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Abstract

In this paper we present a detailed review of the most widely ac-
cepted theory of gravity: general relativity. We review the Einstein-
Hilbert action, the Einstein field equations, and we discuss the various
astrophysical tests that have been performed in order to test Einstein’s
theory of gravity. We continue by looking at alternative formulations,
such as the Palatini formalism, the Metric-Affine gravity, the Vier-
bein formalism, and others. We then present and analytically discuss
a modification of General Relativity via the Chern-Simons gravity cor-
rection term. We formulate Chern-Simons modified gravity, and we
provide a derivation of the modified field equations by embedding the
3D-CS theory into the 4D-GR. We continue by looking at the appli-
cations of the modified theory to CMB polarization, and review the
various astrophysical tests that are used to test this theory. Finally,
we look at f(R) theories of gravity and specifically, f(R) in the met-
ric formalism, f(R) in the Palatini formalism, f(R) in the metric-affine
formalism, and the various implications of these theories in cosmology,
astrophysics, and particle physics.
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1 Introduction

Despite the fact that gravity is the fundamental interaction which is so much
related to our everyday experience, it still remains the most mysterious and
enigmatic interaction from all the others. The gravitational force is the one
most easily conceived of, without any deep and sophisticated knowledge, and
was the first one to be tested experimentally due to the nature and simplicity
of the experiments conducted and the apparatus used[41].

Galileo Galilei was the first to introduce the pendulum and inclined planes
to the study of terrestrial gravity at the end of the 16th century. Gravity
played an important role in the development of Galileo’s ideas about the
necessity of experiment in the study of Science, which had a great impact
on modern scientific thinking. However, it was not until 1665, when Isaac
Newton introduced the now renowned inverse-square gravitational force law,
that terrestrial gravity was actually related to celestial gravity in a single
theory. Newton’s theory made correct predictions for a variety of phenom-
ena at different scales, including both terrestrial experiments and planetary
motion.Newton’s contribution to gravity, quite apart from his enormous con-
tribution to physics overall, is not restricted to the expression of the inverse
square law. Much attention should be paid to the conceptual basis of his
gravitational theory, which incorporates two key ideas[41],[113]:

e The idea of absolute space, i.e. the view of space as a fixed, unaffected
structure; a rigid arena where physical phenomena take place.

e The idea of what was later called the Weak Equivalence Principle which,
expressed in the language of Newtonian theory, states that the inertial and
the gravitational mass coincide.

In 1855, Urbain Le Verrier observed a 35 arc-second excess precession of
Mercurys orbit and later on, in 1882, Simon Newcomb measured this preces-
sion more accurately to be 43 arc-seconds. This experimental fact was not
predicted by Newton’s theory. It should be noted that Le Verrier initially
tried to explain the precession within the context of Newtonian gravity, at-
tributing it to the existence of another, yet unobserved, planet whose orbit
lies within that of Mercury. He was apparently influenced by the fact that ex-
amining the distortion of the planetary orbit of Uranus in 1846 had led him,
and, independently, John Couch Adams, to the discovery of Neptune and the
accurate prediction of its position and momenta. However, this innermost
planet was never found[41],[113].



However in 1893, Ernst Mach stated what was later called by Albert Ein-
stein’s: Machs principle. This is the first constructive attack to Newton’s idea
of absolute space after the 18th century debate between Gottfried Wilhelm
von Leibniz and Samuel Clarke (Clarke was acting as Newtons spokesman)
on the same subject, known as the LeibnizClarke Correspondence. Machs
idea can be considered as rather vague in its initial formulation and it was
essentially brought into the mainstream of physics later on by Einstein along
the following lines: Inertia originates in a kind of interaction between bodies.
This is obviously in contradiction with Newton’s ideas, according to which
inertia was always relative to the absolute frame of space. However, there was
another more clear interpretation given by Dicke: The gravitational constant
should be a function of the mass distribution in the Universe. This is differ-
ent from Newton’s idea of the gravitational constant as being universal and
unchanging. Now Newton’s basic axioms have to be reconsidered[41],[113].

Newton’s theory was very successful in explaining the various aspects of
gravity at that time. Newton’s theory is also a classical theory, and has
successfully described the physical world around us therefore it can be con-
sidered as a very consistent theory, although not necessarily the most right
one. The question is how consistent a theory is rather how ’right’ it is. The
theory was able to explain within a couple of years of its formulation all
questions posed at that time[113].

But it was not until 1905, when Albert Einstein completed Special Rel-
ativity, that Newtonian gravity would have to face a serious challenge. Ein-
stein’s new theory, which managed to explain a series of phenomena related to
non-gravitational physics, appeared to be incompatible with Newtonian grav-
ity. Relative motion and all the linked concepts had gone well beyond Galileo
and Newton ideas and it seemed that Special Relativity should somehow be
generalised to include non-inertial frames. In 1907, Einstein introduced the
equivalence between gravitation and inertia and successfully used it to predict
the gravitational red-shift. Finally, in 1915, he completed the theory of Gen-
eral Relativity, a generalisation of Special Relativity which included gravity
and any accelerated frame. The theory matched perfectly the experimental
result for the precession of Mercury’s orbit, as well as other experimental
findings like the Lense-Thirring gravitomagnetic precession (1918) and the
gravitational deflection of light by the Sun, as measured in 1919 during a
Solar eclipse by Arthur Eddington. GR overthrew Newtonian gravity and
continues to be up to now an extremely successful and well-accepted theory
for gravitational phenomena. As mentioned before, and as often happens
with physical theories, Newtonian gravity did not lose its appeal to scien-
tists. It was realised, of course, that it is of limited validity compared to



GR, but it is still sufficient for most applications related to gravity. What is
more, in weak field limit of gravitational field strength and velocities, GR in-
evitably reduces to Newtonian gravity. Newtons equations for gravity might
have been generalised and some of the axioms of his theory may have been
abandoned, like the notion of an absolute frame, but some of the corner-
stones of his theory still exist in the foundations of GR, the most prominent
example being the Equivalence Principle, in a more suitable formulation of
course[41],[113].

General Relativity together with quantum field theory are considered to
be the backbones of modern physics. The theory is given in the language
of differential geometry and was the first such mathematical physics theory,
leading the way for other mathematical theories in physics such as the gauge
theories and string theories. One of the most astonishing facts about GR
is that almost after an entire century it hasn’t changed at all. How space-
time behaves on macroscopic scales is best described by the Einstein’s Field
Equations[1]:

G, = 81T,

where G, is the Einstein tensor, T}, is the energy-momentum tensor and
G is the Newton’s constant of gravitation. It is precisely these equations that
are thought to govern the expansion of the Universe, the behavior of black
holes, the propagation of gravitational waves, and the formation of all struc-
tures in the Universe, from planets to stars, to galaxies and clusters/super-
clusters of galaxies. However, in the microscopic scales GR is not an adequate
theory(1].

Even though General Relativity is a very successful theory this didn’t
stop alternatives being proposed. Even a little after the publication of the
theory by Einstein, proposals were made in order to extend the theory, and
incorporate it in a larger, more unified theory. Examples of this are the
Eddington’s theory of connections, Weyl’s scale independent theory, and the
higher dimensional theories of Kaluza and Klein[1]. There are many more
proposed since then and there are several modification of GR that the reader
can find in a very extended and detail review, Modified Gravity and Cosmol-
ogy|[1]. To mention a few, alternative theories of gravity with extra fields such
as scalar-tensor theories(Brans-Dicke Theory), Einstein—-Ether Theories, Bi-
metric Theories. We can also find higher derivative theories of gravity such
as Horava-Lifschitz gravity, and Galileons[1].



Before presenting the theory of GR let us define what the theory actually
means. Depending on the point of view, for cosmology GR is just the set of
10-non-linear partial PDE’s, called the Einstein Fields equations. For parti-
cle physics, it refers to any dynamical theory of spin-2 fields that incorporates
general covariance as general relativity, even if the field equations are differ-
ent. In other words the GR refers to the theory that simultaneously exhibits
general covariance, universal couplings to all matter fields, and satisfies Ein-
stein’s Field equations. Therefore any deviation from these principles is what
we call modified gravity. However all proposals of modified theories respect
general covariance as well as the universality of free fall.[1],[2],[33].[41],[113].

There are, however, some ambiguities involved. For example the 'mat-
ter fields’ can be subjective. This is very true when we deal with exotic
matter which can be used to explain the apparent late-time acceleration of
the Universe. Furthermore, the Einstein’s Field equations are well-known in
four-dimensions. But what if we include more dimensions and then we may
choose to either derive these field equations from an Einstein-Hilbert action
in the higher dimensional space-time, or to the effective set of equations in
four-dimensions. The above two possible definitions are not consistent and
moreover we don’t know whether in the EFE’s we have include a cosmologi-
cal constant or not. If not, then we can claim that this theory is a modified
theory of gravity[1],[2],[33].

It is beyond the scope of this review to present the wide variety of modi-
fications of GR. In this paper, however, we will present a detailed review of
GR, by starting with a discussion of the main principles the theory is based
on, and continuing with the Einstein-Hilbert action and the Einstein Field
equations. We will also see the various astrophysical tests that have been
performed so far to validate the theory. Next, we will see a very interesting
modification of GR, namely Chern-Simons modified gravity, We will present
the modified action, derive the modified field equations, discuss parity viola-
tion in the CS theory, and the application to CMB polarization. We will also
examine the two very important consequences of parity violation, namely,
cosmological and gravitational birefringence, and finally we will present the
astrophysical tests for this theory. In the last chapter, we will see the very-
well known f(R) theories-or actions that are a function of the Ricci scalar,
either linear or non-linear. Since the literature for f(R) theories of gravity is
extremely large, I have decided to present the very basics, such as a few toy
models, and the f(R) in the Metric, Palatini, and Metric-Affine formalisms.



2 General Relativity

2.1 Foundations of GR

Requirements for Validity

In order to construct a relativistic theory of gravity it is of primarily impor-
tance to establish the properties it must satisfy in order for it to be considered
viable. These include foundation requirements, such as the Universality of
free fall and the isotropy of space,as well as compatibility with a variety of
different observations involving the propagation of light and the orbits of
massive bodies. In this section we will discuss the gravitational experiments
and observations that have so far been performed in these environments,
and what they tell us about the theory of relativity and the principles that
a theory must obey in order for it to stand a chance of being considered
viable[1].

The ABC of General Relativity

There are five principles [2] which, explicitly or explicitly, guided Einstein
in his search. They are:

1) Mach’s Principle

2) The Principle of Equivalence

3) The Principle of Covariance

4) The Principle of Minimal Gravitational Coupling
5) The Correspondence Principle

Mach’s Principle

Mach’s Principle was proposed by Mach in 1893, and the starting point
of which is that there is no meaning to the concept of motion, but only to
that of relative motion. For example, a body in an otherwise empty Universe
cannot be said to be in motion according to Mach, since there is nothing to
which the body’s motion can be referred. Moreover, in a populated Universe,
it is the interaction between all matter in the Universe which is the source
of all inertial effects. In our Universe, the bulk of the matter resides in what
is called the ’fixed stars’. Then from Mach’s viewpoint, an inertial frame is
a frame in some privileged state of motion relative to the average motion of



fixed stars. Hence, it is the fixed stars through their masses, distribution,
and motion which determine a local inertial frame|[2].

Mach’s Principle can be incorporated in the following [2] three statements:

M1. The matter distribution determines the geometry

M2. If there is no matter then there is no geometry

M3. A body in an otherwise empty Universe should possess no inertial prop-
erties

The Principle of Equivalence

Before we consider the Principle of Equivalence in GR let us consider the
Principle of Equivalence in the Newtonian Theory of Gravity. According to
this principle[1],[2],[3],[4],[5],[6] in the Newtonian theory:

All bodies in a given gravitational field will move in the same manner, if
initial conditions are the same. In other words, in a given gravitational field,
all bodies move with the same acceleration. In the absence of a gravitational
field, all bodies move with the same acceleration relative a given non-inertial
frame of reference. Therefore the Principle of Equivalence in the Newtonian
Theory states that: locally any non-inertial frame of reference is equivalent
to a certain gravitational field.

Globally, ’actual’ gravitational fields can be distinguished from corre-
sponding non-inertial frames of reference by their behavior at infinity: Grav-
itational fields generated by gravitational objects decay with distance. In
Newton’s theory the motion of a test particle is determined by the following
11],[2],[3],14],[5],[6] equation of motion:

Min@ = —Mg Vi (1)

where a is the acceleration of the test particle, ¢ is the Newtonian Po-
tential of the gravitational field,m;, is the inertial mass of the test particle,
mg, is the gravitational mass of the test particle, which is the gravitational
analogue of the electric charge in the theory of Electromagnetism. The fun-
damental property of gravitational field, that all test particles move with the
same acceleration for a given potential ¢,is explained within the frame of



Newtonian Theory just by the following[1],[2],[3],[4],[5],[6] ’coincidence.

Min

~1 2)

Mgr

Above we introduced the idea of the test particle or otherwise a particle
that has negligible mass in comparison with massive gravitating body that
creates the gravitational field. Hence we define a gravitational test particle,
to be a test particle which experiences a gravitational field but does not itself
alter the field or contribute to the field.

The Principle of Equivalence has three different forms in GR, however in
general it can be expressed in the following way[6]: A uniform gravitational
field is equivalent to, which means is not distinguishable from, uniform accel-
eration. In practise this means that a person cannot feel locally the difference
between the standing on the surface of a gravitating object and moving away
in a rocket with the same acceleration. According to Einstein these effects
are actually the same.

The important consequence of the equivalence is that any gravitational
field can be eliminated in the free-falling frames of reference, which are called
local inertial frames or local Galilean frames. In other words there is no ex-
periment to distinguish between being weightless far away from gravitational
objects in space and being in free-fall in a gravitational field[6].

As mentioned above the Principle of Equivalence can be defined also in
the following three ways according to certain conditions that need to be sat-
isfied|[1]:

e The Weak Equivalence Principle(WEP): All uncharged,freely falling test
particles follow the same trajectories, once an initial position and velocity
have been prescribed.

e Einstein’s Equivalence Principle(EEP): The WEP is valid, and furthermore
in all freely falling frames one recovers (locally and up to tidal gravitational
forces)the same laws of special relativity, independent of position and veloc-
ity.

e The Strong Equivalence Principle(SEP): The WEP is valid for massive
gravitating objects as well as test particles, and in all freely falling frames
one recovers (locally and up to tidal gravitational forces) the same special
relativistic physics, independent of position and velocity.



Furthermore let us consider the equivalence principles and we will not
assume instantly that any of these principles are valid, but will rather reflect
on what can be said about them experimentally[l]. This will allows us to
separate out observations that test the equivalence principles, from observa-
tions that test the different gravitational theories that obey these principles,
and this is an approach pioneered by Dicke[9].

