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Chapter 1

Introduction

1.1 The role of causal structure in physics

Since the introduction of relativity in the first years of the 20th century,

physicists became interested in models of the universe that treated space

and time on the same level, thus creating the concept of spacetime.

Since then, spacetime has been fully established as the framework for any

physical event, although we need to remember that it is not uniquely defined

and that there are many different models compatible with the theory of

General Relativity. For example, an empty universe is very well described

by a flat model, while the presence of a massive object induces a perturbation

in spacetime that can even cause the emergence of singularities.

There are specific conditions that a spacetime must satisfy in order to be

compatible with our universe, usually accepted in an axiomatic form.

Causal structure is determined by the set of events in spacetime and the

knowledge of the relations between them, namely whether an event can

influence another or not.

The way such a relatively simple structure encodes most of the information

of a spacetime by itself has been rediscovered several times in the past, and

with a rigorous approach it is possible to specify the minimal set of axioms

necessary to its definition while preserving the interactions between different

events.
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The question may be asked of what is possible to get back about the space-

time from the knowledge of causal structure alone. We will address this

problem trying to use the minimal amount of assumptions necessary for

each different level of the architecture underlying the spacetime.

There have also been suggestions that the fundamental nature of spacetime

might be discrete; in this case the study of causal structure turns out to

be particularly functional and convenient through the introduction of causal

sets.

We will start with the establishment of the most basic definitions used in

the mathematical approach to the topic, specifying all the main character-

istics wished for a spacetime without the requirement that they must be

fundamental and cannot be obtained from more basic elements. Different

degrees of restrictions on the causality of spacetime are then introduced,

together with properties that are always satisfied and can be deduced from

the essential principles.

In Chapter 2 we will try to understand how much structure is deducible from

the simple set of points constituting the spacetime and all causal relations

between. Starting from the relations other than causal, the main results

about topology, metric and differential structure will be presented with an

eye on the weakest conditions required in each case.

Chapter 3 will deal with the application of the content from the previous

chapter to recreate the main structure of Minkowski spacetime. A construc-

tive method is used to obtain the metric and the tangent space from nothing

more than causality.

Finally, in Chapter 4 we will present alternative topologies more closely

related to causal structure and with a deeper connection to the physical

essence of a spacetime.

In the following dissertation we assume that the reader is familiar with the

definitions of topology, manifold and other basic notions from Differential

Geometry.
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1.2 Definitions

A spacetime is a real, connected, smooth, Hausdorff manifold M .

The geometrical structure of spacetime is determined by the metric g, a

globally defined non-degenerate (0, 2) tensor field. This is taken to be

Lorentzian, i.e. for any point x of the manifold the tangent space Tx(M)

admits a basis, called normal coordinate basis, such that the metric has sig-

nature (−1, 1, . . . , 1).

The metric acts on elements of Tx(M) as a bilinear function. A vector

X ∈ Tx(M) is either spacelike, timelike, or null, according to whether its

square norm g(X,X) is positive, negative, or zero.

The spacetime is time-orientable if the timelike tangent vectors at each point

can be divided in two distinct classes, allowing the distinction between past-

or future-pointing. The choice for past or future is arbitrary, as long as it is

consistent within all points in spacetime. The value of the metric applied to

two timelike vectors of the same class is strictly negative, while it can assume

any value if one vector is past-pointing and the other is future-pointing. We

will always assume a time-orientable spacetime.

A path is a smooth map γ : I → M , where I is a connected (non-singular)

interval in R. When no confusion is likely, the same symbol will be used for

its image γ[I], known as the curve on M .

A curve is said to be chronological when its tangent at any point is timelike,

and causal when its tangent is anywhere timelike or null. If the tangent

vectors have positive time component (respectively, negative) at all points,

then the curve is future-oriented (past-oriented).

Given two points x, y ∈ M , we say that y follows x if there is a future-

oriented chronological curve connecting x to y, and we write x � y. Anal-

ogously, we say that y follows x causally if there is a future-oriented causal

curve from x to y or if x = y, and use the notation x ≺ y. The horismotic

relation x → y indicates that x ≺ y but x 6� y. By x \ y we denote two

points that are not causally related, i.e. spacelike separated.

The set of points following a fixed x ∈ M constitutes its chronological fu-

ture, I
+
(x) := {y ∈M : x� y}; the causal future is the set of points fol-
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lowing x causally: J
+
(x) := {y ∈M : x ≺ y}; the points in the causal fu-

ture but not in the chronological future of x constitute the future horismos

E
+
(x) := {y ∈M : x→ y}. Substituting “following” with “preceding” we

get similar definitions for the chronological past I
−
(x), the causal past J

−
(x)

and the past horismos E
−
(x). The union of the past and future horismos is

the null cone, C(x) := E
+
(x) ∪ E−(x).

The intersection of the past of a point y with the future of a point x ≺ y

is called chronological interval, or simply interval : I(x, y) := I
+
(x) ∩ I−(y).

The causal interval J(x, y) and horismos interval E(x, y) are defined cor-

respondingly.

Figure 1.1: Example of interval in flat spacetime, given by the intersection of the

interior of the light cones.

A spacetime M is chronological if admits no closed chronological curve, and

similarly it is causal if there is no closed causal curve. It is reasonable to

require the spacetime M to be at least causal.

Given a point x ∈ M , if I
+
(x) 6= I

+
(y) for all y ∈ M different from x we

say that the spacetime is future distinguishing at x, and similarly it is past

distinguishing at x if x 6= y implies I
−
(x) 6= I

−
(y). A spacetime is future/past

distinguishing (F/P) if it is future or past distinguishing at any point, and a

spacetime that is both future and past distinguishing (FPD) may be simply

referred to as distinguishing.

A neighbourhood U of x is causally convex if it intersects any causal curve

γ at most once, i.e. γ ∩ U is connected. A spacetime is strongly causal at
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x if such a neighbourhood exists, and it strongly causal if the condition is

satisfied at any point.

Every global causality condition stated implies all the previous ones, but

the converse is not true:

Strongly causal⇒ FPD⇒ F/P distinguishing⇒ Causal⇒ Chronological .

For a causal spacetime the causal relation ≺ is a partial order, satisfying:

• Reflexivity: x ≺ x

• Antisymmetry: x ≺ y, y ≺ x =⇒ x = y

• Transitivity: x ≺ y, y ≺ z =⇒ x ≺ z

If causality was not required, we might find some points x, y ∈M such that

x ≺ y, y ≺ x but x 6= y, breaking the antisymmetry property of the partial

order.

Any subset of a chronological curve is called a chronological chain, whereas

the same for a causal curve is a causal chain or simply chain. Points in a

chain are either timelike or null separated, but never spacelike separated;

they satisfy the additional condition required for a total order :

• Totality: either x ≺ y or y ≺ x

1.3 Basic properties

We will now introduce the main features of the causal structure of space-

time. For a full approach to the topic we suggest Penrose’s “Techniques of

Differential Topology in Relativity” [4].

The following propositions are true for any spacetime M , and most of them

have a dual counterpart obtained by the substitution of every future with

a past set and the reflection of any relation. Here x, y and z are distinct

events of M .

Proposition 1.1 I
+
(x) is open.

Proposition 1.2 y ∈ I+
(x) =⇒ x ∈ I−(y).
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Proposition 1.3 J
+
(x) ⊆ I+(x) (closure of I

+
(x)).

Proposition 1.4 x� y =⇒ x ≺ y.

Proposition 1.5 Either

x� y, y ≺ z

x ≺ y, y � z
=⇒ x� z.

Proposition 1.6 x ≺ y ≺ z, x→ z =⇒ x→ y → z.

Global causality conditions on M are also very important in the study of

causal structure, and it is worth mentioning a few properties for them as

well. As a reference on causality conditions we reccomend the consultation

of “The causal hierarchy of spacetimes” [13] by Minguzzi and Sánchez.

We are already familiar with the following proposition:

Proposition 1.7 M is strongly causal =⇒ M is distinguishing.

This may not seem immediate from the definitions, apparently different

from each other. There is however an equivalent definition for distinguishing

spacetimes based on causal curves and neighbourhoods: M is distinguishing

if and only if for all x ∈ M there exists a neighbourhood U of x such that

the intersection with any causal curve through x is connected. Compared

with the strong causality condition, where the connectedness is required for

any causal curve intersecting U and not just for those passing through x, it

is clear that the requirement of future and past distinction is weaker.

There is also an alternative definition for strong causality. Let U be an

open subset of the manifold, and consider the problem of finding the causal

relations between its points. We can either consider the relations between

the events of U under the causal structure of the entire manifold, or we

could treat U as a spacetime by itself and have all causal curves lying in the

subset define a new causal structure.

