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1 Introduction

This thesis discusses a method of generating curvature perturbations in the early
universe using the curvaton model. This particular model assumes a light scalar
field to be present in the very early stages of the universe, perturbations in which
eventually lead to perturbations of the spacetime curvature. These curvature per-
turbations are the seeds for the structure we observe in the universe today, both
in terms of (dark) matter distribution and in the cosmic microwave background,
or CMB. Scalar fields in the early universe have been studied extensively since
the discovery of inflation in the early 1980s [I]. Later, inflationary theories got a
huge experimental boost because they could explain the existence of a near scale-
invariant power spectrum of curvature perturbations as observed in the CMB.

Most inflationary theories predict this form of the curvature power spectrum,
which has subsequently been confirmed by the COBE and WMAP experiments [2].
The new challenge is to exclude particular theories by comparing their prediction
of non-Gaussianities in the curvature power spectrum with experimental results.
Although the Gaussian part of the power spectrum has now been measured in great
detail, upcoming measurements to be performed by the Planck satellite might be
able to measure non-Gaussian parts to the curvature perturbation, as long as these
are not too small [3].

In this thesis we discuss one particular model which could lead to large and
observable non-Gaussianities in the curvature power spectrum. This is the model
of curvaton preheating, in which the scalar curvaton field decays into another
field during a period of parametric resonance. This resonance leads to a period
of nonlinear dynamics, during which large non-Gaussianities may be generated.
The name preheating stems from earlier models [4], 5 [0, [7] in which the inflaton
decayed into another scalar field through a parametric resonance. In more recent
articles [8, @], the same approach has been applied to the curvaton, which has
similar properties to the inflaton, but is subdominant in the energy density during
inflation.

New in this thesis is the case in which the curvaton resonantly decays into
a U(1l) gauge field. This process shows many similarities with the scalar field
resonance, but there are a few subtleties that arise when trying to apply the
original methods of preheating to a gauge-scalar interaction.

The structure of this thesis is as follows. In the remainder of this section, we
will present a general and historic introduction to inflation. This is intended to
give less experienced readers some background information and to put the subse-
quently introduced models into an appropriate context. In section [2] we discuss
how curvature perturbations are generated in the simplest single field inflationary
models and show that this leads to a near scale-invariant power spectrum. In sec-
tion |3 we introduce the curvaton model and discuss the canonical way in which this



model can generate curvature perturbations with higher levels of non-Gaussianity.
In section {4 we discuss the curvaton preheating model. We discuss the paramet-
ric resonance and calculate the resulting curvature perturbation. Then we apply
the same methods to a gauge-coupled curvaton model and we consider the cur-
vature perturbation. Finally, in section [5| we discuss the differences between the
scalar resonance and the new gauge-coupled. We also look ahead towards possible
future numerical simulations, which are necessary to perform the full nonlinear
calculation.

A note on conventions: throughout this thesis we will use the (— + ++) signa-
ture for the Minkowski metric, we will work in natural units h=c=G = kg =1
and we will work with a standard FRW metric, which can be written as:

dr?

ds? = —dt? + a*(t) +r2(d6? + sin® d¢?) | . (1L.1)

— k2

where a(t) is the scale factor and k the spatial curvature.

1.1 Historic introduction to inflation

In this section we will describe the basics of inflation: the discovery, the basic
workings of the theory and the problems it solves in standard FRW cosmology.
Although the main focus of this thesis is the curvaton model and the way in
which curvature perturbations can be generated, it is important to note that this
is a particular model of inflation. Therefore we included this section to give the
non-experienced reader some background information on the theory of inflation.

1.1.1 Magnetic monopole production in GUTSs

After the successes of electroweak unification, theoretical physicists in the 1970s
started working on a theory that would combine the electroweak force with the
strong force in a so-called “Grand Unified Theory”, or GUT for short. The earliest
models were based on an SU(5) gauge theory, which would spontaneously break
down into the SU(3) x SU(2) x U(1) standard model at an energy scale of ~ 10'6
GeV (the so-called GUT-scale).

There is no way we can do experiments at this energy scale here on earth
with current technology and most likely with any technology in the foreseeable
future. There was however a time when GUT physics would have been valid. In
the standard hot big bang model, there is a time in the very early universe when
the energy scale is above the GUT-scale. However, as the universe expands, the
energy density drops and when it reaches the GUT-scale a process of symmetry
breaking occurs, which is similar to the SU(2) x U(1) — U(1)ey breaking in the
Weinberg-Salam model.



One of the predictions of most GUTs is the existence of magnetic monopoles:
particles with a fixed magnetic charge. These particles are obviously different
from standard model particles, which do not have magnetic charge. As the energy
of the universe drops below the GUT-scale, the interaction between monopoles
and the other particles freezes out and the abundance of magnetic monopoles is
fixed. To date, no magnetic monopoles have been found in nature, so their number
density must be quite small, especially since GUT monopoles are believed to be
very massive (10'° times heavier than the proton).

In the late 1970s people started doing research on the effects of magnetic
monopoles on cosmology. It was found that the number density of monopoles
is about equal to the number density of protons and neutrons [10]. Apart from the
problem that monopoles had never been detected before this implied another, even
bigger problem: the huge mass of the monopoles would have caused such a great
gravitational force that the universe would have hardly expanded at all and could
not be older that 1200 years, whereas we know that the universe is more than
10 billion years old. This over-abundance of magnetic monopoles in the theories
became known as the “magnetic monopole problem”.

1.1.2 GUT phase transition and inflation

Just like with electroweak symmetry breaking, GUT symmetry breaking occurs
because there is a potential for a scalar (or Higgs) field which has the full gauge
symmetry at a local extremum, which is not the true vacuum. This local extremum
is called the false vacuum. At early times the universe is in this false vacuum, which
can have a much higher energy than the true vacuum. The energy density of the
field in this false vacuum is constant. This means that, as the universe expands,
the total energy increases which implies the scalar field has a negative pressure.
The gravitational effect of this is similar to a cosmological constant, as long as in
the equation of state:

p = wp, (1.2)

the equation of state parameter w < —1/3. From the acceleration equation (second

Friedmann equation):

a 4rG

we can see that in this case d/a > 0, which implies an accelerating scale factor.
The solution for such an accelerating scale factor is the De Sitter solution, given
by:

a(t) = Olth + CQG_Ht, (14)

where H = (—%%¢p(1 + 321)))1/2 is the Hubble rate, which in this case is constant.
Although the integration constants can be fixed by using the (first) Friedmann



equation, at times later than about one Hubble time H ! all solutions will prac-
tically look like exponential growth: a(t) ~ efl.

In only 107%%s, the universe would have undergone 100 e-folds, which would
have increased its size by a factor 103°. Clearly, such a scenario would drastically
lower the number density of magnetic monopoles. The first person to discover
this gravitational effect of the false vacuum state of the GUT Higgs field was Alan
Guth. He is subsequently considered the one who discovered inflation, which he
first described in [I]. As we can see from the title of his classic paper, inflation can
solve several other problems which Guth considered clearly more important than
the monopole problem.

1.1.3 The horizon problem

The horizon problem has to do with the amount of homogeneity we see across
the entire sky, for instance when looking at the cosmic microwave background.
Although experiments like COBE and WMAP have mapped the small anisotropies
in the CMB, which provide the experimental basis for the work done in this thesis,
overall the CMB is incredibly smooth and isotropic. Since any information can
only travel as fast as the speed of light, the only reason why the universe would
look exactly the same in all directions, is because all those regions were in causal
contact when the universe was much smaller.

However, if we calculate the comoving horizon distance, which is the maximum
distance any particle can have travelled from an initial time (¢ = 0) to a particular
time g, rescaled by the expansion of the universe, (this is equivalent to conformal
time, multiplied by the speed of light). We can write this as:

n(to) = / % (15)

If we compare the comoving horizon distance at last scattering, when the CMB
was created, with its current value, we find the ratio:

1) g2, (1.6)

where t, is time of last scattering and ¢, is today. Cubing this, we can see that
the current observable universe consists of some 10° different regions that were
causally disconnected when the CMB was created, yet it looks identical in every
direction. The problem becomes worse when we compare the horizon distance
today with the horizon distance at the Planck time. Then we have:

(tp)
n(to)

3

~ 107%, (1.7)




which means the current observable universe consists of 107® regions that were
causally disconnected at the Planck time.

To see how a period of inflation can help solve this, problem, let us change
variables and rewrite equation as:

ao 1
n(ao):/o dlnaE, (1.8)

where H = a/a is the Hubble parameter, so 1/aH is the comoving Hubble radius
(or time). This quantity gives us the maximum distance between two points that
are in causal contact at any particular time. If the comoving Hubble radius was
much bigger in the past than it is now and then decreased in size, regions that
were once causally connected would have fallen out of causal contact. The only
way for the comoving Hubble radius to decrease is to have @ > 0, i.e. a period in
which the expansion of the universe is accelerating: inflation.

We can calculate the number of e-foldings inflation must have lasted in order to
solve the horizon problem. To do this, we look at the current size of the comoving
Hubble radius 1/agHy and argue that, before inflation, this must have been as least
this large. Then during inflation the comoving Hubble radius decreased rapidly,
only to slowly increase from the end of inflation until today. To see how much the
comoving Hubble radius must have decreased during inflation, we first calculate
how much it has grown after. For this, we assume the universe to be radiation
dominated for the rest of its history. This is because, for a radiation dominated
universe with a ~ /2 we have 1/aH ~ a, while for a matter dominated universe
with a ~ t?/3, the comoving Hubble radius only grows as 1/aH ~ a'/2.

Using this scaling law, we can calculate the ratio of the current comoving
Hubble radius with the one just after the end of inflation, as:

1 Qo 1 - TGUT 1

. = , 1.9
CL()HO ays afo T() CLfo ( )
where we made use of the fact that during radiation domination a ~ T and we
assumed inflation happens at temperatures around the GUT scale, with Tyt ~
10'® GeV. Under these assumptions and using the current temperature of the CMB
(2.7K), it is easy to see that:

—, (1.10)

i.e. for inflation to solve the horizon problem, the comoving Hubble radius had
to decrease by at least 29 orders of magnitude during inflation. Since H is nearly
constant during inflation, this would mean the scale factor had to increase by 29
orders of magnitude, i.e.:

& _ Ht—t) — N — 029, (1.11)
a;



with a; and a; the scale factors directly before and after inflation, respectively.
This implies inflation solves the horizon problem if it lasts for a minimum of
N = In(10%) = 67 e-foldings.

1.1.4 The flatness problem

From various measurements we can deduce that the universe is nearly spatially
flat, which means x = 0 in the first Friedmann equation:

P K
H?> =" — —. 1.12
3m?%  a? (1.12)

This equation can be rewritten in terms of the critical energy density 2 = p/perit,

where pe.i = 3m%H? as:
K

a?H?
and () contains contributions of matter and radiation (and possibly a cosmological
constant). Now the problem lies in the fact that Q is approzimately 1. Since in
general the expansion rate of the universe a has been decreasing, this means that
) — 1 has been getting progressively larger.