The least stringent of the equivalence principles is the WEP. The best ev-
idence in support of the WEP still comes from Eotvos type experiments that
use a torsion balance to determine the relative acceleration of two different
materials toward distant astronomical bodies. In reality these materials are
self-gravitating, but their mass is usually small enough enough that they can
effectively be considered to be non-gravitating test particles in the gravita-
tional field of the astrophysical body[1].

Using beryllium and titanium the tightest constraint on the relative dif-
ference in accelerations of the two bodies, a; and as, is currently[1],[10]

a; — a2
a1+&2

n=2| | =(0.3+£1.8) x 107" (3)

This is an improvement of around 4 orders of magnitude of the original
results of Eotvos from 1922 [11]. It is expected that this can be improved
upon by up to a further 5 orders of magnitude when space based tests of the
equivalence principle are performed|1],[12]. These null results are generally
considered to be a very tight constraint on the foundations of any relativistic
gravitational theory if it is to be thought of as viable, that is, the WEP must
be satisfied, at least up to the accuracy specified in the above equation.

let us now consider the gravitational red-shift of light. This is one of the
classic tests of General Relativity, suggested by Einstein himself in 1926[1],[13].
If we accept energy momentum conservation in a closed system then it is only
really a test of the WEP, and is superseded in its accuracy by the Eotvos
experiment we have just discussed. The argument for this is the follow-
ing[1],[9],[14]:

Consider an atom that initially has an inertial mass M; and gravitational
mass M,. The atom starts near the ceiling of a lab of height h, in a static
gravitational field of strength g, and with an energy reservoir on the lab floor
beneath it. The atom emits a photon of energy E that then travels down
to the lab floor, such that its energy is blue-sifted by the gravitational field
to B’ when it is collected by the reservoir. This process changes the the
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inertial and gravitational masses of the atom to M; and M, respectively.
The atom is then lowered to the floor, a process which lowers its total energy
to Mygh. At this point, the atom re-absorbs a photon from the reservoir
with energy E' = (M} — M])c? and is then raised to its initial position of
the ceiling. This last process raises its energy by M, gh, where M;" and
M are the inertial and gravitational masses of the atom after re-absorbing
the photon. The work done in lowering and raising the atom in this way
is given by w = (M — M;)gh. Recalling that the energy gained by the
photon in travelling from the lab ceiling to the lab floor is E' — E. From the
principle of conservation of energy we have that £/ — F = w = (M — M;)gh.
Now, if the WEP is obeyed then M; = M, and the above equation becomes
E' — E = FE’gh. This is nothing more than the usual expression for the
gravitational red-shift. Crucial here is the assumption that local position
invariance is valid so both M; and M, are independent of where they are in
the lab.

If the laws of physics are position independent,and energy is conserved,
gravitational red-shift then simply tests the equivalence of gravitational and
inertial masses, which is what the Eotvos experiment does to higher accuracy.
Alternatively, if we make the WEP to be tightly constrained by the Eotvos
experiment, then gravitational red-shift experiments can be used to gain high
precision constraints of the laws of Physics[1],[15]. The gravitational red-shift
effect by itself, however, does not appear to be able to distinguish between
the different theories that obey the WEP and local position invariance. In
Dicke’s approach[9] it should therefore be considered as a test of the founda-
tions of relativistic gravitational theories, rather than a test of the theories
themselves[1].

The most stringent equivalence principle is the EEP[1]. Testing this, is
a considerable more demanding task than was the case for the WEP, as one
now not only has to show that different particles follow the same trajectories,
but also that a whole set of relativistic laws are valid in the rest frames
of these particles. Despite the difficulties involved with this, there is still
compelling evidence that the EEP should also be considered valid to high
accuracy|[l]. The most accurate and direct of this evidence is due to the
Hughes-Drever experiments[16],[17], which test the local spatial anisotropies
by carefully observing the shape and spacing of atomic spectral lines. The
basic idea here is to determine if any gravitational fields beyond a single
rank-2 tensor are allowed to couple directly to matter fields. To see why
this is of importance, let us first consider a number of point-like particles
coupled to a single rank-2 tensor g,,. The Lagrangian density for such a set
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of particles is given[1] by:

L= Z/m“/—guyu“u”d)\ (4)

where m; are the masses of the particles, and u* is their 4-velocity mea-
sured with respect to some parameter A. Using the variational principle we
derive the Euler-Lagrange equations which tell us that the particles in the
above equation follow geodesics of the metric g,,,, and Riemannian geometry
tells us that at any point we can choose coordinates such that g,, = 7,
locally. We therefore recover Special Relativity at every point[1], and the
EEP is valid.

Consider the case where the matter fields couple to two rank-2 tensors
then the above argument falls apart. In this case the corresponding La-
grangian density of the two particles is[1]:

L= /[m“/—gu,,u“u” + npy/—hutur|dA (5)

where h,,, is the new metric tensor, and n; is the coupling of each particle
to that field. The particles above can now no longer be thought of as following
geodesics of any one metric as the new Euler-Lagrange equations[1]are not in
the form of geodesic equations. Hence we don’t have Riemannian Geometry
here which we can use to locally transform to the Minskowski space-time and
so the EEP is violated. The relevance of this discussion for the Hughes-Drever
experiments is that EEP violating couplings, such that the ones just described
above, cause the types of anisotropies that these experiments constrain. In
this case the 4-momentum of the test particle is given[1]by:

mg,,u” nhy,u”

b= \/ —Gapuul  \/—hagucuf

(6)

and as g,, and h,, cannot in general be made to be simultaneously
spatially isotropic, we then have that p, is spatially isotropic, and should
cause the type of shifts and broadening of spectral lines that Hughes-Drever
type experiments are designed to detect[1]. The current tightest constrains
are around 5 orders of magnitude tighter than the original experiments of
Hughes-Drever[18],[19], and yields constraints of the order:

n<10"%"m (7)
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so that couplings to the second metric must be very weak in order to
be observationally viable. This result strongly supports the argument that
matter fields must be coupled to a single rank-2 tensor only. It then follows
that particles follow geodesics of this metric, that we can recover Special
Relativity at any point and hence that the EEP is valid[1].

Beyond direct experimental tests such as the Hughes-Drever-type experi-
ments, there are also theoretical reasons to think that the EEP is valid to high
accuracy. This is a conjecture attributed to Schiff, that states: ’Any com-
plete and self-consistent gravitational theory that obeys the WEP must also
obey the EEP’.It has been shown using conservation of energy that preferred
frame and preferred location affects can cause violations of the WEP[14].This
goes some way toward demonstrating Schiff’s conjecture,but there is as yet
still no incontrovertible proof for its veracity[1].

The experiments we have just described provide very tight constraints on
the WEP, the EEP, and local position invariance. It is possible to test various
other aspects of relativistic gravitational theories that one may consider as
'foundational’, for example the constancy of a constant of nature[20]. In our
case we are interested mostly in the EEP as theories that obey the EEP are
often described as being 'metric’ theories of gravity, as any theory of gravity
based on a differentiable manifold and a metric tensor that couples to matter,
can be shown to have test particles that follow geodesics of the resulting
metric space. The basics of the Riemannian geometry then tells us that at
every point in the manifold there exists a tangent plane, which in cases with
Lorentzian signature is taken to be Minkowski space. This allow us to recover
Special Relativity at every point, up to the effects of second order derivatives
in the metric, i.e tidal forces, so that the EEP is satisfied[1].Validity of the
EEP can be thought of as implying that the underlying gravitational theory
should be metric one[1],[21].

The Principle of Covariance

Lets recall the principle of Special Relativity, namely, all inertial observers
are equivalent. The theory of General Relativity attempts to include non-
inertial observers in order to cope with gravitation. Einstein argued that all
observers, whether they are inertial or not, should be capable of discovering
the laws of Physics[2]. If this was not true, then we would have little chance
of discovering them since we are bounded in this planet, whose motion is
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almost certainly non-inertial. Thus Einstein proposed that all observers are
equivalent. Observers are tied up with their frame of reference systems or
coordinate systems, so if any observer can discover the laws of Physics, then
any coordinate systems should do|2].

The situation however is different in General Relativity. In Special Rel-
ativity the metric is flat and the connection integrable, hence there exists a
canonical or preferred coordinate system, namely, the Minskowksi coordinate
system[2]. In a curved space-time we have a Manifold with a non-flat metric
and there is no canonical coordinate system. This is just another statement
of the non-existence of a global non-inertial observer. It is not so much that
any coordinate system will do, but rather than the theory is invariant un-
der a coordinate transformation. Hence we can formulate the Principle of
Covariance[2],[3],[4],[5],[6] that says:

The shape of all physical equations should be the same in any arbitrary
frame of reference, or equivalently, the equations of physics should have ten-
sorial form. This principle refers to the most general case of non-inertial
frames, in contrast with SR which works only with inertial frames of refer-
ence. If the Covariance Principle wasn’t true then the physical equations
would be different in gravitational fields and inertial-frames of reference, and
hence would admit different solutions. This way the equations would predict
the difference between a gravitational field and a non-inertial frame of refer-
ence and so contradict the experimental data as there is no way to distinguish
between a gravitational field and a non-inertial frame of reference[2],[6].

The Principal of Minimal Coupling

The principles we have discussed so far do not tell us how to obtain field
equations of systems in General Relativity when the corresponding equations
are known in Special Relativity[2]. The principle of minimal gravitational
coupling is a simplicity principle that essentially says we should not add
unnecessary terms in making the transition from the special to the general
theory. For example, in Special Relativity the energy-momentum conserva-
tion law is given[2]by:

0T =0 (8)
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The simplest generalization of the above law in General Relativity is

VyT% =0 (9)

In other words we can say that if one wants to take into account all effects
of Gravity on any local physical process, described by the corresponding
equations,written in the framework of Special Relativity,one should replace
all partial derivatives by covariant derivatives in these equations according to
the following very simple but actually very strong 'transformation’[6] 0 — V
or , —;.

We can now formulate the Principle of Minimal Gravitational Coupling:
No terms explicitly containing the curvature tensor should be added in mak-
ing the transition from Special Relativity to General Relativity[2].

The Correspondence Principle

As we stated from the outset, we are engaged with modelling, and to-
gether with any model should go its range of validity. Then any new theory
must be consistent with any acceptable earlier theories within their range of
validity. General Relativity must agree on the one hand with Special Rela-
tivity in the absence of gravitation and on the other hand with Newtonian
gravitational theory in the limit of weak gravitational fields and low velocities
in comparison with the speed of light[2].

This gives rise to the Correspondence Principle which states that: When
considering the behavior of systems described by the theory of quantum me-
chanics or general relativity, then this behavior switches to classical mechan-
ics for large macroscopic systems and for speeds much less than the speed of
light.

The Correspondence Principle was first used by Niels Bohr back in 1913

in developing his model of the atom. However it was formulated in by Bohr
in 1920 so it can be used of the modern theory of quantum mechanics.
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2.2 Einstein’s Theory of GR

Having considered the requirements that must be satisfied by a viable rela-
tivistic theory of gravity, let us now consider Einstein’s Theory of General
Relativity in particular. General Relativity satisfies all of the requirements
described in the previous section, either by construction, with respect to the
foundational requirements, or my trial in the case of tests of metric theories
of gravity|[1].

General Relativity is a gravitational theory that treats space-time as a
four-dimensional manifold. The connection associated with covariant differ-
entiation, I'} 5, should be viewed as an additional structure on this manifold,
which in general, can be decomposed into two parts: The symmetric part
and the antisymmetric part, such that[1],[2],[3],[4],[5],[6]:

Las = Tag) + Tlagy (10)

In General Relativity we take the antisymmetric part of the connection
Ff‘a g =0or otherwise in the language of differential geometry, we assume that
the torsion vanishes. Hence we are only left with the symmetric part of the
connection, which describes the curvature of the manifold|[1],[2],[3],[4],[5],[6].
Therefore we have:

To define distances on the manifold on also requires a metric tensor, g, .
Along the curve + this gives a measure for the distance[1],[2],[3],[4],[5],[6]:

s= [ dA i 12
A NS (12)

where ) is a parameter along the curve, x* = x#(\),and over-dots here
mean differentiation with respect to A\. The metric should also be considered
as an additional structure on the manifold, which is in general independent
of the connection. The relationship between the connection and the metric is
defined via the non-metricity tensor, Qa3 = V,gas. In General Relativity it
is assumed that the non-metricity tensor vanishes as the covariant derivative
of the metric tensor vanishes, and so V,g.3 = 0.
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We can now use the metric to define the Levi-Chivita connection [1],[2],[3],[4],[5],[6]
which has components given by the Christoffel symbols:

1 v
hot = 39 (Jow,3 + 9Bv.a — Japw) (13)

The general form of the connection can then be shown to be given by:

where K5 is the contorsion tensor[1] which can be defined in terms of
the antisymmetric components of the connection as:

Kl =Tl — Thnd" 980 — Tl 9" Gap (15)

and where L% ; is defined[50]in terms of the non-metricity tensor as:

—

Ly = (@ — Qs — QL) (16)

As mentioned above, in General Relativity the anti-symmetric part of the
connection vanishes, and so does the non-metricity tensor as it is equivalent
to the covariant derivative of the metric tensor which is identically zero. This
means that the K Z,@ and Lgﬁ also vanish. Correspondingly, as a consequence
of these two assumptions the components of the connection are uniquely given
by the Christoffel symbols, and so the connection and all geometric quantities
derived from it, are defined entirely in terms of the metric according to the
following equation:

1 v
PZ,B - ag,u (goa/,ﬂ + 9pv,a — gaﬂ,y) (17)

The resulting set of structures, after assuming that the anti-symmetric
part of the connection is zero and so does the covariant derivative of the met-
ric tensor, is known as a Riemannian Manifold, or more accurately, pseudo-
Riemannian [1],[2],[3],[4],[5],[6] in the case where the metric is not positive
definite, as it required to recover special relativity in the tangent space to a
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point in space-time. Riemannian Manifolds have a number of useful proper-
ties including tangent vectors being parallel to themselves along geodesics,
the geodesic completeness of space-time implying the metric completeness of
space-time, and a particularly simple form for the contracted Bianchi Iden-
tities[1]:

1
V(R — Sg"R) =0 (18)

We will discuss the meaning of the symbols involved in the above equa-
tion in the next part of this review. However this last equation is of great
significance for Einstein’s Equations.