These two methods usually produce different results, as the second case is

more restrictive; this however does not apply when the spacetime is strongly

causal, thanks to the property of causally convex subsets that allow no causal

curve between two points of U to go “outside” of the open set. Under strong
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causality the local and the global behaviour of causal structure is the same,

and the two methods above coincide.

Finally, the following proposition characterizes the behaviour of events in

proximity of a point where strong causality fails.

Proposition 1.8 M is not strongly causal at x if and only if there exists

y ≺ x in M , y 6= x, such that a� b for any a, b satisfying a� x and y � b.

If the spacetime is future distinguishing, this attribute of achronality extends

to an entire neighbourhood in the future of the point where strong causality

is violated. Analogous conditions hold, with the opportune adaptations, for

the past of the point.
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Chapter 2

Structure encoded by

causality

We will now take in examination a set of points together with all causal

relations, (M,≺), and try to determine all the information that can be

obtained on the structure of the manifold starting from these two basic

objects.

2.1 Chronological and horismotic relations

The first thing to observe is that, of all the definitions introduced in Chapter

1, we are assuming the causal relation but not the chronological and horis-

motic relations.

It is actually possible to extract the missing two starting from the one we

already have, and this problem has been analysed in details by Kronheimer

and Penrose in their article “On the structure of causal spaces” [3] under

the most general conditions.

We will however restrict ourselves to strongly causal spacetimes, an assump-

tion that we will carry to the following stages. Note that weakest choices

on the causality condition of spacetime can yield the same results, however

the proofs might get unnecessarily complicated or uninteresting.

Instead of chronological and causal relations, we will deal with future sets,

and of course dual arguments will hold for the pasts. This approach is
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completely equivalent to the consideration of relations in the first place,

since the latter can be easily established starting from the sets.

Definition A least upper bound of a set U is a point y such that:

• ∀x ∈ U, x ≺ y

• ∃ z : ∀x ∈ U, x ≺ z =⇒ y ≺ z

Define now the set of points dJ
+
(x) as all points y ∈ J+

(x) such that there

exists a finite causally increasing succession {zn} of N points in M i.e.

zn−1 ≺ zn holds for all n ≤ N , and for which y acts as a least upper bound.

Let ∂J
+
(x) be the topological boundary of the causal future at point x.

Proposition 2.1 dJ
+
(x) ≡ ∂J+

(x)

Proof The fact that every point y ∈ ∂J+
(x) is also in dJ

+
(x) is straightfor-

ward: by definition as an element of the boundary y belongs to J
+
(x), and

it is clearly an upper bound for any succession {zn} ∈ J
−
(y) such that any

zn /∈ J
+
(x).

Now suppose that y ∈ dJ
+
(x) but /∈ ∂J

+
(x). Since by assumption it is a

point of J
+
(x) but not of its boundary, it must be in the interior, open by

definition. Let {zn} be a finite increasing succession having y as least upper

bound, and consider an open neighbourhood U of y, small enough to leave

the last element of the succession zN outside. Because U is open, we can

find a point p in the intersection of U with the causal curve connecting zN
to y such that p ≺ y. Strong causality makes sure that this condition holds

globally and not only inside the neighbourhood. However, this means that

we can find this point p satisfying both p ≺ y and zn ≺ p for all elements

of the succession, contradicting the fact that y is the least upper bound.

Hence, y must belong to ∂J
+
(x) . �

Having determined the boundary of J
+
(x) without the necessity of a topol-

ogy or any structure other than causality, we can define other sets of inter-

ests.

It is quite intuitive to show that the future horismos of x is given by all

points of J
+
(x) that also belong to the boundary ∂J

+
(x).
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Proposition 2.2 E
+
(x) ≡ J+

(x) ∩ ∂J+
(x)

From this we can define the chronological future as all points of J
+
(x) which

are not horismotically related.

Proposition 2.3 I
+
(x) ≡ J+

(x) \ ∂J+
(x)

Note that, while Proposition 1.3 states that the causal future is included in

the closure of I
+
(x), it is always true that the chronological future is equal

to the interior of J
+
(x).

An alternative procedure more commonly found in literature uses the causal

relation to define first the horismotic relation and then the chronological rela-

tion, although one again needs to be careful that the spacetime is sufficiently

well-behaved and is at least future and past distinguishing.

Two points x and y are defined to be horismotically related if the causal

interval J(x, y) is a null chain, i.e. it is a chain such that any subset is also

a chain. Then the chronological relation is simply obtained by requiring

that two points are causally but not horismotically related.

The notion of null geodesics as null chains is investigated again and in more

detail in Section 3.1.

2.2 Topology

Next, we want to specify the topology of the manifold, again only in terms

of causal structure. We can also use our previous results and assume the

knowledge of chronological relations, and we will indeed use this knowledge

to define a new topology for the spacetime that coincides with the original

topology of the manifold for strongly causal spacetimes.

Again, the condition of strong causality is not the weakest choice: in his

paper “The class of continuous timelike curves determines the topology of

spacetime” [8], Malament shows that a causal bijection between distinguish-

ing spacetimes is also a causal homeomorphism, proving in fact that the

topology is inferred from causality even if the spacetime is not strongly

causal. He makes, however, the silent assumption that the spacetimes in-

volved have the same dimension, although this is not trivially guaranteed by
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the simple preservation of the causal structure; Parrikar and Surya analyze

this matter in “Causal Topology in Future and Past Distinguishing Space-

times” [14], getting to the conclusion that for distinguishing spacetimes the

dimension of the manifold is indeed attainable from causality, confirming

that a causal bijection is all that is necessary to preserve the dimension of

the manifold and assure that the topology is completely determined from

causal structure. Malament also shows that the same result is not true if

the spacetime is just future or past distinguishing.

It is better to specify exactly what is meant by manifold topology, as this

notion will be recurrent here and in Chapter 4.

Definition The manifold topology M is the topology generated by the set

of n-dimensional open balls Bε(x) := {y ∈M : ‖x− y‖ < ε}, where the

norm is intended to be of Euclidian type.

The definition above has no apparent connection with causality. A new

topology defined in terms of causal relations is necessary, and it must be

showed that it can be associated with M under the proper conditions.

Definition The Alexandrov topology A is the coarsest topology on the man-

ifold such that the chronological intervals are open sets.

Open sets forA are then given by the union of chronological intervals I(x, y),

that form a basis for this topology.

It is not easy to determine which topology is more suitable for a physical

theory. It would seem natural to adopt the Alexandrov topology as the one

that we can observe and measure, as the events of spacetime are constricted

by the relativistic limits and therefore evolve along timelike curves. In any

case, the answer seems to depend on the behaviour of spacetime itself.

According to the definition, the Alexandrov topology is in general coarser

than the original manifold topology:

Proposition 2.4 A ⊆M.
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Figure 2.1: To the left, the M-open ball Bε(x); to the right, the A-open interval

I(x, y). The sets are only examples on a plain 3-dimensional spacetime; dashed

lines indicate removed points.

If we had defined A directly as the topology generated by the chronological

intervals I(x, y), the coarseness with respect to M would have followed

automatically, as from Proposition 1.1 we know that the intervals are always

open in the original topology.

The question may be asked of whether the Alexandrov topology ever co-

incides with the manifold topology instead of being coarser. We will now

show that strong causality is the necessary and sufficient condition for this

equivalence to hold.

Theorem 2.5 M is strongly causal ⇐⇒ A coincides with M.

Proof Let’s first prove that strong causality implies agreement between the

two topologies. We already know that any open set in A is also open in

M, and need to prove the converse. Let O be an M-open neighbourhood

of a point x ∈ M . Strong causality tells us that there is a causally convex

neighbourhood V ∈ O of x. Let a, b ∈ V be the past and future endpoints

of the intersection of V with a causal curve passing through x, so that

x ∈ I(a, b). We know that such subset and points exist for any x ∈ O,

meaning that O is A-open.

To prove the inverse implication, assume that A and M agree but strong
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causality forM is violated at a point x. It follows that, thanks to Proposition

1.8 we can find points a, b of an open neighbourhood O of x such that a ≺ b,
a 6= b, and any point in the future of a follows chronologically any point in

the past of b; because O is also A-open we can find intervals I(pa, qa) 3 a
and I(pb, qb) 3 b. Because a ≺ b and b � qb, it follows from Proposition

1.5 that a � qb. As the past of qb is open, choose c ∈ I(pa, qa) just to

the future of a so that c � qb: by construction, it will also automatically

be in the future of pb and belong to I(pb, qb). We have just proved that

I(pa, qa) ∪ I(pb, qb) 6= ∅, and this must hold for any intervals containing a

and b, meaning that M is not Hausdorff. This however is in contradiction

with the assumption that A coincides with the standard topology on M . �

2.3 Metric

For a strongly causal spacetime we already know how to derive the chrono-

logical relation from causal structure, and use it for the definition of a topol-

ogy equivalent to the original.

