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1 Introduction

Solitons were first observed on water in 1834 by John Scott Russel [1], who described

them as ”waves of translation”. He dedicated some time to find out some properties of

those waves and deduced that they are stable and can travel over very large distances and

that the speed of those waves depend on their height and width. He also observed that the

waves will not merge together, but rather, smaller ones will always be overtaken by larger

ones. Theoretically these waves, called solitons, were explained by Diederik Korteweg and

Gustav de Vries in 1895. A solution to an equation that is named after them now describes

these solitary waves precisely. Since then people got interested in these kind of objects

and the theory is now being used to describe various theoretical phenomena ranging from

dualities between theories, as in this case, to solitons in DNA [2].

It turns out that certain equations have those kinds of ”solitary wave” solutions, and

sine-Gordon is one of them. They have been studied extensively in [3, 4, 5, 2, 6, 7,

8, 9, 10, 11]. Sine-Gordon field theory is a scalar field theory that has bosons as their

fundamental particles that also admits topological soliton solutions, which fit into the

multiple expectation values of the field. It follows that sine-Gordon equation describes

soliton-like waves, which are called kinks. They are jumps in the value of the field that

correspond to energy density bumps in the space-time the field is on. It is particularly

interesting to look at the theory in (1 + 1) dimensions, since then the field is one-

dimensional in space and solitons in that space can be interpreted as particles moving

along this one-dimensional line in time. It turns out that these solitons are fundamentally

fermions - there is another theory, the massive Thirring model, that describes those same

kind of fermions and the two theories are dual [3]. Hence, study of the sine-Gordon

system is twice as valuable, since it describes two theories at once. In particular, the

mass dependence of the fundamental fermion of the Thirring model can be described via

the parameters in the sine-Gordon theory.

One could be interested in calculating the mass of the kink in order to find the exact
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relation of the theories. The mass of a quantum sine-Gordon soliton can be obtained by

applying the weak-coupling approximation [11, 7, 12]. It is not an exact result and fails

at specific values of coupling. It is therefore important to measure the mass numerically,

where possible, to check how analytical results agree with non-perturbative calculations.

In particular, it is important where the weak coupling expansion fails. However, we will

see later that calculation at these values is tricky.

Measuring the quantum sine-Gordon kink mass numerically is a challenge, since one

has to simulate the field. Fortunately, quantum mechanical path integrals look much like

partition functions in statistical mechanics. Using this, one can build a relation between

a quantum field theory and a statistical-mechanical system. This relation then enables

us to simulate the field theory and measure the results.

Numerical computations also introduce other challenges, such as fundamental com-

putational discreteness. One has to write a computer program in order to simulate a

statistical process, which is never going to fully correspond to the real one. The differ-

ence is that in order to get real results, one has to be able to perform an infinite amount

of calculations, which is impossible to do. One can, however, perform Monte Carlo simu-

lations on the thermodynamical system in order to sample only those configurations that

are probable according to their corresponding Boltzmann weights. This way the simula-

tion does not have to be run for an infinite amount of time and reasonable estimations

can be drawn.

To measure the mass of a quantum sine-Gordon kink one has to either measure the cor-

relation functions of the field and use a spectral expansion with the assumption that kink

states are ground states [13], or try to simulate the field in the kink state and the ground

state and measure the free energy difference in order to find the mass increment [14, 15].

This work is concentrated about the latter method. In order to simulate the kink state,

one has to apply anti-periodic boundary conditions to the lattice he is putting his field

on [16]. This is achieved by twisting the field values at the boundary of the lattice with a

period of the ground states. The twist then forces the field to consider the kink state as
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it’s ground state in the Metropolis algorithm and enables us to measure the required field

values. The increments of mass as functions of increments of the parameter in the action

are then integrated to find the approximate dependence of mass on that parameter.

In the sine-Gordon case, the mass of the soliton can be obtained by a mathematical

calculation, and it would seem that numerical computations are more or less redundant.

In fact, most of quantum field theories do not boast exact results, therefore it is important

to develop and understand alternative techniques that we can use to find the relevant

parameters such as masses of fundamental or other particles.

2 Lattice Quantum Field Theory

2.1 Sine-Gordon theory

Sine-Gordon field theory is a field theory that can be studied both at classical level,

and at quantum level. Its name is a reference to the more basic Klein-Gordon field

theory, but since the potential for this theory includes a sine (or a cosine) instead of the

usual φ2, it is rather unimaginatively renamed. Analyzing sine-Gordon theory in (1 +

1) dimensions is rather interesting, since the corresponding kinks are then 1-dimensional

particles in space-time, rather than strings or walls. Many choose a resemblance to the

λφ4 model [12, 11] and use different parameters, however, here we define the sine-Gordon

Lagrangian like this [3, 10]:

L[φ] =
1

2
∂µφ∂

µφ− V [φ], (2.1)

V [φ] = − α

β2
cos βφ− γ. (2.2)

The relevant parameter in the potential is α, which is the ”bare mass” of the theory

and can be renormalized [17] to produce the result for the mass of the fundamental boson.

The parameter is also used to determine the classical and quantum mass of the soliton

particles that this theory describes. However, it can be shown, that this boson is not the
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only particle the theory describes [3].

As mentioned, the theory is a generalization of the λφ4 Lagrangian, and this can be

seen in the case where β is large and higher terms in the Taylor expansion of the cosine

in the potential are negligible:

α

β2
cos βφ =

α

β2
− α

2
φ2 +

αβ2

4!
φ4 + ... (2.3)

This expansion also fixes γ - it must be chosen to be equal to −α/β2, so the energy

E =

∫
t

∫
x

dtdx

(
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+
α

β2
(1− cos βφ)

)
(2.4)

of the field minima

φn =
2πn

β
. (2.5)

limit to zero. These zeroes are the infinitely many vacua that the theory has.

Lagrangian (2.1) has the property of symmetry. We are free to shift the field values

φ→ φ+2πn/β. Also, the transition from α→ −α corresponds to the transition φ→ −φ.

This means that we can only consider positive α and not care about the negative values.

The theory has another interpretation: at φ(x = ±∞, t) it can assume expectation

values which must be one of those minima, if one wants the total energy to be finite and

conserved. These minima must not necessarily be the same at both infinities. It follows

that there must be a region in space that has a twist from one vacuum expectation value

to the other. These twists account for energy density bumps, which can be interpreted

as particles that we call a solitons, or kinks. In space-time they are extended objects,

strings, that can be interpreted as world-lines of those kinks. Depending on the vacuum

expectation values on both sides of the twist, the particle might be called a kink or an

anti-kink.

The conservation and finiteness of energy also lets us define topological charge for

different field regions on space and which must be conserved, and is derived for the field
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symmetries of the vacuum expectation values [11]:

Q =
β

2π

∫ +∞

−∞
dx
∂φ

∂x
. (2.6)

The transition from one expectation value to another increases or decreases Q by ±1. So

kinks divide fields to topological sectors that are labelled by charge.

The actual kink and anti-kink solutions are given by the Bogomol’nyi equation for

the soliton [11]:

∂φ

∂x
= ±

√
2V (φ), (2.7)

which gives (the kink solution)

φkink =
4

β
arctan e

√
α(x−x0) = −φantikink, (2.8)

assuming that the kink is at x0. This solution shows that if x → −∞ then φ → φ0 and

as x→ +∞ then φ→ φ0 + 2π.

In fact, excluding the described solitons and anti-solitons, the sine-Gordon particle

spectrum also includes other solutions, namely, the breather, which is a kink and antikink

bound state, as well as scattering states.

Since kinks are energy bumps, they are felt if these kind of fields are present. The

energy accounts for a mass, which classically can be obtained by doing the (2.4) integral

for the soliton field solutions (2.8) [11]. This is the mass

Mclassical kink =
8
√
α

β2
. (2.9)

It is a different story in the quantum case. One has to include approximations and

renormalize the theory in order to get the result [12]. Quantum kink mass can be ob-

tained by expanding the potential energy around the kink vacuum expectation value. The

resulting expression can then be approximated to the second order (weak coupling limit)

to reduce to a set of simple harmonic oscillators. Normal mode frequencies are then ob-
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tained, and the quantum corrections to the classical kink mass are then just the sum of the

zero-point excitations. The corrections to this result are obtained by perturbation theory.

The quantum kink mass then has to be renormalized. Renormalization is performed by

normal-ordering the Hamiltonian. Counterterms are chosen so that divergences can be

cancelled and the final expression for the quantum kink mass is obtained:

Mquantum kink =
8
√
α

β2
−
√
α

π
+O(β2). (2.10)

Although simple, this result is not entirely exact, but for small β it should hold.

There is an interesting correspondence of the sine-Gordon theory with the massive

Thirring model [3], which is surprising, since it is a theory whose fundamental particles

are fermions. The Lagrangian of this model looks like this [4]:

LMT[ψ] = ψ̄iγµ∂
µψ − λ

2
jµj

µ −Mψ̄ψ, (2.11)

where

jµ = ψ̄γµψ. (2.12)

The two theories are dual with these identifications:

M =
8
√
α

β2

(
1− β2

8π

)
, 1 +

λ

π
=

4π

β2
, (2.13)

where we see that the fermion mass is the same as the mass of the quantum kink. Actually,

the fermions and antifermions of the Thirring model are dual to solitons and antisolitons

in the sine-Gordon theory, and fermion bound states correspond to quantized breathers.

This duality also restricts the sine-Gordon theory to only have soliton and anti-soliton

solutions when β2 < 8π.
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2.2 Euclidean action correspondence with statistical mechanics

This section is widely discussed in [18]. The action for the sine-Gordon theory (2.1) is

iS[φ] = i

∫
t

∫
x

dtdx

[
1

2
∂µφ∂

µφ+
α

β2
(cos βφ− 1)

]
. (2.14)

In order to be able to do some numerical calculations, one is forced to do a Wick rota-

tion on the action, i.e., make the transformation t → −it. This is also sometimes called

analytical continuation, and it makes sense, since provides an invertible map between the

given Minkowskian action and a Euclidean one (although statistical errors in simulations

using Euclidean action tend to produce infinities in the Minkowskian picture). It is es-

pecially useful in discretized theories with potentials that are not bounded from above,

such as the λφ4 model. Furthermore, after this transformation, field theories generalize to

statistical mechanical systems that can be simulated and whose macroscopic values can

be measured using numerical Monte Carlo techniques. After the rotation, iS[φ], which

appears in the quantum path integral and the Minkowskian partition function

Z =

∫
Dφe−iS[φ], (2.15)

now turns into SE, the Euclidean action:

SE[φ] =

∫
t

∫
x

dtdx

[
1

2

(
∂φ

∂t

)2

+
1

2

(
∂φ

∂x

)2

+
α

β2
(1− cos βφ)

]
, (2.16)

where the Euclideanization process included an extra minus sign for convenience. Note

how the Euclidean action is purely real and appears to look like a Hamiltonian of a 3-

dimensional statistical system. In fact, the minimum of this action for any given field

value does not go lower than zero and it really does correspond to a total energy. The

partition function correspondingly changes to

Z =

∫
pbc

Dφe−SE [φ]. (2.17)
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where ”pbc” indicates that the integration is now with periodic boundary conditions,

which are later introduced on the discretized lattice.

2.3 Discretization

Computational simulations are never going to be able to reproduce exact phenomena

of the real world, but they can get very close. The problem is that computers do not

understand infinities. Getting the exact numerical value of an integral would require an

infinite amount of time. The solution is to discretize the continuous space and time and

periodicize them. The field is then put on such a lattice and is discretized as well. As a

consequence, computation of continuum quantities involving integrals over all space-time,

such as the action of a given configuration, is errorneous, but yields manageable results.

For space-time, discretization is done like this [18]:

xµ → xa, x = 0, 1, ..., N − 1, (2.18)

where in this case xµ = (t, x) and a is the spacing between two lattice points, that

is usually set to some value to produce best results, and N is the number of points the

dimension of the lattice has. The size of the two-dimensional lattice becomes L2 = (Na)2.

With this latticization, the field is no longer continuous, and becomes discretized:

φ(t, x)→ φtx. (2.19)

Integrals also get discretized and turn into sums over the lattice points. This is usually

done as follows: ∫ L

0

dxµ → a
N−1∑
x=0

. (2.20)

The sums are now over all points in the dimension and are multiplied by the distance

between those points. Derivatives are changed to differences between two points of the

9



field on the lattice according to the continuum definition of the derivative of a function:

∂µφ =
1

a
(φx+aµ̂ − φx) . (2.21)

Here the hat denotes a unit vector in a given direction of x or t. If we choose to restore

continuity, we have such a possibility:

a→ 0, ∂µφ→
∂φ

∂xµ
. (2.22)

In fact, we periodicize the field in order to be closer to the continuum limit, so that the

(1+1)-dimensional field lies on a 2-torus:

φx+L = φx. (2.23)

The field is now effectively continuous, albeit periodic and discrete. We can control this

”discreet continuity” by tuning the parameters L and N . As N →∞, then a = L/N → 0,

and this accounts for the continuum limit of the theory. This analytic possibility always

remains open throughout the simulation.

