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Abstract

Through consideration of the integrity of information transmission between generations

as described by genetic and cultural transmission mechanisms, we construct a notion of

temporal domains over which selection mechanisms can naturally act. Adapting a phenotype

centred dual inheritance model of guided variation, we incorporate the action of the fitness

measure over these domains as effective memories of previous optimum phenotype values

in addition to augmenting traditional learning objectives. On simulating the evolution of a

population, the arising conflicting pressures are shown to guide a population between the

specified optimums, appearing under Natural Selection assessment as maladaptation. The

evolutionary advantage of genetically determined learning goals is found to be advantageous

in special cases under cultural pressures and Natural Selection.
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†Theoretical Physics, Imperial College London
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1 Introduction.

Evolution, the variation of one quantity w.r.t. time, is in the context of human genetic,

individual and social evolution, an object of fascination and study. Today we have the

multi-faceted Modern Evolutionary Synthesis representing decades of work building on that

of Charles Darwin and Gregor Mendel. It focuses on the mechanisms that describe the

variation of sets of genes carried by individuals across generations, identifying several pre-

conditions and drivers of genetic evolution such as mutation, drift, flow, recombination

and Natural Selection. Darwin recognized the necessity of phenotypic variation within a

population upon which Natural Selection(henceforth N.Selection) could act as a differential

selector. He observed the correlation between phenotypic traits of parents and offspring and

while having no knowledge of genetic structure as sets of Mendelian units, he grasped the

concept of heredity and thus considered the phenotype to be the unit of selection under this

differential selector, simply understanding that through heredity there was some mechanism

responsible for the transmission of phenotypic traits from parent to offspring. Through the

recognition of heredity, sources of variation and differential selection taken, this was a re-

markable leap in the understanding of human evolution, but was far from complete. Today

the Mendelian unit of the chromosome and allele has taken the place of the biologically her-

itable unit which determines an individual’s genotype and we often consider the phenotypic

degeneracy of the genotype to be raised by cultural and environmental ’pressures’ upon

which N.Selection can act. The distinction between genetic and cultural effects has given

rise to Dual Inheritance Theories (DIT’s) that incorporate the action of culture and genetics

on the distribution of either continuous or Mendelian phenotypic traits in a population.

Motivated by the observation that N.Selection appears to promote seemingly, at least tem-

porally local maladaptation in individuals, we seek to examine potential explanations for the

evolution of maladaptive traits of the individual’s phenotype. An issue with DIT’s is that

they tend to be constructed, not necessarily naturally I think, to consider explicitly only

the generational transmission mechanisms of culture and genetics on the phenotype so that

N.Selection can act on its natural generational domain. While there is no intrinsic problem

with this if we consider N.Selection to be the dominant selection mechanism, we argue that

it does neglect the action of the biological selection hierarchy, under which it is possible to

consider selection mechanisms acting across the biological/ecological scale and the wealth

of new phenomenon that these can bring at the scale of the individual phenotype that is in

no way manifest in traditional DIT’s.

In this thesis we adapt a guided variation DIT process to incorporate cultural and genetic

memory effects into the learning goals/individual’s perception of optimum phenotype and

hence perception of fitness at this scale. Running a simulation of this process we find the

action of N.Selection forms pressures conflicting with the pressures caused by the geneti-

cally and culturally determined perceived optimums. Under cultural selection pressures and

natural learning goals we find that during selection events will almost always favour those

that rely most heavily on social learning, while for a population who rely equally on social

and asocial learning we find that both cultural selection and N.Selection, can favour geneti-
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cally defined learning goals with greatest adaptive advantage measured by both cultural and

natural fitness given to those whose effective genetic memory has greatest temporal domain.

Part I

Building a DIT Model.

2 The Chaotic Problem.

As part of an ecological system, the human civilization exhibits rich, dynamical and chaotic

behaviour from the scale of a chromosome, through that of the individual, community to

that of the civilization. We often want to relate the macro to the micro scale when modelling

systems such as these, but the frequent problem here is that by scale, we often mean that

we want to both relate large to small space-time scales and simultaneously find a relation

through the increasingly complex behaviour of the system as we go to the smaller scale

necessary to describe it.

We may have rules that describe the behaviour of a system at one scale and its constituents

at a smaller one, but the constituents at the smaller scale when taken together become

chaotic and relations between these rules are often evasive - like trying to model a planets’

orbit quantum mechanically. The increasingly complex behaviour considered at the smaller

scale necessary to describe behaviour at the higher in greater detail often make modelling

complex phenomenon in a meaningful manner impossible. For models describing behaviour

at different scales this means that simply through relative loss of degrees of freedom then

found at the larger scale model it only makes sense to talk of a description of the larger in

terms of the smaller and not the other way around. It is not that actual physical degrees

of freedom have been lost, but we choose to consider the larger as a constrained system

when modelling. This could be considered a notion of ’scale causality’ when modelling. In

attempting to relate even simple macro human behaviour to the micro such as genes →
genotype and phenotype→ population, It may be fair to say represent the biggest challenge

to modelling cultural dynamics in a deterministic sense.

There are however many examples of chaotic systems that allow a few useful quantitative

statistical measurements to be related across scales; the application of statistics to Ther-

modynamics is an excellent one, allowing a relation between the microscopic variables of

m,N, v̄ and the macroscopic state variable S, P, T and V 1. This is the kind of relation that

when building a DIT model we will be forced impose on our system. If we did not have the

problem of chaos then we could simply describe all behaviour at all scales with a set of micro

initial conditions and we would be done with meaningful evolutionary theory (amongst many

other things). The partial motivation for the consideration of selection mechanisms acting

at specific physical and biological scales is that, foregoing an arguments on self-similarity,

the only set of rules that we have that is simple, elegant and consistent to some extent with

1m = article mass, N = no. of particles, v̄ = mean particle speed,S = entropy, P = pressure, T = temperature
and V = volume.
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either observation or established conjecture -’selfish’ gene model and group selection are not

new concepts. We speculate that the application of rules such as these through scales has

potential for removing some of the chaotic behaviour of models when trying to find relations

across scales.

3 The Principle of Natural Selection, Group Selec-

tion and Genetic Selection.

The principle of Natural Selection as the term coined by Darwin in his 1859 book ’On the

Origin of Species’ describes a selection mechanism under which evolutionary forces act, cul-

minating in the generational reproduction process under which successful biological traits

can be passed from parent(s) to offspring increasing the frequency of the most successful,

or fittest genotypes through this form of differential selection. Under conditions of the in-

troduction of genetic variation this will result in a non-static evolutionary process. This

mechanism’s domain/unit of selection is the set of phenotypes within a group; it describes

a single genetic iteration and it implicitly refers to a measure of temporally local phenotype

fitness. It assumes a correlation between genotype and phenotype, otherwise it would have

an evolutionarily neutral action. We do observe this correlation of course; without it Darwin

would have had no notion of heredity. The important point here is that N.Selection can be

considered to act on a generational timescale and its unit of selection is the phenotype - the

variation of the genotype’s vertically transmitted gene program is induced by this action.

What this represents is the association of both a unit of selection and also temporal domain

within which the selection mechanism acts - the phenotype is selected for over one genera-

tion. There is no selection considered here as occurring at the scale of the genome unless we

are referring to the induced inter-generational genetic variation. Often group level behaviour

is considered as being induced by the operation of N.Selection on the individual as well. Of

course genome and group scale behaviour is not independent of that of the phenotype, but

considering the action of only one selection mechanism on one unit of selection, we spec-

ulate risks omitting a wide range of behaviour at the all scales when model building. For

reference here we will call this type of model in which genome and group scale behaviour, a

’phenotype centred model’ (PCM).

It would be especially convenient for the purposes of modelling a chaotic system to have

a rule analogous to N.selection that could be applied to groupings across scales of human

society as a guiding mechanism. If this could be done, it could reduce the problem of re-

lating evolutionary civilisation level behaviour to an individual’s genetic behaviour to one

of relating the former to the latter through processes governed by selection rules acting at

scales in between.

Group selection behaviour is indeed observed on many scales, from the family unit, commu-

nity to nation and species as examples. It seems natural to extend the principle of selection

to include corresponding such selection units as groups and species for this purpose - the

fittest should always be favoured?! Athough when modelling, the fitness measures may have

to exist in different spaces corresponding to each scale mechanism. Richard A. Watson dis-
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cusses the issue of selection acting at scales in his paper ’On the Unit of Selection in Sexual

Populations’ [7] where he discusses competing processes of fitness optimization at different

scales in the genome region. The essence of this generalisation means re-interpreting selec-

tion as more of a generalized physical principle acting with the same differential selection

function on groupings across scales and temporal localities more than solely the biological

principle of Natural Selection.

Part of the motivation for the consideration of this generalisation of selection and unit is

that due to the inductive effect of behaviour through scales specified in our case by genetic

and cultural transmission rules, we would expect that measures of fitness for a unit under

one selection mechanism could cause a maladaptive behaviour of another unit at another

scale under another selection mechanism. This sets the stage for the consideration of a

human ecology as a system of interacting selection units under scale dependant selection

mechanisms.

4 A Conceptual Construction of Effective Memory

When considering the action of N.Selection we implicitly refer to its cumulative action across

an individual’s life cycle. We do not refer to it acting on a specific moment in this cycle

though we understand it to be the case that its action is continuous across the life cycle;

we say that on a generational time scale, an individual is operated on under N.Selection. If

we applied a measure of fitness as considered by this mechanism to the daily activities of

an individual, we would first and foremost become confused as to how this would be done

as we have no functional notion of the unit of selection being acted upon in such a contin-

uous manner. Conceptually, we might be able to say that there is an associated temporal

domain to the unit; we understand that a phenotype is able to adapt, learn and improve or

reduce their fitness throughout their life cycle - the selection mechanism acts on the unit’s

history, culminating in a measure of success defined by an individual phenotype’s eventual

action in passing on their genetic material. In the case of the individual’s phenotype under

N.Selection, there is a convenient line to be drawn; an individual is born, lives, and passes

or does not pass on this material and we talk of their fitness in the context of model building

as the probability of surviving and success in pass on their genetic material. Looking at

the speculative corresponding group selection process acting on a pre-cultural species, we

could consider the group unit, but there is no such natural temporal domain. If we consider

humanity, we possess a cultural capacity; the ability to transmit information that we have

acquired through some learning process socially. This does give us a notion of a temporal

domain of the cultural group unit. Cultural knowledge and information, perhaps important

to the survival of the group can be transmitted horizontally and vertically generation by

generation. We can speak of an effective vertical/temporal cultural range in terms of the

rate of degradation of this information as it is transmitted between phenotypes within the

group. This is the basis of the memory effect ; the ability of a unit of selection to adjust its

fitness across time scales - the temporal domain of the unit. In analogy with the action of

N.Selection acting across a phenotype’s life cycle where they have the ability to use their

experiences or history to adapt and improve their fitness, we might be able to speak of a cul-
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ture’s ability to adapt on a timescale of many generations while being acted upon by group

selection. This gives at least some notion of the temporal domain of the cultural group

unit. So in the same way, the single or multi-generational memory capacity used by the

individual and the cultural group respectively gives the unit of selection the ability to adapt

to the action of selection across its temporal domain. In the case of the individual, we make

decisions at times that we might judge to reduce our immediate fitness in the belief that it

will improve our fitness in the long term, such as migration perhaps. The point is that we

have the ability by some means to assess based on experience and conjecture. We speculate

that the cultural group unit possesses the same ability, but now over a multi-generational

time scale. One function of cultural tradition is to just this; to adjust the daily habits of

its members to use historically successful traits. From the perspective of N.Selection which

operates over a much shorter time scale with corresponding local optimum phenotype, this

might be considered nostalgic maladaptation. This might seem rather obvious, but we frame

it in the language of units of selection and temporal domains because of the proposal to ex-

tend this memory effect to the scale of the genome.

