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Abstract

we introduce the extension of algebraically special into higher dimensional asymtoti-

cally flat spacetimes using CMPP approach and investigate the behavior of known higher

dimensional black holes under this algebraic classification.
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1. Introduction

The motivation of the studying of black holes in higher dimension came from string theory

which suggested that the physical spacetime might have more than four dimensions and from

this idea we generalized the classical Einstein theory of gravity into higher dimension. Since

we do not know what the structure of higher dimensional physical spacetime, many options of

higher dimensional background spacetimes were studied. In this review we mainly use the N+1-

dimensioanl asymptotically flat semi-Riemannian manifold (locally Minkowski spacetime). In

addition one can choose Kaluza-Klein spacetime, Supersymmetric spacetime, AdS spacetime[16,

25] etc. which will yield different results. The expected consequence of allowing the spacetimes

to possess extra dimension is that the gravity besomces much richer since metric tensors gain

extra degree of freedoms, and also becomes more complicated. However, the interesting point

of studying higher dimension general relativity is those unexpected new features of gravity that

appear in new solutions such as the existence of black holes with their event horizons topology

differ from the sphere.

Note that in 4D spacetimes the black holes horizon other than the sphere was forbidden [8] since

the only unique black hole solution is Kerr-Newman black hole which has spherical topology.

However, in higher dimensional spacetimes the gravity is weaker [21]; one can picture that when

the same amount of flux from a gravitational source was emitted into extra dimensions the flux

per area which we experience as gravitational field will become weaker. As a consequence, it

might be possible for a higher dimensional rotating object to form a “black ring” which is a black

hole with toroidal horizon. The intuitive explaination for the existence of this peculiar object is

that a rotating black hole counters its own gravity with centrifugal force and prevents itself from

collapsing into a spherical [27].

The black ring belongs to the family of stationary axisymmetric black holes in asymptotically flat

spacetime and by terminology “black ring” generally means a black hole with horizon topology

of SN−2×S1 but for now the 5D black ring is the only known exact solution of this type. There

is the other stationary axisymmetric solution that were dicovered earlier by Myers and Perry

[5] as the extension of Kerr black hole to arbitrary higher dimension. The Myers-Perry(MP)

solution describes the spherical rotating black holes which are certainly different from the black
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rings. However, in 5D spacetime there is a possibility for these two different kind of black holes

to have the same mass and angular momentum (we will discuss this feature in more detals later)

which implies the violation of uniqueness theorem of stationary black holes.

To fully understand these new features of higher dimensional black holes we need to find more

exact solutions. However, solving Einstein equation is not such an easy task because in general

it yields the system of non-linear partial differential equations which is either hard or impossible

to solve. Therefore to achieve this goal one might look for some special class of spacetimes which

in which the Einstein equation can be simplified, for example the five dimensional stationary

axisymmetric spacetimes. The feature that makes this class of spacetimes interesting is that the

symmetries of these spacetimes imply the integrability of vacuum Einstein equation. Moreover,

given the known 5D black hole solution one can generate the new solution using Belinsky-

Zakharov (BZ) method [21]. Therefore our knowledge of 5D black holes are greatly improved.

Nevertheless, in the spacetimes of dimension higher than five the stationary axisymmetric does

not necessarily imply integrability of vacuum Einstein equation and we need other method to

find new exact solution.

Let us go back to the case of 4D spacetimes, many important solutions such as the Robinson-

Trautman solution, Kerr solution and C-metric were found by assuming that the spacetimes are

Algebraically special(AS) and with a help from the Goldburgh - Sachs theorem that simplifies

Einstein filed equations. Therefore, it is natural to ask that can we generalize this useful notions

to higher dimension? For the time being the answer is not clear, mainly because the structure

of higher dimensional spacetimes is algebraically different from 4D spacetimes. Recently there

are attempts to give the definition of AS in higher dimension in many different ways [14, 23, 27].

This review focuses on the classification scheme invented by A. Coley, R. Milson, V. Pravda and

A. Pravdova [14], since it is applicable to the spacetimes of any dimensions and more importantly

many known higher dimensional black holes are algebraically special in this approach.

In the next chapter we will give the introduction on the 4D algebraic classification which defines

the notion of AS, and its application in general relativity which should be helpful to get the rough

idea of how this AS notion works. Then in chapter 3 we will discuss the generalization of this

algebraic classificaton. We also briefly introduce the Weyl solutions and BZ method in chapter

4 because some examples of 5D black holes given in the later chapter are constructed from these
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method. Finally in chapter 5, we investigate the algebraic types of some asymptotically flat black

holes and then briefly discuss the general features of non-asymptotically flat black holes.

2. Algebraically special four dimensional spacetimes and black holes

In this chapter, the algebraic classification in four dimensions known as Petrov classification will

be introduced. Then we discuss the connection of AS spacetimes with the Goldburg - Sachs

theorem and its application in solving tne Einstein equation.

2.1 Petrov classification

In four dimensions, the classification of Weyl tensor known as Petrov classification and the

Goldberg-Sachs theorem are the keys toward the discovery of important classes of solutions such

as Kerr-Schild class and Robinson-Trautman class. In this introduction we used the spinor

approach to derive Petrov classification rules [28]. Note that there are other equivalent ap-

proaches as well but this approach seems to be the shortest way. Consider a point p in a

semi-Riemannian manifold M . The norm of tangent vector in the tangent space TpM space (iso-

morphic to Minkowski space) is invariant under the action of Lorentz group SL(2, C) ∼= SO(4)

which is homomorphic to SU(2) × SU(2) ∼= Sp(2) × Sp(2). For the complex symplectic space

Sp(2), let ( , ) : Sp(2) × Sp(2) → C be a symplectic form and o = (0, 1), ι = (1, 0) be the basis

vector such that,

(o, o) = εABo
AoB = oBo

B = 0

(ι, ι) = εABι
AιB = ιBι

B = 0

(o, ι) = εABo
AιB = oBι

B = −1, (2.1)

where,

ε =

 0 1

−1 0

 . (2.2)
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Under group representation, any SL(2,C) tensor can be decomposed into Sp(2)× Sp(2) tensor

as follow,

τab = τAA′BB′ , (2.3)

where a,b are Lorentz indices and A,B and A′, B′ are spinor and conjugate spinor indices respec-

tively. Note that the a, b indices are defined locally in the neighbourhood of point p. Therefore

bare in mind that every vectors and tensors in this chapter are all implicitly depend on point

p and the Lorentz indices may not be the same on different tangent space (unless spacetime is

flat). However, the pointwise set up is enough for algebraic classification purpose.

The important example of tensor in this spinor representation is the matric tensor which can be

written as,

gab = gAA′BB′ = εABεA′B′ (2.4)

Lemma 2.1.1. Let τ...CD... be a multivalent spinor. Then

τ...CD... = τ...(CD)... +
1

2
εABτ...C

C ... (2.5)

Using this fact one can rewrite the Weyl tensor Cabcd in spinor form[28],

Cabcd + iC∗abcd = 2ΨABCDεA′B′εC′D′ (2.6)

where C∗abcd = 1
2ε

ef
cd Cabef and ΨABCD is the totally symmetric spinor. Thus, we have a relatively

simple form; the Weyl tensor is charecterized by five coefficients, Ψ1111,Ψ1110,Ψ1100,Ψ1000 and

Ψ0000. The next lemma will simplify Weyl tensor even further and will be the impotant ingredient

for Petrov classification.

Lemma 2.1.2. Let τAB...C be a totally symmetric spinor. Then there exist univalent spinors

αA, βB , ..., γC such that

τAB...C = α(AβB ...γC) (2.7)

From this lemma the spinor ΨABCD is decomposed into four univalent spinors called principal

spinors and we say that any one of these univalent spinors is “repeated principal spinor”

(PNS) If it coincides with at least one other univalent spinor. Base on this property, any Weyl
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tensor can be classified as shown in the table below.

Table 1: Algebraic types of Weyl tensor

Algebraic type multiplicity of spinors equivalently
O flat space

N 4 Ψ0000 = Ψ1000 = Ψ1100 = Ψ1110 = 0

III 3,1 Ψ0000 = Ψ1000 = Ψ1100 = 0

II 2 ,1,1 Ψ0000 = Ψ1000 = 0

I 1,1,1,1 Ψ0000 = 0

D 2,2 Ψ0000 = Ψ1000 = Ψ1111 = Ψ1110 = 0

The last column of Table 1 obtained by contracting basis spinors o, ι to Ψ. For example consider

a typeII spinor ΨABCD = α(AαBβCγD), then one can choose oA = αA. Thus, when calculating

Ψ1000 = α(AαBβCγD)ι
AαBαCαD there will be at least one pair of contraction between α which

yields zero (Ψ0000 = 0 is obvious).

