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Chapter 1

Introduction

The AdS/CFT correspondence is one of the most influential conjectures that

has been discovered recently in theoretical physics. It was first stated by

Juan Maldacena [16] for a particular highly symmetric quantum field theory

called N = 4 super Yang-Mills in four space-time dimensions, and a string

theory called type IIB formulated on a particular space-time background.

At a basic level it states that a quantum theory of gravity, such as string

theory, is dual to a lower dimensional quantum field theory without gravity.

Just the statement alone opens up many speculative ideas and many

questions. For instance this could be a way of learning more about quantum

gravity, a field that it notoriously challenging with many candidate theories

[5]. Another possible use of the correspondence is to use it in the opposite

direction: to use developments in string theory to describe certain classes

of quantum field theories. This is the line of argument of this dissertation,

which will consider quantum field theories which describe condensed matter

systems under very specific physical conditions [26].

The condensed matter systems in question will be those that whose be-

havior can be described by the boson-Hubbard model, namely bosons whose

dynamics are confined to sites of a lattice [28, section9]. The reason that the

boson-Hubbard model is of interest is because at a certain quantum critical

point between quantum phases of matter the system can be described by a

quantum field theory with just the right symmetries to apply the AdS/CFT
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correspondence [29]. It is a remarkable duality between gravitational sys-

tems and ultra-cold atoms, which is only possible because of the loss of a

physical length scale in the condensed matter system. It is this that allows

the duality to be conjectured, and the reason that systems that naively

have completely different physical distance scales are actually identical by

the absence of scale.

The structure of this dissertation is to introduce the AdS/CFT corres-

pondence in section 1 in a way that makes it easier to apply to condensed

matter systems. Issues regarding the degrees of freedom, the Weinberg-

Witten theorem [37] which appears to forbid such a duality, and the descri-

bing the extra dimensions of the gravity theory will be discussed.

Section 2 will introduce the boson-Hubbard model and show that the low

energy limit of the model can be described by a particular type of quantum

field theory amenable to a gravity description via AdS/CFT. Finally the

duality will be used to predict physical properties of the system that other

theories have been unable to provide [29]. The dissertation will conclude

with additional developments that have been made, and scope for further

research in this field.

3



Chapter 2

The AdS/CFT correspondence: a re-

view

This section will serve to motivate the AdS/CFT correspondence by asking

questions around the idea of a gauge-gravity duality. The first few sections

will introduce the Weinberg-Witten theorem and the holographic principle

which places restrictions on the form such a duality could take, such as

the gravity theory having more space-time dimensions than the field theory.

After introducing the ’t Hooft large N limit the following sections will match

the extra dimensions using the renormalisation group and the symmetries

of the two theories by observation. The concluding section considers what

conditions a QFT needs to have a gravity dual with an asymptotically AdS

background besides conformal invariance.

2.1 The Weinberg-Witten theorem

When quantizing gravity it is inevitable that a spin 2 particle will emerge

from the procedure commonly referred to as the graviton. When comparing

a quantum gravity theory with a QFT a natural question would be is it

possible to have a spin 2 particle in a QFT? In principle it seems one could

form a bound state of say two gauge bosons such that they behave like a

spin 2 particle. The theorem first proved by Steven Weinberg and Edward

Witten [37] sheds light on this question:
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Theorem 2.1.1 A QFT with a Poincaré covariant conserved stress tensor

T µν forbids massless particles of spin j > 1 which carry momentum (i.e.

P µ =
∫
d3x T 0µ 6= 0.)

An outline of the proof the Weinberg-Witten theorem will be provided

here based on the arguments of the original paper [37] and a review by

Florian Loebbert [15]. Additional details, especially those concerning nor-

malization of one particle states can be found in the aforementioned review.

The proof will be divided into two parts, the first will (i) show that the

matrix elements corresponding to the the tensor T :

〈p′,±j|T µν |p,±j〉 (2.1.1)

cannot vanish in the limit in which p′ → p. The second part (ii) will

show that the same matrix elements must vanish under the assumptions of

the theorem if the helicity of massless particles and j > 1 for the matrix

elements associated with T.

(i) To show the first result we will make use of the 4-momentum ope-

rator associated with T µν in the statement of the theorem. If the massless

particles are charged under T then their eigenvalues with respect to T must

be non-zero. This will be one of the crucial assumptions of the theorem.

We will define the 4-momentum eigenvalues of pure momentum 1-particle

massless states as:

P µ|p,±j〉 = pµ|p,±j〉. (2.1.2)

All 1-particles states can be described as linear combinations of these

pure momentum eigenstates with their momentum given by a linear combi-

nation of the same eigenstates’ eigenvalues. We can then define the matrix
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elements above as follows:

〈p′,±j|P µ|p,±j〉 = pµδ(3)a (p′ − p) (2.1.3)

where we have normalized the momentum eigenstates using δa the nascent

delta function defined in terms of the delta function as lima→0 δ
(3)
a (p′−p) =

δ(3)(p′ − p). Normalizing using nascent delta functions ‘smears out’ the

single particle state excitations allowing a more physical interpretation of

results found using this convention as opposed to using ordinary δ-functions.

For more details see [15]. The use of smeared out delta-functions corres-

ponds to integrating not over all space, but finite volumes. The definition

of the nascent delta-function above is defined by integrating it over a ball of

radius 1/a which becomes an infinite sized ball in the limit a→ 0. We will

use δa to define the 4-momentum operator as in the theorem over a finite

volume:

〈p′,±j|P µ|p,±j〉 =

∫
Va

d3x〈p′,±j|eiP·xT 0µ(t,0)e−iP·x|p,±j〉

=

∫
Va

d3xei(p
′−p)·x〈p′,±j|T 0µ(t,0)|p,±j〉

= (2π)3δ(3)a (p′ − p)〈p′,±j|T 0µ(t,0)|p,±j〉.(2.1.4)

If we compare this result with our previous result ?? we obtain the

identity:

lim
p′→p
〈p′|T 0µ|p〉 =

pµ

(2π)3
. (2.1.5)

We can generalize this result using Lorentz covariance:

lim
p′→p
〈p′|T µν |p〉 =

pµpν

E(2π)3
. (2.1.6)

Because we assumed that the eigenvalues of our one-particle states were

non-zero these matrix elements must be non-zero.
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(ii) To show the second result we will first consider this relation for

light-like momenta p′ and p:

(p′ + p)2 = (p′)2 + p2 + 2(p′ · p) = 2(p′ · p)

= 2(p′ · p− |p′||p|

= 2|p′||p|(cos(φ)− 1) ≤ 0. (2.1.7)

where φ is the angle between 3-momenta p′ and p. Because we are

considering the limit p
′ → p the case of φ = 0 is not applicable, hence

throughout the rest of this proof we will assume φ is non-zero. First by

Poincaré covariance of our states we will choose a frame such that they

have opposite 3-momentum: p = (|p|,p), p′ = (|p|,−p). Next we will

consider a rotation of θ about the 3-momentum p axis. The one-particle

states transform as:

|p,±j〉 → e±iθj|p,±j〉

|p′,±j〉 → e∓iθj|p′,±j〉. (2.1.8)

Thus the matrix elements transform as:

〈p′,±j|T µν(t,0)|p,±j〉 → e±2iθj〈p′,±j|T µν(t,0|p,±j〉. (2.1.9)

Another way we can define a rotation is as fundamental representations

of the Lorentz group acting on the matrix T . We can compare the first

and this description of the rotation in the same way we compare active and

passive transformations. The first description of the rotation transforms the

basis states, whilst the second description transforms the operators that act

upon the states. The second description can be written as:

〈p′,±j|T µν(t,0)|p,±j〉 → Λ(θ)µρΛ(θ)νσ〈p′,±j|T ρσ(t,0|p,±j〉. (2.1.10)

7



Equating both transformation descriptions:

e±2iθj〈p′,±j|T µν(t,0|p,±j〉 = Λ(θ)µρΛ(θ)νσ〈p′,±j|T ρσ(t,0|p,±j〉. (2.1.11)

We now note that because Λ is a representation of a rotation in the

Lorentz group its eigenvalues can only be either eiθ or 1. This constrains

the values j can possibly take to either 0, 1/2, or 1, for any other value the

matrix elements of T vanish. We chose a reference frame for our analysis,

but using Poincaré covariance of T and Poincaré invariance of helicities this

result carries over to all Lorentz frames of reference.

