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1 Introduction

One of the biggest breakthroughs in theoretical physics in the past few
decades is undoubtedly the discovery of the AdS/CFT correspondence [I],
which relates a specific gauge field theory, N' = 4 super Yang-Mills, to a type
IIB string theory on an AdSs x S° background [2]. Though both of these
theories are in some sense special and at first sight don’t have anything to do
with the real world, the correspondence has received a tremendous amount
of attention and is being actively researched upon even to this day. There
are many important reasons for that. First of all, the correspondence relates
a theory with gravity (string theory) to a theory without, which may even-
tually shed light on the nature of gravity. It is also a realization of another
idea in physics, the holographic principle, which states that in certain cases
all information about a physical system can be embedded into a space of
lesser dimensionality [3]. But what is probably the most attractive feature of
the correspondence is that it is a strong/weak duality, i.e. it translates prob-
lems at strong coupling in a gauge theory to problems of weakly interacting
strings. This is important, because it provides a possible tool for solving real
life problems in the theory of strong interactions, QCD, where at low ener-
gies we have a very strongly coupled theory and perturbation theory does
not work anymore.

The idea that QCD is related to strings is not new, in fact, string theory
started out as a candidate theory for the strong interactions by trying to
explain the so-called Regge trajectories observed in experiments [4]. String
theory fell out of favor once it was discovered that QCD correctly describes
the strong interactions only to reemerge later with bigger ambitions — to unify
gravity with all known fundamental interactions and produce a theory of
everything. Yet as it turned out that doing calculations in QCD is notoriously
difficult in the low energy regime, attention shifted back to string theory in
hopes of coming up with new ideas. Indeed, the strong interactions show
a lot of string like behavior, e.g. asymptotic freedom can be intuitively
explained by a string holding quarks together — the closer they are, the
less they interact and vice versa. It was 't Hooft who first noticed that the
planar limit of a gauge theory, i.e. taking N, the number of colors, to infinity
produces something like a string theory — the planar Feynman diagrams can
be interpreted as two dimensional world sheets of interacting strings [5]. But
it was the work of Maldacena in 1998 that really sparked the new revolution



that is now called AdS/CFT duality [2]. Even though the duality can be
extended beyond the original example (e.g. in [6]), it has remained the most
actively explored one — due to its simplicity it makes a perfect playground
for exploring new ideas.

Theories on both sides of the duality are very symmetric: N =4 SYM is a
conformal field theory with 16 super charges and an SU(N) gauge symmetry
and type IIB string theory on AdSs x S° can be formulated as a coset space
non-linear sigma model [7]. In fact there is so much symmetry, that it turns
out to be possible to solve these theories exactly in the planar limit [8]. This
phenomenon goes under the name of integrability and has been under active
research for the last decade. What it means to solve a theory exactly is a
topic on its own and it will be addressed in this thesis. In short, it all started
by noticing that at one loop level the dilatation operator of N' = 4 SYM
can be identified with the Hamiltonian of a one dimensional ferromagnetic
spin chain [9]. Such spin chains are known to be integrable, meaning that
one can find the energy levels of all the states in the spin chain exactly. For
gauge theory this means that one can find anomalous dimensions for all field
states in the theory. The remarkable thing is that it is possible to identify
the dilatation operator with the Hamiltonian of some integrable spin chain
at all loop level. This means that it is possible to find the exact anomalous
dimensions of all operators in the gauge theory at any coupling. If this
were possible in QCD, we would be able to calculate hadron masses from
first principles and they would be given in some closed algebraic form. This
would be a dream come true for theoretical physics.

Integrability is wonderful for another reason, namely that it allows to
check the AdS/CFT correspondence, which is formally still a conjecture.
If the correspondence is correct, the string theory dual of ' = 4 SYM
should also be integrable. What this means is that if it is possible to find
anomalous dimensions of operators in gauge theory, it should be possible
to do the same with energy levels of strings. And indeed this turns out
to be the case [I0]. The energies of string solutions can be found in some
closed algebraic form in terms of the string coupling. Again, this is a non-
perturbative result, which means that one can compare predictions from
string theory to predictions from gauge theory directly, i.e. at the same
value of the coupling. Since AdS/CFT is a strong/weak duality, it is also
possible to compare e.g. perturbation theory results from string theory to
exact results from gauge theory. An enormous amount of computational



checks have been carried out in such a manner and the results have been
phenomenal — all predictions agree with unprecedented accuracy, confirming
that the AdS/CFT duality must be correct at least in the planar limit.
This thesis is a review of AdS/CFT and integrability, it should be noted
that it is by no means original. It consists of two major parts. In the
first part we present a pedagogical introduction to the AdS/CFT correspon-
dence, focusing attention to the theories on both sides of the correspondence
by exploring their contents and symmetries. In the second part we introduce
integrable structures present in both theories and discuss their significance
in the context of the AdS/CFT correspondence. We use the already men-
tioned spectral problem as the canonical example for applying integrability to
AdS/CFT. More or less following the historic path we show how the spectral
problem can be solved in various limits by Bethe ansatz techniques culminat-
ing in the full all-loop solution from the gauge theory side. We then switch
to string theory and approach the same problem from there. The spectral
curve method is discussed, which is basically the Bethe ansatz analogue in
string theory. We conclude by showing how solutions to the spectral problem
in both theories are related to one another, hinting that they actually are
the same solution simply approached from different limits of the theory. We
finish the thesis with a section on further developments and open problems in
the rapidly advancing field of integrability. These include solving AdS/CFT
completely and generalizing the discovered techniques to more realistic the-

ories like QCD.



2 The AdS/CFT correspondence

In this section we review the original Maldacena AdS/CFT correspondence.
Though there are other gauge/gravity dualities discovered, the first one still
remains the most popular one mainly due to its simplicity. Before reviewing
the correspondence we start by introducing theories on both sides of the
correspondence, i.e. A" =4 SYM and type IIB string theory on an AdSs x S°
background and its low energy supergravity limit. We end the section by
discussing the correspondence itself without going into much detail, instead
we focus on the integrable structures found in theories on both sides of the
correspondence and the implications of integrability to AdS/CFT in the next
section.

2.1 N =4 Super Yang-Mills theory

N = 4 Super Yang-Mills theory is a quantum field theory much like the
Standard Model of particle physics with a certain field content and interaction
pattern. What is special about it is the amount of symmetry available — not
only is it a supersymmetric gauge theory, it is also conformally invariant both
at the classical and quantum levels, i.e. it is a conformal field theory. In four
dimensions a field theory with 16 supercharges is uniquely determined by
specifying the gauge group, the fields then live in the vector multiplet of the
supersymmetry algebra and in the adjoint of the gauge group. The action is
given by [11]

1 1 _
S = / d'z Tr <—ZF,WF‘“’ - EDMCI)IDWI)I — "D,

(2.1)

Do o ] - Doty ] - % for 0,0, 0]

where p=1,...,4asusual, I,J =1,...,6,a,b=1,...,4 and 0, and o are the
chiral versions of the gamma matrices in four and six dimensions respectively.
The covariant derivative D,, is defined as

Dy =0, —ig [Ay, |- (2.2)

Alternatively the action can be formulated as a A/ = 1 supersymmetric gauge
theory in 10 dimensions with the action given by

1 1
S = / d"z Tr <—ZFMNFMN — 5\11PMDM\1/) (2.3)
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where U is now a Majorana-Weyl spinor in 16 dimensions and I'V is the 16
dimensional gamma matrix. The action (2.1) can be recovered by dimen-
sional reduction to four dimensions. The gauge field A,; decomposes to the
four dimensional gauge field A, and to six real scalar fields ®; whereas the
Majorana-Weyl spinor W, breaks up into four copies of the left and right
Weyl spinors in four dimensions

Uy (A=1,..,16) — %, Ve (a,6=1,2, a=1,....4). (2.4)

This theory has an additional SU(4) ~ SO(6) symmetry called R-symmetry
that permutes the scalars, which live in the fundamental representation of
SO(6) and the spinors, which live in the fundamental of SU(4). From this it
follows that we can combine the six real scalars ® into three complex scalars
% which then transform under the second rank antisymmetric representa-
tion of SU(4). The gauge field is a singlet under R-symmetry.