2.3 The Einstein-Hilbert Action

The Principle of Least Action

As with most field theories, the Field Equations can be derived from the
variation of the action.The Principle of least action states that: The actual
path taken by a Conservative Dynamical System is an extremum of S. Where
S is the action of the system and it is a functional, i.e a function of the path
that is itself a function[22]. The action in classical dynamics is defined as:

SEAe) = [ L), o) (19)

with t to be the initial time and T the final time. Where L is the La-
grangian of the system defined as the function of the the positions x4 and
velocities & of all particles given by[22]:

L(z#, &%) = T(24) — V(z?) (20)

where T = £ >, ma(i#)? is the kinetic energy and V(z*) is the poten-
tial energy. Here we provide a Proof of the Principle of Least Action from
D.Tong’s web-book in Classical Dynamics[22]. Consider varying a given path
slightly, such that:

zA(t) — x(t) + 6z (t) (21)
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where we fix the end points of the path by demanding that dz4(t) =
dz4(T) = 0. Then the change in the action is:

T T L L
55:5/ Ldt:/ SLdt = / ((;15 A+§5 Mg (22)
t t

At this point we integrate the second term by parts to get:

—— — —(==)exdt +

T oL d oL
05 = / orA  dt 895‘4 0& ] (23)

[&cA

But the last term in the above equation vanishes as we have fixed the end
points such that dz4(t) = d24(T) = 0. The requirement that the action is
an extremum implies that 65 = 0 for all changes in the general path dz(t).
This can only happen if and only if:

oL _d oL,
oxA  dt 0z4

=0 (24)

The above equation is the very well-known Euler-Lagrange Equations and
hence 45 = 0 if and only if the Euler-Lagrange equations hold.

The Action in GR

We have seen that the variation of the action vanishes if and only if the
Euler-Lagrange Equations hold. We can now present the Einstein-Hilbert
action which if we vary, and considering the vanishing of the variation of the
action as above, we obtain the Einstein’s Field Equations. The Einstein-
Hilbert action is given[1],[2],[3],[4],[5],[6],[33]by:

§= o [ VAR -2+ [ LG (25)

where £,, is the Lagrangian density of the matter fields ¢ and £, =

—g}fﬁ; Qé\ is the gravitational Lagrangian density, R is the Ricci curvature

scalar which can be obtained by contracting the metric tensor g,, with the
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Ricci curvature tensor Ry, such that R = g’ R,, and finally A is the Cos-
mological Constant that represents the energy-density of the ’empty’ space
and sometimes called the vacuum energy.

Let us now assume that the Ricci scalar is a function of the metric only, so
that R=R(g). The variation of the action with respect to the metric tensor,
as we briefly discussed above, gives Einstein’s Field Equations as will see in
the next part. The factors of \/—g are included in equation that describes the
action to ensure that the Lagrangian densities £ transform as scalar densities
under coordinate transformations|1] i.e as:

L = det(==)L (26)

ox?

under coordinates transformations #* = ##(x”). This property ensures
that the action S is invariant under general coordinate transformations, and
that the resulting tensor field equations are divergence free or otherwise the
contracted Bianchi identities and energy-momentum conservation equations
are automatically satisfied[1].

We have outlined here how Einstein’s Field Equations can be obtained
from the variation of an invariant action with respect to the metric, once it
has been assumed that the space-time manifold is Riemannian. The van-
ishing of torsion and the non-metricity then tell us that the metric is the
only independent structure at the manifold, and the invariant action prin-
ciple ensures that we end up with a set of tensor field equations in which
energy-momentum is conserved. Because of this formulation the WEP and
EEP are satisfied identically. We will now see how Einstein’s Field Equations
look like after we have varied the action with respect to the metric tensor.
The Field Equations are represented in tensorial form and more explicitly is
a system of ten (10) non-linear differential equations [1],[7].

2.4 Einstein’s Field Equations

We shall now review Einstein’s Field Equations of General Relativity. It is
generally accepted that GR is the most successful theory of Gravitation that
when expressed mathematically produces a set of ten equations, called the
Einstein’s Field Equations, that describe the properties of a gravitational
field surrounding a given mass. To see this we recall the geometric principle
of GR, which states that gravity is nothing more than the curvature of space-
time.

20



All laws of nature can be expressed as a certain set of differential equations
and in the same way Einstein’s Field Equations are a set of ten non-linear
partial differential equations. This set of equations has exact solutions for
some physical problems, for example Schwarzchild and Kerr solutions that
describe the final collapsed state of massive bodies, and non-exact solutions
for some other physical problems, such as the gravitational fields of stationary
rotating stars, and the two body problem.

We make a variation of the action with respect to the metric tensor.
According to GR the Einstein’s Field Equations [1],[2],[3],[4],[5],6],[7],[8] are

given by the following tensor equation:

TG

GIU/ + Agluj = 7TNV (27)

where G, the symmetric Einstein’s Tensor, g,, the symmetric metric
tensor, G the Newton’s constant of gravitation, ¢ the speed of light, A the
Cosmological Constant, and 7}, the stress-energy tensor. However, the Ein-
stein’s tensor is also given by the following equation:

1
G}U/ = Rw/ - §g;u/R (28)

with R, the Ricci Curvature tensor which can be obtained by con-
traction of the Riemann Curvature temsor Rj,,;, and R is the curvature
scalar. The Riemann tensor describes an actual tidal gravitational, which
is not local, and hence cannot be eliminated even in the locally inertial
frame of reference.Therefore the Einstein’s Field Equations are now given

[11,[2],[31,[4],[51,[6],[7],[8] by:

1 8tG
Rp,lj - EguyR + Agp,lj — TTMV (29)

Finally using natural units where G = ¢ = 1 and claiming that the
Cosmological Constant can be absorbed in the stress-energy tensor as dark
energy, then the Einstein’s Field Equations read as:

G, = 81T, (30)
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These equations are formulated such that the energy-momentum is a con-
served quantity, due to the contracted Bianchi Identity and metric-compatibility
of the connection, so that special relativity can be recovered in the neigh-
bourhood of every point in space-time, and so that the usual Newtonian
Poisson Equation for weak gravitational fields is recovered in non-inertial
frames kept at a fixed space-like distances from massive objects up to small
corrections|[1].

As we mentioned above the field equations are a set of ten generally covari-
ant, quasi-linear second-order partial differential equations in four variables,
for the ten independent components of the metric tensor. They constitute
four constraint equations and six evolution equations, with the contracted
Bianchi Identities ensuring that the constraint equations are always satis-
fied. Furthermore the conserved nature of the energy-momentum tensor 7"
and the Riemannian nature of the Manifold ensure that the WEP and the
EEP are always satisfied, that is, Massless test particles follow geodesics, and
in a freely falling frame one can always choose 'normal coordinates’ so that
local space-time is well described as Minskowksi space-time[1].

The Vacuum Field Equations
The main condition in order to obtain the Vacuum Field Equations is
for the energy-momentum tensor to vanish in the region of consideration. If

the energy-momentum tensor is identically zero then the symmetric Einstein
tensor is also zero[2] and hence:

1
T,=0Gw=0< R, — §9uvR:O (31)

Contracting with ¢g*” and we have that:

1
"Ry, — Qg’“’gm,R =0« R—-2R=0 (32)

Hence we obtain the Vacuum Field Equations (R = 0) in the form:

Ry, =0 (33)
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2.5 Astrophysical Tests

Deflection of Light by the Sun

First of all let us consider tests involving null geodesics. The most fa-
mous of these is the spatial deflection of the star light by the sun. In General
Relativity the deflection angle, 8, of a photon’s trajectory due to a mass M,
with impact parameter d, is given by [1]:

2M

6= 7(1 + cos¢) ~ 1.75" (34)

where ¢ is is the angle made by the observer in the direction of the
incoming photon and the direction of the mass. The first observation of light
deflection was performed by noting the change in position of stars as they
passed near the Sun on the celestial sphere. The observations were performed
by Sir Arthur Eddington who traveled to the island of Principle near Africa
to watch the Solar eclipse of May 29, 1919. According to GR, starts near the
Sun would appear to have been slightly shifted because their light has been
curved by its gravitational field. This effect is noticeable during an eclipse,
since the Sun’s brightness obscures the stars|[1],[6].

The 1.75” is for a null trajectory that grazes the limb of the Sun. This
result is famously twice the size of the effect that one might naively esti-
mate using the equivalence principle alone[1],[23]. The tightest observational
constraint to date on 6 is due to Shapiro, David, Lebach and Gregory who
used around 2500 days worth of observations taken over a period of 20 years.
The data in this study was taken using 87 VLBI sites and 541 radio sources,
yielding more than 1.7 x 10 measurements that use standard correlation and
delay rate estimation procedures. The result of this[24] is around 3 orders of
magnitude better than the observations of Eddington in 1919, and is given

by:

6 = (0.99992 + 0.00023) x 1.75" (35)
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The Perihelion Precession of Mercury’s Orbit

Let us now consider tests involving time-like trajectories. The classical
test of General Relativity that falls into this category is the anomalous per-
ihelion precession of Mercury. This called a test despite the fact that it was
discovered long before GR[25].In Newtonian Physics the perihelion of a test
particle orbiting an isolated point-like mass stays in a fixed position, relative
to the fixed stars .Adding other massive objects into the system perturbs
this orbit, allowing the central mass to have to have a non-zero quadrupole
moment, so that the perihelion of the test particle’s orbit slowly starts to
precess|1],[6].

There are a number of Solar System effects that cause the Perihelion
of a planet to precess. As discussed above, the presence of other planets
perturbs orbits, and so this is one of the main causes of this perturbations.
In the Solar System the precession of the equinoxes of the coordinate system
contribute about 5025” per century to Mercury’s perihelion precession, while
the other planets contribute about 531" per century. The sun also has a non-
quadrupole moment, which contributes a further 0.025” per century. Taking
all these effects into account, it still appears that the orbit of Mercury in
the Solar System has an anomalous perihelion precession that cannot be
explained by the available visible matter, and Newtonian gravity alone[1],[6].

The anomalous precession of the perihelion of Mercury has been calcu-
lated by many groups and a number of results are available in the paper
written by S.Pireaux and J.Rozelot[26].In relativistic theories of gravity the
additional post-Newtonian gravitational potentials mean that the perihelion
of a test particle orbiting an isolated mass is no longer fixed, as these poten-
tial do not drop off as ~ }2 There is therefore an additional contribution
to the perihelion precession, which is sensitive to the relative magnitude and
form of the gravitational potentials, and hence the underlying relativistic
theory. For General Relativity, the predicted anomalous precession of a two

body-system is given by/[1]:
b6 M
p

Aw

~ 42.98" (36)

where M is the total mass of the two bodies, and p is the semi-latus
rectum of the orbit. The above equality is for the Sun-Mercury system, and
is compatible with the observations conducted by many groups and addressed
in the paper by S.Pireaux and J.Rozelot[26]. Each relativistic theory predicts
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its own value of Aw, and by comparing these observations we can therefore
constrain them. This test is an additional one beyond those based on null
geodesics alone, as it tests not only the 'unit curvature’ of space, but also
the non-linear terms in the space-time geometry, as well as preferred frame
effects|1].

Spinning Objects in Orbit

Another Solar System test that involves time-like geodesics is the obser-
vation of spinning objects in orbit. These observations allow insight into an
entirely relativistic type of gravitational behaviour: Gravitomagnetism. This
is the generation of gravitational fields by the rotation of massive objects,
and was discovered in the very early days of General Relativity by Lense and
Thirring[27],[28]. The basic idea here is that massive objects should ’drag’
space around them as they rotate, a concept is in good keeping with Mach’s
Principle. Now, in the case of GR, it can be shown that the precession of a
spin vector S along the trajectory of a freely-falling gyroscope in orbit around
an isolated rotating massive body at rest is given by/[1]:

ds

—=0x$ (37)

where

3 1
invaU—§V><g (38)

Here we have written the vector g = go;, and have taken v and U to
be the velocity of the gyroscope and the Newtonian potential at the gyro-
scope respectively. The term gv x VU is called the 'geodesic precession’,
and it is caused by the ’'unit curvature’ of the space. This effect exists
independent of the massive bodies rotation. The other term in the same
equation, %V x g, is the Lense-Thirring term, and causes the frame-dragging
discussed above. The most accurate measurement of this effect claimed so
far is at the level of 5% — 10% accuracy,and has been made using the Laser-
Geodynamics Satellites(LAGEOS)[29],although there has been some dispute
on this result[30].The Gravity Probe B mission is a more tailor made ex-
periment which was put in orbit around the Earth between April 2004 and
September 2005. The current accuracy of results from this mission are at
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the level of ~ 15%]31],although this could improve further after additional
analysis is performed.

Gravitational Redshift

The gravitational redshift was predicted by Einstein in 1907 and confirmed
by Pound and Rebka in 1959. They measured the relative redshift of two
sources situated at the top and bottom of Harvard University’s Jefferson
tower.The result was in excellent agreement with GR.The gravitational red-
shift was again verified by Pound and Snider in 1964 and 1965 by experiments
concerning nuclear resonance and gamma radiation.

The term ’gravitational redshift’ applies to electromagnetic radiation that
has been sifted towards the red part of the spectrum as its wavelength has
been increased and hence its energy has been decreased. In other words,
photons climb out of a gravity well, and this is due to the fact that they have
to transfer kinetic energy into potential energy. An analogous situation is the
projectile that slows down when it rises as it has to convert kinetic to poten-
tial energy. However, in our case the speed of photons remain constant and
as the photons climb out of the gravitational energy well, they have to reduce
their energy by keeping their speed constant. The only way of achieving this
is by reducing their frequency and hence increasing their wavelength. On the
other hand when photons fall into a gravitational field they convert some of
their potential energy into kinetic energy and hence they are bluesifted as
their wavelength decrease.

Gravitational Waves and Binary Pulsars

A generic prediction of all known theories of gravity is the existence of
gravitational waves, which are nothing more than propagating gravitational
disturbances in the metric itself[1],[6]. A weak gravitational field is a small
perturbation of the Galilean metric 7;;

Gij = Nij + hij (39)

The gravitational wave is a transverse and traceless part h;; of these
perturbations and the plane wave has two independent states of linear po-

26



larization[6]. According to Einstein’s Field Equations in empty space-time
R;; = 0, and hence it can be shown that the gravitational waves satisfy the
wave equation:

1 9?

2 P —
(v c? ot?

)hij =0 (40)

While all known relativistic gravitational theories predict gravitational ra-
diation, they do not all predict the same type of radiation as the quadrupolar,
null radiation in GR. It is therefore the case that while the mere existence
of gravitational radiation is not itself enough to effectively discriminate be-
tween different gravitational theories, the type of gravitational radiation that
is observed,is. Briefly,one can test the speed of propagation of the gravita-
tional waves, and a second more discriminatory test, is of the polarity of
gravitational radiation|[1].

At present, the highest accuracy null-observations of gravitational radi-
ation are those of the Laser Interferometer Gravitational-wave Observatory
(LIGO). The experiment has accuracy of detecting oscillations in space at a
level of ~ 1 part in 10%!,but yet has to make a positive detection. Further
experiments are planned for the future using both LIGO and LISA, where
positive detections of gravitational waves are expected[1].