Hence for a Poincaré covariant tensor T µν it follows that:

lim
p′→p
〈p′,±j|T µν |p,±j〉 = 0 for j > 1. (2.1.12)

Hence the first result shows that 〈p′|T µν |p〉 cannot vanish in the limit

p
′ → p and the second result show that 〈p′|T µν |p〉 must vanish if j > 1,

hence we obtain the result that massless particles with helicity j > 1 vanish

in a Poincaré covariant QFT with covariant T µν .

This appears to forbid any spin-2 particle, even bound states, which rules

out the graviton, since any particle with spin-2 shares all the properties

of the graviton [15, page 18]. However, there is a window provided by

general relativity. For any stress-energy tensor of a gravity theory that

obeys Einstein’s field equations T µν ∝ δS
δgµν

where S is the Einstein-Hilbert

action. This vanishes by the equations of motion of the gravity theory.

Thus the stress energy tensor for the full gravity theory vanishes and so the

Weinberg-Witten theorem no longer applies since a non-vanishing stress-

energy tensor was assumed.

We can still have massless particles with momentum since the stress-

energy tensor is the sum of the stress-energy tensor of the QFT plus the

stress-energy of just pure gravity, T µν = T µνQFT +T µνQG. From the holographic
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principle we will assume that the QFT lives on the boundary of the whole

space-time with gravity living in the ’bulk’ of the space-time. T µνQFT is

Poincaré covariant on the boundary, but need not be in the bulk, hence

the Weinberg-Witten theorem applies on the boundary and so there can

be no massless particles of spin > 2 there, but in the bulk, since there

is no Poincaré covariant tensor except the total one which vanishes, the

Weinberg-Witten theorem does not apply. This means a graviton composite

particle can exist, but not on the boundary of the space-time where the QFT

resides. It must live in the bulk with at least one extra dimension necessary

to describe it, corresponding to the radial distance from the boundary.

2.2 The holographic principle

The holographic principle was first proposed by Gerard ’t Hooft [35] with

additional contributions to bring it into the field of string theory by Leonard

Susskind [33]. Also many of the ideas have been discussed by Charles Thorn

[33]. The result stems from the work of Bekenstein and Hawking that states

that black holes not only have a temperature [12], but also an entropy [2]

that is proportional to the black hole’s surface area A:

SBH =
1

4

c3kB
G~

A (2.2.1)

where c is the speed of light, kB is Boltzmann’s constant, G is Newton’s

gravitational constant, and ~ is Planck’s constant. The only other result

that the holographic principle requires is simply that if enough energy ac-

crues within a small enough volume the matter will undergo gravitational

collapse and form a black hole. This result can be seen in the canonical

theoretical example of the Schwarzschild solution, but also the more ge-

neral cases of rotating Kerr and charged Reissner-Nordström solutions of

Einstein’s field equations, see [36, pages 312, 158, and 317] for more details.

Both of these results together imply the holographic principle, that the

maximum entropy in a space-time volume is proportional to its surface area.
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This is exactly the entropy of the largest black hole that can occupy this

volume. To see why this is consider a volume of space-time V with surface

area A and entropy S > SBH ∝ A. Assume also that the energy in this

volume is less than that of a black hole (otherwise the energy density would

cause gravitational collapse and a black hole would be formed). Now add

energy in any form to the volume so that the energy density reaches the va-

lue at which a black hole is formed. The configuration we have now has less

entropy than the one we started with, since S > SBH . This violates the se-

cond law of thermodynamics, so rather than do that, ’t Hooft assumed that

a black hole is the configuration with the highest entropy per unit volume,

and thus the maximum entropy in a space-time volume is proportional to

the surface area of the volume.

This is far smaller than the entropy of a local QFT on the same space,

even with some UV cutoff equivalent to a length scale such as the Planck

length lP . Such a theory would have a number of states Ns ∝ nV/l
3
P (where

V is the spatial volume of the QFT and n is the number of states per site)

with maximum entropy ∝ ln(Ns) [18, 33]. Hence for a quantum theory of

gravity to be dual to a QFT, the QFT would have to be formulated on a

a lower number of dimensions, at least one dimension lower, so that the

degrees of freedom can at least in principle be equated.

2.3 The ’t Hooft limit

The ’t Hooft large N limit was first discovered by Gerard ’t Hooft in 1974

[34] whilst trying to find a way of simplifying the calculations of quantum

chromodynamics. He used the rank of the gauge group as a variable of the

theory, hence instead of SU(3) he used SU(N) for N an integer parameter.

As the name suggests by taking N to approach infinity the theory drastically

simplifies calculations of the theory in an illuminating fashion. Consider the

Lagrangian of the theory for a gauge field Aaµ in the adjoint representation
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of SU(N):

L = − 1

4g2YM
tr(FµνF

µν) (2.3.1)

where F a
µν = ∂µA

a
ν − ∂νA

a
µ − iεabcAbµA

c
ν such that µ, ν = 0, 1, 2, 3 and

a = 1, . . . N2 − 1.

The field A has been defined differently from the usual form in the follo-

wing way Aaµ → g−1YMA
a
µ so that in this form the field strength is independent

of the gauge coupling. This form will become useful later in this section.

If we expand the Lagrangian out we see that the theory has 3-point and

4-point interaction vertices. Now consider the two vacuum diagrams (i) and

(ii):

(a) (b)

Figure 2.1: The connected vacuum diagrams associated with four 3-point

interactions.

To work out their dependence on N and the coupling gYM we need

to establish some rough Feynman rules. From the Lagrangian the kinetic

term has a factor of g−2YM in front of it, hence by inverting it to get the

propagator we infer that the propagator of the theory is proportional to

g2YM . Each of the interaction vertices has a factor of g−2YM in front of it,

hence each interaction vertex is proportional to g−2YM . Finally there is a

factor of N given for each sum over colour indices. One can work this out

by splitting the diagrams into propagators and vertices, use the Feynman

rules given by the Lagrangian, and count the number of sums. Using these
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Figure 2.2: A single line representing an adjoint field propagator can be

split into a pair of oppositely oriented lines representing a fundamental-

anti-fundamental product.

rules diagram (i) has associated with it a factor of g4YMN
4 and diagram (ii)

has a factor of g4YMN
2.

As N is taken towards infinity it will be useful to take the coupling gYM

to zero such that the quantity g2YMN = λ remains fixed. When we do this

2.1(a) with coefficient λ2N2 dominates over (b) with coefficient λ2. The

dominance of planar diagrams such as that of (a) over (b) occurs for all

diagrams with similar number of vertices and propagators. This is the ’t

Hooft large N limit. To see how this limit relates to string theory we’ll

introduce a technique invented by ’t Hooft called double line notation to

keep track of which classes of diagrams we keep and which we ignore. We

consider each gauge field or ‘gluon’ propagator that transforms in the adjoint

representation of SU(N) as a “quark anti-quark” pair that transforms in

the product of the fundamental and the anti-fundamental of SU(N), since

the adjoint can be thought of as roughly the product of the fundamental

and anti-fundamental. Diagrammatically this corresponds to replacing each

gluon propagator with two parallel lines with opposite orientations, the

fundamental and anti-fundamental going forwards and backwards in time

respectively.

This alteration also changes the interaction vertices in the obvious way,

so that the vacuum diagrams we drew above can be drawn using double

line notation as in 2.3(a) and (b). In this notation we see explicitly that the

factors of N correspond to the number of loops in the diagram: there are

four in (b), but only two in (b).
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(a) (b)

Figure 2.3: The connected vacuum diagrams associated with four 3-point

interactions drawn using double line notation.

This notation is said to ’polygonize’ the Feynman diagrams, the Feyn-

man diagrams provide a ’polygonization’ of a 2-dimensional surface. To

make this relation between diagrams and polygons more precise we will re-

late exactly the vertices of the Feynman diagrams to the vertices of the

polygons, the propagators to the edges, and the loops in the double line

notation to the faces. This means that any polygon with V vertices, E

edges, and F faces corresponds to a Feynman diagram, which according to

the Feynman rules above is proportional to:

(g2YM)E(g−2YM)V (N)F = λE−VNV−E+F . (2.3.2)

Note that the exponent of N , V − E + F is the Euler character χ

of the polygon, a well-known topological invariant used for classifying 2-

dimensional surfaces. For closed Riemann 2-surfaces χ = 2− 2g where g is

the genus, the number of holes, associated with the Riemann surface. Hence

any perturbation expansion can be written as

∞∑
g=0

Nχ(g)

∞∑
i=0

cg,iλ
i =

∞∑
g=0

fg(λ)Nχ(g). (2.3.3)

The expansion is ordered by the Euler character of each contribution.

