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Chapter 1

Introduction

1.1 Introduction

At the beginning of the last century a revolution shook physics and led to the
development of quantum mechanics, special relativity and subsequently general
relativity. This last one is widely accepted as the theory of gravity and �ts
all observations so far. However, this theory includes ill-de�ned objects such as
singularities (close to these, energies and distances reach the Planck scale). Such
problems are expected to disappear in the quantized theory. But gravity reveals
itself di¢ cult to quantize. This remains one of the most important challenges
of modern theoretical physics. On the other hand we have quantum mechanics,
a theory with more controversial interpretations, but with even more tested
results and by now also widely accepted.
The combination of both special relativity and quantum physics yields quan-

tum �eld theory (QFT); one of the great scienti�c achievements of the twentieth
century and the key to particle physics� con�rmed predictions. If instead we
consider general relativity we enter the domain of QFT in curved spacetime.
Here many predictions are still waiting for experimental observation such as the
famous Unruh or Hawking radiation[1].
In the early days of quantum physics the phenomenon of entanglement

caught the attention of physicists, either because of its "strangeness"[2] or the
apparent contradiction with other well established �elds of physics, namely the
Einstein-Podolsky-Rosen paradox[3]. Nowadays, quantum entanglement has be-
come one of the most important resources of quantum information. A rapidly
growing �eld in which many e¤orts are being made because of its remarkable ap-
plications. Many of these applications are considered impossible in the classical
world; quantum communication, quantum cryptography, quantum simulation,
to mention just a few. It is only recently that entanglement has been stud-
ied in a relativistic framework [4][5]. And shortly after in a general relativistic
scenario[6][7].
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Aim of the work

The aim of this work is to study how the entanglement is seen by di¤erent ob-
servers in relative motion, for both inertial and non-inertial cases. In the inertial
context we �rst work with one-particle states as in [12][13]. However, we don�t
restrict ourself to initial maximally entangled states; we consider a wide vari-
ety of states by introducing preparation parameters. In the two-particle states
section we extend the work in [14], considering new initial states (entangled in
spin momentum) and studying di¤erent bipartitions (spin-spin and momentum-
momentum), emphasizing the dependence not only on the preparation of the
state but also on the Wigner rotation parameter. Although the "Alice and Bob
work together" scenario has been naturally used in non-inertial cases, to the
knowledge of the author, it has not been examined in the inertial case.
In the non-inertial case we mainly consider prepared single particle states.

Again we work with more general states than in the literature by introducing
preparation parameters. By setting speci�c values of these parameters we re-
cover the results in [7] and [15]. Instead of using the "Alice and Bob work
together" case, used in previous publications, we make Rob (the accelerated ob-
server) work alone. Another new feature in this part is to consider entanglement
between two di¤erent �elds (boson-fermion system). And �nally we look at the
spin-momentum bipartition, not previously studied.

1.2 Structure of the thesis dissertation

This dissertation is divided into two parts:

Part I We start with a short introduction to the concept of entanglement and
some entanglement measures which we will use throughout this work, namely
entanglement entropy for pure states and negativity for mixed states. Next we
go into relativistic quantum mechanics; presenting how a quantum mechani-
cal particle state transforms under a Lorentz transformation and showing the
Wigner rotation of the spin part of the state. Chapter 4 is the core of the �rst
part, there we investigate the e¤ects that the Lorentz transformation has on the
entanglement. To do so, we consider two inertial observers, Alice and Bob. We
make Alice prepare a set of states, both single and two-particle states, with a
given amount of entanglement. Then we ask Bob to compute the entanglement
for several bipartitions. Surprisingly, and as shown in previous literature, we
will �nd that the entanglement of the majority of bipartitions is di¤erent for
Alice and for Bob, i.e. is not Lorentz invariant. We show the dependence of
entanglement for various settings on �. This parameter encodes the momentum
of the particle(s) and the velocity of Bob with respect to Alice.

Part 2 Whereas in Part I we considered only special relativity, in this part
we will work in a general relativistic framework. Therefore, we need to in-
troduce some notion of QFT in curved spacetime. This is done in chapter 5
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where we show the canonical quantization procedure for Minkowski and curved
spacetimes. We then introduce Rob who uses Rindler coordinates, because he is
constantly accelerated, and show how he describes the quantum �eld. Next we
present the Bogoliubov coe¢ cients that relates Alice�s (inertial observer) and
Rob�s modes. After that we have the kernel of this part. Again we make Alice
prepare settings1 with some prescribed entanglement and then ask Rob to mea-
sure it. We observe an entanglement degradation between modes as seen in the
literature. We also show the di¤erent behavior of entanglement for fermionic
and bosonic �elds in a combined system. Finally we look at a bipartition not
yet studied: the spin-momentum bipartition.

1The settings are prepared such that there is no Wigner rotation, in this way we can study
both e¤ects separately.
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Part I

Entanglement and Inertial
observers
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Chapter 2

Quantum Entanglement

In this chapter we will introduce the concept of non-classical correlation, and in
particular of entanglement. Some entanglement measure will be presented for
posterior use in this work. Many other sources can be found for a more detailed
and complete study on entanglement see for example [8].

2.1 De�nition of Entanglement

Quantum Entanglement is an essential quantum characteristic, inherent to all
quantum systems that can be decomposed into two or more subsystems (com-
posite quantum systems). Quantum entanglement give a notion about their
structure, referring to its separability in terms of states of subsystems. In other
words, entanglement measures the individuality of the subsystems, or the sin-
gleness of the quantum system under study.

2.1.1 Pure states

Consider two quantum systems A and B, and the Hilbert spaces associated to
them HA and HB respectively. A general state for system A will be

j'Ai =
X

ai jiAi

analogously for system B,
j�Bi =

X
bj jjBi

where the set fjiiAg and fjjiBg are complete orthonormal basis of HA and HB

respectively.
The Hilbert space of the composite system is the tensor product of the two

Hilbert spaces, HA 
HB such that a general state of the composite system is
given by

j ABi =
X

cij jiAi 
 jjBi
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The state j iAB is entangled if it is not possible to write it as a tensor product
of a state in A and a state in B, i.e.

j ABi 6= j'Ai 
 j�Bi $ cij 6= aibj

Otherwise it is said to be separable.
In terms of the density matrices formalism the state of the system is given

by
�AB = j ABi h AB j

and the subsystem A and B are then described by their respective density ma-
trices

�A = TrB
�
�AB

�
=
X
j

hjB j �AB jjBi

�B = TrA
�
�AB

�
=
X
i

hiAj �AB jiAi

the state is said to be entangled if

�A 6= j'Ai h'Aj , �B 6= j�Bi h�B j

or in other words if the reduced density matrices are in a mixed state, i.e. they
don�t contain all the information of the system, something that �AB does. In
fact, if the reduce density matrices are maximally mixed (equal probability for
all the possible states), the �AB is said to be maximally entangled.
In terms of observables if the state is entangled the measurement performed

on the subsystems are not independent of each others, they are said to be
correlated. The relation for the expectation values of uncorrelated measurement
hOA 
OBi�AB = hOAi�A hOBi�B don�t hold for entangled states.

2.1.2 Mixed states

If from the beginning we have a lack of information about the actual state of
the system and we only posses a statistical distribution of possible states, we
will have to work with mixed states instead of dealing with pure states. In
this case the mixedness of the reduced density matrices does not give conclusive
information about the entanglement of the total system.
A state is said to be entangled, if it is not separable in the following sense

�AB =
X

pi�
A
i 
 �Bi

where pi stands for the probability of the system to be in the state �i = �Ai 
�Bi
and satis�es

P
pi = 1 and pi � 0. That is, the state is entangled if at least one

of all the possible states in which the system can be found is not separable.
For mixed states correlations are in general not purely quantum mechanical.

For example the state

�AB =
1

2
(j"i h"j 
 j#i h#j+ j#i h#j 
 j"i h"j)

is a separable mixed state but measurement will give totally correlated results.
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2.2 Entanglement measures

At present there is no unique measure of entanglement. But all of them are
positive functions of the state, E (�), which satisfy the following axiom:

� Must be maximum for maximally entangled states (Bell states).

� Must be zero for separable states.

� Must be non-zero for all non-separable states.

� Must not grow under LOCC (Local operation + Classical Communication)

2.2.1 Pure states

For pure states there is a natural and well understood measurement of entan-
glement, the entanglement entropy de�ned as the von Neumann entropy of
either of the two reduced density matrices

E (�) = �Tr
�
�A log �A

�
= �Tr

�
�B log �B

�
E (�) = �

X
�i log �i

where �i are the eigenvalues of the reduced density matrix. Log is sometimes
taken in base 2 such that it have an operational interpretation, or in base d, the
dimension of the Hilbert space, so that it is bounded by 1(maximally entangled).
Another measure sometime used is the linear entropy de�ned as E (�) =

1 � Tr
�
�2A
�
which is nothing else than the �rst order approximation of the

entanglement entropy. Tr
�
�2
�
is called the purity of the state and is equal to

one only if the state � is a pure state.

2.2.2 Mixed states

There are many di¤erent entanglement measures for mixed states like the en-
tanglement of formation, the concurrence, entanglement cost, entanglement of
distillation,etc. most of them di¢ cult and complex to compute.
Here we will con�ne ourself to the negativity, a less computational demand-

ing entanglement measure that will be used later on this work. Unfortunately
negativity only accounts for distillable entanglement1 in systems of more than
dimension 2x3 (qubit-qutrit states), like some of ours later, ignoring bound en-
tanglement2 . Although we expect distillable entanglement to be enough to give
qualitative idea of the entanglement behavior, suspicion remains.
Negativity, N , is an entanglement monotone sensitive to distillable entan-

glement and is computed as follow: Starting with a general density matrix3

�AB =
X
i;j;k;l

�ijkl jiAi jjBi hkAj hlB j

1Entanglement that can be made maximum (Bell states) by means of LOCC.
2 entangled state such that no pure entangled state can be obtained by LOCC.
3We make no di¤erence between indices up or down. Neither do we between indices in-

side/outside bra and kets.
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take the partial transpose de�ned as

�pTBAB =
X
i;j;k;l

�ijkl jiAi jlBi hkAj hjB j

compute it�s eigenvalues (�i), and sum together all the negative ones.

NAB =
X
�i<0

�i

negativity is zero for states with no distillable entanglement and its maximum
depends on the dimension of the Hilbert space.

