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Abstract

This dissertation argues a quantum theory for higher-spin fields. Causality is discussed in both
classical and quantum senses in a field theory. Renormalizability is also considered. Equations of
motion are derived from a generalised concept of linearised Christoffel symbols for these higher-spin
fields. It is seen that a minimally-coupled Rarita-Schwinger field violates causality, and that super-
gravity restores it at a classical level. Then these fields are quantised with generalised polarisation

4-vectors. Feynman rules are constructed in momentum space.
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CHAPTER |
INTRODUCTION

Quantum field theory (QFT) is a quantum theory in which classical fields such as electromagnetic fields
A, are quantised into operators in the Hilbert space for the purpose of creating or annihilating particles or
antiparticles. Mathematically particles or antiparticles (more correctly the states of particles or antipar-
ticles) are identified with eigenstates of these operators, and since each state of particles or antiparticles
belongs to the Hilbert space, every state can be expressed as a linear combination of other states.

QFT is a generalised notion of the relativistic quantum mechanics, where special theory of relativity is
incorporated into quantum mechanics, that is, quantum mechanics is reformulated so that it can preserve
Lorentz covariance. QFT is also regarded as an extension of quantisation of a many-particle system; some

people call this procedure second quantisation. Since Lorentz covariance is inevitably lost! for a many-

I This is because the speed of transmission of information is finite, and the corresponding purely classical Lagrangian
contains only the information of both the positions and the velocities of particles, not that of the internal degrees of freedom

of purely classical fields (e.g. a classical electromagnetic field). Therefore, a Darwin Lagrangian is introduced for such a



particle system[1] where each particle interacts with each other, especially in condensed matter theory, the
classical Lagrangian formulation should not work[2] in a precise manner. Thus a relativistic situation of
such a system requires that the particles themselves should be treated as a (Lorentz covariant) continuous
object in which particles are grouped together. The continuous object is called a field. In other words,
a many-particle system turns into a field in a relativistic case. This is a pedagogical introduction of the
notion of a field in condensed matter theory.

From the standpoint of particle physics, the fact that the relativistic quantum mechanics faces two
setbacks[3] motivates one to introduce the notion of a field in quantum mechanics. Once a Klein-Gordon
equation is substituted for a Schrodinger equation, the appearance of a negative energy may break down
the notion of potential energy in physics. The second setback is that one is forced to abandon the
concept of a particle probability density p = |¢|* in order to preserve the Lorentz covariance. Thus, in a
relativistic situation, the equations of motion for the particle should turn into those for another object
which produces or destructs the particle. This object is called a field. The notion of the negative energy
is solved with the introduction of an antiparticle.

In condensed matter theory a field is regarded as an assembly of particles, while in particle physics a
field is interpreted as 'machinery’ which create or annihilate particles or antiparticles. Both approaches
are same essentially in that particles (or antiparticles) are created or annihilated in vacuum.

QFT treats spin-0, spin-1/2 and spin-1 fields, and such lower-spin fields are real except for a Higgs
field, a fundamental scalar field. Even though QFT can treat a spin-3/2 field, it was known[4] that the
field violated causality once it coupled with a particular external field. It was pointed out[5] that this
fact implied either that there was a defect in Lagrangian approach or that there were no fundamental
particles with spin-(s+1/2) (s > 1) . Indeed, even though supersymmetry (SUSY) predicts the existence
of a graviton, which has spin-2, and its superpartner, a gravitino, which is a fundamental particle with
spin-3/2 , such particles have not been observed so far. They are still phenomenological particles.

In the second chapter, causality for a field theory is reviewed in both classical and quantum senses,
and renormalizability is also considered. In the third chapter higher-spin fields are discussed. This

dissertation is closed with the conclusion.

system as an approximation.



Throughout this dissertation, the following notation

N = diag(L, —=1,...,=1,=1) , ~° =ir"y'y*y° (0.0.1)

/ die® = (2m)46W (k) (0.0.2)

is used in d-dimensional space.

CHAPTER Il
CAUSALITY AND RENORMALIZABILITY

The present chapter reviews causality and renormalizability in the field theory. In the first section,
causality is discussed in a classical sense, and the relevant concepts such as a characteristic determinant
and hyperbolicity are given. It is seen that the existence of a timelike normal vector to a characteristic
surface of a solution for a partial differential equation makes the solution acausal in a classical level. Then
it turns out that in quantum mechanics, equal-time commutation relations between a particle sector and
its antiparticle sector play an important role in judging the causality of a quantum field. The section
owes most of relevant definitions and ideas to Courant and Hilbert[6] in a classical level, and relies on
Tong’s website[7] in a quantum level.

This chapter is closed with a review of renormalizability. The power-counting method is considered.
It turns out that dimension of a coupling constant tells us the renormalizability of the theory. Then we
see that counter terms are used in renormalized perturbation theory, where renormalization conditions
are taken. One-loop structure of ¢* theory is also studied. The book[8] written by Peskin and Schroeder

is referenced for this chapter.

1 Causal behaviour of fields

Quantum field theory is based on special theory of relativity, and so any information cannot travel faster
than the speed of light. In this section we discuss, in both quantum and classical sense, causal behaviour
of lower-spin fields, explaining mechanism of causality. Firstly we set basic definitions of a characteristic

surface, a characteristic determinant and hyperbolicity. Then we see that the existence of a timelike



(a) An integral surface z = u(x,y) and its tangent plane with(b) A Monge cone with its vertex at a point P(x,y, z) , which

the normal vector nat a point P(z,y,z2) . touches the planes of the one-parameter family.

Figure 1: An integral surface and a Monge cone

normal vector to the characteristic surface makes it possible that a solution of the PDE behaves in an
acausal way. It turns out that this leads to a criterion for judging whether a field violates causality
or not. It is also seen that classically Dirac equations and Maxwell equations are hyperbolic. Then,
considering equal-time commutation relations, we realise that quantised Klein-Gordon equations have
causal behaviour in a quantum sense. It is seen that if a particle moves in an acausal way, its antiparticle

cancels it out. This is the reason why antiparticles exist in QFT.

1.1 Hyperbolic systems

In this subsection, for PDEs, a definition of hyperbolicity and characteristic surface are given.

Geometric interpretation of a PDE (first order): To begin with, let us consider a first order PDE

which consists of two variables x,y .

ou ou
A R — = 1.1.1
(@,y,2) 5 + Blz,y,2) o C(z,y,2) (1.1.1)
A%+ B2 #0 (1.1.2)

If only two variables, e.g. =,y , are used in a partial differential equation, then one solution z = u(z,y) of

the PDE is interpreted as a surface; this surface is called an integral surface in the xyz-space. In (1.1.1)
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, the integral surface z = u(x,y) should have a tangent plane, at a point P(x,y, z) . The normal vector

n of the tangent plane is written as
n=| (1.1.3)

0 0
which is related with the differential equation Aa—u +B 8_u = C (See Figure la). This equation indicates
x Y

that the tangent planes of all integral surfaces?, passing through the point P(z,y,z) , belong to a set.

This set is interpreted as a straight line or a pencil which has the axis satisfying the relations:

A
dx = | B , anddx-n=0 (1.1.4)
C’ P
at the point P(x,y,z) . We call this pencil and axis Monge pencil and Monge axis, respectively. A line
characteristic element is formed by the point P(z,y, z) and the direction of Monge axis passing through
P . The characteristic curves of the PDE are described by (1.1.4) , and if a parameter A along the

characteristic curves, then the differential equations reduce

A
dx=| B |d\ . (1.1.5)
C

Finding surfaces which are, at every point, tangent to the Monge axis corresponds to integrating the
PDE. Therefore, we can say that an integral surface of the PDE is a surface u(x,y) generated by a one-
parameter family of characteristic curves. Indeed, if we consider a one-parameter family {C;} of curves
defined by
dx dy
—=A, —=B , 1.1.6
d\ Tod) ( )

then inevitably we have

du_f)ud_x 8u@

5_8?d/\+8_yd/\ (1.1.7)
ou ou
(1.1.1) %—A%—i-Ba—y—C , (1.1.8)

2We may say that an integral surface of the PDE is the same as a solution of the PDE.
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and so the one-parameter family satisfies (1.1.5) , which means that the one-parameter family is made
up of characteristic curves. For non-linear PDEs, although tangent planes do not constitute a pencil of
planes through a line, they make a one-parameter family which envelope a conical surface with P(z,y, 2)

as a vertex. This cone is called a Monge cone (See Figure 1b). For example, we have a general PDE

0z 0z
G($79727P7Q)—07 Wherep_ % 9 q_a_y ) Z—U(l’,y) ) (119)
and
OG\*> [0G\?
- - 1.1.1
(019) +(5Q> 70 (1.1.10)

is required. The differential equation assigns a Monge cone to each point P(z,y, z) in the space. Alter-

natively, a Monge cone can be expressed as

oG oG oG
dx _op dy _ dq dx _ 9p (1.1.11)
= 3G > = 4G G = 9G le] L
o 5w poag du po+ag,

where p = p()\), ¢ = q()\) , and this relations® are thought to be the representation of the Monge cone dual
that obtained by (1.1.10) . The directions of the generators of the Monge cone are called characteristic
directions. For a quasi-linear PDE’s case, only one characteristic direction belongs to each point in space.
We call space curves having a characteristic direction at each point Monge curves*. For the Monge curves,
an appropriate parameter s is used, and (1.1.11) are expressed as

de  9G dy 9G du G 9G

ds ap ds aq’ ds Pap "Tag

these three conditions are called the strip condition. Simultaneously both a space curve and its tangent

(1.1.12)

plane are defined at each point by the functions x(s),y(s),u(s),p(s),q(s) . Let us call a configuration

made up of a curve and a family of a tangent planes to this curve a strip.

Several types of PDE: Discussion may become easier by using a differential operator L]u] . Let us

consider a linear differential operator of second order

0*u 0*u 0*u

(1.1.13)

3These relations (1.1.11) are derived by three relations: (% = pg—i + qg—g , %% + %\% =0 and %j—i + %% =0,

where o means the distance from the vertex of the cone. Here x,y, u are regarded as functions of o along a fixed generator.

The last equation is obtained by differentiating the both sides of G = 0 with regard to A .
4They are also called focal curves.



and we construct a more general PDE which is not necessarily linear:

ou Ou

L -= =
[u] + h(z,y,u, 9%’ Oy

)=0 ,

where h(z,y,u, 2%, 24) is a function. Then, introducing new independent variables:
1 I Bz By )

§=0(z,y), n=VY(z,y ,

we alter the PDE (1.1.14) into a simple normal form.

Qu_0udd  0udV  Ou _0udb  0uov
Oor 0£0x Ondx’ Oy 90y Ondy
Pu  Pu (0PN | Pu 0OV DPu [0V
o~ 0¢ (_> 0€0n 0z 0z on? (%)
Pu @a_@a_cb+ *u (aopaqf . acpaqf) +52_ua_qfa_\1/
0xQy  0& 0x Oy  0&0n \ Ox Oy Oy Ox on? dx Oy
Pu  Pu (0PN Pu 09OV dPu [0V?
5?‘5?<_> %%&ﬁ@+5FGE)

The differential operator L[u] may be transformed into

0%u 0%u 0%u
T r 2 r
=g gy, e
where
0P 0P 0P od
h=A|— —
1 <3:p) +2B3x3y+0<3y>
0OV (0B0V 0BOVY 000w
Ox Ox Ox Oy Oy Ox dy Oy
o OV OV v\
I3=A(— — —
’ (3:'3) 2% 8y+0(0y)
We see that there are relations between (A, B, C') and (I'1,T'9,T'3) :
0P oV 0P OV
Iy — (Ty)? = B (/= 72
1l = (1) (AC-B >(0:E dy Oy 8$)

Q(l,m) = AI* + 2Blm + Om? = T\ \* + 209 + Tap®

where (I,m) and (A, i) are related as

0P 0P ov ov

=222
Ox “ay’ 8x+ut9y

(1.1.14)

(1.1.15)

(1.1.16)
(1.1.17)

(1.1.18)

(1.1.19)

(1.1.20)

(1.1.21)

(1.1.22)

(1.1.23)

(1.1.24)

(1.1.25)

(1.1.26)



Next we impose conditions:

case 1 Fl = Fg s FQ =0 (1127)
case2 I'1=-I3, Ty=0 o'y =T3=0 (1.1.28)
case 3 Iy =T3=0 . (1.1.29)

Correspondingly, for Q(I,m) = 1, and for fixed point (x,y) the differential operator T[u| are called

case 1. elliptic if AC — B? >0 (1.1.30)
case 2. hyperbolic if AC — B* <0 (1.1.31)
case 3. parabolic if AC — B*=0 |, (1.1.32)

and the differential operator takes such forms:

0? 0?
case 1.  Tlu] =T} (8_53 + 8_7;;) + (lower order terms) (1.1.33)
Tu] =T, (‘g%g — ging) + (lower order terms)
case 2. or (1.1.34)
Tlu] = 2T ;;g‘n + (lower order terms)
0%u
case 3.  Tlu] = F18_£2 + (lower order terms) (1.1.35)
and additionally the normal forms of the differential equation are
0? 0?
case 1. a—g: + 8_77?; + (lower order terms ) =0 (1.1.36)
% — gi;; + (lower order terms ) =0
case 2. or (1.1.37)
88;57 + (lower order terms ) =0
2
case 3. a—g + (lower order terms ) =0 . (1.1.38)
Characteristic curves and determinants: Now we consider a system of k equations for a function
vector u(x,y) = (uq,...u,) in 2 independent variables x,y . Its differential operator is
L][U] :AZ]%+BZ]E+D] R ]:1,,]{5 5 (1139)

10



where® A = (A;;), B = (By;) are® k by k matrices. If we express (1.1.39) as a matrix form, we have

ou

Lu=A—+4+B—+D ,

ox

ou
o (1.1.40)

where L, D and u stand for vectors. Now, considering L[u] = 0 , we confront the Cauchy initial value

, 2
problem, that is, provided that initial values of the vector u on a curve C: ¢(z,y) = 0 with (%)2—1— <@> #+

oy
0 , the first derivatives % on C so that L[u] = 0 is satisfied on the strip. On C, the interior” derivative
%gﬁ — %% is known, and there is a relation such that
y Oz z dy
09

ou ou y

— =T+ — = 1.1.41

oy~ ow T TT T m (1.1.41)
where the dots refer to quantities known on C. Using this in (1.1.39) , we have

aui

94 Thus a necessary and sufficient condition

that is, a system of linear equations for the k derivatives %

for determining all the derivatives along C is

Q=det(A—7B)#0 |, (1.1.43)

and @ is called the characteristic determinant of the system (1.1.39) . If Q does not vanish along the
curves ¢ = const , then such curves are called free. For these curves, continuation of initial values into a
'strip’ satisfying (1.1.39) is possible, and we can choose initial values arbitrarily. If the algebraic equation
Q@ = 0 of order k has a real solution 7(z,y) , then the curves C' , which are defined by the ordinary

differential equation

dx dx

=T, or Q(gjay)_>:0 ’

o _ 1.1.44

are called characteristic® curves. If there are no real solutions 7 for the equation @ = 0 , then all curves

are free, that is, their initial values can be always continued into a strip uniquely. Then the system is

SLet us emphasise that here the summation convention is taken for the indices which appear twice in a single term.
6We assume that either A or B is a non-singular matrix.

2 2
"For a function f(z,y) in a curve ¢(x,y) = 0 with (g—i) + (%) # 0, a differentiation a% +ﬁg—£ is said to be interior

if a% + ﬁg—;’j =0 . In particular ‘Z—ﬁ% — %% is an interior differentiation of f .

8Generally, it is not possible that initial values are continued into an integral strip for characteristic curves.
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called elliptic. By contrast, if the equation ) = 0 possesses k real solutions which are distinct each other,
the system is called totally hyperbolic.

If 7 is a real solution of (1.1.43) , along C it is possible to solve the system of linear homogeneous

equations for the vector | with components [y, ... [ :
lj(Aij — TBZ']') =0 , Or Z(A — TB) =0 s (1145)
and [;L{u] = [L[u] of the differential equations (1.1.39) can be expressed as the characteristic normal
form:
or
Ju du
ILul| =IB(—+71—)+-- = 1.1.4
] = 1By +Tgm)+ e =0 (1.1.47)

where all the unknowns are differentiated along the characteristic curve corresponding to 7 . Therefore,
in the hyperbolic case, where k such families of characteristic curves exist, the system is replaced by

equivalent one in which equation has differentiation only in one, characteristic, direction.

Generalisation to n independent variables: So far we restricted variables within 2. Now we con-

sider a system of first order with n independent? variables x = (z1,...,2,) . In this case,
Ou, .
LJ[U] :Aij,ya—u—f—Bj:O, J :1,...,]{3 (1148)
T,
v=1,....,n (1.1.49)

where!® A;;, and B, depend on x and possibly also on u . In matrix notation,

ou

YO,
where A, are k by k matrices, and B is a vector.