In the large N limit the planar diagrams, diagrams that can be drawn on

a sphere, with g = 0 will dominate all higher genus contributions. If we
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compare this expansion to string theory it too involves a double sum in

terms of string theory’s two parameters: the string coupling gs and the

string tension α′. By comparing both sums we identify gs with 1/N and α′

with λ giving a formal analogy between string theory and SU(N) QCD.

A subtlety to point out is that it has been assumed that the gauge group

was SU(N), but the expansion has been carried out as if the gauge group

is U(N) and not SU(N). This is valid up to leading order since U(N) has

N2 generators whereas SU(N) has N2−1 generators which can be equated

for large N at leading order, but at sub-leading order the difference must

be taken into account. Note also that this procedure can be applied for

any other gauge group, for example SO(N) or Sp(N), however since these

groups do not have conjugate representations the approach used to obtain

the ’t Hooft limit will differ. The natural question that arises when studying

the ’t Hooft limit is can SU(N) QCD be constructed as a string theory?

So far all efforts have been unsuccessful, but attempting to do so has led to

the AdS/CFT correspondence.

2.4 Extra dimensions and the renormalisation group

The Weinberg-Witten theorem seems to effectively forbid the notion of a

spin 2 particle in a QFT with Poincaré covariance. To get around it we

concluded in accordance with the holographic principle that the spin 2 ‘gra-

viton’ does not live in the QFT, but in a gravity theory formulated in a

higher number of space-time dimensions. But how does this extra dimen-

sion manifest itself in the QFT? If a QFT and a quantum theory of gravity

are dual to each other this additional degree of freedom required by the

graviton must have a description in the QFT. The answer to this question

makes use of the renormalisation group (RG).

The renormalisation group is related to the procedure known as renor-

malisation. Renormalisation is a means of dealing with the infinities or

ultraviolet (UV) divergences present and seemingly intrinsic to QFTs whe-
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never physical quantities are computed. The problem involves space-time

integrals that are necessarily evaluated over all of space-time where quan-

tum fields are defined. By introducing a UV cut-off, usually denoted Λ,

it is possible to truncate all energy/momentum space integrals used to the

calculate physical observables of the theory. By systematically noting the

dependence of all correlation functions on the cut-off Lambda it can be

shown whether the QFT depends upon Λ in a finite or infinite number of

ways. If the QFT is renormalisable not only is the Λ dependence finite,

but also the number of times Λ appears is less than or equal to the number

of couplings of the theory. If this is the case the UV divergences can be

‘absorbed’ into the definitions of the couplings, now called ‘bare’ couplings,

and a new set of finite couplings can be determined called ‘renormalised’ or

‘physical’ couplings. These couplings can be measured, so that calculations

which depend upon the physical couplings rather than the bare couplings

yield finite results for physical quantities. Not only are they finite, in the

case of QED they are very accurate [23, page 198].

The cut-off scale Λ is key to the concept of the renormalisation group.

Because momentum and position are conjugate variables in quantum theory

plus energy and momentum are related in the same way as space and time

are related by relativity, an energy scale defines a conjugate length scale.

The length scale associated with the cut-off can be imagined as a resolution

scale used to describe a physical system, much like a digital camera used

to observe physical objects has a resolution associated with the number of

pixels of data the camera uses. If the cut-off scale of the theory is changed

then the parameters ( the couplings) change as well as the degrees of freedom

in the form of fields. This change is described by a group action, in that

any energy scale is accessible by any other via one of these transformations;

hence the name renormalisation group.

One of the most important equations associated with the renormalisation

group is the rate of change of the couplings with respect to a change in the
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energy scale which is called the Beta function of the theory:

β(g(Λ)) =
dg

dΛ
(Λ) (2.4.1)

An important thing to note about this relation is that it depends locally

on the value of the energy scale Λ. This means that to know how the

coupling changes we don’t need to know about the coupling in the high

energy UV or in the low energy infra-red (IR), all we need is local knowledge

to work out the beta function locally. This locality is reminiscent of space-

time coordinates, since in general relativity to compute local quantities only

the local geometry of space-time needs to be taken into account. Hence it

seems possible to associate the extra dimensions of the gravity theory with

the energy scale of the renormalisation group.

Figure 2.4: The energy scale can be viewed as a resolution scale of the

theory, hence there is a higher resolution at the ultra-violet energy scale

and lower at the infra-red.

A natural theory to consider is one for which the couplings don’t change

at all with energy scale, i.e. the beta function is zero. Such QFTs that
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realize this condition are thus scale invariant. A special subset of the scale

invariant QFTs called conformal field theories (CFTs) have a much stronger

set of conformal symmetries. As the name suggests are an essential part of

the AdS/CFT correspondence as the following section will discuss.

2.5 Anti-deSitter space and conformal field theories

An important concept in the AdS/CFT correspondence and gauge-gravity

duality in general is how the geometry of the gravity theory gives rise to

additional symmetries and how these manifest themselves in the quantum

field theory. In the particular case of the AdS/CFT correspondence the gra-

vity theory has a space-time background can be described by asymptotically

anti-deSitter (AdS) space. This is dual to a special subset of quantum field

theories call conformal field theories (CFTs). These terms will be explained

in the following section and the relation between their symmetries will be

motivated.

Anti-deSitter space-time (AdS) is a space-time with constant negative

curvature. It is the Lorentzian analogue of a hyperbolic space just as Min-

kowski space-time is the Lorentzian analogue of Euclidean space. To des-

cribe AdS space in (d+1)-dimensions one can embed it as a hyperbolic

hyper-surface in (d+2)-dimensions with embedding coordinates (X−1, X0,X =

X1, . . . , Xd) as:

−X2
−1 −X2

0 + X ·X = −R2 (2.5.1)

where R is the AdS radius. This equation makes the symmetry group

of AdS space apparent, which is the SO(2, d). This equation can be solved

using Poincaré coordinates:
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X−1 =
1

2z
(z2 +R2 + x2i − t2))

X0 =
R

z
t

Xi =
R

z
xi , i ∈ (1, . . . , d− 1)

Xd =
1

2z
(z2 −R2 + x2i − t2)) (2.5.2)

which yields the metric:

ds2 = (
R

z
)2[ηµνdx

µdxν + dz2]. (2.5.3)

An advantage of describing AdS space locally using Poincaré coordinates

is that the constant z hypersurfaces are just copies of Minkowksi space, a

useful feature that motivates the AdS/CFT correspondence statement that

the CFT can be said to live on the bounding surface of AdS space.

The boundary of AdS space at z = 0 is an important thing to notice. To

get to the boundary from a finite value of z requires traversing an infinite

proper distance, however massless particles can still reach the boundary in a

finite time. For flat Minkowski space the boundary can only be reached for

time-like and null geodesics in an infinite proper time, so for most practical

situations boundary conditions can be trivial, i.e. all degrees of freedoms

such as fields vanish at infinity. However in the case of AdS space the

boundary conditions cannot always be trivial, they need to be specified

when setting up an physical problem, as well as initial conditions of the

degrees of freedom, on AdS space. These boundary conditions are a crucial

aspect of the AdS/CFT correspondence. A possible boundary condition

is that the space-time is asymptotically AdS, i.e. as one approaches the

boundary in the limit z → 0 the space looks locally like it has constant

negative curvature.

Conformal field theories have the usual Poincaré group symmetries of

translations, rotations, and boosts, but are also invariant under scale trans-
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formations such as x → x/b and what are called special conformal trans-

formations. It can be shown by considering the Lie algebra of CFTs that

the special conformal transformations act like the translations, and together

with scale transformations CFTs are invariant under local scale transforma-

tions of the form

xµ → xµ

b(x)
(2.5.4)

where b(x) ∈ R depends upon space-time position. Scale invariance is

a subset of these local symmetries when b is constant. If one considers the

Lie algebra of a conformal field theory one finds that it is the Lie algebra

of SO(2, d). As stated in the previous section, because CFTs are invariant

under spatial scaling they are also invariant under changes in the energy

scale, hence the beta function of any CFT vanishes, β(g) = 0.

Motivated by the previous section let’s consider a QFT that is scale

invariant, i.e. with a vanishing beta function, and use the energy scale

of the theory u as an additional coordinate to construct a metric for the

gravity theory. Using scale invariance the metric has to be invariant under

scale transformations x→ x/b, with u transforming u→ ub by dimensional

analysis. The metric must also preserve Poincaré invariance. Imposing

these constraints results in the metric:

ds2 = (uL̃)2ηµνdx
µdxν + (

du

u
)2L2 (2.5.5)

where L and L̃ are lengths. Under the scaling transformation u → L
L̃
u

we remove the dependence on L̃ and the metric takes the form:

ds2 = (uL)2ηµνdx
µdxν + (

du

u
)2L2. (2.5.6)

We can make one more final coordinate change to bring the metric into

a form that makes the scale invariance more apparent. If we swap u with a
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length scale z = 1/u then the metric takes the form:

ds2 = (
L

z
)2[ηµνdx

µdxν + dz2]. (2.5.7)

This is in exactly the same form as the AdS metric in Poincaré coor-

dinates with the identification R = L. Another thing to note is that the

symmetry group of AdS space in (d+1) dimensions and a CFT in d dimen-

sions are both SO(2, d). This motivates the result that a scale invariant

quantum field theory with a gravity dual can also be described by a confor-

mal field theory.