Another way to search for gravitational waves is to look for their influ-
ence on the systems that emitted them. In this regard binary pulsars are
of particular interest. Pulsars are rapidly rotating neutron stars that emit a
beam of electromagnetic radiation, and was first observed in 1967(32].When
the beams pass over the Earth, as the star rotates, we observe regular pulses
of of radiation.The first binary pulsar PRS B1913+16 was first observed in
1974 by Russell Hulse and Joseph Taylor(1974) at Arecibo.A binary pulsar
is a pulsar with a companion, often another pulsar, white dwarf or neutron
star.In the above case the famous system consists of a pulsar and a neutron
star. This binary system,for example,exhibits a relativistic periastron ad-
vance that is more than 30,000 times that of Mercury-Sun system. In this
regard the binary pulsars provide an important compliment to the observa-
tions of post-Newtonian gravity that we observe in the solar system. Also
they are a source of gravitational waves. The binary pulsars allow us to test
GR in the case of a strong gravitational field, and as discussed above, the
system experiences periastron advance hence the radiation is red-shifted and
the orbital period decreases with time due to the gravitational radiation. Fi-
nally, neutron stars are composed of a type of matter that is of particular
interest for the study of self-gravitational effects|[1],[6].
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3 Alternative Formulations

In the previous section we derived Einstein’s Field Equations under the as-
sumption of Riemannian Geometry, i.e assuming that the torsion vanishes
and that the connection is metric compatible. In this case the metric is
the only remaining geometric structure, and the only sensible thing to do
is to vary the action with respect to the metric. However, we can be less
restrictive in specifying the type of geometry we wish to consider.For the
case of the Einstein-Hilbert Action, this usually still leads to the Einstein
Field Equations. For alternative theories of Gravity this is often not the
case as different variational procedures and different assumptions about the
geometric structures of the manifold can lead to different field equations. We
will now see a few alternative formulations but for a wide range of them is
covered in [34].

3.1 The Palatini Formalism

The most well-known deviation from the metric variation approach is the
Palatini procedure[1],[34],[35],[36]. Recall that when varying the Einstein-
Hilbert Action, in order to derive the Field Equations, the usual approach
as we have seen so far,is to vary the action with respect to the metric, after
assuming that the connection depends only on the metric and the covari-
ant derivative of the metric vanishes. This is sometimes called the Metric
approach, in contrast with the Palatini approach, where one assumes that
the metric and the connection are independent of each other. Although this
method is generally attributed to Palatini[36], Ferraris et al(1982) argued
that the Palatini approach as we know it, was in fact invented by Einstein
in 1925[38].

Therefore here the connection that appears in the Riemann tensor is no
longer metric compatible, but the matter is still taken to couple universally
to the metric only. In the Palatini action, the metric and the connection, are
considered to be two independent dynamical variables, producing two sets of
Euler-Lagrange Equations. One set of equations is the Einstein Field Equa-
tions, and the other set of equations ensures that the connection is metric
compatible, and therefore equals the Levi-Civita connection[1],[35],[38]. The
Einstein-Hilbert Action is a function of the metric only, where the Palatini
Action is a function of both the metric and the connection, and hence it can
be varied with respect to both of them. As we discussed above, by varying the
Palatini Action with respect to the metric[1],[35],[38] we arrive to the conclu-
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sion that the connection is indeed the Levi-Civita connection. On the other
hand, when we vary the action with respect to the connection[1],[35],[38] we
obtain the Einstein’s Field Equations.For the Palatini approach the following
are assume to hold when considering this formalism:

Vagyw # 0 (41)

since the connection is not metric compatible then its components are no
longer given by the Christoffel Symbols

Ios 7 {as} (42)

in addition the curvature tensor does not have all the symmetries of the
Riemann tensor, in particular:

0T, # 0,7, (43)

Having discussed all the relevant issues regarding the Palatini formalism
we can now write the Palatini action, which as discussed above, depends
both in the metric and the affine connection[1],[34],[35],[36],[37],[38]

1
Spal - m / \/__g(glew/(F) - 2A)d4$ _l' /ﬁm(gw/a ¢)d4$ (44)

where R, (I') is intended to indicate that the Ricci tensor here is defined
with respect to the connection, and not the metric, at this stage the metric
and the connection are still two independent dynamical variables. The utility
of the Palatini procedure when dealing with the Einstein-Hilbert action is
then that the metric compatibility of the connection is derived from the
action itself and so becomes a prediction of the theory, rather than being
made an assumption at the beginning. For theories of gravity other than
General Relativity, however, the difference between the metric variation and
the Palatini procedure is more significant: The resulting field equations are
in general different[1],[35],[36],[37],[38].
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The Field Equations

In the matter action there can be covariant derivatives and the only way
to avoid having a matter action independent of the connection Fl’)l, is to as-
sume that is the Levi-Civita connection of the metric that is used for the
definition of the covariant derivative.Again, we should stress once more that
the underlying geometry is Pseudo-Riemannian. It is also worth noticing
that this make our choice for the gravitational action even more ad hoc as
now the scalar R would not be related to the curvature of space-time from a
geometrical perspective[41].

As discussed above, the Palatini variation is an independent variation
with respect to the metric and the connection.The easiest way to proceed
with the independent variation is to express the I's, as a sum of the Levi-
Chivita connection of the metric tensor g,,, and the tensor field C,, [41],[42)].
Variation with respect to the I''s will then be equivalent to the variation of
C’ﬁ‘y. On the boundary both the metric tensor and the C-tensor are fixed and
hence by varying the action with respect to the connection we obtain from
the principle of least action[41],[42]:

0= 5 J d'zy —g[(—2)gWV[M5C”\/\}V +(C¥7,05 + C7\g"" — 2CVf\L)6C)\uu]

1

1 14
t / A2V =g(Ru = 3R+ Mgy — 87GT,0)0g" (45)

The first term in the above equation is a surface term. However this time
the term 60!;\,, = 0 on the boundary as CAW is fixed there. Coming back
to the above equation and considering that the independent variations with
respect to the metric and with respect to C’AW should vanish separately, we
can see that requiring the second term to vanish corresponds to:

c*, =0 (46)

or otherwise we have that:

Piﬁ = {Zg} (47)

so we have shown that the I''s have to be the Levi-Civita connection of
the metric.Therefore in the end, after we have varied the action, we still
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recover Einstein’s Field Equations in the form: G, = 877),. Concluding,
we have assumed that the connection is not immediately regarded to be
metric compatible and we have shown that the connection is indeed the Levi-
Civita connection. Given this fact, we can now conclude that R is indeed the
usual Ricci curvature tensor. We have, however, assumed that initially this
wasn’t the case and R was not really related the the curvature of space-time
from a geometric perspective.We note, that the inclusion of the cosmological
constant to the gravitational part of the action reveals the standard Einstein
Field Equations with a non-vanishing cosmological constant. Similarly, if we
don’t take into account the cosmological constant and set A = 0 then we end
up with the same Field Equations but without the cosmological constant[41].

It should be stressed that I',; = {/ 3} is now a dynamical equation or
otherwise a prediction of this theory, and therefore not an assumption.Hence
the Palatini formalism leads to General Relativity without the metricity con-
dition being an external assumption. However there are problems associated
with our choice for the action as the physical meaning of the independent
connection is obscure, since it is not present in the matter action and it is
not the one defining parallel transport Alternatively we can allow G)‘W to be
present in the matter action and to define the covariant derivative. However,
even if we start from the same action the resulting theory will not be General
Relativity[41].

3.2 Metric-Affine Gravity

Metric affine theories of gravity provide an interesting alternative to General
Relativity due to the fact that in such theories the metric and affine con-
nection are independent quantities, as in the case of the Palatini Formalism,
and furthermore the action should include covariant derivatives of the matter
fields, with the covariant derivative naturally defined using the independent
connection.As a result, in metric-affine theories a direct coupling between
matter and connection is also present[1],[39],[40].

Besides the standard motivation for alternatives theories of gravity, from
High Energy Physics and Cosmology, metric-affine gravity has one more ap-
pealing characteristic: the connection can be left to be non-symmetric and
the theory then can include torsion. This implies, that the theory can be
coupled in a more natural way to matter fields, such as Fermions[41]. We
note that the stress-energy tensor of the Dirac Field is not symmetric by
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definition and this is something that poses an extra difficulty when we at-
tempt to couple such field to General Relativity.In fact, one might expect
that at some intermediate or high energies, the spin of particles may interact
with the geometry and torsion can naturally arise. Unlike General Relativity,
metric-affine gravity allows for this to happen[41].

There are a number of early works in which the metric and the parallel
transport defining connection, are considered as being, to some degree, inde-
pendent(see [41] and references therein).In many cases, including Einstein-
Cartan Theory, some part of the connection is related to the metric as we
have seen so far, the non-metricity tensor. Here we will consider the case
where F)‘W is left completely unconstrained and is determined by the field
equations. This approach was first considered in[39].

General Set-Up for Metric-Affine Theories

We start by defining the covariant derivative of the connection FAW acting
on a tensor

VA", =0,A", + 17, A%, — T A", (48)

It is important to stress that the position of indices must be taken very
carefully into account since in this case the connection is not assumed to be
symmetric. The antisymmetric part of the connection is commonly known as
the Cartan-Torsion tensor, which vanishes in the theory of General Relativity,
is given by:

54y = Py ()

The failure of the connection to covariantly conserve the metric is mea-
sured by the non-metricity tensor as we have already seen in the Einstein’s
theory of General Relativity. The non-metricity tensor (),q.g vanishes in GR
and so does the covariant derivative of the metric tensor. The non-metricity
tensor and the metric tensor are related via the equation:

Quas = Vibas (50)

Using the connection we can construct the Riemann tensor, which we
have seen before, and it is of great significance as it describes an actual
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tidal gravitational field, and is a function of the connection and the partial
derivatives of the connection, given by:

R ox T _a)\l—wya + 8O'FMV)\ + Fuaarau)\ - Fua)\raua (51>

v

Because of the limited symmetries of the Riemann tensor in metric-affine
theories of gravity, we can now express the Riemann tensor in an alternative
form[40]:

RO.O'/,LV = RMV = _al/]‘—‘o.o'u + aMFUO'V (52)

This tensor is called the homothetic curvature[40]. For a symmetric con-
nection it is equal to the antisymmetric part of the }A%W. The homothetic
curvature is fully antisymmetric and hence when contract with the metric
leads to a vanishing scalar.

As we have already discussed, in metric-affine theories of gravity the
metric and connection are considered to be independent as in the case of the
Palatini formalism. In this case the connection is assumed to define parallel
transport and the covariant derivatives of matter fields, and hence enters the
matter action[1],[40],[41].Therefore we deal with the situation where matter
fields are allowed to couple not only to the metric but also to the connection,
and in that sense the action takes the form:

1
=T~ —g(g"” — 4 n 4
S = Tong | VIS BunD) =200+ [ g T )0 (53)

Without assuming anything about torsion or non-metricity we can find
that a variation of the action with respect to the connection gives[1},[40]:

v AN v gﬂl/ 5£m
Suaﬁ + 25“[0& Blv + 5“[QQ/3] — 5M[aQu],@ =81

N

with @, = iQW” and Quaﬁ = Qugap- This equation can be shown to
be self-inconsistent for reasonable forms of matter, as the left-hand-side is
invariant under projective transformations of the form I'* 5 — T 5 + X ,.6"5,
while there is no reason to suspect this invariance is exhibited by the matter
fields[1]. Self-consistency then demands that both torsion and non-metricity
to vanish leading again the the usual Einstein’s Field equations when the
action is varied with respect to the metric[1].
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In the case of General Relativity we therefore have the lifting of a further
constraint on our initial assumptions about geometry.If we allow the metric
and connection to be independent, and the matter fields to couple to both the
metric and the connection, then we can derive the vanishing of the torsion
and non-metricity from the action itself as a set of consistency conditions.
For the Einstein-Hilbert action this results in recovering the same set of field
equations as with the metric and Palatini approaches. However this is not
the case for alternative theories of gravity|[1].

3.3 The Vierbein Formalism

The Lagrangian of general relativity is usually formulated using the compo-
nents of the metric tensor as the basic field variables. Although the metric
formulation is appropriate for pure gravity or gravity with bosons, the pres-
ence of spinors requires the introduction of a larger set of variables. These
are the vierbein fields which describe local orthonormal Lorentz frames at
each space-time point and with respect to which the spinors are defined[43].

We begin with a brief review of the definition and properties of vierbein
fields. The latter are a set of four orthogonal vectors e®(x) with o = 0,1,2,3
defined on the space-time manifold. The index « labels the independent
vectors, each of which also carries a coordinate index y in the form ef(x)
when expressed in component form. The non-invertible relation between
these sixteen components and the ten metric components g, (x) is embodied
in the equations[1],[43]:

gw/ = n@ﬁeudeyﬁ (55)

N = gve e’ (56)

14

where indices with hats correspond to a basis in the tangent space defined
by the set of contravariant vectors, e;”, with determinant e = det[e;"]. The
inverse of e;” is e/, such that eﬂ”eyﬁ = (5{’ . The use of Vierbein fields as
basic variables in the usual second-order form of the action principle does
not yield any information apart from the usual Einstein’s Field Equations,
and hence we obtain immediately G*e& = 0, which when multiplied by the

non-singular quantity ef, gives G = 0[1],[43].
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Clearly the Vierbein fields are only determined by the metric up to an
arbitrary ’label’-space rotation by the local O(3,1)Lorentz group.The redun-
dant components of e specify the relation between the orthonormal frame
and the local coordinate system.Corresponding to the 40 components of the
metric affinity are the 24 spin connection 'rotation coefficients’ B .z satisfy-
ing[43):

Wpap = €gep L, + esocs (57)

Wuap = €fo(Opevg) — Oveyus — emeg]avez) (58)

In the Vierbein formalism the Einstein-Hilbert action can be written
asf1],[43][44]:
S = /d%e’fe'fR s (59)

&~ uv

The spin connection wuaﬁ then defines a space-time and Lorentz covariant

derivative, D,,, as:

Dyl = Vol +w v (60)

The curvature tensor RW‘S‘B is defined in terms of the spin connection
as[50]:

A3 A A ap B ap B
Rwaﬂ = (9#%0"3 — &,wuaﬁ +w, Y w,;” +w, w,; (61)

Now we can make the same assumption as in the Palatini formalism and
consider the spin connection and the vierbein fields to be independent. In
this case we obtain two fields equation[1]:

Die®,; =0 (62)
« «@ v af 1 v aBy\ o
Gp = eqeses Ry, h_ E(egeﬁRW 5)@,3 =0 (63)

The first equation can be used to obtain the spin connection in terms
of the partial derivatives of the vierbein fields, and the resulting relation
implies that the spin connection is torsion-less, i.e we recover the Cartan’s
first structure equation: def + w”, A e” = 0. The second equation tells us
that the vacuum Einstein’s Field Equations are recovered|[1].
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3.4 Other Formalisms

Another interesting formulation of General Relativity is given by the Pleban-
ski formalism[1],[45]. The action in this case is:

1
S = /EAB A Rap — EQABCDZAB A BEP (64)

where upper case indices denote two component spinor indices to be raised
and lowered with €4 and its inverse, and where the wedge product A acts
on space-time indices, which have been suppressed.Further, the curvature
2-form R4p is defined by|1]:

RAB = deB+wAC/\wCB (65)

If we vary the action with respect to ¥ 4pcp and wap then we get that
the 2-form Y47 is the exterior product some set of 1-forms that we can
identify with the tetrad HAA/, and that the connection wyp is torsion-free
with respect to ©4Z. Using this together with the variation of the action
with respect to ¥42 we obtain the vacuum field equations, with the metric
given by g = 044 ® 0,44/[50].