2.3 Mutual Information

Mutual information is a concept generalized from probability theory like the
von Neumann entropy. It gives the amount information that two part of the
system know from each other. It accounts for the correlations, quantum and
classical, between the two variables. For a quantum bipartite system of density
matrix �AB the quantum mutual information is expressed

IAB = SA + SB � SAB

in terms of the Von Neumann entropies

SAB = �Tr
�
�AB log �AB

�
SA = �Tr

�
�A log �A

�
SB = �Tr

�
�B log �B

�
Computing both entanglement and mutual information will give us an idea of
how the information is distributed into quantum and classical. However, lately,
it is being thought that entanglement isn�t the only source of quantum correla-
tion, and quantum discord is attracting more and more attention in quantum
information.
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Chapter 3

Relativistic Quantum
mechanics

With time, group theory has become an essential tool to physics. Nowadays
many concept are understood in terms of group theory. In particular, particles
are considered as representations of the Poincaré group. This chapter is devoted
to the study of the particle states and how they transform under Lorentz trans-
formation. More can be found in relativistic quantum mechanics textbooks like
[9].

3.1 Poincaré Group and its representations

The Poincaré group consist of Lorentz group plus the group of translations. The
Lorentz group is de�ned as

L :=
�
� 2 GL (4;R) ; �T �� = �

	
where � is the Minkowski metric diag (�+++). If we consider in�nitesimal
transformation we obtain the algebra satis�ed by the generators,M�� ,

i [M�� ;M�� ] = ���M�� � ���M�� � ���M�� + ���M��

this together with the commutation relations

i [P�;M��] = ���P� � ���P �

[P�; P � ] = 0

form the Lie algebra of the Poincaré group.
The representation of the Poincaré group on the state vectors of in�nite

(because it�s non-compact) dimensional Hilbert space is unitary (connected Lie
group) and can be written as

j i0 = U (�; a) j i
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To �nd the irreducible representations we use the well-known Casimir oper-
ators

C1 = P 2 = P�P�

C2 = W 2 =W�W�

where W� = 1
2�
����M��P� is the Pauli-Lubanski vector. But those alone don�t

classify completely the unitary, irreducible representations; since sign(p0) is
unchanged by a Lorentz transformation. This translates into 6 distinct classes
of irreps:

Little Group
p2 = m2 > 0; p0 > 0 massive SO (3)
p2 = m2 > 0; p0 < 0 unphysical SO (3)

p2 = 0; p0 > 0 massless ISO (2)
p2 = 0; p0 < 0 unphysical ISO (2)

p� = 0 vacuum SO (3; 1)
p2 < 0 virtual particles SO (3)

(3.1)

For a massive particle the Casimir operators are

C1 = P 2 = m2

C2 = W 2 = m2S2

where S is the spin operator. It is worth noting that since S2 is Lorentz invariant,
statistics is frame independent.

3.1.1 Particle states and their Lorentz transformation

A base for the Hilbert space on which a unitary Poincaré transformation is real-
ized can be constructed with the eigenstates of the complete set of commuting
observables

�
P 2;S2;H;P; Sz

	
, i.e.

���m; s; p0;p; ��	 where the states are la-
beled by their eigenvalues. We can simplify notation due to the invariance of
the Casimir operators and set��m; s; p0;p; �� � jp; �i
such that the basis states are labelled by their four-momentum and the z-
component of the spin (later simply called spin). This correspond to a basis
of plane waves and, thus, transform under translations as

U (I; a) jp; �i = e�ipa jp; �i

For Lorentz transformations it isn�t that straight forward and we need the
Wigner method or method of induced representations. A general Lorentz trans-
formation takes the momentum p� ! ���p

� and therefore U (�) jp; �i must be
a linear combination of all the states with momentum �p, i.e.

U (�) jp; �i =
X
�0

D�0� (�; p) j�p; �0i
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Since U (�) is a representation it respect the group multiplication imposing
conditions on the values of D�0�. Those conditions are satis�ed when we re-
strict D�0� (�; p) to D�0� (W;p) whereW are Lorentz transformations that leave
invariant a chosen standard momentum1(k�).
Consider the Lorentz transformation that takes k� to p� = L�� (p) k

� such
that

jp; �i = U (L (p)) jk; �i

then a Lorentz transformation, �, on jp; �i is

U (�) jp; �i = U (�)U (L (p)) jk; �i
= U (I)U (�)U (L (p)) jk; �i
= U (L (�p))U

�
L�1 (�p)

�
U (�)U (L (p)) jk; �i

= U (L (�p))U
�
L�1 (�p) �L (p)

�
jk; �i

= U (L (�p))U (W (�; p)) jk; �i

where W (�; p) = L�1 (�p) �L (p) leaves the standard momentum k invariant
and therefore only act on the spin degree of freedom of jk; �i. On the other
hand U (L (�p)) by de�nition take k to �p without touching the spin, then

U (�) jp; �i = U (W (�; p)) j�p; �i (3.2)

=
X
�0

D�0� (W (�; p)) j�p; �0i

W (�; p) is an element of the little group. In other words, under a Lorentz
transformation U (�), the momentum label p goes to �p, and the spin transform
under the representation, D�0�, of the little group, W .
For massive particles where the standard momentum is k� = (m; 0; 0; 0) in

its rest frame, the little group is nothing else than the rotation group SU (2)
and

Ds
�0� (W ) = hs; �0j ei�S�n js; �i

So, if we are dealing with massive spin- 12 particles we have the corresponding
spin- 12 representation of SU (2)

D�0� (W ) = I cos
�

2
+ i (~��bn) sin �

2
(3.3)

where � is the Wigner angle and �i are the Pauli matrices. This rotation is a
consequence of the non-closeness of the boost generator algebra, i.e. two boost is
equivalent to a boost and a rotation. That rotation is closely related to Thomas
precession and is called the Wigner rotation.

1This is an underlying consequence of the unmixability of the di¤erent classes 3.1
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Wigner rotation

To get the Wigner angle and the axis of rotation we need to know both L (p)
and � in the previous discussion. Consider for example that the particle has
momentum p in the z axis from Alice reference frame and that Bob is boosted
in the x direction with respect to Alice. In this case we have

L (p) =

0BB@
cosh� 0 0 sinh�
0 1 0 0
0 0 1 0

sinh� 0 0 cosh�

1CCA and � =

0BB@
cosh� sinh� 0 0
sinh� cosh� 0 0
0 0 1 0
0 0 0 1

1CCA
where � is the rapidity of Alice with respect to the rest frame of the particle, and
� the one of Bob w.r.t. Alice. From the commutation of the boost generators
[Ki;Kj ] = �ie�ijkJk we see the axis of rotation will be perpendicular to both
boosts (~n = ~v� ~w), in this case around the -y axis, so that the Wigner rotation
will have the form

W =

0BB@
1 0 0 0
0 cos � 0 sin �
0 0 1 0
0 � sin � 0 cos �

1CCA
Now to get the angle we write

W (�; p) = L�1 (�p) �L (p)) L�1 (�p) = �L (p)W�1 (�; p)

L�1 (�p) =

0BB@
cosh� cosh� sinh� cos �� cosh� sinh� sin � 0 sinh� sin �+cosh� sinh� cos �
cosh� sinh� cosh� cos �� sinh� sinh� sin � 0 cosh� sin �+sinh� sinh� cos �

0 0 1 0
sinh� � cosh� sin � 0 cosh� cos �

1CCA
but since a boost matrix is symmetric we �nd

� cosh� sin � = cosh� sin � + sinh� sinh� cos �

tan � =
sinh� sinh�

cosh�+ cosh�

from here we see � range from 0 � � � �
2 . For more general formulas and various

calculations I refer to [10].
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Chapter 4

Entanglement and Inertial
observers

This chapter is the main one of part I of this work. Here we will study what
happens to entanglement when measured by di¤erent inertial perspectives for
a variety of constructions, including two-particle and single-particle states. In
all the cases the entanglement between two partition of the system will be
computed.

4.1 Single-particle states entanglement

We start �rst with single particle states. A general one-particle state is written
as

j i =
X
�

Z
d� (p) f� (p) jp; �i

where d� (p) = 1
(2�)3

d3p
2Ep

is the Lorentz-invariant measure introduced to normal-
ize the basis states, such thatX

�

Z
d� (p) hp; � jp; �i = 1 and

X
�

Z
d� (p) jf� (p)j2 = 1

One of the �rst study of entanglement in relativistic frame was done precisely
and surprisingly in the context of single particle states by Peres, Scudo and
Terno in [4]. They considered a state with a Gaussian distribution f� (p) and
found that two observers related by a Lorentz boost will not agree on the entropy
of the reduced spin state and therefore will see a di¤erent entanglement between
spin and momentum. This is because the reduced spin and momentum density
matrices don�t transform covariantly.
To simplify calculations we will consider states which are assumed to be

su¢ ciently peaked in momentum so that we can consider a discrete set of mo-
mentums and avoid the computational problems of the continuous.
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Our system consist of a spin- 12 particle that can only take two distinct values
of momentum (p1; p2),such that the most general state we can work with, is

j i = A jp1 "i+B jp1 #i+ C jp2 "i+D jp2 #i

The density matrix � = j i h j of the system is then

� =

0BB@
A2 AB� AC� AD�

BA� B2 BC� BD�

CA� CB� C2 CD�

DA� DB� DC� D2

1CCA
jp1 "i
jp1 #i
jp2 "i
jp2 #i

We will con�ne ourself to the study of the following representative cases

1. A general separable state

j i = (cos� jp1i+ sin� jp2i) (cos � j"i+ sin � j#i) (4.1)

then we have A = cos� cos �, B = cos� sin �, C = sin� cos �, D =
sin� sin �.

2. Here we have a state for which Alice�s spin-momentum entanglement is
parametrized by �

j i = cos � jp1 "i+ sin � jp2 #i (4.2)

such that A = cos �, D = sin �.