Alternatively one can switch back to Lorentz group representation by define la = αAᾱA′ a

“Principal Null Direction” (one can check that, lal
a = oAōA′o

AōA
′

= oAo
AōA′ ō

A′ = 0) which

is a null vector associated with PNS . Then using definition of ΨABCD one can derive other

useful form of the condition on the last column of the table,

O Cabcd = 0 (2.8)

N Cabcdl
c = 0 (2.9)

III Cabc[dlf ]l
c = 0 (2.10)

II Cabc[dlf ]l
blc = 0 (2.11)

I l[eCa]bc[dlf ]l
blc = 0 (2.12)

D Cabc[dlf ]l
blc = Cabc[dnf ]n

bnc = 0, l 6= n (2.13)

From Table 1 we said that the non-vanishing Weyl tensor is algebraically general if it is TypeI
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and it is algebraically special if it is one of the other types. As we have seen that by assuming

that spacetime is algebracally special some spinor components of Weyl tenosr vanish and there

will be more important consequences which we will see in the next section. As a preparation for

the next section let us choose the principal null direction ea0 = la to be our null tetrad basis and

choose other real and complex tetrads such that they are quasi-orthonormal, meaning that

ea1 = na = n̄a , ea2 = ma = m̄a = ēa3 ,

eaieaj = ηij , e iaebi = gab. (2.14)

The bar on the basis denoted complex conjugation and η is the flat Minkowski metric in non-

diagonal form,

η =



0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0


.

If we regard ηij as a metric, and ei as basis, then this vector space will have its own Lorentz

symmetry which does not imply the spacetime geometry but reflect the fact that one can choose

different set of quasi-orthonormal basis. The indices i, j is called the tetrad indices which are

different from spacetime indices. However, on the neighbourhood of point p one can choose

the coordinates that gab and ηij are equal. Therefore for the algebraic classification which only

need to be done locally, one can use either Lorentz group that acts on tangent space or the

Lorentz group that acts on tetrad basis (we will see the later case in the next chapter on CMPP

classification).

Although we use the complex tetrad, the resulting metric is real and it can be checked by taking

complex conjugation of the metric. Alternatively, we can define the quasi-orthonormal basis from

the spinor basis i.e. choose oA = αA and the other basis ι, and then contruct the tetrad from

them,

la = oAōA
′
, n = ιAῑA

′
, m = oAῑA

′
, m̄ = ιAōA

′
. (2.15)

It is easy to check that they satisfy condition (2.14). With this frame tetrads one reconstructs
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the metric in the form,

gab = −2l(anb) + 2m(am̄b) (2.16)

The Lorentz transformation for the tetrad basis can be obtained from the transformations that

preserve the symplectic structure of Sp(2), i.e. (o′, ι′) = (zo, z−1ι) and (õ, ι̃) = (o, ι + xo) for

any z, x ∈ C. Hence let z =
√
λ exp iθ/2 then the transformation of tetrad basis associated with

each spinor basis becomes,

l′ = λl, n′ = λ−1, m′ = eiθm, (2.17)

l̃ = l, ñ = n+ xm+ x̄m̄+ cc̄l, m̃ = m+ c̄l. (2.18)

If set λ = 1 in (2.17) it becomes spetial rotation and if set θ = 0 then we have the boost. How-

ever, the transformation (2.18) is nothing like what we have experienced in coordinate frame,

it is called null rotation which will keep one null direction unchanged. This transformation will

become useful for choosing a convenient frame, moreover, the power (weight) of boost λ can be

equivalently used to derive the rules of Petrov classification.

As mentioned earlier, by assuming the spacetime being algebraically special the number of alge-

braic equations are reduced and we have a better chance of solving Einstein equation. However,

the number of equations is not the only problem; Einstein eqution is actually a system of non-

linear PDE which in most of the cases are unsolvable.

2.2 Goldberg-Sachs theorem

The Petrov classification by itself is not very useful; it does not give much information about

differential structure of the spacetime. However, solving Einstein equation is highly related to dif-

ferentiability of the spacetime. To make use of this classification we need the connection between

this algebraic property and the behavior of tetrad frame and their derivative in AS spacetime.

This essential link between algebraic classification and differential geometry of the spacetime

is given by Goldberg-Sach (GS) theorem. Before state the GS theorem, we shall develope the

understanding of Newmann-Penrose (NP) scalars and define the notion of shear and divergence

sacalar which are precisely the quantities that determine behavior of tetrad frame.
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From the quasi-orthonormal frame defined in the previous section, at each point the direc-

tional derivative of the vectors(covectors) always lie within their tangent(cotangent) space, thus,

∇ebea = Cacbe
b, for each Cacb ∈ C. These scalars will play very important roles in solving Einstein

equation, so we shall give them the names,

Table 2: NP scalar

ea ∇ea Cac0 Cac1 Cac2 Cac3

l, D ≡ ∇l −(ε+ ε̄) 0 κ̄ κ
∆ ≡ ∇n −(γ + γ̄) 0 τ̄ τ
δ ≡ ∇m −(β + ᾱ) 0 ρ̄ σ

n, D ≡ ∇l 0 ε+ ε̄ −π −π̄
∆ ≡ ∇n 0 γ + γ̄ −ν −ν̄
δ ≡ ∇m 0 β + ᾱ −µ −λ̄

m, D ≡ ∇l −π̄ κ ε̄− ε 0
∆ ≡ ∇n −ν̄ τ γ̄ − γ 0
δ ≡ ∇m −λ̄ σ ᾱ− β 0
δ̄ ≡ ∇m̄ −µ̄ ρ β̄ − α 0

Note that some coefficients are zero since the frame fields are quasi-orthonormal and the epres-

sions that are not listed in the table can be obtained by taking complex conjugation. The

coefficients in Table 2 are the NP scalar and by contracting the frame fields to their derivatives

each NP scalar can be written explicitly as follow,

Table 3: NP scalar

O maOla
1
2 (naOla − m̄aOma) −m̄aOna

D κ ε π
∆ τ γ ν
δ σ β µ
δ̄ ρ α λ

The Einstein equation written in this language [28] is called field equations. These field equations
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might look horrible at first glance, but there are great advantages from doing this. First of all,

they are scalar equations and they can be simplified once the algebraically spacial condition is

imposed. Let us now pay attention to three coefficients σ, ρ and κ which will be used more often

later on. The scalar σ is called a shear and ρ ≡ Θ + iω is a complex divergence, where the real

and imaginary parts of divergence scalar are called expansion and twist respectively. The last

one kappa does not have particular name but it is easy to see that the congruence of vector l is

geodesic if κ = 0.

Theorem 2.2.1. (Goldburg-Sachs) A vacuum spacetime is algebraically special if and only if

there exists a family of space-filling shear free geodesic null congruence i.e. κ = σ = 0

The GS theorem simplifies Einstein equation by reducing the number of differential equations

or makes them solvable. To get the clearer picture let us investigate some part of construction

of well known AS solution (we will say the name later). Assuming that the spacetime is AS,

twist-free but has non-vanishing divergence scalar and in addition R00 = R02 = R22 = 0, then let

us try to find a solution for this particular spacetime. By GS theorem there exists family of null

geodesic shear-free congruence, denoted by u(r) where r is its affine parameter. Consider NP

scalar τ = mµlµ;νn
ν which under null rotation, it transforms as τ̃ = τ + zσ+ z̄ρ+ zz̄κ = τ + z̄ρ,

[28] ,therefore we can set τ = 0 because ρ does not vanish. Since all the scalars κ, σ and τ are

now vanish, by the definition of connection one-form,

Γij = Γkije
k = eµ(i)e(j)µ;νe

ν
(k)e

(k), (2.19)

it implies that Γ020 = Γ120 = Γ220 = 0, thus,

−Γ02 = Γ20 = Γ320e
(3) = Θm. (2.20)

The meaning of equation (2.20) is that the tetrad m will be immediately determined once the

explicit form of Γ02 is known. Thus the next step is trying to solve for Γ02. From our assumption
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the Ricci components R00, R02 and R22 vanish therefore,

0 = R00 = −R0001 −R0100 +R0203 +R0302 = 2R0203 (2.21)

0 = R02 = −R0021 −R0120 +R0223 +R0322 = R0102 +R2032 (2.22)

0 = R22 = −R2021 −R2120 +R2223 +R2322 = 2R2012. (2.23)

And the from Table 1, we also have,

0 = Ψ0000 = R2002, 0 = 2Ψ0001 = R2010 −R2032 (2.24)

Using all these equations, the second Cartan equation becomes,

dΓ02 + Γ02 ∧ (Γ32 + Γ01) = R0231m̄ ∧ n = −R0231

Θ
Γ02 ∧ n. (2.25)

If we wedge (2.25) with Γ02 we finally obtain,

Γ02 ∧ dΓ02 = 0 (2.26)

This last equation is the integrability condition; any one-form satisfies this condition can be

integrated. To be more precise, the Frobenius theorem (differential form in complex manifold

version) states that any one-form satisfies (2.26) if and only if there exist a complex value function

P and a local coordinate ζ such that,

Γ02 =
dζ

P
. (2.27)

From (2.20) the tetrad m becomes,

m = − 1

PΘ
dζ (2.28)

So now we have convenient choice of coordinate for m (and m̄), then if we solve the remaining

equations and choose the rest coordinates to be (u, r) the line element becomes [30],

ds2 = −2H(r, u, ζ, ζ̄)du2 − dudr +
dζdζ̄

P 2(u, ζ, ζ̄)Θ2
(2.29)
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Also note that one can always pick (by Lorentz transformation) the tetrad such that P is real

and in twist-free case the scalar Θ can be chosen such that Θ = 1/r, [30]. This solution was

first dicovered by I. Robinson and A. Trautman [1] as the earliest significant application of AS

and GS theorem in general relativity. The metric generally describes any spacetime with a pure

radiation source and gravitational radiation in vacuum spacetime.
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3. CMPP Classification

In the previous chapter, we have seen that the notion of AS together with GS theorem are useful

for finding 4D exact solutions. Therefore in this chapter we will introduce one way to extend

this notion into higher dimension. There are many attempts to extend the definition of AS to

higher dimension, neither of them are equivalent[27](note that there are many non-equivalent

ways to classify the Weyl tensor from its certain properties but only some of those classification

will lead to the solutions of the Einstein equation). However, the classification by A. Coley, R.