It is now possible to rewrite the Euclidean action (2.16) in terms of the latticisized

field variables:

SE[φ(x)]→ SE[φtx] =
∑
tx

[
a2

2
∂µφtx∂µφtx +

αa2

β2
(1− cos βφtx)

]
. (2.24)

The action of a given configuration can now be calculated by summing the derivatives

(2.21) and the terms in the potential over all points in the lattice. It follows that this

action also obeys the classical continuum limit, although it is important to note that

different discretization techniques produce different errors in the statistical simulation of

the theory and it is a delicate matter.
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The partition function effectively turns into

Z = Tre−H(t+−t−) =
∑
n

e−TSE [φtx], (2.25)

where n is the number of states, a very large number, H is the full Hamiltonian of the

system, which is the Euclidean action, and (t+− t−) is the periodic time difference, which

thermodynamically means that the temperature of the system is finite.

2.4 Mass measurement

The aim of this thesis is to give a numerical result of the sine-Gordon kink mass and

to check if it fits the analytic result provided in the section (2.1). Since we turned

our field theory into a thermodynamical system, it is possible to measure expectation

values of the field directly after sampling a grand ensemble of fields in the Boltzmann

distribution using the Metropolis algorithm. The calculation of mass is then widely

discussed in [16, 15, 14, 13]. These methods include using twisted boundary conditions

on the spatial direction of the lattice:

φtx = φt(x+L) +
2π

β
. (2.26)

A twist turns the ground state of the field to the kink state, or makes ”the field like to

be twisted”. It is performed by equating the (x+L)’th element of the field to x+ 2π/β,

the period of the theory. These terms only affect the value of the action through the

kinetic derivative terms, since at the boundary of the lattice in the x direction the action

minimizes only when the points x = 0 and x = L− 1 differ by 2π/β. While at any time

the field with periodic boundary conditions may contain an even number of kinks, this

effectively generates an odd number of kinks on the lattice. The kink - anti-kink pairs

decay, and after some time only one kink remains. The Metropolis algorithm, described

later, now generates a grand ensemble of field states around the kink state, which we can
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sample to produce the expectation value of the twisted field. The mass of the kink is can

be obtained by measuring the difference of the free energies at the twisted and periodic

cases respectively divided by the lattice time length. This is obtained by noting that the

topological charge is quantized and in practice it’s difference can be controlled by using

twisted boundary conditions. This means that the partition function of the theory is just

the sum of the partition functions at different topological charges Q of equation (2.6). In

particular, we can write [15, 14, 13]

Z1 = Z0e
−MkinkT . (2.27)

Z1, the partition function for the states with Q = 1, is Ztw, since we twist the boundary

conditions to generate the one-kink state, whereas Z0 is the partition function for the

untwisted pbc Q = 0 state Zp. From this we can obtain the mass for the kink, which is:

Mkink =
1

T
ln
Ztw

Zp

=
1

T
(Ftw − Fp) . (2.28)

Although the expression is really simple, it is impossible to measure the partition

functions directly, they are only sampled. But since the partition functions are integrals

of the exponentials of the Euclidean action, (2.17), it is possible to take the derivative of

the mass with respect to a term in the action and then integrate it from a value that is

known, such as the free theory, where the mass is zero:

∂Mkink

∂ρ
=

1

T

[〈
∂SE[φtx]

∂ρ

〉
tw

−
〈
∂SE[φtx]

∂ρ

〉
p

]
. (2.29)

In the sine-Gordon theory, the bare mass is α, so we choose ρ = α and get

∂Mkink

∂α
=
aL

β

[
〈cos βφtx〉p − 〈cos βφtx〉tw

]
. (2.30)

We know that at α = 0 the theory is a free scalar field and has no topological defects,
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since there is no potential, the kink at this limit is non-existent. Having this in mind,

it is possible to use Simpson’s integration, or any other similar method to integrate this

from α = 0 to get the final result at the desired α. Unfortunately, this method has linear

error propagation, which increases the error with increasing the number of measurement

points and makes the estimation of the value so much more difficult. It is unreliable. In

practice, it is better to use the finite difference method, which has better error control,

since it is a logarithm, to measure it. The change in the soliton mass is given by the

change in partition functions (2.25) expressed by the change of the actions of the twisted

and periodic cases in (2.28) [15, 14, 13]:

∆Mkink = − 1

T
ln

∆Ztw

∆Zp

= − 1

T
ln

∑
n e
−T∆SE [φtx]tw∑

n e
−T∆SE [φtx]p

= − 1

T
ln
〈e−T∆SE [φtx]〉tw
〈e−T∆SE [φtx]〉p

(2.31)

Finally, mass increment can be rewritten in terms of ∆α and (2.24):

Mkink(α2)−Mkink(α1) = − 1

T

ln

〈
exp

(
(α2−α1)a2

β2

∑
tx(cos βφ− 1)

)〉
α1,tw〈

exp
(

(α2−α1)a2

β2

∑
tx(cos βφ− 1)

)〉
α1,p

 . (2.32)

The mass difference can be calculated by taking the logarithm of the changes of the

partition functions measured at α1. This formula can also be used to reduce the error,

since it is actually smaller when the number of measurements is higher compared to the

naive method (2.30) where the opposite is true. If one also measures the expectation

values at α2 and finds the same negative increment, it may be checked that they agree to

determine if the system was properly equilibrated. Note that the measurements measure

the same thing and are essentially the same. They both use the same principle - change

in the action due to the change of the parameter in the action. The difference is then that

they are measured differently. But if both methods are fulfilled correctly - they should

in principle produce same results.
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3 Monte Carlo method

Since the sine-Gordon field theory has been turned into a thermodynamical system, it is

time to make use of that by making simulations of the theory. Monte Carlo method is

discussed in [19, 20]. The whole point is about estimating the partition function of the

theory. This is done by associating the probabilities of states appearing in the system

with weights which those states would have in real systems. Achieving this requires us

to set the transition probabilities from one state to another during the simulation in

exactly this manner. By choosing those transition probabilities in such a way, that the

equilibrium solution is the Boltzmann distribution. Then the samples that are taken from

these generated states are also in Boltzmann distribution, and provide a rough estimate

for the partition function. The advantage of this technique is that one does not need

to sample a large bit of the partition function in order to get accurate estimates of the

properties of the system. The disadvantage is that one cannot get rid of the statistical

errors using this method. The measured partition function is not smooth and if one

calculates expectation values by taking the derivative of the partition function, he does

not get accurate results, since non-smooth functions have statistically random derivatives.

Instead one calculates as many values as one can, and then the estimates get better.

3.1 The estimator

The usual goal in Monte Carlo simulations, as is the case in this thesis, is to compute

the expectation value 〈E〉 of some observable E, such as the cosine of the field. The best

way to calculate an expectation value is to average the desired quantity over all states in

the system each of them weighted by the Boltzmann weight [19]:

〈E〉 =

∑
sEse

−βHs∑
s e
−βHs

, (3.1)

where Hs is the total energy in the state s and β is the inverse temperature of the

system. This result is only good for small systems, where the state space is small enough
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for a computer to handle. In the case where the state space is large, or infinite, we can

only choose a subset {s1, s2, ..., sN} of those values to produce only the estimate of the

expectation value. This estimator would then look like this:

EN =

∑N
i=1Esie

−βHi/wsi∑N
j=1 e

−βHj/wsj
. (3.2)

EN is called the estimator of E. If we set N → ∞, then the estimator has the property

that EN → 〈E〉, or, as we increase the number of sampled states, the estimation of E

comes closer and closer to 〈E〉. Now if we pick both probability distributions wsi to be

equal, the expression simplifies, but can we can get an accurate estimate of 〈E〉 using

this method? We have

EN =

∑N
i=1 Esie

−βHi∑N
j=1 e

−βHj
. (3.3)

The problem with this expression is that whatever set of samples we take, the probability

that these samples contribute the most to the partition function is very small. Consider a

2-dimensional 642 lattice with the field value on each point. The state space is then R642 ,

which is an infinite number of states (well, not really infinite, since again, the computer

does not understand infinities, so the range of values the field can take is actually finite).

The problem is that for most thermodynamical systems, the states that contribute the

most to the partition function are very very rare, sometimes even only the ground state,

among the infinitely many states, is the dominant contribution, if the system is unlikely

to jump to the next energy state. This sampling method of taking any state with some

given probability distribution is therefore very time-consuming, since we need to take as

many samples, as to include the relevant information about the partition function. Hence,

the real problem is sampling the states that are contributing the most to the partition

function. This is called Importance sampling.

Importance sampling is a technique used to determine the expectation value of a

desired variable. It allows only the most contributing states and then the expectation

value can be obtained by taking an average of the values corresponding to those states.
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If we try to take the samples in the system in which the state appearance is proportional

to its Boltzmann weight, we can mimic nature, which naturally puts thermodynamical

systems in such a distribution to get the best results. The plan is then not to set the

probability distributions in (3.2) to be equal to one another, but rather set them to the

Boltzmann distribution of the system, that is, set wsi = e−βHi
Z

. Then (3.2) becomes

EN =
1

N

N∑
i=1

Esi , (3.4)

a neat and tidy expression, only the average of the measured values of an observable.

The nice property remains, that as N →∞, EN → 〈E〉. And the more values one takes,

the more accurate is the result. Now the measurement accuracy only mostly depends

on the time one spends sampling the states that are generated. The relative frequency

of sampling different states is proportional to the time that the system spends in those

states, and so in this way one can mimic a thermal system. The way one picks states

from the Boltzmann probability distribution is by using the Markov process.

3.2 Markov chain

Having established the way to measure expectation values in the theory, it is important

to be able to generate such states with the probability that correspond to the Boltzmann

distribution of the system. One might think that a remedy to such a process would be

to generate any state and then accept it in such a way that it fits the distribution. In

fact, one would reject almost every state, since the state space is practically infinite.

One must rely on a Markov process to be able to generate states that are most likely in

the distribution. A Markov chain is a thermodynamical system in which the transition

probability of to every new generated state depends only on the original state and on

the new generated state, and also, transition probabilities must not vary over time [19].

One can define the transition probability of the system changing from the state i to the

state j as P (i → j). This means that the state j will always have the same probability
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to be generated given that the current state of the system is i even including every other

factor. P (i→ j) also satisfies ∑
j

P (i→ j) = 1. (3.5)

The probability that a state will be generated, given that the current state is i, is equal

to one. This Markov process generates a Markov chain of states and is chosen is such

a way, that the states that appear are given by the probabilities that are in turn given

by their respective Boltzmann weights. When run for a substantial amount of time, the

system equilibrates, and starts to generate the required chain of states. The drawback of

this chain of states is that every state is correlated to every other state. This inevitably

accounts to an error in the overall calculation of the expectation values of any given

variable that depends on the field on the lattice. The conditions that one must impose

on the process are ergodicity and detailed balance.

3.3 Ergodicity and detailed balance

Ergodicity in the Markov process is a condition that requires every state to be reachable

from every other state [19]. If this would not be the case, then some states that might

be very probable in the system might have the transition probability zero, and hence,

be unreachable. The system would effectively be a ”sum” of some separate systems. In

practice, we can always set some probabilities to zero, or they can occur naturally, but

there must always be a finite path that enables to reach every state from any other state.

The algorithm that is used to simulate the sine-Gordon theory also satisfies the ergodicity

condition.

Another condition is detailed balance, which is ensures that the states that are being

generated are in Boltzmann distribution. When the system is at the equilibrium, the rate

at which the system goes from one state to another is equal to the inverse probability for
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the other state to go back to the first one:

∑
j

wiP (i→ j) =
∑
j

wjP (j → i). (3.6)

Using (3.5), this immediately turns into

wi =
∑
j

wjP (j → i). (3.7)

A set that has transition probabilities that satisfy this equation and corresponds to the

distribution pi, is an equilibrium of the Markov process.

However, this still does not guarantee that the probability distribution will tend to

the chosen one. An additional constraint must be imposed in order to get the needed

Boltzmann distribution:

wiP (i→ j) = wjP (j → i). (3.8)

This constraint is called detailed balance. If it is satisfied, then (3.6) is also satisfied, since

it is just a sum over i on both sides. This condition straightforwardly implies that the

transition probability from state i to state j is equal to the transition probability for the

opposite transition and that the rates at which the system goes from one state to another

and vice versa balance out. Now, after equlibration, the probability distribution tends

exponentially towards the one that we want to impose. Since we want the simulation

to tend to the states that are given by the Boltzmann distribution, the detailed balance

equation (3.8) tells us

P (i→ j)

P (j → i)
=
wj
wi

= e−β(Hj−Hi). (3.9)

The equilibrium of states of the Markov process is now in the Boltzmann distribution.

One only has to write a computer program to simulate the process.

18



3.4 Acceptance ratios

In general, it is difficult to find the best transition probabilities for the Markov process

in order to be able to generate the required states efficiently. This problem can be solved

by introducing something called the acceptance ratio. In principle, one can make the

system to always stay in one place by setting the transition probability P (i → i) = 1.