4.1.1 Alice studies entanglement

We will consider the only bipartition that can be made for a single particle
state with only two degrees of freedom, namely the spin-momentum bipartition.
To measure the entanglement we use entanglement entropy introduced in 2.2.1.
The momentum reduced density matrix is

�mom =

�
A2 +B2 AC +BD
CA+DB C2 +D2

�
jp1i
jp2i

which has eigenvalues �� = 1
2 (1� l), where l =

q
1� 4 (BC �AD)2. There-

fore the entanglement is given by

E = ��+ log �+ � �� log ��

Considering our two cases:

1. Alice sees a separable state, as expected

E = 0

2. Entanglement is parametrized by �,

E (�) = � cos2 � log
�
cos2 �

�
� sin2 � log

�
sin2 �

�
16



4.1.2 Bob studies entanglement

Bob who�s moving with respect to Alice decide to do the same computations.
But the state he sees is � = j i� h j� where

j i� = U (�; p) j i

The transformation is given by equation 3.2, then

U (�; p) jp1 "i =
X
�

D
(1)
�" jp

0
1�i

U (�; p) jp1 #i =
X
�02

D
(1)
�# jp

0
1�i

U (�; p) jp2 "i =
X
�

D
(2)
�" jp

0
2�i

U (�; p) jp2 #i =
X
�02

D
(2)
�# jp

0
2�i

where p01(2) = �p1(2), and D is given by equation 3.3.
It has been shown that the entanglement is more a¤ected by the Wigner

rotation when spin and momentum are parallel to each other1 . Also it is well
known that the e¤ect of the Wigner rotation are maximum when the boost axis
is perpendicular to the momentum. For this, and without loss of generality,
making the computations simpler we will consider both p1 and p2 in the z axis,
and Bob moving in the x direction as in 3.1.1, obtaining

D(1) =

�
cos �12 sin �12
� sin �12 cos �12

�
, D(2) =

�
cos �22 sin �22
� sin �22 cos �22

�
(4.3)

In general the Wigner angle range only between 0 and �
2 . But since we haven�t

speci�ed the direction of p1, p2 (the axis of rotation will depend whether they
point in the +z or �z direction), this permits us to increase the range of �1;2
to [��

2 ;
�
2 ]. Which is equivalent to allow rotation of � 2 [0;

�
2 ] around �y-axis.

Therefore
� = �1 � �2 2 [��; �]

Explicitly the states observed by Bob are

U (�; p) jp1 "i = cos
�1
2
jp01 "i � sin

�1
2
jp01 #i

U (�; p) jp1 #i = sin
�1
2
jp01 "i+ cos

�1
2
jp01 #i

U (�; p) jp2 "i = cos
�2
2
jp02 "i � sin

�2
2
jp02 #i

U (�; p) jp2 #i = sin
�2
2
jp02 "i+ cos

�2
2
jp02 #i

1 In fact, when spin and momentum are perpendicular the entanglement is not observer
dependent in inertial frames.
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Figure 4.1: Spin-momentum entanglement entropy for preparation (4.1)

That give us the following transformations of the coe¢ cients due to the Lorentz
transformation

A! A cos �12 +B sin
�1
2

B ! �A sin �12 +B cos
�1
2

C ! C cos �22 +D sin
�2
2

D ! �C sin �22 +D cos
�2
2

Repeating Alice�s computation Bob obtain:

1. Entanglement di¤erent from zero (more than Alice)

E = ��+ log �+ � �� log ��

where �� = 1
2 �

1
4

p
3 + cos 4�+ 2 cos� sin2 2�. It is interesting to see

that for Alice separable states, the entanglement seen by Bob is totally in-
dependent of the spin state (�). Moreover the maximum of entanglement
depend on how well is the state distributed in momentum (�), in partic-
ular if the state has only one momentum (i.e. � = 0; n�2 ), entanglement
remains zero. For the equally distributed momentum (� = �

4 ) in the limit
of the two modes moving in opposite direction, and Bob all at the speed
of light (� ! ��) entanglement approach a maximally entangled state
(see �gure 4.1).

2. Bob observes less entanglement than Alice

E = ��+ log �+ � �� log ��

18



Figure 4.2: Spin-momentum entanglement entropy for preparation (4.2)

where �� = 1
2 �

p
2
8

p
6� 2 cos� + cos (�� 4�) + 2 cos 4� + cos (� + 4�).

Here we see the opposite e¤ect; Bob�s entanglement decreases from Alice�s
(�1 = �2 = 0) and tends to zero in the above mentioned limit (see �gure
4.2). Despite the antiresemblance of the behavior it is worth to note
that the increasing rate of entanglement for setting 1 is greater than the
decreasing rate of setting 2 (see �gure 4.3). So we can say that it is easier
to create entanglement by boosting than to destroy it.

4.1.3 Alice and Bob work together

Instead of arguing with each other because of their disagreement, they look for
a way of working together. They decide that Alice will be sensible only to the
part of the state with momentum p1, and Bob to the part with p2. Therefore
only the part associate to Bob will endure a Lorentz transformation getting

A! A
B ! B

,
C ! C cos �22 +D sin

�2
2

D ! �C sin �22 +D cos
�2
2

which is the same as obtained by Bob with �1 = 0. Concluding that this share-
out between Alice and Bob don�t give anything new.

4.1.4 Summary of results

In this section we have seen how entanglement between degrees of freedom of
a particle is not a Lorentz invariant quantity. This comes from the dependence
with the momentum of the spin state seen by Bob. If the state prepared by
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Figure 4.3: Spin-momentum entanglement for Alice prepared maximally entan-
gled state (Red), and non-entangled state (Blue)

Alice has spin-momentum entanglement, Bob will see less entanglement than
Alice. If Alice�s state is not entangled, Bob will see it entangled. Furthermore,
we have seen that entanglement is easier to increment by means of a Lorentz
boost than to lessen; a detail that doesn�t seem to have been noticed in previous
works.

4.2 Two-particle states entanglement

The two-particle Hilbert space is given by H12= H1 
H2 where the states

jp1; �1; p2; �2i = jp1; �1i 
 jp2; �2i

are normalized asX
�1;�2

Z
d� (p1; p2) hp1; �1; p2; �2 jp1; �1; p2; �2i = 1

where d� (p) = 1
(2�)3

d3p
2Ep

is the Lorentz-invariant measure. A general state is

given by2

j i =
X
�1;�2

Z
d� (p1; p2) f�1�2 (p1; p2) jp1; �1; p2; �2i

also normalized as X
�1;�2

Z
d� (p1; p2) jf�1�2 (p1; p2)j

2
= 1

2 If we were considering indistinguishable fermions f�1�2 (p1; p2) would need to be anti-
symmetric, so that it satis�es fermi statistics.
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A study with independent momentum Gaussian g (p) states can be found in
[11] where they consider a Bell state with spread momentum, i.e. f�1�2 (p1; p2) /
��1�2g (p1) g (p2). This example shows how the entanglement is exchanged be-
tween spin and momentum degree of freedom under a Lorentz transformation,
keeping the joint entanglement of the wave function invariant. This is because
the global density matrix transforms covariantly, while the reduced spin and
momentum density matrices don�t. They also state and prove the following
theorem

Theorem 1 The entanglement between the spin and momentum parts of a pure
state wave function, must be non-zero to allow the spin entanglement to increase
under Lorentz transformation.

Again and for the same reason like in the single particle section we consider
only two momenta.
Our system consist of two spin- 12 particles that can only take two distinct

values of momentums (p1; p2 denoted by 1; 2), that we additionally impose to
be di¤erent for each particle. The more general state we can consider for this
system is

j i = A j1 "; 2 "i+B j1 "; 2 #i+ C j1 #; 2 "i+D j1 #; 2 #i (4.4)

+E j2 "; 1 "i+ F j2 "; 1 #i+G j2 #; 1 "i+H j2 #; 1 #i

with A2+B2+C2+D2+E2+F 2+G2+H2 = 1.The density matrix � = j i h j
is then

� =

0BBBBBBBBBBB@

jAj2 AB� AC� AD� AE� AF � AG� AH�

BA� jBj2 BC� BD� BE� BF � BG� BH�

CA� CB� jCj2 CD� CE� CF � CG� CH�

DA� DB� DC� jDj2 DE� DF � DG� DH�

EA� EB� EC� ED� jEj2 EF � EG� EH�

FA� FB� FC� FD� FE� jF j2 FG� FH�

GA� GB� GC� GD� GE� GF � jGj2 GH�

HA� HB� HC� HD� HE� HF � HG� jHj2

1CCCCCCCCCCCA

j1 "; 2 "i
j1 "; 2 #i
j1 #; 2 "i
j1 #; 2 #i
j2 "; 1 "i
j2 "; 1 #i
j2 #; 1 "i
j2 #; 1 #i

(4.5)
In what follows we will consider this as the state seen by Alice. The state

seen by Bob will be the Lorentz transformed of this one. This is our starting
point, from which we will study the di¤erent entanglement settings below:

1. Separable in momentum and spin parts

j i = j momi
�� spin� = (cos� j1; 2i+ sin� j2; 1i) (cos � j"; #i+ sin � j#; "i)

= cos� cos � j1 "; 2 #i+ cos� sin � j1 #; 2 "i
+sin� cos � j2 "; 1 #i+ sin� sin � j2 #; 1 "i (4.6)

comparing with 4.4 we have

B = cos� cos �; F = sin� cos �; C = cos� sin �;G = sin� sin � (4.7)
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with all others equal to zero.

2. Spin-momentum entangled

j i = cos � j1 "; 2 #i+ sin � j2 #; 1 "i (4.8)

such that
B = cos �;G = sin � (4.9)

and all others zero.

Note that only setting 1 with � = 7�
4 is compatible with indistinguishable

fermions. That state is maximally entangled in momentum.

4.2.1 Alice studies entanglement

Several bipartitions of this system can be done allowing us to compute en-
tanglement between di¤erent degrees of freedom. We will look at spin-spin,
momentum-momentum, spin-momentum and particle1-particle2 entanglement.
All of this will be done for Alice and in the next section for Bob�s reference
frames.

Spin-spin entanglement

When computing the spin-spin entanglement we ignore the momentum of the
particles and therefore we have to trace them out of the density matrix, resulting
in the reduced density matrix

�spin =

0BB@
jAj2 + jEj2 AB� + EF � AC� + EG� AD� + EH�

BA� + FE� jBj2 + jF j2 BC� + FG� FH� +BD�

CA� +GE� CB� +GF � jCj2 + jGj2 GH� + CD�

DA� +HE� HF � +DB� HG� +DC� jHj2 + jDj2

1CCA
j"; "i
j"; #i
j#; "i
j#; #i
(4.10)

Setting 1 Inserting the values 4.7 we get

�spin =

0BB@
0 0 0 0
0 cos2 � 1

2 sin 2� 0
0 1

2 sin 2� sin2 � 0
0 0 0 0

1CCA
j"; "i
j"; #i
j#; "i
j#; #i

(4.11)

since the state is spin-momentum separable this density matrix is in a pure
state. For this reason we use entanglement entropy de�ned in 2.2.1.