Milson, V. Pravda and A. Pravdova or CMPP classification is now recieved the most attention

since it is applicable in spacetimes of arbitrary higher dimension and some well known class of

higher dimensional solutions i.e. Kerr-Schild class (including Myers-Perry black hole), Robison-

Trautman class were shown to be algebraically special in this classification scheme.

3.1 Weyl aligned null direction (WAND)

As mentioned ealier, in arbitrary dimensional spacetimes the spinor classification is no longer

effective (there is 5D spinor classification by De Smet [23], but it can not be extended to N+1 >

5); the Lorentz groups of higher dimensional spacetimes are not homomorphic to product of spin

groups. As a consequence, the same spinor approach as in 4D can not be used. Instead, in

CMPP approach the Weyl tensor is classified base on its transformation properities. Before we

get into the classification, let us consider the transformation of tetrad basis which will imply the

transformation of Weyl tensor. Let l = m0, n = m1,mi, for i = 2, ..., N − 1 (Note that the index

i will be written as (i) when it might cause confusion with other indices) be the basis vectors for

N + 1 dimensional tangent space such that,

l2 = n2 = l ·mi = n ·mi = 0; l · n = 1; mi ·mj = δij . (3.1)

This basis vectors are similar to 4D quasi-orthonormal basis in the sense that l, n are null vectors

but the spatial tetrads m are all real. The chosen basis is unique up to the symmetry group

SO(N+1) that is isomorphic to the Lorentz group. Similar to what we did in 4D case, the Lorentz

transformation can be characterized by λ, zi ∈ C, X ∈ SO(N − 1) the boost, null rotation and
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spetial rotation respectively, then we have,

Boost l 7→ λl; n 7→ λ−1n; mi 7→ mi

Spatial rotation l 7→ l; n 7→ n; mi 7→ Xijmi

Null rotation l 7→ l; n 7→ n+ zimi − 1
2zizil; mi 7→ mi − zil.

Observe that the components of Weyl tensor in tetrad basis mi′ , for index i′ ∈ {0, 1, i} transform

under the boost λ as Ci′j′k′l′ 7→ λbCi′j′k′l′ , the boost weight b is an integer and 2 ≥ b ≥ −2. To

see this explicitly, let Vµ, Uµ,Wµ, Tµ be any covectors, define V<µUνWσTρ> ≡ 1
2 (V[µUν]W[σTρ] +

V[σUρ]W[µTν]) which has the same symmetry as Weyl tensor. Then consider the following de-

composition,

Cµνσρ = 4C0i0jn<µm
i
νnσm

j
ρ>

−8C010jn<µlνnσm
i
ρ> − 4C0ijkn<µm

i
νm

j
σm

k
ρ>

+4C0101n<µlνnσlρ> + C01ijn<µlνm
i
σm

j
ρ> + 8C0i1jn<µm

i
ν lσm

j
ρ> + Cijklm

i
<µm

j
νm

k
σm

l
ρ>

−8C101il<µnν lσm
i
ρ> − 4C1ijkl<µm

i
νm

j
σm

k
ρ>

+4C1i1j l<µm
i
ν lσm

j
ρ>. (3.2)

Each line in above equation correspond to components with boost weight 2, 1, 0,−1,−2 from the

top to the bottom line respectively.

Definition 3.1.1. Let l be a null tetrad,

i) l is Weyl aligned null direction(WAND) if the b = 2 components of Weyl tensor vanish.

ii) l is multiple WAND if all b = 2, 1 components vanish.

In four dimensions, the definition of WAND and principal null direction are equivalent [14].

Therefore one way to generalized the notion of AS into higher dimension is, roughly speaking,

replaces repeated null direction with multiple WAND.

To complete the set up for AS in higher dimension, we need to generalized the definition of shear,

divergence and other NP scalars. Form the tetrad basis, we define optical matrices [12],

Li′j′ = lµ,νm
µ
i′m

ν
j′ , Ni′j′ = nµ,νm

µ
i′m

ν
j′ , M

(i)
i′j′ = m(i)

µ,νm
µ
i′m

ν
j′ . (3.3)
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From the definition of tetrad basis, one immediately see that,

L0i′ = N1j′ = M
(i)
ij′ = 0,

N0i′ + L1i′ = 0, M
(i)
0i′ + Lii′ = 0, M

(i)
1i′ +Nii′ = 0, M

(i)
ji′ +M

(j)
ii′ = 0 (3.4)

Next consider the matrix Lij = L(ij) + L[ij] = Sij + Aij then define expansion and shear to be

the trace and the traceless part of matrix Sij ,

θ =
1

N − 1

∑
i

Sii =
1

N − 1
lµ,µ, (3.5)

σij = Sij − θδij . (3.6)

In addition, the anti-symmetric matrix Aij is the twist metrix. In the next section we will use

this set up to define the algebraic types and discuss some consequences of assuming that the

spacetime is AS. As one might expected, there is also the relation between these optical matrix

and the condition that the spacetime is AS, although the relation is not the same as in four

dimension. It turns out that in higher dimensional AS spacetimes the full shear matrix no longer

vanishes in general, as for exsampe the 5D MP black hole. Moreover, the type two WAND is not

always geodesic, as in RT solution [20].
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3.2 Algebraically Special in higher dimension

The CMPP approach generalizes the notion of algebraically special into higher dimension by

replacing repeated PND with multiple WAND. The following table shows all types that the

Weyl tensor can be, notice that there is one additional typeG in this family. TypeG spacetimes

make the crucial different between AS in higher dimension and those in four dimension. In four

dimensions there are always four pricipal null directions associated with principal spinors and one

can pick two pricipal null directions to be the frame tetrads l, n, however, in higher dimension the

WAND vector might not exist or only one WAND exists. The following table show all algebraic

type of Weyl tensor in any N+1-dimensional spacetime.

Table 4: Algebraic types in higher dimension

Algebraic type Vanishing Weyl components type Constraints
O b = 2, 1, 0,−1,−2 Cµνσρ = 0

N b = 2, 1, 0,−1 Cµνσρl
σ = 0

III b = 2, 1, 0 Cµνσ[ρlα]l
σ = 0

IIIi b = 2, 1, 0,−2

II b = 2, 1 Cµνσ[ρlα]l
ν lσ = 0(*)

IIi b = 2, 1,−2

I b = 2 l[βCµ]νσ[ρlα]l
ν lσ = 0

Ii b = 2,−2

D b = 2, 1,−1,−2 n and l satisfy (*)

G admit no WAND

The algebraic type with subscript i mean that both l, n are WAND but n is not a multiple

WAND. Observe that CMPP types are nothing like the four dimensional Petrov types although

they share some properties. Due to this non-equivalence, we can not straightforwardly generalize

Goldberg-Sachs theorem to higher dimension.

Since we now have more algebraic types comparing with 4D spacetime, it would be nice if we

can eliminate some of these choices in the certain class of the black holes. Fortunately, in the
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familiar classes of black holes namely static black holes and subset of stationary black holes such

elimination is possible [20].

Theorem 3.2.1. Let (M, g) be a N + 1 dimensional spacetime, the Weyl tensor in M can only

be of types G, Ii, D or O if one of the following condition are fulfilled,

i) (M, g) is static spacetime.

ii) (M, g) is stationary with non-vanishing divergence scalar and metric g is invariant under the

reflection map.

The reflection map in ii) is any choice of transformation (x0, ...., xN ) 7→ (±x0, ....,±xN ) that

leaves the metric invariant but changes the direction of WAND. Although we are not giving

the rigorous proof here, it is not difficult to see why this theorem is true. First for the static

case, if there exist a WAND, say l = (l0, li) (unless it will be typeG) then by time reversal one

obtains different vecter n = (−l0, li) which is also a WAND satisfying the same type contriant

as l. Thus, only possible choices of static spacetimes are types Ii, D and O. Similar argument

for stationary case, one can use the reflection map instead of time reversal and non-vanishing

divergence scalar to ensure that the transformation gives a distinct vector (not just proportional

to l). This theorem excludes some possibilities of algebraic types for stationary and static black

holes and shall be useful later.

Although the higher dimension GS theorem is not yet dicover or may not even exist, the attemp

to extend notion of AS to higher dimension is not meaningless. Recently it was shown that in

five dimensional AS spacetime, the optical matrix takes certain forms [26] so this can be regarded

as a partial result of 5D Goldburg-Sachs theorem.

Theorem 3.2.2. In a five dimensional AS Einstein spacetime that is not conformally flat, there

exists a geodesic multiple WAND l and the orthonormal basis mi such that the matrix Lij takes
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one of the forms,

i) b


1 a 0

−a 1 0

0 0 1 + a2

 , (3.7)

ii) b


1 a 0

−a 1 0

0 0 0

 , (3.8)

iii) b


1 a 0

−a a2 0

0 0 0

 , (3.9)

If the spacetime is type III or N then the form is ii).

The converse of this theorem is not generally true, the counter example is provided in [26].

