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Abstract

Researchers have recently contended that the Hermiticity condition usu-

ally imposed on quantum mechanical observables is too restrictive. In this

thesis we provide evidence for this contention through a discussion of the

theory of generalized PT -symmetric classical and quantum mechanics. The

underlying principle of such systems is introduced by means of a simple clas-

sical mechanical laboratory experiment: a parity-symmetric pair of isotropic

harmonic oscillators with equal and opposite loss and gain imposed. In the

parameter space defined by the strengths of the coupling and the loss-gain

paramter, there are two distinct regions separated by a phase boundary. In

the first, unbroken regime, energy transfers between the two oscillators to

produce secondary, Rabi oscillations. In the broken regime, the loss-gain

parameter overwhelms the coupling and we see exponential decay in one

oscillator and exponential growth in the other. The phase transition is ob-

served by variation of the relevant parameters. This classical situation is

analogous to the phase transition between real and complex eigenvalues in

a quantum system defined by a PT -symmetric Hamiltonian. To construct

a viable physical theory from such a Hamiltonian, we must first restrict

to the unbroken-PT -symmetric vector subspace. Then, with appropriate

modification of the underlying inner-product space, the theory is rendered

self-adjoint and unitary. We detail these constructions and provide a num-

ber of examples, focusing on finite-dimensional and exactly-solvable models

where the interesting features of PT are most transparently observed.
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1. Introduction, some simple

models, and experimental

realizations

1.1. An overview of PT -symmetric theory

It is conventionally assumed that a quantum mechanical Hamiltonian must

be Hermitian to faithfully describe a physical system. A Hermitian Hamil-

tonian is self-adjoint with respect to the standard, Hermitian inner product

of quantum mechanics. This is a sufficient condition for the reality of the

energy spectrum. A Hamiltonian is Hermitian in this sense if and only if it

is invariant under simultaneous matrix-transposition and complex conjuga-

tion; this is represented symbolically by H† = H. Recently this condition

has been challenged as being too restictive. In a pair of seminal papers

[3, 5], Bender and collaborators showed, using numerical, asymptotic, and

semiclassical techniques, that the spectrum of

H = p2 + x2(ix)ε (1.1)

is real and positive for ε ≥ 0. These Hamiltonians can be viewed as complex

deformations of the harmonic oscillator Hamiltonian, included in the class

at ε = 0. This result was later given formal proof [20] using techniques

from the theory of integrable systems. The class of Hamiltonians is clearly

not Hermitian, but posesses an antilinear PT symmetry—invariance under

simultaneous space and time reversal. On this basis it was proposed that

Hermiticity be replaced withthe weaker requirement of space-time reflection

invariance.

7



1.1.1. Quantum theory

The most obvious difference between conventional Hermitian theories and

more general, PT -symmetric theories is found in the associated Sturm-

Liouville problems. Deriving from the position space representation of the

eigenvalue problem H|ψ〉 = E|ψ〉, the second order differential equations

are associated with the boundary conditions

lim
|x|→∞

ψ(x) = 0. (1.2)

In standard quantum mechanics the contour of integration is taken to be

the real axis. For the class of Hamiltonians (1.1), the Schrödinger equation

is given by

−d2ψ

dx2
+ x2(ix)εψ = Eψ (1.3)

with boundary conditions generally [21] imposed on a contour C in the com-

plex plane. The countours are bounded by Stokes lines [13]. The apparent

ambiguity associated with the infinity of admissable contours is resolved

by analytically continuing (1.3) away from the familiar Harmonic oscillator

equation obtained at ε = 0 [5].

Outside the realm of associated differential equations (1.2), a replace-

ment of the Hermiticity condition raises important interpretational issues

in quantum theory. Because PT is an antilinear symmetry, [H,PT ] = 0

does not imply simultaneously diagonalizability. When an eigenstate of the

Hamiltonian is simultaneously an eigenstate of PT , the eigenvalues are real

we call the symmetry unbroken; otherwise the symmetry is broken and the

eigenvalues come in complex conjugate pairs. A similar situation is encoun-

tered in quantum electrodynamics when working in the Coulomb gauge.

Namely, we obtain an unphysical longitudinal photon polarization that is

removed by restricting to a physical Hilbert space [22].

Replacing the standard Hermitian inner product with the obvious choice

〈ψ|ϕ〉PT =

∫
C

dx [PT ψ(x)]ϕ(x) (1.4)

gives rise to an indefinite metric space (a Krĕın [29], or possibly a Pontryagin

[28] space). This inner product is invariant under time-translation and

choice of representative in ray spaces. On unbroken eigenstates |ψm〉 of a
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PT -symmetric Hamiltonian, the inner product (1.4) is (under appropriate

assumptions [2]) pseudo-orthonormal:

〈ψm|ψn〉PT = (−)mδmn. (1.5)

A similar issue in developing an positive-definite inner product on Dirac

spinors was remedied by introduction of the charge conjugation operator γ5

[46]. In order to preserve the attractive features of (1.4), modifications must

be implemented by a symmetry of a Hamiltonian that is self-adjoint with

respect to (1.4). Such an operator C—so-called because it has similar prop-

erties to Dirac’s charge conjugation matrix—that results in an orthonormal

inner product has been discovered [26, 4]. It has a simple position space

representation as a sum over energy eigenstates

C(x, y) =
∑
m

ψm(x)ψm(y). (1.6)

This expression is very difficult to calculate exactly and perturbative meth-

ods must often be used [24, 25]. This operator is self-inverse, commutes

with the Hamiltonian: [H, C] = 0, and has eigenvalues

C(x, y)ψm(x) = (−)mψm(y). (1.7)

Redefining the inner product (1.4) using (1.7) renders the energy eigenstates

orthonormal

〈ψ|ϕ〉CPT =

∫
C

dx [CPT φ(x)]ϕ(x) (1.8)

〈ψm|ψn〉CPT = δmn. (1.9)

Moreover, this formulation of generalized quantum mechanics contains the

Hermiticity case as a limit [4]. In the imit

lim
ε→0
C = P (1.10)

so CPT = T and the Hermitian inner product is recovered.

With these inner product space modifications, non-Hermitian but PT
symmetric Hamiltonians have been applied to several interesting problems

in mathematical physics. For example, an suitable theory of massive elec-
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troweak interactions without the Higgs mechanism has been developed from

a PT -symmetric Hamiltonian density [35]. In quartic quantum field theory,

Bender and Sarkar showed that inconsistency owing to the negative value

of the coupling constant and the presence of complex energies in can be

resolved by using PT - symmetric methods [34]. In the context of general

relativity, Mannheim has recently proposed that a PT symmetric model for

conformal gravity resolves the dark matter problem [36].

Despite these successes, foundational issues remain. For example, re-

cent work [23, 38] has demonstrated that the C operator is not necessarily

bounded, in particular for the ix3 model obtained from (1.1) with ε = 1. Re-

searchers have also questioned whether a Hilbert space approach is necessary

and considered the properties of PT -symmetric Hamiltonians in indefinite

metric spaces [27]. A generalization of PT symmetric Hamiltonian theory

was given by Mostafazadeh in a series of papers [39, 40, 41]. It is shown

here that PT symmetry is a specific example of a more general notion of

pseudo-Hermiticity. A pseudo-Hermitian Hamiltonian satisfies

H† = ηHη−1, (1.11)

where η is a linear Hermitian automorphism. For many PT -symmetric sys-

tems, the choice η = P demonstrates the correspondence between pseudo-

Hermiticity and PT symmetry, but this prescription is not general [39].

General pseudo-Hermitian systems have many of the same properties as

PT -symmetric systems, including a phase transition between real and com-

plex conjugate pairs of eigenvalues, a natural indefinite inner product, and

unitary invariance.

1.1.2. Classical theory

Interest remains in the underlying classical properties of PT -symmetric

Hamiltonians. Originally studied in conjunction with their quantum coun-

terparts in the original papers of Bender, these objects are now studied in

their own right. The presence of complex potential terms in the Hamilto-

nian necessitates trajectories that lie on multi-sheeted Riemann surfaces.