It is now a straightforward but rather tedious task to calculate the beta
function for this theory. For any SU(N) gauge theory at one loop level it is
given by [12]

3

Blg) = —1gﬁ2 <%N - éz C, — %Zf: éf> (2.5)

where the first sum is over the real scalars and the second one over the

fermions. Cy and C’f are the quadratic casimirs, which in our case are equal
to N since all fields are in the adjoint representation of the group. It is
then easy to see that at least at one loop level the theory is conformally
invariant. It can be shown that the g function is identically zero to all orders
in perturbation theory [13], hence the theory is fully conformally invariant
even after quantization. After discussing the full symmetry algebra of the
theory and its representations we will give an elegant argument why this is
true.

2.1.1 Symmetry group of the theory

Conformal symmetry, supersymmetry and R-symmetry are a part of a bigger
group PSU(2,2]4), which is known as the N' = 4 superconformal group. Tt
is the full symmetry group of ' = 4 SYM and is unbroken by quantum
corrections [14]. Hence studying it and its representations further can provide
more insights into the theory itself. It is an example of a supergroup, i.e.
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a graded group containing bosonic and fermionic generators. The theory
of supergroups is highly developed (see [I5]) and much of the techniques
from studying simple groups carry over to supergroups with some additional
complications, i.e. Dynkin diagrams, root spaces, weights etc. The cover
sheet of this thesis features the Dynkin diagram of PSU(2,2|4).

PSU(2,2|4) has the bosonic subgroup of SU(2,2) xSU(4), where SU(2, 2) ~
SO(2,4) is the conformal group in four dimensions and SU(4) ~ SO(6) is the
R-symmetry. The conformal group has the Poincaré group as a subgroup,

which has 10 generators P, and M, in addition there is the generator for

ma
dilatations D and four special conformal generators K,. Their commutation

relations are given by [14]
[D,M,,|=0 [D,P,)=—iP, [D K, =+iK,
(M, P\l = =i Py = Bu) (M, K] = —i(nn Ky — na K
[P, K| = 2i(M,, — n,,D). (2.6)
N = 4 supersymmetry has 16 supercharges Q.. and Qg where o, &« = 1,2 are
the Weyl spinor indices and a = 1,...,4 are the R-symmetry indices. These

generators have the usual commutation and anti-commutation relations with
the Poincaré generators given by
{Qaa Q83 = a0 Pu {Qanr Quv} = {Q4,Q2} =0
(M Qua] = 92567 Qua (M, Q3] = i
[Pus Qaal = [P, Q2] = 0 (2.7)
%%, Commutators between supercharges and the confor-

where ygg - 76[5@7;}6’

mal generators are also non trivial and even introduce new supercharges,
[Da Qaa] = _%Qaa [D>QZ] = —%QZ
(K", Qaal = 764€%7S;,  [K*, Q4] = 74" Sj (2.8)
where S, and S¢ are the special conformal supercharges. They have a
reversed Weyl/R-symmetry representation matching from the usual super-
charges and together with them bring the total of supercharges to 32. The

commutation and anti-commutation relations for the special conformal su-
percharges are very much like the ones for normal supercharges,

{52, S} = Vha0s Ky {55, 55} = {Sia; Sab} =0
[M#, Sa] = iyhge? Se [M™, Sia) = iyggemgﬁa
[Klﬁasg] = [Km So'ca] =0. (29)

8



Finally the anti-commutation relations between the special conformal and
usual supercharges close the algebra,

1
{Qam Sg’} = _iea,BUIJabRIJ + 75;5abMW - §Ea,6’5abD
Na & . a vV ca 1 a
{Qaav Sﬁb} = {an Sg} =0 (2'10)

where R;; are the generators of R-symmetry with 7, J = 1,...,6. All super-
charges transform under the two spinor representations of the R-symmetry
group and all other generators commute with it.

Looking at the commutation relations of the conformal subgroup (2.6)),
we see that the operators P, and K, act as raising and lowering operators
for the dilatation operator D — this gives a hint as to how we could construct
representations of the group. The dilatation operator D is the generator of
scalings, i.e. upon a rescaling x — Az a local operator in a field theory scales
as

O(z) = A 20(\x) = A"PO(2) NP (2.11)

where A is the conformal dimension of the operator O(z). Classically it is
simply the energy dimension of the operator, but as we will see later it can
(and often does) get quantum corrections. Restricting to the point z = 0,
which is a fixed point of scalings, we see that the conformal dimension is the
eigenvalue of the dilatation operator,

(D, 0(0)] = —iAO(0). (2.12)

It is now clear that acting on a field with K, should lower the dimension by
one and acting with P, — raise it by one. We can show this explicitly using
the Jacobi identity. Since operators in a unitary quantum field theory should
have positive dimensions (aside from the identity operator), we should not
be able to keep lowering the dimension indefinitely, i.e. there should always
be an operator that satisfies

K., O(0)] = 0. (2.13)

We call such operators primary operators. Acting on these with P, keeps
producing operators with a dimension one higher — we call these the descen-
dants of O(0). We can also act with the supercharges and looking at the



commutators in we see that they raise the dimension by 1/2, while the
special conformal supercharges lower it by 1/2. A primary operator along
with its descendants makes up an irreducible representation of PSU(2,2|4),
which is infinite dimensional. However we can get smaller representations by
requiring that operators commute with some of the supercharges, i.e.

[Qaa, O(0)] =0 (2.14)

for some «, a. Using the algebra one can show that there is a class of operators
that satisfy the condition J = A, where J is the charge for any of the 3
R-symmetry generators in the Cartan algebra of SO(6). It can also be shown
that they commute with half of the supercharges. Such operators are called
chiral primary or half BPS operators.

As stated before, an operator’s conformal dimension may get renormal-
ized through quantum corrections, i.e. it acquires an anomalous dimension,
which depends on the gauge coupling of the theory. An important fact is
that operators in the same PSU(2,2|4) representation must have the same
anomalous dimension, because the generators of the group can only change it
by half integer steps and there’s only a finite number of generators. What is
more, chiral primary operators are protected from quantum corrections, be-
cause at any coupling the total dimension is related to some charge of SO(6)
by A = J, but charges of compact groups are quantized, meaning that the
dimension can’t continuously depend on the coupling and hence the anoma-
lous dimension must vanish. As an example of a chiral primary operator we
can take the trace of L complex scalar fields, e.g. Z = \/Lg(qbl +1i¢?),

U ="Tr[Z"], L>2. (2.15)

This is a chiral primary, since the classical dimension of W is L and it has the
R-charges [L,0,0], hence it satisfies the chiral primary condition. We will
have more to say about these single trace local operators when we discuss
integrability. In a similar fashion it can be shown that the operators Tr F, F
and Tr F_F_, where F, and F_ are the self-dual and anti self-dual field
strengths, are also chiral primaries [14], meaning that the Tr £, F'* term in
the Lagrangian of NV = 4 SYM is protected from anomalous dimensions and
hence so is the coupling constant g. This argument is valid to all orders in
perturbation theory, which means that N’ =4 SYM is conformally invariant
to all orders in perturbation theory.