Then a surface C': ¢p(x) = 0 with V¢ = grad¢ = 0 is considered. On the surface C, the quantity

Lu=A,=—+B=0 , (1.1.50)

0
A= 4,0 (1.1.51)
ox,
9In this case, in a manifold ¢(z1,...,z,) = 0 with V¢ # 0 , the interior differentiation of a function f(xy,...,z,) of n
variables z1,..., T, is cyaan , or a linear combination of clan17 o ’Cnaan , provided that cl,aaT‘j) = 0 is satisfied.

10The summation convention is taken with regard to v, .
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is called the characteristic matrix, and the characteristic determinant!? is

20w
ox, " Oz,

in this case. We can set initial values of a vector v on C. Let us draw attention to the fact that in C

Ou 0¢ _ du 0¢
Oz, Oxp Oy, Oz,

data if only the one outgoing derivative 2% is known. Multiplying (1.1.50) by a‘% , we see that

O ) = detd | (1.1.52)

is an interior derivative of u. Thus, assuming that 8¢ =0,inC 887“ is known from the

8 n
0¢p B ou 0¢ dop ,  Ou B

where J = %B can be an interior differential operator on w in C. Therefore, provided that the char-
acteristic determinant () does not vanish, % is uniquely determined by the system (1.1.53) of linear
differential equations for the vector % , and in this case the surface C is called free.

On the other hand, if the characteristic determinant is zero, then a null vector [ exists such that

[A =0 . Multiplying (1.1.53) by [ gives rise to

3¢
=7 =0 1.1.54
Ll =17 =0, (11.54)
which is, along C, expressed by an interior differential operator on the data, and this operator {7 does

not have 8‘97“ . This suggests that {7 is a differential relation which restricts the initial values of u on

C. If the characteristic determinant vanishes along C, the surface is called a characteristic surface. Then

there exists a characteristic linear combination
[Llu] = l;L;j[u] = Alu (1.1.55)

of the differential parameters L; such that in A the differentiation of the vector u on C is interior, and a
relation among the initial data are described by the equation Afu] = 0 . Thus we cannot take these data
arbitrarily.

Next let us categorise the partial differential equations in n independent variables. If one cannot
realise the homogeneous algebraic equation () = 0 in the quantities d¢ e by any real set of values

7 ) 63;
(except % = 0) , then there exist no characterlstlcs and the system is called elliptic. By contrast, if

the equation ) = 0 has k distinct real solutions ¢ for arbitrarily prescribed values of 22 &E . 8f¢_1 (or

if a corresponding statement is true after a suitable coordinate transformation), then we call the system

totally hyperbolic.

117t is also called the characteristic form.
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Hyperbolicity for higher order PDEs: The cases of higher-order PDEs should be discussed for

hyperbolicity. Here we denote % by D, for convenience. In cases of higher order,
Lu) = H(Dy,...,Dy)u+ K(Dy,...,Dy)u+ f(z) =0 |, (1.1.56)

where H is a homogeneous polynomial in D of degree m and K is a polynomial of degree lower than m,
assuming that all the coefficients are continuous functions of x. Let us define the Cauchy data as the
given initial values. Provided that a% # 0 on the surface C' : ¢(xq,...,2,) = 0, the Cauchy data is
made up of the values of the function u and its first m — 1 derivatives on the surface C.

Let us introduce new coordinates as independent variables. One chooses ¢ as one of these coordinates,

and Aq,...,\,_1 as interior coordinates in the surfaces ¢ = const . Then one can write all the m-
th derivatives of a function u as combinations of the m-th 'outgoing’ derivative % with terms which

possess at most (m - 1)-fold differentiation with respect to ¢ , and therefore all the m-th derivatives of a
function u are known from the data. The equation is

2o o
Ox,’ 7 Ox,  Opm

=0 (1.1.57)

where the dots stand for terms which are known on C from the data. This equation for u has a unique
solution if and only if () # 0 . If the characteristic determinant vanishes on C, an internal condition for
the data is represented by the equation.

Hence, in order to determine the condition under which arbitrary data on C determine uniquely the
m-th derivatives of u on C, it is necessary and sufficient that the characteristic determinant

¢ O¢ ¢ ¢
—_— ... =H(—. ...
oxy’ ’&Cn) oxy’ ’8xn)

Q( (1.1.58)

is not zero on C. If the surface C is characteristic, that is, the surface satisfying () = 0 , then Hu + Ku
is an internal differential operator of order m on C. This implies that m-th derivatives are contained in
the differential operator only in such a way that they combine into internal first derivatives of operators

of order m-1 , and therefore they are known on C from the data.

1.2 Mathematics for classical causality

This subsection argues causality in a classical sense from the view of mathematics. The normal vector

and a tangent vector to a characteristic surface are considered, and they are orthogonal. It is seen that

14



(a) A hypersurface S and its normal vector £, at a point p (b) A characteristic surface C and its normal vector £, = 0,,¢
. An intuitive explanation why ¢, is normal to C. The covec-
tors dz” are chosen as they are tangent to the characteristic

surface.
Figure 2: Hypersurfaces S, C and their corresponding normal vectors
if the normal vector is timelike, a tangent vector is spacelike, which states that the characteristic surface

has acausal properties. By searching for the existence of a timelike normal vector to the characteristic

surface, it may be possible to know whether a solution of a PDE violates causality or not.

Normal vectors to hypersurfaces: Let M be an m-dimensional manifold, and .S be its hypersurface,
that is, an (m — 1)-dimensional embedded submanifold of M . We denote the tangent spaces, at a point
p (€ M), of M and S by T,M and T,S . We starts our discussion by considering an orthogonal vector
to the hypersurface S . Since 1,5 C T,M , there exists a vector §, € T,M such that

g€’ =0 (1.2.1)

for Vv, € T,,S . Then we say that the vector £, is normal to the hypersurface S (See Figure 2a). If the

metric is pseudo-Riemannian, it is possible that the normal vector is a null vector:

g€ =0, (1.2.2)

15



and in this case as far as (1.2.2) holds true, the normal vector belongs'? to the tangent space of S , that
is §, € TS , and S is called a null hypersurface.

In the previous section, we see a characteristic surface in an n-dimensional manifold N, and it may
be possible to regard a characteristic surface as an assembly of characteristic curves. Now we find that a
characteristic surface C : ¢(z',...2™) = const has its normal vector £, € T,N at a point p. It is defined

as

£, = 0,0 . (1.2.3)

Why is it normal to the hypersurface C' 7 Intuitively,

0=do= %dm” (1.2.4)
= &dz” (1.2.5)

and the covectors dz” are taken as they are tangent to the characteristic surface. Therefore ¢, is normal
to the characteristic surface C' (See Figure 2b).
Rigorously, we use a corollary of the Frobenius theorem. The corollary states that the necessary and

sufficient condition that a vector field &, should be hypersurface orthogonal is

§uVaéy =0 (1.2.6)

where the nabla stands for the covariant derivative operator in a pseudo-Riemannian space. In a

Minkowski space, we find that the normal vector &, = 0,¢ satisfies the condition (1.2.6) .

Local causality and timelike vectors: We know that a curve is causal locally, at a point p, in the

manifold M if its tangent vectors v, are timelike or null at that point, that is,
guvtv” >0, org,v"" =0 |, (1.2.7)

respectively. The curve locally™ runs inside the light cone whose centre is p if v, is timelike, passing
through the point p. The curve locally runs along the surface of the cone if the tangent vector is null. If

the vector is spacelike, ie g, v"v” < 0, then the curve locally goes outside the cone (See Figure 3). One

2By contract, if the metric is Riemannian, then £, ¢ T,,S .
13In this context, locally means an arbitrarily small region near p.
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O>z5<o D

A light cone and a timelike A light cone and a spacelike
vector vector
(a) A light cone and a timelike vector v, , (v, v* >0) .  (b) A light cone and a spacelike vector v,, , (v,v* < 0) .

Figure 3: Light cones and tangent vectors. At the point p, the parameter \ takes zero.

realises this fact by considering a curve C' : z#(\) = (cA,x(A)) which is parametrised by one parameter
A

dxt
m— 27 g\ = oM 1.2.
dx ) d\ = v'dA (1.2.8)
and so  ds® = g, dz"dz” = g, 0"V dNdN (1.2.9)
dxt . . . 2 2 :
where v* = I (c,u) . Indeed, if the vector is spacelike, then v,v* = ¢ —u? < 0, that is, the speed

of the object exceeds that of light.
Now let us how classical causality is linked to a characteristic surface C' and its normal vectors &, .

This is the essential part of this subsection.

Theorem 1.1 Let ¢, € T,M , v, € T,C . The characteristic surface C is a hypersurface of the
manifold M . Suppose &, is timelike at the point p, and is normal to the characteristic surface C', that

is ot =0 .

Then any tangent vector v, of C is spacelike, and accordingly the characteristic surface is spacelike, that is, cc
(1.2.10)

Using this theorem, we can investigate whether a solution of equations of motion for fields is spacelike or

not.
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We finalise this subsection by making a proof of the theorem. In a Minkowski space (R 7,,) ,
we take the normal vector &, (€ T,M) and an arbitrary tangent vector v, (€ T,,C') to the characteristic

surface C as

a A
13 b b (1.2.11)
= s v, = L.
! c ! C
d D
The assumption says that
vt =aA—-bB —cC —dD =0 (1.2.12)
S aA=0B+cC+dD . (1.2.13)
Since &, is timelike,
El=a®—b"—c—d*>0 (1.2.14)
and immediately — (¢* + d*) > b* — @ (1.2.15)
P+ d)>F—-a*, —-(V+F)>d*—a’ (1.2.16)

are obtained. Then, by using (1.2.13) , we consider

a* (A — B> = C* = D?) = (V¥ — a*) B> + (¢* — a®)C* + (d* — a*) D* 4 2bcBC + 2¢dCD + 2dbDB
(1.2.17)

(1.2.15) and (1.2.16) imply that

@’ (A*— B> = C*—=D*) < —(*+ d*)B*> — (1> + d*)C* — (¢* + b*) D* + 2bcBC + 2¢dCD + 2dbD B

(1.2.18)
= —(cB —bC)? — (dB — bD)* — (dC — cD)* <0 (1.2.19)

and therefore we have
A—B*-C*-D*=p" <0 (1.2.20)

that is, v, is spacelike Q.E.D.
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1.3 Classical causality for Maxwell and Dirac fields

As examples of hyperbolic PDEs, let us take the Maxwell equations and Dirac equations. First a Maxwell

field in vacuum is considered. If we take the Lorentz gauge, the Maxwell equations reduce to

DAY =PA” =0 (1.3.1)
? 0 0 0 A°
0 9 0 0 Al
which means =0 . (1.3.2)

0 9 0 A?
0 0 0 0o A3

The characteristic determinant is

Q&) = QG 5 5 5
(G- @@ @)
e (1.3.4)

and so we see that Maxwell equations in the Lorentz gauge are hyperbolic. Since the right-hand side of
(1.3.4) is positive for any normal vector except for null, there is no spacelike characteristic surface. We

find that a classical Maxwell field with the Lorentz gauge is causal.

Hyperbolicity of Dirac equations: Next we see the hyperbolicity of the Dirac equations.
(iv"0, — me)yp =0 (1.3.5)

Taking two 2-by-2 matrices My, My and M3 as

B, o 0 0 o 0
—— ——+i— — —— i
M, =i 0z or 0Oy My —i 0z ox Oy 7 (1.3.6)
o 0 8 o 0 0
“or oy oz oz 'y T o-
9
— 0
My=i| Ot , (1.3.7)
. 9
ot




in the standard representation, we express the PDE as
LYy =H¢Y —mep =0 (1.3.8)

where H is a 4-by-4 matrix such that

H = (%P’ %2> . (1.3.9)
1 M3
Accordingly we have
o 0 0 0
Q5 50 i 5;) = detH (1.3.10)
o2 92 o2 o2 2
- (a_t R a_) ’ (13.11)

and the characteristic determinant becomes

¢ 09 09 0¢

Q&) = Q5,5 3y 5, (1.3.12)
G- -G -} 1319
= (.M . (1.3.14)

Thus we find that the Dirac equations are hyperbolic, and the classical Dirac field is causal.

1.4 Causality for real Klein-Gordon fields

Now we treat causality in a quantum sense. Let us consider quantum real Klein-Gordon fields:

d3p 1

P(z) = / Wﬁ {ape™™" + aLeip'x} : (1.4.1)

where ap and aL are destruction and creation operators of the scalar particles, respectively. We impose

the conditions:

[ap, al]- = 27)*0® (x —y), [ap, ag]- =0 (1.4.2)

q]

which suggests equal time commutation relations

[6(t, %), 7(t,y)]- = 0¥ (x —y),  [6(t, %), 6(t,¥)]- = [x(t,x),7(t,y)]- =0 (1.4.3)
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0

(a) The angle between 3-momentum p and the position vec-(b) An acausal motion p of a particle is cancelled out by the

tor r motion —p of its antiparticle.

Figure 4: The plane wave and its relation with the position vector in Fig 4a . The antiparticle cancels

the particle’s acausal motion in Fig 4b .

for these fields. The propagator for a real scalar field is
dp 1 _.
D(z —y) = (0 0) = | e Pl 1.4.4
(= =1) = Qo) = [ e , (144)
and causality requires that, in a classical sense, the propagator should vanish for spacelike separations
(z —y)? = (" — y")(z, — y,) < 0. However, it actually takes non-zero values. For example, in the case

where 2° — ° = 0, x —y = r ; this is a typically spacelike, indeed. The propagator becomes

Ple=u= / (;ljrl))?’ ﬁe_im_y) (1.4.5)
_ / éLf)IS p’ ;i;fd@ 9 o ilplreostd L16)
- (2QT7T)3 /ooo d|p|%i|[1)|r {memipren? 4 efpirenty (LA.7)
— (27r1)2i7’ [/000 d|p|%elplr _ /O_OO d(_q)Z__;qeiqr ’ (14.8)

where theta means the angle between the direction of the 3-momentum and the position vector (See

Figure 4a), and in the second term of the last line, we put |p| = —¢ . Changing the dummy variables,
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we have

1 e z 1 o0 z 4
Dz —y) = d = dz—=—=e"" 1.4.9
(x y) (271')%7" /—oo ZQEze 2(27’(’)%7‘ /—oo Z, / 22 + m2€ ) ( )

and we need to evaluate this integral. Roughly,

D(z —y) ~ % | (1.4.10)
and it vanishes at large spatial distance, but it still takes non-zero value for spacelike separation.

How can we overcome this setback? In quantum mechanics, a measurement done at one point may
affect a measurement at another point, which implies that information at the former point!? travels to
the latter point, and so our concern about causality protection is focused on whether or not the speed
of travel of the information exceeds the speed of light. The statement that a measurement at the point
A = z# does not make any effect on a measurement at the other point B = y* in which A and B is
spacelike-separated (i.e. (z* —y*)(x, —y,) < 0) means that the propagation speed of the information is
lower than the speed of light.

A postulate of quantum mechanics states that if two physical measurable quantities commute with
each other, it is possible for us to measure them simultaneously. That is, commutativity between two
observables assures that the one measurement does not affect the other measurement because possibility of
simultaneous measurement may remove external factors, including the effect of the former measurement.

In this case, the commutator is

[0(2), ¢(y)]- = D(z —y) = Dy — =) . (1.4.11)

However we here have to investigate the commutativity at equal time because we now use'® Heisenberg
picture. Thus if an equal-time commutator [¢(x), ¢(y)]- vanishes for spacelike interval e.g. (z*—y*)(x, —
y,) < 0, causality is protected. Commutators containing any function of ¢(x) would also have to be
zZero.

In other words, for the purpose of studying the possibility of simultaneous measurement, we have

only to consider the equal time commutation relation between them, because at equal time the interval

141t is also called signal velocity.
15Tt does not make sense if we consider a ’simultaneous’ measurement between an operator O(ty) and a time-evolved

operator O(t1) .
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is always spacelike: (x —y) = (0,x—y), (r—9y)?=—(x—y)? < 0. The equal time commutation

relation for a real Klein-Gordon field is

Bp 1 dp 1 _,
b ). Bt — ip(ey) _ / L emip ) 1.4.12
[‘b( 7X)7 (b( 7y)] / (27T)3 2Epe (271')3 2E’pe ’ ( )
and here the left-hand-side is Lorentz invariant. The first term in the right-hand-side is rewritten as
dp 1 c3p 1 /
ip(x—y) _ P (x—y) 1.4.13
/ (2m)3 2B, " / 27r)3 2B, ¢ (1413)

putting dummy variables as p’ = — e Py (1.4.14)

which leads to the cancellation of right-hand-side in (1.4.12) , and so it turns out that causality is
protected.