Selection at the genome scale, acting on individual alleles, like group selection, is not a new

idea, first addressed by R. Dawkins [2]. We would like to consider the alleles as the units of

genome scale selection. We also know that the genome can be replicated under recombina-

tion and this information transmitted and exchanged through the gene pool (in analogy with

the phenotype and culture) a great many times without significant degradation. This gives

us a notion of the possible temporal domain upon which selection can act at this scale. The

analogous question now is over what temporal domain are these alleles selected for under

the direct and induced effect of all three mechanisms. Following through with the pheno-

type 7→ cultural group analogy we will need to consider the concept of fitness in this context.

To summarize; what we have described, at least conceptually is a three layered system

of selection in which we have three units of selection, all with a different effective range

of viable information transmission or effective memory range, but all interdependent, with

genetic, phenotypic and cultural selection pressures acting across scales. Many more are

conceivable, but these are plenty to concern us for the time being. This effective memory is

trivial to conceive at the phenotype scale, being an individual’s lifetime experiences, reason-

able to consider at the group scale with the effective cultural memory and becomes slightly

more speculative when talking about the effective memory represented by the gene pool.

One thing that we can assume, is that while all the above pressures may not be acting with

the same effect across scales, it should indeed be the case that they support one another in

general as what harms success at one scale will in general also harm the others at another as

the success of the genome, phenotype and group are intimitely linked. Because of this, for

practical purposes it seems plausible that the action of these three mechanisms may appear

as the action of only one - N.Selection, hence we speculate that PCM’s under Darwinian

N.Selection appear as effective first approximations up to the seemingly anomalous appear-

ance of locally maladaptive traits.

It should be stated that the above construction here is the preferred conceptual one as it
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describes a symmetry through scales, but it is possible to consider these effective memories

to be the temporal domain of the generational action of N.Selection due to the requirement

that in general processes at all three scales support one another if this is preferred. In any

case, the adaptation of a PCM to come will make use of these memory effects at different

scales that can if it is preferred be considered as operated on solely by N.Selection such that

the employment of the different memory resources are independent of all other selection

mechanisms, but still contribute to multiple temporal domains of N.Selection.

5 A Basic DIT-PCM.

Given the concepts of selection acting at scales described above and that of effective mem-

ories as a starting point, together with the aim to examine success and conflict of genetic

and cultural traits in a dual inheritance PCM, it is important to examine some simplified

aspect of the consequences of such a generalisation. What we are especially interested in is

the speculated natural action of the effective memory on the fitness measures at each scale.

5.1 Different perspectives of Fitness.

Boyd & Richerson[3] use simple deterministic PCM models, to describe qualitatively the

iterative generational processes of genetic and cultural transmission. A Gaussian fitness

function W (Y,H) is used as a weight for the normalized statistical population distribution

of mature phenotypes f(Y, Ȳ ), where Ȳ are representations of the mature phenotypic traits.

W (Y,H) ∝ e−
(Y−H)2

2S (5.1.1)

W̄ (Ȳ , H) =

∫
W (Y,H)f(Y, Ȳ )dY. (5.1.2)

W (Y,H) is the probability of an individual of phenotype Y becoming a parent and sets

the optimal mature phenotype Y at the value of H characterizing the environment and op-

timal phenotype under N.Selection, for simplicity to be a function only of time - or in this

case generation number. This fitness function represents the action of N.Selection at the

phenotype scale, hence it acts on the space of Y and H.

It is important to note that the concept of fitness that 5.1.1 represents is a Darwinian

one. It assigns a measure of fitness that is a function only of properties of the phenotype

and environment at their values at a particular generation. Y and H take discreet values

for each generational iteration and each individual here and couple to the natural selection

mechanism through this fitness function which is treated as the probability of an individual

of trait Y reproducing. The fitness measure is treated in part as a probability of survival and

part as an observable of the phenotype here, i.e. one individual can observe to some degree

of accuracy, the values of Y and H that belong to another individual and the environment

and make an assessment of another’s suitability to reproduce under N.Selection.

Building on this Darwinian measure of fitness, we add sets of W̄ (Ȳ , H)’s to represent a
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Darwinian measure of the fitness of phenotypic traits associated with various alleles within

which Natural Selection can act. This is the first step in building a model of dual inheritance

at the phenotype scale.

If the generalisation of the selection mechanisms acting on our system are to be made, then

there will need to be a generalisation in the concept of fitness used in any PCM. Ideally we

would use fitness landscapes operating in different spaces corresponding to different scales

and selection mechanisms, build a model of the entire system’s dynamics across scales and

read off the observables at the phenotype scale. As we have limited time though, we choose

to adapt the PCM used by Boyd & Richerson. This means that we are restricted to infer-

ring effects of the memory effects on the phenotype scale and phenotypic fitness measure -

specifically by adjusting the perception that individuals in a population will have of both the

local optimum (local optimum, here meaning the temporal limit to an individual’s ability to

assess optimum without the genetic or cultural memory effect) phenotype as it impacts on

their own learning goals, and their perceived fitness of others. Considering how an individ-

ual would perceive the fitness of another is then a natural issue to raise when considering

the effects that culture and genetics could have on an individual’s assessment of the local

optimum for the purposes of choosing a learning goal and mate.

Addressing the simplifications of perceived fitness under N.S represented by the H environ-

ment/optimum phenotype; this makes some sense in a species not capable of social learning

or genetic pre-disposal as it is then reasonable to assume that an individual’s assessment of

optimum phenotype is indistinguishable from the representative function we specify with H,

but if we recognise the distinction between sources of perception, then treating the genome

and culture as sources of behavioural traits, value/priority system and hence assessment of

H, then we have three notions of fitness at the phenotype scale, one under a form of cultural

’pressure’, one under natural pressure and one under genetic pressure. The consideration of

the source of perception in the genetic and cultural transmission rules of a P.C.M. will allow

incorporation of the concept of individual, cultural/group and genetic memory to act on

individual’s local optimum assessment in the PCM by use of three representative functions

of the ’local’ phenotype optimum H. This is the speculated source of local maladaptation.

To elaborate on the motivation of the use of three representative functions of the opti-

mal phenotype - memory functions; if we exclude genetic and cultural assessment bias, then

an individual’s assessment of H at generation n has no dependence on its values at genera-

tion n− 1. It is not unreasonable to expect that an individual will not be able to recall past

values of W̄ (Ȳ , H), Y and H. In a cultural species, it could be expected that knowledge of

previous values of observables would affect an individual’s assessment of the observable as-

pects of H. This is a possible effect of cultural memory and could allow a re-evaluation of the

phenotype fitness measure. While we have described culture as the unit of selection under

group selection, we only use its memory effect in the PCM that we are building. At the other

end of the scale we have the analogous concept of genetic memory, which could conceivably

have a far greater effective range in generations, perhaps limited only by the age of a species.
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The most important point here is that the memory functions represent the temporal do-

mains of the corresponding units of selection acted upon by the three selection mechanisms.

This taken together with the earlier stated requirement that in general these selection mech-

anisms would ’support’ one another through mutual interaction, we speculate will allow us

to represent these memory functions at the phenotype scale as recorders of optimum pheno-

type over a history of generations. We require this mutual interaction and support between

mechanisms because genome and cultural optimums do not themselves exist on the space of

phenotypes and so we require that whatever interaction we specify in our PCM via trans-

mission rules between them maintain a general beneficial correlation, i.e. what is bad for the

genes is bad for the genotype and culture. This of course cannot always be true otherwise

we would not observe local maladaptation, but the correlation allows a representation of all

three scale memory effects at the phenotype scale in the PCM.

Motivated by the temporal range of the units of selection, we construct the memory func-

tions as recorders of local optimum history at the phenotype scale and construct an ansatz

modification to W (Y,H) to incorporate measures of fitness at all three scales for the case of

individuals characterized by a phenotype and allele index i as they impact on an individual’s

phenotype fitness:

W̃i(Y,H(n)) =
1

λ+ σ + χi

[
λe
− (Yi−H(n))2

2SN + σe
− (Yi−c[H(n)])2

2SC + χie
−

(Yi−pi[H(n),Yj,pj,n])2

2SP

]
(5.1.3)

where

• i is the allele index. We consider a set of Ng alleles that will characterize learning

propensities and genetically determined perception of phenotype optimum.

• c[H(n)] is the cultural/group measure of optimum phenotype fitness manifest as an

individually perceived optimum.

• pi[H(n), Yj , pj , n] is the optimum fitness as determined by an individual with Yj pheno-

type of the individual with phenotype Yi as determined by Yj ’s genetically determined

pre-disposition . Then in a P.C.M. it is also dependant on the proportion of a popu-

lation at generation n carrying allele i, Pi(n).

• n is the generation number.

• SN is the strength of Natural Selection on the phenotype.

• SC is the strength of cultural selection on the phenotype.

• SPi is the strength of genetic selection on the i’th phenotype.

• λ, sigma and χi represent the weightings of Natural Selection, cultural and genetic

selection in the phenotype fitness measure.

To examine the full effect of the interactions of different selection mechanisms acting on the

phenotype at different scales would be enthralling, but for the sake of simplicity here, we
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only examine one possible consequence, that of memory and its effect on an individual’s

culturally perceived fitness and learning goal. Accordingly we define c[H(n)]:

c : H(n) 7→ c[H(n)],

RNC 7→ R.

where NC is the number of environment/optimum phenotype histories that a culture can

record/recall and

c[H(n)] =

∑n′=NC
n′=0 e−βn′H(n− n′)∑n′=NC

n′=0 e−βn′

=
1− e−β

1− e−β(NC+1)

NC∑
n′=0

e−βn′H(n− n′). (5.1.4)

Here c[H(n)] is an average over the NC generational iterations preceding n weighted by

an exponential and βi = ln(100)/Ni specifies the relative strength of the NC ’th generation

in the weighting. The σ term in 5.1.3 refers to the cultural measure of fitness, incorporating

a history of environments. The λ term is the classical Darwinian fitness measure under

Natural selection similarly used by Boyd & Richerson[3]. Noting the index structure we use,

only the χi term has an index associated to its optimum in phenotype space where there

is a dependence on the distribution of other alleles in a population and their perception of

fitness. Strictly speaking as we are considering the effects of dynamics at the three scales

and we only treat the phenotype as an observable in the P.C.M. we should really have 5.1.3

as a tensor map such that RNg ⊗ RNgroups ⊗ RNp 7→ RNp , but as we are only considering

the effect of one culture Ngroups = 1 and one dimensional phenotypes, Np = 1 and we are

actually going to neglect the χi the mixing term due to a shortage of time, we can just treat

5.1.3 as a 1-vector of allele maps from R1 phenotype space redefined at each generation.