10



2.1.2 The t’'Hooft limit

Once it was discovered that QCD is the correct theory of the strong inter-
actions it was quickly noticed that due to asymptotic freedom doing calcu-
lations in the low energy limit is very difficult. t’"Hooft had an idea that the
theory might simplify significantly if the number of colors was made large,
i,e. N — oo. If that is the case, one could solve the theory and then do
perturbation theory in terms of 1/N. A consistent way of taking the large
N limit is by keeping the quantity A = ¢?N fixed — this is the ¢’Hooft limit
and A is the t’Hooft coupling. This limit can be applied to almost any gauge
field theory, but say we have an SU(N) gauge theory with scalar fields in the
adjoint representation. Schematically the scalar field action would look like

S ~ / d'zTr (—0,0'0"®; — gcrye® @7 0F — ¢ dr 'O/ OF D)
(2.16)

and indeed, ignoring the cubic term, for the N' = 4 action (2.1)) this is true.
We can simplify this by scaling the fields by & = ¢ &,

S~ / d%% T (<0,80°0; — 1 D DBE — dy e, B DEDE) (2.17)
thus getting an overall N/A factor. This factor goes to infinity as we take
the large N limit, but one should not forget, that the field count also goes to
infinity. But what we are really interested in are Feynman diagrams and how
these factors appear when evaluating them. For each vertex we get a factor
of N/, for each propagator a factor of A\/N and for each loop an additional
factor of IV, since we have to sum over the color indices. Summing up, a
diagram with E propagators, V vertices and L loops has a factor of

NV-E+L\E=V _ Nx)\E-V _ N2-29)\E-V (2.18)

where y = 2 — 2¢ is the Euler character of the diagram and ¢ is the genus.
These quantities are better understood in terms of surfaces and indeed we can
treat each Feynman diagram as a surface by using the double line notation,
which uses a single directed line for a field in the fundamental representation
and a reversed arrow for a field in the conjugate of the fundamental. Since
the adjoint representation is roughly the fundamental times the antifunda-
mental, fields in the adjoint are represented by double lines with arrows in
the opposite directions. Two canonical examples are shown in fig. [1. These
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are both vacuum diagrams, but the discussion is the same for non vacuum
diagrams. Now we interpret the diagrams as oriented triangulations of sur-
faces, which can be make compact, oriented and closed by adding points at
infinity. E.g. the first diagram then corresponds to a genus zero surface,
i.e. a sphere, while thee second one has genus one — it’s a torus. With this
identification in mind we see that the perturbation series can be reorganized
as an expansion in the genus,

DONTN e N =D NI (N, (2.19)
g=0 7=0 g=0

where f; is some polynomial function in A. It is now easy to see that in the
large N limit all diagrams with genus higher than 0 will be suppressed and
what is left are planar diagrams only, i.e. diagrams that can be drawn in a
plane without any lines crossing. However the most striking feature of the
genus expansion is that it reminds a perturbative string theory expansion
where we also have genus expansions of the string worldsheet. This is the
first hint of the correspondence between field theories and string theories.
Since the argument we presented is very general and works for almost any
field theory, it can be conjectured that any field theory has a string theory
dual. And while it is only a conjecture, there are many examples of this with
AdS/CFT being the first one. Obviously, different field theories would match
different string theories, e.g. taking the gauge group to be SO(N) introduces
non-orientable surfaces in the dual string theory, since SO(N) is a real group
and there is no distinction between fundamental and anti-fundamental rep-
resentations, hence there is only one possible direction for arrows. Similarly,

Figure 1: Canonical examples of vacuum diagrams in the double line nota-
tion, the left diagram corresponds to a sphere and the right one corresponds
to a torus.
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introducing fields in representations other that the adjoint, e.g. the funda-
mental, introduces boundaries to the surfaces. However even with this wide
array of phenomenon gauge/gravity duality remains a consistent concept.

2.2 String theory and supergravity

In this section we turn our attention to the other side of the correspondence,
namely type IIB string theory on an AdSs x S° background. As already
mentioned, taking the large N limit of a field theory makes it “string-like”.
The Maldacena correspondence states that for N/ = 4 this is precisely the
aforementioned string theory. In fact, the correspondence is stronger than
that, the strongest form of the correspondence does not require taking the
large N limit and states that the theories are exactly dual at any N. However
by taking this limit we can see the correspondence more clearly, namely for
the string theory this means keeping things at the classical level. Taking the
low energy limit we reduce the string theory to supergravity.

We start this section with a more technical review of the less known anti
de Sitter space, which plays a significant role in the correspondence. After
this slight detour we introduce type IIB string theory and its low energy
limit — type IIB supergravity and finish by discussing specific solutions in
these theories called branes, which will turn out to play a big role in the
correspondence.

2.2.1 Anti de Sitter space

AdS space is the Lorentzian analog of hyperbolic space, just like the Minkowski
space is a Lorentzian analog of the Euclidean space. Similarly dS space is the
Lorentzian analogue of a sphere, which is an example of an elliptic space. All
of these spaces have constant curvature, with Minkowski space being flat, dS
space having a positive constant curvature and AdS space a constant nega-
tive curvature. Hence AdS can be seen as a vacuum solution of Einstein’s
equations with a negative cosmological constant. A d+1 dimensional AdSy,
space can be naturally defined as an embedding in R%? as

d
- X X0+ X)=-R’ (2.20)

=1
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which can be solved by the following parametrization [16]:

X_1 = RcoshpsinTt
Xog = RcoshpcosTt
Xi = Rsinhp(Qd_l)i (221)

where (€4_1); is the collection of spherical coordinates satisfying the condi-
tion >, (Qq—1)7 = 1. E.g. for the two dimensional case these would be cos
and sin . The AdS, space together with the sphere S? are shown in fig.
These coordinates cover the whole AdS space, hence they are called global
coordinates. It is worth noticing that the coordinate 7 is periodic, making
the topology of the space S x R? Since 7 is a time coordinate, this peri-
odicity introduces closed timelike curves, which are apparent in the picture
of AdS, in fig. In order to make the space simply connected we unroll
the 7 coordinate, letting it take any values — this simply connected space is
the universal cover of AdS, which we will have in mind from now on. The
induced metric in these coordinates is

ds® = R*(— cosh® pdr?® + dp? + sinh? pdQ3_,). (2.22)

From the embedding one may immediately note that the isometry group of
the manifold is SO(2, d), which is the same as the conformal symmetry group
of d dimensional Minkowski space. This relation between Minkowski and AdS
spaces is the Lorentzian analogue of the fact that we can conformally com-
pactify the Euclidean space R™ by adding a point at infinity thus making

S

£

Figure 2: Images of the sphere and the AdSy hyperboloid.
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it a sphere S™. On the other hand, a hyperbolic space H**! can be confor-
mally mapped into a disk D"*! and its boundary is also the sphere S™. We
can make this statement precise for the AdS case by comparing conformal
compactifications of Minkowski and AdS spaces. We start by conformally
compactifying R»~! with the metric

ds® = —dt* + dr* + r*dQ5_, (2.23)

first by introducing the coordinates uy = t £ r, which after some straightfor-
ward manipulations bring the metric to the form

1
ds® = —duydu_ + Z(UJF —u_)2d0? . (2.24)

Now rescale these coordinates by uy+ = tanu4 and introduce new time and
radial coordinates i+ = (7 &+ 6)/2 bringing the metric to the form

1

4 cos? iy cos? U_

ds* (—dr® + d6* + sin® 6 dQ2;_,) (2.25)

and dropping the conformal factor we are finally left with
ds? = —dr? + db* 4 sin? 0 d2_,. (2.26)

Plotting the r = const and ¢ = const lines in the (7,6) plane gives rise to
the well-known triangle conformal diagram of Minkowski spacetime. We can
analytically extend this triangle to the conformal space of the Einstein static
universe by extending the range of the coordinates to

—oo<T<00, 0<f<m (2.27)

which makes the topology of this space R x S¢~!. The simplest example is
the two dimensional Minkowski space, which conformally maps to R x S*,
i.e. a cylinder.