So far we have discussed the detials of CMPP classification and should be ready to use it on

black holes. Therefore, the readers who are interested to find out on how the extension of 4D

algebraically special solutions behave under this classification scheme can skip to chapter 5. In

the next chapter, we discuss the more general approach in finding 5D stationary axisymmetric

solutions, which will be necessary for the construction of black saturn.
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4. Inverse scattering method and stationary solution

In this chapter the other mothod for solving the Einstein equation, called inverse scattering

method, will be briefly discussed. It is the most successful approach in dealing with five dimen-

sional stationary axisymmetric black holes. In fact, the method can be applied for arbitrary

high dimensional subclass of stationary axisymmetric black hole but only in 4D and 5D that this

subclass is identical to the set of all stationary axisymmetric solutions.

4.1 Stationary axisymmetric solutions

Let us assume that a spacetime MN+1 is stationary axisymmetric and in addition posesses N-1

commuting smooth Killing vector fields. These Killing vector fields form a coordinate basis for a

smooth N − 1 dimensional tangent distribution, denoted by D (submanifold of tangent bundle).

This tangent distribution is also involutive which means Lie bracket of any pair of basis vectors

ξa, ξb ∈ D takes its value in D(0 ∈ D since D it is vector space at every point).

Definition 4.1.1. Let Mn be the manifold and D be a k-dimensional smooth tangent distribution,

we say D is completely integrable if for any p ∈Mn there exists a chart (U,ϕ) such that ϕ(p) =

(ξ1(p), ...., ξk(p), xk+1(p), ...., xn−k(p)) ∈W×V ⊂ Rk×Rn−k and at every points in U the vector

fields ∂ξ1 , ...., ∂ξk span D.

The meaning of this definition is that if D is completely integrable, then we know the subman-

ifold that D belongs to and the coordinates on that submanifold are given by two independent

sets of coordinates.

Theorem 4.1.1. (Frobenius) A tangent distribution is completely integrable iff it is involutive.

The proof of this theorem can be found in [29] (Note that is the same Frobenius theorem

we saw in the previous chapter but in different version). As a consequence of this theorem one

can find the coordinates for the stationary axisymmetric spacetime such that the metric can be

written as,

gµνdx
µdxν = Gabdξ

adξb + e2ν(dρ2 + dz2). (4.1)

Since ξ0, ....ξN−2 are all Killing vectors the matrix G and scalar ν only depend on ρ, z. we may
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also choose the coordinates ρ, z such that,

detG = −ρ2, (4.2)

(this is not necessary but then we will get this contraint afterward). Then substitutes this ansatz

into the vacuum Einstein equation leads to a set of equations [18, 21],

∂ρU + ∂zV = 0, (4.3)

∂ρν = − 1

2ρ
+

1

8ρ
Tr(U2 − V 2) , ∂zν =

1

4ρ
Tr(UV ), (4.4)

where U = ρ(∂ρG)G−1, V = ρ(∂zG)G−1. Equations (4.2) and (4.3) imply that the scalar ν

satisfies integrability condition ∂ρ∂zν = ∂z∂ρν, thus, ν can be integrated once the matrix G is

known.

4.2 Weyl solution and BZakharov method

Although, we have reduced the Einstein equation to simple set of matrices and scalar equations,

it is still not easy to solve. Let us consider the special case when all Killing vector are mutually

orthogonal, the metic then takes diagonal form,

ds2 = −e2U0dt2 +

N−2∑
i=1

e2Ui(dξi)2 + e2ν(dρ2 + dz2). (4.5)

Then substitute the diagonal matrix G into equations (4.2)-(4.4) we have,

(∂2
ρ +

1

ρ
∂ρ + ∂2

z )Ua = 0, (4.6)

∂ρν = − 1

2ρ
+
ρ

2

N−2∑
a=0

[(∂ρUa)2 − (∂zUa)2] , ∂zν = ρ

N−2∑
a=0

∂ρUa∂zUa, (4.7)

and also a contraint on metric G becomes,

N−2∑
a=0

Ua = ln ρ. (4.8)
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One can see that the sum diverges at ρ = 0 along the z-axis. This sum also called an infinite rod

since it can be pictured as a long thin rod stretched along z-axis.

Euations (4.6) can be thought of as the set of Laplace equations in three dimensional flat space

i.e. (ρ, φ, z) where Ua are not the function of unphysical coordinate φ. This set of equations

is solvable if any sufficient boundary conditions for each Ua are given. Suppose the boundary

conditions at infinity and some points on z-axis, say a1, ..., ak are specified then the solutions

that satisfy Laplace equations and constraint (4.8) are given by [21],

Uj =
1

2
lnµj (4.9)

Ui =
1

2
ln

(
µi
µi+1

)
(4.10)

U0 =
1

2
ln

(
ρ2

µ1

)
=

1

2
ln µ̄1 (4.11)

where,

µi =
√
ρ2 + (z − ai)2 − (z − ai), (4.12)

µ̄i =
√
ρ2 + (z − ai)2 + (z − ai) (4.13)

the factor 1/2 or rod density is needed to make the sum of Ua satisfies (4.8). If Uk is a constant

then one can set it to zero and shift the all indices i > k down but the form of Ui,j stay the same

so that they still satistfy (4.8). The functions µ, µ̄ are called soliton and anti-soliton, the symbol

µ̃ will stand for either of them. Notice that the funcion Uj = 1
2 lnµj diverges at ρ = 0 as well as

original infinite rod but only when z ≥ aj , on the other hand, U0 blows up when ρ = 0, z ≤ a1

both are called semi-infinite rod. The rest Ui are finite rod which only blow up on the finite

interval of z-axis i.e. z ∈ [ai, ai+1]. The metric obtained from this method is called Weyl solution

which is completely characterized by the set of functions Ua. and they can be written in the

diagram called rod structures.
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Figure 1: Rod structure of Weyl solution

Since Weyl solutions require all commuting Killing vectors to be orthogonal, it is even more

restricted subclass of stationary axisymmetric solutions. However, the known Weyl solutions are

very useful as a “seed” for finding the more general solutions in this class. There is the method

introduced by Belinsky and Zakharov (BZ) by extending (4.3) into linear spectral equations

[4, 21] and use the solutions of this spectral equation to generate new matrix G from the known

one. To see how this method works, let G0(ρ, z), G1(ρ, z) be two different solutions of (4.3), then

define the functions Ψ0(λ, ρ, z),Ψ1(λ, ρ, z) such that,

Ψ0(0, ρ, z) = G0(ρ, z), (4.14)

Ψ1(0, ρ, z) = G1(ρ, z), (4.15)

where λ is a complex parameter. In doing so equation (4.3) needs to be modified as well,

D1Ψ ≡ (∂r +
2λr

λ2 + r2
∂λ)Ψ =

rV − λU
r2 + λ2

Ψ (4.16)

D2Ψ ≡ (∂z +
2λ2

λ2 + r2
∂λ)Ψ =

rU + λV

r2 + λ2
Ψ. (4.17)

Suppose G0 is a known solution, for example a Weyl solution, then one can generate new solution

by given a relation, Ψ1(λ, ρ, z) = χ(λ, ρ, z)Ψ0(λ, ρ, z), for χ(λ, ρ, z) is a complex matrix called

the dressing matrix. By substituting this expression back in system of equations(4.16)-(4.17)

the matrix χ can be solved and the most interesting solution is n-solitonic solution or simply a

21



solution with n poles on the real axis,

χ = 1 +

n∑
i=1

Ri
λ− µ̃i

, (4.18)

where Ri are residue matrices and once they are determined the new solution is achieved i.e.,

G1 = Ψ1(0, ρ, z) = χ(0, ρ, z)G0 = G0 +

n∑
i=1

RiG0

λ− µ̃i
. (4.19)

Each matrix Ri can be determined by introducing n constant vectors, mi
0 (N-1 dimensional

vectors), and then evaluate a matrix Γ,

Γij =
(mi

1)TG0m
j
1

ρ2 + µ̃iµ̃j
, (4.20)

where vector mi
1 = mi

0Ψ−1
0 (µ̃i, ρ, z). The residue Ri then given by,

(Ri)ab = mi
a

n∑
j=1

(Γ−1)jim
j
c(G0)cb

µ̃j
. (4.21)

The resulting matrix might not satisty (3.2), but it can be normalized,

G′ = ±
(

ρ2

±detG

)1/(N−2)

G. (4.22)

This method is very useful for solving the five dimensional Einstein equation. Since we know

many stationary axisymetric solution comparing with dimension higher than five, thus, one can

feed these seed metrics to BZ method to find new solutions. In next chapter we will encounter

one of the new solution obtained by this method.
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5. Black holes in higher dimension and their algebraic types

Most of higher dimensional black hole solutions were achieved by extended some properties of

known solutions in four dimensional spacetimes into higher dimension. Those properties deter-

mine the coordinate in which the metric take a convenient form, then we use the ansatz metric

to solve the Einstein equation. In this review we focus on the asymptotically flat solutions which

competible with CMPP classification. Since CMPP approach was constructed from the Lorentz

group of asymtotically flat spacetimes, it is not clear that the application on non-asymtotically

spacetimes is possible. The De Smet approach on the other hand, [23] can be used for some

non-asymptotically flat black holes but it is not equivalent to CMPP approach. However, at the

end of this chapter the non-asymtotically flat solutioin will be briefly disscused.