In a single complex dimension, a PT symmetric orbit is symmetric about

the imaginary x-axis, as P exchanges quadrants I, III and II, IV while T
relects about the real x-axis. As in the case of PT -symmetric Hamilto-
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nian operators, there is a parametric phase transition between regions of

unbroken and broken PT symmetry [30], with trajectories now playing the

role of energy eigenstates. These classical systems have many intriguing

properties. At the fundamental level, the underlying symplectic geometry

requires reexamination [9] and dynamical properties depend on the Riemann

surface (configuration space) on which the system is defined [37]. The clas-

sical dynamics of these systems exhibit many features hitherto found only

in quantum systems such as tunneling [31] and the presence of conduction

bands [32]. Remarkably, a generalized complex correpsondence principle

can be established for such systems [33].

1.1.3. Experiments

Experiments on PT -symmetric systems are a recent development in the field

and provide strong evidence that the underlying theory is worth studying.

The first experiments were performed in the field of optics, demonstrating

the parametric phase transition in optical waveguide systems described by a

non-Hermitian but PT -symmetric optical Hamiltonian [18, 14]. Optics, and

in particular optophotonics, remains as the most fertile testing ground for

experimental realizations of PT -symmetry [15, 16]. However, experiments

have also been done in condensed matter [17] and classical electrodynamics

[6]. Towards the end of this chapter we detail some of these experiments as

motivation for conducting our own simple classical mechanical experiment

in which the phase transition is observed.

1.2. Hermiticity is too restrictive: an exactly

soluble model

Here we review the axioms of quantum mechanics and show that the Her-

miticity condition included in these is two restrictive by use of an explicit

integrable model. For nonrelativistic quantum mechanics, we have the four

axioms:

1. The state of a system is given by an equivalence class of vectors [|ψ〉]
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in a projective Hilbert space P (H).1,2

2. The set of smooth3 functions on a classical mechanical phase space,

C∞(Γ,R) (’physical observables’), corresponds to the set of self-adjoint4

operators on the projective Hilbert space with respect to a Hermitian5

inner product.

3. The eigenvalue problem H|ψ〉 = E|ψ〉 for H ∈ homP (H) determines

the allowed states of the system.

4. A Lie group6 G = {U : R → homP (H) : UU † = U †U = 1} ∼= (R,+)

generates the dynamics of the system.

These axioms give rise to a mathematically-consistent theory. However,

a subtle insufficiency in the second axiom has recently given rise to a flurry

of research in fields from mathematical physics to integrable systems and

spectral theory to experimental optics and condensed matter.

The insufficiency arises as follows. Given a Hermitian operator Ω on P (H)

it is trivial to show spec Ω ⊂ R:

〈Hψ|ϕ〉 = 〈ψ|Hϕ〉 =⇒ E∗〈ψ|ϕ〉 = E〈ψ|ϕ〉 (1.12)

so E∗ = E ∈ R. This is a sufficient, but not necessary, condition for the

reality of the spectrum, as I will show by explicit counterexample.

In this simple example we consider the Hamiltonian7

H =
∑

(ij)∈S3

L2
ij +

αq3√
q21 + q22

(1.13)

1A Hilbert space is a Banach space (a complete normed vector space) in which the norm
‖ · ‖ derives from an inner product 〈·|·〉.

2P (H) ≡ (H\{0})/ ∼ where ψ ∼ ϕ if ϕ = αψ with α ∈ C.
3For a complex manifold, we require holomorphic functions, so the set becomes Cω(Γ,C).
4A linear operator Ω ∈ homP (H) ≡ hom(P (H), P (H)) is self-adjoint with respect to
〈·|·〉 if 〈Ωψ|ϕ〉 = 〈ψ|Ωϕ〉 ∀ψ,ϕ ∈ P (H).

5There is a discrepancy between the physics and mathematics literature as to what is
meant by ‘Hermitian.’ In physics the word is used synonymously with ‘self-adjoint’.
In mathematics ‘Hermitian’ refers to a specific sesquilinear form (linear in the first
argument, antilinear in the second). An operator is the Hermitian if it is self-adjoint
with respect to the inner product derived from this form.

6Here we define 1 ≡ idP (H).
7S3 is the permutation group on a set of three elements.

12



where Lij are angular momenta and the classical system is defined on the

cotangent bundle of the two-sphere Γ = T ∗S2 with α ∈ R. Following the

deformation of H into a linear operator on the projectivization ofH = L2S2,

we can construct a spectrum-generating Poisson algebra—the existence of

such an algebra is closely related to the (super)integrability of the equations

of motion [7, 8].

Under the commutator there are three quantum-conserved8 constants of

the motion

L12 = q1∂2 − q2∂1 (1.14)

e1 = L12L23 + L23L12 −
αq1√
q21 + q22

(1.15)

e2 = L12L13 + L13L12 −
αq1√
q22 + q22

, (1.16)

subject to a Casimir relation

e21 + e22 + 4L4
12 − 4HL2

12 +H − 5L2
12 − α2 = 0. (1.17)

The vector (e1, e2) ∈ homP (H)× homP (H) is an analogue of the Laplace-

Runge-Lenz vector in the Kepler problem [43] because the basis {L12, e1, e2}
generates the Poisson algebra

[L12, e1] = −e2 [L12, e2] = e1 [e1, e2] = 4(H − 2L2
12)L12 + L12 (1.18)

For convenience we make a GL3C change of basis and define raising and

lowering operators

e+ = e1 − ie2 e− = e1 + ie2, (1.19)

where we also define e0 = L12 and {e0, e+, e−} is understood to be a subset

of homP (H).

We now show that this choice of basis permits us to solve the eigenvalue

problem in a manner analogous to the highest weight method in SU2. Not-

ing that a vanishing commutator between some fi and H implies fi is an

endomorphism on P (H)E ≡ {[|ψ〉] ∈ P (H) : H|ψ〉 = E|ψ〉, E ∈ R} and

making the assumption that dimP (H)E < ∞ we give the Poisson algebra

8Here, quantum conservation means the expectation value of the operator is conserved.
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and operators actions on PH)E :

[e0, e±] = ±e±, [e+, e−] = 8He0 + 16e30 + 2e0 (1.20)

e0|ψ〉 = λ|ψ〉, e0e±|ψ〉 = (e±e0 ± e±)|ψ〉 = (λ± 1)e±|ψ〉. (1.21)

The Casimir relation is now expressed as

e+e− = α2 + (4He0 + 8e30 + e0)− (4e40 + 4He20 +H + 5e20) (1.22)

or

e−e+ = α2 − (4He0 + 8e30 + e0)− (4e40 + 4He20 +H + 5e20). (1.23)

By our assumption of finite-dimensionality, we have

e0e
n±+1
± |ψ〉 (1.24)

for some n± ∈ N. It follows that dimP (H)E = n+ + n−.

We label the states by their weights. Taking [|ψ〉] as an arbitrary (nonzero

by the projectivization of the Hilbert space) element of P (H)E we define

the highest weight state by |0〉 = e
n+
+ |ψ〉 and more generally for k ∈ N we

define the state

|k〉 = ek−|0〉. (1.25)

Making use of the commutation relations for k ∈ {0, ..., n+ + n−} ⊂ N

e0e
k
−|0〉 = e0|k〉 = (λ+ n+ − k)|k〉 (1.26)

and recalling the Casimir relations (1.22-1.23) and applying them to the

vectors |0〉, |n+ + n−〉 ∈ P (H)E we obtain a system of equations

e+|0〉 =[−(4E + 1)(λ+ n+)− 8(λ+ n+)3 − 4(λ+ n+)4 (1.27)

− (4E + 5)(λ+ n+)2 − E + α2]|0〉 = 0

e−|n+ + n−〉 =[4(E + 1)(λ− n−) + 8(λ− n−)3 − 4(λ− n−)4 (1.28)

− (4E + 5)(λ− n−)2 − E + α2]|n+ + n−〉 = 0.
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The first equation gives the spectrum

E = −1

4
[2(λ+ n+) + 1]2 +

1

4
+

α2

[2(λ+ n+) + 1]2
(1.29)

which, upon substitution into (1.28), admits two solutions:

λ+n+ =
n+ + n−

2
, λ+n+ =

n+ + n− +
√

(n+ + n− + 1)2 + 2iα

2
. (1.30)

Making the defintion n ≡ n+ + n−, we write down two the two spectra of

our system, corresponding to distinct eigenspaces P (H)E1
n

and P (H)E2
n
.9

E1
n =− 1

4
(n+ 1)2 +

1

4
+

α2

(n+ 1)2
(1.31)

E2
n =− 1

4

(
n+

√
(n+ 1)2 + 2iα

)2
+

1

4
+

α2(
n+

√
(n+ 1)2 + 2iα

)2 (1.32)

Let us focus on the second result. If we choose α ∈ C\R ∪ {0} we still

obtain a real spectrum. Evidently our restriction of α to R was too re-

strictive. Note that in this event, H is no longer Hermitian. However, it

is PT symmetric. These discrete reflection operators, which will occupy

central importance throughout this thesis, act on P (H) (and homP (H) in

the adjoint representation) as

P : qi → −qi pi → −pi (1.33)

T : qi → qi pi → −pi i→ −i. (1.34)

1.3. Features of PT quantum mechanics in a

two-level system

In the previous section we have demonstrated by explicit example that the

usual Hermiticity requirement is not a necessary condition for the reality

of an eigenvalue spectrum. There is much more to PT quantum mechanics

than a modification of the Hermiticity condition!

First we note some elementary properties of P and T . P is a unitary

9Which spectrum is obtained depends on the boundary conditions of the problem, now
on the complex two sphere S2(C). This space has a distinct topology from S2(R).
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operator, while T is an antiunitary operator10 satsifying

P2 = 1, T 2 = 1, [P, T ] = 0. (1.35)

Momentarily ignoring the antilinearity of T , we give an incorrect (but illumi-

nating) ‘proof’ of the reality of the eigenvalue spectrum of a PT -symmetric

Hamiltonian.

Let [|ψ〉] ∈ HP and consider the eigenvalue problem PT |ψ〉 = λ|ψ〉. Left-

multiplying this equation by PT and using (1.35) we obtain |ψ〉 = |λ|2|ψ〉
by the complex conjugation inherent in PT . Thus specPT = {eiθ : θ ∈
R} = S1. The assumption [PT , H] = 0 applied to the eigenvalue problem

H|ψ〉 = E|ψ〉 yields

PT H|ψ〉 = PT |Eψ〉 (1.36)

HPT |ψ〉 = E∗PT |ψ〉

so specH ⊂ R. The flaw in this argument lies in the assumption that

[PT , H] implies simultaneous diagonalizability because T , and thusly PT ,

is an antilinear operator. We must relegate simultaneous diagnolizability

to an assumption.

Definition 1. A quantum system defined by a PT symmetric Hamiltonian

H is said to be in a PT -unbroken state if PT |ψ〉 = |ψ〉 holds for [|ψ〉] ∈
P (H)E. This, by the above ‘proof,’ guarantees the reality of the eigenvalue

spectrum.

Some natural questions arise. What are the properties of the PT -broken

region and how does it relate to the unbroken regime? In short, the unbroken

and broken regions are separated by a phase boundary in parameter space.

In the broken regime, complex-conjugate pairs of eigenvalues replace the

real spectrum in the unbroken region. This is best illustrated by a simple

(but nontrivial) matrix model. We will discuss the general theory of phase

transitions and a physical interpretation of this system in the subsequent

chapter.

Let us take the Hlibert space to be the Riemann sphere CP ≡ C ∪ ∞

10Wigner showed that the use of unitary and antiunitary operators is the most general
way to implement symmetries on a Hilbert space.
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and work with a Hamiltonian in GL2C. On this space11 P has a matrix

representation

P =

(
0 1

1 0

)
(1.37)

and T is simply complex conjugation. The Hamiltonian

H =

(
λeiφ g

g λe−iφ

)
(1.38)

with φ, g, λ ∈ R fails to be Hermitian (invariant under simultaneous trans-

position and complex conjugation) unless φ = 0 or φ = π, but it does

commute with PT . Evaluating the the secular determinant det(H − I2E),

and solving the resulting quadratic equation, we find that the eigenvalues

are given by

E± = λ cos θ ±
√
g2 − λ2 sin2 φ (1.39)

and the evident reality condition by

g2 ≥ λ2 sin2 φ. (1.40)

When the equality holds, this equation defines a phase boundary in g − λ
parameter space, separating the unbroken and broken PT regions.

Let us consider the eigenvectors of the system12

|±〉 =

 1

−iλg sinφ±
√

1− λ2

g2
sin2 φ

 =

(
1

±e∓iα

)
(1.41)

which, upon multiplication by inessential overall phases and normalization,

become

|±〉 =
1√

2 cosα

(
e±i

α
2

±e∓i
α
2

)
(1.42)

11See appendix for details.
12We have made the definition sinα ≡ λ

g
sinφ.
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With this result we compute13

〈+|−〉 = −i tanα (1.44)

so that the eigenvectors are not orthogonal unless α = 0 or α = π; in these

cases the Hamiltonian is actually Hermitian. This is an indication that our

theory is not yet axiomatically sound. Let us briefly review the ramifica-

tions of Hermiticity and how it leads to a a physically and mathematically

consistent theory.

We showed above that a Hermitian Hamiltonian has a real spectrum. It

also generates unitary dynamics because H = H† implies [H,H†] = 0 so

that

eiHe−iH
†

= 1. (1.45)

Furthermore, when a sesquilinear form is Hermitian, it is an inner product,

giving rise to the probabilistic interpretation of quantum mechanics. This,

combined with unitary time-evolution, guarantees conservation of probabil-

ity:

〈ψ|U †U |ϕ〉 = 〈ψ|ϕ〉. (1.46)

In order to construct a physical theory, we will need to both introduce

a new inner product on P (H) and implement unitary dynamics on this

space. These constructions will be treated completely in the third chapter.

Presently we simply demonstrate their existence.

First we define a linear operator C by summing over outer products of

energy eigenstates

C ≡
∑
P (H)E

ψψT

‖ψ‖2
(1.47)

and use it to define a new inner product

〈ψ|ϕ〉CPT ≡
(CPT |ψ〉)T |ϕ〉
‖ψ‖‖ϕ‖

(1.48)

13Because we have projectivized C2, we need to generalize the standard Hermitian inner
product on that space so it is independent of choice of representative:

〈φ|ϕ〉 =
φ†ϕ

‖φ‖‖ϕ‖ . (1.43)
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Using (1.42), we find, for our two-level system

C =

(
i tanα secα

secα −i tanα

)
. (1.49)

A short computation shows

CPT |ψ〉 =

(
ψ∗1 secα+ iψ∗2 tanα

ψ∗2 secα− iψ∗1 tanα

)
(1.50)

and we finally obtain

〈±|±〉CPT = 1, 〈+|−〉CPT = 0. (1.51)

A further short computation verifies [CPT , H] = 0, so 〈ψ|ϕ〉CPT is time

independent and the dynamics are unitary.

1.4. Experimental realizations

In the previous section we have demonstrated by example that dropping the

Dirac hermiticity requirement in favor of the weaker condition of PT sym-

metry can lead to a mathematically satisfactory theory. We are immediately

led to ask whether such Hamiltonians are physically realizable. Here we de-

tail some of the recent work on this subject, focusing on two experiments in

particular that inspired us to perform the experiment detailed in the next

chapter. The first experimental observation of PT symmetry breaking was

published by researchers in 2010 [14]. The equivalence of the paraxial equa-

tion of diffraction and the Schrödinger equation of quantum mechanics is

employed to obtain an physical system described by a Hamiltonian with a

complex potential term (E is the electric-field envelope, z is the coordinate

along the axis of propagation, and x is the transverse coordinate):

i
∂E

∂z
+
∂2E

∂x2
+ [nR(x) + inI(x)]E = 0, (1.52)

where we have omitted some constants. The real and imaginary components

of the optical potential, nR and nI are even and odd with respect to P
(x→ −x), respectively. This renders the system PT -symmetric.