1.5 Causality for complex Klein-Gordon fields

For the case of a massive complex scalar field,
L =—(0.0)(0"¢)" —m*po (1.5.1)
is a Lagrangian for this. Accordingly, the equations of motion
(0* =m*)¢ =0 (1.5.2)

is derived from the Euler-Lagrange equation. Quantising this field, we have

3 1 . ,
o0a) = | oy g (w8} 159
1 ,
ngT(x) —/ d p —2E {a Zp”“"—l—bpe_”"“"} ) (1.5.4)

By definition, © = % = —(0°%)t = —(4)t , and so

ePT — boe P} (1.5.5)

(@) =i / (%)3\/7 Lape™?® — bl (1.5.6)
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are the correspondent fields. The fact that two different creation operators aL , bL are used here implies
that the particle is different from the antiparticle. One draws attention to the fact that basically two
fields ¢ and ¢! are different'®. Now let us consider the causality protection of these fields. The equal-time

commutation relations are

[ap, al]— = [bp, bl]- = (21)*6” (p — q) (1.5.7)
[ap, ag]- = [bp, bg]- = lap, bg]- =0, (1.5.8)

which suggests that the equal time commutation relations are

6(%), w(t,y)- = =D (x—y). [6(t.), 7(6.y))- =0 (159
[o(t.x), o(t,y)]- = [r(t,x), n(t,y)]-=0 . (1.5.10)
Now one finds that
o(0.). 910.9))- = [ et = [ ey (15.11)
(14.14) - =0 (1.5.12)

and so the information of these fields propagate in a causal way!'".

We can interpret this cancellation
in (1.5.12) for the spacelike separation as a phenomenon in which once a particle behaves in an acausal
manner, its antiparticle cancels it out (See Figure 4b). The same interpretation holds for the real Klein-
Gordon field in (1.4.12) , which suggests that the scalar particle itself is its antiparticle. This interpretation
is compatible with the existence of antiparticles, even though a scalar particle has not been observed so

far.

2 Renormalizability of quantum theories

In QFT, whenever divergent terms appear, they should be removed or cancelled by technique. The series

of technique to make divergent terms vanish are called renormalization. In this section, we conduct

16Therefore we can say that ¢ # ¢' , that is, the field is not Hermitian, which means that two fields are not observable.

Is it meaningless to discuss the causality of these fields?
1"Nevertheless is this result meaningful? Since the complex field ¢ is not an Hermitian operator, it is not measured

basically.
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[=2+0-2+1=1 L=141-24+1=1

(a) two electron propagators, 2 external photon lines and 2(b) one electron propagator, one photon propagator and two

vertices vertices

B

V=0+2=10242)=2 V=4+0=3(4+4)=1

(c) two external photon lines, one electron propagator and(d) two photon propagators, two electron propagators and

two external electron propagators four electron external lines

Figure 5: examples of the formulae for the number of loops and the number of vertices
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a brief review of renormalizability. To begin with, the power counting method is treated. It is seen
that the (length) dimension of a coupling constant determines the renormalizability of a theory, and
that QED is renormalizable in 4-dimensional space. Then the method of counter terms is reviewed,
where renormalization conditions are introduced in renormalized perturbation theory. Feynman diagrams
change into renormalized diagrams, and renormalization parameters are adjusted so as to satisfy the
renormalization conditions, there. This section is finalised by study of one-loop diagrams for ¢* theory.

In this section we use the following notation in terms of Feynman diagrams:

2.0.13
2.0.14

E., :the number of external lines of photon
:the number of external electron lines

2.0.15
2.0.16
2.0.17
2.0.18
2.0.19
2.0.20

:the number of external real scalar field lines

ICERS e

:the number of propagators of photon
P, :the number of propagators of electron
P, :the number of propagators of real scalar field

V' :the number of vertices

o~ o~ o~ o~ o~ o~ o~~~
~— ~— S ~— ~—

L :the number of loops

2.1 Power-counting method

Firstly, the power-counting method for QED is considered. In a Feynman diagram, the number of loops

is expressed as
L=FP.+P, —-V+1 |, (2.1.1)

since one electron propagator can give rise to one vertex and one loop, and one photon propagator is

linked to two vertices. See Figure ba and 5b, where two examples are cited. The number of vertices is
1
V=2P, +E, = 3 (2P, + E.) (2.1.2)

because one vertex line is linked'® to one photon line and two electron lines. See Figure 5c and 5d ,

where two examples are cited. Now, for the purpose of investigate whether or not a Feynman diagram is

80ne photon external line is linked to one vertex, and one photon propagator calls for two vertices. Similarly, in terms of
electrons, one electron external line is linked to half of vertex, and each electron propagator is accompanied by substantially

one vertex. These arguments are understood by drawing some Feynmann diagrams.
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(a) D = 3, it vanishes due to Furry’s theorem (b) D=2
(c)D=1 (dD=0

Figure 6: Four diagrams among six fundamental and relevant diagrams in which D > 0 are shown. Each

circle which is painted grey represents the total of all allowable diagrams.
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divergent, let us introduce a concept of superficial degree of divergence D for its corresponding integral.

Basically the integral is done with regard to momentum p in momentum space Feynman rule, and so
D = (power of p in numerator) — (power of p in denominator) (2.1.3)

becomes the definition of the nomenclature. It is thought that when D > 0 for a Feynman diagram,
the diagram diverges superficially, even though it is more complicated to study whether a diagram
substantially diverges or not. Roughly, we can say that if D > 0 , a diagram behaves as eV A” in high
energy region. Accordingly if D = 0 , a diagram behaves as ¢V InA , and when D < 0 , a diagram

converges superficially. Here A means a momentum cut-off. Now as a specific expression,
D =4L - P. - 2P, (2.1.4)

is derived. Taking advantage of (2.1.1) and (2.1) we can rewrite the superficial degree of divergence as

D=4(P.+P,—V +1)— P, —2P, (2.1.5)
— 3P, — 6P, —4E, +4 (2.1.6)
-3
=3B, + — E. + 4~ 4L, (2.1.7)
-3
=4-E, + - E | (2.1.8)

and so the superficial degree of divergence of a QED diagram is expressed only by external photon and

electron lines. For a general d dimension, however, D contains V term. The formula for D is
D =dL - P, -2P, (2.1.9)

in d dimension, while the formulae (2.1.1) and are still valid in this case. After a simple calculation,

-4 1-d. 2-d
D=d v E. E
A T e T

(2.1.10)

is obtained. It is seen that a 4-dimensional Minkowski space is special for the superficial degree of
divergence. For the lower dimensional case than 4 dimension, since D decreases as the number of vertices
increases, corresponding diagrams may converge. By contrast, in case of d > 4 | the higher order a
diagram becomes, the larger its D becomes, and so every diagram appears to be infinite-valued at a

sufficiently high order in perturbation methods.
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(a) D=1 (byD=0

Figure 7: The remaining two among six fundamental and relevant diagrams in which D > 0 are shown.

Each circle which is painted grey represents the total of all allowable diagrams.

Quantum theories are divided into three theories in terms of their behaviours in high energy re-
gion: super-renormalizable theory, renormalizable theory and non-renormalizable theory. A super-
renormalizable theory is the theory in which only a finite number of Feynman diagrams diverge su-
perficially. A renormalizable theory is the theory in which even though divergence happens at all orders
in perturbation methods, the number of divergent diagrams is still finite. A non-renormalizable theory
is the theory in which at sufficiently high order all diagrams diverge.

QED is a super-renormalizable theory in less than four dimension, a renormalizable theory in four
dimension and a non-renormalizable theory in more than four dimension. It is because in QED only
three fundamental diagrams diverge. To see it, here amputated and one-particle irreducible diagrams are
considered, which suggests that our concern should be focused on fundamental and relevant six diagrams
for QED. See Figure 6 and 7, where these diagrams are shown. These diagrams may diverge, and other
diagrams which contain one of these diagrams may diverge. Furry’s theorem states that any diagram of
a fermion loop connecting an odd number of photons is zero, and accordingly we find that the diagrams
of Figure 6a and 6¢ may vanish. As to the diagram of Figure 6d , the Ward identity requires its divergent
part to be cancelled. The other three diagrams diverge logarithmically. Eventually, we find that only
three primitive diagrams are divergent in QED.

_ d—4

From the view of dimensional analysis, we already know that the dimension of electron is [e] = 5= (See
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L=2-2+1=1 L=1-1+1=1

(a) 2 propagators, 2 vertices (b) 1 propagator, 1 vertex

Figure 8: Some examples for the formula of the number of loops in real scalar field theory

Appendix Dimensional analysis), and it is worthwhile to note that this value is equal to the coefficient of
Vin (2.1.10) . This fact suggests that renormalizability should depend on the dimension of the coupling
constant. Superficial judgement for renormalizability may be formulated as
If the dimension of coupling constant is negative, then the theory is super-renormalizable.  (2.1.11)
If the coupling constant is dimensionless, then the theory is renormaizable.  (2.1.12)
If the dimension of coupling constant is positive, then the theory is non-renormalizable. |, (2.1.13)
and so QED is renormalizable in 4-dimensional case.

In this point of view, quantum linear gravity is a non-renormalizable theory because the coupling

constant has the positive dimension: [G] = 2 (See Appendix Dimensional analysis).

Renormalizability for real scalar field theory: Secondly we consider the renormalizability of real

scalar field theory in d dimension. The Lagrangian density is

Lrsrr = ( 0,0)(0"p) — —m*¢” —

where its interaction is assumed to be an n-point, self-interaction. In a Feynamn diagram, the number

iqs" : (2.1.14)

n!

of loop is

L=P,—V+1 | (2.1.15)
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Ix2=1442x2=8 Ix1=0+2x2=1

(a) 2 vertices, 2 propagators, 4 external lines (b) 1 vertex, 2 propagators

Figure 9: Two examples for the formula nV = E, + 2P, for ¢* type interaction

since a loop is created at least with one propagator, and one propagator is accompanied by one net vertex.
See Figure 8 , where two examples are shown. Each external leg has one combining point, while each

propagator has two combining points, and so we have
nV = E(;s + 2P¢ s (2116)

and two examples are shown in Figure 9 for the case of ¢*-type interaction. By using (2.1.15) and (2.1.16)

Y

D =dL - 2P, (2.1.17)
dn —2d — 2 2 d
—d+ > v s (2.1.18)

is deduced. Accordingly we find that for a 4-dimensional case ¢* interaction is renormalizable.

2.2 Renormalization conditions

As a way of renormalization, counter terms are used. For example, for a ¢* theory,
_J1 L oon Ay
L= {g(au%)(a“ﬁbr) —gm b = 5%
1 1 A
_ o _ = 2 a4
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~ 2 + p2 InA+ (ﬁnite) ~ In A + (finite)

(a) One divergent diagram (b) One divergent diagram

Figure 10: The relevant divergent diagrams in ¢* theory.

is a rescaled Lagrangian, and the second brace in the right-hand side of (2.2.1) contains the counter
terms. Here the scalar field ¢ , its observable mass m and the observable ¢* self-coupling constant \ are

renormalized by the relations:

¢ =VZ¢, (2.2.2)
Sm=maZ —m?, Oy=NZ>—\ | (2.2.3)

where mg , A¢ are renormalized quantities. ¢, is rescaled. The physically-relevant divergent diagrams
for the ¢* theory are shown in Figure 10 . They are cancelled out by these counter terms. As a result
divergence in a renormalizable quantum field theory never appear|[8] in measurable quantities.

Now we have a problem. How do we define coupling constants? The answer is renormalization

conditions, that is, in this case we have!”

the diagram in Figure 10a = % + (terms regular at p* = m?) (2.2.4)
p*—m

the diagram in Figure 10b = —ilat s =4m*t=u=0 . (2.2.5)

By introducing these renormalization conditions, the Feynman rules are modified: Figure 10a and Figure

10b are replaced by Figure 11la and Figure 11b | respectively. In the modified Feynman rule, using

9Tn fact two conditions are contained in (2.2.4) . Let us also note that the diagram in Figure 10b is an amputated

diagram.
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In renormalized In renormalized
perturbation theory perturbation theory

(a) One modified diagram in renormalized perturbation the-(b) One modified diagram in renormalized perturbation the-

ory ory

Figure 11: The modified Feynman diagrams by renormalized perturbation theory in ¢* case.

regulators, we have to adjust the parameters 6y, 9,,, 07 to satisfy the renormalization conditions. The
amplitude does not depend on the regulator, and is finite after we adjust them. This method, in which
modified Feynman rules stemming from counter terms are used as a c, is called renormalized perturbation
theory. Before proceeding to the next section, let us refer to a one-particle irreducible diagram (1PI).
Here a 1PI is defined as a diagram that cannot be separated into two diagrams by removing a single line.

In Figure 12a , the upper diagram is reducible, while the lower is one-particle irreducible.

2.3 Calculation at one-loop level in ¢* theory

We now calculate the one-loop diagram for ¢* theory. For example, let us consider a typical diagram
for scattering of 2 particles, where there are 4 external lines (See Figure 12). There are three types of
one-loop diagrams and a diagram of counter terms in Figure 12¢ , and first we consider one (Figure 12d)

of them. Putting p = p; + po , we have

, , (—iN)? d*k i i
diagram of Figure 12d = 5 m) K —m (k£ p)f — 2 (2.3.1)
= (—i\)? xiB(p?) . (2.3.2)
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O Reducible p4

O iM = I

P2

One-particle .
Irreducible — >< + ...

(a) Examples of a one-particle reducible and of an irreducible (b) The scattering amplitude for 2 particles in ¢* theory

D3

diagram

1 — ..._|_ k_l_p pl

+ 0+ >®< )

_|_>§< 4 ... k

(c) Contributions to the scattering amplitude ¢M from the(d) A diagram in the second order. This is one of one-loop
second and higher orders. The diagram for counter termsdiagrams.

also appears.

Figure 12: An example of 1PI (in Fig 12a), and diagrams for 2-particle scattering in ¢* theory (in Fig

12b , 12¢ and 12d)
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Specifically, B(p?) is expressed as

B(ﬂ-—i/qd‘/ d'k 1 s
p 92 0 L (27T)d(k2+2$k'p+xp2—m2)2 3.
1 [ Tl 1
:__/dx(22 d (2.3.4)
2Jo " (4w (m? — 21— )
. 1 1 9
putting d =4 — € — T 3972 /0 dx (E —y+Indr —In{m* — z(1 - x)p2}> (2.3.5)
mamt (2.3.6)

where I'(z) is a gamma function and v is the Euler-Mascheroni constant.
The other two one-loop diagrams are same if we change the Mandelstam variables s,t,u between

them. The total amplitude at one-loop level is
iM = —id+ (—i\)? {iB(s) + iB(t) +iB(u)} —idy (2.3.7)

and the renormalization conditions (2.2.4) and (2.2.5) demand that iM = —i) at (s,t,u) = (4m?,0,0) .
It follows?® that

oy = =N {B(4m*) +2B(0)} . (2.3.8)

using the expression (2.3.5) , we have

3272 €
d—4 | (2.3.10)

/\2 1
I — / d:c{§ — 3y +3Indr —In (m* — 4mz(1 — ) —21nm2)} (2.3.9)
0

and this is divergent. However the total amplitude is finite:

ix2 [t m? —x(l —x)s m? —x(l — x)t m? —xz(1 — x)u
M = —i)\ — 1 1 1
! A 32#2/0 {n<m2—4m2x(1—x))+ " m? * n( m? >}
(2.3.11)

Next we use the renormalization conditions to determine 6z, d,, . To see this we consider the two-leg
function, and its perturbation expansion is expressed in Figure 13a , where the diagram with Pls is the

sum of one-particle irreducible diagrams. Renormalization conditions are

M?(p*) =0, M) =0 . (2.3.12)

p2=m?2 dp2 pZ=m?2

20Tf we calculate higher-level loops, some correction terms are given to Jy .
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— - +—Ps—  _ = i
@ & ‘_ p? —m? — M2(p?)
—I_ @ = —iM?(p?)
4 ...

_O_+@
_|__6__|_...

(a) The perturbation expansion of the two-leg function (b) The values of the two-leg function (upper) and of the

one-particle-irreducible insertions (lower)

Figure 13: The two-leg function is expanded in a perturbation method in Fig 13b

Here we study the one-loop diagrams, and so the diagrams are in Figure 14a , and we have

A [ d%k i

LM = AR Y i2s, — 2.3.1
¢ (p ) 2 (27_[_)6[ k2 — m?2 + Z(p (SZ (Sm) ( 3 3)

A 1 ra-%
= +i(p?0s — 6m) . 2.3.14
2 (47)% (m2)'~% P70z = on) (2:314)

We set

r(r—4

67=0, 6p=— AR 2>, (2.3.15)

2(4m)s (m?)'2
) -

which is compatible with the renormalizaion conditions (2.3.12) . The non-zero contributions to M?(p?)
start from the second order \? , stemming from the diagrams in Figure 14b , where the third diagram
has the dy counter term. The second diagram is the (p*d; — §,,) counter term, and we adjust it so that

the remaining divergences can cancel.

CHAPTER [l
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QO + —X
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(a) The one-particle irreducible insertions at one-loop level (b) The one-particle irreducible insertions at second order of

the coupling constant

Figure 14: The one-particle irreducible diagrams at one-loop level (in Fig 14a ) and at second order level

of the coupling constant (in Fig 14b )

HIGHER-SPIN FIELDS

Fields with spin-0, spin-1/2 and spin-1 are described by Klein-Gordon, Dirac and Maxwell-Proca equa-
tions, respectively. QFT does not restrict itself within spin-1 fields. Spin-3/2 fields are ruled by Rarita-
Schwinger equations, and equations of motion for spin-2 fields are linearised Einstein equations, even
though corresponding elementary particles for these fields have not been discovered so far. In general,
fields with more than spin-1 are called higher-spin fields.