5.1 Static spherical symmetric black holes

This type of black hole is the extension of Schwarzschild solution (and Reissner-Nordstrom

solution in presence of EM field) the neutral case also called Schwarzschild-Tangherlini (ST)

solution which is the earliest and the simplest solution found for higher dimensional black hole

[2]. In any N + 1 dimensional spacetimes of this type with N > 1, the metric takes the same

form,

ds2 = −f(r)2dt2 + g(r)2dr2 + r2dΩ2
N−1. (5.1)

By using this metric to solve vacuum Einstein equation and source free Einstein-Maxwell equa-

tions, one obtains the explicit form of f(r), g(r),

vacuum f = g−1 =
(
1− C

rN−2

)1/2
,

EM background f = g−1 =
(

1− C
rN−2 + B2

r2(N−2)

)1/2

,

where C,B are constants. Consider the neutral case, the uniqueness of this static asymptotically

flat non-degenerated horizon black hole is still hold even in higher dimension [24]. Moreover, as

the continuous limit of Myer-Perry black hole and Robinson-Trautman black hole, Schwarzschild-

Tangherlini soluiton is typeD (will be shown in next section).
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5.2 Robinson-Trautman black hole

The higher dimensional version of RT solution was first accomplished in [17] by assuming the

existence of a geodesic, shear-free (shear matrix vanished) null congruence. The null congruence

form the family of null hypersurfaces u(x) = constant, then define, lµ = −u,µ, the normal null

covector to this surface (Note that because of nullity the normal vector is also the tangent vector).

Let r be the affine parameter on each hypersurface, sience u(r) is constant and lµ is null, for any

coordinates system {xµ} one immediately see that,

∂u

∂xµ
∂rx

µ = u,r = 0, (5.2)

and hence, we have lµ = ∂rx
µ. Suppose we choose u = x0, r = x1 and x̃i the spatial coordinates

that are transverse to u and r and constant along the geodesic, then,

lµ = −δuµ, lµ = δµr → gur = −1, grr = gri = 0,

gru = −1, guu = giu = 0. (5.3)

Note that we have used lν = gνµlµ. From these equations we can then reduce the metric into

the simpler form,

gµνdx
µdxν = guudu

2 + 2gurdudr + grrdr
2 + gijdx̃

idx̃j

= −grrdu2 − 2dudr + gij(dx̃
i + gridu)(dx̃j + grjdu)

= −grrdu2 − 2dudr + gijdx
idxj (5.4)

where we redefined x̃i = dxi + gridu. Also observe that the covariant derivative of vector l is,

lµ;ν = lµ,nu − Γαµν lα

= −1

2
guβ(gµβ,ν + gνβ,µ − gνµ,β)

=
1

2
gµν,r. (5.5)
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Therefore in addition to vanishing shear matrix, the twist metix also vanishes i.e. if one chooses

spatial tetrad mµ
i then Aij = lµ;num

µ
[im

ν
j] = 1

2gµνm
µ
[im

ν
j] = 0.

Subtitute this ansatz into the Einstein equation without matter filed (allow radiation and cos-

mological constant) one obtains the result,

ds2 =
r2

P 2
γijdx

idxj − 2dudr − 2Hdu2,

H =
R̃(u)

(N − 1)(N − 2)
− 2r(lnP ),u −

Λ

(N − 1)(N)
r2 − µ(u)

rN−2
, (5.6)

where γij(x, u) is unimodular spatial metric i.e. det γ = 1, P ≡ P (x, u), µ(u) are functions and

R̃ is the Ricci scalar associated with hij ≡ γij/P 2. From the remaining unsolved equations, the

spatial metric and function P also need to satisfy the constraints,

(case N > 3)

R̃ij =
R̃

(N − 1)P 2
γij ,

(γij
P 2

)
,u

= −2
γij
P 2

(lnP ),u (5.7)

Nµ(lnP ),u − µ,u =
16πn2(x, u)

N − 1
. (5.8)

For N = 3 the constraint (5.8) is more complicated,

1

2
(R̃,i h

ij),j −(R̃,i h
ij)(lnP ),j + 6µ(lnP ),u−2µ,u = 16πn2(x, u). (5.9)

Since in 4D R̃ depend on both u and x while in higher dimension it is only the function of

u [17]. In non-vacuum case ,the function n(x, u) corresponds to energy-momentum tensor of

pure radiationin. The vacuum RT solution can be obtained by setting n(x, u) = 0, and with

appropriated continuous limit one also recovers ST solution.
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Algebraic type

All solutions in higher dimensional RT class are typeD since they have two multiple WANDs

l = ∂r, n = ∂u −H∂r. The non-vanishing Weyl tensor components are given by [17],

Cruru = −µ(u)
(N − 1)(N − 2)

2rN
, Ciuuj = 2HCiruj = −µ(u)

(N − 2)

2rN−2
hij , (5.10)

Cijkl = r2R̃ijkl − 2r2

(
R(u)

(N − 1)(N − 2)
− µ(u)

2rN−2

)
hi[khl]j , (5.11)

by straightforward calculation (details in appendix A) one can see that,

nµnνCσµν[ρnα] = lµlνCσµν[ρlα] = 0. (5.12)

Hence all RT spacetimes are typeD and by take continuous limit n(x, u)→ 0, equation (5.12) is

preserved and the vacuum RT solutions (black holes) are also typeD. Before proceed to the next

example, there is an important remark here. Instead of become more complicated the RT metrics

are simpler in higher dimension, since R̃ can only depend on u. This may seem contradicted

with what we say earlier that“gravity is much richer in higher dimension” but this statement

will surely be confirmed in the next examples.
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5.3 Myers-Perry black hole

Originally, Myers-Perry (MP) solution was obtained by assume that the metric in higher dimen-

sion has the Kerr-Schild form,

gµν = ηµν − 2h(x)lµlν , (5.13)

where l is a null vector. Then solving the vacuum Eistien equation using this anzat metric.

The solution describes rotating black holes in any dimensions, which indeed reduces to the Kerr

solution in 4D. The difference between Kerr solution and its higher dimensional extensions is

that in higher dimension the black holes are allowed to rotate independently in more than one

plan. One can think of simple classical example by considers a rotating point mass, M , in R4

space with coordinates (x1, x2, x3, x4) then transforms them into a pair of polar coordinates,

x1 = r1 cosφ1 , x2 = r1 sinφ1, (5.14)

x3 = r2 cosφ2 , x4 = r2 sinφ2. (5.15)

In the new coordinates one can define the angular momentum, J1 = Mr2
1φ̇1 and J2 = Mr2

2φ̇2,

which are obviously independent quantities. In general spacetimes the number of rotation planes

is bN/2c, the integer value of a half of spatial dimension because each plane consists of two

coordinates, and for space with odd dimensions, there will be one coordinate lelf. From this

observation one might have guessed that the form of solutions are different in odd and even

dimension,

for even N

lµdx
µ = dt+

N/2∑
i=1

r(xidxi + yidyi) + ai(x
idxi − yidyi)

r2 + a2
i

, (5.16)

for odd N

lµdx
µ = dt+

(N−1)/2∑
i=1

r(xidxi + yidyi) + ai(x
idxi − yidyi)

r2 + a2
i

+
zdz

r
, (5.17)
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In both cases the function h(x) = − µr
2ΠF , where

F = 1−
bN/2c∑
i=1

a2
i (x

i2 + yi2)

(r2 + a2)2
(5.18)

Π =

bN/2c∏
i=1

(r2 + a2
i ). (5.19)

Note that, for five dimensional case the solution can be obtained from inverse scattering method

[21].The MP black holes are stationary with parameter ai related to rotation on each plane. All

MP black holes have event horizons of SN−1 topology, but only in cases of N = 3, 4, 5, 6, 8, that

the closed formed of horizons are known [5]. In four dimensional spacetime MP black holes reduce

to Kerr black holes, the only general solution for stationary(neutral) black hole which uniquely

characterized by mass and angular momentum. However, in higher dimension, for given mass

and angular momentum there may be black holes that have different horizon topology.

Algebraic type

The MP black holes were verified to be typeD [20]. To demonstrate this fact, we will need

theorem 2.2.1. to shorten the calculation. First we need to find the reflection symmetry. Let us

choose the coordinate [5] such that transform the MP metrics into the following form,

D is even

ds2 = −dt2 + (r2 + a2
i )(dµ

2
i + µ2

i dφ
2
i ) +

µr2

ΠF
(dt+ aiµ

2
i dφi)

2 +
ΠF

Π− µr2
dr2 (5.20)

D is odd

ds2 = −dt2 + r2dα2 + (r2 + a2
i )(dµ

2
i + µ2

i dφ
2
i ) +

µr2

ΠF
(dt+ aiµ

2
i dφi)

2 +
ΠF

Π− µr2
dr2. (5.21)

It is now easy to see that the metrics admit reflection symmetry (t, φ) → (−t,−φ). The non-

vanishing divergence is just to ensure that the new null vector we got is different from the

previous one which is necessary in case the exact form of null vector is not known ( in our case

it is easy to see that we really get a different vector). Therefore, by theorem 3.2.1, our choices

are now reduced to four. Next we will show that the Kerr-Schild spacetimes is always typeII
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(it can be more special) then together with our reduced choices, the MP black holes have to

be typeD, unless it is conformally flat. To prove this we need to calculate C0i0j , C010i, C0ijk

explicitly. The nice feature of Kerr-Schild form is that the null vector lµ, is null in both flat and

curved geometry i.e. gµν l
µlν = ηµν l

µlν = 0 and that ∇llµ = lµ,ν l
ν . Also note that in general

Kerr-Schild spacetimes l is not always geodesic, one can show that,

Rµν l
µlν = 2hgµν(lµ;σl

σ)(lν;ρl
ρ). (5.22)