If two parallel optical waveguides interact with a coupling constant κ and
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experience equal and opposite loss and gain with strength γ, this gives rise

to the equations

i
dE1

dz
− i

γ

2
E1 + κE2 = 0 i

dE2

dz
− i

γ

2
E2 + κE1 = 0 (1.53)

for the electric-field envelopes E1 and E2. Under P (z → −z) and T ,

the equations are invariant. By finding the eigenvalues like we did in the

previous section, the phase transition is shown to occur at γ
2κ = 1.

An experimental realization of the above equations (1.53) was created us-

ing Fe-doped LiNbO3 with two channels. A real, symmetric index profile is

provided by in-diffusion Ti14, the loss is provided by ‘two-wave mixing using

the material’s photorefractive nonlinearity,’ and gain by optical pumping.

In the PT broke regime, this system exhibits some fascinating features such

as adjustable transverse energy flow and non-reciprocal beam propagation.

In the unbroken regime, power oscillations between channels (in the inten-

sity profile) of the beam will be observed irrespective of into which channel

the beam was input. However, in the broken regime, regardless of which

channel receives the incident beam, the intensity profile in the channel with

loss will vanish and the intensity profile of the channel with gain will remain

constant—no power oscillations occur.

A similar classical system has been constructed in 2011 by Schindler, et.

al. [6]. Here, two standard LRC ciricuits are coupled by their inductors and

subjected to equal and opposite loss and gain. Loss is provided by a resistor

and gain is provided by an amplifier-resistor feedback loop. The equations

for the time-dependent charges Qi on the capacitors are written in terms of

Qi and associated canonical momenta. Using an exponential substitutions,

the eigenvalues and consequently the phase boundary are calculated and

then observed in experiment. In this thesis we make use of formal similarities

between classical electrodynamical and classical mechanical systems and

conduct an experiment in which nearly identical phenomena can be observed

in a pair of alternately damped and driven coupled isotropic pendula.

14Because this experiment concerns the dynamics of a pair of waveguides, we want the
profile to be P-symmetric and not T symmetric so that the whole system is PT -
symmetric.
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2. PT -symmetric classical

mechanics: an experiment and

discussion of generalized

dynamics on Riemann surfaces

While PT symmetry (as a field of research) was originally realized in quan-

tum theory [5], there exist very simple (as evidenced by the experiments

descibed in the previous chapter) classical analogues. Quantisation pro-

cedures allow us to identify non-Hermitian quantum systems with more

classical analogues on Riemann surfaces.

In this chapter we will begin by describing an elementary experiment

that demonstrates the classical parametric phase transition between states

of unbroken and broken PT symmetry. This is done to provide an intuitive

explanation of the principles of PT symmetry and make contact with the

matrix models that we consider in this thesis.

In this classical regime, Hamilton’s equations ensure that Hamiltonians

with complex potentials will give rise to trajectories that venture into the

complex domain. Thus, the configuration (or base) space for a one dimen-

sional system is a Riemann surface. We will detail this constructions and

consider some specific Hamiltonians.

2.1. PT phase transition in a simple mechanical

system

The presence of complex eigenvalues in a quantum mechanical system is

an indication that the system is thermodynamically open. Let us see why

this is by considering a system consisting of a source and sink of equal and

opposite powers, positioned equidistant from the origin. A schematic for the
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system is detailed in Fig. 2.1. It should be noted that an experiment [19]

involving two coupled microwave cavities provides a nice physical realization

of this schematic.

Figure 2.1.: A schematic for a PT symmetric system. A sink and sink are
located at equal distances of a from the origin. The system is
odd with respect to parity P because it physically interchanges
the individual subsystems and odd with respect to time reversal
T as it turns the sink into a source and the source into a sink.
Therefore the system is even with respect to PT .

2.1.1. Theoretical model

The Hamiltonian for the system in Fig. 2.1 is given by (1.38) with g set to

zero—we are in the broken regime. This leads to the eigenvectors1

|ψL〉0 =

(
1

0

)
|ψR〉0 =

(
0

1

)
. (2.1)

The time dependent Schrödinger equation has solution |ψ〉t = e−iHt|ψ〉0,
leading to the time-dependent eigenvectors

|ψL〉t = e−iELt

(
1

0

)
|ψR〉t = e−iERt

(
0

1

)
. (2.2)

We see that the energies EL, ER must be a complex conjugate pair to gen-

erate the equal exponential decay and growth expected in the left and right

systems, respectively. The above time-dependent eigenvectors of the Hamil-

tonian are not simultaneous eigenvectors of PT and the system is not in

equilibrium. If we take g to be a sufficiently large real number, we can put

1The notation |±〉 for the eigenvectors is no longer appropriate and potentially confusing.
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the system into the unbroken, equilibrium regime.

This system can be realized experimentally by a classical analogue. Here

we consider two coupled oscillators: one with a energy source and the other

with an energy sink. We have accomplished this by coupling two pendula

with a string and using magnets to provide impulses to the pendula. Our

experimental setup is detailed in Fig. 2.2.

Figure 2.2.: A picture of our experimental setup. Two metal ‘bobs’ are sus-
pended from a loosely hanging string that provides a weak, ad-
justable coupling. At the top of each suspended string is a small
metallic washer that interacts with the mounted magnets. In
particular, the mounted light gates will cause cause the magnet
on the left to fire and provide an impulse when the pendulum
is swinging away from the magnet (loss) and the magnet on the
right fires when the pendulum is swinging towards it (gain).

This system is open; to obtain the equations of motion we will need to

work from a basic oscillator Hamiltonian and implement the loss-gain mech-

anism into the resulting equations of motion. This Hamiltonian describing

two isotropic coupled oscillators is given as

H =
1

2
p21 +

1

2
p22 +

1

2
ω
(
q21 + q22

)
+ gq1q2. (2.3)

Because we are interested in qualitative agreement of our model with the
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complicated dynamics of the system illustrated in Fig. 2.2, we wil work in

units with ω set to unity to reduce the dimension of the parameter space.

Then we obtain the equations of motion

q̇i = pi, ṗi = −qi − gPijqj . (2.4)

Now we implement the loss-gain mechanism by adding a term to the equa-

tions of motion

q̇i = pi, ṗi = −qi − gPijqj − λεijpj , (2.5)

which are recast in matrix form as

Ψ̇ = LΨ (2.6)

with

Ψ = (q1, q2, p1, p2)
T (2.7)

and

L =


0 0 1 0

0 0 0 1

−1 −g −λ 0

−g −1 0 λ

 . (2.8)

By evaulating the secular determinant and setting the resulting quadratic

form (in the square of the eigenvalue) to zero, we can determine the phase

boundary between the unbroken and broken PT regimes.

det (L− EI4) = E4 + (2− λ2)E2 + 1− g2 = 0 (2.9)

E2 =
1

2

(
λ2 − 2±

√
λ4 − 4λ2 + 4g2

)
. (2.10)

Two conditions must be satisfied to ensure the system is in the unbroken

regime E2 < 0.

λ4 − 4λ2 + 4g2 > 0, (2.11)

λ2 − 2 +
√
λ4 − 4λ2 + 4g2 < 0. (2.12)
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Figure 2.3.: Numerical solution of the equations of motion (2.5) with λ = 0
and g = 0.075 and the initial conditions q1(0) = 1, q2(0) =
p1(0) = p2(0) = 0. The initial conditions cause the systems to
be completely out of phase. In addition to the primary oscil-
lations, there are secondary Rabi power oscillations due to the
coupling g.

These conditions are combined to give

λ < 2
(

1−
√

1− g2
)
. (2.13)
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Figure 2.4.: Numerical solution of the equations of motion (2.5) with λ =
g = 0.075 and the initial conditions q1(0) = 1, q2(0) = p1(0) =
p2(0) = 0. We are in the broken regime, and the Rabi oscil-
lations have vanished. This models ceases to be valid after a
cutoff time tc ≈ 25. This is because the equations of motion
fail to conserve energy.