This chapter discusses these higher-spin fields. Firstly, with the introduction of a rank-q generalised
linear Christoffel symbol, equations of motions and Lagrangians for massless higher-spin fields are ob-
tained. This derivation is based on the paper written by de Wit and Freedman[9] . Secondly, we see
that in a classical level the Rarita-Schwinger field which couples with an external electromagnetic field
violates causality. This discussion relies on the paper written by Velo and Zwanziger[10] , and Srokin’s
paper[11] is also referenced. This causality issue is also treated in the following section according to the
paper written by Deser and Zumino[12] , where supergravity plays an important role in restoring cusality
at a classical level.

In the fourth section, higher-spin fields are quantised with a generalised notion of a polarisation 4-
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vector, and Feynman propagators are constructed in the momentum space. The methods of quantisation
and of construction of Feynman propagator are based on the paper written by Huang et al[13] . In the
fifth section, it turns out that higher-spin fields are non-renormalizable, which was reported by Deser and
van Nieuwenhuizen[14] .

In the sixth section, Feynman rules are established for higher-spin fields.

3 Equations of motion for higher-spin fields

This section argues the equations of motion for massless higher-spin fields. In the first subsection,
equations of motion for massless bosonic higher-spin fields are derived, where the notion of a linear
Christoffel symbol is generalised. In the second subsection, the matter of gauge conditions and dynamical
degrees of freedom are treated for bosonic fields. It is seen that the equations of motion are composed
of not only evolution equations but also constraints equations. Lagrangians for these fields are also
constructed. In the following section, similar discussion is conducted for fermionic fields. This section is
closed with some explanation for symmetrised sum which is important for arguing equations of motion
for these fields.

First of all, let us briefly refer to the equations of motion for massless higher-spin fields. Massless
bosonic fields with spin-s are described by the following PDEs:

sym sym

Zypreoe(@) = O = Y O bppnn(t) + D 00,0007, () =0 ,  (3.0.16)

w,level—1 w,level —2
sym
where the symbol g denotes a symmetrised sum with respect to all non-contracted vector indices. For

example, for completely symmetric rank-(s-1) tensor B, we have

1.--Ms—1

sym

Z amBuzus..-us = aul Buz-..us + 8M2B,U«1H3-~~Hs +-ot ausBmuz.-.us_1 ) (3-0-17)

w,level—1

and we will discuss the properties of this symmetrised sum later. Obviously the massless case of the

equations of motion (1.5.1) is compatible with (3.0.16) , and for the case of massless spin-1, we have

Z,=0°A,—0,0,A" =0 , (3.0.18)
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this is precisely the Maxwell equations without electric current. Accordingly for the case of massless

spin-2, the differential equations
Zo = 0" Axy — {000" Ay + 0,0" A} + 020,45 = 0 (3.0.19)

is derived; this is a linearised Einstein equations (A.2.16) .

On the other hand, the equations of motion for massless fermionic fields {¢¢ , } with spin-(s + 1)

B fhs
are

sym

ZleJQ Hs :( ’ Vd) K12 s Z 8#17 l/,u,g,u,g, s = O ) (3020)

w,level—1

and for a massless spin-1/2 field we have a massless Dirac equations from (3.0.20) .

3.1 Equations of motion for massless bosonic fields

In order to derive the equations of motion for these fields, firstly let us introduce a notion of a generalised

linear Christoffel symbols: a rank-q linear Christoffel symbol F/B Bt s for spin-s is defined as

sym
(@) (g—-1) q 1)
Fﬂl-nﬁq?.’-"l-nﬂ‘s _aﬂlr Bq#"l ,us Z a F ﬂq,ﬁl,ug s (311)
u,level 1
1) —
and F,Bl leps 851¢#1~~Hs - Z au1¢51#2m#3 ) FLOl) Hs Qs,ul,ug.‘,‘us (312)
w,level—1

where s independent permutations of the {s;} are included in the summation. Obviously, the rank-1 linear
Christoffel symbol for spin-s is symmetric with regard to the spin-related indices {y;} . Then, provided
that the rank-(q-1) linear Christoffel symbol is symmetric with regard to the spin-related indices, we
can deduce, by the recursion relation above, that the rank-q linear Christoffel symbol is also symmetric.
We, therefore, find that the rank-q linear Christoffel symbol is symmetric with regard to the spin-related

indices {yu;} . It is assumed that in terms of a gauge transformation, the variation of the symbol is

sym

6F Baiipis (_1)q<q + 1) Z 8#1 o 'a#qﬂcﬂuﬁquqm--.us ) (3~1~3)
w.level—(q+1)
(S —
and 6T , =0 (3.1.4)
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where a completely symmetric rank-(s-1) tensor (,,. . is a gauge parameter. For the purpose of keeping

gauge invariance, we demand that the gauge parameter should be traceless:

-0 . (3.1.5)

v
C V3. [hs

For example, an EM field A, its gauge variation is

sym
0A, =0TV = > 0,=0( , (3.1.6)
w,level—1

and so this definition?! (3.1.4) may be appropriate. Generally, from (3.1.2) and (3.1.3)

sym

5FE¢01)--~/L3 = 6¢#1-~M5 = Z aHIC,UZ--.Hs (3.1.7)

w,level—1

is derived. In addition, (3.1.4) assures that the rank-s linear Christoffel symbol for spin-s has gauge-

invariance. The tensor

Rﬁl-uﬁsiﬂlv-'ﬂs = F(le).“ﬁs;p,l...us (318)

is called a generalised linear Riemann curvature tensor for spin-s. For a massless scalar field, the gener-

alised linear Riemann tensor is the field itself:
R=TO =4 . (3.1.9)
In the case of a massless vector field, the generalised linear Riemann tensor is written as
Ry =T, = 036 — Dty (3.1.10)
that is, the field strength tensor. For spin-2 field,

_1®
Rﬁlﬁz;uluz - Fﬁlﬁ%mug (3111)

= 9,08, M1y + Oy Oy gy

—1
+ 7 {aﬁl a/n h/32M2 + 851 6#2 hﬂzul + 3,“8/32 hﬁlm + aﬁ2au2 hﬁl#l} (3'1'12>

is obtained?? .

21The U(1) gauge transformation is A, — A, + %@LA , and here we should see the parameters have the relation %)\ =C.
22This is same as the generalised linear Riemann curvature tensor (A.2.11) defined in the Appendix Dimensional analysis

for field theories.
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Rank-q linear Christoffel symbols for spin-s: According to (3.1.1) and (3.1.2) , we can compute
the rank-2 and rank-3 linear Christoffel symbols directly

sym sym sym

2
F(51)/32 TR aﬂlaﬂ2¢#1m#s Z Z aﬁl u1¢32#2 s T Z aﬂlaﬂ2¢ﬁ1ﬁ2#3 s (3'1'13>

B,level—1 p,level—1 w,level —2

and also the rank-3 linear Christoffel symbol

sym sym

3) _ —1
L8 apaipn s = 991982085 Ppr.cus + 3 Z Z O 08208 P
B,level—1 p,level—1
sym sym Sym

+_ Z Z aﬂ2aﬂlaﬂ2¢5153#3 Bs T Z aulaﬂza#3¢515253#4m#s : (3'1'14)

B,level 2 p,level —2 w,level—3

The rank-q linear Christoffel symbol for spin-s is written as

-1 . sym sym

Z Z s 8/3j+1 T aﬂj ¢ﬂ1-~ﬁjw+1~-us

B,level—j p,level—j

(@) _
Fﬁql..ﬂq;mmus - 0/31 o 'aﬁq¢u1m/~ts Z

j=1

J

sym

Z a,ul e 8“q¢ﬂ1...ﬁq,uq+1...,us . (3115)

w,level—q

Equations of motion of a field with integer spin: Now we consider how equations of motion
are derived for bosonic cases. By analogy with classical?® theories, we make an assumption that the
differential equations of motion for fields with integer spin-s are second-order. Taking advantage of the

generalised linear Christoffel symbol, we have

_ 128 _ P1Be(2)

Zr‘“'"”s =T Bipir s ' ' 2F5152;#1-~#s (3‘1‘16>
_1 sym sym sym
ﬁlﬁQ 8/318/32¢M1 s T 2 Z Z aﬂlam¢,82u1...us Z aulaﬂz¢ﬁlﬁ2us~~us (3'1'17)
B,level—1 p,level—1 w,level—2
sym sym
= 8585(/5“1“.“3 — 9" Z au1¢ﬂu2mus + Z au18u2¢55u3.._u5 =0 (3-1-18)
w,level—1 w,level—2

that is, (3.0.16) is derived, and so these are equations of motion for a spin-s bosonic field. Then let us

confirm that these equations of motion are gauge invariant. By (3.1.3)

sym
2
=3 > 001,0,3Co1Baas (3.1.19)
w,level—3

23Maxwell equations are second-order partial differential equations, and equations of motion for particles are described

by Hamilton-Jacobi equations.
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and
sym

nPiP2sT ) =3 > 900,00 =0 (3.1.20)

B1B2;p1 - s
w,level—3

is derived because of (3.1.5) . Accordingly we have

— 51"(2)5 — 77,31,3251"(2) =0

Bip1-. pis B1B2;p1---pis

07

W1 hs

, (3.1.21)

and therefore the equations of motion for higher-spin fields are gauge invariant.

3.2 Gauge conditions for massless bosonic fields

Maxwell equations allow us to take a gauge condition to fix a gauge. For an arbitrary spin-s bosonic field

Gpi..ps > the gauge-fixing for their equations is conducted as

sym

-1
GP‘Z“-:U'S = a)\(é)\lmmﬂs + 7 Z 8H2¢AA;L3...;LS - 0 ’ (321)

w,level—1

and in these conditions the equations of motion become
Zﬂlmﬂs = a€a€¢/‘«l--~lls = 62¢u1~~-/145 = O ) (322)

which suggests that its gauge invariance should be conserved in this gauge condition. We saw the gauge
invariance of these fields in last subsection. Now let us reconfirm it. If (‘32@1“.#3 = 0, then we take the

gauge variation for both sides;

sym

582¢u1---us = 625¢u1---us =0 Z 8u1<uz...us =0 , (3-2-3)

w,level—1

where we use (3.1.7) . We take the gauge variation for both sides (3.2.1) :

sym

-1
0Gs.oits = 00 Or sy +0— Y 0y, =0 (3.2.4)
w,level—1
sym
A 5G/‘2-~~Hs - aﬁ Z aﬁgu,z...,us + O - O (325)
w,level—1
sym
& 0Gy e = 0°05Cu, . +0° Z D> Cops. s = 0 (3.2.6)
w,level—1
& 6Ghypy = 0° 05y, +0=0 (3.2.7)
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and therefore we have 0”0,(,,. .. = 82@2_,,“5 = 0 and accordingly

Sym
0 Zpyie = 0y e = D Oy =0 (3.2.8)

w,level—1
we see that gauge invariance is valid under this gauge-fixing condition. The result (3.2.7) , that is,
0%*Cy. e = 0 implies that certain components of ¢, . still can be regauged without breaking the gauge
condition (3.2.1) as far as 9°Cy,. ., = 0 is valid. For spin-1 and spin-2 fields, the gauge-fixing conditions
(3.2.1) reduce to

G=0"A,=0, 9°¢(=0 (3.2.9)
1
G, = 0 hy, — 5('WA =0, 0°C,=0 (3.2.10)
respectively. These are familiar Lorentz and de Donger gauge conditions.
Dynamical degrees of freedom for massless bosonic fields: For spin-1 and spin-2 massless fields,
they have 4 and 10 independent components, respectively. In general, a rank-s completely symmetric

tensor field ¢,, ,, in d dimension has ;4 1Cy—1 independent components?*. Now we impose constraints
for the spin-s fields ¢, ., , (s >4):

O japgs =0 (3.2.11)

these are, what is called, the double-traceless conditions. Thus the number of independent components

are??

5+4,104,1 — 5+4,5C4,1 = 282 + 2 (3212)

for 4-dimensional cases. Furthermore, we use the gauge-fixing conditions, which have s? independent
conditions. In addition, imposing these gauge conditions, we choose the field’s gauge parameters so as to

regauge s2 components. Then the only remaining independent components of the massless bosonic field

24For a d-dimensional case, we use d independent indices. Provided that we use digit 1 n; times, digit 2 no times,
. and digit d ng times, then we compute the total number of possible combinations (nq,...,n4—1,n4) which satisfies

ni+---ng=s, 0<mn, <s. Accordingly we obtain the quantity s14-1Cq_1 -
%Let us emphasise that (3.2.12) is for 4-dimensional case.
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is two. This result is suitable for describing massless fields. Indeed, transverse?® traceless components of

such a massless field are s-fold tensor products of transverse polarisation vectors:

(k) (k) - - - e (k)e e (3.2.13)
and, €% (k)e" (k) - -- " (k)e = (3.2.14)

where helicity +s are carried. Later we will see that the polarisation vector is generalised for the purpose
of quantising fields.

Furthermore the equations of motion Z,, ,, = 0 may consist of evolution equations (with second-
order time derivatives) and constraints equations (with at most first-order time derivatives) on the initial

data. Let us adopt

Z0jy..js = 0 (3.2.15)
200js...js — Ziijs...jo = 0 (3.2.16)
iajZa---js == 17273 (3217)

as the constraints. (3.2.15) make ,Cy = S(S;Ll) constraints, while (3.2.16) do ;Cy = 5(52_1) constraints,
and so we have totally s? constraints. Since the number of the independent components of the gauge
parameter C,, . is 54205 — O3 = s? . this number is the same as that of constraints. However, once
we take the gauge conditions (3.2.1) , the constraints equations become evolution equations, that is the

d’Alembertian equations (3.2.2) . Hence we need not care the constraints in the gauge conditions.

Lagrangian for massless bosonic fields: For a higher-spin field, some constraints are necessary
for keeping gauge invariance and for constructing its Lagrangian density. For example, the Lagrangian

density®” for QED is expressed with F),, , that is, R, = F,(}?, in the new notation (3.1.10) . It is expected

26Tf ¢;, .., is the transverse component of the field in momentum space, k¢, ;. = 0 , where j,i; ...i5 are 2-valued

indices because it is on 2-dimensional space. By (3.2.1) , we have ¢;i,. ;, =0 .
27See Appendix Dimensional analysis for field theories.
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that TtV form the Lagrangian density for a spin-s (s > 1) bosonic field.

Bipt..-ps
L pws:
E == —16—7TF6;MT ‘u6571
1 1
_ = 1MBurps (1) (e 1)
+ <1 5531) X 647 {2(5 _ 1)F S {SFM1§5M2---HS (8 2)F5;u1-.-us}
S (1);Buz...p1s 1B 1)s
+ 2(s — 1)FB ’ {(8 —2)r Bug...ps (s — 1)Fuz; 5#3--#5}
1 (1) przepts [ (1)B1:B (1) BB
+ §S<S - 2)F,31§,32 ’ {F ' 252M3~~-us - Fu?,;ﬁz o u4-~.us}
1 1 s (1)1
85 = (s - o)L, PrauapepDi B%lﬂm...us] (3.2.18)
Indeed, for a massless spin-1 field, we have
1 , -1
L= —m—ﬁrglrﬂ)ﬂ’ﬂ = To- (054, — 0, A5) (0P A" — 9" AP) . (3.2.19)
For a spin-2 field, we have
L fpsumpep®) (1) Buapp(1) 8
L= 64_7T {F( S Ful;ﬂm o Fﬁ% Fm;ﬁ } ’ (3'2'20)
but in the de Donger gauge and h* conditions, Fg) P12 anish. Thus the Lagrangian density for a massless
spin-2 field is
1
— _— 1Ms )
L= 647TF i DT (3.2.21)
1
(A2.7) = = o ArPmrer o (3.2.22)
1
= E1“/%1“211”,% (3.2.23)
1
(A2.6) = = m—ﬁrﬂmmrmm (3.2.24)
and accordingly the action of the field, with restored physical constant G | is
1
Sg = @ /d4$Fﬁu1M2F#2ulig y (3225)

and this is consistent with (A.2.18) .