Thanks to an important result by Hawking and Ellis in “The large scale

structure of space-time” [5], the process can be pushed further with the

recovery of the metric, or at least most of it, from the knowledge of null

geodesics naturally included in that of causal structure.

Theorem 2.6 The metric at a point x is determined up to a conformal

factor by the knowledge of all null vectors at x.

In Chapter 3 we present the proof by construction to this theorem on the

example of Minkowski spacetime, although the procedure itself is not re-

stricted to this case and can be used on a general curved spacetime.

At this point it is convenient to introduce a class of functions useful for a

theory on causal structure: a causal map is an invertible map f : M → M̃

preserving the causal relation between two events, i.e. for any x, y ∈ M , if

x ≺ y then f(x) ≺ f(y), where of course the causal relation is to be intended

on the appropriate spacetime.

The concept is easily extended to causal bijections by requiring that f is
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invertible and f−1 also preserves causal relations; we can also generalize to

causal homeomorphisms and causal diffeomorphisms by adding the condi-

tion that f is respectively continuous and smooth, and so is f−1.

Note that, under the strong causality condition (or weaker, as already dis-

cussed before), a map preserving causal relations automatically preserves

the topology, and consequently is a causal homeomorphism.

Because causal bijections naturally preserve null geodesics, Theorem 2.6 is

conveniently rephrased as following:

Theorem 2.6 (2) Let f be a causal bijection f : M → M̃ and g, g̃ be the

metrics for M and M̃ . Then, for some conformal factor Ω, we have that

f∗g|x = Ω2 g̃|x.

2.4 Differential structure

The role of causality is so fundamental that it can determine almost every-

thing about the spacetime. Even the differential structure can be recovered,

and together with metric and topology this means that the complete con-

formal geometry of the spacetime is determined.

The theorem we are about to present was firstly suggested by Hawking

in his unpublished essay “Singularities and the Geometry of Space-Time”

[1]. and later reintroduced in the paper “A new topology for curved space-

time which incorporates the causal, differential, and conformal structures”

[7] with the collaboration of King and McCarthy. The assumptions of the

original theorem required a chronological homeomorphism, or equivalently

a chronological bijection on a strongly causal spacetime; Malament’s result

[8] can be applied also in this case to offer a generalization to future and

past distinguishing spacetimes. Finally, Levichev showed in “Prescribing the

conformal geometry of a Lorentz manifold by means of its causal structure”

[9] that a chronological bijection between distinguishing spacetimes is also

a causal bijection, and vice versa; this permits to use a class of functions

more closely related to causality in the assumptions.

Thanks to the contribution from all these authors, this is known as the

“Malament-Hawking-King-McCarthy-Levichev” (MHKML) theorem.
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For its proof we will continue with the assumption of strong causality.

Before going further we will also have to appeal to the fact that causal

bijections are order-preserving, not only locally but globally.

Proposition 2.7 Let f be a causal bijection f : M → M̃ . Then, both f and

f−1 either preserve or reverse the future/past orientation of timelike curves.

Proof Pick two timelike curves φ, π through a point x ∈M with the same

orientation, e.g. future-pointing, and suppose that f [φ] is future-pointing

while f [π] is past-pointing, so that the orientation of one curve is pre-

served while the other is reversed. Consider the segments f [φ ∩ J−(x)] and

f [π∩J+
(x)]; their union is not a timelike curve, because the tangent at f(x)

is not defined is not defined. But by assumption f is a causal bijection and

should map timelike curves to timelike curves, so this is impossible.

To verify that the behaviour of f is systematic and not restricted to the

point x, we need to verify that the set of point where the orientation is

preserved/reversed by f is open. Let Φ be the set of all point where orien-

tation is preserved, and Π the set where it is reversed, and consider a point

x ∈ Φ and a point y in the future of x. Since I
−
(y) is open, we can find an

open neighbourhood O of x. Suppose there exists a point z ∈ O ∩Π, then

the union of a timelike curve φ from x to y and another timelike curve π

from z to y is not timelike, but its image f [φ ∪ π] could be, in view of the

fact that the segment lying in Π is reversed. This however means that we

reach again a contradiction, since f−1 should also preserve timelike curves

by assumption. Then the open set O does not intersect Π, and is included

in Φ, meaning that Π is open. The same argument can be repeated for a

point x ∈ Φ, showing that Φ is also open. �

Theorem 2.8 Let f be a causal bijection f : M → M̃ between two future

and past distinguishing spacetimes of dimension greater than 2. Then, f is

a C∞ diffeomorphism.

Proof The proof is based on a construction using null geodesics. Because

f is a causal bijection, it naturally maps null vectors into null vectors and
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preserves the nature of the geodesics; we only need to prove that the pa-

rameter is mapped smoothly and that it preserves a C∞ atlas.

Consider a convex subset U ofM and four C∞ null geodesic paths γi : Ii → U

satisfying:

(1) For all t1 ∈ I1 there exists a unique null geodesic curve λ in U joining

γ1(t1) to the null geodesic curve γ2;

(2) For all t3 ∈ I3 there exists a unique point q ∈ λ joined to γ3(t3) by some

null geodesic curve in U ;

(3) For all q ∈ λ there exists a unique t4 ∈ I4 such that there is a null

geodesic curve joining q to γ4(t4);

(4) The map ψ : I1 × I3 → I4 defined by ψ(t1, t3) = t4 is C∞ and has non-

vanishing derivatives
∂ψ

∂t1
,
∂ψ

∂t3
6= 0.

Note that, if all conditions including (4) must be met, the dimension of the

manifold n should not be less than 3. Refer to Figure 2.2 for an example of

null geodesics satisfying these criteria on a flat spacetime; if the spacetime

is curved, we only need to consider that metric can be chosen arbitrarily

close to Minkowski if the neighbourhood U is small enough.

The geodesics on M induce four curves γ̃i = f [γi] on M̃ . Thanks to

the properties of f , and with an opportune parametrization of the paths

γ̃i : Ĩi → f(U) they will also be null geodesics and can satisfy conditions

analogous to (1)-(4); in particular there is a C∞ map ψ̃ : Ĩ1 × Ĩ3 → Ĩ4 with
∂ψ̃

∂t̃1
,
∂ψ̃

∂t̃3
6= 0.

To prove that f maps the parametrization smoothly, consider the four maps

fi : Ii → Ĩi defined as fi := γ̃−1
i ◦f◦γi; they are continuous, as both γi and

γ̃i are continuous for all i, and the causal bijection f is a homeomorphism

because of strong causality; they are also monotonic, since f satisfies the

conditions of Proposition 2.7 and either preserves or reverses the orienta-

tion of light cones. It follows that, thanks to Lebesgue’s theorem, they are

differentiable almost anywhere. Consider the equality

ψ̃(f1(t1), f3(t3)) = ψ̃
(
t̃1, t̃3

)
= t̃4 = f4(t4) = f4(ψ(t1, t3)),

and differentiate with respect to t3,
∂ψ̃

∂t̃3
f ′3 = f ′4

∂ψ

∂t3
.

We obtain an expression on the continuousness of f ′4: the first derivatives of
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ψ and ψ̃ are non-vanishing by assumption, f3 is differentiable almost any-

where, and as the argument of f4 has a double parametrization we can elude

singularities by opportune variations on t1 and t3. Repeat the procedure on

different null geodesics to show that each fi is at least C1. An additional

differentiation, now with respect to t1,
∂2ψ̃

∂t̃1 ∂t̃3
f ′1 f

′
3 = f ′′4

∂ψ

∂t1

∂ψ

∂t3
+ f ′4

∂2ψ

∂t1 ∂t3
,

returns a similar expression for the second derivative, f ′′4 . Again, by repeat-

ing the process we can show that each fi is at least C2, and consecutive

iterations can prove that they are in fact C∞. This proves that f maps the

parameter on each null geodesics smoothly.

Now consider n null geodesics γj ⊂ U , that will act as a kind of “basis”

for our charts. The map Γ: O → Rn defined by the intersection of the null

cone of a point x with the null geodesics, Γ(x) := {γj ∩ C(x)}j=1,...,n, can be

chosen to be smooth on a neighbourhood W ⊆ U , and we could repeat the

procedure above on each geodesic to learn that the smoothness is preserved

by f . Then, the set of charts {(W, Γ)} is a C∞ atlas for M preserved by

the causal bijection, confirming that f is a diffeomorphism. �

Figure 2.2: Example of the construction required for the theorem on 1+2 dimensions

in Minkowski spacetime. γ1 is parallel to γ2, and both lie on the same plane as γ3;

γ4 is parallel to γ1 but is located behind the plane. The function ψ(t1, t3) is given

by γ−1
4 (t3 − 1

1+t1
, t3 − 1

1+t1
, 2), and is clearly C∞ for t1, t3 ∈ [0, 1] and smooth γ4.
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Finally, the results of Theorem 2.6 and Theorem 2.8 can be combined to-

gether:

Theorem 2.9 Let f be a causal bijection f : M → M̃ between two future

and past distinguishing spacetimes of dimension greater than 2. Then, f is

a smooth conformal diffeomorphism.