5.2 Guided Variation as the Learning Rule.

Constructing a dual inheritance theory incorporating this memory effect and seeking a re-

lation between observables at each iteration at the population level that embody learning

processes in its dynamics, we take the process of guided variation as a simple approach to

the learning process for this test case. This was chosen because it incorporates explicitly the

two processes by which an individual can learn and adapt its phenotype to an environment

- socially/culturally or asocially. This allows us to compare traditional adaptive learning

processes acting within a generation to their action when we adjust cultural transmission

mechanisms and asocial learning goals to incorporate genetic and cultural memory effects

that span generations.
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We construct the following learning rule that incorporates social and asocial learning.

Yi(n) = aiXi(n) + (1− ai)(Ti[H(n)] + εi) (5.2.1)

where

Ti[H(n)] = ζiH(n) + κigi[H(n)] + τic[H(n)] (5.2.2)

and

• i labels the allele carried by the individual as with the fitness function.

• εi is a random variable with Gaussian probability distribution Gi(ε) and ε̄i = 0. rep-

resenting estimation errors on the optimum when relying on asocial learning.

• ai =
Vεi

Vεi+Li
; Vεi is the variance of Gi(ε).

• Li are learning parameters describing the propensity to rely on social or asocial learn-

ing.

• Xi(n),Yi(n) are the immature/mature phenotypes at generation n

• H(n) characterizes the learning goal. This goal could be quite general in its nature,

but we take it to represent the environment independant of the observables of the

individual. Under N.Selection this represents an optimum phenotype.

• ζi, κi and τi are weighting parameters s.t. ζi+κi+τi = 1 and characterize the reliance

on different memory resources in perturbing the individual’s perception of the learning

goal.

and

gi : H(n) 7→ gi[H(n)],

RN+NGi 7→ RNGi ,

gi[H(n)] =

∑n′i=NGi
n′i=0 e−αin′iH(n− n′i)∑n′i=NGi

n′i=0 e−αni′

=
1− e−αi

1− e−αi(NGi+1)

NGi∑
ni′=0

e−αin′iH(n− n′i). (5.2.3)

Here gi[H(n)] is an average over the NGi local optimums preceding the n’th weighted

by an exponential and αi = ln(20)/Ni specifies the relative strength of the NGi ’ th in the

memory range. This is the genetic memory function and it is defined for each allele. For

each value of NGi of each allele it describes a different definition of the temporal unit of

genetic selection. This is not entirely consistent with our idea of the natural domain of

the unit of genetic selection as the generational range in which information can be reliably

transmitted across generations in the gene pool, but allowing different alleles to observe

different effective ranges allows us to use a range of ansatz’s across alleles to examine the
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different successes within one of the simulations to come. We can easily fix it as a constant

across alleles if we want to be more quantitative.

Many simplifying assumptions are made here, which although unrealistic by themselves,

will allow the qualitative affects of the retarded transmission mechanism to be seen more

clearly. One key assumption is that an individual carries a single allele and this single allele

the transmission rules described by its gi[H(n)], Li and Vεi .

This learning process incorporates both social and asocial learning. It states that a mature

phenotype with trait and allele Yi(n) is the culmination of a combination of individual learn-

ing and copying of cultural parent(s) or encultrination. We have followed Boyd & Richerson

here in assuming that the bulk of encultrination takes place during youth as an immature

phenotype. The balance between these two processes is described by the ai parameters.

At the individual level the εi variables describe asocial learning errors that can be taken to

represent the risk to mature phenotype fitness of this type of learning. In the limit of high

epsilon, this rule for learning can be seen to favour encultrination. The learning parameters

Li play off against the variance Vεi describing the propensity of the immature individual to

rely on learning. In the limit of high Li learning is characterized more by individual learning

with the goal characterized by the environment.

By requiring the probability/population level distribution of Xi(n) and Yi(n) to be Gaus-

sian, finding a relation for X̄i(n), and the variance of Xi(n), VXi(n) between generations

will specify the relation between generations.

Ȳi(n) = aiX̄i(n) + (1− ai)Ti[H(n)], (5.2.4)

VYi(n) = a2iVXi(n) + (1− ai)2Vεi (5.2.5)

are found from 5.2.1 and relate the phenotype distributions within generation n. Using 5.1.1

with 5.1.3,

¯̃Wi(Ȳ , H) =

∫
W̃i(Y,H)Pi(Y |X)dYi, (5.2.6)

where Pi(Y |X)(n), the mature phenotype distribution after guided variation is found which

is specified by another normalised Gaussian such that

Pi(Y |X)(n) =
1√

2πVYi
e

−(Yi−Ȳi)
2

2VYi . (5.2.7)

A genetic transmission rule, weighted by ¯̃
iW , a Ȳi(n) → X̄i(n + 1) can be defined giving

the effect of the fitness measure described as

Pi(n+ 1) =
Pi(n) ¯̃Wi(Ȳ , H)∑j=Ng

j=1 Pj(n) ¯̃Wj(Ȳ , H)
. (5.2.8)

(5.2.9)

11



This gives the proportion of immature phenotypes in generation n+ 1 with allele i. This is

a linear transmission rule giving the probability of an offspring of pair mating being char-

acterized by the i’th allele. It is not derivable solely from mating and genetic transmission

probabilities as information about both is contained in ¯̃Wi(Ȳ , H), but is imposed. It can be

shown though that if ¯̃Wi(Ȳ , H) were a measure only of fitness under natural selection and

5.2.8 were the probability of a an ’i’ individual randomly pair mating, with all alleles having

equal transmission probabilities after mating, then 5.2.8 would be the statistical probability

of a random offspring then carrying allele i. So the combined mating and genetic transmis-

sion rule 5.2.8 should not seem unreasonable

We then construct a transmission rule for the offspring trait is here by

Xi(n+ 1) =

j=Ng∑
j=1

γijYj(n) + εtransi , (5.2.10)

where εtransi is another random variable with ε̄transi = 0 normal population level distribu-

tion and variance Vεtransi . As we are still dealing with Gaussians and require the variance

and the mean, the mean is then given by a linear cultural blending rule with similar weighting

X̄i(n+ 1) =

j=Ng∑
j=1

γij Ȳj(n) (5.2.11)

=

j=Ng∑
j=1

γij
(
ajX̄j(n) + (1− aj){(ζiH(n) + κigi[H(n)] + τici[H(n)]}

)
, (5.2.12)

(5.2.13)

where

γij =

(
µ

Pj(n) ¯̃Wj(Ȳ , H)(1− δij)∑a=Ng
a=1 Pa(n) ¯̃Wa(Ȳ , H)(1− δia)

+ ρδij

)
(5.2.14)

(5.2.15)

=


ρ γ12 · · · γ1β

γ21 ρ · · · γ2β
...

... ρ
...

γβ1 γβ2 · · · ρ

 . (5.2.16)

(5.2.17)

This is a vertical cultural transmission rule and gives X̄i(n+1) as the average of the mature

phenotypes of the previous generation with a weighting γij which is the weighted blending

rule such that ρ + µ = 1 giving a weighting of ρ for the genetic parent whose allele the

offspring carries and gives the unweighted average over the rest of the population. This is a

way of accounting for the heavy reliance on encultrination by parents.
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We now define the variance for the i’th’s immature cultural trait between generations:

VXi(n+ 1) =

j=Ng∑
j=1

(γij)
2 ∗ VYj (n) + Ṽtransi + 2

Ng∑
a,b|a 6=b

γiaγibCov (Ya(n), Yb(n)) , (5.2.18)

where Ṽtrans is the variance introduced to the distribution of immature phenotypes with the

i’th allele due to estimation errors on the cultural means. The second term above vanishes

so long as the distributions for a and b are.

The cultural transmission rule 5.2.11 says that the i’th immature phenotype adopts the

average of the distributions in a population with a weighing of ρ for the parent that it

received its allele from. The variance of the i’th distribution of immature phenotypes given

by 5.2.18 says that the population level variance is the statistical error on the measurement

of the mean in addition to an error due to the method of estimation and transmission. This

is a slightly artificial simplification for the transmission of variance as it assumes that an

immature phenotype can identify the different phenotypic trends in a population, but will

have to be suffered for the sake of simplicity here. It should be noted from the form of

the dependence of ¯̃Wi on VYi and Vεi that the variance of the distribution of cultural traits

in a population will have a serious effect on average fitness of an allele. As such, it would

be sensible to consider more carefully the dependence of parameters such as Vεi and Li on

some other measure of environmental, cultural or genetic variation in a population. Mark

Lake argued the importance of the variability of environments in predicting evolutionary

processes in [5] amongst many others, but we assume that they take constant values while

building a PCM as we risk clouding the effects of the processes we are focusing on by adding

too much complexity into the model.
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Part II

Simulations of Guided Variation.
In order to examine the dynamics of the guided variation model described in the previous

section, we have written a program to simulate the process. The aim of these simulations is

to investigate our speculation that the additional memory effect can differentially advantage

an individual associated with a particular allele and phenotype in certain environments.

Different simulations consider Ng = 4, 5, 9 alleles, each characterizing different memory

strengths and we run a variety of simulations over 100-50000 iterations displaying the most

interesting of those. Because there are several dozen couples variables within and between

each generation, the dynamics of the process through generations, while deterministic is

still less than transparent for anyone restricted to conceptual constructions in only three or

four dimensions. As such, we will begin the analysis with the simplest case of pure Nat-

ural Selection and local measure of optimum phenotype defined generationally by H with

κi = τi = σ = 0 and ζ = λ = 1 and then continue to include cultural and genetic memory

effects later. As will be shown the form of variation in the environment, the learning pa-

rameters, learning errors and memory effect will all have great effect on which allele gains a

decisive advantage over the others in the short and/or long term.

The first thing to do is make the distinction between two general types of environmen-

tal variation, what we will call here, a selection event and a fluctuation. A selection event

can be characterized by a sudden shift in H(n) w.r.t. n to some new value where it remains.

A local fluctuation is then the same form of sudden shift where H(n) later returns to a value

similar to the one it held before the variation began. In nature, the distinction is less clear.

There seems to be a long term environmental equilibrium on a scale such that many local

selection events appear as small fluctuations. This is in fact part of the motivation for the

examination of the memory concept as it seems natural that there be positive and negative

effects of memory for the two scenarios. With these forms of environmental variation in

mind, it might also be interesting to note that in a particular choice of coordinates, the

selection events and fluctuations are symmetric and anti-symmetric respectively, so we can

describe all possible environments with linear sums of the functions describing these (we will

use a gassian and an arctan). Selection events such as major earthquakes, water shortages

etc representing a sudden cause of change of optimum phenotypes may on a longer timescale

look like a local fluctuation. The distinction in the context of evolution between the two

types of variation can be made a number of ways, but a seemingly sensible distinction might

be that a selection event can be described as a variation such that the ranking of fitness

before the event is significantly different after the event if the event is a selection event.
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Figure 1: Two forms of environmental variation.

6 Darwinian Simulation.

Even in the simplest case there are many interesting dynamics evolving under Natural

selection. Here we focus on the effect of the propensity to rely on learning Li, learning

cost represented by Vεi , encultrination cost represented by VXi with a high dependence on

Vtransi and form of environmental H(n) variation.

6.1 Selection Events.

Table 5 are the parameters used for a simulation of a population evolving through a selection

event shown in Figure 5.

Table 1: Parameters.