3.3 Equations of motion for massless fermionic fields

Now we derive the equations of motion for a field with a half-integer spin. Concerning a massless

spin-(s + 5) field 4%, which is a totally symmetric rank-s tensor-spinor®® , the (infinitesimal) gauge

28The index a is a spinor index.
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transformation is

sym

51#21.‘.#3 = Z 8#1/{712#,3.../1,3 ) (331)
w,level—1
where the gauge parameter . is a totally symmetric rank-(s-1) tensor-spinor, and it satisfies the
condition:
Vg =0 (3.3.2)

that is, the gauge parameters are traceless regarding the gamma matrices. Suppose that the equations of
motion are first-order PDEs. Since the equations of motion should be gauge invariant, rank-1 generalised

linear Christoffel symbols are used with gamma matrices. The only possible combination is

1
ZHI..-,US = fyﬁ]‘—‘(ﬂhllus (3-3.3)
sym
=0V — Y OV Voges =0 (3.3.4)
w,level—1

and here the spinor indices are not written. We define these PDEs (3.3.4) as equations of motion for
a massless spin-(s + %) field. Indeed, when s = 0 , they reduce to the massless Dirac equations. For a

spin-3/2 field, the equations of motion are

Zu =" 0u = 0"y, (3.3.5)

and they are expressed also as
Y =0 (3.3.6)
where ¢, = 0,0, — 00, . (3.3.7)

For a spin-(s + 3), (s > 3) field, the triple-traceless condition:

ryy’yg’ypqu)uﬁp/ul...us =0 (338)

with regard to gamma matrices is imposed.
Let us adopt

sym

Z 7#27679¢£pu3---us =0 (3.3.9)

w,level—1

1

GH2---MS = rypwPMQ---Ms - 2_3

46



as gauge-fixing conditions for a fermionic field. Since v#2G,,,. .o , We obtain
s—3
s

VY gz =0 (3.3.10)

and therefore, with the similar method which is used in (3.2.12) , the number of the independent com-
ponents of G, ., 15 4 X (54205 — 541C3) = 2s(s + 1) , in which the number 4 comes from the number of
spinor indices. However in case of s = 3, (3.3.10) vanishes, and so the number of independent compo-

nents of G is 4 x (5C3) = 40 in this?® case. Moreover, since the gauge parameter Kus..us 18 traceless

p2p3
with regard to the gamma matrices, the gauge variations of G,,..,, are expressed as

sym

o 1 (6%
6Gu2~-~#s =7 aaﬂ#2-~#s - g Z 7#26 Kaps...ns = 0 ) (3'3'11)

p,level—1

and therefore the gauge conditions (3.3.9) enable us to conduct further regauge transformations with

parameters ky, ,. for which (3.3.11) become zero. Since (3.3.11) is gamma-traceless and defines an

initial value problem which has no constraints as long as its gamma-traceless property is preserved in
time, regauging makes the removal of 2s(s 4 1) degrees of freedom possible.

Next we consider the constraint equations in fermionic cases. The equations of motion (3.3.4) contain

constraints
Z0js..je — %07V Zijy..jy =0 (3.3.12)

where the indices i, j, k = 1,2, 3 are spatial components, and so only spatial derivatives are used in these
constraints. The number of these constraints is 4 x (,11C3) = 2s(s + 1) ; the number is the same as
the number 4 X (54903 — 541C3) of the independent components of the gauge parameter &, ,, which is
gamma-traceless. Unlike bosonic cases, the constrains cannot turn into evolution equations for fermionic

cases because the fermionic gauge conditions (3.3.9) have no derivatives.

An example of fermionic constraints: Before we proceed to count the dynamical degrees of freedom
for fermionic fields, we show an example of constraint equations. Here a massive Rarita-Schwinger field
in vacuum are considered. The mass term is added to massless equations of motion (3.3.4) , and the

gauge-fixing conditions (3.3.9) is taken®’. Accordingly the equations of motion are written as

Zﬂ = 7V8V¢# + Z'mg/gdiu =0 (3313)

29Thus the case of s = 3 should be treated in a different way in order to coordinate the number of independent components
of G, in my opinion.
30Tt follows that here the gauge-fixing conditions are v/1), =0 .
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where mjg/, is the mass of the spin-3/2 particle. According to (3.3.12) , the constraint equation are
Zo =Y 2y =0 (3.3.14)
and after some calculation, the constraints become

¥ Oubo — %007V, + imgpah =0 . (3.3.15)
When the equations of motion is valid, Zy = 0 , and so we substitute (3.3.13) in (3.3.15) . This leads to

700", = 0 (3.3.16)
S, =0 (3.3.17)

that is, the constraints (3.3.17) are obtained.

Dynamical degrees of freedom for massless fermionic fields: Here we compute the dynamical
components of a spin-(s + %) field. Since it is triple traceless with regard to the gamma matrices, the
components of the field v, ,, are 4 x (;43C5 — ;C3) = 652 + 6s + 4 . Then, from this, the number
2s5(s + 1) of constraints, the number 2s(s + 1) of gauge conditions and the number 2s(s + 1) of regauge
possibilities should be subtracted, which results in 4 remaining degrees of freedom for all s.

The equations of motion Z,, . and the gauge conditions G, . ., give rise to

sym

Y 1
Y O us s — %5 Z (7u1au2 + ’Vuzam)'yéf)/pw&pusmus =0, (3.3.18)

w,level—2

which is not desirable. Then we use the regauge freedom to cancel the second term in (3.3.18) ; the gauge

variation of Y9 ey, i 1

5’}/047/877&&,3;13...;15 = 28”/{,/“3_““5 . (3319)

Under the condition that the field v, . satisfies (3.3.18) , with nonvanishing double trace with regard
to the gamma matrices, the regauge transformation with parameters

sym

1 14 a (67
Fses(@) = =5 [ d'yDlw =y 55 D A G G PN (1) (3.3.20)

25

w,level—1
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is conducted, where D(x — y) is a Green’s function of the d’Alembertian operator. The gauge parameter
in (3.3.20) should be traceless and satisfy the regauge conditions (3.3.11) . Therefore after regauging, the

gauge conditions are turned into

G,ug...,us = ’YVT/JWQ...#S =0 s (3321)

which leads to the (regauged) equations of motion:

Zygoonis =V 0y =0, (3.3.22)

that is, a natural generalisation of massless Dirac equations. We know that there remains further regauge

freedom with gamma-traceless gauge parameters such that
’Yyayﬁug...us =0 y (3323)

and since one can add any gamma-traceless solution of (3.3.23) to the original gauge parameters (3.3.20)
without manipulating their properties, there is no uniqueness in the original gauge parameters.

Such a gamma-traceless gauge choice (3.3.21) of the fermion fields let the fields have 4x (s 3C3 — s12C3) =
25 + 6s + 4 degrees of freedom. The (regauged) equations of motion (3.3.22) contain both evolution
equations and constraint equations; (3.3.12) is still the constraint equations, combined with (3.3.21) .
Thus there are still 2s(s + 1) constraints. The remaining regauges (3.3.23) have 2s(s — 1) constraints on
the gauge parameters. There are 2s(s + 1) original regauge degrees of freedom. Then, for the purpose
of eliminating v*v%1,4,,. .. in the gauge condition Guy..p. = 0, the first regauging spends 2s(s — 1)
degrees of freedom. The number of remaining degrees of freedom is 4s . Hence the dynamical independent

components are

dof = (dof of the gamma-traceless field) (3.3.24)
— (the number of constraints) — (dof of the second regauge transformation) (3.3.25)
= (25 +65+4) — (2s(s +1)) —4s =4 (3.3.26)

in the fermionic field. This result is valid for spin-1/2 case, that is, for Dirac equations.
Let us now use the polarisation vector €\(k) and positive- or negative-helicity solutions ug 4y of the
Dirac equations to construct their corresponding notion which is applicable to higher-spin fermionic fields;

the positive energy (plane wave) solutions may take such a form

Uribz-is (k) = b (k) e (k) - - - s (k)e ™ + e (k)e (k) - - - e (k)e (3.3.27)
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which satisfies (3.3.21) and (3.3.22) . The helicity & (s+ 3) are carried. In order to realise the 4
dynamical degrees of freedom, we need to consider the negative energy solutions. Later we obtain their

specific form.

Lagrangians for massless fermionic fields: This subsection is finalised by constructing the La-

grangian for a spin-(s + % field. The Lagrangian is given as
—1

o . S— ) s(s—1)— o
L= P2+ T80V S g Y NN 2O (3.3.28)

8

for example, in a case spin-1/2 ;| we have

L="20ron (3.3.20)

indeed this is a Lagrangian for a massless Dirac field. The equations of motion

1 sym . 1 sym .
ZMl---Ms - 5 Z VY Zam---us o 5 Z Mpap2 /VBZoc,Bug...us =0 (3'3'30)
w,level—1 w,level—2

is derived from the Lagrangian (3.3.28) , and after one takes its gamma-trace, one obtain3! the equations

of motion Z = 0 for the field. The gamma-traceless part of the divergence

H1---Ms
¢ 1 ap .8 1 a8
7 Zf/&m#s - 57 8a’y Zﬁmmus - 5 Z (9#2"}/ Y Zaﬁug...us =0 (3331)
w,level—1

may refer to a Bianchi identity, which is related with the gauge invariance of the Lagrangian. As an

example of this, for a massless Rarita-Schwinger field, the identity holds: (3.3.31) becomes

1
oz, — §7aao/yﬁzﬁ = 0"y (Ouhy — Outhy)

1
— 577077 (0up — Opthy) (3.3.32)
= —0"0,7 Yy + 7" 0uV Dty (3.3.33)
1
= =0"0,7" ¥y + 50a05 (V7 +7°4*) V% =0 . (3.3.34)

Indeed, this is an identity.

31Tt may be impossible to obtain the equations of motion directly from the Lagrangian.
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3.4 Properties of a symmetrised sum

We used symmetrised sums to construct equations of motion for higher-spin fields. In this subsection,
the symmetrised sum is discussed.
When we symmetrise a tensor, we add some tensors to the original tensor, and so there are various

ways to do it;

some people symmetrise as Z Ap=A,+A4A, (3.4.1)
sym
1
other people do as Z A, = 5 (Ap + Avy) +1wd (3.4.2)

sym

where 7, is a rank-2 symmetric tensor and ¢ is a scalar. Thus, unlike the usual sum operation ) , a

2.

sym

symmetrised sum

does not assure the distributive law, that is
S D+ Ew) £ D+ B (3.4.3)
Sym sym sym

appears sometimes. For example if A, = p,q, + p,q, , then

Z (p,uQV + pl/qu> = Pu4v + g, = A,W , (344)
sym
while
ZPMQV + Zpyqu = 2(quV +puqu) = ZAMV s (345)
sym sym
and so

Z (p/—qu/ + pVQ,u> 7é Zpqu + Zpqu . (346)

sym sym sym
It follows that we should make a symmetrised sum, which is used here, well-defined. Let A, . ,
be a rank-(s-1) totally symmetric tensor. We define the level-1 symmetrised sum of the rank-s tensor

Ou Apy. s » (s € N) with regard to the indices {y;} as

sym
Z amAm---us = aMIAM2N3---Hs + amAmus---us oot aMSAll/l---l‘sfl ’ (3-4-7)

w,level—1
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that is, there appear s terms in this sum. Next we provide the specific expressions of the symmetrised
sum for the first derivative of a completely symmetric rank-(s-1) tensor A, ,, , , in which the derivative

gives us a different index A . We define it as

sym

Z a)\A,uluzmus—l = a)\A,uluzmus—l + aﬂlA/\H2~--#s—1 + 8#2‘4#1)\-~~Ms—1

w,level—1

+ -+ 6/15721411»1..-)\#571 + aﬂsflANI---.U'572>‘ ) (3'4'8)

is derived, where s terms appear. Since A,,,, ,. , is completely symmetric, we have

sym

E : a/\Auwz---usﬂ = a/\Amm---usq + amA/\uz---usﬂ + 8#2A>\u1u3---usf1

w,level—1

+ooet a/—L572A)‘ﬂ1~~-Ns—3ﬂs—l + aﬂsflA)\/Jlmﬂs—Q ) (349)

and accordingly we multiply the both sides by 7* and taking sum in terms of the index lambda:

Sym sym
A A A
Y Z DAprpineisr =V ONAppnpe s + Z OV Az 1 (3.4.10)
w,level—1 w,level—1

because YAy, .., is a completely symmetric rank-(s-2) tensor. Therefore the second term of right-hand
side in (3.4.10) consists of (s-1) terms. We must be careful of the number of terms in these symmetrised
sums. For example,

sym

> A (3.4.11)

w,level—1

consists of three terms while

sym

Z a/\Auww:sM (3~4~12>

w,level—1
consists of five terms. In addition, for the case of rank-s tensor 0,, Axu,. 4., , We define the level-1

symmetrised sum of it as

sym

Z aHIA)\N2~~~H«s—1 = a}uA)\MQ...us—l + auzA/\,ul.--,us—l +ee 8,“«3—114)\111#2"'#3—2 ; (3413)

plevel—1

52



where there appear (s-1) terms, and so we can rewrite (3.4.9) as

sym sym
E : aAAuluz-nusq = aAAm..-usq + E amA)\uz.--usq . (3-4-14)
w,level—1 w,level—1

We are required to consider a more complex case. For a rank-s tensor 0, Ax rous..u._, » We define the

level-1 symmetrised sum as

sym

§ : ausA/\1>\2#3~~us—1 = ausAM)\w:am#sA + a/‘LSA)\lA2HSH4~~#5—1 +oet 8;157114)\1)\2#,%3“4.“#5,2 ) (3-4-15>
plevel—1

where there appear (s-2) terms. Accordingly we can calculate like

sym sym
§ : 8A1A/\2M2M3--~u.s—1 = a)\lAz\Qluuzsmus—l + E auzA)\l)\2u3.--us—1 . (3416)
plevel—1 plevel—1

Now we consider a higher-level symmetrised sum of a tensor. We define the level-2 symmetrised sum

of rank-(s+ 1) tensor 0,0, Axu,.... With regard to the indices {y;} as

sym sym sym
1
Z 8#18#2A>\#3m,us = 5 Z am Z a,ugAA,ug...ps (3.4.17)
w,level—2 w,level—1 w,level—1
= 01 Opo Arpgopie + 0 Opg Anpigopis + -+ Ous 1O, Anpipio s (3.4.18)

where there appear $s(s — 1) independent terms with regard to the indices {y;} . By the discussion
similar to (3.4.14) , the definition

sym sym sym

3
Z aﬂzaﬂ1¢ﬂ2ﬂsu3musz§ Z aﬂ2851¢5253,u3...,u5+ Z amaug,ébﬁlﬁﬁwélmus (3.4.19)

w,level—2 plevel—1 w,level—2

is established.

Symmetrisation and Anti-symmetrisation Before we proceed to generalise the notion of the sym-
metrised sum, we consider symmetrisation and anti-symmetrisation of a spinorial tensor. Let TH1H2-Hq

be a completely asymmetric rank-(q, 0) tensor, and symmetrisation of this tensor is realised by

T(Hipz.pq) — l' {Trrzta L THIRakla=1 4oL THaba—1ei1) (3.4.20)
q!
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where the round bracket as the superscript of the tensor means the symmetrisation. For example, for a

rank-(2,0) tensor B*” which is not symmetric, the method
1
BW) — 5 (B +B™) (3.4.21)
is its symmetrisation. A symmetric rank-(2,0) tensor S*” is created with vectors A}, A4

S = AV AY) = Z (AFAY 4+ AV AY) (3.4.22)

1
2
If S# is a symmetric rank-2 tensor, then we can create a new completely symmetric rank-3 tensor S

with a vector A3 by

g = AQ 51 (3.4.23)
= % {A5M + ALSY + A5 S} | (3.4.24)

where by definition the normalisation coefficient is but since S* is symmetric, we have doubly>?

i )
1

same terms. Accordingly, we obtain the coefficients 3 Next we consider how to construct a completely

symmetric rank-(4,0) tensor with a completely symmetric rank-(3,0) tensor S and a vector Af , and

expectedly it is realised as

S — A gh) (3.4.25)
1
- < {Agﬁsw + AP 4 Alegrm) AE{SW} . (3.4.26)

The other way to construct the completely symmetric tensor S* is to use two symmetric rank-(2,0)

tensors SfA, SE” .

G — glsA guw) (3.4.27)
1 v K 14 v K
=< {Sf*“sg‘ ) gleeg) gy gtk 52”} (3.4.28)

Generally, a completely symmetric rank-(q+1 ,0) tensor is created by a completely symmetric rank-(q,0)

tensor S#1Ha and a vector A” , and the way is easily proposed.

Sul...uquq+1 — A(VSHI---#q) (3429)
1
- — {A(VSMl---Nq) 4 Al grene) oL 4 A(HqSVﬂl-'~Nq—1)} (3.4.30)
q

BReg CAH 4 CA GV = 2070 5
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Similarly, we can anti-symmetrise the tensor T#1#2-Ha

1
Tlipg] — _!5511;_-5;T”1~~”q (3.4.31)
Generalised symmetrised sum: Now we extend the notion of this symmetrised sum, provided that
H,, is a symmetric tensor,

sym

E H,U«IN2£)\,U«3~~-HS = M1M25)\M3--~Ms + HN1M3€)\IJ«2M4-~NS + Hu1u4§>\u3.--us +oot Hﬂs—lllsg)\ﬂ3w~ﬂs—2 )
w,level—2

(3.4.32)

where £ is a completely symmetric rank-(s-1) tensor. This definition says that this sum is a sum of

s(s—1)
2
H

pips.p; 18 @ completely symmetric rank-j tensor

independent index permutations of the {yu;} . Accordingly we can consider a case in which

sym

E H,Ll,l.../J,jé)q)\g...)\j_l,u,j+1.../.ts = Hul...ujg)\l)\g...)\j_luj+1...,us + H/“...,uj_l,uj_‘_l5)\1)\2...)\j_1ujp,j+2...us
w,level—j

+ e + H/,LS,jJrl...,LLS5}\1)\2...)\]‘,1/L1.../L5,j ) (3433)

this is a generalisation of the symmetrised sum, where independent ;C; terms appear.