The conformal geometry of future and past distinguishing spacetimes is

completely determined by the causal structure.
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Chapter 3

Minkowski metric from

causal structure

Causality is determined entirely by the knowledge of the metric, which reg-

ulates whether two points in spacetimes are related or not by the definition

of a distance. However, the role of the metric is not fundamental, as in turn

it can be obtained directly from causal structure up to a conformal factor

(cf. Theorem 2.6).

Following the suggestion in [11], we will show in this chapter how this works

in the practical case of the 4-dimensional Minkowski spacetime, M4, with a

step by step construction of a framework compatible with its usual geomet-

ric structure. We will need the causal structure analogous of light rays, null

hypersurfaces, spacelike plane, spacelike lines, arbitrary planes, arbitrary

lines, parallel lines, parallelograms and finally vectors to obtain the familiar

metric g = diag(−1, 1, 1, 1).

3.1 Light rays

Definition An infinite light ray is a straight line that lies on the null cone

of some point x ∈M4, and its points are all null separated from each other.

As it is, this definition depends on information given by the metric, and we

need to find the equivalent from causal structure.
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Definition A null chain is a chain such that the causal interval J(x, y)

between any two of its elements x, y is also a chain.

For our purposes we will need them to be maximal, i.e. such that the addition

of any external point breaks the defining property.

Note that the definition works equally well for curved spacetimes, and so

will the following proposition; even if the spacetime is not M4, light rays can

be obtained directly from causality.

Figure 3.1: Example of points on a null chain. The intersection of the future and

past light cones determines the causal interval as a straight line, hence a totally

ordered set.

Proposition 3.1 Infinite light rays correspond to maximal null chains.

Proof Denote with L the set of infinite light rays `, and with L the set of

maximal null chains λ. The claim is that L ≡ L.

Let’s first prove that L ⊆ L. If ` is an infinite light ray, by definition all of

its elements are null separated, hence it does not contain spacelike points

and it is a chain. It is also a null chain, since the causal interval between

any two points of ` is a segment of light ray and therefore is also a chain.

To prove that it is maximal, add a point z /∈ ` to the light ray and consider

the new set `∪{z}; the light ray is infinite and it already includes all points

null separated from each other, meaning that there will be some points on

` spacelike to z and thus the new set is not a chain. This proves that an

infinite light ray is a maximal null chain.
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Consider now a maximal null chain λ. Being a chain, it has no spacelike

separated elements, and we only need to prove that elements are not timelike

separated and that it is infinite. Suppose two points x, y ∈ λ are timelike to

each other: in this case there exist two points in the causal interval J(x, y)

that are spacelike to each other, so that J(x, y) is not a chain and λ is not a

null chain, getting a contradiction with the assumption. Hence all points in

λ are null separated and it is a light ray. λ is also maximal, implying that it

contains all points null separated from each other and as a result is infinite.

This proves the inclusion L ⊆ L, and consequently L ≡ L. �

3.2 Hypersurfaces

Once we have established the definition of light rays from causal structure,

we are now allowed to use them for our purposes and can proceed with the

construction of less fundamental objects.

From this point on, however, the flatness of M4 will start to play a preemi-

nent role and a generalization to curved spacetimes will result non-trivial.

Definition A null hyperplane N is the 3-dimensional flat surface orthogonal

to a null vector aµ. It corresponds to the set of points x satisfying the linear

condition aµx
µ = c, where c is a real constant determining the offset from

the origin.

Proposition 3.2 A null hyperplane in M4 corresponds to a light ray and

all points spacelike to it.

Proof Consider coordinates (x0, x1, x2, x3) for a point x ∈M4.

Thanks to Lorentz invariance, without loss of generality we can assume the

light ray ` =
{
x ∈M4 : x = (x0, x0, 0, 0)

}
propagating along the x1 direc-

tion. N =
{
x ∈M4 : x = (x0, x0, x2, x3)

}
is the null hyperplane relative to

`. We want to prove that N is equivalent to ` ∪ `\, a set given by a light

ray ` and all points spacelike to it determined using the knowledge of causal

relations.

Take a point y ∈ `\, spacelike separated to any x ∈ `. This translates into
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Figure 3.2: Null hyperplane in 1+2 dimensions. Null hyperplanes are tangent to

the light cones propagating from each of its points.

the condition gµν(x− y)µ(x− y)ν = yµy
µ − 2x0(y0 − y1) > 0, an inequality

that holds for all points x if and only if y0 = y1, so that y ∈ N . Because

` ⊂ N by assumption, we have that ` ∪ `\ ⊆ N .

Now take a point y ∈ N but y /∈ `, hence of the form (y0, y0, y2, y3) with

either y2, y3 6= 0. It is straightforward to verify that it is spacelike to any

x ∈ `: gµν(x − y)µ(x − y)ν = (y2)2 + (y3)2 > 0. Such y is thus an element

of `\, proving that N ⊆ ` ∪ `\. �

Null hyperplanes can be used to define planes of lower dimension. However,

the flat surfaces determined by the intersection of two null hyperplanes is

not arbitrary, since all of its point happen to be spacelike separated.

Proposition 3.3 The non-empty intersection of two distinct null hyper-

planes is a 2-dimensional spacelike plane.

Proof Choose two distinct null hyperplanes N1 =
{
x ∈M4 : aµx

µ = c
}

and N2 =
{
x ∈M4 : bµx

µ = d
}

. If they have a non-empty intersection

it will satisfy both linear conditions and have two independent normals,

resulting in a 2-dimensional plane.
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Consider a light ray ` ⊂ N1, and remember that by definition all other

points in N1 will be spacelike separated to it. If all elements of ` were

also included in N2, the two null hyperplanes would coincide, but since the

premise is that they are different we have that ` ∩N2 can only be a point.

All other elements of N1 ∩ N2 will not be elements of `, but they are still

elements of N1, implying that they must be spacelike to the intersection

point ` ∩ N2. The 2-dimensional plane determined by the two normals is

therefore spacelike. �

In M4 spacelike planes can be obtained from two null normal vectors, as

seen before. The same plane can also be generated by normals that are

one null and one spacelike, or one null and one timelike, or even one space-

like and one timelike. As an example, consider the spacelike plane Σ ={
x ∈M4 : x = (0, 0, x2, x3)

}
; it can be generated by the null vector (1, 1, 0, 0)

and the spacelike vector (0, 1, 0, 0), or similarly from the same null vector

and the timelike vector (1, 0, 0, 0).

Linear combinations of two normal vectors is still a normal vector, and we

can use this to get both of them to be null and establish the spacelike plane

as the intersection of two null hyperplanes.

The intersection of two distinct spacelike planes is a spacelike line.

There is a combination of normal vectors that does not allow to choose the

two to be null, and that is when the both normals are spacelike.

The non-spacelike plane so determined cannot be obtained from two null

hypersurfaces and its elements can indifferently be spacelike, null or timelike

separated. For example the plane corresponding to the two spacelike normals

(0, 0, 1, 0) and (0, 0, 0, 1) is Ξ =
{
x ∈M4 : x = (x0, x1, 0, 0)

}
, and points

such that
∣∣x0
∣∣ > ∣∣x3

∣∣ are clearly timelike to (0, 0, 0, 0).

Proposition 3.4 A non-spacelike plane is given by the union of a light ray,

a spacelike line and the set of all other spacelike lines intersecting both.

Proof Denote the plane with Ξ and choose a point x ∈ Ξ. There will always

exist a spacelike line in the plane passing through x. Also, since the plane

is non-spacelike, it intersects the light cone of x in at least one light ray,
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`, clearly independent from the spacelike line. The rigid translation of the

spacelike line along the light ray will give any other point on the plane, so

that Ξ is included in the set claimed by the proposition.

The opposite inclusion is trivial: because the requirement is that all spacelike

lines intersect both generating lines, they will all lie on the same plane as

the original spacelike line and the light ray. This plane is non-spacelike,

because at least the points on the light ray are null separated. �

An arbitrary plane will either be a spacelike or a non-spacelike plane. The

non-empty intersection of two arbitrary planes is an arbitrary line.

3.3 Affine space

The concept of parallelism is essential in the definition of an affine space

where the vectors will live. This is straightforward in the flat space M4, but

far from trivial if the spacetime is curved.

Definition Two lines are parallel if they lie on the same plane and they

have empty intersection. A parallelogram is the figure determined by the

intersection points of two pairs of parallel lines on the same plane.

Define an equivalence relation on the product space M4 ×M4 such that the

ordered pair of points (p, q) is equivalent to another pair (p′, q′) if and only

if there exists a parallelogram having p, q, p′ and q′ as vertices.