Another interesting formulation of General Relativity is the purely affine
Eddington formalism[46].We have seen so far, in other formulations of GR,
that we can treat the metric as the only independent structure on the man-
ifold, or alternatively treat the metric and connection as being two inde-
pendent structures. In the Eddington formalism we treat the connection
as the only independent structure on the manifold. Here the simplest way
of constructing a Lagrangian density with the correct weight, and without
the metric, is to take the square root of the determinant of the Ricci tensor

itself[1]:
S = / /—det[R,.,(D)|d*z (66)
To obtain the field equations we vary the action with respect to the con-

nection which gives[1]:
V., (y/—detRogRi) = 0 (67)
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The above field equations can be shown to be equivalent to the Einstein’s
field equations in vacuum with a cosmological constant, taking the connection
to be the Levi-Civita connection. However, due to the lack of a metric in
the action of this theory it is not trivial to introduce matter fields in this
theory[1].

For further reading and alternative formulations of gravity the reader
should look at [34] where several formulations are analysed, including the
ADM Hamiltonian, the Ashtekar Hamiltonian, the CDJ Lagrangian and oth-
ers.

4 Chern Simons Modified Gravity

The Chern-Simons Modified Gravity is an effective extension and a four
dimensional deformation of General Relativity that captures leading order,
gravitational parity violation due to the parity violating correction term given
by the Pontryagin density *RR [33],[47],[48],[49],[50],[51],[52],[53],[54]. In this
Section we will start by formulating the theory and by providing a pedagog-
ical derivation of the Chern-Simons Modified Field Equations, embedding
the three-dimensional CS Theory into the four-dimensional Theory of gen-
eral Relativity [33],[47],[51],[52],[53],[54] and looking on various aspects of
the theory. We will then discuss the application of CS Modified Gravity
to CMB Polarization, and more specifically the parity violation in the Po-
larization of CMB, and Cosmological/Gravitational Birefrigence as conse-
quences of parity-violating interactions. Finally we will review briefly the
derivations from the Standard Model[33],[55],[56],[57],[58] and from String
Theory[33],[59],[60][61], where the CS terms arise as anomaly-cancellation
mechanisms, and we will also review the various astrophysical tests that
have been performed so far to test the Chern-Simons Modified Gravity.

To have a general idea about the CS Theory of Gravity and its con-
sequences in Cosmology, it is worth mentioning that as we will see, the CS
correction induces parity violation, which in turn, creates two parity-violating
mechanisms. The first is called Cosmological Birefrigence [33],[62],(63],[64],[65],[66]
and it naturally arises with the addition of the CS term to the action, and
the other is called Gravitational Birefrigence and is the prime candidate for
the process of leptogenesis during inflation [33],[59],(67],[68].The Standard
Model is assumed to respect parity symmetry and is always symmetric un-
der a Charge-Parity-Time or CPT transformation. However one of the major
issues in Physics is the origin of parity violations in weak interactions. While
we know that all other gauge interactions respect parity, it might be the case
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that there is a definite handedness in cosmological scales [33]. The polariza-
tion pattern in the CMB fluctuations can leave an imprint of parity violation
in the early Universe, and if parity violation can coexist on large scales, with
a homogeneous and isotropic Universe then the question is how do we observe
it [33],[67],[69],[70].

4.1 Formulating the Theory

Chern-Simons Modified Gravity is a four-dimensional deformation of General
Relativity postulated by Jackiw and Pi [47]. The Modified Theory can be
defined in terms of the action[33],[47]:

S = Sgg + So + Smatter + Scs (68)

The first term of the action is the Einstein-Hilbert term and is given by:

Spm = k /V d'z/—gR (69)

The second term or the scalar field term is given by:

S0 =5 [ dev=alg™(T.0)(Tit) + 2V (0) (70)

The third term is an additional unspecified matter contribution given by:

Smatter = ~/V d4 TN/ —g Ematter ( 71 )

The last term is the Chern-Simons correction term given by:

Sos =5 | d'zy/=g(0) RR (72)

where L,,qiter 1S some matter lagrangian density that does not depend
on A, a and 3 are dimensional coupling constants, k~! = 167G, g is the
determinant of the metric, V, is the covariant derivative associated with g,
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R is the Ricci Scalar given by R = ¢, R, with R the Ricci tensor,f is not a
constant but is a function of space-time acting as deformation function called
the CS coupling field, and V denotes the manifold where the volume integrals
are carried out. The important term in the Cern-Simons correction called
the Pontryagin density *RR[33],[47],[48],[49],[50],[51],[52],[53],[54] defined as:

*RR =*Ry“R, (73)

acd

here * R2°? is th dual Riemann Tensor [33],[47],(48],[49],[50],[51],[52],[53],[54]
defined as:

1
*Rgcd — 56cdefRZef (74)

with €“%/ to be the four-dimensional Levi-Civita tensor. The Pontryagin
density *RR is proportional to the wedge product RA R or the cross product
in higher dimensions, but here the curvature tensor is assumed to be the
Riemann Tensor. The problem that arises here is how we will determine the
coupling constants, which is beyond the scope of this review. However if we
leave the coupling constants unspecified so we can present generic expressions
for the Modified Field Equations. If # is a constant then the CS Modified
Gravity reduces identically to GR and this is because the Pontryagin density
can be expressed as the divergence [33],[48],[49],[50],[51],[52],[53],[54]

VKo — ;*RR (75)

of the Chern-Simons topological current [33],[48],[51],[52],[53],[54]

2
K® = el (9T + grg;rldn) (76)

In Eq.(76) the symbol I' refers to the Christoffel connection. Using
Eq.(72) for the action of the Chern-Simons term and replacing the Pon-
tryagin density using Eq.(75) we can now integrate the Chern-Simons part
of the action by parts [33],[48] to obtain the following relationship:

(07

Sos = al0K") = 5 /V di2/—g(V0)K* (77)
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The first term of the RHS of Eq.(77) vanishes as it is evaluated on the
boundary of the manifold. The second term vanishes as well, due to the
fact that the covariant derivative of 6 is zero when 6 = constant. Hence the
Chern-Simons term equals to zero and we switch back to General Relativity.

4.2 Modified Field Equations

Derivation of the Modified Field Equations

Using the principle of least action[33],[47],[49] which states that in nature
physical processes follow the most efficient course from one point to another,
and starting with the following equations:

SR, = VI, — VoIt (78)
and also
b L b
5Pac = 59 (vaégdc + vcégad - vdégac) (79>

we now find that:
08 =k fV d4x\/ _g<Rab - %gabR + %Cab - iTab)égab

o dVv
+ /V d'sy/=g("RR + Bg™VaVsf — B2)0 + Serr + Tos + T (80)

in Eq.(80) the last three contributions come from the surface terms that
arise due to integration by parts,Cy;, is the C-tensor, and the term T, is the
total stress-energy tensor[33],[47] and is given by:

2 0Lpat n 0Ly

Tab — _
V _g< 5gab 6gab

(81)

where Ly is the Lagrangian density of the scalar field action, or otherwise
the integrand of Eq.(70) divided by  /—g. Hence the total stress-energy
tensor can be split into external matter contributions 7%, and a scalar field
contribution [33],[47] which is given by:

40



T = G(Vab)(Vi) ~ 500Vl (V°6) — gV (0)] (82)

Going back to Eq.(80) and having seen the C'—tensor[33],[47],[48],[49],[50],[51],[52]
which is symmetric and given by:

Cab — ,UcecdeaveRz + ’Ucd*RdabC (83)

where v, = V,0 and v, = V,V,0, are the velocity and acceleration of 6.
The vanishing of Eq.(80), or otherwise by the principle of least action §S = 0,
leads to the modified Chern-Simons Field Equations [33],[48],[49],[50],[52]
given by the following relation:

Gab + Cab = 87TTab (84)

We can now see that the form of the Einstein’s Field Equations is still
the same apart from the new term that appears in this case, which is noth-
ing more than the addition of the C-tensor that we discussed above. Using
Eq.(28) we can get an alternative but equivalent expression for the CS Mod-
ified Field Equations:

1 1

(8%
Rab + *Cab = (Tab - igabT) (85)

k 2%k

which can be derived by noting that the C-tensor is symmetric and trace-
less, with T to be the trace of the stress-energy tensor given by T' = ¢*T,,.
In the absence of matter the stress-energy tensor vanishes in the region under
consideration and the Einstein’s Field Equations are referred to us as Vac-
uum Field Equations. In addition, in the absence of matter the Ricci Tensor
R,, and hence the Einstein tensor G, and the C-tensor vanish and therefore
the modified field equations [33],[47]and can be written as:

1
R=-2T=0 (86)

The vanishing of the variation of the action leads to an extra equation of
motion [33],[48] for the CS coupling field:
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(0%

av
ab _ o
B9V, V0 = 6—d0 1

“‘RR (87)

The above equation is the Klein-Gordon equation in the presence of a
potential and a source term. The evolution of the CS coupling term is not
only governed by its stress-energy tensor, but also from the curvature of
space-time. The above equation can also be derived from the Modified CS
energy-momentum equation[33] given by:

1
Va(Gab + Cab) = §VaTab (88)

with the first term of the LHS of the equation to vanish by the Bianchi
identities and the second term which is proportional to the Pontryagin density
via [33],[48],[51],[52]

1
V.C% = —gvb*RR (89)

Then Eq.(88) is established by Eq.(87) provided that [33],[47],[72]:

V1%, =0 (90)

m

This above equation is nothing more than the Strong Equivalence Princi-
ple. Alternatively, if we recall the Strong Equivalence Principle which applies
to all laws of nature and is unique to Einstein’s General Theory of Relativity,
or more explicitly that the free-fall of an object is completely independent of
its gravitational self-energy, then Eq.(88) tells us, provided that the scalar
field satisfies Eq.(87) , that the Strong Equivalence Principle is satisfied since
matter follows geodesics determined by the conservation of the stress-energy
tensor.
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4.3 Parity Violation in CS Modified Gravity

Parity Violation

Symmetries have long played a crucial role in physics. The conservation
laws The conservations laws had more fundamental roots within the symme-
try of the universe. Such laws as conservation of angular momentum arise
from an even more fundamental requirement: Physical laws are invariant
under translation and rotation. The law of conservation of parity arose from
the symmetry between the left and right hands. The question of great im-
portance is whether nature prefers left or right and vice versa. To describe
more precisely the symmetry between left and right, physicists used the word
parity that originated within the framework of quantum mechanics [33],[73].

In Physics a parity transformation is the flip in the sign of one spatial
coordinate, and in the case of three-dimensions is the simultaneous flip in
the sign of all three spatial coordinates such that:

P:(z,y,,2) = (—z,—y,—2) (91)

Then parity violation can be defined as the purely spatial reflection of the
triad that defines the coordinate system|[33],[73]. The operation P[A] = A, A
is said to be even or parity preserving when A\, = +1, while it is said to
odd or parity violating when )\, = —1.Hence by definition we have that
P[etikm] — —¢idbm [33) Parity transformations are slicing dependent, discrete
operations, where we must specify some space-like hyperspace on which to
operate. On the other hand the combined parity and time-reversal operations
is a space-like operation that is slicing independent[33].

Parity violation occurs when the rate for a particle interaction is different
for the mirror image of this interaction. The electromagnetic, strong, and
gravitational interactions respect parity. So parity is a good symmetry for
these interactions and is said to be conserved by them. On the other hand the
Weak interaction does not respect parity. This was first observed in charged
current interactions, or otherwise the exchange of W+ and W™ interactions
in 1956 by Madame Wu and collaborators studying the radioactive decay of
isotope 60-Cobalt.
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It is still unknown how parity violation arises from a unified scheme which
includes all other forces, in particular gravity. In principle, the parity vio-
lation in General Relativity leads to leptogenesis by transmitting itself into
Baryon-Lepton violation through primordial gravity waves. This occurs be-
cause of the gravitational Chern-Simons coupling to a pseudo-scalar field
which is generated through the Green-Schwarz mechanism [33],[70]. In the
Standard Model the CS correction introduces parity violation, which in turn
is inspired by CP violation, therefore this is another case where we have CP
violation apart from some certain types of the Weak interaction and specif-
ically the decay of kaons. CP violation is especially intriguing, since it is
believed to be the main component in order to explain the matter-antimatter
asymmetry in the Universe. Conventional field theories such as the Standard
Model, are always symmetric under a combined charge conjugation, parity,
and time reversal transformation, also known as CPT.

The case of CS Modified Gravity

We would like to examine how the CS modification transforms under par-
ity. General Relativity can readily be extended to have parity violation by
inlcuding the Chern-Simons correction term. For homogeneous and isotropic
space-times, such as the de-Sitter and FRW, this term vanishes [33],[70].
We stretch out the importance of the dependence of the CS term on the
Pontryagin density *RR that violates parity according to:

*RR — —*RR (92)

As we said above for homogeneous and isotropic space-times the CS term
vanishes, however this is not longer the case in the presence of a rolling
pseudo-scalar field. Applying a parity transformation to the action, we find
that it is invariant if and only if 8 transforms like a pseudo-scalar, or other-
wise P[] = —6 [33]. Applying such a transformation to the Modified Field
Equations we find that the C-tensor is invariant if and only if the covariant
velocity of 6 transforms as a vector P[va] = +uv,, or equivalently if 0 is a
pseudo-scalar [33].

It is worth mentioning that the properties of a solution of a theory does
not necessarily have to obey the parity properties of the theory itself. As
an example, Maxwell’s Equations and the action do respect parity (even
parity), however solutions exist where the symmetry is not respected [33].
Another example can be obtained from GR, where the theory is clearly
parity-preserving, but there are solutions such as the Kerr metric and certain
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Bianchi models that they violate parity [33]. If we look for parity preserv-
ing solutions such as spherically symmetric line elements then *RR = 0
33],]48],[49],[50],[51],[52] which forces 6 to be constant and leads to parity-
even elements that are not CS corrected. On the other hand if we look
at parity-violating space-times such as the Kerr metric then the Pontrya-
gin density will source a non-trivial CS scalar, which in turn modifies the
Kerr metric through the field equations. This type of corrections tends to
introduce more parity violation in the solution [33].

We have shown that the addition in the action of the CS term induces par-
ity violation, which in turn, as we will show, creates two parity-violating in-
teractions. The first is called Cosmological Birefringence [33],[62],[63],[64],[65],[66)and
it naturally arises with the addition of the CS term to the action, and the
other is called Gravitational or Amplitude Birefringence and is the main
candidate for leptogenesis during inflation [33],[59],(67],[68]. The mechanism
of leptogenesis is based on gravity waves during inflation. When inflation is
driven by a pseudo-scalar field, the metric perturbations become birefringent.