4 Acausal properties of Rarita-Schwinger fields

One of major problems with regard to higher-spin fields is causality violation. In 1961, K. Johnson and
E. C. G. Sudarshan® showed that the Rarita-Schwinger fields with an external potential behaved in an
acausal way in a quantum sense. In this section, we see that a minimally-coupled Rarita-Schwinger field

with an external electromagnetic field breaks causality in a classical sense.

4.1 Causality violation of classical Rarita-Schwinger fields

So far we have seen that the PDEs (3.3.4) are the equations of motion for a massless spin-(s + 1) field,

and that (3.3.9) are the corresponding gauge conditions. Taking these into consideration, we can regard

{,ngy + im3/2} ,pr =0 (411)

33K. Johnson, E.C.G. Sudarshan, Ann, Phys. (N.Y.) 13, 126 (1961)
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as the equations of motion for a massive spin-3/2 field. When the field has a minimal coupling with an

external electromagnetic field, the equations of motion becomes

(YD, + imap 9} e =0 (4.1.2)
(C.2.6) = & {—i7°€"*~,Dg + imy oy} e = 0 (4.1.3)

where D, = 8, — iqA, and the gammas are antisymmetrised gamma matrices*. One thinks that the
equations of motion (4.1.2) contain constraints equations. Time derivatives may not be included in

constraints, and so for » = 0 in (4.1.2) , equations

j.k=1,2,3 (4.1.5)

are obtained. These are first constraints, but they do neither affect 1)y nor link the component to
other components {1;},_, , 5 . They do not play a role of constraints. Thus we should consider second
constraints, and in order to derive them we act 7, and D, on (4.1.2) and (4.1.3) , respectively. For the

former operation, directly we compute®:

v, {V[WGDM + ’L'm3/2’y[”ﬂ} Ye =0 (4.1.6)
& (20" = 29#9%) Dye + i3mypoytihe =0 . (4.1.7)

For the latter calculation, we have
Dy, { =i ey, Dg + imgpp (77 — ™) f e =0, (4.1.8)

and here we use a symmetric tensor property?°:

"D, Dgipe = €% {0,05p¢ — ¢* A, At — 2iq A Opphe } + €% (—iq)1ped, Ag (4.1.9)
= —iqe" 0, Ag (4.1.10)
= iqe® )0, Ap (4.1.11)
- iqew%g% (0,A5 — 0sA,) (4.1.12)
= g S Fup = il (4.113)

34See Appendix Formuale for gamma matrices.
35We use (C.2.3) (See Appendix Formulae for gamma matrices).
36Let S be a symmetric tensor and A*Y be an antisymmetric tensor. Then S** A4, =0 .
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where we use F# = grAY — VAt | [P = 1P F . Therefore, (4.1.8) becomes

imajs (7' D" = D) e + 7 qathe P =0 (4.1.14)
By using the results (4.1.7) and (4.1.14) , we derive the relations:
2q -
My = T Vet F 4.1.15
U 3mi,) ! e , (4.1.15)

and these relations are secondary constraints. In addition, (4.1.14) and (4.1.15) lead to

3
Dgwg = (v“DM — z—mg/Q)

5 Vrathe FOS (4.1.16)

q
3m3 /2

that is, the secondary constraints consist of (4.1.15) and (4.1.16) .

Characteristic determinants for minimally-coupled RS equations: Now we use (4.1.15) and
(4.1.16) to rewrite the original minimally-coupled Rarita-Schwinger equations (4.1.2) . After relatively

easy calculation, we have

. v v 1 v 2 el
— (’y“Du + ’ng/g) '+ | DY —izmg ey —3757a¢5F f=0 . (4.1.17)
2 3m3/2

These are equations of motion for a minimally-coupled Rarita-Schwinger field with secondary (substantial)
constraints. We proceed to compute their characteristic determinant () . For the normal vector §, = 9,0

to a characteristic surface C': ¢(x) = 0 , we have its characteristic matrix:

—;Z’—l—MOéO M1£0 M2£0 M3£0
0¢l _ 1e1 2¢1 3¢l
H(E) = Moi g+1M2 £ - Mgi : (4.1.18)
MY¢ M€ —¢ + M=¢ M-¢&
M0£3 M1£3 M2f3 g_i_ M3€3

where M¢ = Py, F€ . The statement (1.2.10) says that in order to show the acausal behaviour

2

ms3 o
of the Rarita-Schwinger field, we should seek for a spacelike surface for the Rarita-Schwinger field. Let
us investigate whether a normal vector d,¢ = £, = (n,0,0,0) to the characteristic surface exists or not.

Under this condition, the characteristic matrix (4.1.18) reduces to

3+ M°n M'n M?*n M3n

0 % 0 0
H(¢,) = 0 0 0 : (4.1.19)
0 0 0 —'n
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Basically the dual field strength tensor F? is

Fof = (4.1.20)
-B, E, 0 -—-E,
-B, -E, E, 0 |,
but here we can take it as
0 B, B, B,
N B, 0 0 0
FoP = (4.1.21)
-B, 0 0 0
-B, 0 0 O
without loss of generality. Then we have
M° =C~ (v'B, ++°B, ++°B.) (4.1.22)
=CO~y-B (4.1.23)
2
where C' = 3 q2 We find that —°n + M°n takes a block diagonal®” form. The characteristic
39

determinant Q(¢,,) becomes

Q(éﬂ) = detH(@L) (
= det(—+"n + M°n) x det(—7"n) x det(—+"n) x det(—~+"n) (4.1.25
= (n® - nQC’QBQ)2 (n4)3 (
_ 6 (1 _ C2B2>2 (

Hence if the external magnetic field is

3m?2 2
B2 — % _ < 3/2) , (4.1.28)

2q

then the timelike normal vector exits such that the characteristic determinant vanishes, which means that
the spacelike surface exists. We find that a minimally-coupled Rarita-Schwinger field violates causality

in a classical sense.

37Therefore the calculation of the determinant becomes easier.

28



4.2 Mechanism of causality violation

[t turned out that the Rarita-Schwinger field which coupled with an external electromagnetic field brought
about violation of causality at a classical level. We now consider the reason why causality is violated.
It seems that the M*#n terms in the characteristic matrix (4.1.19) play an important role in making a
spacelike characteristic surface of Rarita-Schwinger equations. As is defined before, M¢ = &z—gmf%]} ot
and this is a part of the secondary constraints: (4.1.15) and (4.1.16) . If the secondary constraints vanish,

then the minimally-coupled Rarita-Schwinger equations reduce to
(V' Dy +imgpe)h, =0, (4.2.1)
and the field behaves in a causal way. In other words, if
D,A"™ID e = 0 (4.2.2)

that is, the massless sector of the equations of motion becomes zero in acting D, on them, then the
causality recovers.

Such a non-local problem arises for other higher-spin fields. For a bosonic spin-s (s > 4) field, we
have imposed the double-traceless conditions (3.2.11) . This suggests that Z,, . is 9 ?-closed , and the
generalised Poincaré lemma says that 72, . is O3-exact at least locally. Accordingly Zyy .., 1s expressed

as

sym

Ly s = Z amam@uaCM---us(x) ) (4.2.3)

w,level—3

where the rank-(s-3) tensor C,, . is called a compensator, and it behaves as
_ a8
OCons = 3 10, (4.2.4)

in a gauge transformation. The behaviour under gauge transformation (4.2.4) implies that the com-

pensator is a symmetric tensor. This transformation property is compatible with (3.1.20) and (3.1.21)

As an example, let us take a massless spin-5 field. The equations of motion are

sym Sym

Zu1~~~u5:a2¢u1mus_aﬁ Z aﬂl¢6#2--~#5+ Z aﬂlaﬂz¢ﬂﬁu3u4u5 (4‘25)
w,level—1 w,level—2
sym
= Y 90004 Chs =0 (4.2.6)
w,level—3

29



Then we have

02, =00 Chps + - (4.2.7)

Buaps

where lower dots refer to the terms with lower-ordered derivatives. Accordingly,

Cowe =W x 9,2%

Haps

Buaps T (4.2.8)

is derived, where W is a quantity. The equations of motion becomes

sym sym
Zpeois = PO = 0 Y 0 Bppis + O 00 g s (4.2.9)
w,level—1 w,level—2
sym
= Y OOl (WX 0.2, +0) =0 (4.2.10)
w,level—3
sym sym
‘:)angm---m — 0’ Z 8u1¢5u2---u5 + Z 3M1@M2¢55M3#4“5
w,level—1 w,level—2
sym
= Y 0000 (W X 02+ ) =0 (4.2.11)
w,level —3

Violation of causality stems from the last term in (4.2.11) . Similarly the non-local issues arises for

fermionic®® higher-spin fields.

5 Supergravity and higher spin fields

Last section demonstrated that causality broke down in a classical sense for a minimally-coupled Rarita-
Schwinger field. This inconsistency in QFT should be avoided, and so supergravity is adopted here. In

this section, we see®” that causality is restored for a classical Rarita-Schwinger field.

5.1 First order formulation for SUGRA

Let us consider a minimally-coupled Rarita-Schwinger field in supergravity. The Lagrangian

eR 1,
L= —7 - §€A” §¢,\75%Du@/)£ (5-1-1)

38Here fermionic issues are not treated.
39Tn this section, we set k> = 167G ,and dok =1 .
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is regarded as the function of gravitino, vielbeins e,; and spin-connections w, . in the first order formu-

lation, where the three variables are independent. Here we have

— N N 2 be
e =dete,,, R=¢eye R,

1 1
V..V, = —=R,p.-~"
[ wy ] 9 b 27 )

where the covariant derivative V, on the Rarita-Schwinger field is defined as

1 1
v“ = @L - §wu7bc§’y[b

]

The equations of motion are

1
7N = Mt (%V,, — Z%C’W ") e =0
C.°

= %%7’%
G = 2V
In addition,
GH = Rl — %ef;R
is the asymmetric Einstein tensor, where
Rup = RmbA
The torsion is

b b b
C,"' =V,e, — Vl,eu

n2
= 8ue’; - aye,‘; —w, “beﬁ +w, abez
Then, by using (5.1.3) and the cyclic identity
M (R, —VAC,) =0

we have

1 1
V)\ZA — §G>\M,y5,y>\wu + Z€>\MV§C’AM p7pvu¢§
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The right-hand side in (5.1.13) corresponds to the non-zero terms in (4.1.13) for the electrically-coupled
Rarita-Schwinger field. As is stated in (4.2.2) , if these terms become zero, then causality is restored.

The action S = [ Ld*z is invariant under the local supersymmetry transformation:

dej, = iay*, , o0, =2V ,a (5.1.14)
bw, " = B," - %ezBC“C + %echbc (5.1.15)

where
B M = ieM ayy, Vo e (5.1.16)

The least action principle states that the variation

oL , 0S 0S 4
= — e — d 1.1
0S / (5636,/ + 5wuab5wuab + 50, 51/)M) T (5.1.17)

-0 . (5.1.18)

By using the transformation (5.1.14) and integrating by parts, we understand that V,Z* should become

zero. Therefore, supergravity restores the causality for the minimally-coupled Rarita-Schwinger field.

6 Quantisation of higher-spin fields

In this section quantisation of higher-spin fields are considered. First the notion of a polarisation 4-
vector is generalised, and with the new notion, quantisation of a field with an arbitrary spin is conducted.
Second the projection operator for a higher-spin field is introduced, and the Feynman propagator for
such a higher-spin field is defined with the projection operator.

6.1 Quantisation with )" "/

This subsection argues the quantisation of higher-spin fields with positive or negative energy wave func-
tions. Firstly Let us consider a bosonic field ¢ of a particle with rest mass m and spin-s. Then we

generalise the notion of polarisation vectors €,(p) in QED, introducing positive/negative energy wave
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functions ey’ # | gt
1 2(s+ \l(s =N =
et (p) = Oyt As X g i (») (6.1.1)
)\ /\1""’;_1 1 (28)! Hi:l(l + /\i)!(l — )\i>! jl_I1 Aj

1 S
| 25(s + A\)I(s — \)! "
*U1.. . MUs = 5 i 612
€ (p) . E}\ . A A, A X \/(28)!1_[::1(1 + )\1)'(1 _ )\Z)‘ o 6)\j (p) ) ( )

where €, €)' are positive and negative energy wave functions for a spin-1 field, and additionally €} may

be interpreted as the eigenstates?® of the helicity operator j - %‘ =s- \_gl with eigenvalues A = —1,0,1 .
The relations between €} and €)" are

e = (=D, (6.1.3)
and additionally we also define the functions for spin-0 as

c(p) =elp) =1 . (6.1.4)

We realise that €% (p) is the polarisation vector for a spin-1 field in quantum field theory. According to

the definitions of positive/negative energy wave functions, for spin-2 , we have

G ) = ) = e+ ) (615

1
:E{g

iue;izl + 2681652 + E!illellw} (6.1.6)

1
:%{6

M1 K2 H1 2 Hip2 _ 1 2
e+ ehel? Y =t (6.1.7)

1
V5 e

and similar formulae are also derived for the negative energy wave functions. Generally, a positive energy

pipe
€1

wave function has the following properties:

PR R TR (p) — M Hg e fts <p) (618)
pyeuug...us (p) =0 ; ePVB3-ts — () , (619)

and same thing is true for a negative energy wave functions. As the normalisation conditions

H1...[bs *V1...Vs
My M€y €0 = —0a (6.1.10)
40Tn the spinor representation, we have its eigenvalue equations: (s . ﬁ) ek = Aék , and each of {e) };L:O 125 18 a vector

quantity, while in the momentum representation each of {e} is a scalar quantity.

1=0,1,2,3
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are taken here, and moreover we make an additional assumption that the functions are averaged as

S

Z 6;;1...#5 (p)GK}...uS (p)f()\, /\) — (_77#1111)(_77/12112) .. (_/r]ﬂsys)<f()\7 )\/)>5)\,)\’ 7 (6111)

AN =—s
where f(),\) is a function, and its bracket means an average®!.

By using the energy wave functions, we can express a bosonic field as

: dp 1 A A
g () =y / St - {aA(p)e“I"'“S(p)e—W +b§e*“1"'“5(p)6’“} , (6.1.12)
A=—s (27T)3 \% 2Ep
and the field quantisation conditions are

[ax(p), al,(P))]- = [ba(p), bL(P)]- = (2m)*6®) (p — p')drx (6.1.13)

with all other commutations being zero, which completes the qunatisation for a field with an integer spin.

Projection operators for bosonic higher-spin fields: Now we define the projection operator for a

spin-1 field as

v R
and from (6.1.14) , it follows that
P*Y(1,k) = PY*(1,k) (6.1.15)
for a spin-1 field. Additionally, its coordinate version is
- d* , ot
pPrr(1) = “rrprv(1 p) = 5@ () { o — 6.1.16
1) = [ e ™ P (L) = 09 SO (6.1.16)
and here we define it as
Ao, OFOY
PHY(1) =n — — (6.1.17)
In general cases, for s = 2n , (n € N) the projection operator is expressed as
1.V 1 2 - i Vi 1;042 PpV1V2 - i3 Vi
PHL-fis; <3>P):(g) Z Hpu 4 O PPz p Hpu 4.
P(u)P(v) Li=1 i=3
+ O, Pritiz pYiive pH3iia DUiVe . PH2r—13H2r DVar—1iV2r H PHvi 4.
i=2r+1
_}_05 PHLH2 prive P.‘I‘sfl?/-/'sPstl?Vs} , (6.1.18)

41Here we leave a degree of freedom for the formula (6.1.11) in terms of how to take the average.
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where

-1 s!

Crls) = (7) (s — 2125 —1)(25—3)- - (2s—2r +1) (6.1.19)

and Z refers to the sum in which all the p’s and v’s permute. For s = 2n+ 1 ,(n € N) , the

P(p),P(v)
projection operator

sV 1% 1 ’
Prtei e (s, p) = (E) 2.

P(n)P(v)

S S

H PHivi 4 () PRk prive H Privi ..