During the period of matter domination, when a ~ t*?, this means Q,, ~ t2/3,
while during radiation domination, when a ~ t%/2, we have Q. ~ t. Combined
data [2] shows that currently Q,(ty9) < 0.01. If we assume the initial conditions
were set at the Planck time (107%3s), use the current age of the universe (~ 10'7s)
and assume matter-radiation equality happened at ~ 10'!'s, then we can calculate
how small €2, must have been at initially:

Q. =0-1=

(1.13)

Q.(tp) < 107% (1.14)

i.e. to explain the current flatness of the universe, one must fine-tune the initial
flatness of the universe to an extreme amount. Of course, the problem vanishes
if one assumes the universe to be perfectly flat (x = 0), since in this case x will
remain zero forever in the past and future. Although this is in agreement with
observations, there is no reason why x should be exactly zero. In fact, assuming
this might be as arbitrary as fine-tuning it to one part in 105,

Inflation provides a much more elegant solution to this problem, without having
to make any of these assumptions. Again, the solution relies on the fact that d > 0
during inflation. During most of the lifetime of the universe, @ has been decreasing
and the deviation from flatness has been growing. However, if we had a period of
exponential growth in the early universe, then this would have caused a to grow
enormously, which would have destroyed any significant deviation from flatness
that was present initially (at tp).



1.2 Ending inflation

Now that we have looked at the possible solutions that inflation can provide for
several large cosmological problems, we now turn our attention to the the problem
that plagued all early inflationary models: how does inflation end?

1.2.1 Original idea

In Guth’s original paper [I], the universe starts out in the unbroken symmetry
phase (false vacuum). During inflation, bubbles of the broken symmetry phase
form. This happens through a tunneling process, which is shown in figure [i}
in every region in space there is a probability the field can tunnel through the
potential barrier and end up in the true vacuum state.

Within these bubbles, the energy released by the transition would have gone
into the bubble walls. The original idea was that as these bubbles grow, they collide
and when they do the energy stored in the walls would thermalise the universe,
leading to the starting point of standard big bang nucleosynthesis (BBN). However,
while the bubbles of the new phase are forming and growing, the whole universe
is expanding exponentially, which could mean the bubbles would never collide and
thermalise the universe. Furthermore, a large part of the universe would remain
in the symmetric phase, which means inflation would never stop. This became
known as the graceful exit problem. This was already recognised in the original
paper [I] and confirmed just a few months later [11].

False
Vacuum

Quanturi~
Tunneling|

Figure 1: Original potential for the inflaton field. The field is trapped in a false
(metastable) vacuum, with a probability of tunneling to the true vacuum. In
the regions where this happens, inflation suddenly ends and a bubble of the true
vacuum (broken symmetry) phase forms. Ref: [12].



1.2.2 Slow-roll inflation

Only a few months later, several papers appeared [13],[14] which solved this graceful
exit problem by introducing a different mechanism of symmetry breaking, called
the Coleman-Weinberg (CW) mechanism. Here, the shape of the potential dra-
matically depends on the temperature of the universe. This is shown pictorially in
figure 2| At early times, the symmetric phase is the true (stable) vacuum. However,
as the temperature decreases, the slope of the potential starts to decrease and a
second local minimum forms at some field value where the full gauge symmetry
is broken. As the temperature of the universe drops below the critical GUT-scale
T. = Tqur ~ 10°GeV, the energy of the broken symmetry phase drops below the
symmetric phase, which becomes metastable.

V@)

T

false
vacuum

¢

™~ true 2 TEL

— vacuum/,f"‘/

Figure 2: The Coleman-Weinberg mechanism: the shape of the scalar field poten-
tial changes with the background temperature of the universe. As T" < T, the
gauge-symmetric phase ¢ = 0 is no longer a local minimum and the field starts to
slowly roll down the potential until it settles into some broken-symmetry vacuum
phase. Ref: [12].

However, unlike the original scenario, this time the potential is very flat from
the symmetric phase to the broken symmetry phase. As the temperature drops
below Tqur, the field starts to roll slowly down the flat potential towards the true
vacuum. The regions (bubbles) in which this transition occurs therefore undergo
a much longer period of inflation than in the original scenario, which causes them
to grow by many e-foldings. As a result, in such models our entire observable
universe is contained in just a small fraction of one such bubble. This immediately
solves the three cosmological problems discussed earlier. Because of the enormous
expansion, the number density of monopoles is diluted down to a tiny amount, so
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we wouldn’t expect so see any monopoles at all. The expansion also takes care
of the flatness problem. Because the whole observable universe lies within one
bubble, this would explain the large homogeneity of our universe and it would also
explain why we don’t observe any domain walls or other topological defects.

1.3 From GUT symmetry breaking to inflaton

The previous section gave a historic account of the theory of inflation. As we have
seen, inflation was discovered in the context of magnetic monopole production in
GUT phase transitions, where it was found to solve the monopole problem. Then
it was realised this could also solve the horizon and flatness problems. While
the promise of solving these problems sparked the initial interest in inflationary
models, these are “only” naturalness problems. Nowadays there is much more
solid, experimental evidence to support a period of inflation. Measurements of the
CMB temperature fluctuations performed by WMAP [2], reveal a nearly scale-
invariant power spectrum of density perturbations in the early universe. This
form of the power spectrum is exactly the one predicted by slow-roll inflation.
This experimentally rules out the oldest models of inflation with a false vacuum,
since these models do not generate the required density perturbations.

In early inflationary models, the scalar field responsible for the exponential
expansion was a Higgs field from Grand Unified Theories. However, the GUTs
that were considered, including the simple and elegant Georgi-Glashow model [15]
predicted an unstable proton with a lifetime that has since been disproved by
experiments. While inflation became ever more accepted as a real period in the
history of the universe, there is to date no certainty that GUTs actually exist.
This lead people to consider models where the scalar field that drives inflation
is not related to any GUT. This field is called the inflaton. In section |2 we will
consider this field in more detail and we show how it leads to inflation and the
scale-invariant density perturbations.

Many more advanced models of inflation have since been proposed, including
models that contain multiple fields. One such multi-field model, called the curvaton
model, is the focus of this paper and will be introduced in section 3|

2 Single field inflation

In this section we review the simplest model of slow-roll inflation: the single field
model. This model consists of a single scalar field (the inflaton) ¢, which causes
exponential expansion of the universe while slowly rolling down a potential. As it
nears the end of the potential, it starts to oscillate and transfer its energy. We will

11



show that this oscillation leads to a nearly scale-invariant spectrum of curvature
perturbations.

2.1 Inflation from a single scalar field

The inflaton is a scalar field ¢ which is assumed to be nearly homogeneous. There-
fore we can write it as:

o(x,t) = () + do(x, 1), (2.1)
where d¢ < ¢ is a small perturbation. To derive the equations of motion (Fried-
mann equations) for this scalar field, we have to know its energy density and
pressure. These can be obtained from the stress energy tensor, which for a scalar
field is given by:

o_ w00 0p 1 ., 00 0¢
T3 =9 g aws ~ 95 |39 gangw TV (2.2)

where we can use the Minkowski metric g,, = 7,., as long as gravity is weak.

2.1.1 Homogenous part

Although the field perturbations d¢ are essential for understanding the curvature
perturbations, if we want to see how a period of inflation arises, we just need to
look at the homogeneous part ¢(t). In that case the spatial derivatives vanish and
we are left with:

T§ = —n3n3é” + 115 B¢2 - V(cb)] , (2.3)

where the dot represents the derivative w.r.t. time. From this expression we can
distill the two quantities of interest:

p=-T5 = %éﬁ? +V(9)

P=Tj= 8 -V(), (2.4)

from which we see that the field generates a negative pressure as long as the
potential energy is greater than the kinetic term. More precisely, if we look at the
acceleration equation , we see that the inflaton generates an accelerating scale
factor as long as V' > ¢?. The Friedmann equations now become:

(%) w

] =

+v

12



Differentiating the first Friedmann equation and plugging both of (2.5 into the
LHS gives us the equation of motion for ¢:

o+3Ho+V' =0, (2.6)
where V' = dV/d¢.

2.1.2 Slow-roll conditions

We discussed the concept of slow-roll inflation in section and we will now
quantify what is meant by this. Basically it means we ignore the ¢ term in the
Friedmann equation and ignore the ¢ term in the field equation (2.6)), so we have:

3H=-V". (2.7)

This approximation will only hold under two conditions:

(o) < 1 and In(o)| < 1, (2.8)
where
m2 (V"2
c(¢) = f(v)
V//
(@) = mpr (2.9)

are the so-called slow-roll parameters.
To see how the slow-roll approximation leads to a period of inflation, we rewrite
the condition of inflation as:

SYog+H >0 (2.10)
a

This is obviously satisfied if H > 0, but this violates the dominant energy condition
—p < P < p which, as we can see from ({2.4), is not possible for a scalar field. The
required condition is therefore —H /H? < 1 which, in the slow-roll approximation,

can be written as: . ) 9
H V!
_ﬁg%(v) <1 (2.11)

Since the slow-roll condition is € < 1, we can see that when the slow-roll conditions
hold, @ > 0 and inflation is guaranteed.

13



2.2 Perturbations to the inflaton

Although we can understand inflation by just looking at the homogenous part of ¢,
the perturbations to this background are much more important. Perturbations to
the inflaton field lead to primordial curvature perturbations, which are responsible
for the structure that is visible in the present-day universe and in the CMB. In
this section we show that a slow-roll single field model of inflation leads to a nearly
Harrison-Zeldovich scale-invariant power spectrum of curvature perturbations.

2.2.1 Perturbed field equation

In section we derived ([2.6) assuming ¢ was a homogenous field. If we now
want to consider a space-dependent field, we can obtain the inflaton field equation
more easily by using the Euler-Lagrange equations. From the Lagrangian:

£=—5(0:0)("9) - V(5) (212
we obtain the free scalar field equation of motion:
—O¢+V'(¢) =0, (2.13)
where the d’Alembertian operator O in curved spacetime is given by [16]:
1
T Vg
Using this expression with the FRW metric , where /—g = \/T(gw) =

a3 the we obtain:

O 00V =59"0,0). (2.14)

1 . . 1
- ¢ = 5(3a2a¢ + a*¢) — Eﬁi(a&-qb)
= ¢+ 3Hd— (a710))%, (2.15)
Plugging this into (2.13)) leads to the space-dependent version of ([2.6]):
¢+3Hp—Vp+V =0, (2.16)

where V is the del-operator in comoving coordinates V; = a7'9; and ¢(x,t) is
the full inflaton field. To obtain an equation of motion for the perturbations we
perturb ([2.16]), which up to first order gives us:

06+ 3HOp — V2 +V"6p = 0. (2.17)

It is useful in cosmological perturbation theory to work with the Fourier trans-
form of d¢, because this allows us to compare the wavelength of a perturbation

14



mode with the size of the comoving Hubble radius (or horizon). The Fourier

transform of (2.17)) is given by:

. . B\ 2 1
Sy + 3HSby — (5) Sic+ 5V 6r = 0. (2.18)

As we will henceforth only work with the Fourier modes of the perturbation, we
will drop the subscript k from now on.