2.1.2. Numerical models

We have implemented the equations of motion numerically using a fourth-

order Runge-Kutta scheme2 and have made use of (2.13) when searching the

parameter space. When λ = 0, we simply have a system of coupled isotropic

2This scheme is detailed in the appendix.
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Figure 2.5.: An energy-time plot showing the unbounded growth of the
energy for the system governed governed by (2.5) when the
paramters λ = g = 0.075 and initial conditions q1(0) = 1,
q2(0) = p1(0) = p2(0) = 0 are used.

harmonic oscillators as in Fig. 2.3. If the initial conditions are specified so

the two subsystems are completely (π2 ) out of phase, the parameter space of

the system is reduced to a one-dimensional subset of the unbroken regime

(R+∪{0})×(R+∪{0}) 3 (g, λ). The motion of the system is characterized by

the frequencies of the primary oscillations and secondary (Rabi) oscillations

[48].

As we increase g from zero, the frequency of the Rabi oscillations increases

until ωRabi = ω, at which point the broken PT region is attained. In this

region our model will not conserve energy and both oscillators will grow out

of bound after a cutoff time tc. This is expected because the equations of

motion do not follow from a Hamiltonian. As one oscillator is allowed to

grow out of bounds, the energy it attains will leak into the paired oscillator.

The result is that both oscillators grow out of bound and energy is not

conserved as in Fig. 2.4.

A new model is required to describe our system—we will use a set of

energy-conserving differential-difference equations. In this new model the

results presented in Fig. 2.3 are preserved. We remove the terms in λ in

(2.5) and begin with (2.4). At each maximum of q1, we multiply the energy
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Figure 2.6.: Numerical solution of the equations of motion using the
differential-difference equations that conserve energy. We have
ωRabi > ω so that the broken region is attained and no sec-
ondary oscillations are observed. Here the parameters are
r = 0.7 and g = 0.01 and the initial conditions are q1(0) = 1,
q2(0) = p1(0) = p2(0) = 0.

E1 by a fixed number r ∈ [0, 1], decrease the amplitude to compensate for

the loss in energy, and reinitialize the simulation. At the subseqent maxi-

mum of q2, we increase the energy E2 by (1− r)E1, increase the ampltitude

correspondingly, and reinitialize the simulation. This gives a manifestly

energy-conserving result for the broken regime, presented in Fig. 2.6. Our

new numerical approach will conserve energy even for r 6= 1; we find in-
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Figure 2.7.: Numerical solution of the equations of motion using the
differential-difference equations that conserve energy. We have
ωRabi < ω so we remain in the unbroken region but the Rabi
oscillations do not go to zero (compare with Fig. 2.6). Here the
parameters are r = 0.97 and g = 0.05 and the initial conditions
are q1(0) = q2(0) = p1(0) = p2(0) = 1.

teresting results in this unbroken region of the parameter space where the

energy is not fully transferred between the subsystems. A graph of these

results is presented in Fig. 2.7.
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Figure 2.8.: Experimental results from the unbroken region. No current is
supplied to the magnets and the tension in the suspended string
is 200g. We observe Rabi oscillations in qualitative agreement
with the results in Fig. 2.3. Due to friction in system, a slight
decay in the amplitudes is observed as time progresses.

2.1.3. Experimental details

We have already presented a picture of our experimental setup in Fig.2.2.

Here we provide some of the technical details needed to understand the ex-

perimental results and their relation to the numerical results in the previous

section.

The system consists of two 50g metallic bobs suspended from a string
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Figure 2.9.: Experimental results from an intermediate-unbroken region
where the secondary Rabi oscillations do not go to zero. A
current of approximately 6A is supplied to the electromagnets
and the tension in the suspended string is 400g. The results are
in qualitative agreement with the energy-conserving numerical
model in Fig. 2.7.

of 39cm stretched between a pole and a wheel. The string is hung over

the wheel and attached to a mass so that the tension (and consequently

the coupling) of the system is adjustable. A lower tension corresponds

to a stronger coupling. A pair of light gates are used in conjuction with

ENABLE circuits to determine the direction that each pendulum swings.

A larger circuit containing the ENABLE circuits directs a pair of magnets
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Figure 2.10.: Experimental results from the broken region. The current in
the magnets is approximately 13A and the tension in the string
is 600g. Rabi oscillations have been overcome by the electro-
magnet strength and we observe qualitative agreement with
Fig. 2.6.

to fire—on the left, the magnet fires when the pendulum is swinging away

so as to subtract energy; on the right, the magnet fires when the pendulum

is swinging inwards to provide energy.

In the small angle approximation our systems should have good agree-

ment with the improved, energy-conserving numerical model described in

the previous section. We are able to record the motion of experiment using

a video camera and motion-tracking software [50].
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The first data is from the unbroken regime. We fix a mass of 200g to

the suspended string and turn the magnets off. The results are presented

in Fig. 2.8. We change the position in parameter space by increasing the

tension to 400g and supplying a small current (∼6A) to the electromagnets.

We remain in the unbroken regime, as illustrated in Fig. 2.9. Lastly, we

increase both the current and the tension to ∼13A and 600g, respectively.

This brings us into the broken regime, illustrated in Fig. 2.10.

The simple experiment we have described illustrates some of the general

features of PT -symmetric system, found in both experiment and theory

and classical and quantum mechanical models. We next detail some of the

classical mechanical theory.

2.2. Classical mechanics on Riemann surfaces

In the previous section we constructed theoretical and experimental mod-

els for a thermodynamically open, classical PT -symmetric system. The

analysis was possible in real variables. Now we will consider a class of

Hamiltonian systems with complex potentials whose base space is generally

a multi-sheeted Riemann surface.

2.2.1. Definitions and complex-analytic features

Definition 2. A Riemann surface is a one dimensional complex manifold:

a Hausdorff topological space M covered by sets Ui ⊆ M , i ∈ I ⊆ Z+ such

that each set is associated with a homeomorphism φi : M → C to open sets

of C (with respect to the metric topology) satisfying φij ≡ φi ◦ φ−1j ∈ Cω on

each Ui ∩ Uj 6= ∅.

A general PT symmetric Hamiltonian on a base space of one complex

dimension is written as

H = p2 + V (q), (2.14)

where V ∈ Cω(X,C) satisfies V ∗(−q) = V (q). This relation is satisfed by

the class of Hamiltonians

H = p2 + q2(iq)ε (2.15)
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with ε ∈ R\R−. Hamilton’s equations take the form

dq

dt
=
∂H

∂p
= 2p (2.16)

dp

dt
=− ∂H

∂q
= i(2 + ε)(iq)1+ε. (2.17)

Solving for p in (2.15) and inserting the result into (2.16), we obtain a

first-order equation in a single variable q:

dq

dt
= ±2

√
H − q2(iq)ε (2.18)

where we now interpret H as a real number. Under an appropriate scaling

of the variables3, this equation reduces to

dq

dt
= ±

√
1− q2(iq)ε. (2.19)

This function is associated with a multi-sheeted Riemann surface. The

structure of this surface is determined by the branch cuts. Evidently there

is a branch point at each solution to the equation

1− q2(iq)ε = 0. (2.20)

Using the polar representation for complex variables, we observe that

|q| = 1 and arg q =
{

0, 2π
2+ε , ...,

2π(1+ε)
2+ε

}
. These are the classical turning

points of the motion. There is an additional branch point at the origin

when ε /∈ Z. By defining the branch cuts to join the PT symmetric branch

points and letting the branch cut at4 π
2 extend to i∞, we ensure that the

trajectories are localized to the principal sheet of the Riemann surface. In

the event of a nonintegral ε, we define the branch cut at the origin to extend

to i∞.

We will now consider the cases of ε = 0 and ε = 1. The first case is simply

the harmonic oscillator and allows us to make contact with a well-known

real classical mechanical system. The latter case is the classical analogue of

the important quantum mechanical, PT -symmetric ix3 model.

3For example, q2(iq)ε → Hq2(iq)ε, t→ 2
√
Ht.

4This occurs only when ε is odd.
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2.2.2. Generalized harmonic oscillator

If we take ε = 0 in (2.15), we have the familiar Hamilton equations for the

harmonic oscillator. Here we treat the harmonic oscillator at an increased

level of abstraction by allowing the initial position q(0) to lie in a classically

forbidden region (beyond the turning points ±1 or in the complex plane).