1=3

S
+C, PHiiH2 pYiive plsiia pYsiva .. pH2r—1ifi2r pY2r—1ivar | | Privi ...
1=2r+1

_‘_C@ PHl;PQPVl;VZ . Pﬂs—Q?,us—l PVS—Q;VS—l PH/SVS:| (6120)
2

is written specifically. By definition for a spin-2 field, we have

1 1
prin =3 3 [P ()P () — 5 PH#2(p) P ] (6.1.21)
(n),P(v)
1 #1111 Hav2 1 12 1/1V2 1 #21/1 nive 1 w2 1 viv2
=P ) Pe(p) - 30 (p)P )t P )P p) - 30 ()P (p)
1 1 1 1
4_1 {Plﬂw( )PM2V1 (p) _ gPMl,UQ PV2V1 } + Z {PH2V2 )Pmm (p) _ gPHZHI (p)PV2V1 (p)}
(6.1.22)
and accordingly
PN1N2§V1V2 1 H13V1 DR2;3V2 1 H1V2 DH2V1 1 M2 DV1V2
(2,p) = 2P P + 2P P — §P P , (6.1.23)
1 pmpm p,u2 V2 1 pu1pV2 p,uzpl/l
_ H1VL o fl2V2 Hav2 o p1V1 - ,u1V2 uzm _ M2Vl H1V2
5 {77 Ui 2 Ui 2 } 5 oz Ui 2
1 Vo lepMQ o p’/Qle 2 1
— g {nmuzn 2V1 m2 77 2Vl nuu@ m2 ggp p p p (6124)
is derived. Correspondingly, we define its coordinate-oriented version as*?
puwzwwz(z) = 411 Z {f)m;mﬁuzwz _ %pm;uzpuuuz} ] (6.1.25)
P(u),P(v)

42Hereafter we treat projection operators only in the momentum space.
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Let us proceed. The projection operator for a spin-3 field is

. 1\’ o s o s Divs Dy
prkapsiars (3 py — (_) Z { prvy praiv: prsivs 4 (1) (3) PRk priive prsivs) (6.1.26)
(

| P(p),P(v)
aE=7 (6.1.27)
and after relatively tough calculation,
PU1H2N3§V1V2V3 (3’p) — é {PHIQVI P/U«2§V2 P#B?VS + PNUVI P#2§V3P#3§V2 + Pu1§V2PM2§V1 P#3§V3 + P#1§V2PM2§V3PH3§V1
+PM1%V3PM2§V2PH3;V1 + PMI%VSPMQWI PM3;V2}
_ % {P.U'IW2PV1§V2PH3§V3 + P#1§N3PV1§V2PM2§V3 + P#2§N3PV1§V2PM1§V3
_|_PN1§P«2PV1§V3P,U«3§V2 + Pﬂl?MSPVHVSP/‘Q;VZ + P#QWSPVIWSPNI;VQ
+ priHz pr2ivs pHsVL 4 PHLHS Pr2ivs PH2VL 4 PH2KS Ppr2ivs PRIV L (6.1.28)

is derived.

(6.1.8) and (6.1.9) indicate that a projection operator has the following properties:

PHL B VL ViV Vs (S, p) — PHLHsiVL Ve Vi Vs (S, p) (6129)
Py PHI I s (g ) = () | PRI (6 ) = () (6.1.30)
PHL sV Vs (S7p)Pl/1...l/s;£1.--§s (8, p> — Pﬂ1...mus;£1...§s (S,p) (6131)

Quantisation of fermion fields with positive/negative energy wave functions: Next we con-
sider fields of particles with spin-(s + %) , where s is an integer. The positive and negative energy wave

functions for fermion fields are

s+ 35+ s B}
Ut (p ot b 6.1.32
. \/j \/7 L s () (6.1.32)
s+ 35+ s i
! '"“S TR M KU1 fhs
Ve J:;T_ Juy(p J:;?l% p)v=i(p) (6.1.33)

where u,., v, (r = +3) are the plane wave solutions of the Dirac equation for a particle and an anti-particle,
respectively. With (6.1.4) ,

w\»—t

Ur(p) = upx »  Va(p) = v (6.1.34)
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are obtained for a spin-1/2 field. For a field with spin-3/2 , we have

and

=
—
=
SN—
|
[}
0
=
—~
i)
N—
E‘@
e
=
P
ks
N—
[
ou%y
(@)
C>
/‘\
i)
N—
@
+
w%y
[}
= %
=
)
=
SN—
T@

Furthermore, for a spin-5/2 field,

2 1
UW( = elelu , Ugv — \/i{e‘l’“eg + el fu, 1+ \/gETETUpzl
UIW ‘/ {e €, + 2¢elhep +e_161}u 1+ \/>{6160 + el u, =1

U’_W%(p) = \/g{egeil + € €0} Ups + 1/ E {ele” | + 2eley + €' ef } Up=t

v 1 v 2 v v v v
U’j%(p) = \/ge’ile_lup; + \/g (" 1ef + ebe’y) Up=t U‘j%(p) = ey,

and

2 1
1324 kU kv nyo kU kU kU _xy *U kU
V (p) = €€} Upl V% = \/j{el €y + € € }Up% + S Y

,ull kU _xy kU _xp *,u *V kU kU kU kU
V \/ {e "+ 265" € 1}1)1—1-\/7{61 €+ €1 vy
,LLV *,u *z/ *,u *1/ / kU kU ,LL *l/ *,u *V
2
1224 _ kU kU kU kU *U kv 124 ) 2 5 2
1% () \/;6 16_12}1—{—\/;(6 1€0 +6061)1;717 V—%() €0,

are written explicitly.

We have their normalisation conditions:

Uﬂl...ﬂs( )U,UJ---MS (p) = 2m55z=52

Sz

Vit (p WhH(p) = =2m_s. o

Sz
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(6.1.37)
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(6.1.39)
(6.1.40)
(6.1.41)

(6.1.42)

(6.1.43)
(6.1.44)
(6.1.45)

(6.1.46)

(6.1.47)
(6.1.48)



where

1 1
FFHL--Hs _ ]S +35+ 8. KL s () N St3-8: R s (N7

b S5+ 5 ey 1o SH3 =S s
Ve o) e ) ST e P () (6.1.50)
T =uln’ T, =0y (6.1.51)

which is consistent with (B.2.11) and (B.2.13) . The fermion field ¢#*#s is quantised as

1
st5

d3 . .
wer@ = Y| ﬁ—\;ﬁmagpw"“s@)eW+biz<pm*:1~-“s<p>ew} . (6152)

sZ:—(s—&-%)

with the quantisation conditions:

[ax(p), al, ()] = [ba(p), b, (9)]+ = (27)°6P (p — @)ax (6.1.53)

with all other anti-commutators being zero.

Some calculation: For later convenience, we also compute some quantities which are involved in

scattering amplitude. As one exercise, for a massive spin-3/2 particle, we calculate the following quantity:

2 2
—a [3/2+ A [3/2 — A [3/2+ X, _ [3/2—X .. _
E Uf\LU)\ = E < Tei%up%+ 3 €§+5’U/p—21> ( TEA—%UP + 3 €>\+%Up—71
A

S

_3
2

(6.1.54)
and it follows from (6.1.11) that*3
—a I A ‘ol _ I A o _
Z Ulu, = Z {(5 + g) ei_%eA_%up%up% + <§ — g) e§+é€)\+éup21up21} (6.1.55)
A=—2 A=—32
1 MO M 1 po —
= 5 (=" tyr + 5 (0w, 21, (6.1.56)
1

— _§nﬂa(p+m%) , (6157)

3240, 1 L2 3240 1

43Now the way of the averaging is that ( Y= Z ==

4 A=—3/2 3
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where m 3 is the mass of the spin-3/2 particle. Similarly, for a massive spin-5/2 particle we have

5/2

v \FTP 1 a, v
> U mUY (p) = 1 ’ <p+mg> : (6.1.58)
A=—5/2

where ms is the mass of the spin-5/2 particle.

Fermionic projection operators: Now we construct projection operators for fields with an arbitrary

half-integer spin. The definition of a projection operator for spin-s + % is

s 1 o 1 s+1 o
Pl (g 4 §,p) = AL QP s (g 4 5,p) = P 3A+7ﬂpwl...us, v (s +1,p)y,  (6.1.59)
phtesie (g 1 p) = A_Quie (s | 1 p) = s+1 Ay, PRIV (6 4] )y (6.1.60)
- 2’ T 27 T 2543 e A

and at the same time the projection operator for a spin—% field is given by

P+(%,p) =Ny = Z Us.(p)Us.(p) = Z Uprtpy = m + py* = p+m (6.1.61)
sz——% :—%
' i3
P_(5.p) =A- = Y ViVe =) vplp=-mAp=p-—m (6.1.62)
=} -3

and accordingly Q(%, p) = 1. For a spin-3/2 field, after some calculations, we have

4 lele
3 m2 ’

%7 5 v 5 v 1 1A/1 1,1
VP2, Py = S = Sy — o (P ) - (6.1.63)

2 6 o6m

and accordingly the projection operators

3 1 1 8 ptip*t 3
pravi? N A HIVE LA VL T (A Hiph)y — — = A, QM (= 6.1.64
() +(77 S = e (P ) e ) +Q (5 p) )
3 1 1 8 pHtip*t D
pravi (2 — A g _ Zama o (pman Biph1) _ = A_QHt"1(— 6.1.65
2 (p) (77 37 = e Y ) = 2 ) Q" (5:p)  (6.1.65)
I 1 1 8 ptip”t
psvn 2 R Y R S Dy 2 S W S 2| Py - 6.1.66
QU™ (5:p) <n SV e (P ) = e ) ( )

are derived.
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6.2 Feynman propagator for higher-spin fields

In the previous subsection, higher-spin fields were quantised, and relating projection operators were
introduced. Let us now construct Feynman propagators for these fields. Starting by bosonic fields, we

treat fermionic case.

Feynman propagator for arbitrary bosonic fields: Here we express the propagator for fields with

S MsiV1. Vs s

an arbitrary spin. For a spin-s field, the specific expression of its Feynman propagator D' is

speculated as

D%l'"us;ylmys — Pm...us;ul...us(S’p)pz _Zm2 + JH sV Vs (S,p) (6.2.1)

in momentum representation, where K#1-#s"1-s(g p) may be some functions of the momentum. Here

we define the Feynman propagator as

D?---us;m---vs = pm---us;m...us(s’p) —t ’ (6.2.2)

p2 —m2

for a spin-s field in momentum representation for convenience. Indeed, in the case of spin-one, we have

. —1 —1 kHEY
DY = pHv = g 6.2.3
F p2 — m2 pz — m2 {77 k2 } ( )

with the aid of (6.1.14) .

Fermionic Feynman propagators: Let us define the propagator for a spin-(s + %) field as

. 1 0 : 1 i(p+m) . 1
Sul...us,ul...us - = 1. s3] Vs - — H1---Ms3V1-- Vs - 6.2.4
F (S+27p) ?_mQ <S+27p) p2—m2Q (8+27p) ( )
in momentum space. Since Q(%, p) = 1, this definition leads to
1 i(p +m)

Sr(= . S— 6.2.5
F(27p) p2 — m?2 ( )

for a Dirac field. For a Rarita-Schwinger field, the Feynman propagator

. ) 1 1 8 ptip”t

GH1vL HIVL _ Z A MIAVL _(pH1A71 H1iph1)y 6.2.6
¥ p—m{” 3V e W ) = } (6.2.6)

is obtained.
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7 Renormalizability of higher-spin fields

In this section, we see that a spin-2 field coupled with an external electromagnetic field is non-renormalizable.

7.1 Quantised Einstein-Maxwell system

Let us consider a system in which a gravitational field couples with an electromaganetic field. The

Lagrangian is

— Rg l = = — o=V,
Lop = —\/—g{ ( )+EFWF(Xﬁg“ g 5} (7.1.1)

K2

where k2 = 167G and the fields Gy FW refer to the sums of quantum fields khyy,, f and background

fields g,., F,, . We consider a term Lp which may break the gauge symmetry:

1 5 1 5 1
Lbreak = —8—7]_\/ —g {(D huy — §Duh€§)(D hMV — §D#h££) + (DMAM)2} y (712)
where de Donger gauge and Lorentz gauge are taken. All operators in the Lj.... are with respect to
the background metric g, . The gauge-fixings lead to the appearance of a new term (Lagrangian) for a

vector and a scalr ghost (£, p) :

1 * v *
Lghost = EV —9g {5 M(QWDEDﬁ - Ru,,)f +p Dngp} ) (7-1-3)

where since the electromagnetic sector of the gauge-breaking Lagrangian Ly,...; depends on the metric,
the vector ghost exists in (7.1.3) .
The dimensionless** parameter € is used in dimensional regularization here. Then the Lagrangian

Lcounter for counter terms of Lgg + Lireak + Lghost 18

vEp”T

A7 X Logunter = Y—2 {1 Ry R + 3R + csR*, R V0
€
1
+ey (tr(FWFO‘ﬁFBVF”“) - Z(FWF"”V) }

1
+ c5(F F*™)? 4+ cg R F 3 Fos + c; RM (F e F, ¢ — 1 G F ™)

+ g RE,, F" + co(D'F,,)(D*Fe,) (7.1.4)

44Renormalization of coupling constant is not conducted here, since we have no divergence proportional either to Lgg
v—9g

itself or to a cosmological term ~——= in the system. Only « is the dimensional constant there.
K
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and the identity
R Rops = (4R, R™ — R?) + (a divergence) (7.1.5)

makes c3 term be cancelled. ¢5 = ¢4 = cg = 0 may be shown by some calculation, and the remaining

coeflicients are

9 29
A=3550 2T 77 (7.1.6)
13 1
Cy — ﬁ s Cr = Cg = 6 . (717)
Field equations obeyed by the unperturbed background fields are used.
1
R,uz/ = _éTp.y , D#Fp,y =0 , (718)

and the divergences are not renormalizable unless L .ouner vanishes. We see that only one term is effective
because field equations R, R ,T,,TH TR, are equivalent, and R = 0 . It turns out that the

Lagrangian for counter terms does not vanish:

V= 1
4m x Lcounter = Tg (%) R;WRMV 5 (719)

and this means that the theory is not renormalizable at one-loop level.

8 Diagram descriptions of particles with higher-spin

So far we have seen quantisation and relating problems concerning higher-spin fields, and that super-
gravity makes an solution to the problem of causality violation for a minimally-coupled Rarita-Schwinger
field at a classical level. Now we consider kinematics of these fields. In this section, we construct the

Feynman rules for these fields.

8.1 Feynman rules for higher-spin fields

Feynman rules are given for higher-spin fields in this subsection. We treat the rules only in the momentum
space. External lines for fermionic or antifermionic waves with momentum p and helicity A are shown

in Figure 15 . Feynman propagators are drawn in Figure 16 , where the incidental point of the virtual
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Figure 15: External fermionic or antifermionic lines for higher-spin fields
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(a) A Feynman propagator for a spin-(s + 1/2) field (b) A Feynman propagator for a spin-s field

Figure 16: Feynman propagators for higher-spin fields

particle is related with v;...v, indices in these diagrams, while the terminal point involves g ... s

indices. There are many types of vertices, and some of them are shown in Figure 18 , where the hat

symbol refers to the removal of the index on which the hat is put. In Figure 18a , 7y, .. 15 @
symmetrised v matrix; here the it is defined as (3.4.20) . For example, we have
1
V(pap) = b V1V + '7;@7#1} (8.1.1)

Similar rules hold true for () in Figure 18b . Let us emphasise that coupling constant g in Figure 18a
is different from the coupling constant g in Figure 18b . External photons are shown in Figure 19 .
Now one employs another method instead of the perturbation method*® for calculating scattering
amplitudes. The new rule states that among all possible diagrams only the simply-connected diagrams in
R? are taken, and we calculate such simply-connected diagrams in R? to obtain the scattering amplitudes.
In addition, the new rule defined here states that loop diagrams have hole within the loop, and therefore
it is not simply-connected in R? . Here by simply-connected we mean the object which can contract to a

point smoothly. For example a circle C' : 2% +y* = 1 in R — {0} cannot shrink to a point. See Figure 17a

451f we calculate scattering amplitudes by perturbation, the second-order terms must be much smaller than first-order
ones as a general principle, but potentially the former contains divergent diagrams in many cases. This suggests that
higher-order terms may have much more divergent terms, even though they must much smaller than the first-order terms.
If we take renormalized perturbation theory, the theory may seem to be justified only when we conduct renomalization to

remove such divergent terms before perturbation expansion.
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(a) The new rule states that a loop has a hole within it. This(b) An example for a simply-connected diagram in terms of

prevents the diagram from being simply-connected in R? . a many-point function.

Figure 17: A loop has a hole within it, and so it cannot contract to a point smoothly in R? (Fig 17a) .

For a many-point function, we can construct a simply-connected diagram (Fig 17b).

. We have to mention that it is possible to make a simply-connected diagram for a many-point function

such as Figure 17b . Let us emphasise that this new rule is not a perturbation method.

A decay of a charged massive spin-3/2 particle: As an example of the Feynman rule, let us

consider a decay of a negatively charged massive spin-3/2 field. Assuming that the decay mode is

Uy A) = e (P, X)) + (kX)) (8.1.2)

and that the spin-3/2 particle is at rest*® initially, we draw the simply-connected Feynman diagram (See
Figure 20a) in R? . Then we have

1M = Ep’)\’ig’)/(uu)ei’y’(k)l]f(p) 5 (813)

and the averaged scattering amplitude is

3/2 1/2 1

1 . 1 o » o

5 2 D D liMP=o (Tyxig v er (K)UL(p)) ((—Zg)U)\ef,,(k)’y(a/g)upw> . (8.14)
A=—3/2 N=—1/2 N'=—1 AN

46This means that p = (Ep,0,0,0) = (mg3/2,0) .
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of its index of their indices.