Now lets do the same for AdSy.1, which has the metric given in ([2.22)).
Again, introduce the rescaled coordinate 6 by defining tanf = sinh p and
drop the conformal factor. This brings the metric to the form

ds? = —dr? + db* + sin? 0 d2%_,, (2.28)

which looks just like the conformally compactified metric of Minkowski ([2.26)).
However this time the 6 coordinate has the range [0,7/2), which is only

15



Adsn+1/Z2

Adsn+1

Figure 3: Anti de Sitter space: the infinite solid cylinder represents the
universal cover of AdS,, ;1 whereas the medium gray region represents Ad.S,, 11
with a compactified time coordinate. The dark gray region is the Poincaré
patch, which covers only half of the time compactified AdS,, 1. The boundary
of the universal cover of AdS, . is the outer region of the infinite cylinder,
it’s topology is R x S™~1 [15].

half of the Minkowski case, meaning that we get only half of the Einstein
static universe. This can be visualized as saying that in case of Minkowski
spacetime we can take slices of time, which are spheres S9~!. In this case
we can also take slices of time, but the slice is only half of the sphere S¢,
i.e. a hemisphere, whose boundary is S'. Thus we see that the boundary
of the conformal compactification of AdS;., is equivalent to the conformal
compactification of R1¢~!, This has an important implication that AdS has
a timelike boundary, meaning that in order to have a well defined physical
problem on this space we need to specify boundary conditions, i.e. we can’t
get away with saying that fields drop off at infinity like we are used to do
when dealing with Minkowski spacetime. This fact is at the heart of the
AdS/CFT correspondence.

There is another set of coordinates used to label points on AdSy, called
the Poincaré coordinates, which are given by

X, = i(lJru?(RQJrf?—t?))

Xo = Rut

X, = Rux' (i=1,..,d—1)

Xy = %(1—u2(R2—fQ+t2)) (2.29)
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and the metric in these coordinates is given by

du?

ds* = R? (? + u?(—dt* + de)) : (2.30)
The Poincaré coordinates cover only half of the AdS space, the so-called
Poincaré patch — much analogous to the Rindler wedge found when using
Rindler coordinates to label points in Minkowski space, since 0 < u < oc.
By changing coordinates r = 1/u we bring the metric to the form

1
ds? = s (dr? + nydadz) (2.31)

which simply means that we have a radial coordinate r with a scaled copy
of Minkowski space attached to every point. The boundary of this space
is Minkowski space R%¥~!. This is different from describing AdSy,, with
global coordinates where we found the boundary to be R x S9! which can
be understood by the fact the Poincaré coordinates throw out some points
from the description of the manifold effectively decompactifying the sphere
S9-1 and leaving the boundary to be RV¥~!. The Poincaré patch and it’s
relation to the full AdS,;; and it’s universal cover can be seen in fig. [3

2.2.2 Type IIB supergravity and string theory

Historically supergravity was introduced as a candidate theory of every-
thing. The idea here is to make supersymmetry a gauge symmetry and since
we know that supersymmetry transformations are entangled with spacetime
transformations, it is no surprise that we can produce gravity this way, which
is basically a theory of gauged spacetime transformations. Obviously such
theories would contain gauge fields as well needed to describe matter, so it
seems like a good start. However nowadays supergravity theories are con-
sidered only as low energy limits of various string theories. E.g. the unique
11 dimensional SUGRA theory is considered to be the low energy limit of
M-theory, which is also supposedly unique. AdS/CFT is concerned with
type IIB string theory, which has type IIB supergravity as its low energy
limit restricted to massless fields. At this level it can be treated as simply a
theory in 10 dimensions with a lot of fields in it, which are listed in table [l
Since the theory only contains massless fields, they are classified by their
representations under the little group of SO(1,9), which is SO(8).

Due to the fact that the theory lives in 10 dimensions, the numbers of left
and right-handed supercharges need not be the same [17], thus 10 dimensional

17



Table 1: Field content of type IIB supergravity

Field representation d.o.f. name

G (2,0, 0, 0] 35  graviton
BY) [0,1,0,0] 285 B field 2-form
o [0, 0, 0, 0] 1p dilaton
cO [0, 0, 0, 0] 1p axion
c) 0,1,0,00 283 R-R 2-form
Cs 00,0,0,2] 355  self-dual 4-form
o 1,0, 0, 1] 112  Majorana-Weyl gravitinos
A2 0,0, 0, 1] 16  Majorana-Weyl dilatinos

SUGRA theories with 32 supercharges are not unique and are labeled by the
doublet N' = (N, Ng), where N and Ny are the numbers of left and
right handed SUSY’s. There are two possibilities, (1,1) and (2,0), where
the former is type ITA SUGRA and the latter — type IIB. This is reflected
in the fact that all fermions in IIB are left handed, i.e. the theory is chiral.
Another thing to notice in the field content is that the field strength of
the 4-form C™* is required to be self-dual by supersymmetry. This causes
problems in writing the action for the theory, since it is very problematic to
write a term for the field strength that would imply self-duality. Hence the
condition Fy = xFj is usually just written along the action as a constraint
for the equations of motion. The action for the bosonic part of type IIB
supergravity is given by [I§]

1
Srip = +W /dlol‘ —ge *? (2R + 89,¢0"¢ — |H3|%)
B

1 - 1 -
~pr [ e v (1R AR+ GIAP) (2.52)
K5 2
1
— 5 leLE vV —g C<4)+ /\H3 N F3
4k

where the following field strength definitions were used

F, = dC©, H;=dB®, F;=dc?®, Fy=dCcW+

. 1 1
Fg == Fg—C(O)Hg, F5:F5—§C(2)/\H3+§B(2)/\F3 (233)
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The field strength modulo squares are defined as

|, |? = z% g g Fy L F, (2.34)
The action in can be derived explicitly by taking the low energy limit of
type 1IB string theory. The free parameter kg is related to the o’ parameter
of string theory by 2% = (2m)7(a/)*. The parameter o’ determines the length
of the fundamental string by I, = v/o/, the tension by T = 1/27a’ and the
mass by m? ~ 1/a’. The string coupling constant is not really a constant,
but the vacuum expectation value of the dilaton, i.e. gy, = <e¢>. Thus the
action can be seen as an effective action with higher derivatives and
terms in higher powers of o/ and gy, dropped. In the full string theory one
would find that perturbation theory should be done in the familiar genus
expansion found in the large N limit.

2.2.3 p-branes and D-branes

Any p + 1-form field A®*Y can be associated with a p 4+ 1 spacetime di-
mensional object, since we can write a fully diffeomorphism invariant action
term

Spi1 = Tpi1 / AP D (2.35)
pt1

where T, is the tension of this object. Naturally these form fields have
field strengths associated by Fj12 = dAP*TY whose fluxes are conserved — we
say that the objects are charged under the form field, hence naturally their
charges are conserved. Solutions of supergravity that are charged under form
fields are called p-branes, where p is the space dimensionality of the object.
Magnetic duals of p-branes in 10 dimensions can also be defined by

dAUT=P) — 5 JAPHD. (2.36)

mag

Looking back at table [I] we expect that type IIB SUGRA should contain
the so-called D(-1) branes (instantons) associated with axions and dilatons
and D7 branes, which are magnetic duals of the instantons. The B® field
has a string associated with it, which is usually denoted F1 and called the
fundamental string, its magnetic dual is referred to as the NS5 brane. C(?)
is associated with D1 strings and D5 branes and finally we have D3 branes
for C* fields, which are magnetic duals of themselves.