2.6 CFT conditions for duality

As the previous section clearly demonstrates, a CFT is a strong indicator

that a field theory has a dual description in terms of a quantum theory of

gravity formulated on an asymptotically AdS background. But are there

any additional conditions on the field theory side for an AdS/CFT type

correspondence? This question was considered by Polchinski et al [24] using

bulk locality to set conditions on the CFT. Arguing backwards they came

up with a conjecture based on the maximal set of necessary conditions for

a gauge-gravity duality.

The conjecture is: any CFT that has a large-N expansion, and in which

all single-trace operators of spin greater than two have parametrically large

dimensions, has a local bulk dual , [24].

The first condition we have already encountered in the form of the ’t

Hooft limit. This particular kind of large-N limit allows correlation function

contributions to be written as a perturbative expansion in terms of the genus

of the corresponding Feynman diagrams. The above condition requires that

any CFT must have some form of large-N limit such that this is the case.

The large-N limit on the gravity theory side is the limit in which the theory

becomes classical, which in the case of string theory means that the theory
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is well understood.

The second condition refers to single-trace operators which are dual to

single particle states in the bulk. Because no field theory we have encoun-

tered so far encourages operators at low-energy with spin greater than two

it would seem necessary that their presence in our field of experimental vi-

sion must be suppressed. If these states had a large number of dimensions

beyond the four we observe at low energy, the presence of these operators

would be sufficiently suppressed.

The second condition can be motivated using an important result from

the duality and considerations from string theory. The AdS/CFT corres-

pondence relates single trace operators in the CFT with scaling dimension

∆ to single particle field excitations in the bulk gravity theory of mass m

via this relation:

∆(∆− 4) = m2R2 (2.6.1)

where R is the AdS radius. This is shown in [17]. For string excitations

in the bulk the mass scale will be proportional to the inverse string scale by

dimensional analysis 1/ls = λ1/4/R where λ is the ’t Hooft coupling, hence

the operators in the CFT have dimensions which scale as λ1/4. In order that

there be a hierarchy between the AdS radius and the string scale, namely

R � ls it follows that λ >> 1. Hence this implies that all CFT operators

that are dual to string excitations will have large scaling dimensions, just

as the conjecture states. The string excitations correspond to spin > 2

operators in the CFT whilst Kaluza-Klein excitations correspond to spin ¡

2. These have a mass of the order 1/R, and so have scaling dimension of

order 1. This dimension gap is a very interesting feature of the AdS/CFT

correspondence since it is difficult to find field theories that have such a

gap.
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Chapter 3

Condensed matter systems and holo-

graphy

The AdS/CFT correspondence has a great deal of applications in theoretical

physics. One of them was to gain insights into quantum gravity, especially

string theory in the non-classical regime. Other applications involve using

the duality in the reverse direction, using string theory to make predic-

tion about systems that are strongly coupled. This approach has led to a

great deal of research in heavy ion physics [3], and more recently in conden-

sed matter systems [29], amongst others. As the title of this dissertation

suggests this section will focus on the condensed matter applications, parti-

cularly a subclass of systems that can all described by the same theoretical

model: the Bose-Hubbard model [28, section 9]

3.1 The Bose-Hubbard model

The Bose-Hubbard (B-H) model can be used to describe a wide range of

systems such as Cooper pairs of electrons that can move via Josephson

tunneling between different superconducting ‘islands’, Helium atoms moving

on a substrate, or ultracold atoms such as Rb87 confined to an optical lattice

(laser beam interference forming a periodic potential that can trap neutral
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atoms). The B-H model can be described by the Hamiltonian:

Hb = −ω
∑
〈ij〉

bibj +
U

2

∑
i

ni(ni − 1)− µ
∑
i

ni (3.1.1)

where the indices {i, j} label the lattice sites of the system, and b†i , bi

represent creation and annihilation operators respectively that satisfy the

usual commutation relations:

[b†i , bj] = δij ; [bi, bj] = [b†i , b
†
j] = 0. (3.1.2)

The first term proportional to the constant ω is often called the ‘hop-

ping’ term describing the energy in the system transferred as kinetic energy

as a boson tunnels from one lattice site to another. The 〈. . . 〉 represents

summing over neighboring sites only, so tunneling only occurs between ad-

jacent sites on the lattice. The second strictly positive term proportional

to U is the repulsive potential which depends on the boson number ope-

rator ni = b†ibi. Since the sum is over individual sites the potential only

acts between bosons on the same site modeling a short range interaction

between bosons. Hence this term is zero if there is either zero or one boson

per site and increases with each additional boson thereafter. The third and

final term is proportional to the chemical potential of the system, this term

is the energy contribution from each boson that is added or removed from

the system. Changing the chemical potential corresponds to changing the

number of bosons in the system.

3.2 The phases of the Bose-Hubbard model

The Bose-Hubbard model realizes two distinct quantum phases when the

physical parameters of the model are varied. To demonstrate this the Ha-

miltonian Hb can be described by a single site Hamiltonian by replacing the
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hopping term with terms that depend on a complex number ΨB ∈ C :

HMF =
∑
i

−µni +
U

2
ni(ni − 1)−Ψ∗Bbi −ΨBb

†
i (3.2.1)

The advantage doing this is that HMF is a sum of single site Hamilto-

nians so its energy eigenvalues will be sums of single site eigenvalues and

its eigen-states products of single-site eigen-states. The task now is to find

a value of ΨB such that HMF is as close to Hb as possible, which can be

done using mean field theory methods. First determine the ground state

wave-function of HMF as a function of ΨB which will be a product of single

particle wave-functions. Next evaluate the expectation value of Hb for this

wave-function.

Hb + w
∑
〈ij〉

[b†ibj + h.c.] = HMF +
∑
i

ΨBb
†
i + Ψ ∗B bi

→ E0 = 〈HMF 〉 − ZMw〈b†〉〈b〉+M〈b̂〉Ψ∗B +M〈b̂†〉ΨB (3.2.2)

By adding and subtracting HMF from Hb as in 3.2.2 above the approxi-

mation of the ground state energy of the B-H model E0 is given by

E0

M
=
EMF (ΨB)

M
− Zw〈b̂†〉〈b̂〉+ 〈b̂〉Ψ∗B + 〈b̂†〉ΨB (3.2.3)

where M is the number of sites on a lattice, EMF (ΨB) is the ground state

energy of HMF and Z is the number of neighboring sites to each site on the

lattice. Finally by varying ΨB the right hand side of the above equation

can be minimized resulting in the best approximation for the ground state

energy of Hb. This can be done numerically giving the following mean field

phase diagram:

The M.I.n parts of the phase diagram for which n ∈ Z are Mott insulator

phases with n denoting the number density n0(µ/U) in that region.

Note that when using numerical methods a possible problem is the fact

that even for each individual site there is an infinite number of possible
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states corresponding to m ≥ 0, the number of bosons occupying the site.

This has to be truncated for numerical methods to work, but fortunately

the errors that result from this approximation are not hard to suppress.

in the limit of w = 0 all sites on the lattice decouple from one another

and so for ΨB = 0 the mean field theory approximation is trivially exact.

Because the B-H Hamiltonian only has n dependent terms 〈HMF 〉 is mini-

mized by finding the right boson occupation number. This gives the ground

state wave-function as:

|mi = n0

( µ
U

)
〉 (3.2.4)

Thus for w = 0 the ground state consists of each site having the same

integer number of bosons with this value jumping discontinuously whenever

the ratio µ/U takes on an integer value. Note also that for µ/U ∈ Z there

is a twofold degeneracy of the energy eigen-states such that for µ/U = i− 1

or i, n0 takes on the same value and so correspond to the same eigen-state

with the same energy eigenvalue. Thus there is a 2M -fold degeneracy for

the entire lattice whenever µ/U ∈ Z. This large degeneracy implies a large

macroscopic entropy with is necessarily lifted when a small w 6= 0 is turned

Figure 3.1: The phase diagram obtained using mean field theory methods.
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on.