A simple potential which is often used is a quadratic one, V(¢) = %m2¢2,
where m can be interpreted as the inflaton’s mass. Using this potential, we have

V" = m? and the slow-roll condition can be written as:

v
m? <« — ~ H?, (2.19)

mp
which implies we can ignore the last term in (2.18). This means that, during

inflation, the inflaton can be considered a massless field and the equation of motion
becomes:

2
06 + 3HSp — (g) 5 = 0. (2.20)

Modes in the sub-horizon limit (k > aH ), behave as a harmonic oscillator:
. k2
0 + (a) d¢p = 0. (2.21)

As a mode exits the horizon, the damping term becomes important and the mode
“freezes out” to a constant value.

We should note at this point that we made a linear approximation here, which
in the language of perturbation theory means we are treating d¢ as field free of
interactions. In particular, there is no self-interaction between the different Fourier
modes, which could lead to non-Gaussianity.

2.2.2 The inflaton power spectrum

A general solution to (2.20]) is a damped oscillator. In the regime a few H~! before
and after horizon exit, which is the period we’re interested in, we can take H to
be constant. A solution is then given by:

H k k
0p(t) = L~/? e {z + E} exp <aZ_H) , (2.22)

where L is the box size that comes in with the Fourier transform. In this solution,
the exponential takes care of the oscillatory behaviour, while the second term
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in brackets takes care of the damping. The precise amplitude is obtained by
matching the solution to the initial conditions set at the Planck time. Neglecting
the exponential, we have that as t - —oo, aHH — 0 and the solution approaches:

1

00 = Ghatv)i2

(2.23)

where V' = L3. This is in terms of comoving coordinates. It can be written in
terms of physical coordinates kpp,s = k/a and Vs = a®V as:

1 1
0p — AN
[x1/2
‘/phys phys
If we assume quantum field theory to still be valid at this scale (which is a non-
trivial assumption) then, as we are deep within the horizon, we can ignore the
curvature of spacetime. Hence we can use the equal time commutation relation

from QFT in Minkowski spacetime to give us the initial conditions for the field
perturbation:

(2.24)

11

0p°) = ——. 2.25
(56) = 5 (2.25)
Since in Minkowski space V' = Vs and in the ultra-relativistic limit wy = &, our
solution in the ¢ — —oo limit (2.24]) limit matches up with the initial quantum

fluctuation at the Planck time.
Since all the time dependence of (2.22)) is in the scale factor, it is easy to check

that:

. H o [ik? ik
I VS S K
o T LﬁH] P (aH>
. H [2k2 K ik
—-3/2
o¢p = L7 ke [ el a3H} exp (_aH> ) (2.26)

Plugging these into shows is indeed a solution. We have taken a
slight shortcut here: we have solved a classical equation of motion for d¢, while
this is really a quantum field. In the Heisenberg picture of quantum mechanics,
each Fourier mode of d¢ is a time-dependent operator, which can be written in
terms of creation and annihilation operators. The time dependence is carried by
the coefficients of those ladder operators. However, at the linear level, the time
evolution of these coefficients is equal to the classical equation of motion, so we
can treat the field classically.

We would like to obtain the power spectrum at a time (t = t,), a few H~!
after horizon exit when the modes have frozen out and the spectrum is fixed. The
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power spectrum follows from the expectation value of d¢ and is given by:

L3K3

272

Po(k,t) = {60(t)*), (2.27)
where again L is due to the Fourier transform and will drop out of the final answer.
Since we treat the field classically, there is only one value for |d¢|>. At the time
of interest t,, a few Hubble times have already passed since horizon exit and
k/aH < 1, so the modulus squared of d¢ is given by:

H?
2 _

plugging this into (2.27]), this allows us to write down the power spectrum at ¢ = ¢,:

Ht)\> [ H\’

Pylkty) = ——=) ~|—

o(k,t) ( 2T 2T
This last approximation is for definiteness. Since ¢, is not a well-defined time and
we assumed H to be nearly constant anyway, we might as well evaluate the power
spectrum at the moment of horizon exit. As we can see, this power spectrum
does not depend on k: it is scale-invariant. This scale invariance relies on a few

approximations and we will see that in general the power spectrum will be slightly
deviating from scale invariance. More on this in section [2.3.2]

(2.28)

(2.29)

k=aH

2.3 Curvature perturbation

In the previous section, we found the power spectrum for the field ¢. Now we
need to translate this into a curvature power spectrum. This primordial curvature
power spectrum will then set the initial conditions for the evolution of structure
in the universe. To derive a relation between field and curvature perturbations,
we make use of the separate universe approrimation.

2.3.1 Separate universe approximation

The separate universe approximation [I7] relies on the fact that points in space
separated by more than a Hubble radius will be out of causal contact and thus
evolve independently. It is therefore possible to treat each Hubble volume as
a separate FRW universe, as long as each region is roughly homogeneous and
isotropic, so each “universe” has a homogeneous scale factor and energy density.

Within each “universe”, the curvature perturbation is given by the logarithm
of the scale factor, evaluated at a constant energy density slicing:

¢ =0dInd (2.30)

P=Pend ’
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where ¢ denotes difference from the average value and pe,q is an energy density
at time t.,q well after inflation has ended, when the curvature perturbation has
frozen out. It is important to note that this is generally not the same time as t,,
which is when the field perturbation has frozen out. Although the two are equal in
this simple single field model, in more complicated models including the curvaton
model, the curvature perturbations still evolve after the fields have frozen out.

From observations of the CMB we know that the curvature spectrum is very
Gaussian. Since the curvature perturbation depends on the Gaussian field pertur-
bation d¢, it therefore makes sense to approximate by a Taylor series in d¢.
The curvature perturbation will then be Gaussian to leading order, with higher
order terms giving non-Gaussian corrections:

¢ =(Ina)'| oo, + %(m a)"| 0% + O(6¢7) (2.31)

In a single field model we assume the perturbation d¢, to be small compared to
the average value of ¢, so the quadratic and higher order terms can be neglected.
Using this linear approximation and the scale factor during inflation a = exp(Ht),
the curvature perturbation becomes:

d(Ht) dt H

¢= (Ht)/5¢* = Td_¢5¢* = 35(?*. (2.32)

2.3.2 Curvature power spectrum

Just like we did for the field perturbation, we can now write down the power
spectrum for the curvature perturbations:

Po= S0 =28 (M) woor = (5) (£). ew

Because the field power spectrum (2.29)) is scale-invariant, so is the curvature
power spectrum. This scale-invariant spectrum relies on a few approximations
though. If we look beyond these approximations, we will find slight deviations
from scale-invariance. One of our assumptions was that H would be constant
during inflation, but in reality it is slightly changing in time. This effects the
solution for ¢ and thus the power spectrum.

2.3.3 Spectral index

The deviation from scale-invariance is captured by the spectral index ng, which is

defined as: il P
_ amre

(2.34)
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which for a range of constant n, essentially means:
7)< X knsil, (235)

from which we see that the scale-invariant spectrum corresponds to ng, = 1. Data
shows that the power spectrum observed in the CMB is close to scale invariant,
but excludes the exact scale invariant case n, = 1 with great certainty [2]. This
deviation from scale-invariance could very well be attributed to fact that the afore-
mentioned approximations do not fully hold.

Because we know the rough form of the power spectrum and it is eval-
uated at horizon exit k = aH, it is possible to evaluate the spectral index and
express it in terms of the slow-roll parameters. We start by rewriting the power
spectrum in terms of the slow-roll parameters. Using and the critical energy
density H?> = V/3m%, we can write:

VN[ V 1V
P (m%) (12w2m§3> 2472mi, € (2:36)
Next, we evaluate the differential d1ln k. We have (at horizon exit):
Ink=1Ina+InH. (2.37)

Because during slow roll, H is nearly constant and most of the time dependence
is in the scale factor, we have:

dlnk dlna
at "~ dt
Now we can switch variables from dt to d¢. Again using the slow-roll approxima-
tion and the critical density, we obtain:

d L, (V' d

dnP; 1 dV 1 de

= H. (2.38)

Using this, we find:

N Z 2.4
dink  Vdlnk = cdlnk’ (2.40)
and using
av de 9
Tk —2€eV and g —2en + 4€”, (2.41)
this gives us:
ns — 1 = 2n — Ge. (2.42)

This immediately shows that, under slow-roll conditions , the spectral index
is very close to scale-invariant. In the derivation of @ we have still assumed
H to be constant, or at least H < a. Relaxing this condition will generally give a
larger deviation from scale-invariance.
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2.3.4 Non-Gaussian curvature perturbations

In the single-field model, the final curvature perturbation (2.32]) is Gaussian. This
follows from the initial Planck-era vacuum fluctuation, which we assumed to be
given by the standard flat spacetime ETCR ([2.25)) and which is a Gaussian quan-
tity. The reason why this initial Gaussian fluctuation remains Gaussian until a
much later era has to do with the linear approximations we made in deriving the
equations of motion for the perturbation. A Gaussian distribution which evolves
linearly will remain Gaussian. However, the linearity of equations ([2.20]) and (2.32))
is due to first order Taylor approximations. If we include higher orders in those
approximations, this will give us a non-Gaussian component of the curvature per-
turbation.

If we include higher order terms in the field equation (2.20]), we will end up
with a non-Gaussian field perturbation, but this would mean the field equation is
no longer easy to solve analytically. Instead, we assume the linear approximation
holds for the field equation and we include higher orders in (2.31]). This would
modify the dependence of ( on the field perturbation d¢ by adding a quadratic
term to . Up to second order we write:

C= Gt 3l (2.43)

where (, is the Gaussian curvature perturbation obtained in the first or-
der approximation. The factor 3/5 is there just by convention and fyi, is the
nonlinearity parameter, which measures the size of the nonlinear and hence the
non-Gaussian part of the curvature perturbation. Since the Gaussian part of the
perturbation is (Ina)'d¢, and the total perturbation is given by , the non-
linearity parameter is given to by:

(Ina)”
Ina)?