Then the detailed balance equation (3.8) trivially states 1 = 1. This means that one can

choose whatever value for P (i → i) for it to satisfy that equation. In turn, this allows

for space to adjust the value of P (i→ j) to keep the sum rule (3.6) satisfied by keeping

balance throughout the sums. So one can keep changing the transition probabilities for

the state i to change to state j as long as one keeps track that the transition probability

for staying in the state i is kept within the range [0, 1] (because it is still a probability)

and then the detailed balance is still satisfied. Furthermore, as one changes P (i → j),

one can also change P (j → i) respectively to keep (3.9) satisfied, so that the ratio is

preserved. This means that one can control the set of transition probabilities just by

controlling P (i→ i).

In order to illustrate this, one can break up the transition probability into two parts.

When simulating the Markov process, one constantly generates new states given an old

state. Then transition probability actually reads

P (i→ j) = S(i→ j)A(i→ j). (3.10)

In other words, transition probability can be broken up to the probability that the state

is going to be generated times the probability that the generated state is going to be

accepted. The quantity S(i→ j) is called the selection probability. It is the probability

that the algorithm, given a state i, will generate a new state j. The quantity A(i→ j) is

the probability that the new state is going to be accepted, and is called the acceptance

ratio. When a new state is generated, it should be accepted with the probability A(i→ j),

and rejected with probability (1 − A(i → j)), and the system should stay in the same
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state i. (3.9) then reads

P (i→ j)

P (j → i)
=
S(i→ j)A(i→ j)

S(j → i)A(j → i)
. (3.11)

A subtle balance arises here in the simulation, since the acceptance ratio is controlled

by the difference in the thermodynamical energies of the new and old states, as seen in

(3.9), and since the ratio A(i→ j)/A(j → i) can take any value from zero to infinity, the

programmer can adjust the values of the selection probabilities any way he likes. The

challenge is then to find the way to maximize the acceptance ratio while minimizing the

time the algorithm takes to generate the required states. For instance, if the acceptance

ratio is low (this might happen if the energies of the two different states differ by a large

amount), then the algorithm is going to take a while to ”walk out” all of the states

that happen to contribute the most to the partition function, and is going to be very

inefficient. It is very frustrating to find out after 12 hours of runtime that only a couple

of relevant states have been reached.

A solution to this problem might be to notice that both acceptance ratios can be

multiplied by the same constant. Since the detailed balance equation only needs the

ratio of those ratios, the constants cancel out. One has to watch out, though, that the

acceptance ratios don’t step out of the range [0, 1]. The solution then is to make the

larger acceptance ratio to be equal to one, and adjust the other so that (3.9) is satisfied.

This is the heart the Metropolis algorithm.

3.5 Metropolis algorithm

The Metropolis algorithm was first proposed by Metropolis and his colleagues in 1953 in

a paper about hard sphere gasses [21, 19]. It makes use of a specific acceptance ratio

that optimizes the transition probabilities for the generation of states in the Boltzmann

distribution of the Markov chain.

One has to choose a set of probabilities S(i→ j) for every possible transition i→ j,
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and then choose the acceptance ratios A(i → j) for each of these states such that (3.8)

is satisfied. Then the algorithm accepts the new state randomly according to the chosen

acceptance ratio. Otherwise, it is left at the same state it was before. The process is

then repeated again and again until the system equlibrates and the new generated states

j are being generated with the probabilities of their corresponding Boltzmann weights.

The algorithm makes use of ”single-spin-flip dynamics” (name taken from the Ising

model). In general, one can change the values of the lattice at every point simultaneously

and then check whether to accept or reject the state. However, since the energy of the

state generated in this way will most probably differ by a large value from the last state,

the acceptance ratio is therefore going to be very small (in fact, as n→∞, where n is the

number of values that get changed simultaneously, A(i→ j)→ 0). Hence, the algorithm

is going to be very inefficient. The most efficient way to get the most subtle changes in

energy and, therefore, high acceptance ratios, is to only change one value of the lattice

at a time and then check the energy difference to accept or reject the new state. Also,

using this kind of dynamics ensures that ergodicity is satisfied - it is obvious that every

possible state can be reached from any given state in a finite number of lattice updates.

In the Metropolis algorithm one wants to set S(i→ j) = S(j → i), which means that

then in (3.9) they cancel out, leaving only the ratio of acceptance ratios for the ratio of

the transition probabilities. In fact, when one puts a field on the lattice (as is the case in

lattice quantum field theories), the field is left a possibility to take ranges from −∞ to

+∞. This, however, is never the case (nor is it going to happen naturally), since, again,

computers don’t have an infinite amount of memory. Also, due to the limited precision

of calculation (for the same reason), the values of the field are going to be incremented.

This means that the set of states j that can be generated from the set of states i by

adding a random number to a value of a field on a lattice is finite. Hence, the selection

probabilities

S(i→ j) = S(j → i) = 1/m, (3.12)
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where m is the number of possible states j, a very large number. When considered in

(3.11), this means

P (i→ j)

P (j → i)
=
S(i→ j)A(i→ j)

S(j → i)A(j → i)
=
A(i→ j)

A(j → i)
= e−β(Hj−Hi). (3.13)

That is, selection probabilities can be completely get rid of, and the programmer can set

them to whatever value he wants to. One usually sets them to unity to get the fastest

result, since we always want to be generating new states.

The only thing left to do, is to introduce a constant in front of A to adjust the accep-

tance ratios optimally. In principle, those ratios could be set so that the highest value

they can take is 1, and the lowest - zero. Although this is a possibility, the control over

ratios that have such a functional form is problematic and the algorithm can become inef-

ficient really fast. In fact, the detailed balance equation doesn’t constrain the functional

form of A(i→ j) to be the exponential. It could be changed in whatever way one wants

to, as long as the (3.7) and (3.9) are satisfied and the bounds of the function resemble

that it is a probability. So in order to maximize the acceptance ratios, the way to do it is

to set the higher one to unity - the highest value possible -, and adjust the other in such a

way that (3.9) is not violated. In other words, if the energy the Markov process generates

a state j and it has a higher energy than the state i, which was the starting state, then

naturally, the higher acceptance ratio would be A(j → i), so we set it to 1. Then this

means that A(i → j) must be e−β(Hj−Hi), or in other words, the Metropolis algorithm

accepts the newly generated states that have a lower energy without any conditions, but

if the energy of the newly generated state is higher, then it is accepted randomly with

the described probability. The same subtle balance, mentioned before, arises here: if the

energy difference of the two states is large, then the number of accepted states is going

to be low, and the algorithm is not going to move a lot. Otherwise, if the energy differ-

ence is small enough, such as for the states that are near the equilibrium, the number of

accepted states is going to be large, and the algorithm is going to ”walk out” much of
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the surrounding area of the potential minimum. Furthermore, these states are going to

be generated and accepted as likely as the Boltzmann distribution tells them to be. It

might seem unnatural at first that the lower states are always unconditionally accepted.

It might be the case, but it is the most efficient way to do Monte Carlo simulations

for thermodynamical systems that describe natural phenomena, such as the magnetiza-

tion of a ferromagnetic material, or configuration of gasses at a given temperature in a

chamber, or the simulation of a quantum field theory (given that the path integral has a

thermodynamical realization).

3.6 Implementation of the Metropolis algorithm

Although everything looks so nice and shiny, implementation of the Metropolis algorithm

introduces several challenges of its own. First of all, the system that we are simulating is

nowhere near to being the same as the real one, it is only an approximation, since, again,

computers only have limited amounts of memory. one needs a lattice, which for a 2-

dimensional theory is set to some number N ×N . On this lattice there must be a theory

that can be limited to continuity. This means adding periodic boundary conditions.

Essentially, it means setting the last element of the lattice to be the neighbour of the first

one and vice versa for each row and column. This makes the theory to be ”taken out”

as a slice of the big infinite lattice, or effectively just makes the theory periodic over the

distance of the length of the lattice. One must also decide on the temperature the theory

is being simulated at, and also the initial state of the system. This is closely related to

the phenomena of equlibration (this can be reduced by choosing ”good” initial states)

and thermalization.

Equilibration time is the time the algorithm takes to go from the initial state to the

state that is probable according to its Boltzmann weight, or the one that lies around

the minimum of the potential of the theory [19]. In other words, when the system has

equilibrated, then the algorithm starts generating the Markov chain of states that are

in the Boltzmann distribution of the system. It is important to understand when the
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system has equilibrated before measurements are started, since the results are not going

to be the ones that are expected - the system will not be at the equilibrium.

An easy and unreliable method of measuring equilibiration time is just by looking at

the lattice and comparing it to the expected results, i.e., knowledge of the ground state

of the system. Then one can visually confirm the amount of updates, or sweeps (a sweep

is a whole run through the lattice) it takes to equilibrate the system. This requires a

person sitting in front of the simulations and measuring the quantity.

Another more exact way of determining equilibration time is to plot some expectation

value against time (which is measured in sweeps). For example, if one is simulating a

quantum field theory, then one could measure the expectation value of the square of the

field, 〈φ〉, and plot it against time to see when it more or less starts to wobble around a

value. Then it is a strong suggestion that the system has equilibrated. This doesn’t get

rid of the problem that the system might go down to a local minimum, but then one can

run several different simulations with different parameters to find the time in this way,

or one can expect a value by simply considering calculating the approximate potential

minimum by hand.

Equilibration time is usually quite large if one considers that the system must go to

the minimum from a certain predefined configuration. There are several initial config-

urations that might be considered: the zero-temperature initial configuration and the

high-temperature initial configuration. The first one is setting the system to the ground

state where the corresponding energy is zero. This might be a good idea, but if the

theory has several ground states, then one is essentially choosing the ground state for the

system to be in, which should be avoided. The second choice is generating the lattice

randomly such that the corresponding energy is high, and then the system thermalizes

to some state it wants to be in. this way a preferred ground state is not specified, and

the system looks more like a natural process.

Interestingly enough, one usually wants to measure the system over a range of values of

a certain parameter, such as the temperature or the bare mass of a fundamental particle of
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a quantum field theory, say, m. The experimenter would equilibrate the system, measure

the expectation values, get some results for one value of m, and increment it to the next

value. In such case, it would be unwise to set the lattice to the initial state again. The

reason for that is that we expect the ground state of the theory not to differ that much at

two very slightly differing m1 and m2. We then use the last configuration of the system

at m1 as the starting configuration of the system at m2 to save as much time as we can.

There is still some time the system has to be left for to equilibrate, although that time

is much smaller than the equilibration time and the simulation therefore is much quicker

if one uses this trick.

3.7 Autocorrelation time

Another annoying thing about the Markov chain is that every new state j depends on

the last state i, and i depends on g, g on h, and so on. This means that the states

that have been generated are basically correlated with all of the other states that were

generated before. This is a problem, since we want to measure just the states in the

ensemble and we do not want them to be correlated with each other. Therefore, there

is a fundamental error in the calculation of expectation values which we must include in

our considerations. Autocorrelation time of a set of values of a sample can be determined

using the autocorrelation function [19]:

C(t) =

∫
dτ (x(τ)− 〈x〉) (x(τ + t)− 〈x〉) =

∫
dτ
(
x(τ)x(τ + t)− 〈x〉2

)
. (3.14)

This function measures how the value of a continuous function at time t is correlated

with the value of the same function at time τ . It is expected to drop exponentially with

respect to time:

C(t) ∼ e−t/τ . (3.15)

Two states are said to be uncorrelated (or rather, correlated as little as to produce a small

error and which one can sample) when t = 2τ . Notice that C(0) is just the standard
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deviation of the data set, so one can normalize the time by dividing it by the standard

deviation to get C(0) = 1. It means that when one computes the C(t) curve and finds the

value of t at which C(t) = e−
1
2 , one determines the autocorrelation time τ . It is normal to

make measurements at smaller times than the autocorrelation time, since we usually don’t

know the autocorrelation time before we start the simulation. Once the measurements

are taken, the time can be measured and the relevant values can be sampled. If the values

taken are correlated, then the error increases, but if the values are not correlated, then

less measurements are taken and in this way, the error increases again.

In practice, drawing autocorrelation time functions usually takes N2 amount of time,

where N is the time taken to process one data element. This happens since the discreet

formula for (3.14) is

C(t) =
1

N − t

N−t∑
τ=0

x(τ)x(τ + t)− 1

N − t

2 N−t∑
τ=0

x(τ)
N−t∑
τ=0

x(τ + t), (3.16)

which is ∼ N2, since one has to do (N − t) sums of N elements. A drawback of this

method is also that the errors due to this summation method add up quite fast. In reality,

though, it is better if one determines the autocorrelation time that is larger than the real

one - this produces a bigger error due to a bigger factor in the error, but the values are

not correlated, and that is usually the bigger factor.