The above discussion concerns only a small part of the phase diagram.

In order to explore the rest of the phase diagram bosons need to be allowed

to ‘hop’ between neighboring sites which is equivalent to introducing a non-

zero w term. Looking at the figure it can be seen that even for a small

non-zero w there exist regions of the phase diagram in which ΨB = 0. Only

at points where the ratio µ/U is an integer does w 6= 0 automatically imply

that ΨB 6= 0.

For the w 6= 0, ΨB = 0 region, its states given by mean field theory

have wave-functions given by |mi = n0(µ/U)〉 even though w 6= 0. However

another prediction beyond mean field theory is possible: that the expected

number of bosons per site is given by

〈b†ibi〉 = n0

( µ
U

)
(3.2.5)

the same result obtained by using the product state above for w = 0.

The two assumptions used are that there is an energy gap between the

ground state and excited states, and also that the boson number operator

Nb commutes with Hb.

First note that for w = 0 and µ/U /∈ Z the ground state is unique

and there is an energy gap between the ground state and excited states. It

then follows that by turning on a small w, the ground state will be moved

adiabatically, however no level crossings will occur between the ground state

and other states. The w = 0 states is an exact eigen-state of Nb with an

eigenvalue of M . n0(µ/U) and the perturbation from w 6= 0 commutes

with Nb. Thus the ground state remains an eigen-state of Nb with the same

eigenvalue for small values of w. Translational invariance then implies that

this result is the same for all sites giving the final result in the equation

above.

Note also that the same argument holds not only for small values of
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w, but for all points in the lobes of the mean field phase diagram. The

boson density in these regions remains quantized and there is an energy gap

between the ground state and excited states. Systems with these properties

are called Mott insulators, with ground states that are similar, but not

equal to |mi = n0(µ/U)〉. The is made by additional fluctuations of bosons

between pairs of neighboring sites that create particle-hole pairs. Mott

insulators are also known to be ‘incompressible’ since varying parameters

such as the chemical potential doesn’t affect the particle density:

∂〈Nb〉
∂µ

= 0 (3.2.6)

The result shown before this is very unusual in classical critical pheno-

mena. It is not often the value of an observable is quantized not just at

isolated points but over an entire region of the phase diagram, but as will

be shown there is a particular subclass of quantum field theories for which

this is common.

The boundary of the Mott insulating phases is a second-order quantum

phase transition. By using this assumption it is possible to determine the

location of the phase boundaries. One can use a standard argument based

on Landau theory, that the ground state energy can be expanded in powers

of the order parameter ΨB:

E0 = E00 + r|ΨB|2 +O
(
Ψ4
B

)
(3.2.7)

then compute the value of r using second order perturbation theory and

previous results:

r = χ0(µ/U)[1− Zwχ0(µ/U)];

where χ0(µ/U) =
n0(µ/U) + 1

Un0(µ/U)− µ
+

n0(µ/U)

µ− U(n0(µ/U)− 1)
. (3.2.8)
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Note that because of n0’s dependence on µ/U the denominators of both

terms making up χ0 are positive, except at the points of n0’s discontinuity

at w = 0. By solving r = 0 one obtains the phase boundary shown in the

figure above.

Thats a substantial portion of the quantum phase diagram for the B-H

model, now the remaining section in which ΨB 6= 0 needs to be considered.

Because ΨB varies smoothly as the physical parameters of the B-H model

are varied the density is no longer quantized in this phase. In fact the

density can be varied continuously between any two real positive values.

This corresponds to a compressible state for which

∂〈Nb〉
∂µ

6= 0 (3.2.9)

Recall from the form of the mean field theory Hamiltonian that a non-

zero ΨB breaks the U(1) symmetry the remaining part of the Hamiltonian

preserve. Rotations of the order parameter in this broken symmetric phase

are also accompanied by non-zero stiffness. It can be shown that this broken

U(1) symmetry corresponds to a superfluid state, with the stiffness equated

with the superfluids density.

This analysis has used the mean field theory phase diagram almost ex-

clusively to extract properties of the B-H model, however this is only an

approximation to the actual phase diagram. Corrections have been made

to this phase diagram by Freericks and Monien [8] in which they find singu-

larities shaped like the Mott lobes at the places where z = 1 transitions (?)

occur. In addition to this there have been Monte Carlo simulations done

which agrees with all of the conclusions discussed in this section.

3.3 Quantum phase transitions

The previous section describes the two quantum phases of the boson-Hubbard

model which can occur at zero temperature and in absence of disorder.
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When these two phases meet a phase transition occurs between the Mott

insulating phase and the superfluid phase. This phase transition cannot

be classical, since classical systems at zero temperature have no entropy.

Thus this is what is known as a quantum phase transition (QPT). For a

transition between two quantum phases at non-zero temperature the tran-

sition can be described using classical thermodynamics, hence in order to

differentiate QPTs from classical phase transitions, QPTs only occur at

zero temperature. Hence the transition cannot be reached by varying the

temperature, but by varying some other physical parameter such as the

pressure or the particle density. Without loss of generality let’s consider

the parameter to be a dimensionless ‘coupling’ denoted by g.

There are two types of QPT; the first is one in which the QPT occurs

at a thermodynamic singularity for T = 0 and g = gc, some critical value

of the coupling, whilst for T 6= 0 all physical quantities are analytic with

respect to g. This point is called the quantum critical point and is the

point at which the QPT occurs. The second type has this same singular

point at the same location, however in addition to this there is a curve

of what are known as second order phase transitions which terminates at

the quantum critical point. The order of a phase transition depends upon

the first discontinuous derivative of some thermodynamic potential of the

system. A phase transition in which the first derivative of said potential has

a discontinuity when evaluated at some point in phase space has a first order

phase transition at this point. Hence a second order phase transition has a

discontinuity in the second derivative of this thermodynamic potential.

Systems with such a set of second order phase transitions will usually

have a characteristic energy scale ∆ associated with them at zero tempera-

ture. This energy scale is either the energy difference between the ground

state and first excited state, or if there is no energy gap between these states

then it is the difference between the ground state and an energy at which

there is a significant change in the energy spectrum. This energy scale
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has the property of vanishing as the critical point g = gc is approached.

This energy scale has associated with it a length scale called the correla-

tion length which diverges as g → gc. The correlation length represents

the typical distance scale at which the degrees of freedom are correlated.

For example, for a system of fermions of spin- each confined to a point on

a periodic lattice the spin orientations would be degrees of freedom that

experience correlation.

Since this length scale diverges close to the critical point it means that

at the critical point there is no length scale associated with the system.

If there is no scale then the system is scale invariant, and based upon the

discussion in 2.5 the AdS/CFT correspondence would apply at the quantum

critical point.

3.4 The coherent state path integral

To demonstrate that the B-H Hamiltonian HB at low energies describes a

conformal field theory for fixed values of the parameters the relationship

between the partition function associated with HB and the path integral

needs to be used. Rather than use the conventional path integral deri-

vation however, which integrates over all possible quantum trajectories of

the configuration space, this section will derive instead the coherent state

path integral which integrates over phase space. This is because there is no

configuration space which does not break at least one of the Hamiltonian’s

symmetries.

Coherent states form an infinite set with each being uniquely defined

by a real vector N ( for the B-H model N is a 2-dimensional vector, or a

complex number). These states are normalized such that

〈N|N〉 = 1 (3.4.1)
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and they have a completeness relation associated with them

CN

∫
dN|N〉〈N| = 1 (3.4.2)

such that CN is some normalization constant. In contrast to the usual

path integral formalism in quantum field theory, none of these states are or-

thogonal to one another 〈N|N′〉 6= 0 for N 6= N′. This property means that

these states can be considered to be ‘over-complete’. Finally these states

are chosen to have the additional property that the diagonal expectation

values of operators Ŝ in the Hamiltonian HB(Ŝ) take the form

〈N|Ŝ|N〉 = N. (3.4.3)

This property implies that N is the classical approximation of the ope-

rator(s) Ŝ. Assuming 3.4.1, 3.4, and 3.4.3 is sufficient to define the set

of coherent states {|N〉}. Using 3.4.3 it is usually possible to order the

operators in HB such that the following is satisfied

〈N|HB(Ŝ)|N〉 = HB(N). (3.4.4)

It is possible to show that the order which is used to obtain this result

is normal ordering, which involves moving all the creation operators to the

left and the annihilation operators to the right, for example

: b̂ib̂
†
j b̂kb̂

†
l : = b̂†j b̂

†
l b̂ib̂k. (3.4.5)