(2.44)

S| Ot
—

fan =

p

3 Curvaton model

In the previous section we described a simple model of slow-roll inflation, where
there is a single field ¢ which is responsible for generating the era of inflation as
well as the primordial curvature perturbations. The beauty of this model of course
lies in its simplicity, while it also predicts the nearly scale-invariant curvature
spectrum as observed in the CMB. However, as discussed in section [2.3.4] it is
hard for such a model to generate significant non-Gaussianity in the curvature
spectrum. However, other models might lead to greater non-Gaussianity in the
curvature spectrum which, if present, could be measured by future experiments
such as Planck [3].
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In this section we will introduce the model which is the focus of this thesis: the
curvaton model [I8], 19].

3.1 Basics of the curvaton model

The basic idea of the curvaton model is to have two light scalar fields during
inflation instead of one. We still have the inflaton ¢, which drives inflation, just
as described in section [2.1, However, in addition there is another scalar field o,
called the curvaton. The idea is that the inflaton just takes care of inflation, while
the curvaton is the dominant force in generating the curvature perturbation. In
the simplest case then, we will have a Lagrangian:

1
L=Ly+=6>—=(Vo)* — =m?c? (3.1)

where L, is the Lagrangian for the inflaton field and we assume a quadratic form
for the curvaton potential V(o) = m?0?/2. The exact dynamics of the inflaton
field are not important, as long as it has a flat enough potential that will generate
a period of inflation.

While the inflaton takes care of inflation, the curvaton will generate the cur-
vature perturbations. For simplicity, we will ignore the curvature perturbations
generated by the inflaton as described in section [2.3] and the curvature perturba-
tions will be solely due to do.

The power spectrum obtained for do will be nearly scale-invariant as before,
but after inflation ends, the curvaton will start to oscillate around the minimum
of its potential, generating perturbations in the energy density and therefore the
curvature.

3.1.1 Curvaton field perturbation

Looking at , we see that the curvaton, with the same quadratic potential as
we used before for the inflaton, essentially has the same Lagrangian and thus obeys
the same field equation . Just like we did with the inflaton, we assume o is
nearly homogenous and in analogy with we write:

o(x,t) =o(t) + do(x,1), (3.2)

which leads us to the same equation of motion for the perturbation as before,
(2.18):

. . E\ 2 1
dox +3Hboy — (a) ooy + §V"(50k = 0. (3.3)
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Using the quadratic potential from ({3.1)), this leads to:

a

00 + 3Hoo — [(Ey - m2] o =0, (3.4)

where we dropped the subscript, since we will always be working with the Fourier
modes. During inflation, we assume the curvaton is very light m? < H?. Com-
bined with an initial Gaussian perturbation, this will then lead to the same scale
invariant spectrum we had before:

H 2
P~ (2)

3.1.2 An evolving curvature perturbation

(3.5)

k=aH

So far, the curvaton model brings us nothing new. The difference arises when we
consider how curvature perturbations are obtained from this field perturbation.
In the single field model, the curvature perturbation arising from d¢, as described
in freezes out almost instantly after the field perturbation has frozen out,
which is just after horizon exit. In general, even for non-FEinstein gravity, it has
been calculated [20] that the time evolution of the curvature perturbation is given
by:

= —L(SP + gradient terms (3.6)

C - P + P nad gra ) .
where 0 P,.q is the non-adiabatic pressure and we ignore gradient terms because
we are working within the separate universe approximation. This means that
curvature perturbations will be constant if the pressure perturbation is adiabatic.
In the case of the single-field model, this is the case and curvature perturbations
freeze out as soon as d¢ does. For the curvaton model, this is not the case.

3.2 Curvature perturbations in the curvaton model

In this section we describe how the curvaton field perturbation gives rise to cur-
vature perturbations. We will see that the resulting curvature power spectrum
allows for a greater non-Gaussiantiy than in the single field model.

3.2.1 Oscillatory epoch

During inflation, the energy density of the curvaton is negligible compared to that
of the inflaton. As the slow-roll conditions fail, the inflaton starts to oscillate and
decays, where we assume that it decays predominantly into radiation. The field
perturbation do is now frozen, but as the Hubble rate starts to drop, oscillations
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begin around the time when H ~ m. In order to calculate the curvature perturba-
tion arising from do, we first calculate the density perturbation it creates, which
we denote as:

5= b (3.7)
(po)

where dp, contains the spatial inhomogeneity. Again, using the separate universe

approximation, we ignore gradients within a Hubble volume and assume that the

oscillation is harmonic in each “universe”, with the energy density given by:

po(x) = smio’(x), (3.8)

with o(x) the amplitude of oscillation.
Expanding to first order, we can write:

1
Po(X) = po + 6ps = 5m?(0 + 60)?, (3.9)
where p, and o are the zeroth order, homogeneous values.

We can now identify two limits. If the field value o is nonzero and the field
slightly fluctuates around this value from region to region in space, we are in the
limit §o < 0. This means that, to zeroth order (p,) = m?c?/2 and to first order
dp, = m?odo, yielding:

oo
0=2—. (3.10)

o
However, if ¢ is very close to zero and the perturbation is big enough, it is possible
to be in the regime where do > o, which means the roles ¢ and do have in per-
turbation theory are reversed. To zeroth order we now have {p,) = m?((6c)?)/2,
while to first order dp, = m?(d0)?/2, which leads to:

B (00)?
((00)%)
Since do is a Gaussian perturbation, the density perturbation is also Gaussian in

the limit 0o < o, whereas in the opposite limit the density perturbation becomes
the square of a Gaussian quantity (a x* quantity).

(3.11)

3.2.2 The curvature perturbation

Now that we have found expressions for the density perturbation, we need to know
how this translates into a curvature perturbation. According to , the curvature
perturbation will evolve as long as there is non-adiabatic pressure, which is the
case when the energy density of the universe is a mixture of matter and radiation.
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This happens when the curvaton starts to oscillate and becomes massive, after
which its energy density drops more slowly (o< a=3) than that of radiation (oc a™?)
and we enter an epoch of neither matter nor radiation domination. This period
with a non-adiabatic pressure perturbation is then sustained until the universe is
dominated by a single fluid again. This will be at the time of matter (curvaton)
domination, unless the curvaton decays into ultra-relativistic particles before it
starts to dominate the energy density. For simplicity we will assume the curvaton
decay happens instantaneously when H =T.

In analogy with , the curvature perturbation can be expressed in terms
of the density contrast as [20]:

op
(=—-H—. (3.12)
p
With the energy density proportional to the scale factor p = a™"py, we have:
p=—na""tapy = —nHp, (3.13)

where n = 3 for matter and n = 4 for radiation. Since they are both perfect,
non-interacting fluids, their energy densities are separately conserved. Plugging
this into we can calculate the curvature perturbations for both the curvaton
and radiation components:

1dp
C’y - ZJ
P~
1dp, 0
s = —— ==, 3.14
G 3, 3 (3.14)
which can be combined to obtain the total curvature perturbation:
5 5 o 4 3 T NO

Py + Po 4py + 3ps

Gy is the curvature perturbation due to the inflaton which has decayed into radi-
ation. However, as we stated before, we ignore curvature perturbations generated
in this way, which leads to the simplification:

305Co Po
_ _ 5, 3.16
T Ip 35, dpy+3p, (3.16)

from which we can see that the curvature perturbation is a multiple of 9. Thus, if
0 is Gaussian, so is (. Since this remains valid until after curvaton decay, we can
use to look at the two different limits discussed earlier.

If the curvaton dominates the energy density before it decays (p, > p,, the
curvature perturbation is given by:

g:g. (3.17)
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If the curvaton decays earlier, when it only contributes a small fraction r < 1 to
the energy density (p, = rp,), the curvature perturbation is:

(= %5. (3.18)

Using our earlier results for the density and field perturbation, we can now
calculate the curvature power spectrum. In the Gaussian regime (ignoring the

factors of % and }l), we have:
2
rH
()
70/ Ak=aH

where we used the results from (3.5)) and . We could also look in the opposite
limit 0o > o, but this leads to a completely non-Gaussian curvature perturbation,
which is excluded by experiment [2I]. However, we can look at the intermediate
regime where we have a small non-Gaussian component. Combining and
and assuming radiation domination, the curvature perturbation is given by:

(= 2 [2%‘7 + (%‘7)2] : (3.20)

oo H

(3.19)

with:

— 3.21
o 2mo ( )

k=aH

3.2.3 Evaluating the non-Gaussianity

As we stated before, the field perturbation is Gaussian. However, as we see in
, the curvature perturbation depends not only linearly, but also quadratically
on do /o, which gives a non-Gaussian component to the curvature perturbation. It
is important to stress the difference with the single field model. As we described in
section [2.3.4] it is also possible to obtain a small amount of non-Gaussianity in the
single field model, by including higher orders of d¢ in the Taylor approximation
used in . The crucial difference however, is that in the single field model
0p < ¢ always. The curvature perturbation is generated during inflation, when ¢
is still slowly rolling down the potential and has a nonzero mean value. Once the
inflaton starts to oscillate and decay, the curvature perturbation is already frozen.
Therefore the quadratic term in the Taylor expansion is negligible.

Because the curvaton is subdominant during inflation, ¢ < ¢ and do /o need
not be extremely small, which makes the second term in (3.20)) non-negligible,
leading to a non-Gaussian curvature perturbation. This is the canonical way of
generating non-Gaussianities in a curvaton model. However, this thesis focusses on
a different way to obtain non-Gaussian curvature perturbations, through a process
of parametric resonant decay, which will be described in section [4

25



3.3 The decay channel

In this section we briefly discuss the decay channel for the curvaton.
In section we assumed the curvaton to decay into radiation instantly at
a time when H = I'. Of course, this is a simple approximation. In reality we
assume there is a perturbative decay process which leads to an exponential decay
of the curvaton. The decay could proceed through a Yukawa coupling to some
light, ultra-relativistic fermion v, by including a Yukawa term to the Lagrangian
B i
EYukawa = h(ﬂ/}w (322)

This adds a second damping factor ['c to the curvaton field equation, leading to
a decay rate [4]:
2
potm
8T

Since the coupling constant h is basically a free parameter, this means I' is also
free. There is a lower bound on the decay rate though, for if the curvaton decayed
very late it would interfere with hot big bang nucleosynthesis, which we assume
takes places after all the curvature perturbations are fixed. This leads to a lower
bound for the decay rate [22]:

(3.23)

T2
I > —BBN (3.24)

mp
Apart from this lower bound the decay rate is a free parameter. Going back to
our previous approximation that the decay would happen instantly at H =I', we
see that because of the freedom we have in choosing I', we were justified to explore
both cases were the curvaton decays before matter domination (for large I') as well
as after matter domination (small T').

Another possibility we will not explore here but which is still worth mentioning
is curvaton as a candidate for dark matter. In principle the decay process could
be such that not all of the curvaton decayed, for instance if there is just a resonant
decay and no perturbative decay channel. The curvaton particles left after the
resonance would then exist as dark matter.