Allele Vtransi SNi Vεi Li ai =
Vεi

Vεi+Li
ρ µ λ σ ζi κi τi

1 1 2 1 1.00 0.50 0.5 0.5 1 0 1 0 0

2 1 2 1 0.81 0.55 0.5 0.5 1 0 1 0 0

3 1 2 1 0.67 0.60 0.5 0.5 1 0 1 0 0

4 1 2 1 0.54 0.65 0.5 0.5 1 0 1 0 0
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(a) Selection event. (b) Selection event.

(c) Average fitness of i’th allele. (d) Probability of individual receiving i’th allele.

(e) Mean immature phenotype of i’th allele. (f) Mean mature phenotype of i’th allele.

(g) Variance of i’th immature phenotype. (h) Variance of i’th mature phenotype.

Figure 2: 400 generations through a selection event.
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Looking at Figure 6.1 the effect of the selection event on the population can be seen in

subfigure 2(d) to accelerate the trend of all alleles, but this was inevitable from the first

generation. Looking at subfigure 2(c) it can be seen why; the fitness levels of each allele

clearly drop with decreasing propensity to rely on learning. In so far as the acceleration of

this trend goes during generations 40-60, the greater the learning propensity Li, the greater

the fraction (1− ai) in the guided variation process, the better able an individual is able to

track the optimum phenotype, relying more on individual learning over encultrination. This

does however assume no change in learning cost Vεi w.r.t. change in learning propensity.

The seemingly intrinsic lower level of fitness associated with lower Li relates to the variances

of the mature phenotype distributions VYi , learning costs and selection strength parameters

Si.

From subfigure ?? for VYi it can be seen that increasing the value of the Li’s will either

raise or lower the variance of the i’th mature phenotype depending on whether Vεi < VXi or

Vεi > VXi . If the former then larger Li decreases VYi if the latter, then VYi increases with

Li within a given generation. There are then two resulting effects depend on the level of

environmental variation. If the environment is relatively steady as it is in the first 40 or so

generations, Yi tracks H well no matter the variance of the mature phenotype and ¯̃Wi(Ȳ , H)

will in fact be larger for larger Li because of the normalisation factor in the Gaussian in-

volving a 1/
√
VYi . The second effect is in a varying environment such as that occurring

in generations 40-60 where the decreased VYi negatively affects the relative fitness of the

alleles, but this effect on fitness plays off against the increased tracking ability that goes

with the larger Li’s.

From subfigure 2(h) it can be seen that the case dealt with here is Vεi < VXi (but only

marginally). We do see the effect described above in subfigure 2(c) and in the varying en-

vironment the better tracking of the larger Li’s wins out against the cost to the variance

and at no point does the order of fitness change. In fact the tracking effect of the stronger

learning strengths wins out so well that the relative fitness’s of the learner increases by many

times w.r.t the worst during the selection event, which is exactly why the sudden shift in

subfigure 2(d) occurs. Looking at subfigure 2(f) though it can just about be seen that the

worse learners track the optimum worse. Looking at subfigure 2(e) the encultrination effect

5.2.10 can be seen to have the effect of reducing the clustering of the Ng mean phenotypes

which is expected as this kind of parental bias has an averaging function on the phenotypes.

There is also apparent interesting phenomenon relating to the variances of the mature and

immature phenotypes in subfigures 2(h) and 2(g). The reordering of the size of the vari-

ances for the immature phenotypes is in fact just a temporary occurrence relating to the

squaring of the γij term and the proportions within in the cultural transmission rule 5.2.10

mentioned earlier. While it cannot be seen on the graph, they do regain their original order

later. In any case, the scale may be deceiving as the effect of the reordering is very small

given the relative values involved. The disparity with the form of the variance of the mature

phenotypes is another effect of the averaging of the cultural transmission rule with effects

represented by subfigure 5.2.18.

The second interesting case in which Vεi > VXi presents even more interesting results:
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(a) Average phenotype fitness associated with i’th al-

lele.

(b) Average phenotype fitness associated with i’th al-

lele.

(c) Probability of individual receiving i’th allele. (d) Probability of individual receiving i’th allele.

(e) Variance of i’th immature phenotype. (f) Variance of i’th mature phenotype.

(g) Mean immature phenotype of i’th allele. (h) Mean mature phenotype of i’th allele.

Figure 3: 1000 generations through selection event, now with Vεi = 2.5.
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We now have a complete reversal in correlation between the steady environment fitness

and learning strengths as increasing Li now increases VYi as seen in subfigure 3(f). This

also increases the adaptivity of the allele; this combined with the improved tracking of H in

the varying environment results in the sudden reordering of fitness in subfigure 3(a) during

the selection event resulting in the change in probability of an infant being born with allele

i in subfigure 3(c).

After the selection event once environmental conditions stabilize, fitness levels take the order

and approximate values that they had before hand, for another three hundred generations

or so; then they fluctuate once again (subfigure 3(b)) due to the long term effects of the

selection event on VXi and VYi , in figures 3(e) and 3(f) respectively.

One simplification here that has allowed the dominance of the worst learners in steady envi-

ronments is the assignment of only two values for both Vεi and Vtransi for all alleles, which

does not directly reflect the increased cost of heavier reliance on either social or asocial

learning, though Vεi does affect the propensity to learn. This seriously affects the long term

proportions of each allele in the population, but given that it is the varying environment

that we will be focusing on, the very different dynamics that can come about by adding

unique costs is largely neglected.

In both figures 6.1 and 6.1 The effect of dispersion of phenotype distributions has had

long lasting effects on fitness under N.Selection and in the case of the worst learner, crit-

ically damaged the pre-selection dominance of allele 4 (3(d)). However given that most

realistic environments and learning objectives vary significantly over these timescales, it ap-

pears that, at least in this simple case where we only look at varying learning parameters

and one value for learning and encultrination costs, the most realistic sensible case to con-

sider has Vεi > VXi , the learning variance is greater than the cultural variance(for a given

allele), otherwise the dominance of those who favour cultural learning seems certain in any

environment which does not seem feasible given the likely result being an entire maladaptive

culture as there would be no variation induced by the guided variation process(the learners

would become extinct) which would probably mean elimination under group selection. This

makes sense given that the alternative would be for evolution to favour a species without

culture. This is considering current parental bias cultural transmission however. It is pos-

sible that prestige or success bias could lead to a situation in which a minority of adaptive

learning phenotypes and alleles are favoured by some means and maintain overall population

level cultural adaptability through encultrinating others, but this will unfortunately not be

considered here.

6.2 Fluctuations.

The motivation for looking at fluctuations is two-fold; firstly, on a large enough timescale,

many naturally occurring selection events appear as fluctuations, and secondly it will allow

an examination of the consequences for the most adaptive on having to adapt to one extreme

and then back again. This is in some ways just a double selection event, but will have special

significance on fitness when other forms of selection and objective are turned on.
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Now that some of the qualitative behaviour of has been seen in for the selection event, we

add another five alleles to gain better resolution and range of behaviours for parameters.

Looking first at the single fluctuation:

Table 2: Parameters.

Allele Vtransi SNi Vεi Li ai =
Vεi

Vεi+Li
ρ µ λ σ ζi κi τi

1 1 2 2.5 22.50 0.1 0.5 0.5 1 0 0 1 0 0

2 1 2 2.5 10.00 0.2 0.5 0.5 1 0 0 1 0 0

3 1 2 2.5 5.83 0.3 0.5 0.5 1 0 0 1 0 0

4 1 2 2.5 3.75 0.4 0.5 0.5 1 0 0 1 0 0

5 1 2 2.5 2.50 0.5 0.5 0.5 1 0 0 1 0 0

6 1 2 2.5 1.60 0.6 0.5 0.5 1 0 0 1 0 0

7 1 2 2.5 1.07 0.7 0.5 0.5 1 0 0 1 0 0

8 1 2 2.5 0.63 0.8 0.5 0.5 1 0 0 1 0 0

9 1 2 2.5 0.27 0.9 0.5 0.5 1 0 0 1 0 0
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(a) Fluctuation. (b) Average fitness of i’th allele.

(c) Probability of individual receiving i’th allele. (d) Probability of individual receiving i’th allele.

(e) Variance of i’th immature phenotype. (f) Variance of i’th mature phenotype.

(g) Mean immature phenotype of i’th allele. (h) Mean mature phenotype of i’th allele.

Figure 4: 1000 generations through fluctuation.
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A broad and complex range of behaviours can is described here. In subfigire 4(b) the

effect of the single peak fluctuation can be seen to cause an overall double dip in fitness.

Notice the asymmetry in the reversal of fitness across learning strength through the fluc-

tuation though. Now that we have more alleles across a larger range of learning strengths

it we can see that up until allele 5(the genotypes most reliant on learning) they follow the

same order of fitness as seen in the simulation of figure 6.1; due to their increased mature

phenotype variance they are less fit in the static environment. Alleles 5-9 exhibit less or-

dered pre and post-fluctuation behaviour though. The issue here is that the worse learners

here will rely more on encultrination, which means the mature variance transmission rule

relies more on VXi than Vεi which means higher dependence for VYi through VXi on the γ

matrix describing the cultural transmission rules. This of course makes sense, but then the

increasingly dominant γ brings with it another layer of complexity - the first four alleles

dynamics are dominated by the learning parameters and their distinguishing behaviour can

be seen to be easier to follow in subfigures 4(e) and 4(f).

During the fluctuation, the dominant distinguishing ’force’ on fitness for all alleles is their

learning strengths and they order perfectly by their ranking of Li’s(this will not always be

the case). The cause for this is seen most clearly by the separation between optimum and

mature phenotypes by allele in subfigure 4(h). The clustering effect of cultural transmission

versus the dispersive effect caused by the varying asocial learning propensities can be ob-

served as the vertical spacing of immature phenotypes in subfigure 4(g) relative to mature

phenotypes of subfigure 4(h) along with the crossover of phenotypes in both graphs as those

with higher values of Li first overtake then undertake the those with lower Li.

Finally, looking at the probability distributions of subfigures 4(c) and 4(d) we see the short

term effect of the fluctuation’s ordering of fitness as alleles 1-4 climb and the rest decline.

At first appearance it is the second allele that comes out on top, but looking at an alleles

pre-fluctuation fitness relative to its fitness immediately after, the increase is in fact in order

of learning strength. For this reason it might have been best to take a numerical deriva-

tive of probability w.r.t generation no. here, but this relative measure can still be visually

approximated here. Because allele 1 was reduced in proportion so much during the first 18

generations, it never reaches a dominant position before the fluctuation ends and its relative

fitness plummets. Allele 2 seems to represent the best short term fitness balance though.

As its fitness level never drops to that of allele 1 it does not need to increase in relative

magnitude so much to reach absolute dominance (this is the motivation for the memory ef-

fect). Figure 4(d) displays an elegant after effect of the fluctuation in the static environment

as one after the other the worst learners regain numbers and gain dominance one after the

other. This is entirely a result of the bias of the cultural transmission and its impact on VYi

represented by gamma. It would be tempting to draw conclusions from this, but the model

is too simplistic to do anything but reflect qualitatively an immediate response to specific

circumstances, but it is interesting to see how in an unrealistically static environment, our

transmission rules direct the population after a fluctuation.