Since it takes roughly N2 amount of time to measure the autocorrelation time for

each data set (of whose it could be many), in practice it is quicker and less messier to

use another method to make this measurement. One could notice that it is possible to
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perform a Fourier transform on the integral (3.14):

C(t) =

∫
dτ (x(τ)− 〈x〉) (x(τ + t)− 〈x〉) =

∫
dτx̃(τ)x̃(τ + t)

=

∫
dw′

∫
dw

∫
dτx̃(w)x̃(w′)e−iw

′τe−iw(τ+t)

=

∫
dw′

∫
dwx̃(w)x̃(w′)δ(w′ + w)e−iw

′t =

∫
dwx̃(w)x̃(−w)eiwt

=

∫
dw|x(t)− 〈x〉|2eiwt. (3.17)

Autocorrelation time function is the Fourier transform of the square of the modulus of

the data set less its average. Usually (at least in C++) there are large precision number

libraries that also include the Fast Fourier Transform algorithms which can be utilized to

do computations such as this one. This is relevant, since, compared to the computation

time of the function (3.14), the mentioned algorithms only take about N lnN amount

time. In the case of N being a large number, this is a significant increase in the speed of

the calculation of autocorrelation time. In principle, one can take a data set, perform a

Fourier transform on it, set the first element to zero, since it is just the average (we want

to subtract the average, take the modulus squared of the output, and then perform an

inverse Fourier transform on the resulting data set. This is going to result to a symmetric

result, but if the autocorrelation time is less than a half of the length of the data set, it

can be measured in the same way as with (3.14), i.e., t = 2τ when C(t) = e−
1
2 .

4 Simulation

Once the grounds for the sine-Gordon quantum field theory and Monte Carlo simulations

are set, it is time to write the code to simulate the theory to measure the mass of

the sine-Gordon kink. In a sense, we are lucky that quantum field theories so easily

correspond to thermodynamical systems. Without this ”duality”, it would be impossible

to do numerical calculations and one could only resort to perturbation theory, which is

not exact, sometimes so much, that it is effectively nonsense. Then there is an issue of
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renormalizability, which is not always possible due to the internal terms of the Lagrangian

that defines the theory. If the properties of the quanta cannot be obtained like this, it

doesn’t mean that they don’t exist or are unphysical. Numerical calculations give a way

to reveal the phenomena of quantum field theories and predict those that perturbation

theory cannot solve exactly or approximately.

The program consists of two big pieces: the first one - ”simulation.cpp” - simulates

the theory and measures the required values, and the second one - ”mass.cpp” - measures

the expectation values themselves and outputs the mass which is computed using the

naive derivative method and the finite derivative method, given the data output from the

first program. Two methods of integrating the mass provide a good way to determine if

the results are correct.

4.1 Application of theory

The aim of this thesis is to measure the quantum-mechanical mass of the soliton of the

sine-Gordon theory. The theory can be simulated using the formulae developed in the

previous two sections. Once the field has been put on the lattice, it is possible to measure

the mass using (2.30) and (2.30). To measure the mass, one has to generate the field, or

if the same simulation is being done the second time, it is possible to load the field from

the last simulation. This saves equilibration time, even though it is not as time-expensive

as the whole simulation.

As discussed above, Euclidean action corresponds to the negative Hamiltonian of the

thermodynamical system corresponding to the quantum field theory being simulated. In

turn, equations that are used in the Monte Carlo simulation that were discussed in the

previous sections use H = SE and β = T . Note that T here is not temperature. It is the

lattice length in the time direction, which corresponds to the inverse temperature in the

thermodynamical system [18].

The next thing is to do the actual Monte Carlo simulation. In simulation.cpp this is

realized in the function ”metropolis”. This function is also used to perform checkerboard
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updates (which are going to be explained shortly), equilibrate the system and check

whether it was already done so, thermalize between adjacent measuring points of the

parameter, write out the estimators for the expectation values and their errors into files

(that later get accessed by mass.cpp) and draw the current field (so the simulation can

be watched live - if one wants to extremely save computation time, he should rather not

include this). It is a big function that does everything and gets called when the main

function loads the settings (these include the lattice length, spacing, highest value of α,

beta, step size, the number of measurements, and so on) and generates or loads the field.

”Metropolis” starts with a loop that is used to do checkerboard style updates of the

field. The reason for such updating process is that one does not want to recalculate the

derivatives that are in the discretized action (using (2.24) and (2.21))

SE[φtx] =
∑
tx

[
1

2

(
φ(t+1)x − φtx

)2
+

1

2

(
φt(x+1) − φtx

)2
+
αa2

β2
(1− cos βφtx)

]
(4.1)

twice while doing only one sweep of updates. This is because the updating process should

be as smooth as possible to not to interrupt with the correct Metropolis state generation.

The actual Metropolis is realized in the next step. This function has the value for the

current action as an input. That is, the main function passes the value of the action of

the generated field, which is computed using ”get action”, to function ”metropolis”, that

updates the field and computes the updated action. This step is done in the function

”update”. The difference between these two action calculation functions is that the first

one takes (4.1) and does the sum. This is a long and boring process, which can be

avoided, given that the old action is already known. ”Update” is more intelligent than

”get action”, since it notices that if one updates the field value φij, then the terms in the

action that change are just the neighbouring derivatives and the potential term. So what

it does is it subtracts the old neighbouring derivatives and the potential term, and adds
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the new ones to get the new action:

SE[φtx]updated = SE[φtx]−
1

2

(
φ(i+1)j − φij

)2 − 1

2

(
φi(j+1) − φij + δxL

2π∆Q

β

)2

−1

2

(
φij − φ(i−1)j

)2 − 1

2

(
φij − φ(i(j−1) + δx1

2π∆Q

β

)2

+
1

2

(
φ̃(i+1)j − φ̃ij

)2

+
1

2

(
φ̃i(j+1) − φ̃ij + δxL

2π∆Q

β

)2

+
1

2

(
φ̃ij − φ̃(i−1)j

)2

+
1

2

(
φ̃ij − φ̃(i(j−1) + δx1

2π∆Q

β

)2

+
αa2

β2

(
cos βφij − cos βφ̃ij

)
, (4.2)

where δxt is the Kronecker delta function, ∆Q is the topological charge (2.6) difference

between two sectors that are being simulated and φ̃ij marks the new updated field value

at ij against the usual old field value. This is a much faster function, since it only needs

to process five terms in the action, whereas ”get action” has to sum every one of L2

potential terms and the corresponding 4L2 derivative terms. In addition, the action has

to be recalculated at the end of every change of ∆α when calculating the estimators for

the mass, since the action changes due to the change in the potential when α changes.

For this, unfortunately, one must resort to the more time-consuming method, since there

is no previous action which could be used by the faster function.

In the Metropolis algorithm one has to compare the new and old actions. In it’s heart

there is the acceptance ratio. Metropolis updates the field using the functions described

above, gets the new action, and then compares it to the old one. If the action is lower,

then it is accepted with no conditions. But if the newly generated action is larger than

the old one, it gets accepted randomly with the probability

P = eT (SE [φtx]−SE [φtx]upd.). (4.3)

The randomness gets realized by using a random number generator for C/C++ ”ranlxd”

by Martin Luescher. Note how if the updated action is much higher than the old one,
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P is very small and the new field has a very low chance of being accepted. In contrast,

if the updated action is only slightly larger than the previous one, then the exponential

is also large, and the chance of acceptance is much higher. This allows for a ”walk”

around the lowest state, but not too far away. In fact, the acceptance ratio of a new state

corresponds to its Boltzmann weight.

Action calculation functions also use the periodic boundary conditions in the t direc-

tion, and twisted boundary conditions in the x direction. This makes the field effectively

periodic and infinite, as discussed in section (2.3). Twisting the boundary conditions to

make the algorithm generate kink states using Metropolis is not that straightforward.

In this case one has to calculate the comparing action differently. Note that condition

(2.26) only applies to the derivatives, not the cosine potential term, since it is the field

difference between two adjacent lattice cells. In fact, the twist only applies if the updated

cell is φt1 or φtL, since ”update” has to recalculate all four derivatives around the point.

To make the algorithm generate one-kink states, one has to set ∆Q to ±1, as opposed

to just the flat periodic case, where ∆Q = 0. When the twisted action is calculated, it

is checked against the previous action. The same apply - reject method is applied as for

the periodic case, but if the state is accepted, then the action that is accepted has to be

recalculated without the twist. The anti-periodic action is just used for the acceptance

ratio shift, so Metropolis generates the kink state.

In order to make mass calculations, one has to run the simulation for both the periodic

and twisted cases. The next steps in the function are bits that determine if the system has

equilibrated or thermalized. This is done by letting the simulation run without changing

anything for some time, which is determined by the experimenter before the simulation

starts. Once the system has equilibrated, ”metropolis” calculates the estimators for the

naive method, (2.30) and the finite differences method (2.32).

The latter method can be expanded and error propagation can be more or less con-

trolled. The program is written in such a way that the simulation takes a value of α

and does a calculation of the expectation values for the mass over a certain number of
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sweeps on the lattice. Once the calculations with the value are done, α is slightly in-

cremented, thermalization for the system starts, and once it is finished, calculations for

the expectation values for other value of α start, and so on. Equation (2.32) provides a

way to reduce the statistical error by increasing the number of increments taken between

the first and last values of α. Since the mass difference depends on the difference of the

partition function as a function of the parameter α, one could notice that [15, 14, 13]

〈
exp

(
(α2 − α1)a2

β2

∑
tx

(cos βφ− 1)

)〉
1

= −

〈
exp

(
(α1 − α2)a2

β2

∑
tx

(cos βφ− 1)

)〉
2

.

(4.4)

That is, the change in the expectation value as the change in α measured at α1 is minus

the change in the expectation value as the negative change in α measured at α2. This

means that the change in mass can be measured in two directions. The two values can

be then averaged to give a more precise measurement. The errors then also depend on

the difference of those two measured values. If one now defines

f1 = − 1

T
ln

〈
exp

(
(α2 − α1)a2

β2

∑
tx

(cos βφ− 1)

)〉
1

(4.5)

and

f2 =
1

T
ln

〈
exp

(
(α1 − α2)a2

β2

∑
tx

(cos βφ− 1)

)〉
2

, (4.6)

the change in kink mass can be written as

Mkink(α2)−Mkink(α1) =
1

2

(
f tw1 + f tw2 − f

p
1 − f

p
2

)
. (4.7)

The function measures the estimators for the exponentials in f1,2 and outputs them

into a file which can then be processed by the other program ”mass.cpp”. ”Metropolis”

breaks the perpetual loop calculations and outputs the settings file which contains the

information fo the calculations once all of the values for every increment of α are calculated

and output into separate files.
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”Mass.cpp” is a program that measures the mass from the files that are output by

”simulation.cpp”. It’s first task is to load the settings that come with all the data the first

program produces. The main function has to call the ”expectation” functions for the finite

differences and the naive methods to get the expectation value and error increments which

it can then integrate. These functions compute expectation values from their estimators

in the data files. ”Simulation.cpp” is written in such a way as to take measurements once

a sweep, so ”mass.cpp” has to process an experimenter’s defined amount of files with a

certain amount of data entries in them.

The expectation functions also use the correlator method (section (3.7)) to compute

autocorrelation times of the data sets, which they then use to adjust the error they

return. In general, for bigger lattice sizes the autocorrelation time is not that big, since the

measurements are taken once a sweep, which is 4098 for L = 64. A Fast Fourier Transform

library is used to perform the Fourier transforms in order to deduce the autocorrelation

times for the data sets. For the finite difference method the program uses the ”MPFR”

high precision library. This is needed, because sometimes, especially for low values of α,

the numbers in (4.4) are very high, since the kink is wide and doesn’t it in the lattice, and

the L2 sum gives numbers that are too high for the usual C++ data types to handle, and

the program thinks that they are infinite, which does not provide a lot of information.

Once the calculations are done, the results are output in a format which is good for

depicting the mass curves in gnuplot.

4.2 Error Analysis

Autocorrelation time is used to either choose the estimators for the expectation values

once every τ , or choose every estimator value, but include τ in the error calculation. The

data for errors is also measured in ”simulation.cpp”. Those measurements are being done

parallelly to the mass estimator measurements and are being output into the same files,

so that then ”mass.cpp” could analyze everything at once. The error for every value of
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(2.30), since it it is a sum of two expectation values, is [19]

∆Mnaive =

√(
σ2
τ

N

)
1

+
(
σ2
τ

N

)
2

+
α(∆α)4

180
max
ξ∈[0,α]

|M4
kink(ξ)|, (4.8)

where the last term is due to the Simpson’s method of integration, σ is the usual standard

deviation, and N is the number of measurements. The error for (4.7) can be computed

in a different way [15, 14, 13]. Since it is a logarithm, the error is

∆Mf.d. =

√
1

2T

(
∆f 2

1, tw + ∆f 2
2, tw + ∆f 2

1,p + ∆f 2
2, p + (f1, p − f2,p)2 + (f1, tw − f2, tw)2

)
.

(4.9)

The last two terms result for the difference (4.5). The errors for f are

∆f =
∆
〈

exp
(

∆αa2

β2

∑
tx(cos βφ− 1)

)〉
〈

exp
(

∆αa2

β2

∑
tx(cos βφ− 1)

)〉 , (4.10)

since it is a logarithm, and where ∆α is not an error, but rather the corresponding

difference of the parameter in the action. The error increments can then be summed up

for every value to get the total error.