Therefore l can not be geodesic unless the null component of energy-momentum tensor Tµν l
µlν

vanishes [22] but we will not have to worry about that here. Let us consider the curvature tensor,

Rµνσρ =
1

2
(gµσ,νρ +gρν ,µσ −gσν ,µρ−gµρ,νσ ) + 2Γλµ[σΓλρ]ν

= [− (hlµlσ) ,νρ− (hlν lρ) ,µσ + (hlσlν) ,µρ + (hlµlρ) ,νσ ) + 2Γλµ[σΓλρ]ν , (5.23)

where,

gσαΓαµν = Γσµν = −(hlσlµ),ν −(hlσlν),µ +ησα(hlµlν),α +2hlσlα(hlµlν),α . (5.24)

All expression above will be transform in to the tetrad basis and after some tedious caculation

(details in appendix B), one can verify that R0i0j = R01i0 = R0ijk = 0. From this we can

immediately calculate some components of Ricci tensor,

R00 = −R0001 −R0100 +R0i0jδ
i
j = 0 (5.25)

R0i = −R01i0 −R00i1 +R0i0jδ
i
j = 0. (5.26)

From the information we have here, it is enough to show that C0i0j = C0ijk = C010j = 0

and consequently, the Kerr-Schild spacetimes are typeII. Therefore, the MP black hole must

be typeD. Alternatively, instead of direct use of theorem 3.2.1; if one transform l → n using

reflection, then the metric is in the same form but has n in place of l. Then as n and l switch their

role, the calculation will finally yields C1i1j = C1ijk = C101j = 0, therefore, we can conclude

that n is also typeII WAND. Note that this is not true for arbitrary choice of energy momentum
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tensor but only those make n a geodesic i.e. Tµνn
µnν = 0, which is automatically satisfied for

vacuum spacetime. However, from this observation we can further conclude that the Kerr-Schild

spacetime with Tµνn
µnν = Tµν l

µlν = 0 is typeD.

5.4 Black rings

Black rings are the type of black holes that have toroidal horizon’s topology. The idea of ex-

tension is motivated from black string in 5D Kaluza-Klein space time(see later section on non-

asymptoticall flat solution); by performing Wick rotation on the compact direction and time

direction one obtains a metric for asymptotically flat spacetime. Alternatively, the black ring

can be generated by BZ method and its rod structure is given shown in the following figure.

Figure 2: The rod structure of black ring

As we mentioned earlier that, in principal, the black ring is the definition for any black hole with

horizon of S1 × Sn topology but the only known exact solution is in five dimensional spacetime.

The line element for the 5D neutral one plane rotating black ring is given in ring coordinates,

ds2 = − F (ỹ)

F (x̃)

(
dt̃− R̃C (1 + ỹ)

F (ỹ)
dψ̃

)2

+
R̃2

(x̃− ỹ)2
F (x̃)

[
−G(ỹ)

F (ỹ)
dψ̃2 − dỹ2

G(ỹ)
+

dx̃2

G(x̃)
+
G(x̃)

F (x̃)
dφ̃2

]
, (5.27)

where F (z) = 1 + λ̃z, G(z) = (1− z2)(1 + µ̃z) and R is the raduis of the ring. The range of the

coordinates are,

−1 ≤ x̃ ≤ 1, −∞ < ỹ ≤ −1, 0 ≤ ψ̃, φ̃ < 2π. (5.28)

This line element is the original form dicovered by R. Emparan and H. Reall [16]. In general,

the black ring is allowed to have two different angular momentums [21] but it is more difficult

to demonstrate the algebraic classification. There is other more convenient form [11, 15], which
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are related by coordinates transformation and altering some parameters,

t̃ = t, (x̃, ỹ) =
(
x−λ
1−λx ,

y−λ
1−λy

)
, (ψ̃, φ̃) =

1− λν√
1− λ2

(ψ, φ),

λ̃ = λ, ν̃ = λ−ν
1−λν , R̃ = R

√
1− λ2

1− λν
. (5.29)

The resulting line element is,

ds2 = −F (x)

F (y)

(
dt+R

√
λν(1 + y)dψ

)2

+
R2

(x− y)2

[
−F (x)

(
G(y)dψ2 +

F (y)

G(y)
dy2

)
+ F 2(y)

(
dx2

G(x)
+
G(x)

F (x)
dφ2

)]
,

(5.30)

where F (z) = 1 − λz, G(z) = (1 − z2)(1 − νz). The black ring in form (5.30) will be mainly

used in this review. Note that, there are sigularities at y = x = −1 and x = 1, called canonical

singularity which can be eliminated by setting [11],

∆ψ = ∆φ = 2π

√
1 + λ

1 + ν
, (5.31)

λ =
2ν

1 + ν2
. (5.32)

The quantities ∆ψ,∆φ are the peroid of black ring which is simply the range of angular coor-

dinates. Thus, there are only two free parameters in the metric, say R, the radius and ν(or

alternatively λ), the parameter that determines the mass of black ring. These can be interpreted

as balancing the force in the ring; if the radius and the mass are fixed then the angular momen-

tum need to be adjusted to keep the black ring in balance. The event horizon of the black ring

is the surface y = 1/ν.

General properties and limit

Although Black ring belongs in stationary axisymmetric class of solutions as well as MP black

hole, they are two distinct solutions i.e. by any continuous change of parameters black ring

can not turn into MP solution. There is only one common situation that both become naked

singularity (see figure 3). However, The form of metric (5.30) can be used as MP metric if one
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sets λ = 1 but leaves µ as a free parameter. As mentioned previously, the stationary black holes

are not unique in higer dimension, the black ring is an example of this violation. Suppose we

have MP black hole and black ring, both rotate in one plane, then the area (reduced area) of

horizon and the angular momentum per unit mass of them are given by [16],

MP black hole, a = 2
√

2(1− j2),

Black ring, a = 2
√
ν(1− ν), j =

√
(1+ν)3

8ν

Figure 3: MP black hole and and black ring

The dashed line represents the MP black holes and the dotted one represents the black rings.

If assuming both MP black hole and balck ring have the same mass, the plot showed that they

can have the same angular momentum. Notice that the black ring exists near the maximum

momentum of the MP black hole, moreover, from figure 3 there is the situation when black 5D

one plane rotating MP black hole and black ring have the same entropies (which are proportional

to their area). Therefore it was suggested that at some point, when the MP black hole spin fast

enough, it might turn in to black ring [9, 13], although the change of horizon topology is not

classically allowed. However, we can continue adding angular momentum, which have to be

conserved, if the cosmic censorship conjecture is correct there must be the way for the black hole

to avoid naked singularity.

Algebraic type

The spacetimes of rotating black ring do not admit any WAND , yet if consider only on the event

horizon, its Weyl tensor is typeII. However, when the ring is static (ν = 0 which is unlikely

physical), it can have typeIi Weyl tesor[15]. Let us invatigate some more details on typeII
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horizon. First of all, we need to make coordinates transformation,

dχ = dψ +

√
−F (y)

G(y)
dy (5.33)

dv = dt−R
√
λν(1 + y)

√
−F (y)

G(y)
dy, (5.34)

where the remaining coordinates stay the same. We transform the metric into coordinates

(v, χ, y, x, φ), so it is regular on the horizon,

ds2 = −F (x)

F (y)

(
dv +R

√
λν(1 + y)dχ

)2

+
R2

(x− y)2

[
−F (x)(G(y)dχ2 − 2

√
−F (y)dχdy) + F (y)2

(
dx2

G(x)
+
G(x)

F (x)
dφ2

)]
,

(5.35)

Then it can be shown that the null Killing vector, l = ∂v −
√

ν
λ

1
R(1+ν)∂χ, is a WAND. To verify

that l satisfies Kµρα = lν lσCµνσ[ρlα] = 0, one needs to check 15 independent components of

Kµνρ which require powerful computing effort since the Weyl tensor is very complicated even on

the event horizon (list of some manipulable curvature tensor components is in apendix C). The

full calculation of Weyl tensor and its algebraic type were performed in Mathematica using the

package from [31]. However, there are some calculation that can be carried out by hand,

Kyφy = (Cyvvφ + lχCyχvφ + lχCyvχφ + (lχ)2Cyχχφ)ly, (5.36)

Kvφy = (Cvvvφ + lχCvχvφ + lχCvvχφ + (lχ)2Cvχχφ)ly,

= (lχCvχvφ + (lχ)2Cvχχφ)ly, (5.37)

Kvxy = (Cvvvx + lχCvχvx + lχCvvχx + (lχ)2Cvχχx)ly,

= (lχCvχvx + (lχ)2Cvχχx)ly, (5.38)

Kχxy = (Cχvvx + lχCχχvx + lχCχvχx + (lχ)2Cχχχx)ly,

= (Cχvvx + lχCχvχx)ly. (5.39)

The components Cχvvx, Cχvχx and those with φ appear only once vanish, thus all (5.39)-(5.39)

vanish everywhere(not only on event horizon). The rest 11 terms only vanish at y = 1/ν. Note
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that the divergence scalar vanish since the WAND is a constant vector, thus, this result does not

contradict to theorem 3.2.1. Therefore, the rotating black rings are algebraically special only in

certain area.