19



p-branes can be thought of as generalizations of black holes in supergrav-
ity and just like there are extremal black holes, there are extremal p-branes.
Imposing such a condition on a p-brane makes it a half BPS solution, i.e. it
preserves half of the supercharges. Obviously they also break the 10 dimen-
sional Poincaré invariance down to RP™ x SO(1,p) x SO(9 — p). Solutions
for p-branes may be expressed explicitly in terms of a single function H (%)
as

ds? = H™ ' (fnudatde® + HP(QdiP, @ = HHODM, (2.37)

where z# with © = 0...p are the coordinates on the worldvolume of the
p-brane and y° with ¢ = 1...9 — p are the transverse coordinates to the
brane. Equations of motion imply that H(y) must be a harmonic function,
meaning that

n”0,0;H () = 0. (2.38)

The most general solution of this kind, assuming that we have maximal
SO(9 — p) symmetry in the transverse directions and spacetime is asymptot-
ically flat as § — oo, is given by

i (2:30
g7

where R is some length scale and since o’ is the only length scale in the
problem it must be that R ~ «'. The formula generalizes trivially for a

multi-brane solution to
o CZ'R77P
H(g) = 1+Z—|g_g|7—p‘ (2.40)

It can be shown that in the case of N parallel Dp branes the coefficients C;
are given by [I§]

C; = gotr N; (47) OPV2T((7 = p) /2) () TP/, (2.41)

where [V; is the number of coincident branes at 7;. A multi-brane solution is
still a half BPS solution, which can be understood from a black hole analogy —
having multiple extremal black holes put together does not affect the system
in any way, since electric repulsion always cancels gravitational attraction,
this is the defining property of an extremal black hole.
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Since supergravity is a low energy effective theory of string theory, p-brane
solutions are also solutions in string theory, where they are called D-branes
[19] (hence the names for p-branes such as D1, D3, etc). The D’ is for
Dirichlet, which in turn comes from the fact that in string theory D-branes
are objects on which open strings end, i.e. we impose Dirichlet boundary
conditions for them. Like everything else in string theory, D-branes are
subject to o corrections when coming from supergravity and perturbation
theory is done in terms of gg,.. It is interesting to note that in the small
coupling limit gy, — 0, the branes become localized at spacetime and can
simply be considered as defects at regions in spacetime — a freely propagating
string would not feel a brane’s presence until it reached the brane.

Since open strings can end on branes, they naturally describe gauge the-
ories. This works as follows: a string excitation on a brane is equivalent
to an excitation of the brane itself, i.e. its motion in the transverse direc-
tions. These excitations can be described by 9 — p numbers, which can be
interpreted as values of scalar fields ®'. Since a brane is a 1/2 BPS object,
these fields should be in a compatible supermultiplet of the 16 supercharges
and the only possibility is the vector multiplet. Quantizing the open string
thus produces an effective U(1) gauge theory [20]. The fields in the gauge
theory are massless, because a string that is attached to a brane can shrink
to an arbitrarily small size. If we now introduce N parallel branes, strings
can attach to different branes and hence the scalar fields ®*; have two in-
dices. These indices must be distinguished in type IIB string theory, because
strings have orientations. It is not hard to see that effectively this describes
a gauge theory with spontaneous symmetry breaking, since if the branes are
not coincident, i.e. they have fixed positions with respect to each other, that
means that the scalar fields have vacuum expectation values. If on the other
hand all branes are coincident, the symmetry group is enhanced to U(N)
as can be shown by quantizing the open string. The scalar fields ®*; can
then be though of as being in the the adjoint representation of the group.
Ignoring the overall position of the brane system, we are left with an SU(N)
Yang-Mills gauge theory. All the fields are massless in this case, since the
strings can shrink arbitrarily, but as soon as we separate any two branes, this
is no longer possible — this is the Higgs mechanism at work.
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2.3 The Maldacena correspondence

We now have all the necessary ingredients to present the AdS/CFT cor-
respondence. Consider type IIB string theory with a stack of parallel D3
branes. There are two ways of looking at this system. On one hand, open
strings on the N D3 branes describe N' = 4 SU(N) gauge theory, whereas the
closed strings correspond to excitations of empty space, i.e. gravity. Strings
can also split and join making the two subsystems interact. On the other
hand, one can view the D3 branes as defects in spacetime, which curve the
background geometry that closed strings move in. Closed strings far away
from the branes don’t feel the curvature and describe supergravity as before.
Since in both cases we have free supergravity away from the branes, it is
tempting to suggest that the different theories near the branes should in fact
be the same. This is exactly what Maldacena did in his seminal paper [2].

In order to make the correspondence precise, one should take the low en-
ergy limit, since then the two subsystems (strings away and near the branes)
decouple in both cases. First consider the N = 4 picture, which is shown
schematically in fig. [h. The action of this system is

S = Sbrane + Sbulk: + Sint- (242)

Strane 15 the N = 4 action subject to o’ corrections, but these can be
neglected in the low energy limit o/ — 0. This part of the action describes
the brane excitations, i.e. the open strings ending on the branes. Sy is
the action for excitations of empty space, i.e. closed strings in a flat 10
dimensional background. In the the low energy limit this reduces to the type

IIB SUGRA action given in (2.32)) with leading terms of the form

1 _
W/dlol' —ge 2¢2R+ (243)

Finally S;,; is the interaction term, which describes string splitting and join-

Shuik ~

ing. Since S;,; ~ «, it vanishes in the low energy limit. Thus we see that
the closed and open string sectors decouple in the low energy limit.

Now consider the second picture (fig. ), where we take the branes to
be heavy objects deforming the background geometry of spacetime. Asymp-
totically spacetime is still flat 10 dimensional Minkowski space, but near the
branes a “throat” opens up. The geometry near the branes is described by

22



(s ==
e QQCQCP \ /

a) b)

Figure 4: Two ways of viewing a brane system: a) a stack of parallel D3
branes with open strings attached to the branes and closed strings floating in
the background, b) the branes cause the background geometry to curve and a
“throat” opens up, hence closed strings move in a highly curved background.

the metric given in ([2.37)), which in the case of D3 branes is

RN 12 R4\ /2
ds? = (1 + W) N dztdz” 4 (1 + W) i, (2.44)
where

R* = 47gy.N(a')? (2.45)

is the radius of the D3 brane. The six coordinates perpendicular to the
branes ¥ can be rewritten using polar coordinates for five of them, i.e. dij? =
dy* + y*dQ2, so that large y corresponds to the asymptotic region far away
from the branes. It is easy to see that in the limit y — co, the metric ([2.44])
becomes simply R'Y. In order to study the region near the branes, we further
change coordinates to u = R?/y and take the u — oo limit. The metric now
becomes

ds* = R? 1 dxtdx” + d—UQ + dQ22 (2.46)
— N Nyw o2 5] .

which is the metric of AdSs x S® product manifold, where both spaces have
the same radius R. In the low energy limit both asymptotic backgrounds
decouple and we are left with flat 10 dimensional spacetime far away from
the branes and AdS5 x S° spacetime near the branes.

The discussion so far concerned the same physical set up, but presented
it from two points of view and since both viewpoints contain closed strings
in a flat RY background far away from the branes, we are led to a conjecture
that AV = 4 SU(N) super Yang-Mills and type IIB string theory on AdSs x S®
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must be dual theories, meaning that there should be a direct correspondence
between all degrees of freedom and all physical observables in these theo-
ries. The first sign that the correspondence indeed holds is the fact that
the symmetries of both theories match, since N' =4 SYM is symmetric un-
der the conformal group SO(2,4), which is the isometry group of AdSs and
R-symmetry SO(6), which is the isometry group of S®. The 16 supercharges
on a D3 brane are enhanced to 32, because AdS; is a maximally supersym-
metric space, so the numbers of supercharges also match. In fact, type I1IB
string theory on AdSs x S? is also symmetric under the full symmetry group
of N'=4 SYM, which is PSU(2,2|4).

2.3.1 Parameter matching and limits

If both theories in the correspondence are to be identified, we should be able
to derive relations among the parameters describing the theories. N = 4
SYM is parametrized by the number of colors N and the coupling constant
g (or the t’Hooft coupling A = ¢?N). Type IIB strings on AdSs x S° are
parametrized by the radius of both of the product spaces R, the number of
D3 branes NN, the string coupling constant g, and the slope parameter /.
The most obvious identification is that the number of D3 branes N is equal
to the number of colors in N’ = 4 SYM. This is also the flux of the 5-form
RR field strength Fy over the 5-sphere S5, i.e.