5 Results and their discussion

A number of simulations were performed for various values of β to compute the quantum

kink mass dependence on α. At least 501 increments of α were computed for the graphs

and for each increment ∆α at least 100 measurements were taken. These numbers were

enough to reduce the errors to considerable values. The measurements were done on

lattices of size 162 and 642 from α = [0, 3] for purely numerical calculation (although

the results in this case are still inaccurate due to effects discussed shortly). The time

taken to equilibrate the system before running the simulations, after testing, was set to

10000 sweeps and between every change of α it was set to 250 sweeps again by testing.
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Figure 1: Narrow Sine-Gordon kink with β =
√

8π and α = 25.117 on a lattice L = 64.

Rejection rate of the Metropolis algorithm was controlled dynamically by increasing or

decreasing the field update size in order to keep it around 40%.

Lattice spacing a was set to 0.8. The reason for that is due to the effect that at large

α kinks are very narrow. This means that the lattice can be not discreet enough in order

for the kink to be fully ”seen”, as depicted in (fig. 1). High α effectively turns the kink

into α =∞ on the lattice and the mass increments that one gets in (2.32) and (2.30) by

incrementing the parameter limits to 0 as the parameter increases. We then witness a

saturation of the measured mass and the measured and analytical masses start to diverge.

The fact that the continuum limit is unreachable therefore means that the mass of the

quantum kink cannot be computed for every value of α correctly. This can be more or

less avoided, however, and for a convenient a = 0.8 the mass can still be measured quite

accurately for up to about α = 2. This discussion, however, does not set the lower bound

for a and if one decreases it, then the ”lattice is too small” effect (fig. 2) kicks in, as

described in section (2.3). For small α the kinks are too wide for the lattice they are on,

and they don’t fit in. Equation (2.28) ceases to work here, as the free energy on that lattice

is no longer the full free energy of the kink. The same happens for a change in the action.
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Figure 2: Wide Sine-Gordon kink with β = 1 and α = 0.013 on a lattice L = 64.

This discrepancy introduces a large offset in the calculation of mass of the kink and at the

beginning of the trend mass measurement cannot be interpreted as a good measurement.

Since the mass is measured by integrating every value, this effect introduces a constant

difference between the analytically and numerically measured masses throughout every

α. This can also be avoided by increasing the size of the lattice and decreasing the

number of increments of α, so that the measurement at α = ∆α is good, and the number

of increments is large enough for the error to be not too large. Increasing lattice size,

however, increases calculation times exponentially and is inconvenient. Another way to

avoid this problem of small α is to start the integration at another point than zero. α = 0

is a free scalar field theory and topological defects are impossible there, since there is no

potential. We know that the mass of the kink is zero in that limit and that’s why we

start the integration from there. For results that are not obtained purely numerically one

could rely on the analytical expression of mass (2.10) and start the integration from a

point that is not 0, say, 0.2, in order to avoid the wide kink problem, although this would

not be possible for a theory where the analytic expression of the parameter that is being

measured is not known.
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Actually, there is another limit. The original Coleman’s paper [3] explains that for

β2 > 8π the theory has no lower bound for energy and that the kink mass falls to zero.

It would be nice to test this idea, but there is another problem, the high β problem. In

this limit, the relative kink mass changes, since of the term α/β2 in the potential (2.2),

although only slightly, since only the first term in the expansion (2.3) does not depend

on β. In particular, β =
√

8π gives rise to a small lattice effect. For this reason, it is

really tricky to compute the zero kink mass limit.

With a = 0.8 we make a series of measurements for β ∈ [0.2, 1] on a 162 lattice and also

make the same series of measurements on 642 starting at α = 0 and make comparisons

with the corresponding analytical expressions.

The 162 measurements were quite surprising, since the results were actually quite

accurate, even if the field at a point of time is expressed over only 16 points. As we can

see in figures (8 - 12), the trends for the results agree up to α = 1, after which point they

start to diverge from the trends analytical expressions. The error for the naive calculation

is large, and it actually gets larger if one increases the number of measurements, while the

error for the finite difference method is small and gets smaller with increase of number

of measurements, as discussed in section (4.2). Despite that, and the flawed integration

due to the wide kink effect, the two results agree nicely throughout the plots.

The 642 measurements take longer, but produce more accurate results by reducing

both small kink calculation discrepancies and finite lattice size effect. The results start

to diverge at α = 1. The slight increase of values with respect to the analytical result in

the interval α ∈ [0, 2] is due to a finite number of increments ∆α and can be abolished by

performing longer computations. As we can see, the point at which the two lines start to

diverge increases with the increase of β, which is expected, since β changes the relative

kink mass and keeps the kink wider, so it can be properly measured for slightly longer

intervals of α.

The following is a collection of obtained results for various β on a L = 64 and 16.
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Figure 3: Sine-Gordon kink mass measured at β = 0.2 on a lattice L = 64.
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Figure 4: Sine-Gordon kink mass measured at β = 0.4 on a lattice L = 64.
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Figure 5: Sine-Gordon kink mass measured at β = 0.6 on a lattice L = 64.
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Figure 6: Sine-Gordon kink mass measured at β = 0.8 on a lattice L = 64.
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Figure 7: Sine-Gordon kink mass measured at β = 1 on a lattice L = 64.
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Figure 8: Sine-Gordon kink mass measured at β = 0.2 on a lattice L = 16.
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Figure 9: Sine-Gordon kink mass measured at β = 0.4 on a lattice L = 16.
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Figure 10: Sine-Gordon kink mass measured at β = 0.6 on a lattice L = 16.
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Figure 11: Sine-Gordon kink mass measured at β = 0.8 on a lattice L = 16.
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Figure 12: Sine-Gordon kink mass measured at β = 1 on a lattice L = 16.
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Figure 13: Sine-Gordon kink mass measured at β =
√

(8π) and α ∈ [25, 28] on a lattice
L = 64, where the integration was started at the analytical Mkink = 0.

An attempt at measuring the zero kink mass limit is worth mentioning as well. Since

β =
√

(8π) is about 25, we try starting the computation at α = 25 to be as close as

possible to β2, and use the analytical expression, which is 0, to start the integration from,

so we can at least see the trend. Unfortunately, for high β, the interpretable α region

increases only very slightly slightly, even if we set β2 = α, for the reasons discussed earlier.

Also, the results should not agree due to the fact that the analytical mass (2.10) is given

up to the order β2, in other words - the weak coupling approximation fails. The graph

of that measurement is given in (fig. 13), and cannot be interpreted as a good result.

6 Conclusion

It should be emphasized that the analytical result for quantum sine-Gordon kink mass

was confirmed numerically. The differences between the two results were understood

and explained carefully enough to understand which bits can be interpreted as good

results, and which ones as bad. Although there were not many types of simulations
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performed (and not much, other than the mass trend, expected), the main technique for

non-perturbative calculations was developed and used successfully. Application of the

Metropolis algorithm was understood and performed well. One of the most important

things, I think, is that the programs written can be further developed to include more or

different measurements and used to simulate other theories as well.

The mass of a sine-Gordon kink, in principle, can also be measured by using the

correlation function measurements and then performing a spectral expansion with con-

junction to determining that only the first term contributes to the mass of the kink. The

correlation functions could then be fitted to find the mass values. This method could also

be applied to the written programs quite easily and it would be encouraging to compare

the obtained results.
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A Simulation.cpp

This is the code that was written in C++ to perform the simulations.

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MONTE CARLO SIMULATION OF THE SINE−GORDON QUANTUM FIELD THEORY

AUTHOR: LINAS BITKEVICIUS
IMPERIAL COLLEGE LONDON
DEPARTMENT OF THEORETICAL PHYSICS

S e t t i n g s can be changed in t he ” S e t t i n g s ” f i l e . The format i s as f o l l o w s :

[ l a t t i c e s i z e ]
[ a ]
[ b e t a ]
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[ s t e p s i z e ] ( t h e formula i s ( random [ 0 ; 1 ) − 0 . 5 ) / s t e p s i z e )
[ number o f measurements per v a l u e (N) ]
[ e q u i l i b r i um /(L∗L) ] ( b e f o r e t a k i n g measurements − e q u i l i b r i a t e t h e sys tem )
[ l a s t a l p h a ]
[ number o f v a l u e s to be measured ] ( must be odd number f o r simpson i n t e g r a t i o n to work w e l l in mass .

cpp )
[ t h e rma l i z a t i o n /(L∗L) ] ( be tween eve ry measurement )
[ c l a s s i c a l ? ] = 1 i s c l a s s i c a l , 0 i s quantum

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
#include <iostream>
#include <cmath>
#include <fstream>
#include <c s td io>
#include <c s t r i ng>
#include ” ranlxd . h”

using namespace std ;

void montecarlo (double ∗ f i e l d , double ac t i on ) ;
double g e t a c t i o n (double ∗ f i e l d ) ;
double update (double ∗ f i e l d , double act ion , int x , double ∗naujas , double M) ;

double PI = 3 .141592 ;

// f i e l d + l a t t i c e
double ∗ f i e l d ;
int L = 64 ;
// a c t i on params
double a = 0 . 8 ;
double s t a r t i n g p o i n t = 0 ;
double alpha = s t a r t i n g p o i n t ;
double beta = 1 ;
// j u s t t h e u sua l c o n s t a t n t here
double con = a∗a /( beta∗beta ) ;
// increment
double de l t a a lpha = 0 . 0 1 ;
// h i g h e s t v a l u e o f a l pha

double l a s t a l ph a = 1 ;
double i nc ;

double s tep = 0 . 5 ; // u s u a l l y 0 .5

//make N measurements w i th one d e l t a a l pha va l u e and then change to ano ther d e l t a a l pha ( i f
s amp l e s i z e = L∗L∗N)

int N = 100;
long int s amp l e s i z e = L∗L∗N; //USUALLY L∗L∗N

// i f T = t h e rma l i s a t i o n , then we can con t inue w i th l a t t i c e w r i t i n g
int th e rma l i s a t i on = L∗L ;
int T = 0 ;

//number o f update sweeps to reach t he q u i l i b r i um USUALLY 10000
long int equ i l i b r ium = L∗L∗10000;
long int E = 0 ;

// m u l t i p l i e r s in f r o n t o f PI/ b e t a in t h e boundary d e r i v a t i v e s c o n t r i b u t i n g to t h e a c t i on . 0 −
un tw i s t e d . Any o t h e r − t w i s t e d B.C ’ s

// pe r i od o f t h e t h eo r y : M1 = M2 = +−2
double M1 = 0 ;
double M2 = 0 ;

// r e j e c t i o n r a t e c a l c u l a t i o n
double t o t a l = 0 ;
double r e j e c t e d = 0 ;

bool c l a s s i c a l ;
double untw i s t ed ac t i on ;
double Mcl = 0 ;

// c o n s t a n t l y ou t pu t s t h e f i e l d
ofstream o u t f i e l d ;
// e x p e c t a t i o n va l u e s t reams . I don ’ t c l o s e them , s i n c e I want to c o n s t a n t l y update t h e f i l e .
ofstream phout ; // h i g h e r one out
ofstream phsqout ; // lower one out
ofstream nout ; // na i ve exp . v a l u e s out
// l a t t i c e l o a d i n g stream
i f s t r e am f i n ;
// s e t t i n g s stream
i f s t r e am s e t i n ;
o fstream setout ;
// c l a s s i c a l mass stream
ofstream massout ;

int main ( )
{

int point = 0 ;
double z ; //dumps the x and t v a r i a b l e s from the r e s u l t s f i l e

// ////////////////SETTINGS///////////////////
cout << ”Loading s e t t i n g s . . . ” << endl ;
s e t i n . open ( ” Se t t i ng s ” ) ;
s e t i n >> L >> a >> beta >> s tep >> N >> equ i l i b r ium >> l a s t a l ph a >> de l t a a lpha >> th e rma l i s a t i on

>> c l a s s i c a l ;
s e t i n . c l o s e ( ) ;
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cout << ” La t t i c e s i z e i s = ” << L << ” ; a = ” << a << endl ;
cout << ”beta = ” << beta << endl ;
cout << ”N = ” << N << endl ;
cout << ” h ighe s t alpha = ” << l a s t a l ph a << endl ;
cout << ”Number o f va lues that w i l l be wr i t t en = ” << de l t a a lpha << ” ; de l ta a lpha , or increment

s i z e i s = ” << ( l a s t a l ph a − alpha ) /( de l t a a lpha − 1) << endl ;
cout << ” step = ” << s tep << endl ;
cout << ” the rma l i s a t i on = ” << th e rma l i s a t i on << ”∗” << L << ”∗” << L << endl ;
cout << ” samp l e s i z e = ” << N << ”∗” << L << ”∗” << L << endl ;
cout << ” equ i l i b r ium = ” << equ i l i b r ium << ”∗” << L << ”∗” << L << endl ;
t h e rma l i s a t i on ∗= L∗L ;
inc = de l t a a lpha ;
d e l t a a lpha = ( l a s t a l ph a − alpha ) /( de l t a a lpha − 1) ;
s amp l e s i z e = L∗L∗N;
equ i l i b r ium ∗= L∗L ;
con = a∗a /( beta∗beta ) ;
cout << ”Enter the tw i s t parameter . +−2 f o r twi s ted boundary cond i t i ons , 0 f o r p e r i od i c . ” ;
c in >> M1;
M2 = M1;
i f (M1 != 0 && c l a s s i c a l == true )
{

massout . open ( ” r e s u l t s /CMASS” ) ;
}

// ////////////////////////////////////////////

// l oad th e l a t t i c e or g ene ra t e a random f i e l d
f i e l d = new double [ L∗L ] ;
f i n . open ( ” usua l l y here i s the f i l e name” ) ;
i f ( ! f i n . f a i l ( ) )
{

cout << ” La t t i c e loaded s u c c e s f u l l y ! ” << endl ;
for ( int i = 0 ; i < L ; i++)
{

for ( int j = 0 ; j < L ; j++)
{

// w r i t e f i e l d to f i l e
f i n >> z >> z >> ∗( f i e l d + point ) ;
po int++;