Definition The affine space A is the quotient space M4×M4
/
∼. The equiv-

alence classes [(p, q)] are denoted with −→pq, and this elements are the vectors

of the affine space. They will be timelike, spacelike or null according to how

p and q are related.

This picture can be consistent with the notion of vector space only after we

define the common operations on vectors.

For the sum of two vectors we can follow the familiar parallelogram law, for

which all necessary tools are already available. We should only make sure

that the vectors are applied at the same point, something that is always

26



possible in an affine space.

Multiplication by a scalar is a bit more tricky. Define at first multiplication

by a positive integer n as the repeated sum of the vector to itself n times.

Take the same vector with inverted order to define multiplication by (−1)

and consequently by all negative integers. To multiply by a rational number

n/m take the vector such that if we multiply it by m we get n times the

original one. Finally, establish multiplication by a real number using one

of the standard construction from the rationals, such as the Dedekind cuts

method, and the fact that any set of points is already endowed with a partial

order.

Figure 3.3: Sum of affine vectors. The vector along the diagonal −−→p1q2 is the sum of
−−→p1q1 = −−→p2q2 and −−→p1p2.

Thanks to these properties, A effectively acts as the tangent space of M4,

although there is no preference for a point as origin and it is not attached

to any specific element. This behaviour is peculiar to Minkowski spacetime,

and we can make use of it to deduce the metric at any point.

3.4 Metric

We will now demonstrate that the knowledge of all null vectors determines

the metric, as stated in Theorem 2.6. Note that the theorem refers to the

metric at a fixed point, but in our case it extends automatically to any point

thanks to the affine structure.
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Definition The metric g is defined as a bilinear symmetric function of two

vectors, X and Y . Require the norm of a vector g(X,X) to be negative,

positive or zero if the vector is respectively timelike, spacelike or null.

Let T , S be a timelike and a spacelike vector and consider the vector given

by the linear combination T + λS.

We can find two values of λ such that this vector is null: these values corre-

spond to the roots of the quadratic equation g(T+λS, T+λS) = g(T, T ) +

2λ g(T, S) + λ2 g(S, S) = 0, and are known to exist and to be real be-

cause g(T, T ) < 0 and g(S, S) > 0. We can use the knowledge of all

null vectors to determine the values of the roots λ1 and λ2. Note that

g(S, S) = λ1λ2 g(T, T ) and g(T, S) = −1
2(λ1 + λ2) g(T, T ).

Now fix the timelike vector to be a specific T0, and use the described pro-

cedure on three different spacelike vectors S1, S2 and S3 to get the roots

{ξ1, ξ2}, {η1, η2} and {ζ1, ζ2}; do the same for the sums S1 + S2, S2 + S3

and S3 + S1 to get roots {ρ1, ρ2}, {σ1, σ2} and {τ1, τ2}. The aim is to find

the value of the metric on any possible combination of these vectors, that

act as a basis.

Writing this task in matrix form,

g =


g(T0, T0) g(T0, S1) g(T0, S2) g(T0, S3)

g(S1, T0) g(S1, S1) g(S1, S2) g(S1, S3)

g(S2, T0) g(S2, S1) g(S2, S2) g(S2, S3)

g(S3, T0) g(S3, S1) g(S3, S2) g(S3, S3)

 ,

we see that every term can be expressed in function of the known roots and

the factor g00 = g(T0, T0). The result is:

g = g00


1 A(ξ) A(η) A(ζ)

A(ξ) B(λ) C(ρ, ξ, η) C(τ, ξ, ζ)

A(η) C(ρ, ξ, η) B(η) C(σ, η, ζ)

A(ζ) C(τ, ξ, ζ) C(σ, η, ζ) B(ζ)

 ,

where A(λ) = −1
2(λ1 +λ2), B(λ) = λ1λ2, C(λ, µ, ν) = 1

2(λ1λ2−µ1µ2−ν1ν2)

are all known thanks to the information given by the null vectors. All of the

values are determined but for g00, that represents the conformal factor.
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Technically all the work is done, and keeping track of the conditions on the

roots imposed by the fact that S1, S2 and S3 are linearly independent we

could diagonalize the matrix to get the usual form for the metric, up to the

conformal factor.

A quicker way to get the same result is given by the use of normal coordi-

nates. Recall that in the definition of spacetime we require the existence of

a set of coordinates such that locally the metric has form diag(−1, 1, 1, 1).

Taking also into account that in M4 the tangent space at any point is equal

and that what holds locally is also true at a global level, we know that the

metric will be anywhere:

g =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

Note that there is no additional factor in front of the metric with the intro-

duction of normal coordinates. This is because, in this case, the use of the

knowledge that spacetime is anywhere the same is equivalent to the contri-

bution given by volume information for the determination of the conformal

factor.

3.5 Curved spacetimes

The possibility to extend the results obtained to general, curved spacetime

is intriguing. However, even though previous theorems were not specific

to Minkowski spacetime and we already know that objects like the metric

can be retrieved from causality, generalization is not always easy and might

require more than a few considerations.

The definition of a tangent space arising only from causal structure would in

particular be of great interest, since it would suggest what the corresponding

entity would be when dealing with discrete spacetimes where causal sets are

the underlying base for everything, and would therefore allow a not indiffer-

ent amount of theories to be transferred onto them, as it is well known that
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vectors play a primary role in physics.

The task of generalization in this case may seem almost banal, as the tan-

gent space itself is a local feature and we already know and have been using

the fact that, locally, any reasonable spacetime is close to Minkowski. This

line of thought leads to wrong results for two main reasons: first, even if ar-

bitrarily small neighbourhoods are taken into account, there will always be

minute but non-negligible differences from Minkowski spacetime, otherwise

at a local level curved spacetimes would not only be close but agree exactly,

with a one-to-one correspondence, to flat spacetimes; second, the definition

of tangent space obtained before descends from the affine space, that is a

global property of Minkowski spacetime and not a local one as would be

required, making it incompatible with our needs.

A partial solution would be to find a new, local construction of the tangent

space already on Minkowski. Then, the metric can be used to univocally

determine the Levi-Civita connection, making it possible to parallel trans-

port the tangent space thus obtained to any point of spacetime.

It might be argued that none of this work is necessary. Remembering that

information on the differential structure is already encoded by causality, we

can simply use the standard definition of the tangent space from equivalence

classes of tangent differentiable curves. Even if all this is possible, a more

constructive method like the one described before would be preferable, both

for its direct uses and a more open dependance on causal relations.
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Chapter 4

Alternative topologies

The realization of a topology directly from causal structure is a perfect ex-

ample of the amount of information encoded about the spacetime. For this

purpose we already introduced the Alexandrov topology A (cf. Section 2.2),

which happens to coincide exactly with the original manifold topology M
when the spacetime is strongly causal.

Many other kinds of topologies have been introduced in the past, each with

its own advantages and disadvantages. We will present some of them, start-

ing from Zeeman-type topologies and proceeding with other topologies based

on convergence criterions that join the properties of the former to the de-

sired derivation from causality and other characteristics observed in A.

We will be mostly interested on the defining properties and how they differ

from each other, trying to clarify the motivation behind each new topology

and what advantages they bring over the previous ones; the main properties

will be presented, with lesser or greater depth according to the relevance

of the discussion, and the homeomorphism group will be mentioned when

known.

For a complete analysis of any of the following topologies we recommend a

consultation of the respective original articles.
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Figure 4.1: From left to right, the Z-open set Zε(x), the P-open set Lε(x), and the

F-open interval I(y, x, z). The sets are only examples on a plain 3-dimensional

spacetime; dashed lines indicate removed points.

4.1 Z - Zeeman topology

Zeeman suggested a topology for Minkowski spacetime in 1966, described in

his work “The Topology of Minkowski Space” [2].

Although designed on a very specific case, it is worth of mention because

of the ideas proposed and to better comprehend the origin and motivation

of later works. An extension to general-relativistic spacetimes was proposed

in “Zeeman Topologies on Space-Times of General Relativity Theory” [6] by

Göbel, replacing in the subsequent discussion timelike lines with timelike

geodesics and spacelike hyperplanes with spacelike hypersurfaces.

The main motivation driving Zeeman is the fact that the original topology

M does not reflect the physics underlying the spacetime, and in addressing

this problem he gets to the definition of the new topology, Z.

The undesired quality of M is the fact that it is homogeneous and locally

homogeneous, ignoring any difference between space and time and prevent-

ing a natural emergence of light cones; its group of homeomorphisms is also

too abundant, as some even allow swaps between spatial and temporal axes,

and clearly not all of them can possibly be physical.

To overcome the homogeneity of the original topology, Zeeman treats time
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and space dimensions separately, although still without a proper distinction

between them.

Definition The Zeeman topology Z is the finest topology on the mani-

fold to induce 1-dimensional Euclidian topology on any timelike line and

3-dimensional Euclidian topology on any spacelike hyperplane.