Tr1
�
�spin

�
=

�
cos2 � 0
0 sin2 �

�
Finally the entanglement entropy is

E
�
�spin

�
= � cos2 � log

�
cos2 �

�
� sin2 � log

�
sin2 �

�
(4.12)
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It doesn�t depend on � as expected since the momentum and spin parts of the
wave function are separable. Moreover maximally entangled states (E

�
�spin

�
=

1) are reached for � = n�4 , which are the well-known Bell states.

Setting 2 This matrix is in general a mixed state (when there is spin-momentum
entanglement), so we use the negativity to compute the entanglement.

�spin =

0BB@
0 0 0 0
0 cos2 � 0 0
0 0 sin2 � 0
0 0 0 0

1CCA
j"; "i
j"; #i
j#; "i
j#; #i

(4.13)

�pTspin = �spin

the partial transpose matrix has no negative eigenvalue, and therefore there is
no spin-spin entanglement for this setting.

Momentum-momentum entanglement

To compute the momentum-momentum entanglement we overlook the spin,
hence tracing over spin we get the reduced density matrix

�mom =

�
jAj2 + jBj2 + jCj2 + jDj2 BF � + CG� +AE� +DH�

FB� +GC� + EA� +HD� jF j2 + jGj2 + jHj2 + jEj2
�
j1; 2i
j2; 1i
(4.14)

Setting 1 For the same reason as for the spin-spin computation we use the
entanglement entropy

�mom =

�
cos2 � 1

2 sin 2�
1
2 sin 2� sin2 �

�
j1; 2i
j2; 1i (4.15)

Tr1 (�mom) =

�
cos2 � 0
0 sin2 �

�
E (�mom) = � cos2 � log

�
cos2 �

�
� sin2 � log

�
sin2 �

�
(4.16)

this result was expected since it is the same kind of state as the spin states
considered above.

Setting 2 Again we use negativity because this matrix is in general a mixed
state (when there is spin-momentum entanglement).

�mom =

�
cos2 � 0
0 sin2 �

�
j1; 2i
j2; 1i (4.17)

�pTmom = �mom

and again no negative eigenvalues, hence no momentum-momentum entangle-
ment is found.
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Spin-momentum entanglement

To compute it we can either use �spin or �mom. For simplicity we use �mom.

Setting 1 States are separable. Even if 4.11 and 4.15 depend on di¤erent
variables they have the same eigenvalues, 0 and 1. So that we �nd the required
result

E (�) = �1 log 1� 0 log 0 = 0

Setting 2 Now we �nd the entanglement parametrized by �:

E (�) = � cos2 � log
�
cos2 �

�
� sin2 � log

�
sin2 �

�
(4.18)

Particle1-particle2 entanglement

Here we don�t ignore any information of the system and hence don�t trace any
information out. We directly compute the entanglement entropy. The reduced
density matrix for particle 1 is:

�1 =

0BB@
jAj2 + jBj2 AC� +BD� 0 0

CA� +DB� jCj2 + jDj2 0 0

0 0 jEj2 + jF j2 EG� + FH�

0 0 GE� +HF � jGj2 + jHj2

1CCA
j1 "i
j1 #i
j2 "i
j2 #i
(4.19)

Setting 1 Inserting the values 4.7 into 4.19 :

�1 =

0BB@
(cos� cos �)

2
0 0 0

0 (cos� sin �)
2

0 0

0 0 (sin� cos �)
2

0

0 0 0 (sin� sin �)
2

1CCA
j1 "i
j1 #i
j2 "i
j2 #i
(4.20)

is already diagonal, thus the entanglement entropy in a simpli�ed form is

E (�) = � cos2 � log
�
cos2 �

�
� sin2 � log

�
sin2 �

�
(4.21)

� cos2 � log
�
cos2 �

�
� sin2 � log

�
sin2 �

�
Which is nothing else than the sum of spin and momentum entanglement, 4.12
and 4.16 , the maximum (E (�) = log 4) is for Bell type states in spin and
momentum (� = � = n�

4 ).

Setting 2 With the values 4.9 we get

�1 =

0BB@
cos2 � 0 0 0
0 0 0 0
0 0 0 0
0 0 0 sin2 �

1CCA
j1 "i
j1 #i
j2 "i
j2 #i
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E (�) = � cos2 � log
�
cos2 �

�
� sin2 � log

�
sin2 �

�
(4.22)

Before going to Bob�s case here is a table summarizing the results of Alice.

Entanglement spin momentum spin-mom. Particle
Setting 1 E (�) E (�) 0 E (�) + E (�)
Setting 2 0 0 E (�) E (�)

4.2.2 Bob studies entanglement

Bob who�s moving with respect to Alice decide to do the same computations.
But the state he sees is � = j i� h j� where

j i� = U (�; p) j i

considering our two settings we need to know how the states j1 "; 2 #i, j1 #; 2 "i,
j2 "; 1 #i and j2 #; 1 "i transform under a Lorentz transformation. This is given
by equation 3.2, then

U (�; p) j1 "; 2 #i =
X
�01;�

0
2

D�01"D�02# j�p1; �
0
1; �p2; �

0
2i

U (�; p) j1 #; 2 "i =
X
�01;�

0
2

D�01#D�02" j�p1; �
0
1; �p2; �

0
2i

U (�; p) j2 "; 1 #i =
X
�01;�

0
2

D�01"D�02# j�p2; �
0
1; �p1; �

0
2i

U (�; p) j2 #; 1 "i =
X
�01;�

0
2

D�01#D�02" j�p2; �
0
1; �p1; �

0
2i

where D are given by equation 3.3. Again, like in the single particle section we
will consider both p1 and p2 in the z axis, and Bob moving in the x direction,
that is

D1 =

�
cos �12 sin �12
� sin �12 cos �12

�
´ , D2 =

�
cos �22 sin �22
� sin �22 cos �22

�
(4.23)

with �1;2 2 [��
2 ;

�
2 ] such that �1 � �2 = � 2 [��; �]. Before writing the states,

let us clarify the notation: the two momentum will still be denoted by 1 and 2,
now standing for �p1 and �p2 respectively. Explicitly the states are

U (�; p) j1 "; 2 #i = a1 j1 "; 2 "i+ a2 j1 "; 2 #i+ a3 j1 #; 2 "i+ a4 j1 #; 2 #i
U (�; p) j1 #; 2 "i = �a4 j1 "; 2 "i+ a3 j1 "; 2 #i+ a2 j1 #; 2 "i � a1 j1 #; 2 #i
U (�; p) j2 "; 1 #i = �a4 j2 "; 1 "i+ a2 j2 "; 1 #i+ a3 j2 #; 1 "i � a1 j2 #; 1 #i
U (�; p) j2 #; 1 "i = a1 j2 "; 1 "i+ a3 j2 "; 1 #i+ a2 j2 #; 1 "i+ a4 j2 #; 1 #i

with

a1 = cos
�1
2
sin

�2
2

, a2 = cos
�1
2
cos

�2
2

a3 = � sin �1
2
sin

�2
2

, a4 = � sin
�1
2
cos

�2
2
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That give us the following transformations of the coe¢ cients due to the Lorentz
transformation

A! Ba1 � Ca4 E ! Ga1 � Fa4
B ! Ba2 + Ca3 F ! Ga3 + Fa2
C ! Ba3 + Ca2 G! Ga2 + Fa3
D ! Ba4 � Ca1 H ! Ga4 � Fa1

Bob is not as lucky as Alice because the entanglement becomes very cum-
bersome and extremely long to compute. Instead he decide to compute it for a
limited but representative set of states seen by Alice:

setting 1.1 �! j i = 1p
2
j1; 2i (j"; #i+ j#; "i) (4.24)

setting 1.2 �! j i = 1p
2
(j1; 2i+ j2; 1i) j"; #i (4.25)

setting 1.3 �! j i = 1

2
(j1; 2i+ j2; 1i) (j"; #i+ j#; "i) (4.26)

setting 2 �! j i = 1p
2
(j1 "; 2 #i+ j2 #; 1 "i) (4.27)

The �rst three are included in setting 1 and the last one in setting 2. Their
entanglement and their coe¢ cient are shown below

State s-s m-m s-m Coe¢ cients
4.24 1 0 0 B = C = 1p

2

4.25 0 1 0 B = F = 1p
2

4.26 1 1 0 B = C = F = G = 1
2

4.27 0 0 1 B = G = 1p
2

remind that our measure of entanglement3 range from 0 to 1.

Spin-spin entanglement

Using 4.10 and inserting the corresponding new values of A-H into it, we get
the following result for the various settings.
Setting 1.1(4.24) is included in the case with � = 0; � for which we get a

pure state with entanglement eq.4.12. The interesting � = �=4 case in which
setting 1.2 (4.25) can be seen is displayed in �gure 4.4 . States prepared by Alice
with no spin-spin entanglement (� = n�=2) are generally not pure but negativity
remains zero, while for � = �=4; 5�=4, the symmetric spin Bell states, purity and
entanglement remains maximum(setting 1.3 correspond to this case). However,
for the antisymmetric spin Bell states, � = 3�=4; 7�=4, entanglement is generally
� dependent (except for � = n�=2) and entanglement can be made zero, not
in the limit � ! �, but when � ! �=2 (see �gure 4.5). But probably the

3Althought this is not true for negativity, we will rescale the maximum to 1, specially when
the maximum correspond to a pure state with an entanglement entropy of 1.
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Figure 4.4: Negativity of the spin-spin bipartition for setting 1 with � = �=4.
Includes setting 1.2 (Blue line) and setting 1.3 (Cyan line).

Figure 4.5: Negativity for an antisymmetric spin Bell state as a function of �.
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Figure 4.6: Mutual information between the two spin partition. Blue line for
setting 1.2 and cyan for setting 1.3

more striking feature is that spin-spin entanglement is invariant for all states
prepared by Alice with � 2 f[0; �=2] ^ [�; 3�=2]g.
For setting 2 (4.27) the state get in general mixed, but negativity remains

zero.
Several cases have an invariant entanglement but we have to distinguish

between those who remain pure and those who don�t. The di¤erence can clearly
be seen computing the mutual information. For example, for (4.24) and (4.26) it
is independent of �1; �2 while for (4.25) and (4.27) we have explicit dependence.
Figure 4.6 is very similar to that of negativity except that for states prepared
non-entangled by Alice, Bob will see an increase in mutual information. This
could be in the form of classical correlations or even other types of quantum
correlation like quantum discord. For setting 2 the opposite occurs, the mutual
information decrease (see �gure 4.7)

Momentum-momentum entanglement

Setting 1 The purity of the resulting state is

Tr
�
�2mom

�
= cos4 �+ sin4 �+

1

8
sin2 �

�
1 + cos� + 2 sin

�

2
sin 2�

�2
when the state is pure the entanglement entropy is the same as Alice�s eq.4.16.
In fact, 4.24 and 4.26�s purity, entanglement and mutual information are inde-
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Figure 4.7: Mutual information for the spin-spin bipartition of setting 2.