/ x5 = N. (2.47)

S5

We already saw that the AdSs and S° radius satisfies a nontrivial relation
R* = 4mg.N(a')>. (2.48)

Finally, comparing the actions of both theories suggests a further identi-
fication g?> ~ gy, however from the physics of D-branes we find a more
complicated relation [21]

A 0 7 X
— = — 2.49
2T Gstr + o2’ ( )

92

where 6 is the instanton angle of ' =4 SYM and Y is the expectation value
of the axion scalar field C® from the type IIB SUGRA multiplet. This
makes sense, since g4, is related to the expectation value of the dilaton, i.e.
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Figure 5: The parameter space for the AdS/CFT correspondence and the
various possible limits and expansions that can be used to approach the full
quantum string theory.

Gstr = <e¢’>, which is the only other scalar field in the theory. If the instanton
angle is set to zero, we are left with 47gy, = ¢g* and hence

2
aag VA, (2.50)
Oé/

which expresses the strong weak duality, i.e. the low energy supergravity
limit of @ — 0 corresponds to the strong coupling regime A\ — oo of N' =4
SYM and vice versa. The reasoning for the Maldacena correspondence up
to now relied on taking the low energy limit, i.e. o/ — 0. It is then natural
to ask where exactly does the correspondence hold ? One should start this
discussion by first of all noting that the correspondence is only a conjecture,
i.e. there is no rigorous proof for the correspondence at any limit, even though
there is a lot of evidence for it. The strongest form of the correspondence
states that it holds for all values of all of the parameters, i.e. at any N
and gg,. It is highly nontrivial to prove or even check such a statement,
since that would involve doing calculations in a fully quantum string theory
on a curved background and there is no way to do it at the moment. A
weaker form of the correspondence states that it holds at least in the large
N or planar limit, i.e. taking N — oo and keeping the t’'Hooft coupling A
fixed. Roughly this means that we are left with classical string theory, since
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gstr — 0, which is also what we see on the gauge theory side when taking
the t’Hooft limit. This is the regime where integrability techniques work and
they have been used extensively to check the correspondence in this limit
and so far the correspondence seems to hold. Finally the weakest form of the
correspondence involves taking a further limit of sending o/ — 0 on top of the
t’Hooft limit. Looking back at we see that this corresponds to making
the radius of the curvature very large, meaning that the background becomes
flat and we are left with classical supergravity. Summing up we see that o’ in
effect controls the shift between classical and quantum, whereas increasing
Jstr turns on string interactions. The parameter space is illustrated in fig.

2.3.2 The dynamical statement

The fact that the symmetries of the theories on both sides of the correspon-
dence match is not enough to justify it. In order for it to be a true correspon-
dence we have to give a dynamical statement describing how states/operators
in one theory map to the other theory. Since we are dealing with quantum
field theories we seek a bijective map between the generating functionals of
the theories, however if we restrict to the low energy limit of string theory,
where we still have hope to solve something, the mapping should be between
classical fields in supergravity and quantum operators in gauge theory. Clas-
sical fields in 10 dimensional supergravity are usually dimensionally reduced
on S® to give Kaluza-Klein towers of modes in AdSs with Minkowski space as
the boundary, the so-called 5 dimensional bulk fields @(x*,z). Very roughly
the ansatz is that each bulk field maps to an operator O in the 4 dimensional
gauge theory and the exact correspondence is given by [22]

Zsyumlpo] = /Dgo eSaaslelleo (2.51)

where Su45]p] is the classical action for the 5 dimensional supergravity on
AdS5 and the path integral is done over all ¢ field configurations with values
of g on the boundary of AdS5. Zsy,s is the generating functional for the
operator O as a function of the source ¢, for the operator, i.e.

Zsyulpo] = / Dy e/ 'a(Lsyrrteo0), (2.52)

Thus we see that every field configuration on AdS5 perturbs the gauge theory
on the boundary by adding a term (g O to the lagrangian, hence each classical
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field configuration corresponds to a different gauge theory on the boundary.
Once the generating functional is known it is trivial to calculate correlation
functions

B ) ) )
dpo(x) 0o(y) o dpo(z

(O(z)O(y) ... O(2)) )Z[SOOHsoo:O (2.53)
From here on the idea is simple, in order to calculate correlation functions
one has to first solve the classical wave equation in AdSs for the 5 dimensional
fields and then calculate using standard quantum field theory methods. We
won’t go into details of these calculations, since they are beyond the scope
of this paper, but it is worth noting that it is indeed possible to derive
correlation functions using supergravity methods that agree with results from
pure N' = 4 SYM calculations, e.g. one can show that the two-point function
in coordinate space is given by [16]

<O(x)@(y)> = (fﬁrzﬁ)_r(ﬁ) z _1y|m, (2.54)

where A is the classical dimension of the operator . This agrees with the

well known result from conformal field theory, which states that two-point
functions are highly constrained and up to a constant factor they are given

by
(0@)0(y)) ~ m (2.55)

Three-point correlation functions show a similar agreement. Of course, this
simply confirms the fact that both theories have matching symmetries.
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3 Integrability in AdS/CFT

In this section we focus on the integrable structures found in N/ = 4 SYM
and type IIB superstring theories. Roughly speaking, a theory is said to
be integrable when it has an infinite amount of conserved charges, meaning
that the symmetry is so restrictive that in some sense everything is related to
everything by symmetry, hence the theory can be solved exactly [8]. At first
sight it may seem that such a symmetric theory would be trivial, but in this
case, even though everything is rather restricted, the theories are far from
trivial. Formally the type of symmetry encountered in integrable systems
can often be implemented by a quantum algebra, i.e. a deformed universal
enveloping algebra of an affine Lie algebra [23]. This leads to the study of
Yangians as the formal objects behind integrability [24].

Since N' = 4 SYM and type IIB superstrings are related by the AdS/CFT
duality, integrability provides a way to check the correspondence, since if one
theory is integrable, so must be the other. Integrability then allows one to
calculate various observables at any coupling, thus bypassing the strong/weak
duality problem, i.e. one can compare calculations at the same coupling
in both theories and even interpolate between them, something that is not
possible using perturbation theory. Even though this does not prove the
correspondence, it is definitely a step in the right direction.

In this section we introduce integrability by discussing the spectral prob-
lem in AdS/CFT, which concerns with finding the spectra of states in both
theories. We start from the N/ =4 SYM side by showing how the dilatation
operator for single trace local operators at one-loop level can be related to
spin chains and hence shown to be integrable. We then proceed with showing
how the spin chain model can be solved exactly using the Bethe ansatz and
how this procedure generalizes to the full theory and to all loops. The same
problem is discussed from the string theory side where it is also found to be
solvable exactly by the method of spectral curves. We show how this solu-
tion also emerges from gauge theory in the asymptotic limit confirming that
indeed the theories are related. We finish the section by discussing further
advances in other problems in AdS/CFT which also benefit from integrability
and the limits where integrability is thought to break down.
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3.1 Integrability in gauge theory
3.1.1 The spectral problem

Integrability in A/ = 4 SYM was first discovered while trying to find the
spectrum of the theory, i.e. the conformal dimensions of various operators.
We already saw that in any conformal field theory the two-point correlation
functions are very restricted at tree level. For operators that are eigenvalues
of dilatations, the correlators have the same form at all loop levels,

<O($) é(y)> ~ m7 (3.1)

where A(g) is the dimension of the operator. Classically A = A is simply
the mass dimension, but at the quantum level it receives radiative corrections
and acquires an anomalous dimension 7, such that A(g) = Ag+7(g), where
the anomalous dimension depends on the coupling. Usually the corrections
are small and the correlator can be expanded as