4 Resonant curvaton decay

In this section we will describe the process of resonant curvaton decay (or pre-
heating). We describe how a curvaton which is coupled to another field can decay
quickly through a parametric resonance. First, we will consider the case in which
this other field is also a scalar field xy. Then we will discuss the new case in which
the curvaton is coupled to a gauge field.
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4.1 Parametric decay into scalar field

First, we will look at the case where the curvaton is coupled to another scalar field
x and decays through a parametric resonance. We modify the standard curvaton
Lagrangian (3.I). It now includes canonical kinetic terms —d#¢;d,1;/2 for all
scalar fields ¢; and it now has a potential:

V(g,0,x) =V(e) + %msz? + 39202%, (4.1)
where V(¢) is a slow-roll inflaton potential, m is the curvaton mass and g < 1
a coupling constant. If we want the rest of the curvaton particles, which are left
after the resonance, to decay we can include a Yukawa term (|3.22)).

During inflation, both ¢ and y are subdominant and at the time of freeze-out
H,, we have p,, py, < pg = H?m%. From we see that y has an effective mass
Myet = go 2 H,, where the inequality implies that y is massive during inflation
and therefore does not obtain any field perturbations in the same way the curvaton
does. If it were light like o, we would effectively have two curvatons. In order for
x to comply with these two conditions: being both subdominant in the energy
density and massive during inflation, its value is driven to zero exponentially fast.
This also means the y — ¢ interaction term in hardly contributes to the
effective mass of the curvaton, i.e. m? > ¢x2.

After inflation has ended a parametric resonance takes place, in a process
similar to that of inflationary preheating [4, B 6], [7]. In original preheating, the
inflaton particles are annihilated to create x particles. Since at this stage, the
inflaton is the dominant energy density, the process of preheating occurs during a
period of matter domination. In contrast, in the case of curvaton preheating the
dominant contribution of the energy density (inflaton) has already decayed into
radiation, so the resonance occurs during a period of radiation domination, which
slightly modifies the results of the original inflaton preheating.

4.1.1 Evolution of the curvaton

After inflation, the field equation for the curvaton is, in analogy with (2.6):

&+ 3Hé +mPo =0, (4.2)

where we used m? > ¢?x?. In the case of matter domination H = 2/3t, whereas
during radiation domination H = 1/2¢t. We assume the matter component remains
subdominant until after the curvaton decay, so we use the latter solution for H.

Now we multiply by #? to obtain the standard form of the well known Bessel
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equation. The solution to (4.2]) is then given by:
J1/4(mt)

ot) = C i/ (radiation domination) (4.3)
J t
o(t) = C’g% (matter domination),

where (', C5 are integration constants. Sticking with the radiation dominated case,
we can find the appropriate constant by matching (4.3]) with the initial condition
o(0) = o,. Doing so, the solution becomes:

J1/4(mt)
(mt)l/4 -

For mt < 1, the leading term in the Taylor expansion of the Bessel function
is cancelled by the factor (mt)~%/* and o is nearly constant at o,, the value it
obtained during inflation. However, when H ~ m, oscillations begin and as soon
as mt 2 1, can be approximated as a slowly damped oscillator:

o(t) = 2Y41(5/4)0, (4.4)

o(t) ~ 7 sin (mt + g) , (4.5)

with the decaying amplitude & given by [9]:

_ 2AT(5/4) o,
)= /2 (mt)3/4'

For simplicity, we assume the oscillations start at t,s. = 37/8 and this also the
time where we normalise the scale factor, so henceforth aese = a(tos.) = 1. After
this normalisation, the energy density of the curvaton can be expressed in terms
of the density at t,:

(4.6)

m2o? p
o — osc = g,08C , 4. 7
with
8T(5/4)

Oosc — WO’* ~ 0.760, (48)

being the value of the curvaton at the time when oscillations start.
The exact solution (4.5)) is needed, because the resulting time-dependent fre-
quency in the equation of motion for y leads to the resonance.

4.1.2 The x field equation and resonance in a non-expanding universe

Since y is a scalar field, its equation of motion is derived in the same way as we
did for the inflaton in section and is given by (2.16)). Using the potential

(4.1)), this becomes:
X+ 3Hy — (V2 — g2o'2)X = 0. (4.9)
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Again, we rather work with the Fourier transform, where the evolution of the
modes is given by:

. . k2
X + 3H X + (ﬁ + 9202) xk =0, (4.10)

which is the equation for a damped oscillator with a time-dependent frequency
due to a(t) and o(t).

In the case of a non-expanding universe and small oscillations of ¢ around
a nonzero value og, this can be solved by the theory of the Mathieu equation.
Equation can then be written in the canonical form of the Mathieu equation

X+ (Zx — 2g cos2z)xk = 0, (4.11)

by shifting variables to z = mt+57/8. In (4.11)), the prime denotes differentiation
with respect to z and:

k? + %02 4g°%040
Sy =4 (TO q= m; : (4.12)

from which we see that the time-dependence of ¢ must be small in order for the
theory of the Mathieu equation to be valid. In the regime of small oscillations
around og, where & < 0y < m/g, there is such a small time dependence and there
are narrow resonance bands, ¢ < 1. In that case there exist exponentially growing
solutions Yy o exp(ul(f )z) in the resonance bands labelled by 7. These lead to an
exponentially growing particle density for those modes of x:

ny(t) o exp(2,ul((j)z). (4.13)

4.1.3 Stochastic resonance in an expanding universe

In the toy-model case of the non-expanding universe, we have ¢ < 1. However,

in order for the resonance to take place in an expanding universe, we require the
condition ¢*m = H. By using (4.12) this would mean that

7\ /4
ag 2 2m (E) : (4.14)

If we ignore the weak H'/* time dependence and since roughly H ~ m, this means
that for preheating to occur we require ¢ 2 m/g, which is exactly opposite to the
condition for resonance in a non-expanding universe. Furthermore, if we assume
large fluctuations around the average value for the curvaton field, i.e. & > oy,
which is especially true if we assume oy ~ 0, then we have a slightly different
Mathieu equation, where the g-parameter is given by:

g5
 4m2?’

q (4.15)
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From the condition on ¢ mentioned above, this means a resonance will only take
place for large ¢ and will end when ¢ < 1/4. In fact, in order to get an efficient
resonance in an expanding universe we need an initial value ¢y > 10% at the end
of inflation.

In discussing the new g-parameter (4.15)) we have skipped over an important
difference with the non-expanding case though. In an expanding universe the Hub-
ble drag term in is nonzero thus it is slightly harder to rewrite this equation
in the form of a Mathieu equation, (4.11). However, this is possible by rescal-
ing the field as Xy (t) = a*?(t)xk(t). Doing so, we can absorb the Hubble drag
term from into the second order derivative term and rewrite the equation
of motion as:

Xy + wiXy =0, (4.16)

in which the time-dependent frequency wy is given by:

2 ™ 3d 3 [a\’
2 _ 222 2 S I e 4.1
Wi —a2—|—ga sin (mt+8) 24 4(@) (4.17)

Here, the last terms are to compensate for the additional terms generated by X.
However these terms can be neglected, since

. N 2
L (9) = H? <m? < g%, (4.18)
a a
which makes them insignificant compared to the second term. Because of the
implicit time dependence of the frequency, due to a(t) and o(t), there is no simple
solution to (4.16]). However, as an initial condition we can take a positive frequency
solution Xy (t) ~ exp(—iwkt)/+/2wx. We can write down an adiabatic invariant
which can be interpreted as a comoving particle density:

Wk |Xk‘2 9 1
= — X - —. 4.19
Nk 5 ( ) + | Xk| 5 ( )

Although this is the quantity we are interested in, the hard part is to estimate Xy
and its derivative.

As shown in [4], the creation of x particles is most efficient when o becomes very
small, which happens every half-period of curvaton oscillation. However, while the
frequency of o is fixed (w, = m), the average frequency for X is decreasing in time
due to & oc t73/%. At first, g5 > m, the frequency of X is much higher and X
oscillates many times as o changes slightly. However, with time the amplitude of
the curvaton oscillation drops, which causes X to oscillate more slowly. In [4] an
example case is taken where g = 0.1 and m ~ 107~ %mp. Using these parameters it
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is calculated that, because of the decreasing field amplitude, the modes Xy do not
stay in one resonance band during an oscillation but actually go through ~ 103
resonance bands. In [4] this calculation is performed in the matter dominated
case where & oc t~! and the effect will be less in the radiation dominated case of
curvaton preheating, yet the principle remains the same: during a single oscillation,
X will go through many resonance bands. This causes the standard methods for
the Mathieu equation in a single resonance band to fail.

In the broad resonance regime where ¢ > 1, there can only be a resonance
at “creation moments” where o(f) = 0. Due to the time dependence of a(t),
but mostly due to the time dependence of &(t), the frequency of X changes dra-
matically with each oscillation of o. This causes the phases of Xy during each
oscillation to be uncorrelated, whereas in the case of a non-expanding universe,
the phase of xyi is the same at every “creation moment”. Since the particle num-
ber depends on this phase, the number of particles created at any “creation
moment” becomes a stochastic quantity and might in some cases even be nega-
tive (such that the resonance destroys particles). However, a broad resonance is
still possible since simulations show that in 75% of the cases, Xj and thus parti-
cle number grows during a creation moment. This regime of resonance is called
stochastic resonance. Stochastic resonance takes part during the early stages of
the resonance, when ¢ is very large. With time, ¢ decreases and yx stays longer
in each resonance band. After ~ qé/ 4 / V27 oscillations the standard methods for
the Mathieu equation apply again and “normal” resonance takes over, which lasts
until ¢ < 1/4 when x settles down into a constant value.

4.1.4 Adiabatic representation and particle density

We can write the solutions to the field equation (4.16|) formally as solutions in the
adiabatic approximation:

t .t t) .t
X(t) = O‘kTQ(w)e—zf it %%ezf it

where we are interested in the amplitude of the growing modes, which give us the
number density ny = |Bx|?. In the broad resonance regime, there is only significant
particle creation at the creation moments ¢; when o(t;) = 0. Everywhere else the
field evolves according to and the particle number remains constant. The
amplitudes oy and [y are constant in this adiabatic regime, but they change
significantly between creation moments, so that we can write for ¢;_; <t < ;:

(4.20)

. ol B
X7 (¢) = k e—zf wdt + k ezf wdt' 491
= o (2
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This can be interpreted as waves scattering in a parabolic potential, where at every
creation moment ¢; there is a reflection and transmission amplitude.