}
}

f i n . c l o s e ( ) ;
}

else
{

cout << ”Loading the l a t t i c e f a i l e d , genera t ing a new random l a t t i c e . ” << endl ;
ranlxd ( f i e l d , L∗L) ;
for ( int i = 0 ; i < (L∗L) ; i++)
{

∗( f i e l d + i ) −= 0 . 5 ;
∗( f i e l d + i ) = 2∗PI∗( i%L) /( beta ∗(L−1) ) − PI/beta ;
/∗ i f ( i%L < L/4)

f i e l d [ i ] = 0 ;
e l s e i f ( i%L > 3∗L/4)

f i e l d [ i ] = 0 ;
e l s e
f i e l d [ i ] = 2∗PI/ b e t a ; ∗/
i f ( i%L < L/2)

f i e l d [ i ] = 0 ;
else
f i e l d [ i ] = 2∗PI/beta ;

}
}

// run montecar lo
montecarlo ( f i e l d , g e t a c t i on ( f i e l d ) ) ;
return 0 ;

}

// does checke r boa rd and comparison
void montecarlo (double ∗ f i e l d , double s t a r t i n g a c t i o n )
{

//monte c a r l o v a r i a b l e s
int point = 0 ;
double ac t i on ;
double updated act ion ;
int wr i t t en = 0 ;
double ∗random ;
random = new double ;
double ∗naujas ;
naujas = new double ;

// e x p e c t a t i o n va l u e measurement v a r i a b l e s
double evplus = 0 ; // con s t an t minus sum o f c o s i n e s
double evminus = 0 ;
double nevsq = 0 ; // e x p e c t a t i o n v a l u e s o f s qua r e s
double evsq = 0 ;
char fnameplus [ 5 0 ] ; // the whole f i l e name
char fnameminus [ 5 0 ] ;
char fnamenaive [ 5 0 ] ;
int b lab la ; // ho l d s t h e v a l u e o f s p r i n t f

// s t a r t f u n c t i o n
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//−−−−−−−−−−−−−−s e t up th e f i l e name and streams−−−−−−−−−−−−−−−−−−
i f (M1 != 0 && M2 != 0)
{

b lab la = s p r i n t f ( fnameplus , ” r e s u l t s / t u %f ” , alpha ) ;
b l ab la = s p r i n t f ( fnameminus , ” r e s u l t s / t d %f ” , alpha ) ;
b l ab la = s p r i n t f ( fnamenaive , ” r e s u l t s / t n %f ” , alpha ) ;

}
else
{

b lab la = s p r i n t f ( fnameplus , ” r e s u l t s /p u %f ” , alpha ) ;
b l ab la = s p r i n t f ( fnameminus , ” r e s u l t s /p d %f ” , alpha ) ;
b l ab la = s p r i n t f ( fnamenaive , ” r e s u l t s /p n %f ” , alpha ) ;

}
phout . open ( fnameplus ) ; // w r i t e s out e v p l u s
nout . open ( fnamenaive ) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−main f o r l oop o f t h e monte c a r l o a l gor i t hm−−−−−−−−−−−−−−−−−−−−−−−
ac t i on = s t a r t i n g a c t i o n ;
for ( int x = 0 ; x < L∗L ; x = x + 2)
{

ranlxd ( random , 1) ;
updated act ion = update ( f i e l d , act ion , x , naujas , M1) ;
i f ( updated act ion <= act ion )
{
∗( f i e l d + x) = ∗naujas ;
ac t i on = untw i s t ed ac t i on ;
t o t a l++;

}
else i f (∗ random < exp (L∗( ac t i on − updated act ion ) ) && c l a s s i c a l == fa l se )
{
∗( f i e l d + x) = ∗naujas ;
ac t i on = untw i s t ed ac t i on ;
t o t a l++;

}
else
{

t o t a l++;
r e j e c t e d++;

}

//−−−−−−−−−−−−−−−−−−−−−−−e x p e c t a t i o n va l u e computat ion and wr i t i n g−−−−−−−−−−−−−−−−−−−−−

// e q u i l i b r i a t i o n o f t h e system
i f (E < equ i l i b r ium )
{

E++;
i f (E%(L∗L∗100) == 0)
{

cout << ” Equ i l i b r i a t i n g f i e l d . ” << 100∗E/ equ i l i b r ium << ”% done” << endl ;

//MECHANISM TO WRITE THE FIELD TO A FILE SO IT CAN BE VIEWED
i f (M1 == 0)
{

o u t f i e l d . open ( ” resp ” ) ;
}

else
{

o u t f i e l d . open ( ” restw ” ) ;
}

for ( int i = 0 ; i < L ; i++)
{

for ( int j = 0 ; j < L ; j++)
{

o u t f i e l d << i << ” ” << j << ” ” << ∗( f i e l d + point ) << endl ;
po int++;

}
}

point = 0 ;
o u t f i e l d . c l o s e ( ) ;

}
i f (E == equ i l i b r ium )
{

cout << ” Sta r t i ng expec ta t i on value computation . ” << endl ;
}

}

// implements t h e rma l i s a t i o n t ime
i f (T == the rma l i s a t i on && E == equ i l i b r ium )
{

wr i t t en++;
}

else i f (T != the rma l i s a t i on )
{

T++;
}

// eve ry f u l l l a t t i c e run compute t h e v a l u e in t h e
i f ( x == L∗L − 2 && E == equ i l i b r ium && T == the rma l i s a t i on )

// i f (E == e q u i l i b r i um && T == t h e rma l i s a t i o n )
{

for ( int i = 0 ; i < L∗L ; i++)
{

evplus += cos ( beta ∗ f i e l d [ i ] ) ;
evminus += cos ( beta ∗ f i e l d [ i ] ) ;
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nevsq += pow( cos ( beta ∗ f i e l d [ i ] ) , 2) ;
evsq += pow( de l t a a lpha ∗(1/( beta∗beta ) )∗a∗( cos ( beta ∗ f i e l d [ i ] ) − 1) , 2) ;

}
nout << evplus /(L∗L) << ” ” << nevsq /(L∗L) << endl ;
i f ( alpha != l a s t a l ph a )
{

phout << de l t a a lpha ∗a∗( evplus − L∗L) /( beta∗beta ) << ” ” << evsq << endl ;
}

i f ( alpha != 0)
{

phsqout << de l t a a lpha ∗a ∗ ( (L∗L) − evminus ) /( beta∗beta ) << ” ” << evsq << endl ;
}

evplus = 0 ;
evminus = 0 ;
nevsq = 0 ;
evsq = 0 ;

}
// end e x p e c t a t i o n va l u e computat ion

// f i e l d f i l e w r i t i n g
i f ( wr i t t en == static cast<int>( s amp l e s i z e ) )
{

//MECHANISM TO WRITE THE FIELD TO A FILE SO IT CAN BE VIEWED
i f (M1 == 0)
{

o u t f i e l d . open ( ” resp ” ) ;
}

else
{

o u t f i e l d . open ( ” restw” ) ;
}

for ( int i = 0 ; i < L ; i++)
{

for ( int j = 0 ; j < L ; j++)
{

o u t f i e l d << i << ” ” << j << ” ” << ∗( f i e l d + point ) << endl ;
po int++;

}
}
o u t f i e l d . c l o s e ( ) ;

i f (E == equ i l i b r ium )
{

// c l o s e phout stream , change a lpha , change fname , open new phout stream
phout . c l o s e ( ) ;
phsqout . c l o s e ( ) ;
nout . c l o s e ( ) ;

// automat ic s t e p s i z e ad jus tment . Want r e j e c t i o n r a t e to be e x a c t l y 40%
i f ( r e j e c t e d / t o t a l < 0 .395)
{

s tep = step − 0 . 0 5 ;
}

i f ( r e j e c t e d / t o t a l > 0 .405)
{

s tep = step + 0 . 0 5 ;
}

// w r i t e out t h e c l a s s i c a l mass
i f (M1 != 0 && c l a s s i c a l == true )
{

massout << alpha << ” ” << Mcl << endl ;
Mcl += act i on /T;

}

cout << 100∗( alpha − s t a r t i n g p o i n t ) /( l a s t a l ph a + de l t a a lpha − s t a r t i n g p o i n t ) << ”%
done . Computed alpha ” << alpha << ” . Re j ec t i on ra t e i s ” << r e j e c t e d ∗100/ t o t a l << ”
%, step i s ” << s tep << ” . . . ” << endl ;

// check i f program has to end
i f ( alpha > l a s t a l pha −0.0001 && alpha < l a s t a l ph a + 0.0001)
{

s e tout . open ( ” r e s u l t s / Se t t i ng s ” ) ;
s e tout << L << endl ;
s e tout << a << endl ;
s e tout << beta << endl ;
s e tout << N << endl ;
s e tout << l a s t a l ph a << endl ;
s e tout << i nc << endl ;
s e tout . c l o s e ( ) ;
cout << ”Computation f i n i s h e d . Ex i t ing program now . ” << endl ;
e x i t (1 ) ;

}
alpha += de l t a a lpha ;
i f (M1 != 0 && M2 != 0)
{

b lab la = s p r i n t f ( fnameplus , ” r e s u l t s / t u %f ” , alpha ) ;
b l ab la = s p r i n t f ( fnameminus , ” r e s u l t s / t d %f ” , alpha ) ;
b l ab la = s p r i n t f ( fnamenaive , ” r e s u l t s / t n %f ” , alpha ) ;

}
else
{

b lab la = s p r i n t f ( fnameplus , ” r e s u l t s /p u %f ” , alpha ) ;
b l ab la = s p r i n t f ( fnameminus , ” r e s u l t s /p d %f ” , alpha ) ;
b l ab la = s p r i n t f ( fnamenaive , ” r e s u l t s /p n %f ” , alpha ) ;
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}
i f ( alpha != l a s t a l ph a && T == the rma l i s a t i on )
{

phout . open ( fnameplus ) ;
}

i f (T == the rma l i s a t i on )
{

phsqout . open ( fnameminus ) ;
nout . open ( fnamenaive ) ;

}
}

wr i t t en = 0 ;
T = 0 ;
r e j e c t e d = 0 ;
t o t a l = 0 ;
po int = 0 ;
ac t i on = ge t a c t i on ( f i e l d ) ;

}

// ///////////////////////////////////////////////////////
// f o r even l a t t i c e s / imp lementa t ion o f checke r boa rd update
i f (L%2 == 0 && x!= L∗L − 1 && x != L∗L − 2)
{

// i f x i s b e f o r e t h e l a s t one in t h e row , push i t by one
i f ( x%L == L − 2)
{

x++;
}

// e l s e i f i t i s t h e l a s t one in t h e row , push i t back
else i f ( x%L == L − 1)
{

x−−;
}

}
// i n f i n i t e f o r mechanism
i f ( x == (L∗L − 2) )
{

x = −2;
}

i f ( x == (L∗L − 1) )
{

x = −1;
}

}
}

// upda t e s t h e a c t i on and r e t u rn s t h e updated a c t i on and a l s o changes t h e new f i e l d v a l u e
double update (double ∗ f i e l d , double act ion , int x , double ∗naujas , double M)
{

double xdl ;
double xdr ;
double tdd ;
double tdu ;

double xd l ze ro ;
double xdrzero ;

// g ene ra t e t h e new va l u e o f t h e f i e l d a t x
ranlxd ( naujas , 1) ;
∗naujas = (∗ naujas − 0 . 5 ) / step + ∗( f i e l d + x) ;

// x d e r i v a t i v e s
// p o i n t s on the l e f t o f t h e l a t t i c e
i f ( x%L == 0)
{

xdl = pow((∗ naujas − ∗( f i e l d + x − 1 + L) + M∗PI/beta ) ,2) − pow( (∗ ( f i e l d + x) − ∗( f i e l d + x − 1
+ L)+ M∗PI/beta ) ,2) ;

xdr = pow( (∗ ( f i e l d + x + 1) − ∗naujas ) ,2 ) − pow( ( f i e l d [ x+1] − ∗( f i e l d + x) ) ,2) ;
xd l z e ro = pow((∗ naujas − ∗( f i e l d + x − 1 + L) ) ,2) − pow( (∗ ( f i e l d + x) − ∗( f i e l d + x − 1 + L) )

,2) ;
xdrzero = pow( (∗ ( f i e l d + x + 1) − ∗naujas ) ,2 ) − pow( ( f i e l d [ x+1] − ∗( f i e l d + x) ) ,2) ;