Figure 18: Several types of vertices are shown. Note that the coupling constant g in Figure 18a is different

from that in Figure 18b .
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Figure 19: External photons
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(a) In R? the simply-connected Feynman diagram describing(b) In R? the simply-connected Feynman diagram for a de-

a decay of a charged massive spin-3/2 particle cay of a charged massive spin-5/2 particle

Figure 20: In R? the simply-connected Feynman diagrams for decays of particles

With the aid of (6.1.11) and gamma matrix formulae!” , the amplitude becomes

1 , 1 'S
— Y |iM]P = 592(p~p' + ) = 0 (EpEy +m3)) (8.1.5)

where mg/, is the mass of the spin-3/2 particle. In this case the differential decay rate is

- 3 3 By
2msss \(27) 2B,y (27)° 2B 2 £,

T ((dgp/ o Gl )X(l 2 MW) (2m)* sk +p —p) (8.1.6)

and so after some® calculation, the decay rate

1 m? m?
I'= W‘gzmg/z 1-—- 26 3+ 26 (817)
T mg o msz o
is derived.
47See Appendix Formulae for gamma matrices.
48Here the formula 6(F(z)) = ﬁé(x —z9), (F(xg)=0) is used.
T

77



8.2 A decay of a massive spin-5/2 particle

Now let us consider a decay of charged massive particle with spin-5/2 . Assuming that its decay mode is

U (P, A) = 4, (0, X") + (K, X)) (8.2.1)

and so its Feynman diagram is written in Figure 20b . Accordingly the scattering matrix is

. = v
iM = U (0)igygwenex (K)UL" (p) (82.2)

and its complex conjugate is

(iM)" =T (D) (K ) Ve (—ig) Us (1) (8.2.3)

After relatively tough calculation, we have the averaged scattering amplitude:
72 > [MP = g* (0 - p+ majpms)). (8.2.4)
>\ )\/ >\/l
In deriving (8.2.4) , we use the formula (6.1.58) , that is,

5/2
v \F7P 1 a, v
> U UL () = SN PP+ msp) (8.2.5)

A=—5/2
and gamma matrix formulae (C.1.7) (See Appendix Formulae for gamma matrices) .
Provided® that the initially the spin-5/2 particle is at rest, that is, p = (ms5/2,0) , we calculate the
differential decay rate:

1 a3y 1 Bk 1
= M*) x (2m)*6W (K 2.
= Smers ((2@3 2B, (21)? 2Ek/) (72 2 1M ) @m) o (K +p = p) (8.2.6)

where ms /2, mg/2 are the masses of the spin-5/2 and the spin-3/2 particles, respectively. With the aid of

1
0(F(r)) = F,(t,)a(f—w , (8.2.7)
the differential decay rate becomes
27 By 1 ) ( ) m5/2 +m3/2
he IMP ) x —C——= % 3(p| = [Pol) 8.2.8
2ms o ((27r)3 2E, p/| 79 Z | | m5/2 ([p'] = [Pol) ( )

49This assumption may plausible as long as the spin-5/2 particle is heavy like weak bosons.
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M3, — M3
/L Consequently the decay rate of this spin-5/2 particle

2 2 2
g m3/2 m3/2
'=— 1— 1+ — 8.2.9
327’(’7n5/2 { <m5/2) } ( + m5/2> ( )

where |p/y| =
ol =

is derived.

CONCLUSION

In this dissertation, higher-spin fields were discussed. The equations of motion for massless higher-spin
fields were established, and the number of degrees of freedom for these fields were counted. It turned
out that Rarita-Schwinger fields coupling with an external electromagnetic field behaved in an acausal
way, and the causality was restored by supergravity at a classical level. A quantisation for higher-spin
fields was conducted with the aid of generalised polarisation 4-vectors. Accordingly the Feynman rule for
higher-spin fields was constructed in momentum space.

One of remaining problems is whether or not we can apply, to existing fields, these results such as the
equations of motion. A scalar meson is a composite particle of quarks, and is described by Klein-Gordon
equations. Similarly it seems to reasonable to think that a composite higher-spin particle is described
corresponding equations of motion.

Statistical mechanics for higher-spin fermions are also considered. Basically grandcanonical ensemble
for fermionic particles are designed for mostly Dirac particles. It is expected that a statistical formalism

for the ensemble of higher-spin fermions will be established soon.
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APPENDICES

A Dimensional analysis for field theories

In this section, a brief review of dimensional analysis for field theories is done, especially for QED and
linearlised gravity. First we consider a 4-dimensional Lagrangian density in four dimension for classical
electrodynamics:

-1
16mc

F’“’FW+—A z (M) , (A.0.10)

Lcpp = 1
cm

where j* = p(c,v) is called the current four-vector®, and

dzt
= 08 (x —x, A.0.11
J p Ze Xa) 7 ( )

is its definition. The reason why the Lagrangian density takes such a dimension is that the action

S = [ d*xLcep has the dimension of angular momentum.

A.1 QED Lagrangian

Second let us consider a Lagrangian density for quantum electrodynamics. Here, natural unit system
h = c =1 is adopted. In this unit system, any physical dimension can be expressed with power of length;
we may define the length dimension by 1 = [length] = [time] = [mass™'| = [momentum '] = [energy '] ,

where we express the length dimension of a quantity @) as [@)] . In this case, the action
S == /d4l‘£QED (All)
is dimensionless®, and accordingly the Lagrangian density has the dimension of length™ | that is,

[Lqep] = —4 (A.1.2)

50Reasonably, this is a four-vector. To see it, starting by the identity that de = pdV , we multiply both sides by dxz* . It

i
follows that dedz* = pdth% , and since in this equation the left hand side is a four-vector( due to de being a scalar),

dz#
the right hand side must be so. The quantity dV dt is a Lorentz scalar, and so P must be a four-vector.

51Tn this unit system, angular momentum is dimensionless.
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In a general d dimension,
[Lqep] = —d (A.1.3)

is obtained. Specifically, the QED Lagrangian density is

— | -1

EQED = 1/} {Zryll(au - ZqA,u) - m}d} + ]_6_7_‘_}?‘u F,u,u <A14)
- _ 1

= P ("0, —m) § + gAY + 1 FE (A.1.5)

= 'CDiraC + EEM ) <A16)

where ¢ is the charge® of the electric source, and we define the particle current density four-vector as

g* = y*p . Tt follows that the EM Lagrangian density becomes

—1
=qgA, "+ —F"F ) Al
‘CEM q u] + 1671' v ( 7)

Now we study the dimensions of fields and coupling constants. Equations are

2] —1=—=d , 2]+ [m]=—-d (A.1.8)
24 ~2=—d . ld+[A] 20 =—d | (AL9)

and it follows that
W=50 =1 4= 220 @=1 (AL10)

where that the dimension of mass is [length™'] is consistent with its definition. The fact that electron is
dimensionless in 4-dimensional case is drawn attention to. In the above, we find that this fact is related
with the renormalizability of QED.

A.2 Lagrangian for linearised gravity

For the system of a weak gravitational field, its metric tensor can be

Guv = Ny + h;w ) (A21)

%20 = C x e, where |e| is the elementary charge and C' is a constant.
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and for the purpose of keeping®® its consistency, we have
g =" —n (A.2.2)

where h,,, substantially may play a role in weak gravitation. Since the field is weak, the quadradic form

of it and related similar objects® should vanish. Immediately the (linearlised) Christoffel symbol
1
%, = 577&“ {0phay + Oyhup — Ouhgy} (A.2.3)
1
Lagy = 5 {9ha + Oyhap — Oahgr} (A.2.4)
and after some calculation we can show that

T 50 = {207 Ouhsn) — (07H) (D3 (A.2.5)

=TT, . (A.2.6)

Further, the relation between the linearised Christoffel symbol and rank-1 linear Christoffel symbol for

spin-2 is
TG =25 (A.2.7)
Now the (linearised) Riemann curvature tensor R,
R%,, = %no‘e {0,03hye — 0,08h,c + 0,0chp, — 0,0ehs, } + (higher order terms) (A.2.8)
Roguw = % {0,050y — 0,05hu6 + 0,00hys — 0,0ahup} + (higher order terms) (A.2.9)

are derived. Similarly, the relation between the linearised Riemann curvature tensor and the rank-2

generalised linear Riemann curvature tensor for spin-2 Rg, g, s

—1
R, gy = B3 (Rgyp18apz T RB1punpop) (A.2.10)
—1
= 851 6/32 hmuz + 8M18M2 hﬁlﬁz + 7 {aﬁlaul h52/t2 + 851 alm hﬁzm + 6#1852 hﬁlm + 8,328/@ hﬁuﬂ}

+ (higher order terms) (A.2.11)

53If we take the tensor as gV = n*¥ + h*¥ | then h, becomes antisymmetric.
54For example, hwachc" =0.
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is derived. The (linearlised) Ricci tensor is
1
Rg, = 3 {0°0ghye — 0,05h%, + 0“0y hpa — 050%hyp} + (higher order terms) (A.2.12)
and the (linearised) Ricci scalar is

R = R, = 0°0"hyc — 0.0°R*, + (higher order terms) . (A.2.13)

Now we choose gauge conditions® as

0°0°has =0, 0°9ah =0 | (A.2.14)

and in these conditions the lowest-order terms of the Ricci scalar vanishes. In this gauge the Ricci scalar

becomes
R=-T" T, . (A.2.15)
Accordingly the linearlised Einstein equation, where only the lowest order of h,,, is taken, is expressed as
—{0%0nhy — 0°(0phve + Ophye) + 0,0,h5} =0 (A.2.16)

in vacuum. The action of the linearlised gravitational field is

—c3

5 = TonG

—c3

167G

/ d'zR\/—g = / d*z(—T"*T¢,,) (A.2.17)

where G = 6.67 x 1078 62—32 is the gravitational constant.

Quantum linearised gravity: In quantum mechanics, the action for the linearised gravity in 4-
dimensional space is
-1
S =
v 167G

d'z (-T"*Te) (A.2.18)
and in this case [G] = 2 and [S,] is dimensionless. Accordingly we have

2(2[hw] —1)+4-2=0 (A.2.19)
and so  [h,,] =0 (A.2.20)

5Here the de Donger gauge is taken: 9*hy, — 29,k =0 . In addition we adopt h\ = 0, and so & hy, = 0 is derived.
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is derived. In a general d-dimensional case,

-1 5
S Tve /ddx (=T"%T¢,p) (A.2.21)
and so
22k —1)+d—2=0 (A.2.22)
that is, [hu] = % (A.2.23)

is obtained.

B QED results

Here we show some results in terms of QED. These results are based on Berestetskii, Lifshitz and
Pitaevskii[15] .

B.1 Bremsstrahlung electron-nucleus

In quantum electrodynamics, radiation is an important issue. As we know in classical electrodynamics,

the effective radiation
+oo
£= / A - 2w pdp (B.1.1)
0

has the dimension of energy times area. The ratio of £ to the energy of the radiating system is called the
cross section for energy loss by radiation.
Bremsstrahlung (braking radiation) is a phenomenon in which a charged particle emits radiation in a

collision with other charged particles.

Electron-nucleaus bremsstrahlung: The differential photon-emission cross section for electron-nucleus

bremsstrahlung is

1wl
do = M > =—dNdQd B.1.2
7 ! M AT 12
Z2ar? p'm* dw q?
— e —dQ dQ/ 2 2 2 22
472 pgt w KAEE X {I{I{/m2( €2 —q)

1 1\’ e €\ w1 1 22 (K K
2
e (z‘;) ‘4(;‘;) o (Z‘;)—W(;W) (B-1.3)
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where d€) stands for the differential solid angle for the momentum k of a photon. In addition,

2

re:e_’ K:E—n-p, /leel—n-p, <B14)
m
k /
n=—, q=p' +k—-p . (B.1.5)

In the non-relativistic case, the bremsstrahlung cross-section becomes

16 rejeaN2 [ e es \2 1 dw v+
dw:—(—> — ——) =—1 . B.1.
7= Bhe e (m1 m2> 2w (v—v’) (B.16)

B.2 Basic results for QED

This subsection shows some basic results for QED, and so those who are familiar with these results may

skip this subsection.

Helicity for plane wave solutions of Dirac equations: Solving the Dirac equations, we have plane

wave solutions:

1 —ip-x 1 DT
Vp = %upe e Y= %Upep (B.2.1)

for a particle and its antiparticle, respectively, where the energy € = ++/p? + m? of the particle is taken

to be the positive quantity. Specifically, in the standard representation®®

Upy = ( c e ) . Upy = (V €= mljy 'UM> (B.2.2)
Ve—m(g - o)ws Ve +muw)
= _%% (B.2.3)

where ) is the helicity®” of the particle or antiparticle. In addition, wy is a two-component quantity which

is linked to the helicity states of the particle, and it is the eigenfunction of the operator (‘—f)' o)

(= o)wx = Awy (B.2.4)

1 0 A 0 o’ 0 1
56 1 1 O = ‘7 = 5 = ) 0 1 2 3 =
In this representation, « (0 _1> , Y (—O’j 0) and v° = iy y vy (1 0) )

5TThe helicity of a particle is the component of its spin in the direction of its momentum p .
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and one can express the eigenfunctions as

_i¢ —ig
e "2 cosg —e 2 smg
wi =\ w_1= A (B.2.5)
2 i s 0 ’ 2 i2 0 ’
€'2 sin e'2 cos 5

where 6 and ¢ stand for, respectively, the polar angle and the azimuth of the direction of ﬁ relative to

fixed axis xyz. One can see
wj\,wA = (5)\/7,\ <B26)

by simple calculations. On the other hand, w is the corresponding eigenfunction of that operator for the

antiparticle. It is taken as

wh = —oyw_y = (—1) 7wt (B.2.7)

and it follows that
WhWh, = 6_y _x (B.2.8)
%(ﬁ SOy # AW (B.2.9)

from (B.2.5) and (B.2.6) . With the aid of (B.2.4

VE+ mwe VE+ mw_
2 u 1 =
Ve —mws P

o
N—
Qo
=
)
o
Qo
=
=
=.
-
o
@:
>
,_B@
>
&
»n

: > (B.2.10)

and accordingly

ﬂp)\/up)\ = 2m5>\/7)\ (B211)
11
M =—= = B.2.12
) 27 2 ( )
is derived. We also have
Ep)\’UpA = —2777,5_)\/7_)\ (B213)

by using (B.2.8) . Here, in terms of the eigenfunctions, let us show important formulae:

1 0
w;le tw aw L= ( ) (B.2.14)
T 0
cosf e ®sind
wiwl —w 1w, = | —o. 2 , (B.2.15)
2 2 2 73 €%sinf —cosh p|
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where we can use

sin # cos ¢
%: sin 0 sin ¢ ; (B.2.16)
cos 6
and
10 0 @ gin g
w/;w/j +wl,;wlT1 = ) W/;W,;r —WilwlTl = C.OS oo : (B.2.17)
2 3 2 T2 0 1 2 2 2 72 e"®sinf —cosd

Helicity for vector particles: Solving Proca equations, we have the plane wave solutions

1
¢ == (B.2.18)
€ =—-1, wu,p'= (B.2.19)

where € is the unit polarisation 4-vector®®. The solutions are expanded with these plane waves

1 ) )
ot = Z — {Ape“e_’p'x + BI,E*”eZp'x} (B.2.20)
pP;A \/%

C Formulae for gamma matrices
This section shows some formulae for gamma matrices.

C.0.21
C.0.22
C.0.23
C.0.24

Vaky* = =2k, yakpy® = 4(k - p)
tri =4, tr(pk) =4(p - k)
tr(y*y®2 .-yt = 0
tr(BoKoksky) = 4 {(Kky - ko) (ks - kq) — (k- k) (ko - ka) + (k- ka) (ks - ko) }

~~ I~
~—  ~— ~— ~—

In terms of 4° , we have

7/ 14
75 = IQW&;J’Y“’Y 7571) <C025)
e = 2 oyt C.0.26
V= grewe VI (C.0.26)

8In (B.2.18) , € in the denominator is the energy of the particle.
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Proof of (C.0.25) is obvious from the anti-commutativity of gamma matrices. For (C.0.26) we can show
that

4

77" = e (207 =) (C.0.27)
= e VYV eV YN (C.0.28)
T e e e AT o A P L e A (C.0.29)
= €8 +vc47.!75 : (C.0.30)

and taking advantage of the anti-commutativity of 4° we obtain (C.0.26) .

C.1 Symmetrised gamma matrices

As previously stated, the symmetrised gamma matrix is

7(umz...;m) _ % {7“17”2 T e eI L e (C.l.l)

+ “e + ,.)/H«m,y//fm—l e 7#2,}/#1} . (C12)

Let us now write the matrices explicitly:

« 1 o Qo (e}
’y( BY) _ 3 {’y 0% AP 4y } (C.1.4)
,Y(IWEP) — nlwnsp + n“gnl’p —+ n,up,',]éu (015)
Vuwep V) =72 (C.1.7)

C.2 Antisymmetrised gamma matrices:

Antisymmetrised gamma matrices are given as

1
[ 5} — e S
Al s] — 5! § sgnyMAHz s (C.2.1)
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and specifically we have

(03 1 « « o (0% (0% o
Vo = 5 (797 = 979) =0 =P = e g
VWﬁﬂ::‘—WQWﬁ74‘VBUWV“77U5a4‘7a7577

and so on. Related formulae are written as

YoV = 2% — 29777
YD, = —iyPe oy Dy 1B = 1 = —€1a3

(C.2.2)
(C.2.3)

(C.2.4)
(C.2.5)
(C.2.6)

Note: This project for the master’s dissertation started on 11 June 2011 and finished on 26 September

2011.
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