To study the non-adiabatic regime where o ~ 0, we can Taylor expand the
curvaton around ¢ = t;:

3} k2
Xy + (? + g*a*m?(t — tj)2> Xy =0, (4.22)

where as before we neglected the terms ~ H? in the frequency.
This equation can be brought into a simpler form by changing variables:

d* Xy

dr?
with 7; = k,(t —t;) and k; = k/ak,, where k, = /gm0os and a is to be evaluated
at t;. The solutions to are linear combinations of the parabolic cylinder
functions W (—r,/2; £v/27;). From these solutions reflection and transmission
amplitudes can be extracted, which give a recursion relation between (a{jl, ﬁﬂ“)
and (a{(, Bf{) These relations can then be used to obtain a recursion relation for

the particle density between creation moments. In the limit of large occupation
numbers, ny > 1, this is given by:

+ (K] 4+ 7)) Xk =0, (4.23)

nl ™ = nl exp(2mpl), (4.24)

. 1 a2 |
1 = Py In (1 +2¢ ™7 — 2sin Gjeff”‘? 1+ €_M§> (4.25)
T

and 60, is an essentially random phase that leads to the stochastic nature of the
particle creation. Both terms in are proportional to e o e~1/9. This
function is non-analytical at ¢ = 0, which highlights the non-perturbative nature
of the resonance. The second term in is always positive, so it always leads
to particle creation, but the last term can be positive or negative depending on the
phase 6;. This leads to very different values for 47. Although on average sinf; = 0,
this value can of course vary between —1 and 1, depending on the phase. In the
simulations performed in [4] this leads to an average value p/ = 0.18, but variations
from a maximum of ~ 0.28 to negative values. In the latter case, this means there
is actually a drop in particle number during a “creation moment”, although on
average the particle number will increase.

To obtain the total particle density we must do two things to : sum over
j and integrate over k. After a few oscillations of the curvaton, the sum over j
can be approximated by a time integral and:

where

1 i1 K
ni(t) = éeQﬂ'Zij R 5 exXp (Zm/ dt,uk(t)) : (4.26)
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Furthermore, we can replace the time integral by an effective growth index [ ! dtpn(t) =
psft. Then we integrate over k to get the full particle density for y:

1 1 .
ny(t) = Gra) /d3knk(t) = o /dkk2 exp (2mpygt) . (4.27)

Because of the exponential dependence on p§f which has a maximum value p =
max(pgh) at k = kmax, (4.27) can be solved by the method of steepest descent:

1 Akk2 _e2mt
t ~ max 4.28
nX( ) 871'2@3 \/W ) ( )
where Ak is the width of the resonance band and typically kpax ~ Ak ~ k,/2,
which implies:

k?’
1) ~~ * 2,u,mt. 4.29
mx(t) 647T2a3\/7rmmf6 (4.29)

4.1.5 Back-reaction

As the number density of x particles grows exponentially, we get to a stage where
there are so many y particles that back-reaction effects of y particles decaying into
curvatons can no longer be ignored. When this happens, our linear approach fails
and we need a full nonlinear treatment of the resonance, which can be done using
lattice methods [9]. This back-reaction stage is obtained when the contribution of
X to the effective curvaton mass becomes roughly equal to the bare mass, so when
g*(x*) ~ m?. Since number density is given by:

P g20? <X2>

eff
ms; qgo

= (x*)go, (4.30)

nXN

we can find the back-reaction time by equating this with m?c/g and plugging it
in (4.29) as the particle density. Squaring both sides and taking the logarithm, we

obtain: . 5o

1 10 tor

b A pn ((2Opmmte) 7 (4.31)
dmp 9’0 ose

where we used o(t,;) = 0ose ~ 0.760, and a = (8mt/37)'/2. The solution to (4.31)
is given by the lower branch of the Lambert W function:

5
~——— W (=1072¢%5 Jmu®/Pg1/?) . 4.32
Sm,u 1 ( g /mu QOSC) ( )

tbr
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4.2 The curvature perturbation

In the previous section we discussed the parametric resonance and obtained an
expression for the back-reaction time, beyond which our linear approach fails. So
if we want to study the curvature perturbations created by the resonance, the best
we can do is to study the perturbation at this time. However, if we assume the
resonance ends instantly at ¢, we don’t have to deal with the nonlinear regime. In

the following we assume that after ¢, the perturbative curvaton decay, as discussed
in section takes over.

4.2.1 Separate universe approximation revisited

In order to calculate the curvature perturbation generated by the resonance, we
have go back to the separate universe approximation as introduced in section [2.3.1]
From ([2.31) we see that in order to find the curvature perturbation, we need the
scale factor at the time of back-reaction. Since the scale factor depends on the
energy density, we would like to write down the relation between the two at the time
of back-reaction. However, after the resonance the fields go through a period of
nonlinear, non-equilibrium dynamics, which makes calculations (near) impossible.
Instead, we will calculate the scale factor and energy density by comparing them
to their values at some reference time t,of well after the resonance has ended:

Aref 3 Aref 4
= Pre re 1-—- re ( > s 4.33
p=p f|]" f( . > + (1 = 7ref) " } (4.33)

with r.s the matter fraction of the energy density at t,.;. We assume x to be ultra-
relativistic, so the only contribution to the matter energy density will come from
the curvaton. Although we assume that r < 1, not all of the curvaton particles
decay during the resonance and the remaining ones will decay later though a
perturbative decay process as described in section [3.3] To find an expression for

Ina, we invert (4.33)), giving:

4 4 Pref a
—at e () (=) 4.34
", { f(aref) He fﬂ .

Since we assume radiation domination, to good approximation p oc a™*, so we can
make the replacement (a/a.er) = (prer/p)'/*. Doing so and taking the logarithm on

both sides gives:
1/4
1+ et ((p‘”ef) - 1)] . (4.35)
P

Pref

4lna =41Inas+ In + In
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1/4
With the matter fraction being so small, € = 7. ((pfpef> — 1) < 1, we can

Taylor expand In(1 + €). Doing so gives us the final expression for In a:

1/4
In 2 4y ((pref) - 1)] . (4.36)
p p

From ([2.31)) we see that to obtain the curvature perturbation, we need to differ-
entiate (4.36) with respect to the curvaton field value during inflation. The first
two terms are given by [9]:

1
Ina = Inaes + 1

1 r p/ r
1 ' = l re ! - (1 _) Lef - re ref 437
(Ina) ’p (In Gyef) +7 { +1 pref+(7“ r f>7”ref (4.37)
1 p// p/ 2 r p// 3 /0, 2
Ina)’| = (Inaw)” + = if—(Lef 4 | Dref  Z [ Def
( ) ‘p ( f) 4 Pref Pref 4 Pref 4 Pref
ror! fp/ ; T//f
4—_reirrel T — Tre _ret 4.38
2 T'ref Pref ( f) Tref ] ( )

These results can be applied to any curvaton model, with or without a parametric
resonance. In the models without a resonance, as studied in section 3] the curvature
perturbation can be calculated at the time of perturbative decay, which in section
[3.3] we assumed to happen instantaneously at H = T.

4.2.2 Curvature perturbation without resonance

We would like to test the validity of equations by applying them first to
the case where there is no resonance. In this case, we have already calculated the
curvature perturbation in section |3.2.2] and we can see whether we get the same
results using the expressions .

As a reference time we can use the time at which oscillations start (fo = tosc),
because without a resonance, the energy density evolves like at all times.
Since oscillations start when H ~ m we get, by the Friedmann equation, p, =
Posc = m2m%, and this expression does not depend on o,. Since the scale factor
depends hardly on the matter energy density, a,.f too is independent of o,. So the
only relevant derivative is /. This massively simplifies (4.37)):

1 r!
! P _ _0sc
(Ina) ‘p = 4(7’ Tosc) -~
1 1!
(ln a)”‘p = Z(T - Tosc)%' (439)
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With 7ose = po.osc/ Posc = m202../2pese, the two derivatives can easily be calculated.

As we did in section [3.2.2] we evaluate the curvature perturbation just before the
(instantaneous) perturbative decay, hence we assume 7. < r < 1. Doing so
yields the curvature perturbation up to second order:

A LAY 2 (4.40)
4 Oy O, ' ’
Comparing this with (3.20), we can see the equations aren’t quite the same. This

is because in (]3.20) we combined the first order expansion of two different limits.
If we stayed in the limit 0 < ¢ and expanded (3.18) to second order:

(= 2(5 +62/2). (4.41)

the resulting curvature perturbation would be the same as (4.40)).
We can also use the results (4.39) to calculate the nonlinearity parameter fxi,
of the curvature perturbation. Plugging (4.39) into (2.44) gives:

5 (Ina)” 20 Tose TH.
InL =2 Una)’| _ 20 Tose Tose (4.42)

6 (Ina)? 6 7 — Toge T2
p osc

and by using 7. = m20%,./2pes. and the fact that ros. < 7, this reduces to:

5
— 4.4
L 3 ( 3)

where r is the matter fraction at the time of the perturbative decay.

4.2.3 Curvature perturbation from resonant decay

The previous section was just a recap of the curvature perturbation generated
without a resonance. Our real interest lies in calculating the curvature perturba-
tion generated by the resonant decay as discussed in section [4.1l This was done
by [9].

Since the linear approach used in section breaks down past the point of
back-reaction, we assume the resonance ends abruptly at ¢, and use this as our
reference time. So combining the back-reaction time with our normalisation
for the scale factor a = (t/tes)'/?, we can calculate the scale factor at this time.
Then we can use equations to give [9]:

1
1 X / ~ ——(1 L - 1 2
()~ —5(np) = iy (1+ O(c})
1
(hl abr)" = —5(111 /,L)H + m(l -+ (’)(a%r)) (444)
br* *
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These expressions involve derivatives of y and it is hard to estimate how this
parameter will depend on the curvaton freeze-out value, which is why we will just
leave this expression as it is.

We want to calculate the curvature perturbation at some time after the reso-
nance. If the resonance ends at ty,, a fraction £ of the curvaton energy density is
transferred into ultra-relativistic y-particles, so just after back-reaction the energy
densities for matter and radiation are given by:

Po,osc
obr — 1— 7
Pab ( f) a3

br
P~,0sc Po,osc
. = + , 4.45
P = g T, 9

from which we can calculate the total energy density and matter fraction at back-
reaction:

Po,osc P~,0sc Posc
r ~ 1 osc r 1
T
The = Pobr o Pobr (1 = &)Toscpr- (4.46)
Pbr Pr,br

Plugging these and the leading order terms from (4.44)) into (4.37)) yields:

o E ap [ 2 L & 2 ¢
marl, = |2 (Z -5+ E) -]

" r g Ay 2 4 5/ 1/~L/ g// (M—l/z)// glul
(na) ’pzz{l——s%(a_ﬁ+z<€_§ﬁ)+?+ i fu)

e T -g 1-¢

1

2 i & ] . (4.47)

The terms scaling as a=" in the above equations represent radiation inhomo-
geneities due to the resonant decay. Since the curvature perturbation stops evolv-
ing once all the curvaton particles have decayed, these a~! terms will be irrelevant
if the perturbative lifetime 1/T" of the curvaton is large. In that case we ignore
those terms, which hugely simplifies :

(Ina)" ~ T (1—i)

20, 2(1=¢)
" r 20, oy
which gives the curvature perturbation:
r |00, o3¢ do? 20, o2’
=— 1——=— = 11— - —= . 4.4
ile(i-aitg) (-2 wtg) ww
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If we set & = 0, which corresponds to the case without a resonance, we can see

that (4.49)) reduces to (4.40)).