Even with this loosened restriction, the solution to Hamilton’s equation take

the familiar form

q(t) = cos[arccos q(0)± t] (2.21)

p(t) =∓ sin[arccos q(0)± t] (2.22)

and the trajectories γ(t) = (q, p)(t) foliate the phase space C×C. In par-

ticular, the solutions (2.22) separately foliate the position and momentum

spaces C as ellipses.

Riemann surface issues are avoided by taking the only branch cut (see

above discussion) to lie between the classical turning points [3]. The trajec-

tories, being elliptical, are clearly left-right symmetric in the complex plane,

and thus PT symmetric.

2.2.3. Classical ix3 model

Let us first note a peculiar feature of this model without solving any differ-

ential equations. We apply the Hamiltonian

H = p2 + iq3 (2.23)

to this system diagrammatically presented in Fig. 2.1. Let the left and right

boxes extend along the negative real and postive real axis, respectively, with

the source/sink strength parametrized by q3. This physical description is

PT -symmetric and compatible with the above Hamiltonian. The the time

required for a test particle to move between positive and negative infinity

in this model is given by

∆t =

∫
R

dq

p
=

∫
R

dq√
H − iq3

. (2.24)
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This integral is convergent, so the system is in equilibrium and unbroken-

PT -symmetric. In fact, the obvious generalization of the integral (2.24)∫
R

dq√
H − q2(iq)ε

(2.25)

is convergent for ε ≥ 0, in agreement with the observations of Bender et. al.

[3] and the proof by Dorey et. al. [20].

Let us return to the dynamics of this model. Now there are three turn-

ing points, the period of the orbits is a complicated expression involving

gamma functions (as opposed to simply 2π for the elliptical trajectories on

the harmonic oscillator), and the trajectories resemble cardioids [3]. For the

purpose of our discussion, the most important new feature in this model is

the existence of non-periodic motion. A test particle starting at the quali-

tatively new turning point on the imaginary q-axis travels up the associated

branch cut to i∞ (in finite time! [3]), rendering the trajectory non-reversible

and not T symmetric. Note that it remains PT -symmetric. This is an ex-

ample of T symmetry breaking without necessary PT symmetry breaking.

2.3. Symplectic formulation of mechanics on

complex manifolds

A naive approach to formal classical mechanics on a complex manifold M

is to construct the canonical cotangent bundle T ∗M and equip it with the

standard symplectic structure. Following Mostafazadeh [9], we show that

this approach fails to produce the classical canonical commutation relations

{q,H} =
dq

dt
=
∂H

∂p
(2.26)

{p,H} =
dq

dt
= −∂H

∂q
(2.27)

and that a new symplectic form is required.

Definition 3. A symplectic structure on a manifold M is a closed, non-

degenerate, globally-defined two-form ω ∈ Ω2M . Equivalently, a symplectic

matrix is an antisymmetric element of the general linear group.

Let f, g ∈ Cω(T ∗M ;C). The Poisson bracket is defined in terms of the
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symplectic form by5

{f, g} ≡ ιXf ιXgω (2.30)

We define a multiplet as in (2.6) by

ξ = (q1, ..., qn, p1, ..., pn) (2.31)

so that the Poisson bracket may be expressed as

{f, g} = ωij∂ξif∂ξjg. (2.32)

The standard symplectic form on a manifold locally homeomorphic to6

R2n takes the form

ωij =

(
0 1n

−1n 0

)
. (2.33)

In our problem we work with coordinates ξi = Re ξi+i Im ξi and so that the

corresponding differential operators are expressed as

∂ξi =
1

2
(∂Re q + i∂Im qi) (2.34)

∂ξ∗i =
1

2
(∂Re ξi − i∂Im ξi) . (2.35)

Using the standard symplectic form (2.33) and the above identities, we write

the Poisson bracket as

{f, g} = 2
n∑
i=1

(
∂ξ∗i f∂ξi+ng + ∂ξif∂ξ∗i+ng − ∂ξ∗i+nf∂ξig − ∂ξi+nf∂ξ∗i g

)
.

(2.36)

Extending (2.14) to a configuration space of complex dimension n we

5The interior product is defined by

ιX :Ωp → Ωp−1 (2.28)

ω 7→ 1

p!

p∑
s=1

(−)s−1Xisωi1...is...ipdqi1 ∧ ... ∧ ˆdqis ∧ ... ∧ dqip (2.29)

where the ˆ denotes omission.
6The real dimension of the manifold is n and the real dimension of the fibre bundle is

2n. The real dimensionality of these structures doubles when we allow our canonical
coordinates to become complex.
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obtain the Hamiltonian

H =
n∑
i=1

p2i + V (q1, ..., qn) (2.37)

where V is a holomorphic7 function of the n complex variables qi. Taking

this as our Hamiltonian in (2.36), we compute

q̇i ={qi, H} = 0 (2.38)

ṗi ={pi, H} = 0. (2.39)

The standard symplectic form evidently fails to reproduce (2.26-2.27) and

give the correct dynamics for our system. We will construct a new sym-

plectic form by beginning with the relations (2.26-2.27) and postulating

additional needed relations, by means of the reality condition

{f, g}∗ = {f∗, g∗}. (2.40)

In particular, we require

{qi, pj} =δij (2.41)

{qi, q∗j } =iαδij (2.42)

{pi, p∗j} =iβδij (2.43)

{qi, p∗j} =γδij (2.44)

with α, β ∈ R, γ ∈ C. With respect to the multiplet (qi, q
∗
i , pi, p

∗
i ), the

symplectic matrix ωij takes the form

ωij =


0 −iα −1 −γ
iα 0 −γ∗ −1

1 γ∗ 0 −iβ

γ 1 iβ 0

 . (2.45)

7A holomorphic function of several complex variables is locally L2 and satisfies the
Cauchy-Riemann equations.
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We define g ∈ GL4C by

gij =
1

2


1 1 0 0

i −i 0 0

0 0 1 1

0 0 i −i

 . (2.46)

so that

g : (qi, q
∗
i , pi, p

∗
i )
T 7→ (Im qi,Re qi,Re pi, Im pi)

T . (2.47)

We conjugate ω in (2.45) by g to obtain the most general symplectic form

for complexified dynamics in canonical coordinates.

(
gωg−1

)
ij

=
1

2


0 −α −1− Re γ i Im γ

α 0 i Im γ −1 + Re γ

1 + Re γ −i Im γ 0 −β
−i Im γ 1− Re γ β 0

 . (2.48)

This matrix is clearly still symplectic. It is obviously antisymmetric, and

a change of basis (similarity transformation) preserves the nonzero deter-

minant of (2.45). Note that no choice of parameters can bring this matrix

the form (2.33).
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3. PT -symmetric quantum

mechanics and generalizations

In the previous section we demonstrated that the standard symplectic form

for mechanics on a real manifold needed to be modified. Here we discuss

the geometry of the Hilbert space structures in both standard, Hermitian

quantum mechanics and generalized, PT -symmetric quantum mechanics.

We first discuss the appropriate formulation on finite-dimensional Hilbert

spaces, following Bender et. al. [2], before generalizing to the infinite-

dimensional spaces typically encountered in quantum mechanics. Finally

we introduce some important models in this regime and consider some gen-

eralizations of PT -symmetry such as pseudo-Hermiticity.

3.1. Geometrical constructions on

finite-dimensional Hilbert spaces

We use a formulation of quantum mechanics often used in attempts to quan-

tize gravity. The underlying symplectic and differential geometry is made

manifest in this form. Moreover, we can see a clear disinction between Her-

mitian and PT -symmetric quantum mechanics: the Hermitian theory can

be posed on an real Hilbert space using appropriate geometrical objects,

while the latter, generalized theory requires the complex field.

3.1.1. Hermitian, real quantum mechanics

For an ordinary, Hermitian system we equip the (real, projectivized) Hilbert

space with a triple

(g, ω, J) ∈ T 0
2 H× T 0

2 H× T 1
1 H (3.1)
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where g is a postive-definite metric, ω is a symplectic form, and J is an

almost complex structure.

Definition 4. An almost complex structure on a Hilbert space H is a real,

globally defined tensor satisfying

JacJ
c
b = −δab . (3.2)

The triple (3.1) is required to satisfy the compatibility conditions.