Evidence for Parity Violation

As we discussed so far, the Standard Model respects parity symmetry and
it is always symmetric under a CPT transformation. While we know that
all gauge interactions, apart from the Weak, respect parity, it maybe the
case that there is a definite handedness in cosmological scales. The evidence
of parity violation can be found in the polarization of the CMB. A map of
the CMB temperature and polarization could provide us with signatures of
parity violation.

The polarization pattern in the CMB fluctuations can leave an imprint
of parity violation in the early universe though a positive measurement of
cross correlation functions that are not parity invariant. If parity violation
on large scales can coexist with a homogeneous and isotropic universe, then
the question is how do we observe it. So far it has been found that the direct
signal would be undetectable in the most cases and parity violation sourced
by a non-vanishing phase of a pseudo-scalar inflaton can provide all Sakharov
conditions for leptogenesis [33],(67],[69],[70].

As we discussed parity violation in GR leads to leptogenesis by transmit-
ting itself into a Baryon-Lepton violation through primordial gravity waves.
This happens because there is gravitational Chern-Simons term coupling to a
pseudo-scalar field which is generated through the Schwarz mechanism. The
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Chern-Simons operator gives a contribution to the energy-momentum tensor
leading to a suppression of the odd-parity modes in the power spectrum. If
parity is violated during the inflationary period, the large scale, odd-parity,
perturbations of the inflation field will experience a loss of power. This
happens because the the gravitational back-reaction induces a velocity de-
pendent potential for the primordial scalar fluctuations. At the same time
the back-reaction will produce leptons. The power suppression will cease for
large multipoles, which coincides with energy scales comparable to a massive
right-handed neutrino. Parity violation in the early universe can tie together
the two persistent anomalies in the CMB; loss of power and the alignment of
low multipole moments along a preferred axis which has even mirror parity
and called the ’Axis of Evil’.The ’Axis of Evil’ corresponds to a direction in
which global symmetries are broken [1],[69],[70],[74].

The major postulate of modern cosmology is the homogeneity and isotropy
of our universe. However there have been a number of interesting claims of
evidence for a preferred direction in the universe, making use of the first year
results from the WMAP [1],[70],[74]. It has been suggested that a preferred
direction in the CMB fluctuations may signal a non-trivial cosmic topology,
a matter currently far from settled. However the preferred axis could also
be the result of anisotropic expansion, possibly due to strings, walls, or mag-
netic fields, or even the result of an intrinsically inhomogeneous universe.
As discussed above it has been found recently that the ’Axis of Evil’ has a
preferred frame in the WMAP data which is significantly aligned for multi-
poles [ = 1,2,3,4,5 which defines an overall preferred axis. But on the other
hand the so-called ’Axis of Evil’ could be the result of galactic foreground
contamination. For example the observations of the CMB can be contami-
nated by diffuse foreground emission from sources such as galactic dust and
synchrotron radiation [1],[70],[74].
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4.4 Chern-Simons Cosmology

As we have seen so far the implication of adding the CS term to the action
is to have parity violation which in turn creates two parity violations mecha-
nisms, Cosmological Birefringence and Gravitational or Amplitude Birefrin-
gence. Before we discuss the above two types of Birefringence we provide a
brief overview of the meaning of Birefringence in Classical Physics.

Birefringence in Classical Physics

In classical physics the term Birefringence or double refraction refers to the
decomposition of a ray of light into two rays, the ordinary ray and the extraor-
dinary ray, when it passes through certain types of material, such as calcite
crystals C'aCos, or boron nitrate, depending on the polarisation of light. This
effect can only occur if the structure of the material is anisotropic[75],[76].

Birefringence is characteristic of a material and can be formalized by
assigning two different refractive indices to the material for different polar-
izations. The birefringence magnitude is defined by:

An =n. —ng (93)

with n, and ng to be the refractive indices for parallel and perpendicular
polarizations respectively relative to the axis of anisotropy.

Cosmological Birefringence

There are many galaxies that emit synchrotron electromagnetic radiation
which is highly polarized. In the journey through cosmological distances,
these plane-polarized waves pass through intergalactic magnetic fields and
charged particles, which rotate the polarization plane of the waves via the
Faraday rotation effect. However there is an additional rotation that is very
different from Faraday rotation. The new rotation is wavelength-independent
and depends only on the direction the wave moves through space, and more
precisely on the angle between the direction of travel of the wave and a
fixed direction in space. The amount of rotation is proportional also to the
distance that the wave travels [65].
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Cosmological birefringence is a wavelength-independent rotation by an
angle A of the polarization of photons as they propagate over cosmological
distances, and it is constrained by the CMB to be |A| < 1° out to red-shifts
of z < 1100 for a rotation that is uniform across the sky. However the rota-
tion angle A(6, ¢) may vary as a function of position (6, ¢) across the sky. It
has long been the subject of interest in the context of CMB where its polar-
ization properties crucially depend on cosmological birefringence. The origin
of this effect may come from either cosmic inhomogeneities or some non-
trivial coupling of photons with other fields [62],[62b],[63],[64],(65],[66].The
measurement of parity violation from the CMB was first discussed by Lue,
Wang, and Kamionkowski [77]. They realised that the presence of the CS
term naturally leads to a rotation of the plane of polarization as a CMB
photon travels to the observer [33],[77].

Effects of Cosmological Birefringence in CMB

The polarization of CMB can be decomposed into two modes of oppo-
site parity. These are, E modes or gradient components, and B modes or
curl components. Primordial density perturbations produce a polarization
pattern that is purely E mode at the surface of last scatter, while primor-
dial gravitational waves, such as those from inflation, produce a B mode
[62],[62b].There are at least three different types of gravitational waves: those
produced during inflation and associated with the stretching of space-time
modes; those produced at the violent stage of preheating after inflation; and
those associated with the Goldstone modes if inflation ends via a global sym-
metry breaking scenario. However there maybe other mechanisms for pro-
ducing B modes, apart from gravitational waves. The most widely considered
is Cosmic Shear, the deflection of CMB photons due to the weak gravitational
lensing by density perturbations along the line of sight will convert some of
the E modes to B modes at the surface of last scatter [62],/62b].

Another possibility is the rotation of the linear polarization of the CMB
as it travels from the surface of last scatter. Hence the cosmological birefrin-
gence which is driven by a scalar or quintessence field, could be responsible
for converting, in the case of scalar density perturbations, scalar E-modes to
vector B-modes and vice versa. In the case of tensor perturbations, such as
those from gravitational waves, cosmological birefringence should mix the E
and B modes [62],[62D].
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Derivation of The Cosmic Optical Rotation

In order to calculate this effect, we assume a background space-time as
the spatially flat FRW expanding background. On this background we will
compute the cosmic optical rotation which is a measure of the Cosmologi-
cal Birefringence. It is useful to take the background FRW metric[63] using
conformal coordinates:

ds* = o*(—dn® + da* + dy* + d2°) (94)

where 7 is the conformal time and «(n) the conformal scale factor. Since
the electromagnetic theory is conformal invariance in four dimensions, the
Maxwell’s modified equations[63]coming from the non-trivial scalar field ¢
are:

V-E=2V¢-E—-28V¢-B (95)

0y(E) =V x B=2(¢ — V¢ x B) = B(¢B + V¢ x E) (96)
V-B=0 (97)

0,B+V xE=0 (98)

then the wave equation for B becomes:

B —V?B = ¢(—2B + 23V x B) (99)

We assume general wave solutions of the form B = By(n)e~*® and take
the z-direction as the propagation direction of the electromagnetic waves.
The equations for the polarization states, by (1) = Bo.(n) £iBg,(n), turn out
to be: . .. .

by + 2¢bs + (K* F 2kBP)bs = 0 (100)

while the equation of motion for the scalar field is:

e 2¢
(B> - E*+28B-E) (101)

. 4.
+229 ="
a wa
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The above non-linear coupled equations are difficult to solve exactly. We
therefore look for an approximation solution to the leading order in the small
w limit. In this limit, the solution for the scalar field would be:

o e
¢_B/a%ﬂ+c+0(y b=z (102)

where B, C are the constants of integration. We also assume the coupling
constant # and the value of the scalar field to be very small based on the
various observational constraints. From the above expressions we see that the
energy-density of the scalar field is proportional to B. We therefore now that
the value of this constant must be very small in order for it not to back-react
to the background cosmological evolution. Since the change of b, is expected
to be small, we estimate the optical activity using the WKB method [78].
In the long wavelength limit and for small a small coupling constant 3 we
assume the solution of the above equation for by [63]to be:

1

by =e*0); 5 (n) =59 + 2

Si+... (103)

Hence the solution based on the above anantz is:

2= k=3 (~2+28) [ ddn (104)

Then from the above solution we can see that the equation for the optical
rotation of the plane of polarization is:

A =28 [ ddn = 28/6(n; ~ 6(n,) (105)

where 7; and 7y are the initial and final conformal time for the electro-
magnetic field. As expected, the leading contribution to the cosmic optical
rotation comes from the Parity and Charge-Parity violating term.
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Gravitational Birefringence

Gravitational or Amplitude Birefringence is analogous but distinct to elec-
tromagnetic birefringence. In other words, the CS modified gravity seems
to prefer a specific direction, as it annihilates a certain polarization mode,
and amplifies another polarization mode. We are particularly interested in
the physics of the early universe and the production of gravitational waves
during inflation. The mechanism of leptogenesis is based on gravity waves
produced during inflation. When inflation is driven by a pseudo-scalar field
the metric perturbations generated during inflation can become birefringent.
We will show the main steps of the computation for the production of grav-
itational waves during inflation by considering the Lagrangian [68],[69] that
describes gravity waves:

1
£ = SM2\/~lgR + F(6)RR' (106)

where F'(¢) the inflation field, ¢ the pseudo-scalar, and M, the reduced
Planck mass with a value of M, = 2.44 x 10'8GeV In general metric per-
turbations about an FRW universe can be parameterized as:

ds® = —(1 4+ 2¢)dt* + widtdx’ + a®(t)[((1 + 2)d;; + hij)dz'dz?]  (107)

where ¢, Y, w;, h;; parameterize respectively the scalar, vector, and tensor
fluctuations of the metric. For such gravity waves which are moving in the
z-direction, the metric takes the form:

ds® = —dt* + a’(t)[(1 — hy)dz® + (1 + hy)dy® + 2hydady + dz*]  (108)

where a(t) = e”! during inflation and h,, h, are functions of t,z. It has
been argued that CP violation is believed to be the main reason for the
matter-antimatter asymmetry observed in the universe. The need for CP
violation manifests itself in our model through the fact that a non-zero lepton
generation can be achieved when < RR* > is non-vanishing. The term RR*
receives a contribution with a definite sign from gravitational fluctuations
produced during inflation, which is driven by a pseudo-scalar field. In other
words, CP-violation arises in our model from the inflaton field ¢ with a CP-
odd component. To see the CP violation more explicitly, it is convenient to
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use a helicity basis:

hp = —(hy —ihy), hg=——=(hy +ihy) (109)

Nis
|-

Here hp, hgr are complex conjugate scalar fields. Plugging Eq.(108) into
the Eq.(106), up to the second order in hp,hr, we obtain [33],[68], [69] the
following Lagrangian density L’ = (hL ohr+hrohr)+ [( & hR8t8 hr —

2
%hLatath)+a (at2 hRatazhL at2 hLatath)+Ha ( thRBtazhL é)athLBtath)]

where o is the operator given by: o = mz —|—3H az a 2. Asit can be seen
from the Lagrangian, if hy, hg have the same dlspers1on relation then RR*
vanishes. Conversely a non-zero RR* requires gravitational birefringence
during inflation. We can now obtain the equations of motion [33],[68],[69] for

]’LL, hRZ

ohy = —220:  ohn = +2i 20 (110)
a a

1 d A (F"¢* +2F'H9) (111)

_ el 2
°=ipeat iz

the dot denotes a time derivative and the prime denotes differentiation
of F with respect to ¢. To obtain the above equations we have used the fact
that the inflaton field is only a function of time t. In the second line for
the expression of © we have assumed a slow-roll inflation and hence we have
dropped the terms proportional to ¢ The simplest model of this kind (slow-
roll inflation) is when we have a single inflation field and the pseudo-scalar ¢
as the inflaton, known as natural inflation, but it can also be incorporated to
have multiple axions such as in N-inflation models.The imaginary part of this
field [68],[69] (which we can call an ’axion’) can couple to gravity through:

AL = F(¢)RR* (112)

and F'(¢) depends linearly on ¢ as:

N

F(9) = tooars Mpﬁb (113)
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with A/ depending on the details of string compactification, or the 'curling
up’ of extra dimensions of the theory to a very small size. So far there have
been five different types of string theory, but recently it was discovered that
all these are versions of the M-Theory, an eleven-dimensional theory. Coming
back to our model, we can see that if ¢ is constant then © = 0, however if not
equal to zero then this leads to an enhancement in the size of ©. Working
out the value of © we obtain [68],[69] the following relation:

V2, H ,
@_ﬁ(%)/\/ (114)

where the slow-roll parameter of the inflation is given by:

_ 1 ¢
6*2(Hz\4pl)2

(115)

Derivation of Gravitational Birefringence

In order to derive the Gravitational Birefringence we need to solve the
equations of motion explicitly [68],[69]. It is convenient to introduce confor-
mal time, which runs in opposite direction with t:

n=-—=—e (116)

The evolution equation for hjy, then is:

d? 1d d? d?
—hp —2——hy — —hp = —2i
2"t Tpdn "t d2Tt Zedndz

hi (117)

If we ignore © and solve the above equation and let h;, ~ €**# this becomes
the equation of a spherical Bessel function:

——hp —2——hp +k*hy = (118)
1 dn
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for which a positive energy solution is:

hi(k,n) = ™)1 — ikn) (119)

We now want to solve Eq.(117) and we set:

hy = €™ (—ikn)e*"g(n) (120)

where g(n) is a Coulomb wave-function, and we have:

d? 2 2kO
07729 + k(1 - 0% - o T]Q =0 (121)

The above equation is the Schrodinger’s equation for a particle with [ = 1
in a weak Coulomb potential. When © = 0 the Coulomb term vanishes and
we get the spherical Bessel function. For hy the Coulomb term is repulsive
whereas for hgr, with the opposite sign of the © term, the Coulomb potential
is attractive. The plane-wave solutions can be written [77] as:

A F 2kt

efye pl e—Zkt+lkz (122)
—LF”d)Zkt
M2 i .
eﬁye Pl e thiikz (123)

Where ey, , el are the polarization tensors for right and left-handed polar-
ized waves, respectively. Hence this leads to an attenuation of the left-handed
gravitational waves and an amplification of the right-handed gravitational
waves in the early universe. This effect is what we call gravitational bire-
fringence and it can also be seen in terms of the intensity [68] of radiation in

each polarized wave:
1

los=lezyy

(124)

where IZ¢ are intensities in two polarized waves in the modified gravity,
Ijgt are intensities in Einstein’s gravity, and x is proportional to the suppress-
ing parameter of CS corrections. In Einstein’s gravity both polarizations
carry equal intensities, in contrast in CS gravity the two polarizations carry
different intensities.
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Gravity Leptogenesis