Just like we did in the previous section, we can also calculate the non-linearity
parameter in the case of the resonant decay. Again, we plug (4.48) into (2.44) to

give: )
5 20,8 o2g” a.& N\
fNL_?(l_l—s_zu—s)) (“m) o 450)

in the limit where the terms oc a™! in ([4.37) have redshifted away.

4.3 Gauge coupled curvaton resonance

In section we discussed how the curvaton could decay into another scalar field
through a parametric resonance. We will now consider the same process for a cur-
vaton which is charged under a U(1) gauge group. The gauge field is in its vacuum
state during inflation, but as the curvaton starts to oscillate, a resonance can occur
which creates excitations in the gauge field (photons). Although preheating into a
U(1) gauge field has been studied briefly in [23], a different coupling between the
scalar and gauge-field is used there.

In our case, the Lagrangian is that of ordinary scalar electrodynamics, although
the inner products are altered by the fact we are working in curved spacetime. It

is given by
1 1
L=Ly— ZFMVFMV — §DMU*DMU —V(c*o), (4.51)

where Do = (0" + ieA*)o. Since this is quite a different Lagrangian to what we
had before in (4.1)), we must not only derive the field equation for A,, but also
re-derive the curvaton field equation. For simplicity, we choose to work in the
Weyl gauge where Ay = 0.

4.3.1 Evolution of the curvaton

To derive the equation of motion for the curvaton, we go back to (2.13)), which for
complex fields becomes:

oV(c*o)
o, Ve _
oo

However, the d’Alembertian is now somewhat more complicated, since we have to
replace 0, with D,, , the gauge coveriant derivative. Using (2.15)) and making the
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replacement 9, — D,,, the d’Alembertian term can be rewritten as:

1
-9

Oo D,(v/—g9""'D,0), (4.53)

5

with /—¢ = a3. Ignoring gradients in o as we did before and using the Weyl
gauge Ag = 0, (4.53)) can be rewritten as:

Oo = —6 — 3Ho + iea *0;Ajo — e’a > Ao, (4.54)

where A2 = A - A. Combining this with (4.52) and using a quadratic potential for
the curvaton, V(c*o) = m?|o|?, we obtain the equation of motion for the curvaton:

2A? —jed; A;
5—|—Hd+(#+m2)0=0 (4.55)
a
and in the same way:
. : 2A? +ied; A,
o*+ Ho* + (# + m2) o =0. (4.56)
a

Since A, is in the vacuum state during inflation, we assume it hardly con-
tributes to the effective mass of the curvaton, i.e. e?A?/a? < m?, until so many
photons are created that the two terms become equal in strength and we can no
longer ignore the back-reaction. For the same reason we also ignore the gradient
term and the field equations for ¢ and ¢* become equal to . Therefore, we
can treat the curvaton in exactly the same way as we did in section [4.1.1, which
means the solution for o (and its complex conjugate) is still approximately given

by .

4.3.2 The gauge field equation

To derive the gauge field equation of motion, we start from the Lagrangian (4.51])
and use the Euler-Lagrange equations, which have to be modified slightly since
we are working in curved spacetime. The volume element in the action d*zx —
v/—gd*z, which means we can still use the Euler-Lagrange equations if we replace

L — \/—gL:

5’(\/—9£)> I(/—g£)
0, — =0. 4.57
(oiy) "o (457)
Using the Lagrangian , this becomes:

B, (vV—gF™) + = Vz_g (0™ — 0™ a) + /—ge2|o|2Ar = 0, (4.58)

39



where FH = ghog"PF, 5. We use this to work out the first term, where we note
that the metric does not depend on any spatial coordinates. After some math, we
obtain:

O, (V—gFH") = a3(—3Hg“aFa0 — gpegFao + g“ag”ﬁFaﬁ,l,). (4.59)

Then we use the fact that the metric is diagonal, while diagonal entries of the
asymmetric field tensor are zero to simplify this expression. Doing so and plugging

it back into (4.58)) yields:

a’ [g“j(—3HFjo — Fjo0 + aizﬁvji,i) - gﬁb)jﬁ}o + Q“OCL%FOLJ
.3
iea
+T(08“0* — 0*0"0) + a*e?|o|P A = 0, (4.60)
which can be split into two different equations. The dynamical equation is the
one where = j, which gives the equation of motion for the field A. The =0
equation would give the equation of motion for Ay, but since we are in Weyl gauge
this equation actually becomes a constraint equation (Gauss’s law) on A.
Let us first consider this constraint equation by setting p = 0 in (4.60]). Since
the metric is diagonal and we work in Weyl gauge, most terms drop out and we
are left with:

Since E; = —0pA; this is essentially Gauss’ law:
V-E=p, (4.62)

with the charge density given by p = (ie/2a?)(0*¢ — 0*0).
Next we consider the more interesting dynamical equation of motion. Setting
p =7 in (4.60) and lowering the index on A’ gives:

aHFjo + akjo0 — G_lez',i — a62|0|2Aj =0, (4.63)

where as before we ignored gradients in the curvaton. After dividing by a, ex-
panding the field tensors and using the Weyl gauge (Ag = 0), we obtain the field
equation for the spatial vector field A:

A+HA+V(V-A) - V2A +e?o?A =0, (4.64)

where as before V; = a7'9;. We can Fourier transform (4.64)) to obtain the
equation of motion for the modes of A. We separately consider the longitudinal
and transverse modes of A. For the (unphysical) longitudinal modes, the third
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and fourth term cancel each other, while for the transverse modes, the divergence
term drops out. In the end, the equations of motion become:

Aﬁ + HAﬁ +ée*loPAL = 0 (longitudinal modes)(4.65)

. : 12
Al + HAL + (? + €2|U|2> AL = 0 (transverse modes). (4.66)
In order to solve these equations, we rescale the fields like we did in section

4.1.3] By rescaling By = a'/?Ay, we can absorb the Hubble drag term into the
two other terms. The resulting equation of motion becomes:

By + wiBy, =0, (4.67)
with the frequency for the transverse modes given by:
k? 1a 1 (a)
2 2) 12
- -4+ = 4.
Wi a2+e|a| 2a+4<a) (4.68)

As before we ignore the last two terms ~ H?. Then (4.67) can be written in the
form of a Mathieu equation (4.11]) with:

k2 e?52 q e25?
an q= )
4m?

This is almost exactly identical to the evolution of the xy modes discussed in section
. As we discussed in that section, the resonance only takes place for ¢?m > H,
which means ¢ > 1/4. And since ¢ decays very rapidly (oc (mt)~3/?) this requires
a large initial value for q. Therefore, after a few oscillations, modes Ay go through
many resonance bands in a single oscillation and we are required to once again use
the framework of stochastic resonance as developed in [4].

2k

(4.69)

a’m?2  2m?

4.3.3 Stochastic resonance of the gauge field

Since the evolution of the transverse modes of A is dictated by the same equation

of motion as that of the scalar modes Xy, cf. (4.67)) and (4.16]), we use the same
framework to study the resonance. In analogy with (4.19) the number density per
comoving volume for photons created during the resonance is given by:

Wk |Bk‘2 2 1
= — B — = 4.70
Nk 5 ( W12< + | Bx| 9’ ( )

for each of the two transverse polarisations. Just like before we can write the
formal solution to (4.67) as an adiabatic expansion:

Bx(t) = 032(—26_”%”” + ﬁk—\/%eift“’dt. (4.71)
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Now, just like before, we assume the coefficients to be constant in between creation
moments ¢; where o(t;) = 0. In between those moments, which occur every half-
period of the curvaton oscillation, the modes By evolve adiabatically according to

(4.71)) which leads to the exact analogy of (4.21)):

Bi(t) = v o=t wdt Bi oi [ wit

k=55 Voo

which is valid for ¢;_; <t < t;. Further steps are also the same as in the scalar
case: to study the non-adiabatic regime we Taylor expand |o|* at times t; like
in (4.22). The solution to this gives us parabolic cylinder functions which yield
recursion relations for a; and ;. Using the relation ny, = |Bk|?, these can then
be used to obtain a recursion relation for the number density of created photons
(4.24). Just like before, we can approximate the sum over j by an integral and the
photon density for each of the two transverse polarisations will be given by ({4.26]):

(4.72)

1
ny(t) = 5 eXP (2mugt) (4.73)
where we already made the replacement fg e (8)dt — pgftt.

Although number density is not an entirely well-defined quantity for photons,

we assume that for the modes of the electromagnetic field the following relation
holds:

w
p(t) = wkny = 71{ exp (2mpugt) (4.74)

for each transverse polarisation. A further ambiguity arises when we want to
identify this frequency. Do we just use wx = k/a, or de we identify it with the
full frequency (4.68)? (excluding the terms ~ H?) We will discuss this in the next

section and for the moment implicitly write wy.

4.3.4 Back-reaction

Just like in the case of the scalar field resonance, we would like to figure out the
back-reaction time ¢y, at which the back-reaction of the gauge field can no longer
be ignored. This is the case when the contribution of A to the effective mass
of the curvaton becomes similar to the bare mass, or e*(A - A) ~ m?. So, just
like in the scalar case, we need to find the expectation value of the field squared.
However, whereas in the scalar case there was an easy relation between the field
value squared and the energy density , this is not the case for the gauge field.

From basic electromagnetism we know that the energy stored in an electro-
magnetic field configuration is given by:

1

p= 5(E2 + B?), (4.75)
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with £ and B the magnitudes of the electric and magnetic fields, respectively.
In the absence of electric charge E = —JyA and B = V x A, so after Fourier
transforming this we can see that the electromagnetic energy in each mode is
given by:

pu(t) = Kk + 2K (AT2), (4.76)

where in the second term we have replaced the cross product by the nonzero trans-
verse components and the factor 2 comes from the fact there are two transverse
directions. Given the energy density, this expression gives us the sum of the field
value squared and its derivative, which is not what we want to know. We cannot
subtract the A term though, because we are using this formula to find the gauge
field value in the first place. Therefore we make the assumption that we can use
the virial theorem, which states that the kinetic and potential energy contributions
are roughly equal. Although this has been proven only for systems in thermal equi-
librium, in many cases it holds long before a system has reached equilibrium. We
can view the A term as a kinetic energy, with (AT)? being the potential energy
term. Using the virial theorem they are of roughly the same size, which gives us
as an approximation:

pi(t) ~ 2k (AL)2 (4.77)

By applying the techniques from [4] we have obtained the energy density in
(4.74) and we need to obtain (A(—k)-A(k)) = ((AL)?+2(AL)?). Since only
gives us a relation between the energy density and the transverse modes, we need
to look further into the size and physical meaning of the longitudinal modes. These
modes evolve according to and are subject to the Gauss constraint .
Focussing on (4.65]), we can see that the longitudinal modes evolve according to a
Mathieu equation, but that there is no gradient term. If we rescale these modes
and bring the equation of motion in the form (4.67)), we see that for the longitudinal
modes the frequency does not depend on k. This means the modes do not obey
a wave equation and therefore do not propagate through space. Instead, these
modes correspond to a field oscillating independently at each point in space with
a frequency w? = e?|o|?, if we again ignore terms ~ H? in ([4.68)).