5.5 Black Saturn

Black saturn is the black hole with disconnected event horizon, one is spherical and another

is toroidal. The saturn is stationary axisymmetric solution botained from inverse scattering

method, its rod structure is shown in figure 4. Note that the parameters ai was rescaled for

convenience, since it does not change the solution, from now we will assume that a1 = 0 ≤ a5 ≤

a4 < a3 ≤ 1 = a2(in this case the choice a3 = a4 is forbiden to avoid canonical singularity in the

solution).

Figure 4: The rod structure of black saturn

The line element of black saturn is given by [18],

ds2 = −Hx

Hy

[
dt−

(
ωψ
Hy

+ q

)
dψ

]2

+Hx

[
Gy
Hy

dψ2 + k2P
(
dρ2 + dz2

)
+
Gx
Fx

dφ2

]
, (5.40)

where,

Hx = F−1
(
M0 + c21M1 + c22M2 + c1c2M3 + c21c

2
2M4

)
, (5.41)

Hx = F−1

(
M0

µ1

µ2
+ c21M1

ρ2

µ1µ2
+ c22M2

µ1µ2

ρ2
+ c1c2M3 + c21c

2
2M4

µ2

µ1

)
, (5.42)

Gx =
ρ2µ4

µ3µ5
, (5.43)

Gy =
µ3µ5

µ4
, (5.44)

P = (µ3µ4 + ρ2)(µ1µ5 + ρ2)(µ4µ5 + ρ2), (5.45)

ω =
c1R1

√
M0M1 + c2R2

√
M0M2 + c21c2R2

√
M1M4 − c1c22R1

√
M2M4

F
√
Gx

(5.46)
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The polynomails F,M0,M1,M2,M3,M4 are defined by,

M0 = µ2µ
2
5(µ1 − µ3)2(µ2 − µ4)2(ρ2 + µ1µ2)2(ρ2 + µ1µ4)2(ρ2 + µ2µ3)2, (5.47)

M1 = µ2
1µ2µ3µ4µ5ρ

2(µ1 − µ2)2(µ2 − µ4)2(µ1 − µ5)2(ρ2 + µ2µ3)2, (5.48)

M2 = µ2µ3µ4µ5ρ
2(µ1 − µ2)2(µ1 − µ3)2(ρ2 + µ1µ4)2(ρ2 + µ2µ5)2, (5.49)

M3 = 2µ1µ2µ3µ4µ5(µ1 − µ3)(µ1 − µ5)(µ2 − µ4)(ρ2 + µ2
1)(ρ2 + µ2

2),

×(ρ2 + µ1µ4)(ρ2 + µ2µ3)(ρ2 + µ2µ5) (5.50)

(5.51)

M4 = µ2
1µ

2
2µ

2
3µ

2
4(µ1 − µ5)2(ρ2 + µ1µ2)2(ρ2 + µ2µ5)2, (5.52)

(5.53)

F = µ1µ5(µ1 − µ3)2(µ2 − µ4)2(ρ2 + µ1µ3)(ρ2 + µ1µ4)(ρ2 + µ2µ3)

×(ρ2 + µ2µ4)(ρ2 + µ2µ5)(ρ2 + µ3µ5)

5∏
i=1

(ρ2 + µ2
i ). (5.54)

Parameters c1, c2 came from the constant vector introduced in BZ method. The real parameter

q is there to ensure that the metric is asymtotically flat and k is an integration constant. Note

that q and k are not free parameters and can be determined from asymptotic behavior of the

metric [18] but we do not need their exact form here. However, it is important to know that c1

need to be fixed, i.e. |c1| =
√

2a3a4
a5

unless there will be leftover singularity in z coordinate from

the seed metric.

General properties and limits

As mentioned earlier the black saturn is a combination of two different horizons, H1 for spherical

horizon and H2 for toroidal horizon but not a combination of perfect MP black hole and black

ring; horizon Hi are distorted. However, in appropriated parameter limits that eliminate one

singularity black saturn metric can turn into both MP black hole and Black ring with one angular

momentum,

MP a5 → a4 and then a4 → 0,

BR c2 = 0 and then a2 = a3.

The details are shown in Appendix of [18]. Note that both limits are not continuous, for MP

black hole limit, if we take a5 → 0 then c1 blows up and then the metric blows up before we can
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get any sensible solution. In the case of black ring after the limits were taken, the region that

used to be singularity just become smooth (MP black hole singularity).

On each horizon there is a null killing vector ∂t + Ωi∂ψ,

Ω1 = (1 + a4)

√
a4a5

2a3

a5(1− a3)− a3(1− a4)(1− a5)c̄2
a5(1− a3) + a3a4(1− a4)(1− a5)c̄22

(5.55)

Ω2 = (1 + a4)

√
a3a5

2a4

a5 − a4(1− a5)c̄2
a5 − a5(a3 − a4)c̄2 + a3a4(1− a5)c̄22

, (5.56)

where c̄2 = c2
c1(1−a4) . Althogh this metric is very complicated, from the agular velocity Ω we can

see that this solution only rotates in one plane so it is not the most general solution for black

saturn in 5D.

Algebraic type

For the time being, there is no literature on algebraic type of black saturn possibly because of its

complication; one needs to use numerical analysis only to verify that it is Ricci flat. Therefore

We can only make some observation. Since neither of parameter limits of black saturn to MP

black hole and black ring are continuous, we can’t apply the results from previous calculations.

However, recall that in Myers-Perry black hole and Black ring cases, the null Killing are WAND

on the horizon hence it might be a good start to show that whether or not Killing vectors of

black saturn is WAND, even so that might require some appropriate numerical method.
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5.6 Non-asymptotically flat solutions

The well-known example of non-asymptotically flat vacuum solution are black strings/p-branes

which are the product of the black hole and a p dimensional space, such as Rp, Sp etc. Hence the

objects possess the string/brane-like singularity. One example is the product of Schwarzschild

spacetime MBH and real line R (static black string) which the line element can be written as,

ds2 = −(1− 2m

r
)dt2 + (1− 2m

r
)−1dr2 + r2dΩ2

2 + dy2, (5.57)

where y is added coordinate. From this metric, it is clear that the sigularity at r = 0 is now

extended along y direction and makes this spacetime non-asymtotically flat.

The Kaluza-Klein black string can be obtained by compactify R and the spacetime becomes

MBH × S1. Although, the existence of black string breaks the Lorentz symmetry (boost in y

direction), the compactness of Kaluza-Klein spacetime provides us new U(1) symmetry. The

breaking symmetry can be restored by introducing a gauge field, as the representation of U(1)

Lie algebra, in the metric [25]. Consider the boost (t, y) 7→ (t′, y′) = (t coshα−y sinhα, y coshα−

t sinhα) define,

At = −m coshα sinhα

r + 2m sinh2 α
(5.58)

e−4φ/
√

3 = 1 +
2m sinh2 α

r
. (5.59)

Scalar field φ is the result of dimensional reduction of form to 5D standard volume form into

(4+1)D standard volume (wedge of all dxµ with factor
√
−g) . The line element then can be

written in the invariant form,

ds2 = e−4φ/
√

3(dy + 2Aµdx
µ)2 + e2φ/

√
3g̃µνdx

µdxν . (5.60)

The metric g̃µν form is similar to the Schwarzschild metric,

g̃µνdx
µdxν = −r − 2m

R
dt2 + (

r − 2m

R
)−1dr2 +RrdΩ2

2, (5.61)
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where R =
√
r2 + 2m(cosh2 α− 1). The Wick rotation y 7→ iy, Aµ 7→ iAµ of this metric yields

“bubbles” which are point-like regular solutions in Kaluza-Klein spacetime [7]. If instead one

generalized 4D dilation C-metric into Kaluza-Klein spacetime[3, 6, 7] and then performing the

transformation t 7→ iψ, ψ 7→ it one obtians rotating black ring [9, 27]. This is the original

approach toward the discovery of black ring.

Although, CMPP classification can not be used on this kind of black holes, it is worth to have

some ideas about them. There is an attemp to classify the Weyl tensor on five dimension Kaluza-

Klein spacetime [10] however the De Smet approach only works for five dimension and does not

seem to lead to generalized version of Goldburg-Sachs theorem [27].

6. Summary and Discussion

We have investigated many higher dimensional black holes constructed from different methods.

We have seen that the extension of AS solutions in 4D i.e. Schwarzschild-Tangherlini black hole,

RT black hole and MP black are all algebraically special of TypeD in CMPP classification. While

only some variation of black ring, namely the static black ring admit WAND at every points and

was classified as typeIi. In case of one plane rotating black ring, there is no global WAND

but locally on event horizon the Weyl tensor is typeII. The black saturn is too complicated

for the exact calculation but an observation was made that it might be useful to determin the

algebraic type of the horizon first. The algebraic property of disconnected black hole might help

us understand how the null vector behave on different horizon. In the last part of chapter 4,

we briefly discuss the construction of Kaluza-Klein black string, which gave the idea of how the

back ring was originally discovered.
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A WAND of RT black hole

From the null vectors we chose in section 5.2, let us first look at the equation for vector l. The

only non zero component of l is lr = 1(and lu = 1 for covector),

Cσrr[ρlu] = Cσrri = 0. (A1)

For vector n the equation get slightly more complicated because n = ∂u − H∂r and covector

n∗ = −Hdu− dr, both have two non-vanishing componets,

Kσρα ≡ nµnνCσµν[ρnα]

= Cσuu[ρnα] −H
(
Cσur[ρnα] + Cσru[ρnα]

)
+H2Cσrr[ρnα]. (A2)

Observe that K is anti-symmetric in the last two indices, thus Kµαα = 0. Furthermore, all Weyl

component with only one spatial index vanish and ni = 0, hence,

Kiur = Kiru = Kuri = Krui = Krij = Kuij = Kijk = 0. Let us consider other non-trivial

components separately,

i) σ = i, ρ = j

Kijα = Ciuu[jnα] − 2HCiur[jnα]

= 2HCiur[jnα] − 2HCiur[jnα] = 0. (A3)
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Then from these vanishing components imply, Kiuj = Kirj = 0.

ii) σ = u, r and ρ = r, u.