It seems that to determine Z we still need the notion of the original topology.

This dependency is made more evident if we consider the condition for a set

to be open in Z, following directly from the definition.

Proposition 4.1 O ⊆ M is Z-open ⇐⇒ O ∩ τ , O ∩ Σ are M-open, for

any timelike line τ and spacelike hyperplane Σ.

M-openness on lines or hyperplanes is intended relative to the induced topol-

ogy on the subspaces, with open balls of corresponding dimension.

The reliance onM is one of the weak points of Z, when the aspiration is to

construct a topology only from causal structure.

SinceM is clearly among the topologies satisfying the defining condition, it

follows that Z is finer. There are also coarser topologies than M that still

meet the requirement, implying that its choice as the topology for M seems

to be unjustified if this physical constraint is accounted for.

Z is actually strictly finer than M:

Proposition 4.2 Z )M.

An example of sets open in Z but not in M is given by Zε(x) := (Bε(x) \
C(x)) ∪ {x}, i.e. open balls with all points on the light cone of x but x itself

subtracted (Figure 4.1, left). They are Z-open because any timelike line

or spacelike hyperplane is untouched and has the original topology, but the

point x itself does not admit an open ball as neighbourhood and therefore

they are not M-open. These sets however are not enough to form a basis

for the entire topology (for example the same set with a sequence of points

converging in M but not in Z removed from it is also Z-open), nor does Z
admit a countable basis of open neighbourhoods.

A consequence of Proposition 4.2 is that Z inherits some of the properties

of M:
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Proposition 4.3 Z is Hausdorff.

Proof The topology is Hausdorff if for any two distinct points x, y ∈ M

there exist open neighbourhoods Ox 3 x and Oy 3 y such that Ox ∩Oy = ∅.
SinceM is Hausdorff, these two sets exist and areM-open. Since Z is finer

than M, they are also Z-open, implying that Z is also Hausdorff. �

Following are other properties of Z not necessarily descending from M.

Proposition 4.4 Z is connected and locally connected. Z is not normal,

compact or locally compact.

Proposition 4.5 The topology induced on light rays by Z is discrete.

Proof For any point x of a light ray `, to induce the topology on the light

ray we must intersect Z-open neighbourhoods of x with ` itself. If the set

Zε(x) is chosen, then Zε(x) ∩ ` ≡ {x} is the open set induced on `. Hence

every point of ` is an open subset, and its topology is discrete. �

A motive for a discrete topology on light rays is provided by the evidence

that photons can be observed only during discrete events of emission and

absorption.

Another significant quality of Z is that its group of homeomorphisms is

smaller and more reasonable than the one relative to M, adding to the

reasons why this topology is more physical.

Proposition 4.6 f is a Z-homeomorphism ⇐⇒ f is a dilation, a trans-

lation or a Lorentz transformation.

The statement is intuitively evident, as dilations, translations, and Lorentz

transformations all maintain the straightness of lines and hyperplanes, thus

preserving the topology.

The implication is that the invariants of physics given by Lorentz represen-

tation can be directly deduced from Z itself, instead of being imposed on it

separately.

Finally, Zeeman suggests a few alternatives based on the same principle.

If a discrete topology is desired not only on light rays but on spacelike axes as
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well, a topology Z\ could be defined correspondingly as the finest topology

to induce the 1-dimensional Euclidian topology on timelike lines only. This

allows an extension of Proposition 4.5 to the spacelike dimensions if the

Z\-open neighbourhoods used are the sets obtained by the intersection of

open balls with the chronological past and future of the point, plus the point

itself.

Applications to this topology might be found when dealing with lattices or

more generally with the discreteness of matter, although it is not qualified

for a discrete spacetime as only the space coordinates are discretized.

In summary, the Zeeman topology represents a first step in the definition of

a topology for spacetime that is more suitable to reflect its physical proper-

ties than the original topology. It still presents a few inadequacies, like its

dependance on the original topology and the lack of a derivation from pure

causality, but has a good predisposition for generalizations and improve-

ments.

4.2 P - Path topology

Proceeding from Zeeman’s idea, Hawking, King and McCarthy introduce a

new topology based on arbitrary timelike lines and not limited to inertial

observer evolving along straight lines. This topology is described in “A new

topology for curved space-time which incorporates the causal, differential,

and conformal structures” [7] and is suitable for general spacetimes.

The authors argue that, even if Zeeman’s topology is appealing for its phys-

ical significance, it incorporates aspects with no concrete application. For

example, Z-homeomorphisms include dilations, transformations that could

never preserve the volume of the total spacetime. Also, there is no mani-

fest reason to take into account spacelike hyperplanes (or hypersurfaces), as

spacelike separated events are incomparable.

Differently from what done by Zeeman, the approach to the path topology

aims not just to separate time and space, but to give them the appropriate
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physical significance. For this reason attention is drawn away from space-

like entities to focus more on the timelike evolution of events, verifiable by

observation.

Definition The path topology P is the finest topology on the manifold to

induce 1-dimensional Euclidian topology on arbitrary timelike curves.

P is still a Zeeman-type topology and is dependent on the original topology,

although this time the defining requirement is extended to incorporate all

timelike paths. We will show that, differently from Z, this allows for the

existence of a basis for the topology as pathological cases occurring because

of sequences converging in other topologies other than P are precluded. The

condition for a set to be P-open is descended from the definition:

Proposition 4.7 O ⊆M is P-open ⇐⇒ O∩τ isM-open, for any timelike

line τ .

An argument analogous to the one for Z leads to the conclusion that P is

(strictly) finer than M.

Proposition 4.8 P )M.

As sets open in P but not inM choose the intersection of open balls with the

chronological past and future of a point, including the point itself: Lε(x) :=

Bε(x) ∩ (I
+
(x) ∪ I−(x) ∪ {x}) (Figure 4.1, middle).

Sets of this kind are not even Z-open, since on any spacelike hypersurface

they induce a discrete topology and not the Euclidean one as already pointed

out in the consideration of topologies alternative to Z.

As a matter of fact, the two topologies happen to be incomparable.

Proposition 4.9 P is incomparable to Z.

Proof The evidence of P-open sets that are not open in Z has already been

provided by the sets Lε.

To obtain a set open in Z but not in P consider Zε(x) and subtract from it

all points lying on a non-straight timelike curve τ passing through x but x

itself. The curve can be chosen so that it does not intersect any timelike line,
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meaning that the topology of any timelike line and hyperplane intersecting

the set is Euclidean and the set is Z-open. On the other hand it is not

P-open, as there exist a timelike curve, τ , such that no Euclidean topology

is induced on their intersection, {x}. �

P further differs from Z in the fact that it admits a countable basis of open

sets, making it more functional for practical purposes.

Proposition 4.10 The sets {Lε} form a basis for the topology P.

Like Z, the path topology benefits of various properties, some derived from

its being finer than M.

Proposition 4.11 P is Hausdorff, connected and locally connected. P is

not regular, normal, compact or locally compact.

While the homeomorphism group of Z includes dilations, preserving the

metric up to a constant factor, the homeomorphism group of P coincides

with the group of conformal transformations, preserving the metric up to a

variable factor. This allows to protect the total volume of spacetime and

makes the new topology more desirable for a physical theory.

Proposition 4.12 f is a P-homeomorphism ⇐⇒ f is a conformal trans-

formation, including translations and Lorentz transformations.

P-homeomorphisms have the interesting feature that they coincide with

homeomorphisms on the Alexandrov topology under very weak conditions.

Proposition 4.13 If M is chronological, then a P-homeomorphism f is an

A-homeomorphism.

This property comes from the fact that a continuous map on P maps

light cones into light cones and chronological pasts/futures to chronologi-

cal pasts/futures.

A further consequence is that if the spacetime is strongly causal, so that the

Alexandrov and the manifold topology coincide, then the P-homeomorphism

is also an M-homeomorphism.
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To sum up, the path topology answers to most of the disadvantages of Z, like

the inappropriateness for direct applications due to the lack of a countable

basis, and has a more explicit physical interpretation of timelike evolution.

However, there are some issues common to Zeeman-type topologies still

unresolved, and the connection with causality is not sufficiently explicit.

4.3 F - Fullwood topology

As a result of private talks with McCarthy, Fullwood was inspired to take

the connection between P and the Alexandrov topology to a further level.

In doing so he defines a new topology, F , presented in “A new topology on

space-time” [10].

The path topology presents a variety of advantages, but has a problem at

the core of its definition: it is not independent of the original topology and

is not fit to replace it unconditionally. On the other hand the Alexandrov

topology does not rely onM for its definition, but it still presents the same

problems of the original topology that motivated Zeeman in the first place.

A solution to this is provided by F , that has its origin in causal structure but

still possesses most of the characteristics of P. Several results suggest that

in distinguishing spacetimes F relates to P like in strongly causal spacetimes

A relates to M.