We saw in subfigure 4(d) that allele 1 responded well to a single fluctuation, but allele

2 was the one taking the dominant position. Below in figure 6.2 several of these events have
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been modelled in sequence:

(a) Average fitness of i’th allele. (b) Probability of individual receiving i’th allele.

Figure 5: 2000 generations through fluctuation.

The effect on fitness is very similar to that of the single fluctuation, but the repeated

sequence can be seen to ’build’ the proportion of individuals with alleles 1-4 relative to the

others. Absolute proportion only increases for allele 1 as its growth out strips the others so

well that alleles 2,3 and 4 still drop, but can none the less be seen to be promoted by each

fluctuation.

7 Cultural Memory Selection Pressures and Opti-

mums.

In a previous section on selection events and fluctuations, we have seen that an individual

equipped with an adaptive(Li) allele often have a fitness under N.Selection optimized for one

of two general types of environment corresponding to social learning in static environments

and asocial learning in varying environments. We held equal the costs represented by Vεi

that would naturally vary with Li VXi which could have made a significant difference, but

allowed us to examine the adaptive consequences for a class of alleles additionally character-

ized by the condition VXi > Vεj ∀i, j with more clarity than would otherwise been possible

given the already non-trivial evolutionary dynamic.

We have seen how under N.Selection, the environmental guiding function H(n) and its aver-

age fitness function ¯̃Wi(Ȳ , H) choose to promote different learners in different environments

while we held all other constants equal across alleles. Now we add the cultural memory

function to the learning goal and vary objective parameters τi instead. We would like to

see how, given a particular cultural transmission rule (γ in this case), those who use their

cultural optimum as a learning goal and as a basis for assessment of fitness of one another

compare with those who rely on the Darwinian measure of objective and fitness used so far.

We look at a mixture of possibilities ranging from the extremes of learning goal being purely

cultural while fitness being entirely Darwinian through to the reverse. The motivation for
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this range of considerations is the observation in society that at extremes an individual’s

personal objectives may be personally(rather than culturally) defined, while at the same

time they might seek a ’normal’/encultrinated mate. And of course the reverse.

With the previous simulations we were able to test for the most favoured approach under

N.Selection. Given that now some of the model’s parameters that we wish to vary are the

selection mechanisms themselves, we instantly lose the measure of absolute fitness that we

had before, and gain those of fitness under different selection pressures. Given that this is a

PCM operating on a generational cycle, we refer now to the combined effect of the memory

pressures as the ’absolute reproductive fitness’. Now the question of whether the associated

memory functions are evolutionarily advantageous is not asking anything so simple as what

traits, carried by what alleles are fittest, most successful, in what environment over what

timescale, as our memory functions now individually define their own success measures in

the form of optimums over different temporal domains. While this adds complexity the

measure of adaptation, these distinguishing measures of maladaptation are what we were

looking for. Of course when we talk of maladaptation normally we are referring to local

maladaptation under N.Selection, and this is still possible to examine here simply using the

local optimum. The local optimum is now not a measure of absolute maladaptation though

but rather a measure associated with a temporal domain - the generational timescale.

From the beginning, we had a main hypothesis; that these selection mechanisms would,

from the perspective of the phenotype centred models, act with separate pressures on the

individual and that each memory resource would couple to every other selection mechanism

through the PCM such that the memory effect associated with one unit of selection would

in general advantage another unit under a different selection mechanism while individual’s

with different coupling strengths to the cultural and genetically defined optimums (repre-

sented by λ, σ, ζi, κi and τi) would vary their phenotype in a potentially locally maladaptive

manner. This is where we start to look at the different effects of cultural memory.

Before we proceed, we would like to address the possibility the cultural memory effect might

even be advantageous as it impacts on learning objective under N.Selection. This seems

like a remote possibility especially given the model that we have constructed, but we have

checked none the less. As it happens, we have indeed been unable to find this potential

effect in the case of cultural optimums.

Apart from looking at cultural objective under natural selection , we consider the cultural

fitness measure. The following is a set of results from simulations comparing the effect on

learners whose objective is defined under N.Selection with different mixes of cultural and

natural fitness. We have the two forms of environmental variation to consider; first we take

a brief look at the selection event we saw before, but look at the impact on the two fitness

measures this environmental optimum represents.
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Table 3: Parameters for first of three figures under N.Selection objective.

Allele Vtransi SNi Vεi Li ai =
Vεi

Vεi+Li
ρ µ λ σ ζi κi τi NC

1 1 2 2.5 22.50 0.1 0.5 0.5 2 0 1 0 0 20

2 1 2 2.5 10.00 0.2 0.5 0.5 2 0 1 0 0 20

3 1 2 2.5 5.83 0.3 0.5 0.5 2 0 1 0 0 20

4 1 2 2.5 3.75 0.4 0.5 0.5 2 0 1 0 0 20

5 1 2 2.5 2.50 0.5 0.5 0.5 2 0 1 0 0 20

6 1 2 2.5 1.60 0.6 0.5 0.5 2 0 1 0 0 20

7 1 2 2.5 1.07 0.7 0.5 0.5 2 0 1 0 0 20

8 1 2 2.5 0.63 0.8 0.5 0.5 2 0 1 0 0 20

9 1 2 2.5 0.27 0.9 0.5 0.5 2 0 1 0 0 20

(a) i’th Phenotype . (b) Average fitness of i’th allele.

(c) Probability of individual receiving i’th allele.

Figure 6: Pure N.Selection and objective through selection event.
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Here we see the natural and cultural selection pressures impact on the absolute repro-

ductive fitness of the different learners through the selection event and the reordering of this

fitness as we did earlier with the fluctuation under the N.Selection measure of fitness. The

key observation here being the order of fitness going by learner strength during the event -

as expected from our experiences with the fluctuation earlier.
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(a) Probability of individual receiving i’th allele. (b) i’th mature phenotype .

(c) Absolute reproductive fitness of i’th allele. (d) Average fitness Under N.Selection of i’th allele.

(e) Average fitness Under Cultural Selection of i’th allele.

Figure 7: Selection event with λ = σ = 1.
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The effect of the introduction of equally weighted cultural and natural selection pressures

can be seen to instantly favour the worst two learners in terms of absolute reproductive fit-

ness in subfigure 7(e) at the event as the those able to adapt fast, guided by the N.selection

optimum pull away from the cultural optimum through generations 24-45. The weighted

average of fitness between the two measures of fitness now negatively impact those who rely

on learning over encultrination in a clear manner through this generational range.

We could look at the case of pure Cultural Selection, but the trend is clear - with selection

events such as this where all learners(except the worst who have been excluded) will pull

away from the cultural optimum as in subfigure 13(d), a society whose constituent members

rely more heavily on cultural or traditional measures of fitness will always see an increase in

fitness for those that most rely on encultrination with selection events such as these. This

is a very different result to that described by Darwinian fitness. It represents a clear con-

flict between cultural and Darwinian selection pressures and shows how those who rely on

encultrination will be favoured by the cultural fitness measure - which seems quite natural,

as does the favouring of the best learners by Darwinian fitness here. The key result of this

mixing of pressures through the selection event is that it brings out the conflict most clearly

as seen by the disparity in fitness of the worst learners through generations 25-30 in figures

7 and 7.

The question now is how do these results change when we consider a fluctuating envi-

ronment?

Figure 8: Natural and cultural environmental optimums.
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(a) Absolute reproductive fitness: λ = 3, σ = 0 (b) Probability of individual receiving i’th allele: λ =

3, σ = 0

(c) Absolute reproductive fitness: λ = 2.5, σ = 0.5 (d) Probability of individual receiving i’th allele: λ =

2.5, σ = 0.5

(e) Absolute reproductive fitness: λ = 2, σ = 1 (f) Probability of individual receiving i’th allele: λ =

2, σ = 1

(g) Absolute reproductive fitness: λ = 1.5, σ = 1.5 (h) Probability of individual receiving i’th allele: λ =

1.5, σ = 1.5
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(i) Absolute reproductive fitness: λ = 1, σ = 2 (j) Probability of individual receiving i’th allele: λ =

1, σ = 2

(k) Absolute reproductive fitness: λ = 0.5, σ = 2.5 (l) Probability of individual receiving i’th allele: λ =

0.5, σ = 2.5

(m) Absolute reproductive fitness: λ = 0, σ = 3 (n) Probability of individual receiving i’th allele: λ =

0, σ = 3

Figure 9: Fluctuations

There are several competing processes here. Firstly, the similarity between the selection
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event in figure 7 and fluctuation in figure 7;as we add cultural fitness to the weighting in the

case of the selection event, the increasingly dominating effect of decreasing cultural fitness

over natural fitness has the relatively ordered effect of harming absolute fitness most with

the best learners and least with the worst. In the case of fluctuations, we see the same overall

effect over each fluctuation, but not at each point in a fluctuation where we see the fitness

lines of different learners crossing as the cultural fitness dependence is increased. Comparing

all the above absolute fitness measures above, starting from 9(c) and working down, we see

a now well observed phenomenon of better learners being fitter in erratic environments, but

we also see a clustering of the fitness of the worst three learners through 9(e) to 9(g). To see

why this is happening, we pick the case in which this seems clearest; that of pure natural

fitness shown in subfigure 9(c), compare to the mean’s of 9(i) and look at the Ng means of

the mature phenotype distributions:

(a) λ = 3, σ = 0. (b) λ = 0σ = 3

Figure 10: i’th mature phenotype with Ng line fits removed.

So what we see is the culmination of the guided variation, encultrination rule and envi-

ronment causing this clustering. The actual cultural measure of fitness seems to have little

direct effect on this particular occurrence. If we change the proportion of an individual’s

phenotypic trait that they receive from ρ = 0.5 to ρ = 0.1, while not shown here we do

lose much of this clustering but this means reducing the connection between genetic and

phenotypic traits to very low levels. This is quite interesting as this clustering is then rep-

resentative of a symmetry of the environmental variation - allele’s 4 and 5 are increasing

their phenotypic value as allele 3 is reducing its own and they meet in the same region every

cycle of the environment. This clustering is lost if the period of H(n) is altered significantly,

but raises the question as to whether under certain learning conditions, this could occur

on larger timescales over a broader range of learners? What would happen if there were a

drastic selection event at a time when this clustering were occurring? It seems likely that

distinct sets of alleles would be selected(or de-selected depending on the fitness measure)

because they happened to be in the right phenotypic location at the right time. This is a

phenomenon impossible with selection events.

Coming back to the cultural fitness measure, it can be seen looking through the graphs that

31



as we increase the cultural weighting, the reversal of absolute fitness for each allele does not

occur in the clear cut way in which it did for the selection event. Looking at the behaviour

of allele 5 in particular as we increase cultural fitness weighting, we see its fitness magnitude

fluctuating above and below the magnitudes of the other alleles in subfigures 9(i), 9(k) and

9(m). . While looking at the probability distributions, the relatively sudden effects of the

fitness reversal start to favour the worst learners. The key point to note though is that

although the effect on the overall order of fitness follows in a similar manner to the selection

event, it is not certain - in this case we still see allele 5’s fitness fluctuating between highest

and lowest.

In summary; after incorporating a relative memory function c[H(n)] associated with the

group unit of selection under group selection -culture, we have inferred a measure of fitness

in the phenotype centred DIT model at the reproduction phase and examined qualitative

effects on the distribution of alleles as a measure of impact. For simplicity, we have assumed

for the most part that an individual will always aim to match their traits to the local en-

vironmental optimum, but assumed that an individual’s measure of fitness will be affected

by a cultural memory of past fitness measures manifesting in the memory function. What

we have found is that when considering this cultural imperative alongside that associated

with Darwinian fitness, we can generally expect very different evolutionary directions for a

group then when this cultural pressure is turned off.