Kuuα = −HCuru[unα] +H2Curr[unα],

= −HCuru[unr] +H2Curr[unr],

= HCururnu +H2Currunr = 0. (A4)

Krrα = Cruu[rnα] −HCrur[rnα],

= Cruu[rnu] −HCrur[rnu],

= Cruurnu +HCrurunr = 0. (A5)

From above result we also have Kuru = Kuiu = Krur = Krir = Kuir = Kriu = 0. Therefore n is

typeII WAND.

B Curvature tensor and Ricci tensor of Myers-Perry Black hole

First of all consider the optical matrix Lij , the Christoffel term of covariant derivative of lµ

vanish when contracting with mµ
i ,m

ν
j hence,

Lij = lµ;νm
µ
im

ν
j = lµ,νm

µ
im

ν
j (B1)

Ricci tensor

Let us substitute metric (5.13) into equation (5.23), from Christoffel connection define in (5.24),

observe that Γνµν = 0, hence, the Ricci tensor takes the form,

Rµν = Γσµν ,σ −ΓσανΓσµσ

= ησρ(hlµlν),σρ−(hlσlµ),νσ −(hlσlν),µσ

+2h
[
D2h+Dh(lσ,σ )− h(lσ,ρ l

ρ
, σ − ηραlσ,ρ lσ,α )

]
(B2)
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Curvature tensor

From this expression in (5.23), the second derivative terms are quite easy to deal with, so let us

begin by consider the connection term. In term of h(x) and lα we have,

ΓλµσΓλρν = −Dhlµlρ (h,ν lσ + h,σ lν + hlσ,ν +hlν ,σ −2hDhlσlν)

+h2(lλ,ν lσ + lλ,σ lν)(lλ,µ lρ + lλ,ρ lµ)

−h(hlµlρ),λ (lλ,ν lσ + lλ,σ lν)− h(hlµlσ),λ (lλ,ν lρ + lλ,ρ lν)

−Dhlσlν (h,µ lρ + h,ρ lµ + hlρ,µ +hlµ,ρ ) + (hlσlν),λ (hlµlρ),
λ . (B3)

The expression might looks tedious but observe that,

Γλµ[σΓλρ]ν l
µ = 0. (B4)

Therefore we can drop this Christoffel connection terms for the Curvature tensor components

in tetrad basis that containing ‘0’ index. This connection term also vanishes when contract

with tensor mσ
im

ρ
jm

µ
k . Hence the only curvature tensor component that contains non-vanishing

connection term is R1i1j ,

2Γλµ[σΓλρ]νn
µmρ

jn
σmν

i = 2hDhlρ,νm
ν
(im

ρ
j) + h2(lλ,ν lλ,ρ − 2lλ,(ν lρ),λ + lν,λlρ,

λ)mν
im

ρ
j . (B5)

Next consider the second derivative terms and expand one of them explicitly,

(hlµlσ),νρ = h,νρlµlsigma + h,ν (lµ,ρ lσ + lµlσ,ρ ) + h,ρ (lµ,ν lσ + lµlσ,ν )

+h (lµ,νρ lσ + lµlσ,νρ +lµ,ν lσ,ρ +lµ,ρ lσ,ν ) . (B6)

The other three terms are obtianed by permuting the indices. Now consider curvature tensor in

tetrad basis, using (3.1) and fact that lµ is null geodesic vector which yeilds lµ,ν l
µ = lµ,σ l

σ =
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l2 = 0, then,

(hlµlσ),νρ l
µlσmν

im
ρ
j = mν

im
ρ
jh,νρl

2l2 + h,ν l
2 (lµ,ρ + lσ,ρ) + h,ρl

2 (lµ,ν + lσ,ν)

+h
(
lµ,νρl

2 + lσ,νρl
2 + 2(lµ,ν l

µ)(lσ,ρl
σ)
)

= 0. (B7)

By permuting indices, one also finds that,

(hlρlν),µσ l
µlσmν

im
ρ
j = (hlν lσ),µρ l

µlσmν
im

ρ
j = (hlµlρ),νσ l

µlσmν
im

ρ
j = 0. (B8)

All together we have,

R0i0j = Rµνσρl
µmν

i l
σmρ

j = 0. (B9)

. Likewise, R0ijk = R010i = 0.

R0101 = −D2h (B10)

R01ij = 2DhL[ij] + 2hlµlρ,µσm
σ
[im

ρ
j] (B11)

R0i1j = −DhLij − 2hlµl[σ,µ]ρm
σ
im

ρ
j (B12)

R011i = mρ
i l
µh,µρ −Dhnσmρ

i (2l[σ,ρ] + lσ,ρ)− hlµnσmρ
i (2lσ,µρ − lρ,µσ − lµ,σρ) (B13)

R1ijk = 2δihL[jk] + 2δ[khLj]i

+2h(lσ,νρm
ν
im

σ
[jm

ρ
k] + lµ,νn

µmν
i L[jk] + lµ,νn

µmν
jL[ik]) (B14)

Rijkl = 4h(L[ji]L[kl] +mν
[jm

µ
i]lν,ρlσ,µm

σ
[lm

σ
k]) (B15)

R1i1j = −hν,ρmν
im

ρ
j − 2∆hL(ij) + 4L1(jδi)h− 2δ(ihLj)1 + h[2lµ,νρn

µmν
im

ρ
j

−2lρ,µσn
µmρ

(im
σ
j) − 2L11L(ij) + 2L1(iLj)1 − 2L1iL1j − 2L(j|1|Li)1

+2DhL(ji) + hmν
im

ρ
j (l

λ
,ν lλ,ρ − 2lλ,(ν lρ),λ + lν,λl

λ
ρ )] (B16)
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C Curvature tensor of Black ring

The linearly independent nonvanishing curvature tensor components (which is also Weyl tensor)

of neutral black ring are the following,

Rvyvx =
λ(1− λx)

(x− y)(1− λy)2
, Rvxχy = R

√
λν

(1 + λ)(1− λx)

(x− y)(1− λy)2
(C1)

Rvχyx = −R
√
λν

(1− λx)

2(x− y)(1− λy)
, Rvyχx = R

√
λν

(1− λx)(1− λ(2 + y))

2(x− y)(1− λy)2
(C2)

Ryφxφ = R2λ
(1− x2)(1− νx)(1− λy)

2(x− y)3(1− λx)
, Ryφyφ = −Rλ (1− x2)(1− νx)

2(x− y)3
(C3)

Rvyvy = − λ(1− λx)2

(x− y)(1− λy)3
, Ryxyx = R2 λ(1− λx)

2(x− y)3(1− x2)(1− νx)
(C4)

Rχyvy = −R
√
λν

(1 + λ)(1− λx)2

(x− y)(1− λy)3
, Rχyyx = −R2 λ(1− λx)

2(x− y)3
√
−1 + λy

(C5)

Ryxxv = R2

√
λν(1− λx)

2(1− x2)(1− νx)(x− y)
√
−1 + λy

, Rvφφy = R

√
λν(1− x2)(1− νx)

2(x− y)
√
−1 + λy

(C6)

Rvχvχ = −λ (1− y2)(1− νy)(ν − λ+ 2x− (λ+ 3ν)x2 + 2λνx3)

4(1− λy)3
(C7)

Ryvvχ = −λ (ν − λ+ 2x− (λ− 3ν)x2 + 2λνx3)

4(1 + λy)5/2
(C8)

Rvχχy = R
λ
√
λν(1 + y)(ν − λ+ 2x− (λ− 3ν)x2 + 2λνx3)

4(1 + λy)5/2
(C9)

Rvφvφ =
λ(1− x2)(1− νx)

4(1− λx)2(1− λy)2
[(λ− ν)(1− 2λx+ x2)− y(2 + λ(ν − λ)− 2x(ν + λ) + λ(ν + λ)x2)

+2ν(1− λx)2y2] (C10)

Rχyχx = R2 λ(1 + y)(1− λx)

2(x− y)3(1− λy)2
[−1 + ν(3 + 2λ)x2 + y(1 + λ+ ν + 2ν(3 + 2λ)x+ λνx2)

y2(2ν + λ(−1 + ν + 2νx))] (C11)

The other non-vanishing linearly independent terms are, Rχφχφ, Rvφχφ, Rχφyφ, Rχyχy, Rχyχx,

Rxvxv, Rχxvx, Rxχxχ, Rxyxχ but they are too complicated to write down. Other terms that is not

related to above component by symmetry of curvature tensor vanish.
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