Definition The Fullwood topology F is the topology generated by the set

of double chronological intervals I(z, x, y) := I(z, x) ∪ {x} ∪ I(x, y).

Note how the double intervals I(z, x, y) (Figure 4.1, right) resemble a com-

bination of the light-cone neighbourhoods Lε(x) for the path topology and

the chronological intervals of the Alexandrov topology.

The same topology can be obtained with a notion of converging sequences.

Definition A sequence of events {xn} is said to causally converge to x if and

only if either I
+
(x) =

⋃
n I

+
(xn) or I

−
(x) =

⋃
n I

−
(xn), i.e. the future/past

of x is given by the union of all futures/pasts of the sequence.
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Let F̃ be the collection of sets U with the property that if {xn} ⊂M \U is

a monotonic chronological sequence in the complement causally converging

to x, then x ∈M \ U .

Proposition 4.14 F ≡ F̃

Proof Let’s prove first that F ⊇ F̃ , i.e. that given a set U ∈ F̃ there exists

a subset I(z, x, y) ⊆ U about any point x ∈ U . Without loss of gener-

ality, let’s prove the existence of an interval I(x, y) ⊆ U ; then, reflecting

the argument for a z to the past obtain I(z, x) and join the sets to get the

double interval. Suppose the thesis statement is wrong, and for any interval

I(x, y) there exists some point p ∈ I(x, y) but /∈ U . If we choose y1 ∈ I
+
(x),

then there is a p1 ∈ I(x, y1) \ U ; choose then y2 ∈ I(x, p1), and again a

p2 ∈ I(x, y2) \U , and proceed until we get two sequences {yn} and {pn}. If

{yn} is chosen to causally converge to x, then {pn} also causally converges

to x. But {pn} ⊂M \U , hence by definition of F̃ its limit is also in M \U ,

and x /∈ U in contradiction with the original assumption.

For the inverse inclusion, F ⊆ F̃ , we need to prove that any double interval

I(z, x, y) is an element of F̃ . Let {xn} ⊂ M \ I(z, x, y) be a monotonic

chronological sequence causally converging to x. Without loss of generality

consider the case I
+
(x) =

⋃
n I

+
(xn). Then x� xn for all n, and also there

exists some n̄ such that xn̄ � y, i.e. the sequence eventually precedes z.

Consequently xn̄ ∈ I(x, y) ⊆ I(z, x, y). But xn /∈ I(z, x, y) for all n by

assumption, hence we reach again a contradiction and any sequence causally

converging to x ∈ I(z, x, y) is not contained in the complement. On the

other hand, we could repeat the argument for any sequence converging to

any other point p of I(z, x, y) by choosing subsets I(x, p, y) or I(z, p, x),

according to whether x � p or p � x. This means that any sequence

causally converging to a point in I(z, x, y) is not contained in the comple-

ment, or that any causally converging sequence in the complement has its

limit in the complement itself, and proves the inclusion. �

Thanks to their being equivalent, we can use the notation xn
F−→ x to denote

that the sequence {xn} causally converges to x.

In view of the analogy between F to A, we see that the Fullwood topology
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is generally coarser than the path topology, as the Alexandrov topology is

generally coarser than the manifold topology.

Proposition 4.15 F ⊆ P.

Proof We have to prove that for any p ∈ I(z, x, y) there exists a local

neighbourhood Lε(p) ⊆ I(z, x, y).

If p ∈ I(z, x) or ∈ I(x, y), there exists an open ball Bε(p) ⊆ I(z, x, y) since

the intervals are M-open sets, and therefore there also is a Lε(p) ⊆ Bε(p).

If p = x, again we have that I
+
(x) and I

−
(x) are M-open, and we can

designate Lε(x) = {q ∈ I+
(x) ∪ I−(x) : ‖x− q‖ < ε} ∪ {x}. �

The parallelism of F and A goes further with the following proposition, that

echoes Theorem 2.5.

Proposition 4.16 M is future and past distinguishing ⇐⇒ F coincides

with P.

Proof For the implication that a distinguishing spacetime makes the two

topologies agree we will give only the idea. We already know that F is

coarser than P, and need two prove the opposite inclusion, F ⊇ P. To do

this, we need to find a double interval I(z, x, y) for any point x of a P-open

set Lε(p). There are two different cases. If x = p, both past and future are

M-open and we can select two points y ∈ I+
(x)∩Lε(p) and z ∈ I−(x)∩Lε(p)

to form the double interval I(z, x, y) ⊆ Lε(p). If instead x ∈ I+
(p) (or equiv-

alently I
−
(p)), we need the future and past distinguishing condition to make

sure of the existence of a local neighbourhood inside Lε(p) where the strong

causality condition holds and A ≡ M, so that intervals contained in Lε(p)

and having x as limit for future and past monotonic chronological sequences

respectively can be found; two of these intervals can then be used to form

the double interval.

The opposite implication proceeds similarly to the Alexandrov case. Sup-

pose the two topologies coincide but there exist two distinct points x, y where

either the future or past distinguishing condition fails (we will consider the

former without loss of generality). Let I(c, a, b) 3 x and I(r, p, q) 3 y be
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two F-open neighbourhoods of the points, and find two subsets I(d, x, e) ⊆
I(c, a, b) and I(s, y, t) ⊆ I(r, p, q). Since I

+
(x) = I

+
(y), we have that

x � e implies y � e, meaning that I(y, e) ∩ I(y, t) 6= ∅, or equivalently

I(x, e) ∩ I(y, t) 6= ∅, so that I(d, x, e) ∩ I(s, y, t) 6= ∅. This chain of impli-

cations applies to all F-neighbourhoods of x and y, violating the Hausdorff

condition that F would satisfy if it agreed with P. �

Even if the definition of the path topology might seem arbitrary and depen-

dent on external elements, this result confirms its causal nature when the

spacetime is reasonable. It is also implied that F is not Hausdorff unless

the distinguishing condition is satisfied.

Among other properties of F we find the following:

Proposition 4.17 The set of points where the future and past distinguish-

ing condition holds is open in F .

Equivalently, we could say that the set of points where the distinguishing

condition fails is F-closed, and since P is finer, also P-closed.

The group of homeomorphisms for F is known for a chronological spacetime.

Proposition 4.18 f is a F-homeomorphism ⇐⇒ f is a chronological or

anti-chronological bijection.

This makes perfect sense in the global picture. If the spacetime is future and

past distinguishing, Theorem 2.9 implies that causal bijections (or equiva-

lently chronological bijections) are smooth conformal transformations, and

the homeomorphism group of F coincides with the homeomorphism group

of P, confirming the agreement of the two topologies under such condition.

The Fullwood topology acts as a bridge between the path topology and

the Alexandrov topology, representing an alternative of causal origin to the

former in spacetimes that are at least future and past distinguishing. The

inspiration derived from a topology based on intervals accounts for a number

of properties involving F and P matching analogous properties for A and

M, like the parallelism between the open sets and the agreement under

a precise causality condition. This last feature is particularly useful if a
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topology of great physical interest and arising only from causality is desired

for spacetimes satisfying the relatively weak condition of future and past

distinction, although is not helpful if the original manifold topology is wished

instead.

4.4 N - Null chain topology

In “Causal Topology in Future and Past Distinguishing Spacetimes” [14] by

Parrikar and Surya a new topology is suggested, based on the definition of

a convergence criterion on null chains and inspired by a construction using

null geodesics in the main theorem of Malament’s publication [8].

The new topology, based on a convergence of null chains, tries to fill the

gap between strongly causal and future and past distinguishing spacetimes,

acting as an alternative to the Alexandrov topology in the latter case. Unlike

the Fullwood topology, that in distinguishing spacetimes coincides with the

path topology, the new topology under the same condition is shown to be

equivalent to the manifold topology. Moreover, the fact that the topology

descends from something as basic as a convergence criterion makes it more

available for an axiomatization of the theory.

There are several kinds of convergences that we should already be familiar

with, starting from the Euclidian limit on the original topology:

xn
M−→ x ⇐⇒ ∀O ∈M, ∃ n̄ : ∀n ≥ n̄, xn ∈ O.

A similar definition applies to a sequence converging in the Alexandrov

topology:

xn
A−→ x ⇐⇒ ∀O ∈ A, ∃ n̄ : ∀n ≥ n̄, xn ∈ O.

Since M is finer than A, manifold convergence implies Alexandrov con-

vergence, although it should be specified that the origin of the latter is

purely causal. Both of them can be extended from a sequence of points

{xn} to a sequence of open sets {On}, as long as it is required that for all

n ≥ n̄, On ∩O 6= ∅ instead. Note that if x ∈ On for all n, this convergence

is trivial.