Figure 4.8: Negativity for the momentum-momentum bipartition of setting 1
with � = �=4 ,including 1.2 (Blue line) and 1.3 (Cyan line).
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Figure 4.9: Negativity of the momentum-momentum bipartition for setting
2(Red line).

pendent of �1; �2. Negativity gives

Nmom =
1

4

����sin��1 + cos� + 2 sin2 �2 sin 2�
�����

which can be seen in �gure 4.8 for � = �=4; in this case � only change the
maximum of the graph leaving it�s form the same. It is interesting to note that
now the only states that have invariant entanglement are the symmetric Bell
states. The states with � 2 f(0; �=2) ^ (�; 3�=2) n �=4; 5�=4g will indeed have
a �-dependent entanglement. In particular for 4.25 the state is pure for � = 0
in which case entanglement entropy is the same as Alice. For all other values,
negativity is

Nmom = cos2
�

2
Thus, entanglement between the momenta of the particles tends to zero in the
limit of �! ��, while for the antisymmetric Bell states entanglement decrease
to zero for �! ��=2.

Setting 2 Purity is

Tr
�
�2mom

�
= cos4 � + sin4 � +

1

2
sin4

�

2
sin2 2�

considering our state, 4.27, it will be pure in the limit � ! ��, in which case
entanglement is maximum. For non-pure reduced density matrices we get

Nmom =
1

2

����sin2 �2 sin 2�
����
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Figure 4.10: Entanglement entropy for spin-momentum bipartition of setting 1
including 1.2 (Blue line) and 1.3 (Cyan line)

which can be seen in �gure 4.9.
In the momentum-momentum bipartition mutual information behave in con-

cordance with entanglement, unlike the previous studied spin-spin bipartition.

Spin-momentum entanglement

Here we don�t trace any information out and therefore since � is a pure state,
we can use entanglement entropy.

Setting 1 For 4.24 and 4.26 entanglement is invariant. In 4.25, blue line
in �gure 4.10, entanglement goes from zero to the maximum entanglement,1,
reached in the limit �! ��.

EB (�) = ��+ log �+ � �� log ��
where �� = 1

2

�
1� cos2 �2

�
. The form of the graph is independent of �, which

only set the maxima. Again we can see an invariant behavior of the entanglement
for the symmetric Bell states (� = �=4; 5�=4). Their neighborhood is like the
momentum-momentum case, ��dependent. In fact the two �gure are closely
related, if we turn one of them around, they look exactly the same4 .

4We can only compare them qualitatively because we are using two diferent measure of
entanglement.
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Figure 4.11: Entanglement entropy of setting 2 including state 4.27 (Red line)

Setting 2 Entanglement is then

EB (�) = ��+ log �+ � �� log ��

with �� = 1
2

�
1� sin2 �2

�
, plotted as a red line in �gure 4.11:

We �nd again that entanglement is easier increased than degraded, but this
time the di¤erence is even stronger (see �gure 4.12). We expect this e¤ect to
be emphasized for state of more particle.

Particle1-particle2 entanglement

Setting 1 As expected and found in all the previous works the entanglement of
the particle-particle bipartition is the same as Alice�s for all cases of �; �; �1; �2.

Setting 2 Again, Bob agrees with Alice for all values of �; ; �1; �2.

4.2.3 Alice and Bob work together

Alice and Bob exchange their result and after arguing with each other for a while
they decide to redo the computation together. We consider the two particle
distinguishable such that the �rst correspond to Alice and the second to Bob5 .
Therefore Bob�s particle will be Wigner rotated while Alice�s won�t. The state

5 If the particle where indistinguishable another criterion, like momentum, should be taken
in order to separate the state into Alice and Bob.
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Figure 4.12: Spin-momentum entanglement for a two particle state, in a pre-
pared maximally entangled state (Red) and non-entangled case (Blue)

under consideration here is � = j i� h j� where

j i� = U (1)
 U (�; p) j i

considering our two settings we need to know how the states j1 "; 2 #i, j1 #; 2 "i,
j2 "; 1 #i, j2 #; 1 "i transform under a Lorentz transformation. This is given by
equation 3.2, then

U (1)
 U (�; p) j1 "; 2 #i =
X
�02

D�02# jp1 "; �p2; �
0
2i

U (1)
 U (�; p) j1 #; 2 "i =
X
�02

D�02" jp1 #; �p2; �
0
2i

U (1)
 U (�; p) j2 "; 1 #i =
X
�02

D�02" jp2 "; �p1; �
0
2i

U (1)
 U (�; p) j2 #; 1 "i =
X
�02

D�02# jp2 #; �p1; �
0
2i

where D�s are given by 4.23: The �rst thing we note is the appearance of more
than two di¤erent momenta that we will label p1 ! 1, p2 ! 2, �p1 ! 10,
�p2 ! 20. This increase considerably the dimension of our system under study
from (2x2)

2 to (4x2)2, but hopefully most of the entries are cero. The resulting
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Figure 4.13: Negativity for the AB case for the spin-spin bipartition of setting
1, and �xed � = �=4.

states are

U (1)
 U (�; p) j1 "; 2 #i = sin
�2
2
j1 "; 20 "i+ cos �2

2
j1 "; 20 #i

U (1)
 U (�; p) j1 #; 2 "i = cos
�2
2
j1 #; 20 "i � sin �2

2
j1 #; 20 #i

U (1)
 U (�; p) j2 "; 1 #i = sin
�1
2
j2 "; 10 "i+ cos �1

2
j2 "; 10 #i

U (1)
 U (�; p) j2 #; 1 "i = cos
�1
2
j2 #; 10 "i � sin �1

2
j2 #; 10 #i

Our density matrix is like 4.5 but now in the basis

fj1 "; 20 "i ; j1 "; 20 #i ; j1 #; 20 "i ; j1 #; 20 #i ; j2 "; 10 "i ; j2 "; 10 #i ; j2 #; 10 "i ; j2 #; 10 #ig

so that we can use our expressions 4.10, 4.14 and 4.19. Our coe¢ cient be-
come

A! B sin �22 E ! F sin �12
B ! B cos �22 F ! F cos �12
C ! C cos �22 G! G cos �12
D ! �C sin �22 H ! �G sin �12

Spin-spin entanglement

Introducing the new values into the reduced spin density matrix 4.10 we �nd
a similar behavior to the study of Bob alone, but with two important di¤er-
ences. First of all, antisymmetric and symmetric spin Bell states have the same
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Figure 4.14: Negativity in AB case for momentum-momentum bipartition of
setting 1, including setting 1.1 (Blue line) and 1.2/3 (Cyan line)

behavior, and second, entanglement descend to zero in the limit � ! �� (see
�gure 4.13). And in terms of mutual information nothing fancy occurs, i.e. it
decreases always.
For setting 2 the state is generally mixed and negativity is cero for all values

of �.

Momentum-momentum entanglement

Inserting our values in 4.14 we obtain a result independent of the spin prepara-
tion of the state,�. Negativity gives us the simple expresion

NAB
mom =

1

4

p
(1 + cos (�)) (1� cos (4�))

In preparation 2 the state is generally mixed and negativity remains zero for
all values of �.
When Alice and Bob work together there is a total analogy between spin-

spin and momentum-momentum bipartition, each one with it�s corresponding
parameter characterizing Alice�s preparation of entanglement, � and � respec-
tively.

Spin-momentum entanglement

We �nd a relatively small expression, again independent of �; for the entangle-
ment entropy

EAB (�;�) = �1
4
(2� f (�;�)) log

�
1

4
(2� f (�;�))

�
�1
4
(2 + f (�;�)) log

�
1

4
(2 + f (�;�))

�
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Figure 4.15: Entanglement entropy for the AB case of setting 1 in the spin-
momentum bipartition.

where f (�;�) =
q
3 + cos (4�) + 2 cos� sin2 (2�). This can be seen in �gure

4.15.
For setting 2 entanglement entropy is independent of �.

Particle1-particle2 entanglement

Once more, entanglement is the same independently of � for all cases.
We present a table summarizing some of our qualitative results for the set-

tings 1.1,1.2,1.3 and 2; "Ent. =" means entanglement remains equal, "Ent. %"
means increase, and "Ent. &" represent a decrease in entanglement.

Setting1 Alice Bob Alice-Bob

spin-spin E (�)
Ent. =
Ent. =
Ent. =

Ent. =
Ent. =
Ent. &

mom-mom E (�)
Ent. =
Ent. &
Ent. =

Ent. =
Ent. =
Ent. &

spin-mom 0
Ent. =
Ent. %
Ent. =

Ent. =
Ent. =
Ent. %

part-part E (�) + E (�) Ent. = Ent. =

36



Setting 2 Alice Bob Alice-Bob
spin-spin 0 Ent. = Ent. =
mom-mom 0 Ent. % Ent. =
spin-mom E (�) Ent. & Ent. =
part-part E (�) Ent. = Ent. =

Notice how for Alice the particle-particle entanglement is the sum of all the
other entanglements and how for Bob, if one increase the other decrease. We
think this is due to the conservation of the part-part entanglement.

