerically, and are

called nonuniform string and caged black holes [24]. To see which of the solutions

is preferred we need to study their thermodynamics and examine their instabilities,

if they have any.
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When looking for the thermodynamics of the black hole-black string system in

a Kaluza-Klein theory, one needs to take into account the corrections to the Planck

mass depending on the dimensions one is working on, i.e.

M2
p = Vd−4M

d−2
d (5.29)

With d the number of dimensions and Vd−4 is the volume of the internal space

on which we compactify. Then

G5 = LG4 = L with G4 = 1 (5.30)

Then, since S = A/4 ([3; 26]) then we can calculate the entropies of the black

hole and the black string

SBH = π2r3
5/2L and SBS = πr2

+ (5.31)

With r+ and r5 the radius of the horizon of the black string and the black hole

respectively. To compare the we must take their masses to be equal, i.e.

MBH : =
3π2r2

5

8L
=
r+

2
=: MBS (5.32)

Making the entropies

SBH = 4πM2

√
8L

27πM
, SBS = 4πM (5.33)

So, for a sufficiently small L the black strings will be thermodynamically pre-

ferred, but as we increase L the energy will decrease, causing an IR instability to

this configuration. Note that such an instability will appear when we decrease the

mass (energy) and the point where the non-uniform black string and the uniform

black string merge will be called Mcrit, also it is important to remark that for a

black hole in a Kaluza-Klein theory, thermodynamics second law reads as follows

[27]

dM = TdS + nM
dL

L
(5.34)

Where n is the dimensionless tension of the string.
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5.2.1 The black string perturbation

We already said that the string will have an instability at certain energy levels, but

now we want to understand further the configuration that takes the black string to

transit to the black hole, to do so we will need to perturb the black string. There is

a very important fact to bear in mind when perturbing a gravity theories, gravity

has an infinite gauge group, so there are an infinite different transformations and

as such there will be many of these transformations which will be just pure gauge.

This means that we will need to check if our perturbation, which at the end can be

realised as a change of coordinates, gives a physical change on our theory or if it is

just a pure gauge transformation.

With this in mind, consider a perturbation

gab → gab + hab (5.35)

which solves Einstein’s equations in the vacuum, this transformation changes the

Ricci tensor to [24]

Rab → Rab −
1

2
∆Lhab (5.36)

Where ∆L is the Lichnerowicz operator. After taking into account that, ∆Lhab =

0 -because Ricci tensor must vanish in the vacuum-, that there are no z components

of the Riemann tensor and that we can choose asa transverse trace free perturbation

hab, i.e. ∇ah
a
b = 0 = h, the Lichnerowicz operator simplifies [24] to

∆Lhab = �hab + 2Racbdh
cd = 0 (5.37)

Note, however, that the black string has z and time translation symmetries that

tell us that we can separate two factors: an oscillatory factor eimz and a growing

factor eΩt. Furthermore, this system has a SO(3) symmetry that comes form the

first three terms in 5.28 and as a result we now that the perturbation will not have
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any cross terms with the angular sector [24], i.e.

hab =


htt htr 0 0 htz

htr hrr 0 0 hrz

0 0 hθθ 0 0

0 0 0 hθθsin
2 θ 0

htz hrz 0 0 hzz

 (5.38)

The next thing to do is to find the explicit components of hab, which is rather

lengthy and is beyond the objectives of this dissertation1. We will however, sketch

how it should be calculated. Observe that the z-components of the perturbation

decouple from the rest of perturbation, after taking the boundary conditions into

account (vanishing at the horizon and at infinity for regularity purposes) it can be

shown ([28]) that the hole z sector vanishes. We are then left with a four-dimensional

perturbation of the form

hµν = eimzeΩtHµν(r) (5.39)

where Hµν is a solution of

H ′ =
Ω(H+ = H−)

2V
− (1 + V )H

rV
(5.40)

H ′− =
m2H

Ω
− H+

r
+

(1− 5V )H−
2rV

(5.41)

with

H = Htr, H± =
Htt

V
± V Hrr (5.42)

Then the instability is a solution of 5.40 and 5.41 which is regular at the horizon

and at infinity, and we must integrate numerically this equations. There is not going

to be solutions for all m and Ω, but we can expect a single characteristic frequency

Ωm for a given m (see figure 1.3 in [24]).