1
|z —y[*2

<O(m) O(y)> ~ (1—~vInA%lz —y]?). (3.2)
Obviously we want to calculate the spectrum for operators that are gauge
invariant and since all fields are in the adjoint representation of the gauge
group, all gauge invariant operators will consist of traces over the color in-

dices. In general such an operator has the form of

Oisiserimjivfojn (@) = Tr[@; (2)D, P, ()0 (z) ... Dy (2)] X ...
o x Tr (@, () Dyips(z) ... @5, (x)]. (3.3)

We assume that all the fields are evaluated at the same spacetime point x
making the operators local. In the planar limit we can restrict ourselves
to single trace operators, since states with multiple traces always involve
non-planar Feynman diagrams, which are suppressed in the planar limit. To
see how non-planar diagrams emerge and get suppressed consider the chiral
primary operator

U =T[2" = 242 ... 7', (3.4)

where the scalar field Z and its conjugate Z have the standard tree level
correlator )
—~ 6aa’5bb

tree - |£L’ - y|2

(2@ 27 () (35)
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In order to find the anomalous dimension of the chiral primary operator ¥
we must calculate < U(x)U(x) >. We do this by using Wick’s theorem and
plugging in the two-point correlator (3.5)), which produces a lot of terms with

delta function contractions between the adjoint indices. Some examples are

.. .5a/a 5aa/ (56,1) (5bb/ 5CIC 506/ Ce (36&)
RO L L, LR LN L (3.6b)
R L LV A LOVE L, LV (3.6¢)

These contractions have a graphical interpretation. Consider the scalar field
Z% as a dot and each contraction of the adjoint indices as a line connecting
these dots, then the chiral primary operator W is simply a circle. Wick’s
theorem says that in order to find the correlator < ¥(z)¥(z) > we must sum
all possible ways we can connect the dots in the circle of ¥ to the dots in the
circle of W. All the delta function contractions that we get after expanding
the correlator represent precisely all the possible ways we can contract the
dots in the circles. The three excerpts of contractions shown in (3.6)) can be
represented graphically as shown in fig. [fl One can immediately notice that
the first two are planar, while the third one is intersecting itself. Evaluating
the three contractions we immediately see that planar ones produce a factor
of N3 while the non-planar one produces a factor of N, i.e. non-planar
diagrams are suppressed and we can discard them once we take the planar
limit N — oco. All that’s left then are cyclic permutations of lines by shifting
all of them as seen in fig. [f] while going from (a) to (b). There are L — 1
shifts that can be done in this way, since after making a full circle we return
to the initial configuration. Thus finally for the chiral primary correlator at

T T

(©)

(a)

Figure 6: Possible types of contractions between fields in traces of operators,
which are represented by horizontal lines. Vertical lines represent the con-
tractions. (a) and (b) are two examples of planar contractions while (c) is
an example of a non-planar contraction.
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tree level we find

(v o), ~ 2 37)

where N¥ comes from the contractions and L from all the possible planar
ways we can contract. This can easily be generalized for correlators of op-
erators with arbitrary scalar fields ®y,;, 1, (z) = Tr [®y, (2)Pp,(x) ... P, (2)]
to

<<I>1112...1L(37) o1t (y)>tree ~ m (67,07 - 5}]LL +cycles) ,  (3.8)
where “cycles” refers to terms with the J indices pushed. I and J are flavor
indices, the color indices are suppressed.

So far so good, but in order to calculate anomalous dimensions we have
to go beyond tree level. This may seen like a highly nontrivial thing to do,
since we expect not only scalar interactions, but also gluon exchanges and
fermion loops appearing. Luckily the symmetry of the theory allows one to
calculate all gluon and fermion effects in one go. First let’s concentrate on
the bosonic sector of the theory ignoring gluons. The action (2.1]) contains a
single scalar-only interaction terml]

2
Sy = —%Z/d% Tr [@r, D[P, Py
1,J
2
_ _%Z/d% (Tr [@;®;P,®,] — Tr [®,P,0,0,]).  (3.9)
1,J

In order to calculate the correlator at one-loop level, one should insert
this term and Wick contract. Just like in tree level, we only have to keep
planar diagrams. For the interaction terms this means that only neighboring
fields can interact. This drastically reduces the number of terms we get after
Wick contracting. Because of that it is enough to consider a length two
operator ®7,7, ., and with a bit of work one can show that at one-loop level
we get [14]

<(I)kak+1($) (iJka+1> = % R %

2 — 2L
one—loop 16w |2yl

« (25Ika+15[k+1 Ik 6lklk+15Jka+1 . 5Ika51k+1Jk+1) ’ (3'10)

tA careful reader might notice that we raise and lower the I and J indices at will, but
that’s not a problem, because they are SO(6) indices and there is no distinction between
upper and lower.
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where A\ = ¢g2N is the t'Hooft coupling. Comparing this to we see that
effectively the interactions permute and contract the delta function indices.
We can introduce exchange and trace operators to make this explicit. The
permutation operator, also called the exchange operator, P; ;41 is defined by
it’s action on a set of delta functions as

J1 Jy Jit1 Jo _ J1 Jit1 Ji JL
’Pl’lJrl 6[1 ...511 5Il+1 "'51L —5[1 “'511 5Il+1 --~6IL (311)
and the trace operator K;;1; is defined as
J1 Ji Jir1 Jo _ J1 Jidiya JrL
lcl’lJrl 5[1 "'511 6Il+1 "'51L —5[1 "'5IZIZ+15 + -~'5IL . (312)

Using these operators we can rewrite the correlator in (3.10]) in a more com-
pact notation

<CI>1k1k+l(:U) <i>Jka+1> -

one—loop
_ A A%z —yP)
-~ 1672 |z —y[2L

(2 Pt — Kipsr — 1) 0786741 (3.13)
This result includes four scalar interactions only, however as mentioned before
at one-loop level we can also have gluon interactions and fermion loops in
scalar propagators. The nice thing about these is that such interactions
don’t alter the flavor index structure, i.e. there are no permutations or
traces. Basically this happens because the gluon transforms trivially under
R-symmetry and hence can’t change the flavor index (which transforms under
R-symmetry). Fermions on the other hand do transform under R-symmetry
and it is a miracle that happens only at one-loop level that they don’t alter
the flavor structure. Thus all of these interactions contribute a constant term
C, which we can determine later. We can generalize our one-loop result with
all interactions included for operators of arbitrary length,

A In(Az —yP?)

one—loop - 1671'2 ‘LC — y‘QL

<(I)1112...1L (v) Tl (y)> X

L
X Z (2 ’Pl’lJrl — ’Cl,l+1 -1+ C) (5}]115}]22 Ce 5}]LL + Cycles) .

=1

Combining this with the tree level result (3.8]) and comparing to the general
expression of a two-point function at one-loop level (3.2) we can deduce the
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anomalous dimension v, which now becomes an operator I' because of the
flavor mixing. It is given by

~

I =

(—2 Prici+ K +1— C) . (314)
2 ) )
167 Py

At first sight it may seem strange that what was supposed to be a number,
i.e. a correction to the mass dimension of an operator has turned out to be
an operator acting on the flavor space, i.e. a matrix. But this is very natural
and in fact expected, since interactions can change the flavor of fields and
we can’t be sure that an operator at the quantum level has the same flavor
indices as it does at the classical level. This line of thinking may lead to a
natural question, why do we have mixing between the scalars only and not
between all the fields in the theory including fermions, which miraculously
do not appear. It turns out that this is a one-loop feature only and mixing
becomes a problem at higher loop levels. In fact, the next subsection about
closed sectors is devoted to the question of operator mixing.