}
// p o i n t s on the r i g h t
else i f ( ( x − L + 1)%L == 0)
{

xdr = pow( (∗ ( f i e l d + x + 1 − L) − ∗naujas + M∗PI/beta ) ,2 ) − pow( (∗ ( f i e l d + x + 1 − L) − ∗( f i e l d
+ x) + M∗PI/beta ) ,2) ;

xdl = pow((∗ naujas − ∗( f i e l d + x − 1) ) ,2 ) − pow( (∗ ( f i e l d + x) − ∗( f i e l d + x − 1) ) ,2 ) ;
xdrzero = pow( (∗ ( f i e l d + x + 1 − L) − ∗naujas ) ,2 ) − pow( (∗ ( f i e l d + x + 1 − L) − ∗( f i e l d + x) )

,2) ;
xd l z e ro = pow((∗ naujas − ∗( f i e l d + x − 1) ) ,2 ) − pow( (∗ ( f i e l d + x) − ∗( f i e l d + x − 1) ) ,2 ) ;

}
else
{

xdl = pow((∗ naujas − ∗( f i e l d + x − 1) ) ,2 ) − pow( (∗ ( f i e l d + x) − ∗( f i e l d + x − 1) ) ,2 ) ;
xdr = pow( (∗ ( f i e l d + x + 1) − ∗naujas ) ,2 ) − pow( (∗ ( f i e l d + x + 1) − ∗( f i e l d + x) ) ,2) ;
xd l z e ro = pow((∗ naujas − ∗( f i e l d + x − 1) ) ,2 ) − pow( (∗ ( f i e l d + x) − ∗( f i e l d + x − 1) ) ,2 ) ;
xdrzero = pow( (∗ ( f i e l d + x + 1) − ∗naujas ) ,2 ) − pow( (∗ ( f i e l d + x + 1) − ∗( f i e l d + x) ) ,2) ;

}

// t d e r i v a t i v e s
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// p o i n t s a t t h e bottom
i f ( x >= L∗(L − 1) )
{

tdu = pow((∗ naujas − ∗( f i e l d + x − L) ) ,2) − pow( (∗ ( f i e l d + x) − ∗( f i e l d + x − L) ) ,2) ;
tdd = pow( (∗ ( f i e l d + x − L∗(L − 1) ) − ∗naujas ) ,2 ) − pow( (∗ ( f i e l d + x − L∗(L − 1) ) − ∗( f i e l d + x

) ) ,2) ;
}

// p o i n t s on top
else i f ( x < L)
{

tdu = pow((∗ naujas − ∗( f i e l d + x + L∗(L − 1) ) ) ,2 ) − pow( (∗ ( f i e l d + x) − ∗( f i e l d + x + L∗(L − 1)
) ) ,2 ) ;

tdd = pow( (∗ ( f i e l d + x + L) − ∗naujas ) ,2 ) − pow( (∗ ( f i e l d + x + L) − ∗( f i e l d + x) ) ,2) ;
}

else
{

tdu = pow((∗ naujas − ∗( f i e l d + x − L) ) ,2) − pow( (∗ ( f i e l d + x) − ∗( f i e l d + x − L) ) ,2) ;
tdd = pow( (∗ ( f i e l d + x + L) − ∗naujas ) ,2 ) − pow( (∗ ( f i e l d + x + L) − ∗( f i e l d + x) ) ,2) ;

}
untw i s t ed ac t i on = ( ac t i on + 0 .5∗ ( xd l ze ro + xdrzero + tdu + tdd ) + ( alpha∗a∗a /( beta∗beta ) ) ∗( cos ( beta

∗ ∗( f i e l d + x) ) − cos ( beta ∗ ∗naujas ) ) ) ;
return ( ac t i on + 0 .5∗ ( xdl + xdr + tdu + tdd ) + ( alpha∗a∗a /( beta∗beta ) ) ∗( cos ( beta∗ ∗( f i e l d + x) ) −

cos ( beta ∗ ∗naujas ) ) ) ;
}

// r e t u rn s t h e a c t i on f o r a g i v en f i e l d
double g e t a c t i o n (double ∗ f i e l d )
{

double td = 0 ;
double xd = 0 ;
double V = 0 ;

for ( int x = 0 ; x < L∗L ; x++)
{

// x d e r i v a t i v e s
// p o i n t s on the r i g h t
i f ( ( x − L + 1)%L == 0)
{

xd += pow( (∗ ( f i e l d + x + 1 − L) − ∗( f i e l d + x) ) , 2) ;
}

else
{

xd += pow( (∗ ( f i e l d + x + 1) − ∗( f i e l d + x) ) , 2) ;
}

// t d e r i v a t i v e s
// p o i n t s a t t h e bottom
i f ( x >= L∗(L − 1) )
{

td += pow( (∗ ( f i e l d + x − L∗(L − 1) ) − ∗( f i e l d + x) ) , 2) ;
}

else
{

td += pow( (∗ ( f i e l d + x + L) − ∗( f i e l d + x) ) , 2) ;
}

// p o t e n t i a l
V += cos ( beta∗ ∗( f i e l d + x) ) ;

}
return 0 .5∗ ( td + xd) − ( alpha∗a∗a /( beta∗beta ) ) ∗(V−L∗L) ;

}

B Mass.cpp

/∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MASS COMPUTATION FOR THE SINE−GORDON QUANTUM FIELD THEORY KINK

AUTHOR: LINAS BITKEVICIUS
IMPERIAL COLLEGE LONDON
DEPARTMENT OF THEORETICAL PHYSICS

This program works w i th t h e r e s u l t s t h a t are ou tpu t by s imu l a t i o n . cpp .
I t computes t h e mass o f t h e s ine−Gordon k ink .

S e t t i n g s f i l e i s ” r e s u l t s / S e t t i n g s ” . I t g e t s updated a f t e r running s imu l a t i o n . cpp . The format i s as
f o l l o w s :

[ L a t t i c e s i z e ]
[ a ]
[ b e t a ]
[ number o f measurements per v a l u e (N) ]
[ l a s t a l pha ]
[# o f v a l u e s ]

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

#include <iostream>
#include <fstream>
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#include <c s td io>
#include <cmath>
#include <mpfr . h>
#include <c s td l i b>
#include <f f tw3 . h>

using namespace std ;

int au t o c o r r e l a t i o n ( ) ;
double expec ta t i on ( char ∗ fname ) ;
double na iv e expec ta t i on (char ∗ fname ) ;
// doub l e mass ( doub l e e x p e c t a t i o n ) ;

double a = 1 ;
double beta = 1 ;
double s t a r t i n g p o i n t = 0 ;
double alpha = s t a r t i n g p o i n t ;
double l a s t a l ph a ;
int increments ;
double de l t a a lpha ;
double T = 64 ;
double N;
double dump ;
double e r r o r = 0 ; // the t o t a l e r r o r

//mpfr v a r i a b l e s //

mpfr t mnum;
mpfr t mresult ;
mpfr t mexpon ;
mpfr t mvalue ;
mpfr t mavesq ;
mpfr t mave ;
mpfr t mhold ;
mpfr t mN;
mpfr t merror ;
mpfr t mtime ;
mpfr t mconst ;

//−−−−−−−−−−−−−−//

// FFT v a r i a b l e s //

double ∗ input ;
f f tw complex ∗output ;
f f tw p l an p lan r2c ;
f f tw p l an p lan c2 r ;
int padding = 0 ; //USE THIS ONLY FOR IN−PLACE TRANSFORMS?

//−−−−−−−−−−−−−−−//

int main ( )
{

//mpfr v a r i a b l e s i n i t and s e t //
mpf r i n i t (mnum) ;
mp f r i n i t ( mresult ) ;
mp f r i n i t s e t d (mexpon , 0 . 0 , GMPRNDZ) ;
mp f r i n i t (mvalue ) ;
mp f r i n i t s e t d (mavesq , 0 . 0 , GMPRNDZ) ;
mp f r i n i t (mave) ;
mp f r i n i t s e t d (mhold , 0 . 0 , GMPRNDZ) ;
mp f r i n i t (mN) ;
mp f r i n i t s e t d (merror , 0 . 0 , GMPRNDZ) ;
mp f r i n i t (mtime ) ;
mp f r i n i t s e t d (mconst , 1 . 0 , GMPRNDZ) ;

//−−−−−−−−−−−−−−−−−−−−−−−−−−−//

// f i l e names i n i t //
char twi s ted2 [ 5 0 ] ;
char pe r i od i c 2 [ 5 0 ] ;
char twi s ted1 [ 5 0 ] ;
char pe r i od i c 1 [ 5 0 ] ;
char tw i s t edna ive [ 5 0 ] ;
char pe r i od i cna i v e [ 5 0 ] ;
char nmassname [ 5 0 ] ;
char fmassname [ 5 0 ] ;
//−−−−−−−−−−−−−−−//

// o t h e r //
double tn ; // used in na i ve
double pn ; //−−
int bla ; // ho l d e r f o r s p r i n t f
double M = 0; // fmass
double nM = 0 ; //nmass
double ner ror1 = 0 ; // a l l t h e e r r o r v a r i a b l e s
double ner ror2 = 0 ;
double n t o t a l e r r o r = 0 ;
double s impsonerror = 0 ;
double f e r r o rp1 = 0 ;
double f e r r o rp2 = 0 ;
double f e r r o r t 1 = 0 ;
double f e r r o r t 2 = 0 ;
double f t o t a l e r r o r = 0 ;
double mu l t i p l i e r ; // simpson mu l t i p l i e r
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double ftw2 ; // components o f fmass c a l c u l a t i o n
double ftw1 ;
double fp2 ;
double fp1 ; //−−
bool even = fa l se ; // simpson on ly even
//−−−−−//

// s treams //
ofstream fout ;
o fstream nout ;
i f s t r e am s e t i n ;
s e t i n . open ( ” r e s u l t s / Se t t i ng s ” ) ;
//−−−−−−−//

// l oad s e t t i n g s from ” r e s u l t s / S e t t i n g s ”//
cout << ”Loading r e s u l t s / Se t t i ng s . ” << endl ;
s e t i n >> T >> a >> beta >> N >> l a s t a l ph a >> increments ;
s e t i n . c l o s e ( ) ;
cout << ” La t t i c e s i z e = ” << T << endl ;
cout << ”a = ” << a << endl ;
cout << ”beta = ” << beta << endl ;
cout << ”Number o f measurements per value (N) = ” << N << endl ;
cout << ”Last value o f alpha = ” << l a s t a l ph a << endl ;
cout << ”Number o f va lues = ” << increments << endl ;
mpf r se t d (mN, N, GMPRNDZ) ;
bla = s p r i n t f ( nmassname , ”mas s r e su l t s /NMASS L%d a%d b%f n%d” , static cast<int>(T) , static cast<int>(

l a s t a l ph a ) , beta , increments ) ;
b la = s p r i n t f ( fmassname , ”mas s r e su l t s /FMASS L%d a%d b%f n%d” , static cast<int>(T) , static cast<int>(

l a s t a l ph a ) , beta , increments ) ;
f out . open ( fmassname ) ;
nout . open (nmassname ) ;

// s e t s t a r t i n g v a l u e s o f masses ( i f needed ) [SET TO ZERO BY DEFAULT]
M = 8∗ sq r t ( s t a r t i n g p o i n t ) /( beta∗beta ) − sq r t ( s t a r t i n g p o i n t ) /3 .141592 ;
nM = 8∗ sq r t ( s t a r t i n g p o i n t ) /( beta∗beta ) − sq r t ( s t a r t i n g p o i n t ) /3 .141592 ;

d e l t a a lpha = ( l a s t a l ph a − alpha ) /( static cast<double>( increments ) − 1) ;

// i n i t i a l i z e FFT array s //
input = (double∗) f f tw ma l l o c ( s izeof (double )∗ static cast<int>(N) + padding ) ;
output = ( f f tw complex ∗) f f tw ma l l o c ( s izeof ( f f tw complex )∗ static cast<int>(N) + padding ) ;
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

//FINITE DIFFERENCE METHOD//
cout << ” Sta r t i ng the computation o f FMASS. ” << endl ;
for (double i = alpha ; i <= la s t a l ph a + 0 . 0001 ; i = i + de l t a a lpha )
{

bla = s p r i n t f ( twisted1 , ” r e s u l t s / t u %f ” , i − de l t a a lpha ) ;
b la = s p r i n t f ( pe r i od i c1 , ” r e s u l t s /p u %f ” , i − de l t a a lpha ) ;
b la = s p r i n t f ( twisted2 , ” r e s u l t s / t d %f ” , i ) ;
b la = s p r i n t f ( pe r i od i c2 , ” r e s u l t s /p d %f ” , i ) ;
cout << ”FMASS ” << ( ( i − alpha ) /( l a s t a l ph a − alpha ) ) ∗100 << ”% done” << endl ;
i f ( i == alpha )
{

M += 0;
f t o t a l e r r o r += 0 ;