Once you have -numerically- found the instability, there is still the issue we

1The explicit calculations can be found in [24]
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mention before of checking the physicality of such transformation. This can be

confirmed, noting that, due to the decoupling of hza and the vanishing of Rzabc,

equation 5.37 reduces to the 4-dimensional Lichnerowicz operator with a mass term

[24], namely

∆
(5)
L hµν = ∆

(4)
L hµν +

∂2

∂z2
hµν =

[
∆

(4)
L −m

2
]
hµν (5.43)

The fact that the Lichnerowicz operator does not reduce solely to the four-

dimensional Lichnerowicz operator, tells us that hµν is a physical mode and not a

purely gauge mode. In other words, as long as a mass term appears in the operator

5.43, any solution to such operator will be a physical Kaluza-Klein instability [24].

To close these subsection, it is worth mentioning that in higher dimensions the solu-

tions to Einstein’s equations -called black branes- also have this instability, of course

the exact functions will change, but qualitatively they are the same as the solutions

to equation 5.43. An interesting fact is that in higher dimension a decoupling also

happens [24], i.e.

hab → hµν = um(zi)eΩtHµν(r) (5.44)

Where zi are the extra dimensions.

5.2.2 Aftermath of the instability

We have already stated how the instability is going to behave and how to find it,

but now we want to take physics out of it and for that we need to study the effect

of such perturbation in the horizon (r → r+).

For this kind of calculations it is more convenient to work in Kruskal coordinates

and see what happens to the outgoing light rays near the original horizon. In these

coordinates, in the unperturbed space-time, the null outgoing geodesics of the string

configuration obey R = T +R0 and R = T is the future horizon [24]. The perturbed

geodesics become (
dR

dT

)2

= 1 + ε cosmzT 2r+Ω−2

(
1 +

dR

dT

)2

(5.45)
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With ε is the perturbation’s amplitude parameter. Equation 5.46 tells us that the

horizon will start rippling, (figure 5.7) meaning that -in Schwarzschild coordinates-

the horizon would be at

r = r+ + εT 2Ω cosmz (5.46)

Figure 5.7: The effect of the Gregory-Laflamme instability on the black string horizon. Taken
from [24]

Now, as seen above, the four-dimensional event horizon cannot shrink without

breaking the positivity of energy when undergoing any classical process (as the one

we have just studied). Thus, even though at some points the horizon is actually

shrinking, at some other points it is expanding, and then the overall process has a

growing horizon area, agreeing with the positivity of the entropy change [24]. In

addition if we follow the instability to an end point, it is believed that the unstable

black string will eventually form a black holes joined by thin strings [29]. This

’joining’ strings eventually keep shrinking, forming -smaller- black holes, generating

thus a stream of black holes, until in the end at infinite asymptotically time, the

string like segments become a naked singularity. This, however, violates the cosmic

censorship principle and is better discussed in [29].

In [27] they -numerically- prove that the non-uniform black string does evolve

into a black hole in static 5 or 6-dimensional flat space when you decrease the mass
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of a non-uniform string. Recall that the black holes in Kaluza-Klein theories follow

equation 5.34, and therefore their mass/energy will be determined not only by the

temperature and entropy but also by the tension n and the length L of the compact

coordinate z. The tension and temperature of the string when it is at the point

where the instability becomes relevant are called ncrit and Tcrit, respectively. In

[27] they calculated the temperature as a function of the tension (normalised) of a

6-dimensional string (figure 5.8) and confirmed that the uniform string transits to

a non-uniform one and then to a black hole.

Figure 5.8: The temperature of the spherical black hole, non-uniform string and uniform string
as a function of the tension. Taken from [27]

But from figure 5.8 we can’t appreciate which branch is thermodynamically pre-

ferred at a given mass or energy of the black hole, however in figure 5.9 it easy to see

that if -in 6 dimensions- we start with a high energy black string and decrease the

energy we will eventually transit to a black hole with a first order phase transition

(because there is not a smooth continuation of the phases) and that at no point the

non-uniform black string is thermodynamically preferred in comparison with the

other two branches.