JacgabJ
b
d = gcd (3.3)

ωab = gacJ
c
b. (3.4)

With these compatible structures, the inner Hermitian product takes the

form

〈ψ|ϕ〉g ≡
1

2‖ψ‖g‖ϕ‖g
(gab − iωab)ψ

aϕb. (3.5)

It is easiest to study the adjointness properties of operators if we write (3.5)

in terms of projection operators onto positive and negative J subspaces of

H:

〈ψ|ϕ〉g =
1

‖ψ‖g‖ϕ‖g
gab(P+J)acψ

c(P−J)bdϕ
d (3.6)

where

(P±J)ab =
1

2
(δab ± iJab). (3.7)

Note that complex numbers come into the picture in the definition of the

inner product and for convenience when introducing the above projection

operators. The theory is well-defined on just the underlying real Hilbert

space!

Using the representation of the inner product (3.6), we observe that an

operator Ωa
b is self-adjoint (Hermitian) if and only if Ωab = gacΩ

c
b is sym-

metric and J-invariant:

〈ψ|Ω|ϕ〉 =
1

‖ψ‖g‖ϕ‖g
Ωab(P+J)acψ

c(P−J)bdϕ
d (3.8)

=
1

‖ψ‖g‖ϕ‖g
gacF

c
b(P+J)acψ

c(P−J)bdϕ
d (3.9)

=
1

‖ψ‖g‖ϕ‖g
gabF

a
c(P+J)acψ

c(P−J)bdϕ
d. (3.10)
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3.1.2. PT -symmetric reformulation

The geometry required to describe a non-Hermitian, but PT -symmetric

system is much more elaborate. In particular, the Hamiltonian becomes an

intrinsic part of the structure, determining compatibility conditions for the

structure (3.1) and two additional tensors (π and c) we will find necessary

to add. We first give a formal definition before explicating the purpose of

the new tensors and compatibility conditions. We require a 6-tuple

(g, ω, J, π, c,H) ∈
(
T 0
2 (H⊗ C)

)2 × (T 1
1 (H⊗ C)

)4
(3.11)

on a complexified Hilbert space. Here π is the parity operator (a represen-

tation of P, c is a representation of the C operator mentioned in the first

chapter, and H is a PT -symmetric Hamiltonian.

π is an symmetry operator in the Hermitian formulation, according to

the discussion above. Here it takes a more prominent role and will replace

g for many purposes. This is reflected in the compatibility conditions

πacπ
cb =δab (3.12)

JacgabJ
b
d =gcd (3.13)

ωab =πacJ
c
b (3.14)

A naive replacement of g with π leads to inconsistency. In particular, the

inner product

〈ψ|ϕ〉π ≡
1

2‖ψ‖π‖ϕ‖π
(πab − iωab)ψ

aϕb (3.15)

is associated with a pseudo-norm; πab is not a positive-definite quadratic

form. We can remove the indefiniteness by introducing the C operator. To

do this we need to first consider a Hamiltonian—with which the C opera-

tor must be compatible. While self-adjoint operators with respect to (3.5)

were derived from symmetric elements of the tensor space T 0
2 , self-adjoint

operators with respect to (3.15) are derived from Hermitian elements of the

space T 0
2 (H ⊗ C). The relaxation of the self-adjointness condition as de-

scribed above in terms of real symmetric (0, 2) tensors necessitates that we

allow complex operators and thus unlderlying complex vectors. Self-adjoint

operators now satisfy :

Ωa
b = πacΩbc (3.16)
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where

Ωab = Ω̄ba. (3.17)

This is verified by a calculation identical to (3.8-3.10) and equivalent to the

condition

πadΩ̄
a
bπ
bc = Ωc

d (3.18)

which we recognize as PT symmetry. Let us work with a Hamiltonian

satisfying (3.18). The eigenvalue equation reads

Ha
bψ

b = Eψa (3.19)

and defines a subspace {ψ} ⊂ H ⊗ C. This subspace may itself be decom-

posed into two subspaces—one with real eigenvalues (unbroken regime), and

one with complex conjugate pairs of eigenvalues (broken regime). A neces-

sary and sufficient condition for an energy eigenstate to have a real energy

eigenvalue is for it to be an eigenstate of the PT operator

πabψ̄
b = λψa. (3.20)

We showed in the introduction that λ is a phase. If (3.20) and (3.19) hold,

we use the PT -symmetry condition on the Hamiltonian (3.18) to write

πacH̄
c
dπ

d
bψ

b = Eψa. (3.21)

Complex-conjugating (3.21) and multiplying by πea to obtain a Kronecker

delta, then substituting (3.20), we obtain

Ha
bψ

b = Ēψa (3.22)

which, along with (3.19), guarantees that E is real.

We now consider the PT norms of these states. Using (3.20), we have

‖ψ‖2π =
1

2
πabψ

aψ̄b =
1

2
gabψ

aψb (3.23)

Due to (3.12), πab can be diagonalized with entries ±1. A convenient as-

sumpton of tracelessness

πaa = 0 (3.24)
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ensures that the signature of πab is split. Thus

‖ψ‖2π = ±1 (3.25)

on g-normalized energy eigenstates in the unbroken regime. Half of the

states have positive norm and half have negative norm. It is shown in

[2] that if gacH
c
b is a symmetric tensor, energy eigenstates in the unbroken

regime will be pseudo-orthogonal. This is however not a necessary condition.

From hereon we make the assumption that unbroken energy eigenstates are

pseudo-orthonormal with respect to (3.15):

〈ψi|ψj〉π =
1

2‖ψi‖g‖ψj‖g
πabψ

a
i ψ

b
j = (−)iδij (3.26)

by choice of ordering of the set {ψi} indexed by I ⊂ Z+. To ghostbust

the states of negative norm, we consider the operator cab subject to the

compatibility conditions

πadc̄
a
bπ
bc = ccd (3.27)

Ha
cc
c
b = cacH

c
b. (3.28)

Making the definition

cabψ
b
i = (−)iφai , (3.29)

we introduce the inner product

〈ψ|ϕ〉cπ =
1

‖ψ‖g‖ϕ‖g
gacc

c
bπ
b
dψ

aϕ̄b (3.30)

which is seen to be orthonormal (〈ψi|ψj〉 = δij) on unbroken regime energy

eigenstates by application of (3.29) and (3.26).

3.2. Extension to infinite-dimensional Hilbert

spaces

We provide a brief extension to the typical infinite-dimensional spaces of

quantum mechanics; this extension is generally straightforward. We now

work with an intrisically complex projective Hilbert space and pose the
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eigenvalue problem

H|ψ〉 = E|ψ〉 (3.31)

for a non-Hermitian, but PT -symmetric Hamiltonian. We work in position

space —where P = δ(x+y) and T is complex conjugation—so the eigenvalue

problem becomes

−d2ψ

dx2
+ V ψ = Eψ, (3.32)

where V is a PT -symmetric potential. By studying the asymptotic behavior

of the potential function, we determine the Stokes lines associated with

the Sturm-Liouville problem (3.32) and can impose appropriate boundary

conditions on a countour C in the complex plane. If the PT -symmetry is

unbroken, we have a set {|ψi〉} of energy eigenstates satisfying both

H|ψi〉 = Ei|ψi〉 (3.33)

and

PT |ψ〉 = |ψ〉 (3.34)

where, as in (1.42), we have absorbed an inessential overall phase into the

state vector. Then, with respect to the PT inner product

〈ψ|ϕ〉PT =
1

|‖ψ‖‖ϕ‖|

∫
C

dx(PT ψ)ϕ, (3.35)

the energy eigenstates are pseudo-orthonormal

〈ψi|ψj〉 = (−)iδij . (3.36)

The situation is remedied by introducing the C operator in the position

basis as

C(x, y) =
∑
i

ψi(x)ψi(y). (3.37)

Using the completeness relation (which has only be verified numerically [49])∑
i

(−)iψi(x)ψj(y) = δ(x− y), (3.38)

it is verified that C(x, y) is self-inverse and commutes with PT . C(x, y) also
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commutes with the Hamiltonian and has eigenvalues

C(x, y)ψi(y) = (−)iψi(x) (3.39)

by our demand. These conditions are sufficient to calculate C perturbatively

[24]. As in the finite dimensional case, the CPT inner product∫
C

dx(CPT ψ)ϕ (3.40)

is then positive definite and unitary-invariant.
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4. Concluding remarks

In this thesis we have provided a intuitive introduction to non-Hermitian

but PT symmetric systems through a laboratory experiment and explicit

models. One overriding goal of this project was to argue that PT sym-

metric theories deserve to be taken seriously, as they produce interesting

models that can be experimentally realized. I have sought to demonstrate

this through my personal interests in integrable models and geometry. Such

models also connect smoothly with the experiment we discussed at length.