The longitudinal modes also behave like a Mathieu equation, but because there
is no k-dependence of the frequency, we cannot apply the methods from [4] as used
in section [4.1.4] In particular, we cannot approximate the equation of motion
for the longitudinal modes by an equation of the form . Because of their
unphysical nature we ignore the contribution of the longitudinal modes to (A - A).
The real term in the Lagrangian is (A,A") anyway, where we already ignored
the Ag contribution. So we replace (4,A") — (A - A) — ((A")?). Under this
assumption and combining this with yields:

(A(—K) - Alk) = (55). (4.78)

43



Next, we plug in twice the value for py from (4.74]) (because this expression was
for each of the two transverse polarisations) and integrate over all k to give:

(A-A) = / ﬁ% exp (2mpygt) (4.79)
(27a)? k2 k= '
As we stated before, we now need to determine which frequency to use in this
equation. We will first do the calculation using wy = k/a and afterwards we will
include the e*|o|? term from (4.68)).
Let us first consider the simple case where wy, = k/a. Plugging this into
the integral becomes:

1

2m2at

(A-A) = /dkk exp (2my)) . (4.80)

Just like in the case of the scalar field resonance, the growth index g has a
maximum at k,,, with value pu = uszn, which can be used to calculate the integral
in (4.80) by the method of steepest descent:

1 ke Ak

A-A)~ 4.81
< ) dm2a*  \/mumt (4.81)
As in section we pick k,, ~ Ak ~ k,/2 with k, = \/emo.s. to give
1 k2
(A-A) =~ m__e2nmt, (4.82)

1672a* \/Tpumt

As mentioned earlier, we assume the back-reaction of the photons to become
important when (A - A) ~m?/e?. So equating (4.82)) with m?/e* gives:

2,24
Q2umiy: _ 16m*m*a™\/mumity, (4.83)

2,2 ’
k2e

where a is to be evaluated at ty,. Using a = (8mt/3m)"/? as before and plugging

in k, = \/emo,s. we get:
10,342 /=
e2Hmitve (2 M Wﬂmtbr) (4.84)

3
9e30 s

and after squaring both sides and taking the logarithm, this gives us an expression
for the back-reaction time:

1 10° um?(mity,)®
b = 1 . 4.85
" Amp n( ebo? (485)
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Now, let us repeat this calculation in the case where we take the frequency to be
wi = k?/a® +e*|o|*. Because we are looking at the behaviour after many curavton
oscillations and since the amplitude of the curvaton & is quickly decreasing, we
approximate the damped oscillator o2 by its average value over oscillations, which
means we substitute sin?(mt + 7/8) by its average value 1/2, which means that:
o N 0.3702

2:—,\_, osc 486
o = G~ e (4:56)

where we used (4.6]) in the last step. This means the frequency becomes:

K2 0.37e20%,\?

Plugging this into (4.79) and using the method of steepest descent in order to
calculate the integral, we obtain:

(A-A) — 1 Ake?™t (k2 (mt)3? 4 0.37¢%02,, 2
© 4m2at \/mumt (mit)3/2

1 ke (k2(mt)32 4+ 0.37e202,, 2 (4.88)
16m2a* \/Tpumt (mt)3/2 ' '

Just like before, we find the time of back-reaction by equating this with m?/e?.

Doing so, using a = (8mt/37)"/? and squaring both sides,
5,3 13/2
64,umtbr — 10 Hm (mtbr) / 1 , (489)
65O-osc k:,% (mtbr)3/2 + 0.370'35062a2

which reduces to the relation in the case where the second term in the
denominator is negligible. This is the case when #,, > 0.1e?c2 . /m3.

We first assume this is the case and use as the relation for the back-
reaction time, the solution to which is given by the lower branch of the Lambert

W-function. In analogy with (4.32) we have:

5
toe A ———— W (=10 Le¥/5 451 /5 4.90
b 4m,u 1( € H (:ZOSC)7 ( )

with gose = €?0%./4m?. Under the same assumptions as used in [9] we can then
approximate this by:
1 4 4
tbr ~ m ln (1056 4/1 4qosi) ) (491)
which can be used to calculate whether the o2 _a? term in the denominator of

osc

(4.89) can indeed be neglected. The condition for this was ty,, > 0.1e20%_/m3 =

osc
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0.4¢os./m. Since large initial values for ¢ are needed to make sure the resonance
takes place at all, we assume g ~ 103. Then, using typical values pu ~ 0.14 and
e = 0.1 we can calculate from (4.91)) that:

63  0.4qosc
o 63 _ 0o

< (4.92)

tbr

which means the condition for neglecting the 02, a? term in does not hold.
Even though the chosen values for p and particularly e might be way off (the latter
could be a few orders of magnitude smaller), this is still a valid conclusion. Those
parameters are within the logarithm and changing them by orders of magnitude
will only slightly modify the value 63, while 0.4¢.s. =~ 400. Clearly, neglecting the
o2 a® term in is invalid.

Conversely, we can check what happens if we neglect the k2 term from the
denominator of , which in this case reduces to:

™ (493)
the solution to which is given by:
S —;L—lmw_l (=107 1e®/M g3y (4.94)
Under similar assumptions as in , this is approximately:
by ~ &uim In (10"e 1 %q2) (4.95)
and using the same values as before gives:
thr & % (4.96)

Because we are now neglecting the other term, the condition on %y, obviously
reverses and is given by t,, < 0.4¢sc/m =~ 400/m. Since 61 is smaller than 400
by about factor 7 this condition is not perfectly satisfied, but it holds to a much
better extent than in the case where we only considered the kZ term in ([£.89).
This means that the e?|o|? term dominates the frequency and the back-

reaction time is given by ({4.94]).

4.4 Curvature perturbation from gauge-field resonance

Using the back-reaction time (4.94) we would like to calculate the curvature per-
turbation using the separate universe approximation as discussed in section [4.2.1]
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To do this, we must first calculate the scale factor at the time of back-reaction.
Using a = (8mt/37)/2, this is given by:

1/2
Apy R (—%) Wi/f (—10’168/11u9/11q25/§1) : (4.97)
Then we need to plug this into in order to find the terms (Ina)" and (Ina)”
required to calculate the curvature perturbation in the separate universe approxi-
mation. In we only used the leading order terms from (Inay,)" and (In ay,)”.
In the case of the gauge field resonance, these leading order terms remain the same.
Therefore, to leading order, the final expression for the two derivatives of Ina are
still given by .

The difference arises, however, in the nature of the parameter £. As before,
this denotes the fraction of the curavton energy density which is converted into
radiation. As we can see from , the curvature perturbation depends heavily
on the first and second derivatives of both p and £. The former is the same as
before, because in order to calculate the number density of photons created during
the resonance, we used the same framework as in the scalar case. The fraction &
however, has a different physical origin than in the case of the scalar resonance
and therefore its derivatives may be very different, leading to a very different final
result for the curvature perturbation.

The same goes for the nonlinearity parameter, which is still given by but
again might be of very different magnitude than in the scalar case, because of the
possible differences in & and &”.

5 Discussion

In this final section, we review our findings for the gauge-coupled resonance and
compare them with the scalar resonance. Finally, we look ahead to future nu-
merical work, which could allow for calculating the resonance through the fully
nonlinear regime.

5.1 Comparison with scalar resonance

In section [4.4] we briefly touched on the differences in the curvature perturbation
generated by the scalar resonance and the gauge-coupled resonance. In this section
we will look into the similarities and differences between the two cases in more
detail.

The methods from original preheating [4] have already been applied to a cur-
vaton model [§]. In this thesis we found that it is also possible to apply these
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methods to the case of a gauge-coupled curvaton, as long as we ignore the un-
physical longitudinal modes of the gauge field. Furthermore, because the original
methods of preheating lead to a number density of created particles, we had to
assume a simple relation between the photon number density and energy density.
Lastly, by invoking the virial theorem, we assumed the electric and magnetic con-
tributions to the energy density are roughly equal: an assumption which should
be subject to further research.

Next, let us compare the actual back-reaction times. In the case of the scalar
resonance this is given by , whereas for the gauge-coupled case it is given by
(4.94), which we approximated to be 61/m. Using the same parameters to make
an estimate for the back-reaction time in the scalar case, p = 0.14 and g = 0.1,
we get ty,, &~ 48/m. This shows that the time of back-reaction is not significantly
different between the scalar and gauge-coupled resonances.

One of the important results from section 4.3.4] is that the frequency of the
photons wy on average seems to be dominated by the “interaction term” e*|o|?.
We looked at the difference in back-reaction time obtained by using the “bare
frequency” wy = k/a and by using just the “interaction term” and found that the
back-reaction times obtained were again nearly identical, cf. and .
However, we have shown the latter to be the correct expression, since the interac-
tion term dominates the k/a term in the denominator of ([4.89).

The important difference is that, although the back-reaction times may be fairly
similar between the two cases, the dynamics at this time may be very different. As
discussed in section [£.4] the final expression for the curvature perturbation is no
different for the gauge-coupled resonance as it is in the scalar case. The difference
lies with the physical origin of the parameter £, which has a (potentially) different
o.-dependence. Because this parameter depends on what happens in the non-
linear regime it is important to extend the calculation into this regime, by using
numerical simulations.

5.2 Numerical simulations

In our calculation of the curvature perturbations from curvaton preheating, we
assumed the resonance stopped at ty,,, because our linearised equations broke down
at this point. In general, the resonance will continue after back-reaction and
to fully calculate the resulting curvature perturbation, one needs to use a full
nonlinear simulation.

In [9], lattice field theory methods are used to perform the nonlinear calcula-
tions in the case of the scalar resonance. Because the equations of motion in the
case of the gauge-coupled resonance are of a similar form to those of the scalar
resonance, it is likely that the methods used in [9] will be applicable to the gauge-
coupled resonance.
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Earlier we discussed how the form of the final curvature perturbation in both
scalar and gauge-coupled case were given by the same expression, based on (4.37]).
Performing a full nonlinear simulation might provide more insight in how the
resulting curvature perturbation is varies between the two cases.
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