}
else i f ( i == l a s t a l ph a )
{

ftw2 = expecta t i on ( twis ted2 ) ;
f e r r o r t 2 = e r r o r ;
fp2 = expecta t i on ( p e r i od i c 2 ) ;
f e r r o rp2 = e r r o r ;
M += ( ftw2 − fp2 ) ;
f t o t a l e r r o r = (1/T) ∗0.25∗ sq r t (pow( f e r ro rp2 , 2) + pow( f e r r o r t 2 , 2) + 4∗T∗pow( f t o t a l e r r o r , 2) )

; // c i a
}

else
{

ftw2 = expecta t i on ( twis ted2 ) ;
f e r r o r t 2 = e r r o r ; // c i a
fp2 = expecta t i on ( p e r i od i c 2 ) ;
f e r r o rp2 = e r r o r ; // c i a
ftw1 = −expec ta t i on ( twis ted1 ) ;
f e r r o r t 1 = e r r o r ; // c i a
fp1 = −expec ta t i on ( p e r i od i c 1 ) ;
f e r r o rp1 = e r r o r ; // c i a
M += 0.5∗ ( ftw2 + ftw1 − fp2 − fp1 ) ;
f t o t a l e r r o r = (1/T) ∗0.25∗ sq r t (pow( f e r ro rp2 , 2) + pow( f e r r o r t 2 , 2) + pow( f e r r o r t 1 , 2) + pow(

f e r ro rp1 , 2) + pow( ( ftw1 − ftw2 ) ,2) + pow( ( fp1 − fp2 ) ,2 ) + 4∗T∗pow( f t o t a l e r r o r , 2) ) ;
// c i a

}
f out << i << ” ” << M << ” ” << f t o t a l e r r o r << endl ;

}
cout << ”FMASS computation f i n i s h e d . ” << endl ;
//−−−−−−−−−−−−−−−−−−−−−−−−//

//NAIVE EXPECTATION VALUE CALCULATION//
cout << ” Sta r t i ng the computation o f NMASS. ” << endl ;
for (double k = alpha ; k <= la s t a l ph a + 0 . 0001 ; k = k + de l t a a lpha )
{

//do simpson ’ s i n t e g r a t i o n
cout << ”NMASS ” << 100∗(k − alpha ) /( l a s t a l ph a − alpha ) << ”% done” << endl ;
i f ( even == true )
{
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even = fa l se ;
}

else
{

even = true ;
}

bla = s p r i n t f ( twis tedna ive , ” r e s u l t s / t n %f ” , k ) ;
b la = s p r i n t f ( pe r i od i cna ive , ” r e s u l t s /p n %f ” , k ) ;
tn = na ive expec ta t i on ( tw i s t edna ive ) ;
ne r ro r1 = e r r o r ;
pn = na ive expec ta t i on ( p e r i od i cna i v e ) ;
ne r ro r2 = e r r o r ;
i f ( k == alpha | | k == l a s t a l ph a ) // f i r s t one or l a s t one
{

mu l t i p l i e r = 1 ;
}

else i f ( even == true ) // even
{

mu l t i p l i e r = 2 ;
}

else i f ( even == fa l se ) // odd
{

mu l t i p l i e r = 4 ;
}

nM += mu l t i p l i e r ∗(T∗ de l t a a lpha ∗a /( beta∗beta ∗3) ) ∗(pn − tn ) ;
// de termine t h e e r r o r due to Simpson ’ s i n t e g r a t i o n
i f ( s impsonerror < (pow( de l ta a lpha , 4) /180)∗k∗pow(nM, 4) )
{

s impsonerror = (pow( de l ta a lpha , 4) /180)∗k∗pow(nM, 4) ;
}

n t o t a l e r r o r = sq r t (pow( nerror1 , 2) + pow( nerror2 , 2) + pow( s impsonerror , 2) + pow( n to t a l e r r o r ,
2) ) ;

i f ( even == true ) // w r i t e out on l y t h e even terms ( Simpson ’ s r u l e on l y works f o r even )
{

nout << k << ” ” << nM << ” ” << n t o t a l e r r o r << endl ;
}

}
cout << ”NMASS computation f i n i s h e d . ” << endl ;
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−//

// c l e a r mpfr v a r i a b l e s //
mpf r c l ea r (mnum) ;
mp f r c l ea r ( mresult ) ;
mp f r c l ea r (mexpon) ;
mp f r c l ea r (mvalue ) ;
mp f r c l ea r (mave) ;
mp f r c l ea r (mavesq ) ;
mp f r c l ea r (mhold ) ;
mp f r c l ea r (mN) ;
mp f r c l ea r ( merror ) ;
mp f r c l ea r (mtime ) ;
mp f r c l ea r (mconst ) ;

// c l e a r FFT v a r i a b l e s //
cout << ”CLEARING FFT VARIABLES. ” << endl ;
f f tw de s t r o y p l an ( p lan r2c ) ;
f f tw de s t r o y p l an ( p lan c2 r ) ;
f f t w f r e e ( input ) ;
f f t w f r e e ( output ) ;
//−−−−−−−−−−−−−−−−−−−//
cout << ”DONE! ” << endl ;
cout << ”FILE NAMES ARE: ” << endl ;
cout << fmassname << endl ;
cout << nmassname << endl ;
return 0 ;

}

double expec ta t i on ( char ∗ fname )
{

i f s t r e am f i n ;
double value = 0 ;
double expec ta t i on = 0 ; // w i l l a c t as a ho l d e r
double average = 0 ;
double esq ;

double number = 0 ;
int count = 0 ;
int time = 1 ;

// inpu t f o r FFT
f i n . open ( fname ) ;
i f ( f i n . f a i l ( ) )
{

cout << ”ERROR LOADING FILE . ” << fname << endl ;
e x i t (1 ) ;

}
while ( count < N)
{

f i n >> input [ count ] >> dump ;
average += input [ count ] ;
count++;

}
f i n . c l o s e ( ) ; // c l o s e s t h e stream
average /= N;
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//FFT

p lan r2c = f f tw p l a n d f t r 2 c 1 d ( static cast<int>(N) , input , output , FFTW ESTIMATE) ;
f f tw exe cu t e ( p l an r2c ) ;

// norma l i z e + mod squared

for ( int i = 0 ; i < N; i++)
{

output [ i ] [ 0 ] /= sq r t (N) ;
output [ i ] [ 1 ] /= sq r t (N) ;
output [ i ] [ 0 ] = sq r t (pow( output [ i ] [ 0 ] , 2) + pow( output [ i ] [ 1 ] , 2) ) ;
output [ i ] [ 1 ] = 0 ;

}

//IFFT and norma l i z e

p lan c2 r = f f tw p l a n d f t c 2 r 1 d ( static cast<int>(N) , output , input , FFTW ESTIMATE) ;
f f tw exe cu t e ( p l an c2 r ) ;
for ( int i = 0 ; i < N; i++)
{

input [ i ] /= sq r t (N) ;
}

// f i n d t he a u t o c o r r e l a t i o n t ime
for ( int i = 0 ; i < N; i++)
{

input [ i ] −= average ;
i f ( input [ i ] < 1/exp (1) )
{

time = i ;
}

i f ( i == N)
time = N;

i f ( input [ i ] < 1/exp (1) )
break ;

}
i f ( time == 0)
{

time = 1 ;
}

mpfr se t d (mtime , static cast<double>(time ) , GMPRNDZ) ;

count = 0 ;

// compute t h e a c t u a l e x p e c t a t i o n va l u e
mpfr se t d (mexpon , 0 . 0 , GMPRNDZ) ;
f i n . open ( fname ) ;
i f ( f i n . f a i l ( ) )
{

cout << ”ERROR LOADING FILE . ” << fname << endl ;
e x i t (1 ) ;

}
while ( count < N)
{

f i n >> value >> esq ;
mpf r se t d (mhold , esq , GMPRNDZ) ;
mpf r se t d (mave , ( value /N) , GMPRNDZ) ;
mpfr add (mave , mave , mave , GMPRNDZ) ;
mpfr div (mhold , mhold , mN, GMPRNDZ) ; // g e t t h e average r i g h t here , s i n c e we know N
mpfr add (mavesq , mavesq , mhold , GMPRNDZ) ;

// g e t t h e e x p e c t a t i o n va l u e
mpfr se t d (mvalue , value , GMPRNDZ) ; // reads a va l u e
mpfr exp (mvalue , mvalue , GMPRNDZ) ; // e x p on en t i a t e s i t
mpfr add (mexpon , mexpon , mvalue , GMPRNDZ) ; // adds t h e e x p on en t i a l t o t h e b a s k e t CHECK THIS OUT

! ! ! MIGHT BE ERROR
number++;
count++;

}
f i n . c l o s e ( ) ; // c l o s e s t h e stream
mpfr se t d (mnum, number , GMPRNDZ) ; // con v e r t s number to mnum
mpfr div ( mresult , mexpon , mnum, GMPRNDZ) ; // g e t s t h e average ( e x p e c t a t i o n va l u e )

// g e t t h e e r r o r
mpfr sqr (mave , mave , GMPRNDZ) ;
mpfr sub (mavesq , mavesq , mave , GMPRNDZ) ;
mpfr sub (mave , mN, mconst , GMPRNDZ) ;
mpfr mul (mave , mave , mN, GMPRNDZ) ;
mpfr div (merror , mavesq , mave , GMPRNDZ) ;
mpfr mul (merror , merror , mtime , GMPRNDZ) ;
mpfr sqr t ( merror , merror , GMPRNDZ) ;
mpfr div (merror , merror , mresult , GMPRNDZ) ;

//−−−−

mpfr log ( mresult , mresult , GMPRNDZ) ; // t a k e s t h e l o g o f i t
expec ta t i on = mpfr get d ( mresult , GMPRNDZ) ;

mpf r se t d (mave , 0 . 0 , GMPRNDZ) ;
mpf r se t d (mavesq , 0 . 0 , GMPRNDZ) ;
mpf r se t d (merror , 0 . 0 , GMPRNDZ) ;
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// r e t u rn the average to g e t t h e e x p e c t a t i o n va l u e
return (1/T) ∗( expec ta t i on ) ;

}

double na iv e expec ta t i on (char ∗ fname )
{

i f s t r e am f i n ;
double number = 0 ;
double value = 0 ;
double expec ta t i on = 0 ;
int count = 0 ;
double average = 0 ;
double averageo f sq = 0 ;
double esq ;
int time ;
f i n . open ( fname ) ;
i f ( f i n . f a i l ( ) )
{

cout << ”ERROR LOADING FILE . ” << fname << endl ;
e x i t (1 ) ;

}
while ( count < N)
{

f i n >> input [ count ] >> esq ;
average += input [ count ] ;
ave rageo f sq += esq ;
count++;

}
average /= N;
averageo f sq /= N;
f i n . c l o s e ( ) ;

//do FFT here

p lan r2c = f f tw p l a n d f t r 2 c 1 d ( static cast<int>(N) , input , output , FFTW ESTIMATE) ; // s e t up p lan
f f tw exe cu t e ( p l an r2c ) ; // e x e cu t e t h e p lan
// f o r eve ry argument in t h e output , g e t t h e modulus squared and put i t back in t h e same array
// no rma l i z a t i on and mod squared
for ( int i = 0 ; i < N; i++)
{

output [ i ] [ 0 ] /= sq r t (N) ;
output [ i ] [ 1 ] /= sq r t (N) ;
output [ i ] [ 0 ] = sq r t (pow( output [ i ] [ 0 ] , 2) + pow( output [ i ] [ 1 ] , 2) ) ;
output [ i ] [ 1 ] = 0 ;

}

//IFFT NOW

p lan c2 r = f f tw p l a n d f t c 2 r 1 d ( static cast<int>(N) , output , input , FFTW ESTIMATE) ;
f f tw exe cu t e ( p l an c2 r ) ;
// no rma l i z a t i on
for ( int i = 0 ; i < N; i++)
{

input [ i ] /= sq r t (N) ;
}

// f i n d t he a u t o c o r r e l a t i o n t ime
for ( int i = 0 ; i < N; i++)
{

input [ i ] −= average ; // g e t t h e r e a l a u t o c o r r e l a t i o n f un c t i o n
i f ( input [ i ] < 1/exp (1) )
{

time = i ;
}

i f ( input [ i ] < 1/exp (1) )
break ;

i f ( i == N)
time = N;

}
i f ( time == 0)
{

time = 1 ;
}

// compute t h e e r r o r
e r r o r = sq r t ( static cast<double>(time ) ∗( averageo f sq − pow( average , 2) ) /(N∗(N − 1) ) ) ;

count = 0 ;
average = 0 ;

// g e t t h e a c t u a l e x p e c t a t i o n va l u e f o r t h e r e t u rn . I t i s not t h e average , s i n c e we are now t a k i n g
t h e a u t o c o r r e l a t i o n t ime i n t o account

f i n . open ( fname ) ;
i f ( f i n . f a i l ( ) )
{

cout << ”ERROR LOADING FILE . ” << fname << endl ;
e x i t (1 ) ;

}
while ( count < N)
{

f i n >> value >> dump ;
expec ta t i on += value ;
number++;
count++;

}
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f i n . c l o s e ( ) ;
// r e t u rn the average to g e t t h e e x p e c t a t i o n va l u e
return expec ta t i on /number ;

}

int au t o c o r r e l a t i o n ( )
{

return 1 ;
}
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