In simplifying the analysis by making off the cultural memory’s effect on learning objec-

tive, we made a slightly artificial separation between cultural fitness and cultural learning

goal. It seems natural that a culture would impose/encultrinate concepts of learning ideal

and fitness ideal together on its constituent individuals, as a special case, it does not seem

unreasonable under the present set of assumptions to speculate that an individual within

a society might prioritize their own ’selfish’ learning objective over that of the culture to

improve their natural fitness at the cost of their cultural fitness. While not shown in figure

7, in figure 7 we do see an ordered increase in natural fitness with those who rely less on

encultrination and more on asocial learning.

8 Genetically determined cultural and natural learn-

ing goals.

We would now like to see how varying the cultural and natural pressure weights of the

individual’s learning goal with κi and τi affect their fitness. We run three simulations, each

with a spread of learning goals across alleles, but all with Li = 0.63, all other parameters as

before except ρ = 0.2(to allow more cultural diversity across alleles), Ng = 5 and we vary

the weightings of the cultural and natural pressures:
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Table 4: Parameters for figures 9, 8 and 8.

Allele Vtransi Vεi Li ai =
Vεi

Vεi+Li
ρ µ ζi κi τi NC

1 1 2.5 10 0.2 0.5 0.5 1 0 0 20

2 1 2.5 10 0.2 0.5 0.5 0.66 0 0.33 20

3 1 2.5 10 0.2 0.5 0.5 0.5 0 0.5 20

4 1 2.5 10 0.2 0.5 0.5 0.33 0 0.66 20

5 1 2.5 10 0.2 0.5 0.5 0 0 1 20
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(a) i’th Learning goal (b) Average mature phenotype.

(c) Average natural fitness. (d) Average cultural fitness.

(e) Absolute reproductive fitness. (f) Population allele distribution.

Figure 11: λ = 1σ = 0
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(a) Average natural fitness. (b) Average cultural fitnes.s

(c) Absolute reproductive fitness. (d) Population allele distribution.

Figure 12: λ = 1σ = 1
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(a) Average natural fitness. (b) Average cultural fitness

(c) Absolute reproductive fitness. (d) Population allele distribution.

Figure 13: λ = 0σ = 1

in 9, 8 and 8 we see very much what we would intuitively expect to see. With each allele

now determining the propensity of an individual to follow the natural or cultural learning

and the cultural selection pressures increased w.r.t the natural pressures through the three

simulations, the trend established is that individuals described by an allele favouring the

cultural learning objective are increasingly favoured when cultural selection is strongest and

those with alleles favouring the natural learning goal are favoured under natural selection

pressures.

9 Simulations of Genetically Determined Learning

Objectives Under Cultural Selection.

In the previous section we added a cultural memory measure to Darwinian fitness and

simulated the evolution of the society under cultural and Darwinian selection pressures.

On considering the cultural unit of selection we found an intuitive way to incorporate its

memory effect into the Darwinian model that we adapted, originally designed to demonstrate
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natural selection acting on the phenotype unit. Now we would like to look at the analogous

speculated genome scale selection effect on the individual’s learning goal through the genome

scale selection mechanism. While it is not so intuitive to propose this genetic memory effect

as it was for its cultural counterpart, from the perspective of the scale selection mechanism

and the integrity of information transmission, it is in principle no more unreasonable. It

would be nice to consider the effect on perceived fitness, but we have not had time to

construct this measure and code it. without a fitness measure incorporating this memory

effect that might favour this genetic memory, we therefore aim to explore the possibility of

cultural pressures favouring the genetic transmission of learning goal. This differs from the

previous section in that now the genetic memory describes the learning goal itself rather

than describing the propensity of an individual to rely on the cultural goal. With this in

mind we assign cultural selection as the sole selection mechanism and define the learning

objective entirely genetically; un realistic but allows the exploration of the question as to

what happens if cultural pressures coincide with genetic goals.

Table 5: Parameters for first genetic objective and cultural selection simulation.

Allele Vtransi Vεi Li ai =
Vεi

Vεi+Li
ρ µ λ σ ζi κi τi NC NGi

1 1 2.5 10 0.2 0.5 0.5 0 1 0 1 0 50 10

2 1 2.5 10 0.2 0.5 0.5 0 1 0 1 0 50 30

3 1 2.5 10 0.2 0.5 0.5 0 1 0 1 0 50 50

4 1 2.5 10 0.2 0.5 0.5 0 1 0 1 0 50 70

5 1 2.5 10 0.2 0.5 0.5 0 1 0 1 0 50 70
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(a) i’th Learning goal (b) Average mature phenotype with allele i.

(c) Proportion of population with allele i. (d) Average cultural fitness

(e) Variance of i’th phenotype.

Figure 14: Simulation of genetic learning goal and cultural selection.

What we see here is quite unexpected an I think remarkable. We expected here that the

cultural selection pressure would favour allele 3, the allele whose genetic memory length in

its learning goal matched the cultural memory length, but in fact, it is favouring allele 5!

This is the allele whose genetically determined learning goal is characterized by the longest
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memory length, while all other parameters are held constant across alleles. This is the

strongest evidence so far that a longer memory effect in learning goal is favoured under a

single selection pressure acting identically over all phenotypes, at least in certain environ-

ments. This is what we were looking for earlier in section 6, where we were looking for an

evolutionary advantage of cultural memory acting on the learning goal under N.Selection

with simple fluctuations, selection events and different learners. Because both cultural se-

lection and natural selection act on all alleles equally(they both act on the phenotype) this

means that in similar environments this model describes an evolutionary advantage under

N.Selection for a population do not seek to adapt their phenotype to the local environment,

but rely on unique genetically driven learning that do not vary in such an extreme manner

as the natural learning goals varying more rapidly on a generational time scale. Referring

back to the distinction between the two types of variation discussed earlier, this memory

effect will only give an advantage under natural selection when we are dealing with a fluctu-

ating environment; during selection events this will have infinitely lasting negative impact

on fitness under N.Selection and cultural selection so long as NGi ≥ NC∀i.

To understand the reasons for the fitness advantage in more detail, we have to look at how

the mature phenotype tracks its learning goal. Because the variance across relevant genera-

tions and alleles varies so little, we can approximate this to be a function of |Ȳi(n)−c[H(n)]|
where the smaller this value, the greater the fitness will be.

Figure 15: |Ȳi(n)− c[H(n)]|.

Here we see that the lowest values for |Ȳi(n)− c[H(n)]| are indeed held by allele 5, but

not constantly and there is certainly little in the difference, with the allele 3 holding very

similar values here followed roughly by alleles 4, 2 and 1.
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Part III

Summary.

10 Conclusions.

The initial aim of this thesis was to examine the apparent evolutionary promotion of locally

maladaptive genetic and phenotypic traits. We started by conceptually constructing tem-

poral domains of selection and then built a phenotype centred model of a dual inheritance

theory described by the guided variation process. The corresponding temporally defined

measures of perceived optimum phenotype and average fitness induced at the generational

phenotype scale at which Natural Selection would usually act were incorporated by using

functions representative of the environment/learning goal H(n), c[H(n)] and gi[H(n)], for

which the latter two averaged over a history of local optimums.

Constructing a model and simulating this generational process, first looking at the tradi-

tional action of Natural Selection and entirely locally defined measures of optimum phe-

notype and learning goal, a high sensitivity to the relative magnitudes of cultural and

asocial learning errors was found. When cultural learning errors were greater than asocial

learning errors the static and varying environments tended to favour those who favoured

encultrination over asocial learning. When asocial learning errors were greater than those

associated with encultrination, alleles describing a predisposition to asocial learning were

again not favoured in the static environment but tended to become dominant in the vary-

ing environment. We also found that the cultural transmission rule representing parental

bias encouraged greater dispersion of mean phenotypes associated with each allele when the

weighting for the genetic parent’s importance in the process ρ was reduced.

We found that conflicting natural, cultural and genetic pressures were caused by different

temporally defined optimums that acted to promote alleles and cultural traits differentially

between them over different timescales. Traits that were considered optimally fit under

the fitness measure corresponding to the traditional action of Natural Selection were often,

though not always considered unfit under fitness measured by cultural and genetic opti-

mums; alleles were also promoted differentially under the action of these different pressures.

Distinguishing between fluctuating environments and selection events, we found that dur-

ing selection events increasing the relative strength of the cultural fitness pressure when a

population would seek to increase their fitness locally rather than through the same cultural

measure of optimum would favour those in the population who relied more strongly on en-

cultrination while during fluctuations, results were far more mixed.

The evolutionary advantage of genetically determined optimums appeared under cultural

pressures and it can be trivially inferred to also be advantageous under the action of tra-

ditional Natural Selection, at least in certain environments, as described in the guided

variation process used in the simulations. This is the strongest evidence found within the

construction used that genetically determined phenotype optimums - instinct and predispo-

sition, are advantageous even under Natural Selection in spite of the pressure that they can
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cause to drive an individual’s perceived optimum/objective away from the local optimum

and become maladaptive by fitness measures under this selection mechanism.

11 Further Work.

Through the construction of the phenotype centred guided variation model we were able to

qualitatively analyze the effects of introducing non-local optimums described by the memory

effect. This I think has had some qualitative success, but was ultimately an adaptation

of the phenotype centred model approach and while producing the local mal-adaptation

that we were looking for employed the speculative memory effect that we justified on the

grounds that information at the scale of the culture and the genome in the form of cultural

transmission and genetic transmission respectively could be transmitted with low levels of

degradation between generations. We removed the possibility of clear clashes between the

actions of the selection mechanisms at all scales by only employing this memory effect as

well as treating genetic and cultural transmission processes as induced at the phenotype

scale - hence phenotype centred model. What might be interesting is to attempt to relate

models of selection at these different scales through constructing a purpose built model

incorporating corresponding fitness landscapes along with a far more thorough examination

of natural origins of the selection process.

11.1 Cultural Transmission.

Many assumptions were made in the guided variation model to allow the qualitative effects

of retarded transmission to show themselves most clearly at the population level, not least

the manner in which population level determinism was required to result from the stochastic

processes associated with the individual represented by random variables. This requirement,

implemented largely by the demand that all distributions be Gaussian removed much of the

potential for interesting cultural dynamics to evolve. The assignment of one allele and a

one dimensional space of cultural traits removed the possibility of considerations of selection

landscapes [6]and further restricted the potential for dynamics, as well as a more thorough

examination of sources of cultural and genetic variation. This was done deliberately in this

case and the guided variation model allowed a particular feature, the memory effect act, but

in so far as cultural transmission processes are concerned the weighted average of cultural

traits representing a parental bias was very simplistic. It did feature the two main sources

of individual learning though, social and asocial, but together with the above restrictions

does not reflect the complexity of encultrination or the basic rationale behind any learning

process, trial and error learning.
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Part IV

Appendix & References.