Convergence in the Fullwood topology has a different definition:

xn
F−→ x ⇐⇒ either I

+
(x) =

⋃
n I

+
(xn) or I

−
(x) =

⋃
n I

−
(xn).
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Before defining the new convergence criterion, recall that null chains are

totally ordered set of points such that the causal interval between any two

of its points is also totally ordered. Also, denote with ∆ the set of points in

M where the strong causality condition fails (the spacetime itself is required

to be just causal).

Definition A sequence of events {xn} is said to N -converge to x if and only

if there exists a future (or past) directed null chain Ω = J(x, y) (or J(z, x)),

with Ω \ {x} ⊆ M \∆, and a sequence of future (or past) non-intersecting

null chains {Ωn = J(xn, yn)} (or J(zn, xn)) such that any point of Ω \ {x}
is an Alexandrov limit of {Ωn} and any subsequence of {Ωn} has no limit

out of Ω.

Denote N -convergence with xn
N−→ x. We can then use this null chain

convergence criterion to define a topology.

Let N be the collection of sets U with the property that if xn
N−→ x, {xn} ⊂

M\U , then x ∈M\U , that is anyN -converging sequence in the complement

has its limit in the complement.

Proposition 4.19 N is a topology.

Proof We need to verify that the three defining properties of a topology

are satisfied. Let {Ui} ⊆ N .

M, ∅ ∈ N . This is obvious, as the complement of M is ∅ and cannot possi-

bly have any sequence, and the complement of ∅ is M and any converging

sequence must converge to some point of the manifold itself.⋃
i Ui ∈ N . For any N -converging sequence {xn} ⊂ M \

⋃
i Ui, then

{xn} ⊂ M \ Ui for any i. If the sequence converges to x, since every Ui

is N -open it means that x ∈ M \ Ui for all i. Then x /∈
⋃
i Ui, and

⋃
i Ui is

N -open.⋂
i Uj ∈ N for finite {Uj}. For any sequence {xn} ⊂M\

⋂
j Uj =

⋃
j(M\Uj),

since the sets are in finite number there must exist some value k for which

M \ Uk̄ contains an infinite subsequence of {xn}. Then, if xn
N−→ x, any

subsequence also N -converges to the same point. As Uk is N -open it follows

that x ∈M \Uk, and consequently x ∈
⋃
j(M \Uj) = M \

⋂
j Uj , and

⋂
j Uj

is also open in N . �
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By virtue of the concerns with strong causality handled in the definition, the

requirement of N -convergence seems to be weaker than that of Alexandrov

convergence, as it is only necessary that the spacetime is future and past

distinguishing for it to coincide with the original manifold convergence.

Proposition 4.20 If M is future and past distinguishing, and the region

of strong causality violation ∆ is either empty or locally achronal, then N -

convergence is equivalent to M-convergence.

Immediate consequence is that, under the same conditions, the two topolo-

gies coincide.

Proposition 4.21 If M is future and past distinguishing, and the region

of strong causality violation ∆ is either empty or locally achronal, then N
coincides with M.

The result is significant, indicating that the topological structure of a space-

time is more complex than one could expect. According to the causality

condition holding on M , the same topology M could be equivalent to an

entire range of other topologies differently defined. The level of refinement

required is not the only relevant parameter in the choice of a topology for

spacetime, and the spacetime’s own behaviour should be taken into account.

Even if M admits a countable basis and N coincides with it under the dis-

tinguishing condition, it is not easy to find a neighbourhood basis for the

new topology. This is because causal intervals and other sets of causal na-

ture are not necessarily local if the spacetime is not strongly causal.

Still it is not an impossible task; intersecting causal intervals with an M-

open ball still produces a local neighbourhood, and we could use the same

method to construct local neighbourhoods in the N -topology. The use of

the manifold topology as aid in the construction should not be a concern for

physical theories of purely causal origin as long as the spacetime is distin-

guishing.

The null chain topology is a causal topology that should be used to recover

the original topology on spacetimes that are not robust enough to satisfy the

44



strongly causal condition but still has the distinguishing property. Although

its definition has no apparent relation to that of the Alexandrov topology,

it is still emerges from causality and is thought as an alternative to A.

There are some issues that unless solved would make this topology rather

unpractical. Among them are the fact that the homeomorphism group is

unknown and the absence of a recognized basis of open sets.

45



Conclusions

As a consequence of the theorems presented throughout the dissertation, it

would be unfair to treat causality as just a product of the relations emerging

from the metric, and should occupy a fundamental position in the structure

of spacetime. This becomes especially true for the most “causal” space-

times, whose behaviour is non-pathological and prevents the manifestation

of physical paradoxes.

Up until now the continuousness of spacetime was never doubted, even

though one of the main uses of causal structure is its application to the

problem of whether the continuous spacetime that we experience reflects

only an approximation of a more fundamental configuration of discrete na-

ture, and how can this approximation be obtained from it. This is done

with the employment of causal sets theory, which relies purely on a discrete

set of points, “atoms” of spacetime, and their causal relations.

The question is whether it is always possible to reconstruct the continuous

case only from these elements, and even if all the results from Chapter 2

seem to point in that direction, the general answer is no. It is easy to think

of pathological examples that cannot be recreated through the use of causal

sets, but it’s not easy to demarcate the exact point beyond which it is always

possible to get the whole spacetime.

One of the examples is given by the cylinder described by Hawking and Ellis

[5]. Here the 2-dimensional spacetime is periodic along the spatial axis with

cylindrical conditions; light cones are tilted of 45◦ at t = 0 so to create a

unique null geodesic going round as a circle, and are straightened up when

approaching the lower and top limits of the cylinder. The existence of a
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null geodesic going on a loop means that the spacetime is not causal. The

main argument that explicits the impossibility of recovery of this case from

discrete causal sets goes as following: consider two points, x and y, on op-

posite sides of the circular null geodesic, and consider another point z just

to the future (or past) of x; from a causal point of view, there is no way to

tell that z is much closer to x than y, as these two points have exactly the

same past and future; all the points on the loop behave identically and could

somehow be considered as the same point, and a retrieval of the topological

properties from causality would be impossible. A point could be removed

from the loop to make the spacetime causal, although still not future nor

past distinguishing; this removal is not registered in the discrete case, as

single points in the continuum are only a result of the approximation and

have no direct correspondent, and the problem persists. Similar arguments

can be used when only future but not past distinction holds, or vice versa,

as described by Malament [8].

On the other hand, future and past distinguishing spacetimes already pos-

sess all the necessary requirements to make their reconstruction possible,

from the topology to the differential structure.

The dividing line for the determination of success or failure of the recon-

struction seems to lie in between these causality conditions, with future or

past distinguishing spacetimes as a gray area. For these spacetimes it would

still be possible to define a topology, like the one introduced by Parrikar and

Surya based on null chain convergences, although it will not coincide with

the original topology and leaves the complications unsolved.

Spacetimes where even future or past distinction fails could be even more

problematic, and in some cases deny entirely the likelihood of success, as in

the example above. It should be noted however that there are two different

ways for future or past distinction to fail. In one case there exist points such

that both future and past coincide, and it is closer to the causal condition

in the hierarchy; the instance of the cylinder falls in this category. In the

other case there are some points with the same past and some with the same

future, but two distinct points never share both of them; this means that at

least locally the spacetime is either future or past distinguishing, and in a

way it echoes the local strongly causal behaviour of a distinguishing space-
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time. The implications of this dissimilarity and the attempt to narrow the

uncertainty of reconstruction on these spacetimes could be object of further

investigations.

The complexity of the topic appears to be related to the variety of causal-

ity conditions that could hold on the spacetime. This is also cause for the

abundance of alternative topologies, usually different from each other unless

a specific condition is satisfied. For future and past distinguishing space-

times for example we have more than one choice: if the original topology

is required, it can be obtained from causality through the alternative based

on null chains; otherwise, if the topology should reflect more the physical

constitution of spacetime, another choice based on double interval and still

arising from causality is possible, leading to the path topology. Causality is

not the only reason for the diversification, and other physical requirements

also play a central role for the choice of a topology.

It could be conjectured that the same is true for other fabrics, like the differ-

ential structure. It is already known that the one we are familiar with is not

the only possibility, and a number of exotic differential structures is possible

depending on the manifold. An interesting manifestation, possibly of physi-

cal origin, is represented by the n-dimensional Euclidian spaces, that admit

only one differential structure unless the dimension is 4, in which case the

exotic alternatives are uncountable. An account of the role of exotic differ-

ential structure in physics can be found in “Exotic smoothness and physics:

differential topology and spacetime models” [12] by Asselmeyer-Maluga and

Brans.

Nevertheless, the information encoded in causality has the potential to ex-

tend to each different aspect of spacetime, underlying and influencing its

different structures to a lesser or greater extent. Once the causality condi-

tion is sufficiently strong, nothing should prevent the decodification of this

information for the reconstruction of the spacetime.
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