Within this section normal ordering will be assumed when evaluating

such expectation values. The derivation of the coherent state path integral

starts with the partition function

ZB = Tr exp(−HB(Ŝ)/T ) (3.4.6)
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where Boltzmann’s constant kB has been set to 1. The next couple of

steps resemble the derivation of the path integral in quantum field theory

which can be found in many textbooks, for example [23, page 275]. The

derivation for this case will nonetheless be briefly outlined here. First the

exponential is broken up into a large number of exponentials of infinitesi-

mally small time operators

ZB = lim
M→∞

M∏
i=1

exp(−∆τiHB(Ŝ)). (3.4.7)

such that ∆τi = 1/MT . Next by inserting a set of coherent states

between each pair of exponentials using 3.4 and labeling the inserted state

with a time τ so that it is denoted |N(τ)〉. Then each expectation value

can be evaluated using 3.4.4 in the following way

〈N(τ)|exp(− ∆ τHB(Ŝ))|N(τ −∆τ)〉

≈ 〈N(τ)|(1−∆τHB(Ŝ))|N(τ −∆τ)〉

≈ 1−∆τ〈N(τ)| d
dτ
|N(τ)〉 −∆τHB(N)

≈ exp(−∆τ〈N(τ)| d
dτ
|N(τ)〉 −∆τHB(N)). (3.4.8)

It has been assumed in anticipation of the limit M →∞ that ∆τ � 1.

In the third line it has been assumed that states can be expanded in time

derivatives such that |N(τ −∆τ)〉 ≈ (1 − ∆τ d
dτ

)|N(τ)〉. This assumption

is not entirely trivial for coherent states, since even a small relative time

difference between coherent states can result in completely different orienta-

tions. The book by Negele and Orland [22] discusses this issue very carefully

and comes to the conclusion that, excepting the case of the ‘tadpole’ dia-

gram which involves point-splitting of time, the time-derivative expansion

is always valid.

Inserting 3.4.8 into the previous expression for the partition function

3.4.7 and taking the M → ∞ limit results in the following expression for

32



ZB

ZB =

∫
N(0)=N(1/T )

DN(τ)exp

[
−SBerry −

∫ 1/T

0

dτH(N(τ))

]
(3.4.9)

where

SBerry =

∫ 1/T

0

dτ〈N(τ)| d
dτ
|N(τ)〉. (3.4.10)

The additional term in the exponent SBerry called a Berry phase term

and describes how coherent states at infinitesimally separated times overlap.

Using the above normalization condition 3.4.1 one can show that the Berry

phase term is purely imaginary.

To obtain the coherent state path integral from the B-H Hamiltonian

the first thing to do is find a set of coherent states which depend upon the

bosonic creation/annihiliation operators denoted by b̂†/b̂, and a complex

number ψ representing N. One possible set of states that satisfies all the

coherent states properties 3.4.1, 3.4, and 3.4.3 consists of states of the form

|ψ〉 = e−|ψ|
2/2eψb̂

†|0〉 (3.4.11)

such that |0〉 is the boson vacuum state with zero boson number. The

states are normalized as

〈ψ|ψ〉 = e−|ψ|
2〈0|eψ∗b̂eψb̂†|0〉

= e−|ψ|
2〈0|exp(ψ∗b̂+ ψb̂† + |ψ|2/2[b̂, b̂†] + . . . )|0〉

= e−|ψ|
2/2〈0|exp(ψ∗b̂+ ψb̂†)|0〉

= e−|ψ|
2/2〈0|e|ψ|2/2|0〉 = 1

(3.4.12)
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where the commutation relations [b̂, b̂†] = 1 and [b̂, b̂] = [b̂†, b̂†] = 0 were

used as well as the Baker-Campbell-Hausdorff formula which states that for

operators Â and B̂,

eÂeB̂ = eÂ+B̂+ 1
2
[Â,B̂]+... (3.4.13)

where the dots denote additional terms that include nested commutators

such as [Â, [Â, B̂]] which will be zero if Â = ψ∗b̂ and B̂ = ψb̂†. Additionally

it follows that

〈ψ|b̂|ψ〉 = e−|ψ|
2 ∂

∂ψ∗
〈0|eψ∗b̂eψb̂†|0〉

= e−|ψ|
2 ∂

∂ψ∗
e|ψ|

2

= ψ (3.4.14)

satisfying 3.4.3. The completeness relation follows from

∫
dψdψ∗|ψ〉〈ψ| =

∞∑
n=0

|n〉〈n|
n!

∫
dψdψ∗|ψ|2ne−|ψ|2

= π
∞∑
n=0

|n〉〈n| (3.4.15)

where |n〉 = (b̂†)n√
n
|0〉 are the number states, and only diagonal terms have

been picked in the double sum over the number states since off diagonal

terms will vanish due to the angular ψ integral. Identifying the sum in the

bottom line with the identity matrix requires that CN = 1/π so that is

satisfied.

The only thing that is left to be determined is the Berry phase that

needs to be added. Since this path integral is being integrated over the

complex plane due to the choice of ψ, the Berry phase is given by

〈ψ(τ)| d
dτ
|ψ(τ)〉 = e−|ψ|

2〈0|eψ∗(τ)b̂ d
dτ
eψ(τ)b̂

†|0〉 = ψ∗
dψ

dτ
. (3.4.16)
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Inserting 3.4.16 into 3.4.9 completes the derivation of the coherent state

path integral for the boson-Hubbard model.

3.5 Extracting the conformal field theory

In the previous section the Hamiltonian of the B-H model was related via

the partition function to the coherent state path integral defined as

ZB =

∫
Dbi(τ)Db†i (τ)exp

[
−
∫ 1/T

0

dτLb

]
(3.5.1)

such that

Lb =
∑
i

(
b†i
dbi
dτ
− µb†ibi + (U/2)b†ib

†
ibibi

)
− ω

∑
〈ij〉

(
b†ibj + h.c.

)
. (3.5.2)

The only way in which this differs from 3.4.9 is the replacement ψ(τ)→

b(τ) as a reminder of the bosonic nature of the degrees of freedom. Because

the remainder of this dissertation concerns only continuum theories there

should be no confusion between this notation and the b̂ operators of the

Hamiltonian formalism.

It is possible to express the coherent state path integral in terms of

another field ΨB(x, τ) which has a role analogous to that of the mean-field

parameter ΨB used in describing the phases of the B-H model in an earlier

section. This field can be incorporated by using a Hubbard-Stratanovich

transformation applied to the coherent path integral which decouples the

hopping term proportional to ω from the fields b̂ and b̂† such that

ZB =

∫
Dbi(τ)Db†i (τ)DΨBi(τ)DΨ†Bi(τ)exp

(
−
∫ 1/T

0

dτL′b

)
(3.5.3)
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such that

L′b =
∑
i

(
b†i
dbi
dτ
− µb†ibi + (U/2)b†ib

†
ibibi −ΨBib

†
i −Ψ∗Bibi

)
+
∑
i,j

Ψ∗Biω
−1
ij ΨBj.

(3.5.4)

The matrix ωij is symmetric with entries that are only non-zero if i and j

are nearest neighbors. One can show that 3.5.3 and 3.5.4 are equal by doing

the Gaussian integral over ΨB. Some constant factors get created in doing

this, however they can be removed by redefining the measure DΨB. One

important point to note is that the inversion of the matrix ωij is only possible

if all of its eigenvalues are positive. In the case where ωij is symmetric with

non-zero nearest neighbor entries this will not be the case, some of the

eigenvalues will be negative. To fix this it is possible to add a positive

constant along the diagonal of ωij and subtract the same constant from

the on-site part of the Lagrangian. This will not be necessary in this case

however, since the only modes of ΨB that need be considered in the low

energy limit are the long wavelength modes which correspond to positive

eigenvalues of ωij.

Note that the above Lagrangian is invariant under the following sym-

metry

bi → bie
iφ(τ)

ΨBi → ΨBie
iφ(τ)

µ→ µ+ i
dφ

dτ
. (3.5.5)

Note that this transformation results in µ being time dependent, taking

the parameters out of the physical parameter regime. Despite this, imposing

this symmetry because places useful restrictions on the ways in which ZB

is manipulated.