12 Appendix.

Appendix (A) - The following is the fortran source code used to simulate the guided variation

process.
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File: /home/alwaysme/genedash.f90 Page 1 of 9

program gene

integer,parameter::number_of_timesteps=200, number_of_alleles=5, integration_steps=20000
integer,dimension(number_of_alleles)::n_memory_steps,ngs_memory_steps
integer::i,j,m
real(8)::a, num
real(8), parameter::pi=3.1415926535898
real(8),dimension
(number_of_timesteps,number_of_alleles)::p_n_i,x_n_i,v_x_n_i,y_n_i,v_y_n_i,g_n_i,group_n_i,tp_n_i
real(8),dimension(number_of_timesteps)::H_n,H_n_dummy,H_n_dummy2
real(8),dimension(number_of_alleles)::wbar,xprevious,a_parameters,V_epsilon,V_transmission,S_parameters
real(8),dimension(number_of_alleles)::beta_i,NS_parameters,alpha_i,GRS_parameters
real
(8)::denom_p,denom_gam,sum,h_previous,output,sum3,lower_limit,upper_limit,sum5,sum4,sum8,sum9,sum10,sum11,rho,mu
real(8),dimension(number_of_alleles,number_of_alleles)::gamma
real(8), dimension
(integration_steps)::w_integrand,Wbar_integrand_sel,Wbar_integrand_grs,w_integrand_grs
real(8), dimension(integration_steps)::w_integrand_ns,w_integrand2,Wbar_integrand_nats
real(8),dimension
(number_of_alleles)::sel,nat_sl,wbar_sl,wbar_ns,wbar_grs,group_sl,seltp,nat_sltp,group_sltp

open (unit = 4, file = "w.dat") 

open (unit = 7, file = "w_nat.dat")
open (unit = 8, file = "w_group.dat")
open (unit = 9, file = "w_genetic.dat")
open (unit = 10, file = "w4.dat")

rho=0.5
mu=1-rho

!limits_of_wbar_integral
lower_limit=-200.d0
upper_limit=200.d0

!a_parameters
a_parameters(1)=0.2
a_parameters(2)=0.2
a_parameters(3)=0.2
a_parameters(4)=0.2
a_parameters(5)=0.2
!a_parameters(6)=0.6
!a_parameters(7)=0.7
!a_parameters(8)=0.8
!a_parameters(9)=0.9

!relative target phenotype group, genetic and natural optimum phenotype strengths
seltp(1)=01.d0
seltp(2)=01.d0
seltp(3)=01.d0
seltp(4)=01.d0
seltp(5)=01.d0
!seltp(6)=0!1.d0
!seltp(7)=0!1.d0
!seltp(8)=0!1.d0
!seltp(9)=0!1.d0

nat_sltp(1)=0.d0
nat_sltp(2)=0.d0
nat_sltp(3)=0.d0
nat_sltp(4)=0.d0
nat_sltp(5)=0.d0
!nat_sltp(6)=01.d0
!nat_sltp(7)=01.d0
!nat_sltp(8)=01.d0
!nat_sltp(9)=01.d0

group_sltp(1)=0!1.d0
group_sltp(2)=0!1.d0
group_sltp(3)=0!1.d0
group_sltp(4)=0!1.d0
group_sltp(5)=0!1.d0
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!group_sltp(6)=0!1.d0
!group_sltp(7)=0!1.d0
!group_sltp(8)=0!1.d0
!group_sltp(9)=0!1.d0

!relative selection versus natural selection strength parameters
sel(1)=0!1.d0
sel(2)=0!1.d0
sel(3)=0!1.d0
sel(4)=0!1.d0
sel(5)=0!1.d0
!sel(6)=6.d0
!sel(7)=0!7.d0
!sel(8)=0!8.d0
!sel(9)=0!9.d0
nat_sl(1)=0!2.5d0
nat_sl(2)=0!2.5d0
nat_sl(3)=0!2.5d0
nat_sl(4)=0!2.5d0
nat_sl(5)=0!2.5d0
!nat_sl(6)=2.d0
!nat_sl(7)=2.d0
!nat_sl(8)=2.d0
!nat_sl(9)=2.d01
group_sl(1)=01.d0
group_sl(2)=01.d0
group_sl(3)=01.d0
group_sl(4)=01.d0
group_sl(5)=01.d0
!group_sl(6)=1.d0
!group_sl(7)=1.d0
!group_sl(8)=1.d0
!group_sl(9)=1.d0

!!memory parameters
n_memory_steps(1)=10
n_memory_steps(2)=30
n_memory_steps(3)=50   
n_memory_steps(4)=70
n_memory_steps(5)=90
!n_memory_steps(6)=20
!n_memory_steps(7)=20
!n_memory_steps(8)=20
!n_memory_steps(9)=20

ngs_memory_steps(1)=50
ngs_memory_steps(2)=50
ngs_memory_steps(3)=50
ngs_memory_steps(4)=50
ngs_memory_steps(5)=50
!ngs_memory_steps(6)=20
!ngs_memory_steps(7)=20
!ngs_memory_steps(8)=20
!ngs_memory_steps(9)=20

!S_parameters, NS_parameters
S_parameters(1)=3
S_parameters(2)=3
S_parameters(3)=3
S_parameters(4)=3
S_parameters(5)=3
!S_parameters(7)=10
!S_parameters(8)=10
!S_parameters(9)=10

NS_parameters(1)=3
NS_parameters(2)=3
NS_parameters(3)=3
NS_parameters(4)=3
NS_parameters(5)=3
!NS_parameters(6)=3
!NS_parameters(7)=3
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!NS_parameters(8)=3
!NS_parameters(9)=3

GRS_parameters(1)=3
GRS_parameters(2)=3
GRS_parameters(3)=3
GRS_parameters(4)=3
GRS_parameters(5)=3
!GRS_parameters(6)=3
!GRS_parameters(7)=3
!GRS_parameters(8)=3
!GRS_parameters(9)=3

!V_epsilon constants
V_epsilon(1)=2.5
V_epsilon(2)=2.5
V_epsilon(3)=2.5
V_epsilon(4)=2.5
V_epsilon(5)=2.5
!V_epsilon(6)=2.5
!V_epsilon(7)=2.5
!V_epsilon(8)=2.5
!V_epsilon(9)=2.5

!V_transmission constants
V_transmission(1)=1.d0
V_transmission(2)=1.d0
V_transmission(3)=1.d0
V_transmission(4)=1.d0
V_transmission(5)=1.d0
!V_transmission(6)=1.d0
!V_transmission(7)=1.d0
!V_transmission(8)=1.d0
!V_transmission(9)=1.d0

!Initial conditions
num=number_of_alleles

p_n_i(1,1)=1/num
p_n_i(1,2)=1/num
p_n_i(1,3)=1/num
p_n_i(1,4)=1/num
p_n_i(1,5)=1/num
!p_n_i(1,6)=1/num
!p_n_i(1,7)=1/num
!p_n_i(1,8)=1/num
!p_n_i(1,9)=1/num

v_x_n_i(1,1)=1.2d0
v_x_n_i(1,2)=1.2d0
v_x_n_i(1,3)=1.2d0
v_x_n_i(1,4)=1.2d0
v_x_n_i(1,5)=1.2d0
!v_x_n_i(1,6)=1.2d0
!v_x_n_i(1,7)=1.2d0
!v_x_n_i(1,8)=1.2d0
!v_x_n_i(1,9)=1.2d0

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!^^^^^PARAMETERS/INITIAL CONDITIONS^^^^   _ _ _MAIN PROGRAM_ _ 
_ _!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!H-functions

do i=1,number_of_timesteps
!                                
!H_n_dummy(i)=10*cos(0.25*i*2*pi-1.5)!+1.0*cos(0.01*i*pi)+3*cos(0.04*i*2*pi)+10*cos(0.01*i*2*pi)+20*cos
(0.004*i*2*pi)+50*cos(0.001*i*pi)
H_n_dummy(i)=10*cos(0.15*i*2*pi-1.5)!+1.0*cos(0.01*i*pi)+3*cos(0.04*i*2*pi)+10*cos(0.01*i*2*pi)+20*cos
(0.004*i*2*pi)+50*cos(0.001*i*pi)

!a=i
!H_n_dummy(i)=5*(2+atan(10*(a-25)))
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!H_n_dummy(i)=10.d0

!H_n_dummy(i)=2+15*( &
!exp(-(i-n_memory_steps(number_of_alleles)-10)**2.0/1.5) &
!+exp(-(i-n_memory_steps(number_of_alleles)-20)**2.0/2) &
!+exp(-(i-n_memory_steps(number_of_alleles)-35)**2.0/2) &
!+exp(-(i-n_memory_steps(number_of_alleles)-60)**2.0/2) &
!+exp(-(i-n_memory_steps(number_of_alleles)-100)**2.0/2) &
!+exp(-(i-n_memory_steps(number_of_alleles)-150)**2.0/2) &
!+exp(-(i-n_memory_steps(number_of_alleles)-220)**2.0/2) &
!)

if (i .LE. n_memory_steps(number_of_alleles)) then
H_n=H_n_dummy(n_memory_steps(number_of_alleles))
else
H_n(i)=H_n_dummy(i)
end if
end do

!x_n_i initial conditions
x_n_i(1,1)=H_n(1)
x_n_i(1,2)=H_n(1)
x_n_i(1,3)=H_n(1)
x_n_i(1,4)=H_n(1)
x_n_i(1,5)=H_n(1)
!x_n_i(1,6)=H_n(1)
!x_n_i(1,7)=H_n(1)
!x_n_i(1,8)=H_n(1)
!x_n_i(1,9)=H_n(1)

!!g_n_i function initial conditions
do k=1,number_of_alleles
do m=1,n_memory_steps(k)
g_n_i(m,k)=H_n(m)
end do

!!g_n_i function
do i=n_memory_steps(k)+1,number_of_timesteps
alpha_i(k)=LOG(20.0)/n_memory_steps(k)
!end do

sum5=0.d0
do m=0,n_memory_steps(k)
sum5=sum5+exp(-alpha_i(k)*m)*H_n(i-m)
end do

g_n_i(i,k)=(1-exp(-alpha_i(k)))/(1-exp(-alpha_i(k)*(n_memory_steps(k)+1)))*sum5

end do
end do
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1
!!group_n_i function initial conditions
do k=1,number_of_alleles
do m=1,ngs_memory_steps(k)
group_n_i(m,k)=H_n(m)
end do

!!group_n_i function
do i=ngs_memory_steps(k)+1,number_of_timesteps
beta_i(k)=LOG(5.0)/ngs_memory_steps(k)

sum9=0.d0
do m=0,ngs_memory_steps(k)
sum9=sum9+exp(-beta_i(k)*m)*H_n(i-m)
end do

group_n_i(i,k)=(1-exp(-beta_i(k)))/(1-exp(-beta_i(k)*(ngs_memory_steps(k)+1)))*sum9

end do
end do



File: /home/alwaysme/genedash.f90 Page 5 of 9

open (unit = 15, file = "g.dat") 
do i=1,number_of_timesteps
write(15,*),i,H_n(i),(g_n_i(i,j),j=1,number_of_alleles)
end do