As discussed in the previous section leptogenesis is based on gravity waves
during inflation. One of the greatest puzzles in astrophysics is why there
is an excess of matter over antimatter in the universe, and as we have seen
CP violation is the main candidate for the matter-antimatter asymmetry.
We have shown that the CS modified gravity has a preferred direction with
respect to the gravity waves that are produced during inflation. The recent
WMAP data [33],[59],[68],[69] shows that the baryon density, expressed as

baryon number over photon number, is:

% = (6.5 +0.4) x 10710 (125)
)

However in the standard model such high energy cannot be found, since
the best estimate [33],[59],[68],[69],[79] provides:

™ 6% 107 (126)
Ny

The conditions [33],[59],(68],[69], for generating the matter-antimatter
asymmetry are the following:

e Violation of baryon number
e Charge-Parity (CP) Violation
e Violations must occur during the era of Thermal Equilibrium

In the weak interactions contain processes which convert baryons to lep-
tons and vice-versa. They are activated at energies greater than 1 TeV.
This implies that baryon asymmetry can be viewed through the creation of
net lepton number at high temperature through out-of-equilibrium and CP-
violating processes. Such scenario is called leptogenesis. The lepton number
current Jj; ;,, and hence the total fermion number current has a gravitational

anomaly [33],[59],[68],[69] in the Standard Model through a term:

N
9,0 . =-—*RR (127)

epton 16 7'[‘2

We can clearly see that the anomaly is proportional to the Pontryagin

density and is a consequence of an imbalance between the left and right-
handed leptons. Where N = N — Ng, and has a value of 3 in the Standard
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Model. If the CS correction is non-zero during some era t; < t < t5 then the
lepton number [59],[68],[69] is:

N
n = /t RRdt (128)

The authors of [68],[69] calculated this integral and found and estimate
for the lepton number which is in agreement with the recent WMAP data:
ny

10710 129
. (129)

According to the recent WMAP observations, the scalar metric perturba-
tions generated during inflation have a size that give off density fluctuations
with %” ~ 107°. On the other hand if we look at Eq.(129) we can clearly see
that: 5

L (L (130)
Ny p

The above result could be a simple numerical accident or there might be
some underlying deeper physics.

4.5 The Many Faces of Chern-Simons Gravity

We will briefly discuss the natural emergence of the CS corrections in the
Standard Model of Particle Physics and in String Theory, as anomaly-cancellation
mechanisms for the gravitational ABJ anomaly and the Green Schwarz anomaly
respectively. We will also see that the effective 4D action for type II string
theory yields exactly the same equations as CS modified gravity.
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Standard Model

The first place we encounter the CS invariant is in the gravitational anomaly
of the Standard Model of Particle Physics. In the Standard Model, the CS
correction introduces parity violation, which in turn is inspired by CP viola-
tion, where CS terms act as an anomaly-cancelation mechanism. In partic-
ular, CS terms are necessary to cancel mixed anomalies between anomalous
and non-anomalous U(1) groups [59],[80].

An anomaly describes a quantum mechanical violation of a classically
conserved current. According to Noether’s theorem, invariance under a clas-
sical continuous global symmetry group G implies the conservation [33] of a
global current j#, with A labeling the generators of the group G:

0,5t =0 (131)

An anomaly [33] is a quantum correction to the divergence of the current
such that:
0,j4 = A4 (132)

In this section we will omit the derivation of the violation of the U(1)
axial current, also known as ABJ anomaly, a global anomaly in the Standard
Model, and instead we will present a derivation to show how anomalies are
exactly canceled with the addition of CS terms in the next section. The
derivation of the ABJ can be found in [55],[56]. The equation of the ABJ
anomaly [12],[13],[33] is the following:

- 1 aoc
9%jit = 3¢ " FapFeg (133)

The above equation of the ABJ anomaly also applies for the gravitational
anomaly. Replacing the electromagnetic field tensor with the Riemann cur-
vature tensor we obtain the gravitational ABJ [33] anomaly:

11, .
~ 33435 *d R b RS (134)

Dj;t =
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We can see that the RHS of the above equation is proportional to the
Pontryagin density *RR. The gravitational ABJ anomaly can be canceled
by adding the appropriate counter term in the action, which in turn implies
the addition of the CS modification in the Einstein-Hilbert action.

We now present a toy model [59],[81] that consists of a chiral gauge theory
with only two U(1) groups. One is anomalous with gauge field A, and field
strength F/ ,flw the other non-anomalous with gauge field Y, and field strength
Fi; Both are merited with charge operators. Under gauge transformations:

A, — A, +0 Y, =Y, +08 (135)

Using differential form notation, the one-loop effective action [59],[82] is
transformed as:

1
0Some—toop = / d4:c[e(§c3FAAFA+c2FA/\FY+c1FYAFY)+£(c2FAAFA+c1FA/\FY)]
(136)

where ¢y, c9, c3 are constants obtained by tracing combinations of charge
operators. The classical action [83] is given by:

B
493

1

FY2_7
) 49%

(FY2H(da+MA)* 4-a(ds FANFA+dy FANFY +-d, FY AFY)]
(137)

Saxion = /d4fl?[—

where di, ds, d3, M are constants. Under a gauge transformation o trans-

forms as:
a— a— Me (138)

and it is assumed that a does not shift under non-anomalous gauge trans-
formations parameterized by &. Then, the variation of the the action S is
given by:

0 Sazion = — /e(dgFA ANFA 4+ dyFANFY + diFY AFY)d'x (139)
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we now re-visiting the CS action that we have seen in this review but we
present it in differential form notation:

Ses = / Y AANA (dyFA — dsFY)d'e (140)

where dy, ds5 are constants. The variation of the CS action added to the
variation of the action gives us: 0Suzion + 0Scs = — [ E(dgFA AFA 4+ (dy —
d4)FA N FY -+ (dl -+ d5)FY N Fy)d4.'17

- /§(d4FA AFA — dsFY A FAdle (141)

Putting di = 2¢1,dy = 2¢9,d3 = %03,d4 = ¢9,d5 = —c; and comparing
Eq.(82) and Eq.(87), we have that:

6‘Sronefloop + 5Sazm'on + 5SCS =0 (142)

Hence the anomalies are exactly cancelled with the addition of the CS
term and therefore the CP violation in the Standard Model naturally requires
the existence of CS terms, which in turn leads to a modification of our current
model of gravity.

String Theory

The CS correction term arises naturally in String Theory as we will see.
In 10D supergravity the Green-Schwarz anomaly is cancelled by the CS cor-
rection. In fact, the slope of the expansion of the string theory yields the
Einstein action as well as corrections of higher order in curvature. In order for
this expansion to be ghost free, the quadratic term must be the Gauss-Bonet
combination. The CS gravity term requires the presence of the Gauss-Bonet
term for supersymmetry, and conversely, supersymmetrising the Gauss-Bonet
term requires the CS term[59]. Starting with the effective string action for
type II string theory

1
S = /,/__g(ﬁR — aHg H® + .. )d'z (143)
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where H,p. is the Kalb-Ramond 3-form field strength, o is a constant
with units of length squared, and several terms are neglected, including the
Gauss-Bonet terms. In differential form notation the Kalb-Ramond field is
written as:

1
H = §dB + wes (144)

where B is the Kalb-Ramond 2-form field wcg the 3-form field is the
Chern-Simons term. The part of the action that involves the 2-form KR
field B is:

1 1 1
Sp o / (HA*H—wosh wos)d'z = / (ABN dB+3dBA wes+wos\'dB)d's
(145)

where * denotes the Hodge dual. Its variation in B implies the equation
of motion for H:

d*H =0 (146)

which shows that *H is closed. Hence locally there exists a pseudoscalar
b, called the Kalb-Ramond axion or universal axion, such that:

H="db (147)
Hape = €, V1b (148)
Varying the action we obtain:
1 6
GMV = 87T[T;w - gva(eﬁ'w(u[vﬁb]Ry)vé)] (149)

where T),, is the stress-energy tensor corresponding to the pseudo-scalar
b. Using the Bianchi Identity we can show that:

va(‘fﬂws(u[vﬁb] 3)75) =20 (150)

where (), is the Cotton-York tensor. We adjust the constants by taking
b= % f(8), where f(0) = WLWH, N a dimensionless number, # the axion field
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that controls the CS correction, ¢ the string scale, and m, = 2.4 x 10'8GeV
is the reduced Planck mass. Finally the previous equation becomes:

Gy = Cpuy + 87T, (151)

and this is exactly what we have found so far,the Modified Einstein’s Field
Equations under the presence of a Chern-Simons correction term. Hence in
string theory the CS term arises naturally.

4.6 Astrophysical Tests

All tests of the Chern-Simons modified gravity have been performed with
astrophysical observations and concern the non-dynamical framework[33],
otherwise the framework in which the coupling constant 3 is set to zero
and hence the scalar field does not evolve dynamically but it instead exter-
nally prescribed. After Alexander and Yunes[84],[85]realised that the modified
theory predicts an anomalous precession effect, Smith et.al.[86] tested the
non-dynamical model with canonical scalar using LAGEOS[87] and Gravity
Probe B observations|88],placing the the first weak bound on the CS scalar.
Then Konno et.al.[89] proposed that the CS correction could be used to ex-
plain the flat rotation curves of the galaxies, which in turn will give another
constraint on the non-dynamical theory for non-canonical 6. Recently, Yunes
and Spergel[90] used double binary pulsar data to place a bound on the non-
dynamical model with canonical CS scalar that is eleven orders of magnitude
stronger than the Solar System one.

Binary Pulsar Test

Non-dynamical CS Modified Gravity has been shown to modify only the
gravitomagnetic sector of the metric[1], which does not influence most astro-
physical processes. This is particularly true outside the Solar System, where
stars inside galaxies will have random-oriented velocities that will lead to
vanishing averaged CS correction.On Cosmological scales, the CS correction
is not relevant since, for example, the equations of structure formation are
not corrected|[33].

However some astrophysical precesses are CS corrected, such as the for-
mation of accretion discs around protoplanetary systems. In this case and
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although the CS correction is non-zero[33|, the measurements are difficult
as the correction would be greatly suppressed by the almost negligible com-
pactness of such systems. On the other hand, a more interesting case deals
with double binary pulsars, such as the PRS JO737-3039A /B[33],[91], which
consists of two rapidly rotating stars orbiting each other.The mass of typical
neutron star is approximately 1.4M® and its radius of the order of 10km,
which implies a significant large compactness, and this leads to very strong
gravitational fields that can be used to test GR[33],[92].

Smith et.al,[86] considered double binary pulsars and modeled their or-
bital evolution via a study of a compact object in the background of a rotating
homogeneous sphere. The motion of this binary system is determined by the
four acceleration @ = —4v X é, with v the velocity of one of the pulsars
and B the gravitomagnetic field of the other. To leading order in 6 the CS
correction to the gravitomagnetic field is:

Beo = 2 cos§(r)[] — tan§(f x #) = (7 - #)7] (152)
r
where £(r) = %,cg = %),f = f,; = Ri;. On the other hand

the only Keplerian parameter that is CS corrected is the radial acceleration
a, =7 - 7. The CS corrected radial acceletion is given by:

ay® = —4couv|cosicos Er + sind cos usin £(r)] (153)

with i the inclination angle, @ = f + &, where w is the argument of the
perigee and f is the true anomaly.Finally the only post-Keplerian parameter
that is CS corrected to leading order is w, or the rate of change of perigee, in
the non-dynamical theory with canonical CS scalar and all parameters can
be obtained by [93].The CS correction to the average rate of change of the
perigee is given by:
1576 2kR, . 2ak

X sin(—) sin(—) (154)

<W >p= ———
v 2a2eR ab ab

Yunes and Spergel[90], used the calculations obtained by M.Kramer et.al[93]
to place a strong bound on the non-dynamical framework. Using the relevant
system parameters of PSR J0737-3039A /B, the CS scalar was constrained to
be:

0 <4x10"%km (155)
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which is 10'! times stronger than the current Solar System constraints.
A similar analysis in the full, strong-field dynamical formalism is still lacking
and is a subject for further development.

Galactic Rotation Curves

A galaxy rotation curve is the plot of the orbital velocity v of star in a
galaxy against their distance to the galactic centre. According to Newtonian
mechanics the orbital velocity should obey a square-root fall-off v r=3. We
would expect the orbital velocity of stars to decrease as the distance from
the galactic center increases according to Newton’s Law, however Rubin and
Ford[94],[95] found that the galaxy rotation curves flattens with distance,
hence stars revolve at constant speeds over a large range of distances from
the center of the galaxy. This is turn implies the existence of an additional,
non-visible type of matter, or dark matter otherwise.

The only galactic study that has been carried out by Konno et.al[89], is
related to the flat-rotation curves of galaxies. They have attempted to explain
the flatness of rotation curves through the non-dynamical CS modified grav-
ity with @ = —lk and § = 0, and a non-canonical CS scalar. Their result is

the following;:
M C
u:i\/7+72+0(<])2 (156)

with C5 a constant that depends on the spin angular momentum. This re-
sult is to be contrasted with the Kerr Metric, for which v = \/% — 7n%.Another

solution was presented by Yunes and Pretorius in[48] for the non-dynamical

formulation, which is:
M M
~— = — 157
R (157)

Briefly speaking, the non-dynamical framework does not suggest that
either of the two solutions presented here is more or less valid than the other.
The freedom of choice of the CS scalar leads to two different observables and
points at an incompleteness of the framework. This observation together with
the constraints of the non-dynamical framework, creates reasonable doubts
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on the validity of the CS correction as an explanation of the flatness of galaxy
rotation curves|33].

Gravitational Wave Tests

As we have seen the main effect of the CS correction on the propagation
of gravitational waves is an amplitude or gravitational birefringence. Several
tests have recently been proposed of the CS modified gravity with gravita-
tional waves. All such tests have so far concentrated on waves generated
by binary systems,where the CS correction arises due to the propagation of
waves|1].

Alexander et.al,[96]have proposed a gravitational wave test of non-dynamical
CS modified gravity with a generic CS scalar though the space-born gravita-
tional wave detector LISA[97],[98],[99],[100].The sources in mind are super-
massive black hole binaries at red-shifts z < 30. In order to determine how
good of a constraint LISA could place on CS modified gravity, one would have
to carry out a full covariance matrix analysis, including all harmonics in the
signal amplitude,since the CS correction affects precisely this amplitude[33].

One can obtain an order of magnitude estimate by making the following
assumptions: First, place two GW detectors in the process of GW detection,
such that one can reconstruct left and right polarised amplitudes. Second,
model the noise as white, with one-sided spectral noise density Sy. Third,
we focus the attention on the covariance (Fisher) matrix I';; related to the
parameters that affect the amplitude of the GW signal neglecting the phase
parameters[101],[102].