4.2.4 Summary of results

Alice and Bob always agree in the entanglement between the particles but that is
not the case when they look at di¤erent bipartitions of the two particle system.
For instance, when Bob looks at the spin-spin bipartition he will always �nd

equal or less entanglement than Alice. In fact, equal entanglement is found for
a surprisingly large subset of states; not only for the Bell states, but also for a
big neighborhood around the spin-symmetric Bell states. The other states with
invariant entanglement are the non-entangled states, with separable spin and
momentum parts, which show us an intriguing increase in mutual information
with �. Being able to extinguish entanglement with � as small as �=2 is also
an interesting fact.
When Bob studies the momentum-momentum bipartition, the entanglement

can either decrease, remain equal or increase with respect to what Alice sees. En-
tanglement is invariant for the initially unentangled and for the spin symmetric
Bell states, decreases for all other states separable in spin and momentum parts
and increases for states with initial spin-momentum entanglement. However the
increase and decrease are not equivalent, the increase reaches it�s maximum in
the limit �! �, while entanglement can be made zero for � as small as �=2.
The behavior of entanglement for the spin-momentum bipartition is very

similar to the momentum-momentum one but with the increasing and decreasing
states exchanged. They are the inverted image of each other. Again, as in
the single particle section we see that this entanglement is easier to increase
than to decrease, and we expect that the more particles are involved, the more
emphasized the di¤erence becomes.
When Alice and Bob work together, many interesting e¤ects disappear. As

a result, entanglement only grows in the spin-momentum bipartition, spin-spin
and momentum-momentum are completely analogous to each other and extrema
of entanglement are achieved only in the limit �! �.
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Part II

Entanglement and
non-Inertial observers
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Chapter 5

Introduction to QFT in
curved spacetimes

This chapter is a very brief introduction to QFT in curved spacetime presented
via the standard canonical quantization. Only the minimum necessary for un-
derstanding the next chapters will be presented. More about this extensive topic
can be found in many textbooks, for instance [16].

5.1 Scalar �eld quantization

The equation for scalar �elds is the Klein-Gordon equation�
��m2

�
� = 0 (5.1)

who�s general solution can be expressed as a sum of negative and positive fre-
quency solutions, ui (x; t) and u�i (x; t),

� (x; t) =
X
i

�iui (x; t) + �
�
i u
�
i (x; t)

5.1.1 In Minkowski spacetime

In Minkowski spacetime it is easy to separate between positive and negative
frequency because this spacetime admits a global timelike Killing vector, @t (a
pointer in the direction of time). Therefore, positive frequency solution1 satisfy

@tuk (x; t) = �i!kuk (x; t) (5.2)

1Any inertial observer will agree with that because Lorentz transformation leave the sign
of t invariant.
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and negative ones are u�k (x; t). We can choose those solutions to form an or-
thonormal basis of solution so that their scalar product satisfy

(uj ; uk) = �i
Z
d3x (uj@tu

�
k � u�k@tuj) = �jk = �

�
u�j ; u

�
k

�
(5.3)

(uj ; u
�
k) = 0

this allow us to construct a Fock space using the standard canonical �eld quan-
tization scheme:

� Promote the classical Klein-Gordon �eld and it�s canonical conjugate mo-
mentum to quantum operators satisfying the equal time commutation re-
lations

[� (x; t) ;�(x0; t)] = i� (x� x0) (5.4)

[� (x; t) ;� (x0; t)] = [� (x; t) ;�(x0; t)] = 0

� Replace the complex amplitudes �i and ��i by annihilation and creation
operators ai and a

y
i who inherit commutation relations from 5.4,

[ai; a
y
j ] = (ui; uj) = �ij

[ai; aj ] = [ayi ; a
y
j ] = 0

� Use ai to de�ne the vacuum state of the �eld (ai j0i = 0) and the creator
operator, ayi , to build the Fock space��n1i1 ; n2i2 ; : : : ; nkik� = 1p

n1!n2! � � �n3!
(ayi1)

n1(ayi2)
n2 � � � (ayik)

nk j0i

Note that this quantization procedure is equivalent for all inertial observers
since a Poincaré transformation only relabel annihilation (creation) operators
between themselves without mixing with the creation (annihilation) ones, mak-
ing the vacuum state a Poincaré invariant.

Alice learns quantum �elds

So, if Alice is an inertial observer in Minkowski spacetime, her Fock space is
build from solutions of 5.2. And therefore a one mode state is

j1!iM = ay!;M j0iM � uM! / 1
p
!k
e�i!kt

where M stand for Minkowskian modes. Note that in this part of the thesis
we are labeling the modes with their frequency instead of their momentum, the
relation is !k =

p
k2 +m2. However we will limit ourself to massless �elds

(!k = jkj) in order to work with Bogoliubov coe¢ cients of a simpler form.
The �eld expanded in term of Alice�s modes take the form

� =
X
i

�
a!i;Mu

M
!i + a

y
!i;M

uM�
!i

�
(5.5)
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5.1.2 In curved Spacetime

In curved spacetime we generalize Klein-Gordon equation 5.1 by means of the
covariant derivative2 @� ! r�.�

r�r� �m2
�
� = 0

and now orthonormal conditions 5.3 have to be de�ned using a Cauchy hyper-
surface �

(uj ; uk) = �i
Z
�

d�n� (uj@�u
�
k � u�k@�uj)

where d� is the volume element and n� is a future oriented timelike unit vector
orthogonal to �.
Non-stationary spacetime don�t have global timelike Killing vector making it

impossible to separate between positive and negative frequency solutions glob-
ally. Hence, there is no natural way of de�ning the vacuum and Fock space.
Interpretation in term of particles become a fuss. Only when the spacetime
possess asymptotically stationary region could that interpretation be recovered.
For stationary spacetime we have a timelike Killing vector �eld �� with which

we can generalize what we did for Minkowski. Such that positive frequency
modes uk (x; t) will satisfy

��r�uj = �i!juj

where !j > 0. With this, the quantization procedure is totally analogous.

5.2 Accelerated observer: Introducing Rob

Up to now we have only considered inertial observers, Alice and Bob. Now we
will also consider an observer with constant acceleration that will be named
Rob. Since Alice and Rob are not related by a Poincaré transformation they
will generally not have the same Fock space, and in particular don�t agree on the
vacuum state of the �eld. This is because they have di¤erent proper coordinates;
Alice uses Minkowskian coordinates (t; x) while Rob uses Rindler coordinates
(� ; �) both describing the �at Minkowski spacetime.

5.2.1 Rindler coordinates

The Rindler coordinates are related to the Minkowskian coordinate through

t = � sinh (a�) , x = � cosh (a�)

where each constant � correspond to the trajectory of an observer accelerated
with acceleration a with -lightspeed in the in�nite past and passing through
x = � at time t = � = 0. Rob is one of those observers, see �gure 5.1. The

2For �elds with spin degree of freedom covariant derivative is de�ned in a di¤erent way.

41



Figure 5.1: Alice and Rob�s trajectories in the Minkowski spacetime.

coordinates (� ; �) take values in the (�1;+1) but they don�t cover the whole
Minkowski spacetime. Three more sets of Rindler coordinates are needed to
cover it all. The other set that interest us to complete the Cauchy surface needed
for the quantization is the one associated to region II, i.e.

t = �� sinh (a�) , x = �� cosh (a�)

Both regions are globally causally disconnected. In fact, observers in both re-
gions will perceive a horizon at proper distance a�1 in the opposite direction of
acceleration.

5.2.2 Rob learns quantum �elds

Since Rob need two causally disconnected region to complete the needed Cauchy
surface, he will have to build two Fock spaces, one for each region. Thus having
a vacuum and excited states for each region; single excitation are

j1!iI = ay!;I j0iI � uI! /
1p
!
e�i!�

j1!iII = ay!;II j0iII � uII! /
1p
!
ei!�

the di¤erent sign comes from the relation between the two regions,i.e. they
are spacetime re�ection of each other. The �eld expanded in terms of these
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Rindler modes is expressed:

� =
X
i

�
a!i;Iu

I
!i + a

y
!i;I

uI�!i + a!i;IIu
II
!i + a

y
!i;IIu

II�
!i

�
(5.6)

5.3 Bogoliubov transformation

Now since 5.5 and 5.6 is the same object in two di¤erent basis, we can after
some algebra and using 5.3 relate both basis �nding

uM!j =
X
i

h
�Ijiu

I
!i + �

I
jiu

I�
!i + �

II
jiu

II
!i + �

II
jiu

II�
!i

i
where we have de�ned the Bogoliubov coe¢ cients in terms of the scalar products

�
I(II)
ij =

�
uM!i ; u

I(II)
!j

�
, �

I(II)
ij = �

�
uM!i ; u

I(II)�
!j

�
Now, to get the relation between ladder operators we compute a!i;M =�

�; uM!i
�
,

a!i;M =
X
j

h
�I�ij a!j ;I � �I�ij a

y
!j ;I

+ �II�ij a!j ;II � �II�ij a
y
!j ;II

i
analogously for ay!i;M . They are related by linear combination with ladder op-
erator of Rindler space. Note that frequencies are mixed; i.e. a single frequency
Minkowski mode correspond to a multichromatic mode when transformed into
Rindler basis. In other words, the Bogoliubov coe¢ cients, �ij and �ij , are not
diagonal. However, we will be working in an approximation which indeed has
diagonal coe¢ cients and hence don�t mix frequencies.

5.3.1 Single-mode approximation

The single mode approximation has been widely used in relativistic quantum
information, in fact it wasn�t until 2010 in [17] when the �rst work without
this approximation was done. The assumption is that the transformation only
involved one frequency, i.e. !i = !j . Such an assumption looks very arbitrary,
but it was shown in [18] that it is equivalent to �nd an orthonormal basis
f U!i ;  

0U
!ig related to Minkowski modes

 U!j =
X
i

Ciju
M
!i ,  0U!j =

X
i

C 0iju
M
!i
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such that the Bogoliubov coe¢ cient relating this basis and the Rindler basis are
diagonal

�Iij =
�
 U!j ; u

I
!i

�
= cosh rs;!i�ij = �0IIij

�Iij = �
�
 U!j ; u

I
!i

�
= 0 = �0IIij

�IIij =
�
 U!j ; u

II
!i

�
= 0 = �0Iij

�IIij = �
�
 U!j ; u

II�
!i

�
= sinh rs;!i�ij = �0Iij

where rs (s stands for scalar) is de�ned as

tanh rs;!i = exp
�
��!i

a

�
Those modes f U!i ;  

0U
!ig are a speci�c choice of the so-called Unruh modes.

This choice give us the following relation between ladder operators

a!i;U = cosh rs;!ia!i;I � sinh rs;!ia
y
!i;II (5.7)

and the same for a0!i;U exchanging the label I with II.