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!target optimum phenotype

do j=1,number_of_alleles
tp_n_i(1,j)=(nat_sltp(j)*H_n(1)+seltp(j)*g_n_i(1,j)+group_sltp(j)*group_n_i(1,j))/(nat_sltp(j)
+group_sltp(j)+seltp(j))
y_n_i(1,j)=a_parameters(j)*x_n_i(1,j)+(1-a_parameters(j))*tp_n_i(1,j)
v_y_n_i(1,j)=a_parameters(j)*a_parameters(j)*v_x_n_i(1,j)+(1-a_parameters(j))**2*V_epsilon(j)
end do

do j=1,number_of_alleles

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

do k=1, integration_steps
dummy_Y=lower_limit+k*(upper_limit-lower_limit)/integration_steps
w_integrand_ns(k)=exp(-(dummy_Y-H_n(1))**2/2.0/NS_parameters(j))                    !1.d0/
((2.d0*pi*NS_parameters(j))**0.5)*
w_integrand2(k)=1.d0/((2.d0*pi*v_y_n_i(1,j))**0.5)*exp(-(dummy_Y-y_n_i(1,j))**2/2.0/v_y_n_i(1,j))
Wbar_integrand_nats(k)=w_integrand_ns(k)*w_integrand2(k)
end do

sum4=0.d0
do k=1, integration_steps-1
sum4=sum4+0.5*(Wbar_integrand_nats(k+1)+Wbar_integrand_nats(k))
end do

sum4=sum4*(upper_limit-lower_limit)/integration_steps

wbar_ns(j)=sum4

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

do k=1, integration_steps
dummy_Y=lower_limit+k*(upper_limit-lower_limit)/integration_steps
w_integrand(k)=exp(-(dummy_Y-g_n_i(1,j))**2/2.0/S_parameters(j))                     !1.d0/
((2.d0*pi*S_parameters(j))**0.5)*
w_integrand2(k)=1.d0/((2.d0*pi*v_y_n_i(1,j))**0.5)*exp(-(dummy_Y-y_n_i(1,j))**2/2.0/v_y_n_i(1,j))
Wbar_integrand_sel(k)=w_integrand(k)*w_integrand2(k)
end do

sum8=0.d0
do k=1, integration_steps-1
sum8=sum8+0.5*(Wbar_integrand_sel(k+1)+Wbar_integrand_sel(k))
end do

sum8=sum8*(upper_limit-lower_limit)/integration_steps

wbar_sl(j)=sum8

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

do k=1, integration_steps
dummy_Y=lower_limit+k*(upper_limit-lower_limit)/integration_steps
w_integrand_grs(k)=exp(-(dummy_Y-group_n_i(1,j))**2/2.0/GRS_parameters(j))                 !1.d0/
((2.d0*pi*GRS_parameters(j))**0.5)*
w_integrand2(k)=1.d0/((2.d0*pi*v_y_n_i(1,j))**0.5)*exp(-(dummy_Y-y_n_i(1,j))**2/2.0/v_y_n_i(1,j))
Wbar_integrand_grs(k)=w_integrand_grs(k)*w_integrand2(k)
end do

sum10=0.d0
do k=1, integration_steps-1
sum10=sum10+0.5*(Wbar_integrand_grs(k+1)+Wbar_integrand_grs(k))
end do
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sum10=sum10*(upper_limit-lower_limit)/integration_steps

wbar_grs(j)=sum10

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

wbar(j)=(nat_sl(j)*wbar_ns(j)+sel(j)*wbar_sl(j)+group_sl(j)*wbar_grs(j))/(nat_sl(j)+sel(j)+group_sl(j))

end do
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

do i=1,number_of_alleles
print *, wbar(i)!,wbar_ns(i),wbar_sl(i),wbar_grs(i)
end do

!do timesteps
do i=2, number_of_timesteps

!define previous x vector
do j=1,number_of_alleles
xprevious(j)=x_n_i(i-1,j)
end do

!denominator for P(n+1)
denom_p=0.0
do j=1,number_of_alleles
denom_p=denom_p+wbar(j)*p_n_i(i-1,j)
end do

!calculate gamma
do j=1,number_of_alleles
denom_gam=denom_p-p_n_i(i-1,j)*wbar(j)
do k=1,number_of_alleles
if (j .ne. k) then
gamma(j,k)=mu*(p_n_i(i-1,k)*wbar(k))/denom_gam
else
gamma(j,k)=rho
end if
end do
end do

!H_thistimestep
h_previous=H_n(i-1)

do j=1,number_of_alleles
p_n_i(i,j)=p_function(denom_p,wbar(j),p_n_i(i-1,j))

!calc new x
call x_function(gamma,xprevious,a_parameters,h_previous,number_of_alleles,j,output)
x_n_i(i,j)=output

sum3=0.d0
do k=1,number_of_alleles
sum3=sum3+gamma(j,k)*gamma(j,k)*v_y_n_i(i-1,k)
end do
sum3=sum3+V_transmission(j)
v_x_n_i(i,j)=sum3

tp_n_i(i,j)=(nat_sltp(j)*H_n(i)+seltp(j)*g_n_i(i,j)+group_sltp(j)*group_n_i(i,j))/(nat_sltp(j)
+group_sltp(j)+seltp(j))
y_n_i(i,j)=a_parameters(j)*x_n_i(i,j)+(1-a_parameters(j))*tp_n_i(i,j)
v_y_n_i(i,j)=a_parameters(j)*a_parameters(j)*v_x_n_i(i,j)+(1-a_parameters(j))**2*V_epsilon(j)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

do k=1, integration_steps
dummy_Y=lower_limit+k*(upper_limit-lower_limit)/integration_steps
w_integrand_ns(k)= exp(-(dummy_Y-H_n(i))**2/2.0/NS_parameters(j))                  !1.d0/
((2.d0*pi*NS_parameters(j))**0.5)*
w_integrand2(k)=1.d0/((2.d0*pi*v_y_n_i(i,j))**0.5)*exp(-(dummy_Y-y_n_i(i,j))**2/2.0/v_y_n_i(i,j))
Wbar_integrand_nats(k)=w_integrand_ns(k)*w_integrand2(k)
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end do

sum4=0.d0
do k=1, integration_steps-1
sum4=sum4+0.5*(Wbar_integrand_nats(k+1)+Wbar_integrand_nats(k))
end do

sum4=sum4*(upper_limit-lower_limit)/integration_steps

wbar_ns(j)=sum4

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

do k=1, integration_steps
dummy_Y=lower_limit+k*(upper_limit-lower_limit)/integration_steps
w_integrand(k)=exp(-(dummy_Y-g_n_i(i,j))**2/2.0/S_parameters(j))                       !1.d0/
((2.d0*pi*S_parameters(j))**0.5)*
w_integrand2(k)=1.d0/((2.d0*pi*v_y_n_i(i,j))**0.5)*exp(-(dummy_Y-y_n_i(i,j))**2/2.0/v_y_n_i(i,j))
Wbar_integrand_sel(k)=w_integrand(k)*w_integrand2(k)
end do

sum8=0.d0
do k=1, integration_steps-1
sum8=sum8+0.5*(Wbar_integrand_sel(k+1)+Wbar_integrand_sel(k))
end do

sum8=sum8*(upper_limit-lower_limit)/integration_steps

wbar_sl(j)=sum8

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

do k=1, integration_steps
dummy_Y=lower_limit+k*(upper_limit-lower_limit)/integration_steps
w_integrand_grs(k)=exp(-(dummy_Y-group_n_i(i,j))**2/2.0/GRS_parameters(j))                   !1.d0/
((2.d0*pi*GRS_parameters(j))**0.5)*
w_integrand2(k)=1.d0/((2.d0*pi*v_y_n_i(i,j))**0.5)*exp(-(dummy_Y-y_n_i(i,j))**2/2.0/v_y_n_i(i,j))
Wbar_integrand_grs(k)=w_integrand_grs(k)*w_integrand2(k)
end do

sum11=0.d0
do k=1, integration_steps-1
sum11=sum11+0.5*(Wbar_integrand_grs(k+1)+Wbar_integrand_grs(k))
end do

sum11=sum11*(upper_limit-lower_limit)/integration_steps

wbar_grs(j)=sum11

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

wbar(j)=(nat_sl(j)*wbar_ns(j)+sel(j)*wbar_sl(j)+group_sl(j)*wbar_grs(j))/(nat_sl(j)+sel(j)+group_sl(j))

end do
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

print *, 'timestep',i,'wbar='
print *,i,(wbar_sl(j),j=1,number_of_alleles)

!open (unit = 4, file = "w.dat") 

write(4,*),i,(wbar(j),j=1,number_of_alleles)

write(7,*),i,(wbar_ns(j),j=1,number_of_alleles)
write(8,*),i,(wbar_grs(j),j=1,number_of_alleles)
write(9,*),i,(wbar_sl(j),j=1,number_of_alleles)
write(10,*),i,wbar_ns(4),wbar_grs(4),wbar_sl(4)

end do

open (unit = 14, file = "tgni.dat")
do i=1,number_of_timesteps
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write(14,*),i,(tp_n_i(i,j),j=1,number_of_alleles)
end do

open (unit = 20, file = "grp.dat")
do i=1,number_of_timesteps
write(20,*),i,(group_n_i(i,j),j=1,number_of_alleles)
end do

open (unit = 40, file = "gni.dat")
do i=1,number_of_timesteps
write(40,*),i,(g_n_i(i,j),j=1,number_of_alleles)
end do

open (unit = 3, file = "hy.dat") 
do i=1,number_of_timesteps
write(3,*),i,H_n(i),(y_n_i(i,j),j=1,number_of_alleles)!,g_n_i(i,1),g_n_i(i,2),g_n_i(i,3),g_n_i
(i,4),y_n_i(i,1),y_n_i(i,2),y_n_i(i,3),y_n_i(i,4)
end do

open (unit = 11, file = "yg1.dat") 
do i=1,number_of_timesteps
write(11,*),i,tp_n_i(i,4),y_n_i(i,4)
end do

open (unit = 18, file = "x.dat")
do i=1,number_of_timesteps
write(18,*),i,(x_n_i(i,j),j=1,number_of_alleles)
end do

open (unit = 17, file = "y.dat")
do i=1,number_of_timesteps
write(17,*),i,(y_n_i(i,j),j=1,number_of_alleles)
end do

open (unit = 5, file = "p.dat")
do i=1,number_of_timesteps
write(5,*),i,(p_n_i(i,j),j=1,number_of_alleles)
end do

open (unit = 16, file = "vy.dat")
do i=1,number_of_timesteps
write(16,*),i,(v_y_n_i(i,j),j=1,number_of_alleles)
end do

open (unit = 17, file = "vx.dat")
do i=1,number_of_timesteps
write(17,*),i,(v_x_n_i(i,j),j=1,number_of_alleles)
end do

open (unit = 60, file = "v.dat")
do i=1,number_of_timesteps
write(60,*),i,(abs(y_n_i(i,j)-group_n_i(i,j)),j=1,number_of_alleles)
end do

end program gene

real function p_function(denom,w_bar,p_prev)
real(8)::p_prev,w_bar,denom
p_function=P_prev*w_bar/denom
end function

subroutine x_function(gamma,x_prev,a,hfunction,num_alleles,allele,answer)
real(8),dimension(num_alleles,num_alleles)::gamma
real(8),dimension(num_alleles)::x_prev,a
real(8)::hfunction,sum2,answer
integer::allele

sum2=0.0
do i=1,num_alleles
sum2=sum2+gamma(allele,i)*(a(i)*x_prev(i)+(1-a(i))*hfunction)
end do
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answer=sum2
end subroutine
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