It is possible to integrate out both of the fields bi and b†i so that the

Lagrangian can be expressed in powers of ΨB and Ψ∗B. The Ψ∗B part can
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be determined in a closed form since the ΨB independent part of L′b is just

a sum of single-site Hamiltonians for the bi which is easily diagonalised,

the eigenstates are given in equation 3.2.5. By re-exponentiating the series

in powers of ΨB, Ψ∗B and then expand the terms in spatial and temporal

gradients of ΨB, then ZB can the written as in [6]

ZB =

∫
DΨBi(τ)DΨ†Bi(τ)exp

(
−V F0

T
−
∫ 1/T

0

dτ

∫
ddxLB

)
,

LB = K1Ψ
∗
B

∂ΨB

∂τ
+K2

∣∣∣∣∂ΨB

∂τ

∣∣∣∣2+K3|∇ΨB|2+ r̄|ΨB|2+
u

2
|ΨB|4+ . . . (3.5.6)

where V = Mad is the total lattice volume. F0 is the free energy of

density of the system with decoupled sites. When differentiated with respect

to the chemical potential it gives the density of the Mott insulating state

−∂F0

∂µ
=
n0(µ/U)

ad
. (3.5.7)

All the other unknown parameters can be expressed in terms of the

physical parameters µ, U , and ω, however the only important parameter

that need be considered here is r̄ which is

r̄ad =
1

Zω
− χ0(µ/U) (3.5.8)

such that χ0 is as defined in 3.2.8. Note that r̄ is directly proportional

to the mean field parameter r in 3.2.8. This means that r̄ will vanish when

r does which is precisely at the critical point between the Mott insulator

and the superfluid.

This is almost a conformal field theory, the only term that is the excep-

tion is the first term with coefficient K1 which includes a first order time

37



derivative. If the symmetry in 3.5.5 is imposed for small φ then by noting

that r̄ can be seen to transform as

r̄|ΨB|2 =

[
r̄(µ = 0) +

∂r̄

∂µ
µ+ . . .

]
|ΨB|2 →

[
r̄(µ = 0) +

(
∂r̄

∂µ

)′
(µ+ i∂τφ) + . . .

]
|ΨB|2

(3.5.9)

where (. . . )′ indicates a transformed term, and the K1 term transforms

as

K1Ψ
∗
B

∂ΨB

∂τ
→ K ′1

[
Ψ∗B

∂ΨB

∂τ
+ i

∂φ

∂τ
|ΨB|2

]
(3.5.10)

the symmetry is maintained by setting K1 = −∂r̄/∂µ. This means that

K1 vanishes when r̄ is independent of µ, which due to r̄ ∝ r only occurs

when the insulator-superfluid phase boundary has a vertical tangent, i.e. at

the tips of the Mott insulator lobes in figure 3.2. Thus it is these points on

the phase diagram which can be described by a conformal field theory, and

so are possible candidates field theories for the AdS/CFT correspondence.

3.6 Motivation for holographic methods

The previous section shows that the Bose-Hubbard model certainly fits all

the requirements for a dual gravity description, but if the model is entirely

described by theories that are well understood there is no need to resort

to speculative methods like the AdS/CFT correspondence. However, as we

will soon see all other tools that are traditionally used to study the B-H

model break down when the quantum critical point is approached.

In this section the conductivity or charge transport of this model will

be considered. This is the conductivity induced by placing the system in

a ‘electric’ field E that has associated with it a frequency ω as considered

in [29, 20]. To start with let’s consider the conductivity in both of the two

quantum phases of the B-H model. The first, the Mott insulating phase can

be described using particle and hole excitations. We can describe the motion
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Figure 3.2: The real part of the frequency dependent conductivity predicted

by assuming particle-like excitations.

of such a system using a Boltzmann type equation for particles moving in

this external field E at an average velocity v by the following:

dv

dt
+
v

τc
= qE (3.6.1)

where τc is the average time between collisions of the particles. This

equation is valid when the coupling is small g � 1, but let us attempt to see

what this equation says about physics at the critical point g = gc. Assuming

that the time scale τc is given by the energy scale, i.e. the temperature near

the critical point τc ~/(kBT ), then the above equation is solvable. Predicting

a ‘Drude’ form for the conductivity gives

σ(ω) =
σ0

1− iωτc
(3.6.2)

From the large ω behavior noted earlier, the real part of this function

looks like:

Because the critical point lies between two quantum phases it should also

be possible to approach the critical point from a superfluid state. The super-

fluid phase has vortex-like excitation rather than the particle and hole-like
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Mott insulator phase. However, in 2-d all vortices have a center described

by a point and so can be nonetheless viewed as ‘particles’. Thus another

Boltzmann equation can be used to describe the motion of the excitations.

The only property necessary to obtain the conductivity is that it is equal

to the resistivity of the ‘particles’ that enter the system [7]. Based on this

one would assume that the conductivity in the superfluid phase would be

given by the inverse of the conductivity in the Mott insulating phase.

The critical point appears to have completely different descriptions of

the frequency dependent conductivity depending on from which quantum

phase one approaches the point. At the time of writing it is not clear which

if either is the correct description. Methods such as ε and large N vector

expansions [30, 25] both suggest that the insulator description is closer. The

validity of these procedures however, is not certain in this case.

3.7 Holographic analysis

Now that the premise for AdS/CFT correspondence has been discussed

holographic methods can be applied to the field theory at the quantum

critical point of the B-H model. The way that will be used here is to begin

with a solvable model, then modify this so that it generalizes to a broader

class of physical models. The model in question will be the only model in

D = 3 space-time dimensions to have been solved explicitly: the ABJM

model [1]. As described in the introduction this AdS/CFT type duality in a

‘large-N’ type limit maps a D = 3 CFT to a supersymmetric gravity theory

in D = 4 space-time dimensions. Following the previous section a current

associated with globally conserved charge will be considered, specifically its

correlations. Current correlations are described simply by D = 4 Einstein-

Maxwell (E-M) theory with a negative cosmological constant and action

[1]

SEM =

∫
d4x
√
−g
[

1

2κ2

(
R +

6

L2

)
− 1

4e2
FabF

ab

]
(3.7.1)
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where x ≡ (t, u, r) such that t represents time, r the two spatial coor-

dinates of the CFT, and u is the ‘emergent’ coordinate needed to describe

the gravity theory. The constant κ is related to Newton’s constant by

κ2 = 8πG. The gravity side has a metric g as its degrees of freedom with

associated Riemann curvature tensor R, whilst the U(1) gauge theory has

a 2-form field strength F = Fab dx
a ∧ dxb with Fab = ∂aAb − ∂bAa, and

a, b,= 0, . . . , D the D + 1 coordinates of the gravity theory. The vacuum

solution of the equations of motion obtained from varying the action with

respect to the metric and the U(1) gauge field A are the anti-deSitter metric

in 4 space-time dimensions:

ds2 = gabdx
adxb =

(
L

u

)2

du2 +
(u
L

)2 (
−dt2 + dr2

)
(3.7.2)

and Fµν = 0 where µ, ν = 0, . . . , D − 1, the coordinates of the D-

dimensional space-time. L is the radius of curvature of AdS space. As

was shown in the previous section this metric is invariant under not only

Poincaré transformations, but also the broader class of conformal transfor-

mations of the form 2.5.4 as well. It is possible to describe the dual to

the U(1) gauge field A: the conserved current of the CFT denoted Jµ here.

The conductivity in question is dual to the two-point correlator of Jµ. To

explicitly identify the correlator the CFT action will be sourced by a term

Kµ

SCFT → SCFT −
∫
dD−1rdtKµJµ. (3.7.3)

From holography considerations it follows that the source is equal to the

boundary value of the vector potential Aa [18]

Aµ(t, r, u→∞) = Kµ(t, r) (3.7.4)

Next, to find the conductivity itself one needs to solve the equations

of motion of the gravity theory bearing in mind the above relation, The
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solution will show how the gravitational action depends upon the source

Kµ, which by AdS/CFT corresponds to the dependence of the CFT action

on Kµ as well. From there the conductivity can be obtained in the usual

manner by taking functional derivatives of the action with respect to Kµ.

Before this can be done there are two important things to discuss befo-

rehand. Firstly the analysis that has been done so far has been in the zero

temperature regime. Clearly however, to make testable predictions this

treatment must be extended to T 6= 0 also. This can be accomplished by

considering black hole solutions to the equations of motion so far discussed.

These will bear some resemblance to the Schwarzchild solution [36, chapter

6]

ds2 =

(
L

u

)2
du2

f(u)
+
(u
L

)2 (
−f(u)dt2 + dr2

)
(3.7.5)

such that

f(u) = 1−
(
R

u

)3

(3.7.6)

for D = 3. In this case R labels the location of the black hole event ho-

rizon. Strictly speaking this is in fact a black brane with a spatially infinite

event horizon in the flat 2-d r-space. As discussed earlier in the hologra-

phic principle section black holes have been shown to have a temperature

T which can be shown to be dual to the temperature of the CFT. The tem-

perature can be computed by performing a Wick rotation on the time so

that the signature of the metric is Euclidean (+ · · ·+). Then by demanding

that the space is periodic in the new time with period ~/kBT results in a

definition of the temperature

kBT =
3~vR
4πL2

. (3.7.7)

The v, that plays the role of the speed of light in the CFT is making a

brief reappearance. One can also see this equation as a constraint on R.
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Figure 3.3: This figure illustrates the waves falling through the black hole

horizon, depicted by the striped region at u = R, which describes dissipation

of the CFT at T 6= 0.