5.3.2 Results for spin 1
2
�elds

Everything we have shown can be done analogously for the massless Dirac �eld.
Positive (particle) and negative (antiparticle) solution of the Dirac equation in
Minkowskian coordinates, u+!;�;M and u�!;�;M , are used to expand the �eld

� =
X
�

Z
d3k

�
c!;�;Mu

+
!;�;M + dy!;s;Mu

�
!;�;M

�
where � represent the spin degree of freedom and takes the values � = f"; #g.
The Fock space is constructed from a pair (one for each, particles and antipar-
ticles) of creation and annihilation operators, c(y)!;�;� , d(y)!;s;� , which instead
of commutation relation satisfy usual anticommutation relation for the ladder
operators of fermionic �elds

fc!;�;�; cy!0;�0;�0g = �!!0���0���0 , fd!;�;�; dy!0;�0;�0g = �!!0���0���0

where � stands for M ,U ,I or II. Then mode states are

cy!;�;� j0i� = j�!i

cy!;�;�c
y
!;�0;� j0i� = j��0!i ��;��0

therefore only allowing the following states for each mode fj0!i�� ; j"!i
�
� ; j#!i

�
� ; j"#!i

�
�g.
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Again we can work with the Minkowskian Unruh modes which have the next
diagonal relation with the Rindler modes

c!i;�;U = cos rd;ic!i;�;I � sin rd;id
y
!i;��;II (5.8)

dy!i;�;U = cos rd;id
y
!i;�;II + sin rd;ic!i;��;I

the same for c0!i;�;U and d
0y
!i;�;U

interchanging labels I and II. Now rd (Dirac)
is given by

tan rd;i = exp

�
��!i
a

�
Notice how the relation (spacetime re�ection of each other) between region I
and region II, makes cU annihilate a particle in I but create an antiparticle in
II.
Now that Alice and Rob have the necessary tools to write single-particle and

two-particle states and their relation, they are ready to study entanglement for
some settings to be discussed in the next chapters.
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Chapter 6

Entanglement and
non-Inertial observers

This is the main chapter of this part. Here we study how is entanglement seen
by di¤erent non-inertial (accelerated) observers. For it we consider di¤erent
settings and observers combinations and �elds.
From relations 5.7 we can easily compute the vacuum and �rst excited state

of Minkowski in terms of Rindler modes

j0iiU =
1

cosh ri

1X
n=0

tanhn ri jniiI jniiII (6.1)

j1iiU =
1

cosh2 ri

1X
n=0

tanhn ri
p
n+ 1 j(n+ 1)iiI j(n+ 1)iiII (6.2)

analogously with 5.8 we get for the spin- 12 �eld

j0iiU = cos2 ri j0iiI j0iiII + sin ri cos ri j"iiI j#iiII (6.3)

+sin ri cos ri j#iiI j"iiII + sin
2 ri jpiiI jpiiII

j"iiU = cos ri j"iiI j0iiII + sin ri jpiiI j"iiII (6.4)

j#iiU = cos ri j#iiI j0iiII � sin ri jpiiI j#iiII (6.5)

where jpii � j"i#ii, p stands for pair.
It is important to remember here that since we are dealing with anticommut-

ing operators the order of the operators, and hence, the order of the particles
in the notation are important, for example jpii � � j#i"ii. In fact, negativity
depends on the ordering convention, even of the out-traced modes. This is dis-
cussed in [22]. They conclude that there isn�t really a problem because the �eld
is always measured by means of a physical detector1 . The ordering has to be
chosen in concordance with the interaction between the �eld and the detector;

1A physical system that interacts with the �eld and then is measured.
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such that all anticommutation signs disappear from the computation. Although
there is no proposed physical detector for fermions, we know a priori that a
detector in region I will need to have all the region II operators rightmost.
In all this part of the work we consider the acceleration to be in the same

direction of the spin in order to avoid Wigner rotation in contrast to what we did
in part I of this work. In this way we study both e¤ect separately. Trajectories
in curved spacetime also cause Wigner rotation, this can be studied in the tetrad
formalism as done for example in [24], [25].

6.1 Alice prepares the states

We will consider a set of states prepared by Alice, many of them already con-
sidered in the literature and for which we reproduce the result but also some
new cases.
First of all and as an example we consider a setting with very simple trans-

formation rules

j i = cos � j"1iU j#2iU + sin � j#1iU j"2iU (6.6)

this is a two particle state similar to 4.6 with � = 0. We say similar because
here the two particle are undistinguishable and the sates are antisymmetric by
construction.

Single-particle states Next example will be a single particle state like in
section 4.1

j i = A j"1iU j02iU +B j#1iU j02iU + C j01iU j"2iU +D j01iU j#2iU
with

1. A = cos � and D = sin � , i.e. equivalent to 4.2

j i = cos � j"1iU j02iU + sin � j01iU j#2iU

2. A = cos� cos �, B = cos� sin �, C = sin� cos �, D = sin� sin � which is
analog to 4.1.

It is important to note that those states won�t be seen as single-particle by
Rob. He will see more particles than the prepared by Alice. This is a general
feature of QFT in curved spacetime and the reason for the Unruh and Hawking
radiation.
Although the state considered are in analogy with those of section 4.1, we

are not measuring the same entanglement. Here we measure the entanglement
between the two modes. Consider for example the entanglement measured by
Alice for setting 2: Negativity gives

N =
1

2
jsin 2�j
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which is surprisingly independent of �.
In order to show one of the striking di¤erences between bosonic and fermionic

�elds for non-inertial observers Alice prepares the next setting. It consist of two
independent �elds: one bosonic, the other a fermionic, such that the mode "1"
of the scalar �eld is entangled with mode "2" of the Dirac �eld. The state looks
like

j i = cos �
��0b1�U ���"f2EU + sin � ��1b1�U ���#f2EU (6.7)

6.2 Rob studies entanglement

Although most of the previous works consider our previously named "Alice
and Bob work together" scenario, i.e. partition corresponding to Alice don�t
transform, here we will consider that both modes transform. But since both
modes transform with di¤erent parameters (r1; r2) we can easily recover previous
result by setting r1 = 0 (a1 = 0 or !1 =1).

6.2.1 First example (6.6)

Even if it�s very long we will explicitly write down the computation with all its
steps for this case, which is the simpler, omitting the details for the following
settings. Now we start with

j i = cos � j"1iU j#2iU + sin � j#1iU j"2iU

writing in terms of Rindler modes

j"1iU j#2iU = (cos r1 j"1iI j01iII + sin r1 jp1iI j"1iII) (cos r2 j#2iI j02iII � sin r2 jp2iI j#2iII)
= cos r2 cos r1 j"1iI j01iII j#2iI j02iII � sin r2 cos r1 j"1iI j01iII jp2iI j#2iII

+cos r2 sin r1 jp1iI j"1iII j#2iI j02iII � sin r2 sin r1 jp1iI j"1iII jp2iI j#2iII

ordering all region II operators rightmost and simplifying notation like j"1iI j#2iI �
j"1#2iI

j"1iU j#2iU = cos r2 cos r1 j"1#2iI j0102iII � sin r2 cos r1 j"1 p2iI j01 #2iII
� cos r2 sin r1 jp1 #2iI j"1 02iII � sin r2 sin r1 jp1p2iI j"1#2iII

analogously (exchanging " and # and transferring the minus sign from sin r2 to
sin r1)

j#1iU j"2iU = cos r2 cos r1 j#1"2iI j0102iII + sin r2 cos r1 j#1 p2iI j01 "2iII
+cos r2 sin r1 jp1 "2iI j#1 02iII � sin r2 sin r1 jp1p2iI j#1"2iII

then the state in Rindler modes is

j i = A j"1#2iI j0102iII +B j"1 p2iI j01 #2iII + C jp1 #2iI j"1 02iII +D jp1p2iI j"1#2iII
+E j#1"2iI j0102iII + F j#1 p2iI j01 "2iII +G jp1 "2iI j#1 02iII +H jp1p2iI j#1"2iII
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with
A = cos � cos r2 cos r1 E = sin � cos r2 cos r1
B = � cos � sin r2 cos r1 F = � sin � sin r2 cos r1
C = � cos � cos r2 sin r1 G = � sin � cos r2 sin r1
D = � cos � sin r2 sin r1 H = � sin � sin r2 sin r1

The density matrix looks like 4.5 but with the corresponding basis. Tracing
over region II we get the reduced density matrix that Rob will observe for 6.6

�I =

0BBBBBBBB@

A2 0 AE 0 0 0 0
0 B2 0 0 0 0 0
AE 0 E2 0 0 0 0
0 0 0 F 2 0 0 0
0 0 0 0 G2 0 0
0 0 0 0 0 C2 0
0 0 0 0 0 0 D2 +H2

1CCCCCCCCA

j"1#2iI
j"1 p2iI
j#1"2iI
j#1 p2iI
jp1 "2iI
jp1 #2iI
jp1p2iI

The partial transpose of this matrix is

�pTI =

0@ 0 AE 0
AE 0 0
0 0 �I(diag)

1A
where �I(diag) is the 7x7 �I matrix without the non-diagonal elements. There-
fore the only negative eigenvalue gives the negativity

Nspin = AE =
1

2

��sin 2� cos2 r2 cos2 r1��
This result is plotted in �gure 6.1. The preparation parameter � only set the
maximum of entanglement;for all its values, entanglement will be degraded in
the same way. As expected, due to the symmetry of the state under exchange of
the two modes, it is symmetric in r1 and in r2. It is interesting to see that even
in the limit of both in�nite acceleration (r1; r2 �! �=4) entanglement don�t
vanishes. This is a property of fermionic �elds and seems to be caused by fermi
statistics. If we set r1 = 0 and � = �=4 we obtain the same result as in [15].