Other phase transitions (and their phase diagrams) for different systems with

different starting points can be found in [30], where they study the fate of black

holes when it starts radiating and “evaporating”, and in [31], where they plot phase

diagrams for different scenarios in which the system can or cannot go through the

non-uniform black string phase.
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Figure 5.9: The mass-entropy diagram for d = 6, note that the non-uniform string does not play
any important roll in this dimension. Taken from [27]

5.3 Similarities between fluid tubes and black strings

We have separately developed the phase transitions between a fluid tube and a

spherical ball of a field theory due to the Rayleigh-Plateau instability and the phase

transition between a black string and a black hole in a flat space-time with a Kaluza-

Klein compactification due to the Gregory-Laflamme instability. We now mention

how they are similar and how we can -as a result of the fluid/gravity correspondence-

connect both of them.

The first indication we can take of a duality between the Gregory-Laflamme

and the Rayleigh-Plateau instabilities is that figures 5.2 and 5.9 are qualitatively

the same, i.e. in both the non-uniform branch is not thermodynamically preferred,

this branch eventually takes the same entropy value as the spherical branch at a

higher energy position than the transit of the spherical and cylindrical branches.

And there is a first order transition in both systems. Owing to the fact that the

black hole-black string system on a AdS with a Scherk-Schwarz compactification

is qualitatively alike to a flat space-time with Kaluza-Klein compactification black

hole-black string system ([17]) then we can see that the instabilities on the AdS

gravity theory are dual to the instabilities on the CFT theory.

In [32] they define the critical dimension of a gravity theory as the greatest

dimension at which the transition from black string to black hole is of first order and
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found that for this system, the critical dimension -in the microcanonical ensemble-

is d = 13, meaning that the first dimension where there is a second order phase

transition is Dmicrocan
∗∗ = 14. In [33] they found that in the canonical ensemble of a

Kaluza-Klein system, the first dimension where a second order transition is obtained

is Dcan
∗∗ = 13. From a point of view of the filed theory part, one would expect that

such critical dimensions would be Dmicrocan
∗ = 15 and Dcan

∗ = 13 respectively ([4]).

Another similarity between this systems is their evolution at large times. When

we start with the uniform tube and perturb it we obtain a nonuniform tube phase

which is unstable, if we follow it until it’s endpoint, then it will fragment in little

spheres/droplets, whilst the black string ones perturbed will evolve and become a

non-uniform black string at which’s endpoint it “breaks” and form small -spherically

symmetric- black holes([29]).

The similarity between the Scherk-Schwarz and the Kaluza-Klein systems is

vaguely comprehended, and so is the fact of the agreement of the critical dimensions

predicted from both the gravity and the field theories. It is very important to re-

mark that this is a part of physics that is in current development an that there are

many gaps yet to be understood. Much more information relating this topics can

be found in [34], [35] and the references given along this chapter.
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Chapter 6

Conclusions

We have seen that the AdS/CFT correspondence is a very powerful weapon we

can use to approach the problems we face when studying complicated gravitational

systems and their evolution. We have reviewed how a d + 1 dimensional gravity

theory is dual to a d-dimensional field theory that lives on it’s boundary and we

have done so comparing their entropies and observing which constraints this duality

imposes upon our theories.

We have explicitly examined how a conformal field theory with high temper-

ature living on R3 is analogous to a theory in a deconfinement phase whilst the

confinement base of such theory is equivalent to the same CFT but living on an S

at low temperatures. Then we used the AdS/CFT correspondence to establish the

connection between this two-phased conformal field theory and a black hole in AdS

space, specifically matching up the entropies of the deconfinement phase of our field

theory and the Hawking entropy of our gravitational theory in the large r limit. We

also observed that -at high temperatures- the CFT has a mass gap, an spontaneous

symmetry breaking and an area law for spatial Wilson lines, features that, according

to the gauge/gravity duality, are the constraints placed over the CFT to be dual to

a black hole on AdS space at large r.