The use of black branes in holography describes much of the CFT phy-

sics accurately. For example waves that propagate in the D + 1 dimensio-

nal space-time will get damped as they lose energy crossing the black hole

horizon. This damping is related by the above identity to the transport

coefficients corresponding to the conserved charge of the CFT.

The second point is that the action considered thus far has been that

of the ABJM model [1], which describes a large class of CFTs, however it

does not describe that of the B-H model given in a previous section. In

order to consider a broader class of dual models methods similar to those

of effective field theory will be used [20]. One way is to add terms to

the action with a higher number of derivatives. The terms must preserve

the underlying symmetries including parity, i.e. they cannot include the

totally antisymmetric ε tensor. The next logical terms to consider are of

fourth order in derivatives, since the action contains terms up to second

order. Both of these constraints imposed together allow only 15 terms to be

constructed using the degrees of freedom to hand, [19]. This can be whittled

down further by using integration by parts, Riemann tensor identities such

as R[abc]d = 0 and Bianci-like identities such as ∇[aFbc] = 0 so that only
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eight terms remain

α1R
2 ; α2RabR

ab ; α3(F
2)2 ; α4F

4 ; α5∇aFab∇cF b
c ;

α6RabcdF
abF cd ; α7R

abFacR
c
b ; α8RF

2 (3.7.8)

where F 4 = F a
b F

b
cF

c
dF

d
a , F 2 = FabF

ab, and R2 = RabR
ab.

These interactions might appear in string theory as quantum or higher

order α′ corrections to the second order derivative SUGRA action [10, 4]. So

these terms would probably be part of a perturbative expansion such that

higher order terms are suppressed by e.g. the string scale over the curvature

scale. In the dual CFT they would represent corrections suppressed by

inverse powers of the ’t Hooft coupling and/or number of colors Nc.

By focussing only on terms that affect charge transport and preserve the

underlying symmetries we can neglect the first two terms as these depend

only upon curvature terms which will add corrections to the stress-energy

tensor of the CFT, but not the conductivity. Because terms α3 and α4

include four field strength terms they will not contribute to the conductivity

which can at most involve only two field strength terms, at least at zero

density. The fifth term proportional to α5 contains two field strength terms

and so in principle could modify the conductivity, however because of the

additional derivatives it will lead to higher derivative terms in the equations

of motion of the theory which, as is explained in [21] will induce non-unitary

properties in the dual CFT. The last two terms are also second order in F

and so appear to modify the conductivity, however as is discussed in [20,

section 7] their contribution is relatively trivial in that they renormalize the

coefficient of the Maxwell term e. Hence only the term α6, which includes

the Riemann curvature tensor and two field strength terms, will modify the

conductivity in question, and so is the only term that needs to be added to

the action. The addition of this term into the action also has the property

of breaking the self-duality of the Einstein-Maxwell theory, [20, section 6].
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Modifying the previous action to include this additional interaction term

gives

SEM → S =

∫
d4x
√
−g
[

1

2κ2

(
R +

6

L2

)
− 1

4e2
FabF

ab +
γL2

e2
CabcdF

abF cd

]
.

(3.7.9)

where Cabcd is the Weyl curvature tensor, the traceless part of the Rie-

mann curvature tensor. Thus the term added is not quite the term pro-

portional to alpha6, but a linear combination of the terms alpha6,7,8 which

as stated before will renormalize the coupling e. This action is hopefully

dual to a class of models that realize a CFT description of which the B-H

model is one. The two free parameters in the action are γ and e. As some

reference shows by considering the ω → ∞ limit of the correlators in the

CFT it can be shown that e is related to Σ∞ and γ is dual to a 3-point

correlator of the current Jµ and the stress energy tensor [20].

The method used to apply the gauge-gravity duality to the B-H model

is to use effective field theory to justify the use of the effective action as the

D + 1 gravity theory. Field theory methods can then be used to compute

dynamics of the CFT at zero-temperature which can then be compared with

those of the gravity theory to match parameters in both theories. Then the

case in which T 6= 0 is considered in the ω → ∞, i.e. the long time limit,

and compared with the gravity dual in which the black hole solution is used

to describe zero-temperature physics. This approach is similar to the im-

plementation of the Boltzmann equations used in the solvable phases of the

B-H model. This suggests that the gravity theory replaces the Boltzmann

equation for CFTs.

This results in a form for the conductivity σ(ω) related to the two-point

function of the current in the CFT. The results depends on both of the

free parameters e and γ, however, by considering the ratio σ(ω)/σ∞ the e

dependence factors out. By imposing causality on the gravity side as shown

in [20, section 5] the value of γ is constrained so that |γ| < /12. The results
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are shown in this figure

Figure 3.4: The frequency dependent conductivity obtained by the method

described above where the extremal values of γ have been chosen. The

conductivity is in its dimensionless form such that σ̃ = 1/e4σ where the

charge e is defined in 3.7.1. This figure was taken from [20].

.

Looking at the form of this function for allowed values of γ and ω one

notices how little the form of the function varies from γ = 0 to its extremal

values. It also corresponds very well with the conductivity forms obtained

using the Boltzmann equation by extrapolating from both quantum phases

to the critical point: the γ > 0 part resembles the particle-like Boltzmann

approach and the γ < 0 part resembles the vortex-like approach. Thus γ

appears to determine how close the behavior of the CFT favors particle-like

behavior, or vortex-like behavior. The value of this parameter has not been

ascertained yet in the case of the CFT of the B-H model, but it can be

obtained by using the method detailed above.
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Chapter 4

Conclusion

This dissertation has reviewed the AdS/CFT correspondence and demons-

trated an example of how it can be used to describe certain condensed mat-

ter systems under conditions such that traditional methods do not work.

The usual methods for computing the dynamical properties of the B-H mo-

del for different values of its physical parameters involve Boltzmann statis-

tics, and assume that all excitations can be described by particle excitations

that exist over a long time scale. This assumption results in a contradic-

tion when this picture is extrapolated from the insulating phase of the B-H

model and the superfluid phase towards the critical point between the two

phases: the two pictures do not give the same result.

Holographic methods however, offer an alternative approach to the pro-

blem due to the system exhibiting conformal invariance at the quantum

critical point, thus allowing the AdS/CFT correspondence to be applied.

The problem is not only solvable using this method, its solution also com-

plements the results in the two quantum phases. Despite this work the

frequency dependent conductivity for the B-H model is still not well unders-

tood at the quantum critical point. As shown in figure 3.7 the dimensionless

conductivity is determined as a function of frequency and of the parameter

γ dual to physical observables in the QFT, however the value of γ is still

undetermined.

This dissertation has been concerned solely with bosonic systems mainly
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due to their simplicity in order that the concepts can be easily introduced.

A natural question to ask is if there are any more systems for which these

methods are applicable, especially fermionic systems. All the systems that

can be modeled by the B-H model come under the class of conformal quan-

tum matter systems which are all incompressible as was shown in the phases

of the B-H model 3.2. There are also systems with non-zero compressibility

that appear to favor the use of holographic methods, notably a set of ma-

terials called ‘strange metals’ whose description in terms the fractionalized

Fermi liquid mirrors that of a charged black hole in anti-deSitter space [27].

The simplest example of a compressible state from the gravity theory

point of view is described by the Reissner Nordström solution to Einstein’s

field equations [36, pages 313, and 317-318]. It turns out that even this

simple example has many properties in common with the fractionalized

Fermi liquid described above [31, 32]. Going beyond this simple case is

topic of ongoing research [11, 13, 9, 14] by including additional interactions

between the matter fields and the geometry.

It is clear that the AdS/CFT correspondence is going to continue to

deliver interesting new physics which will help tackle longstanding problems

not just in high energy theory but in many other areas such as condensed

matter theory, heavy ion collisions. Further work in this field will address

important questions not just for condensed matter systems but also for

quantum gravity, and in particular string theory. It is possible that string

theory is the theory of everything and a valid quantum theory of gravity,

however AdS/CFT shows that it could be a tool for better understanding

quantum systems. Considering the work that has been done in the last 15

years alone one can hope to see the resolution to many of these problems

very soon.
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