6.2.2 Single particle states

Setting 1

Now we do the same with the state

j i = cos � j"1iU j02iU + sin � j01iU j#2iU

The algebra is much longer because we have to deal with all the elements of the
basis of the modes I and II, that we present here for completeness

j0102iI j01 "2iI j01 #2iI j01p2iI j"1 02iI j"1"2iI j"1#2iI j"1 p2iI
j#1 02iI j#1"2iI j#1#2iI j#1 p2iI jp102iI jp1 "2iI jp1 #2iI jp1p2iI
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Figure 6.1: Negativity for the state 6.6 with � = �=4 as a function of r1 and r2.

that makes us work with general 32x32 matrices2 and once we trace out region
II we end up with 16x16 matrices. Note that we work with up to 4 particle
states.
The result for this setting with � = �=4 looks like the previous example

shown in �gure 6.1. The r1 $ r2 symmetry is particular for this choice of
parameter. Now the preparation parameter, �; plays an active role in the form
of the negativity, breaking the symmetry between r1 and r2. If we choose �,
such that there is more weight on one of the basis state, e.g. j"1iU j02iU , i.e.
cos � > sin �, the negativity will decrease more and faster with the parameter
associated with the mode in the vacuum, e.g. r2; see �gure 6.2. So, we can make
the relative decrease of entanglement (di¤erence in color) as large as we want (for
a �xed acceleration) by taking the state closer and closer to separable, see �gure
6.3. Therefore the better we can prepare and control quasi-separable states the
less acceleration we need to observe an appreciable di¤erence in entanglement.
Something very similar is discussed in [23], but with a really di¤erent setting3 ; in
fact there the negativity increase! The experimental feasibility presented there
is completely analogous for both cases (including values of acceleration needed).
As a last comment we would get exactly the same considering the state

j i = cos� j"1iU j02iU + sin� j01iU j"2iU (6.8)

2Most of them with many zeros. That makes the computation possible.
3A di¤erent choice of Unruh modes (outside the single mode approximation)
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Figure 6.2: Density plot of negativity for various values of � =
[�=4; 0:4; 0:2; 0:1; 0:05; 0:015]. The �rst one is like �gure 6.1. r2 and r1 are
the vertical and horizontal axis respectively.

which is included in the next study with � = 0.

Setting 2

Following the same process, which for this setting is very long and tedious, we
get a disappointing resembling behavior to the previous setting, where � plays
the role of �. The principal di¤erence is the role of the parameter, �, which only
becomes noticeable for large values of acceleration, but still very small.

6.2.3 Boson-Fermion system

Same work again: rewriting the state (6.7) in terms of Rindler modes using
(6.1), (6.2),(6.4) and (6.5); tracing out the modes in region II; partial transpose
the reduced density matrix; and computing the negativity. We only have to be
careful with the reordering of the modes considering a graded algebra, having
anticommutation relation only between two fermionic operators.
We �nd the result shown in �gure 6.4. Setting r1 = 0 (and � = �=4)

we recover the result found in [15], i.e. entanglement survives in the in�nite
acceleration limit. Setting r2 = 0 (and � = �=4) we �nd the same as [7];
entanglement tends to zero for in�nite acceleration, see �gure 6.5.

51



Figure 6.3: Percent in negativity decrease for a �xed acceleration, r2 = 0:15
(r1 = 0), for di¤erent preparation of the state close to a separable state

Figure 6.4: Negativity for the boson-fermion system with � = �=4.

52



Figure 6.5: Bosonic(a) and fermionic (b) behavior of entanglement.

At the beginning this di¤erence was thought to be because of the disparity
in the dimension of Hilbert spaces. But results of several setting, bosonic and
fermionic, with variety of Hilbert space dimensions, points that this is solely
due to statistics.

6.3 Spin-Momentum entanglement

Until now we have computed the entanglement between the two modes. We
will now consider a di¤erent bipartition, the spin-momentum bipartition, which
to knowledge of the author haven�t been considered in previous literature. We
expect to �nd a change in this entanglement because as in part I, the transfor-
mation depend on the momentum (frequency of the mode) of the particle and
we don�t expect that tracing over region II counteract the expected change in
entanglement.
The basis we are using don�t have this two degrees of freedom separated. In

order to compute the entanglement of this bipartition we need a basis in which
we have in one side the total momentum and in the other the total spin. We are
speaking of total momentum and spin because although we start with a single
particle state we end up with more particles. From the standard addition of
angular momentum the change of basis to momentum (occupation number) -
total spin is given by

j00i = j00i jSi , j0 "i = j01i jD+i , j0 #i = j10i jD�i , j0pi = j02i jSi
jp0i = j20i jSi , jp "i = j21i jD+i , jp #i = j21i jD�i , jppi = j22i jSi
j" 0i = j10i jD+i , j""i = j11i jT+i , j" pi = j12i jD+i
j# 0i = j10i jD�i , j##i = j11i jT�i , j# pi = j12i jD�i
j"#i = 1p

2
[j11i jT0i+ j11i jSi] , j#"i = 1p

2
[j11i jT0i � j11i jSi]

where jT�;0i stands for the three states of the triplet, jD�i for the two states
of the doublet, and jSi for the singlet. Now we are ready to change basis to
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Figure 6.6: Spin-momentum negativity for setting 1 with � = �=4.

the reduced density matrix of region I, and then compute the negativity for the
spin-momentum bipartition seen by Rob.
The state considered in the �rst example is initially not entangled in spin-

momentum and remains unentangled for Rob. This is totally analogous to what
happens in part I. The symmetry between 1 and 2, and up and down, prevent
the entanglement to be changed.

Setting 1

In this case the state is prepared with spin-momentum entanglement and we
observe it�s degradation due to the acceleration, see �gure 6.6. The parameter
� set the initial maximum point for entanglement, but depending of the choice
of � we also �nd a light tilt, producing an asymmetry between 1 and 2. This
isn�t really a surprise because the transformation is di¤erent for up and down.

Setting 2 Alt

Instead of considering the general setting 2 we take for simplicity the particular
case 6.8. In contrast to what happens for the mode-mode entanglement, we
now not �nd the same result as setting 1. In fact, the behavior is the complete
opposite. The state being prepared separable in spin-momentum has an increase
in his entanglement with the acceleration, see �gure 6.7.
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Figure 6.7: Negativity for the spin-momentum bipartition of state 6.8 with
� = �=4.
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Chapter 7

Conclusions and Future
work

7.1 Part I

In this section we list the main conclusions already presented in subsections
4.1.4 and 4.2.4. We then make some comments and give proposals for future
work.

Conclusions

In previous works:

� Entanglement between degrees of freedom of a single particle is not Lorentz
invariant.

� Alice and Bob always agree in the entanglement between particles but not
for other bipartitions.

Additional conclusions in our work:

� Spin-momentum entanglement is more rapidly increased than decreased
and this e¤ect seems to be exacerbated with more particles.

� There are whole regions of the Hilbert space which have invariant entan-
glement for the spin-spin bipartition.

� Mutual information doesn�t always behave in concordance with entangle-
ment.

� "Alice and Bob work together" makes the spin-spin and momentum-
momentum entanglement analogous.
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Comments and further work

Although we are presenting non-invariant quantitites, none of the results are in
contradiction with the principle of relativity since there is no possible argument
to �x a prefered reference frame. If we give a measurement device to both Alice
and Bob, they will in principle agree about the outcome of the measurement.
However, in order for this to happen, the device must also be described relativis-
ticaly, i.e. Bob will see Alice�s device Lorentz transfomed. The transformation
of quantum measurement devices is a problem that deserves further investiga-
tion. In terms of operators there has been a long discussion about the form of a
relativistic spin operator [19][20], and more recently in [21] where an operator is
de�ned by studying the transformation properties of a Stern-Gerlach apparatus.
We have seen that entanglement for bipartitions other than for the particle-

particle case is in general not Lorentz invariant. In fact, many other physical
quantities are not Lorentz invariant, such as energy or momentum. These are
part of the four-momentum p� =

�
p0; pi

�
which transform as a Lorentz vector;

it is p�p� = m2 which is invariant. In our context, the entanglement between
particles would play the role of the invariant quantity (m). For example, in
section 4.2.1 the particle-particle entanglement is the sum of the entanglements
of spin-spin, momentum-momentum, and spin-momentum bipartitions. These
similarities lead us to raise a natural question: are the entanglements of distinct
bipartitions part of a larger object that transform under a certain representation
of the Lorentz group? The main di¢ culty when trying to answer this question
is the lack of a well-de�ned entanglement measure for mixed states. In fact,
trying to answer this question could give some hints into that problem and lead
to a new or re�ned measure of entanglement for mixed states. If we want to
go deeper into this problem, our work, or similar, would need to be repeated
with other entanglement measures. One should look for a relationship between
the particle entanglements and the entanglements of all other bipartitions; the
relationship could be a simple sum, or most likely a generalized sum.

Extentions to this work This work can be extended in diverse ways. The
�rst and most obvious is to consider states that we haven�t yet considered, e.g.
prepared states with spin-momentum and spin-spin (or momentum-momentum)
entanglement for which we expect theorem 1 to apply. In particular it would
be interesting to study the whole range of possible states. By doing this, we
could create a map of the Hilbert space telling us which regions have invariant
entanglement for each bipartition.
Another option to extend this work would be to study not only the correla-

tions due to entanglement but all the correlations, classical cases and quantum
discord. As mentioned before, this should be performed especially for the spin-
spin bipartition of setting 1.1, in order to understand the discrepancy in behavior
between entanglement and mutual information.
One more option is to consider di¤erent particles, i.e. particles with di¤erent

spins and likewise for massless particles.
Finally, more particles could be added to the setting. Especially to check
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whether the di¤erence between increasing and decreasing rate of the spin-momentum
entanglement is further emphasized. If this is the case, experimental veri�cation
of this e¤ect could be much easier to perform.

7.2 Part II

Conclusions and further work

In this work we have considered more general states, using preparation para-
menters, but in our result they don�t seem to play an important role. Actually,
the behavior is driven by the initial entanglement almost independently of the
form of the state. However, as well as in previous literature, we computed the en-
tanglement between modes. This is the reason for our last computation, which,
this time, indeed shows an important dependence with the detailed preparation
of the state. This opens the door to many further computation of entanglement
between di¤erent degrees of freedom and it�s just a matter of time before we see
numerous publications of this.
Considering two particle states is the natural extension to this work, if we

want to compare the results with Part I we should consider undistinguishable
particles. This is done by considering two �elds as in our boson-fermion system.
We believe that the mode-mode entanglement plays the role of particle-

particle entanglement in Part I of this work, however is no longer invariant
due to the presence of the gravitational �eld1 . Here it is worth noting that we
have been working without any kind of interaction with gravity, this should be
replicated in further works, for example for minimal coupling.
The di¤erent behavior2 of entanglement for bosons and fermions leads us

to wonder what would happen in more elaborate systems where that distinc-
tion isn�t so clear. For example the case of anyons, or even in theories like
supersymmetry where fermions and bosons transform into each other.
In conclusion, this is a new �eld which we believe deserves much more re-

search, especially in the areas highlighted above.

1Although we are, in reality, working in �at spacetime, the use of Rindler coordinates in
this context is equivalent to having a gravitational �eld.

2 It was recently shown in [26][27] and discussed in [28] that fermionic entanglement can
also vanish when we start with a mixed state.
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