I will take the opportunity here to provide some information about current

projects that have not yet reached publishable form. Firstly, we have been

investigating the properties of extended systems of coupled oscillators: a

chain of PT -symmetric dimers. It is predicted that a system such as this

may exhibit mechanical birefringence. We have developed numerical models

to search the paramter space and have found promising behavior, but have

not fully characterized the properties of the system. Secondly, we have been

working on a C∗ algebra formulation for PT -symmetric quantum mechanics.

This is absent from the literature and may resolve some of the foundational

issues discussed in the introduction.

I would like to thank my supervisor, Carl M. Bender for piquing my inter-

est in PT symmetry and providing support and encouragement throughout

the course of this project. I would also like to thank my other collabora-

tors, David Parker and E. Samuel, for their contributions to the experiment

described in this thesis. Lastly, I wish to thank E. Roy Pike for useful

discussion and the use of his laboratory at King’s College London.
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A. Runge-Kutta

Consider a (generally non-autonomous) first-order ordinary differential equa-

tion for a function y : R→ R.

y = f(y, x) (A.1)

Given the value of y at a point x0, we wish to find the value at a point

x0 + h. A Runge-Kutta scheme of arbitary order expresses this new value

as

y(x+ h) ≈ y(x) + hwizi (A.2)

with summation implied. Here the wi are weights and the zi are samples

defined by

zi = f [y(x) + hαijzj , x+ βih]. (A.3)

Because the zi are defined recursively, the matrix αij must be strictly lower

triangular. We choose to sample points at the starting point x, the midpoint

x+ 1
2h, and the endpoint x+h. For a fourth order scheme, this correpsonds

to the choice

α21 = α32 =
1

2
, α43 = 1 (A.4)

β1 = 0, β2 = β3 =
1

2
, β4 = 1, (A.5)

though other choices are possible.

The samples become
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z1 =f [y(x), x] (A.6)

z2 =f

[
y(x) +

1

2
hz1, x+

1

2
h

]
(A.7)

z3 =f

[
y(x) +

1

2
hz2, x+

1

2
h

]
(A.8)

z4 =f [y(x) + hz3, x+ h] (A.9)

Noting y′(x) = f(y, x) and using the chain rule repeatedly to order O(h2),

we can express (A.2) as an expansion in partial x-derivatives of f to order

O(h5). The algebra required to do this is formidable and is omitted. Com-

paring the result to the Taylor expansion of y(t+ h) to the same order:

y(x+h) = y(x)+hf [y(x), x]+
h2

2
ft[y(x), x)]+

h3

6
ftt[y(x), x]+

h4

24
fttt[y(x), x]+O(h5),

(A.10)

a system of equations for the weights wi is obtained with solution

w1 = w4 =
1

6
, w2 = w3 =

1

3
. (A.11)

Thus, we recover the familiar formula

y(t+ h) =
1

6
(z1 + 2z2 + 2z3 + z4) (A.12)

for the zi defined above. The extension to a system of differential equations

is straightforward by promoting y to a vector yi and allowing the functions

fi to depend on that vector.
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B. Some notes on the P and T
operations

B.0.1. P and T as Lorentz group elements

It is perhaps best to start with a discussion of the discrete operators P and

T in the context of the Lorentz group O3,1. We can decompose this group

as

O3,1 = L↑+ ∪ L
↓
+ ∪ L

↑
− ∪ L

↓
− (B.1)

where L↑+ ∪L
↓
+ ≡ SO3,1 and L↑+ is the proper, octochronous Lorentz group.

More generally, sgn det Λ is represented by ± and sgn Λ0
0 is represented by

↑, ↓ [44]. A relativistic field theory is required to be invariant under L↑+, but

not necessarily the whole group O3,1. P, T and PT are not necessary sym-

metries of a theory,1 but discrete, additional symmetries that have definite

consequences. The whole group O3,1 preserves the Minkowski metric

gµν = diag(1,−1,−1,−1). (B.2)

In terms of the action on four-vectors xµ, P ∈ L↑− is represented by the

matrix

Pµν = diag(1,−1,−1,−1) (B.3)

and corresponds to spatial inversion, while T ∈ L↓− is represented by

Tµν = diag(−1, 1, 1, 1). (B.4)

and corresponds to time inversion.

Conjugation by P maps L
l
+ ↔ L

l
− while conjugation by T maps L↑± ↔

L↓±. In order to implement parity and time-reversal on quantum mechan-

ical fields and operators, we need to find a representation for P and T as

1However, CPT is [?]
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(anti)unitary operators.

B.0.2. Parity on vectors and operators

The construction for spinor fields is detailed in [46]; here we focus on nonrel-

ativistic quantum mechanics. In particular, we consider |ψ〉 ∈ H—for sake

of definiteness we take H = L2(Rn)— and expand in the position basis.

|ψ〉 =

∫
Rn

dnx|x〉〈x|ψ〉 (B.5)

It is now straightforward to implement space inversion:

U(P)|ψ〉 =

∫
Rn

dnx| − x〉〈x|ψ〉. (B.6)

Changing the variable of integration to (−x) and left multiplying by the bra

|x〉, we obtain

U(P)ψ(x) ≡ 〈x|U(P)|ψ〉 = ψ(−x). (B.7)

Applying parity twice, we verify that U(P) is Hermitian, unitary, self-

inverse, and has eigenvalues of precisely ±1. If we expand (B.7) in the

momentum basis we obtain

〈x|U(P)|ψ〉 =

∫
Rn×Rn

dnx dnp 〈x|U(P)|p〉〈p|ψ〉 = 〈−x|ψ〉. (B.8)

To obtain the desired delta function in the integral to make the equation

true, we must have

U(P)|p〉 = | − p〉. (B.9)

Thus, momentum inversion is a necessary consequence of spatial inversion.

We implement parity on operators in the usual way

U(P)H(x, p)U(P) = H(−x,−p) (B.10)

B.0.3. Time-reversal on vectors and operators

Implementing time-reversal in this context is less straightforward than im-

plementing parity because we cannot expand in a natural basis. Nontheless

it can be done easily by inspection of the Schrödinger equation [11] or the

propagator [46]. Here we follow the latter approach. Let ψ(xµ) be a solution
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of the free Dirac theory. Then we must have

ψ(t, xi) = eiHtψ(xi)eiHt. (B.11)

Assuming time-reversal symmetry of the Hamiltonian, we apply time-reversal

to both sides and right-multiply by a zero-energy vaccuum |0〉,

ψ(−t, xi)|0〉 = eiHtT ψ(xi)T |0〉. (B.12)

Expanding the left side in terms of the vacuum, we obtain an inconsistency:

e−iHtψ(xi)|0〉 = eiHtT ψ(xi)T |0〉. (B.13)

Namely, the left side is a sum of positive frequency terms while the right is

a sum of negative frequency terms. This is surmounted by requiring that T
perform complex conjugation:

T zT = z̄ (B.14)

for z ∈ C. Twofold application of T verifies that it has the same algberaic

properties as parity, with unitarity replaced by antiunitarity. Examining

the momentum operator

pi = −i∂i, (B.15)

we see that momentum is reversed, while the position operator carries no

imaginary unit and thus is preserved. On an operator H(x, p) we have

T H(x, p)T = H∗(x,−p). (B.16)

To summarize, we have found, starting from basic physical considerations

P : xi → −xi pi → −pi (B.17)

T : xi → xi pi → −pi i→ −i. (B.18)

These were previously stated in the introduction.
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