Now that we have acknowledged that the anomalous dimension is a matrix
and found an expression for it, the next logical step would be diagonalizing it
and finding the flavor eigenstates. One example of such an eigenstate is the
chiral primary operator W. Since it contains scalar fields of only one type,
the permutation and trace operators act trivially on it. Thus we see that

~

—24+1-0C)V 3.15

but by definition a chiral primary has an anomalous dimension of zero, which
then fixes the constant C' to —1. And finally we get

L
Z 2 -2 Pl,l—i—l + ’Cl,l-i-l) . (316)

=1

A
= 1672

A keen eye might already notice that this expression resembles a Hamilto-
nian of a spin chain. In fact, this is hardly surprising, since from the very
beginning we were talking about fields as points in some closed line, which
indeed resembles a spin chain. Furthermore the correlators that we were
calculating are nothing more that propagators from one state of the chain to
another, hence no wonder that the operator describing this evolution looks
like a Hamiltonian for a spin chain. This identification is very useful, because
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the spin chains that appear in AdS/CFT are integrable and can be solved
exactly, which gives us hope that we can apply the same techniques here and
solve the spectral problem in N = 4 exactly. This is indeed what was first
done in the seminal paper [9], which launched the integrability program in
AdS/CFT. However saying that the spectral problem can be solved exactly
in this particular case is too strong, since we are only at one-loop level. Nev-
ertheless it turns out that one can apply the same techniques going beyond
one-loop level. What happens is that long range interactions start appearing
in the Hamiltonian as one goes higher in loops. What is more unexpected is
that under certain limits one can actually guess how the solution should look
like at all loops. Further techniques like the thermodynamic Bethe ansatz
can then be applied to solve the spectral problem exactly without assuming
any limits. The coming sections will explore these techniques in more detail.

3.1.2 Closed sectors

In the previous section we showed that the anomalous dimension operator
is in fact a matrix, signaling that there is operator mixing in the theory.
However we saw that at least at one loop level, the scalar fields seem to mix
only among themselves, suggesting that there might by closed mixing sectors.
It is not hard to see that this is indeed the case, since the dilatation operator
commutes with the Lorentz and R-symmetry generators, thus it preserves
Lorentz and R-symmetry charges of the operators in question. What is more,
the dilatation operators at each loop level, including D, the bare dimension
operator, commute among themselves [14], which means that only operators
with the same bare dimensions can form closed sectors. Summing up, we
characterize operators by six charges - [A, Sy, Sa; J1, Jo, J3], where A is the
bare dimension, S7 and Sy are the Lorentz charges and .J;, Jo and J3 are the
three SO(6) R-symmetry charges. Closed sectors then consist of operators
having the same charges.

The prime example of a closed sector is the SU(2) sector, which consists
of local single trace operators with M complex scalar fields of one type and
L — M complex scalars of another type, e.g.

Usye) = Tr (ZZWZW ... ZW), (3.17)
where 1 1
7 = —2(¢1 +i¢®) and W = E(gbg +igh). (3.18)
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Such operators have charges [L,0,0; L — M, M,0] and there is no other
way to combine other operators (except permuting the W and Z opera-
tors inside the trace) to get this set of charges, thus they form a closed
sector. The name SU(2) comes from the fact that any two scalar fields
make up a doublet under the SU(2) C SO(6) subgroup of R-symmetry.
Traces of three scalar fields (W, Z and X) don’t form a closed SU(3) sec-
tor, since they can also mix with fermions. E.g. consider the operator
Tr (XW Z), which has charges [3,0,0; 1,1, 1] — the same charges can be pro-
duced by combining two fermions with charges [3/2,1/2,0;1/2,1/2,1/2] and
[3/2,—1/2,0;1/2,1/2,1/2]. Since there is no other way to produce these
charges apart from introducing two fermions, these fields form another closed
sector called the SU(2|3) sector [25]. Other closed sectors include SU(1|1),
SU(1|2) (see [26] for details) and SL(2) ~ SU(1,1) which even appears in
QCD [21].

There are also sectors which are closed only at one-loop level, the prime
example being the SO(6) sector that we encountered in the previous section
when introducing spin chains. It consists of all real scalar fields ®;. Unlike
in the SU(3) case, there is no way to form a closed sector at higher loop
levels here without resorting to the full symmetry group PSU(2,2[4). The
reason why this sector is closed at one loop level is that mixing outside of it is
dynamical, i.e. operators can mix to other operators with different numbers
of fields in the trace and it turns out that this can happen starting at two-loop
level only [25], leaving the sector closed at one loop.

3.1.3 Spin chains and the Bethe ansatz

Let us now focus on the SU(2) sector of N/ =4 SYM. The anomalous dimen-
sion operator is then given by

b=%m

\ L
= 5> (1= Praa). (3.19)
=1

Up to a constant factor this is the same as the Hamiltonian for the Heisenberg
spin chain (also called the XXX spin chain), which is a quantum description
of a one dimensional magnet. The Hamiltonian is given by

L

H=> (1-Pu), (3.20)

=1
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which can also be rewritten in terms of Pauli matrices as

L
1 5 5 P |
H=2 -—=5-5 S = =a;. 3.21
lz:; ( 1 z+1) » Pu= 500 (3.21)
Hence solving the spectral problem in N' = 4 SYM translates into solving
the Schrodinger equation

Hy) = E|y), (3.22)

where we now seek to find the energy eigenvalues for the Hamiltonian of the
spin chain. If the chain is short, this is a trivial diagonalization problem that
can be easily solved by a present day computer. However this problem was
first solved analytically by Hans Bethe in a time when computers were still
in their infancy. The original solution (English translation available in [28])
now goes by the name of coordinate Bethe ansatz and it is by far one of the
most important and beautiful solutions in physics in the past century, which
is still very widely used even to this day. The idea is to make an educated
guess for the wave function [¢), plug it in to the Schrédinger equation and
determine when does it actually hold. This produces a set of algebraic Bethe
ansatz equations for a set of variables unimaginatively called the Bethe roots.
All observables can then be expressed in terms of these numbers as simple
algebraic functions, thus transforming a diagonalization problem to an al-
gebraic problem. This has an enormous advantage, since in the asymptotic
limit, when the spin chain is very large, instead of diagonalizing an infinite
matrix, the set of algebraic equations actually simplify and produce integral
equations, which can be solved.

We already discussed that the anomalous dimension I" must be a matrix
due to operator mixing in /' =4 SYM. In the SU(2) sector we have mixing
only between two scalar fields, e.g. W and Z. In the spin chain picture these
fields can be treated as up and down spin states, i.e.

\T>=Z=<é>, |¢>=W:((1)), (3.23)

thus local single trace operators can be treated as states of a spin chain, e.g.
Trc(WWZWWZW) =] 4114 1d) (3.24)

Due to the cyclicity of the trace all rotations of the chain are equivalent. We
should also specify the periodicity boundary condition

Sp =5 (3.25)
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The operators S, act as Pauli matrices on the ['th spin site and trivially on
all the others. Since a spin “chain” with a single site would have a state
space C2, a spin chain of length L has a state space C®-2, which has 2% basis
vectors and the Hamiltonian is then a 2% x 2% matrix, which we need to
diagonalize. Working directly with Pauli matrices one can find some simple
results directly, e.g. it is trivial to show that the chiral primary operator

) =Tr [Z"] =11 ... 1) (3.26)

is an eigenstate of the Hamiltonian with zero energy, i.e. it is the ferromag-
netic ground state of the spin chain, which we will denote as |0) from now
on. This is expected, since we know that chiral primaries have zero anoma-
lous dimensions. Another eigenstate of the Hamiltonian is the single magnon

state, defined as
L

p) =) e*"[n), (3.27)

n=1

where |n) is the ground state with the n’th spin flipped,

[n) = 5, 10) = [ 111 ... L ... 117), (3.28)

here p is formally just a parameter, but it can be interpreted as the momen-
tum of the excitation travelling in the spin chain. Due to the cyclicity of the
chain the mome