In the beginnings of Chapter 3 we said that the dynamics of a field theory can be

studied as hydrodynamics, we have also inspected the relation between the dynamics

of a black hole in AdS space and the dynamics of a conformal field theory, and we

saw that they are associated via the fluid/gravity correspondence. It was concluded
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that this duality is a consequence that the graviton is dual to the stress energy

tensor and that the conservation of the latter can be seen as a sector of Einstein’s

equations, i.e. the fluid/gravity correspondence is nothing but consequence of the

AdS/CFT correspondence. In addition we verified that the fluid/gravity duality is

so powerful that it gives us an algorithm with which given a particular field theory

(stress energy tensor) we can find the metric of our gravity spacetime up to some

order. Even further, we spelled out relations between several different field theories -

rotating fluid, non-relativistic fluids, non-conformal theories- and their gravitational

duals.

Returning to conformal field theories with deconfinement phases, we did an ex-

tensive study of the relation of plasma balls and localised black holes. We saw that

a large N gauge theory at its deconfiment temperature can form a plasma ball a

mixture of gluons and glue balls , which’s can be studied using planar Feynman dia-

grams, predicting the ball’s decay time and evolution. The localised black holes are

solutions to Einstein’s equations which have both a graviton gas configuration and

a black brane living at the same range of energy density, plus a domain wall which

interpolates between both of these backgrounds. We saw that with the AdS/CFT

correspondence we can relate an AdS space with a Scherk-Schwarz compactification

with a d + 1 conformal field theory with a Scherk-Schwarz compactification and

wrote down the metric for the domain wall in the specific case of the N = 4 SYM

theory. We also commented that gluons are dual to gravitons near the horizon of the

black brane and that glue balls inside the plasma ball are dual to gravitons outside

the horizon and that the AdS/CFT correspondence told us that the plasma ball

only decays via glue balls produced near the surface of the plasma ball and that

the formation of a plasma ball is consequence the merging of glue balls that pass by

each other at a certain distance (impact parameter).

One of the most upshots of the gauge/gravity duality is that -some- instabilities

on the field theory can translate into instabilities in the gravity theory and we studied

that explicitly for the Rayleigh-Plateau and the Gregory-Laflamme instabilities. We

revised the fact that the Gregory-Laflamme instability in flat space is very much alike

to the instabilities present in a AdS space with a Scherk-Schwarz compactification,
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making it possible to use the AdS/CFT correspondence. We saw that both the

fluid tube and the black string have three possible phases: a spherical symmetric

solution, a uniform tube/ black string solution and a non-uniform tube/black string

solution. Morevover, we saw that the Rayleigh-Plateau and the Gregory-Laflamme

instabilities take you from one configuration to the other one, when you reduce the

size of the tube or black string respectively. We studied the phase transitions of the

fluid tube in the canonical and microcanonical ensembles for different dimensions

as well as the phase transition of the black string. We observed that the critical

dimensions of both theories agree -to some extent- and that the phase diagrams are

qualitatively the same for the field theory and for the gravitational theory.

We expect the gauge/string duality can cast some light over some big gaps of

information we have such as: what happens when a black hole radiates so much

energy for so long time that its size is comparable to the string size, the breaking

of unitarity due to Hawking’s radiation and many others. There are many other

questions that can arise without changing so much the topic, one of them being: A

black hole with only one Killing vector field in AdS is unstable when a scalar field

is scattered ([36; 37]), this is called turbulence, so what would this instability’s field

theory dual be? In [37; 38] they try to give a flavour of this duality. This topic was

intended to be a chapter in this dissertation but I decided to cut it out, not because

it is not interesting but with the intention of keeping the document short.

In this dissertation we have only superficially discussed the topics, but it is

important to remark that there is yet a lot to be understood about the dualities and

relations here stated. For example, topics such as the one discussed in [34] come into

conflict with the fluid/gravity duality and the connection and similarities between

the Scherk-Schwarz and Kaluza-Klein compactifications. Is of great importance to

be able to answer these questions in order to understand thorough fully the dualities.

The aim of this dissertation was to describe the power of the AdS/CFT corre-

spondence and show the “tip of the iceberg” of what is becoming one of the most

important breakthrough in theoretical physics in the last years -quite a few now-.

I hope that in the past 5 chapters I have been able to transmit to the reader the

importance of understanding the duality, how it has modify our way of thinking of
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black holes and fluids and specially all the work that is to be done in the subject.
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