The advantages of the LISA gravitational wave detection include a pos-
sible constraint on @ five orders of magnitude better than the Solar System
tests. A GW detection also constraints a different sector of the modified the-
ory, since it samples the temporal evolution of the CS scalar, instead of its
local value. This is because a GW detection really constraints the evolution
of the CS scalar from the time of emission of the GW to its detection on
earth.

Another interesting test of the CS modified gravity can be performed

using gravitational waves emitted by extreme-mass ratio in-spirals or binary
black hole mergers[103].These systems sample the strong-gravitational regime
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of space-time, in which the CS correction is enhanced as shown by the CS
modified Kerr solution[48].The generation of gravitational waves would then
also CS modified, not only due to the corrections of the background metric,
but also due to the fact that the CS scalar must carry energy-momentum
away from the system. Even ignoring the latter, Sopuerta and Yunes[103]
have shown that the background modifications lead to extreme and inter-
mediate ratio in-spirals, whose waveforms are sufficiently distinct from their
GR counterpart to allow for a test of the radiative sector of the dynamical
theory over a few-month integration period|[33].

Solar System Tests

The non-dynamical modified theory has been so far only through frame-
dragging Solar System experiments. The non-dynamical CS modification
induces anomalous precession effects. Smith et.al[86]studied the anomalous
precession using the values of a = —é and 3 = 1. Precession is a term that
refers to the change in rotation 3-vector of a spinning object.There are two

types[33] of precession that can be distinguished:

e Torque-Free
e Torque-Induced

The former corresponds to situations in which the spin angular momen-
tum is not co-aligned with the axial Killing vector, or otherwise a vector field
on the Riemannian manifold that preserves the metric[33],and the latter is
also known as gyroscopic precession, occurring in situations where there is
an additional torque, such as that of a gyroscope. Gyroscopic precession can
be studied in the Newtonian framework but relativity adds three additional
corrections|33]:

e Thomas Precession
e De-Sitter or Geodesic Precession
e Lense-Thirring Precession

Thomas precession is due to the observer’s non-inertial rotating frame and
is an additional Special Relativity correction. De-Sitter precession is a GR
effect that accounts for Schwarchild-like deviations from flat space-time, and
Lense-Thirring precession another GR correction due to the gravitomagnetic
sector of the Kerr metric[33].
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Consider first the motion of a test body in the external field of a CS
spinning source. In such a field the test body will experience Lense-Thirring
precession which will be different in CS gravity with respect to GR[104].Smith
et.al.[86], studied the secular time variation of the longitude of the ascending
node Qarb in the non-dynamical modified theory and found that:

Qobs = QGR + QCS (158)

where the GR Lense-Thirring drag is given by:

2GJ

Qcr = m (159)

with € to be the eccentricity, J the magnitude of the spin angular mo-
mentum of the central body. The CS correction is given by:

- 1502 .
Qcs = ?]2(mcsR)y1 (Mesa) (160)

where « is the semi-major axis, R is the earth’s radius, and js, y; are the
spherical Bessel functions of the first and second kind. The LAGEOS exper-
iments have measured ) and found that it is in agreement with General Rel-
ativity up to an experimental error, which allows to test for a non-dynamical
Chern-Simons gravity. Smith et.al.[86] estimated also the constraint on the
CS scalar and found that 6 < 3 x 107?km.

The next type of precession that is affected by the CS gravity is gyroscopic
precession. Consider a gyroscope with spin angular momentum S in circular
orbit around the Earth. The rate of change of S is geiven by[33]:

St = 2%k B, B, (161)

where B; is the gravitomagnetic field. The precessional angular velocity

is then given by ® = Igl}’ which is CS corrected by:
d a?
5 = 15— fa(mes R) [y1 (Mst) + Mgy (Mesct)] (162)
Por R
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where @5 is the GR prediction and R is the distance from the centre
of the Earth to the gyroscope. Given an experimental verification of the
Lense-Thirring effect, we could place a constraint on the CS scalar with the
LAGEOS satellites.Gravity Probe B was designed to measure this effect to
percentage accuracy|[35]but since it was launched it faced certain difficul-
ties that might degrade its accuracy.Smith et.al.[33] studied the studied the
possibility that Gravity Probe B could place a stronger constraint than the
LAGEOS satellites but this wasn’t the case.The estimates of their group
revealed that the CS modification in the gyroscopic precession leads to non-
boundary corrections to the gravimagnetic field, a subject for further study.

5 f(R) Theories of Gravity

5.1 Introduction

General Relativity is widely accepted as a fundamental theory to describe the
geometric properties of space-time. In a homogeneous and isotropic space-
time the Einstein field equations give rise to the Friedmann equations that
describe the evolution of the universe. In fact,the standard big-bang cosmol-
ogy based on radiation and matter dominated epochs can be well described
within the framework of General Relativity[112].

However, the rapid development of observational cosmology which started
from 1990s shows that the universe has undergone two phases of cosmic ac-
celeration. The first one is called inflation which is believed to have occurred
prior to the radiation domination. This phase is required not only to solve
the flatness and horizon problems plagued in big-bang cosmology, but also
to explain a nearly flat spectrum of temperature anisotropies observed in
Cosmic Microwave Background. The second accelerating phase has started
after the matter domination. The unknown component giving rise to this
late time cosmic acceleration is called dark energy.The existence of dark en-
ergy has been confirmed by a number of observations such as supernovae
[a,large-scale structure, baryon acoustic oscillations[112].
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These two phases of cosmic acceleration cannot be explained by the pres-
ence of standard matter whose equation of state w = % satisfies the condition
w > 0. Here P and p are the pressure and the energy density of matter, re-
spectively. In fact, we further require some component of negative pressure,
with w < —1/3, to realize the acceleration of the universe. The cosmological
constant A is the simplest candidate of dark energy, which corresponds to w
= -1. However, if the cosmological constant originates from a vacuum energy
of particle physics, its energy scale is too large to be compatible with the dark
energy density. Hence we need to find some mechanism to obtain a small
value of A consistent with observations. Since the accelerated expansion in
the very early universe needs to end to connect to the radiation-dominated
universe, the pure cosmological constant is not responsible for inflation. A
scalar field with a slowly varying potential can be a candidate for inflation
as well as for dark energy|[1],[41],[111],[112].

Although many scalar-field potentials for inflation have been constructed
in the framework of string theory and super-gravity, the CMB observations
still do not show particular evidence to favor one of such models. This sit-
uation is also similar in the context of dark energythere is a degeneracy as
for the potential of the scalar field or quintessence field due to the obser-
vational degeneracy to the dark energy equation of state around w = —1.
Moreover it is generally difficult to construct viable quintessence potentials
motivated from particle physics because the field mass responsible for cosmic
acceleration today is very small[112].

While scalar-field models of inflation and dark energy correspond to a
modification of the energy-momentum tensor in Einstein equations, there is
another approach to explain the acceleration of the universe. This corre-
sponds to the modified gravity in which the gravitational theory is modified
compared to GR. The Lagrangian density for GR is given by f(R) = R—2A,
where R is the Ricci scalar and A is the cosmological constant (corresponding
to the equation of state w =-1).The presence of A gives rise to an exponen-
tial expansion of the universe, but we cannot use it for inflation because the
inflationary period needs to connect to the radiation era. It is possible to use
the cosmological constant for dark energy since the acceleration today does
not need to end. However,if the cosmological constant originates from a vac-
uum energy of particle physics, its energy density would be enormously larger
than the todays dark energy density. While the A Cold Dark Matter model
(f(R) = R—2A) fits a number of observational data well,there is also a possi-
bility for the time-varying equation of state of dark energy[1],[41],[111],[112].
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5.2 f(R) Models

Fourth-order theories of gravity have a long history, dating back to as early
as 1918,only a few years after the first papers on General Relativity by Ein-
stein. These theories generalise the Einstein-Hilbert action by adding ad-
ditional scalar curvature invariants to the action, or by making the action
a more general function of the Ricci scalar then the simple linear one that
leads to Einstein’s equations. Here we consider the latter of these options,
a choice that leads by Lovelock’s theorem to fourth-order field equations for
anything except the addition of a constant term to the gravitational La-
grangian. Such theories, generically referred to as f(R) theories of gravity,
have been intensively studied, and have a number of reviews dedicated to
them.This interest was stimulated in the 1960s, 70s and 80s by the revela-
tions that the quantization of matter fields in an un-quantized space-time
can lead to such theories, that f(R) theories of gravity can have improved
renormalisation properties,and that they can lead to a period of accelerat-
ing expansion early in the Universe’s history. More recently they have been
of considerable interest as a possible explanation for the observed late-time
accelerating expansion of the Universe as we discussed above[1],[41].

The f(R) generalisations of Einstein’s equations are derived from a La-
grangian density of the form[1]:

L=+v=gf(R) (163)

where the factor of \/—g is included, as usual, in order to have the proper
weight. This is clearly about as simple a generalisation of the Einstein-Hilbert
density as one could possibly conceive of. The field equations derived from
such an action are automatically generally covariant and Lorentz invariant for
exactly the same reasons that Einstein’s equations are. Unlike the Einstein-
Hilbert term, however, the field equations that one obtains from the least
action principle associated with Eq.(163) depend on the variational principle
that one adopts[1]. Different possibilities are the metric variation where the
connection is assumed to be the Levi-Civita one, the Palatini approach in
which Eq.(163) is varied with respect to the metric and connection indepen-
dently, and the metric-affine approach in which the same process occurs but
the matter action is now taken to be a functional of the connection as well
as the metric.
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Hence the Einstein Hilbert Action[1],[33],[41] that we have already seen:

1 4

becomes [1],[33],[41],[111],[112],[113],[114],[115]:

Sprr = 1o [ oG f(R) (165)

The above action provide us with the simplest modification[l]of GR, in
which the Lagrangian density is just an arbitrary function of the Ricci Cur-
vature Scalar.

Toy Models

The Standards Einstein gravity maybe modified at low curvature, by in-
cluding the terms that are important precisely at low curvature. The simplest
possibility is to consider a % term in the Einstein-Hilbert action. Carrol et
al also suggested that such a theory maybe suitable to derive cosmological
models with late accelerating phase. Although the the theory with with
the % term in the Einstein’s gravity accounts satisfactorily the present ac-
celeration of the Universe, it is realised that inclusion of such terms in the
Einstein-Hilbert action leads to instabilities[105].

Subsequently it has been shown that further addition of an R? term or an
In R term to the Einstein’s gravitational action leads to consistent modified
theory of gravity which may pass satisfactorily solar system tests, and fee
from instability problems. It is known that the modified gravity with a
positive power of the scalar curvature, namely R?, in the EH action admits
early inflation. In fact, the model f(R) = R + aR? leads to accelerated
expansion of the Universe, and this was the first model of inflation proposed
by Starobinsky in 1980.This model is well consistent with the temperature
anisotropies observed in CMB and thus it can be a viable alternative to
the scalar field models of inflation. Reheating after inflation proceeds by
a gravitational particle production during the oscillating phase of the Ricci
scalar(1],[41],[105],[111]. The modified gravity with negative powers of the
curvature in the Einstein-Hilbert action is recently becoming popular as it
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might effectively behave as a dark energy candidate. Consequently one such
theory maybe able to describe the recent cosmic acceleration. Therefore it
is reasonable to explore a theory which could accommodate an inflationary
scenario at the early universe and an accelerating phase of expansion at late
time followed by a matter dominated phase. As a result, the modified theory
of gravity which contains both positive and negative powers of the Ricci
Scalar R, with the general form of f(R) given by[105]:

f(R) = R+ aR™ + ﬁ}; (166)

where «, # to represent coupling constants, with arbitrary constants m
and n are considered for exploring cosmological models. It is known that the
R™ term dominates and it permits power law inflation if 1 < m < 2, in the
large curvature limit.

For m=2 and # = 0 we get inflation as we have seen above[105]. Recently,
in the law curvature limit, a number of f(R) models have been proposed in
order to accommodate the universe with late acceleration using a modified
gravity, namely, f(R) = R — ﬁ, with n > 0. In the metric approach, it was
shown that the model is not suitable because it didn’t permit a matter era.
Recently it was also shown that the model f(R) = R+ «aR™ is not cosmolog-
ically viable because it does not permit a consistent scenario accommodating
a matter dominated era at late time with a ~ tg, but instead it permits
a radiation dominated era with a ~ tz. On the other hand the R™ model
does permit a matter dominated universe but it fails to connect to the late

accelerating phase[105].

It was shown(see[105]) that the models of the type where Lagrangian den-
sity, f(R) = R— % withn ; 0 and f(R) = aR™ with m # 1 are not viable for
a realistic cosmological scenario as they do not permit matter epoch although
late acceleration can be realized. Recently, modified gravity with power law
in R, i.e., f(R)-gravity is examined and found that a large class of models
including R™ model does not permit matter dominated universe. Tsujikawa
(see[105]) derived observational signature of f(R) dark energy models that
satisfy cosmological and local gravity constraints fairly well. The modified
f(R)-gravity is found to be consistent with realistic cosmology in some cases.
However, no definite physical criteria known so far to select a particular kind
of theory capable of matching the data at all scales. However, modified grav-
ity namely, f(R) ~ ef or log R may be useful to build a viable cosmological
model as they permit a matter dominated phase before an accelerating phase
of expansion[105].
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5.3 f(R) in The Metric Formalism

Beginning from the Einstein-Hilbert modified action Eq.(165) and adding a
matter term Sy, then the total action for F(R) gravity
becomes(1],[41],[106],[107],[111],[112],[113],[114],[115]:

[ @G (R) + Sae(gp0n0) (167)

Smet = 167G

where 1 denotes the matter fields. In the metric formalism we make a
variation of the action with respect to the metric in order to obtain the field
equations|1],[41],[106],[107],[111],[112],[113],[114],[115]:

PR Ry~ 5 (R — (V¥ — VY1 (B) = $7GT, (168
with the energy-momentum tensor|[1},[41],[106],[107],[111],[112],[113],[114],[115]

to be given by: ) 59
T, =———— 169
I /__g 59“1, ( )

the prime denotes differentiation with respect to the argument, V, is the
covariant derivative associated with the Levi-Civita connection, and T}, is
the usual energy-momentum tensor.

It has to be stressed that there is a mathematical jump([41],[111] in deriv-
ing Eq.(168) from the action Eq.(167) having to do with the surface terms
that appear in the variation: as in the case of the EinsteinHilbert action, the
surface terms do not vanish just by fixing the metric on the boundary. For
the EinsteinHilbert action, however, these terms gather into a total variation
of a quantity. Therefore, it is possible to add a total divergence to the action
in order to heal it and arrive to a well-defined variational principle (this is
the well known GibbonsHawkingYork surface term (Gibbons and Hawking,
1977; York, 1972)). Unfortunately, the surface terms in the variation of the
action Eq.(165) do not consist of a total variation of some quantity (the
reader is urged to calculate the variation in order to verify this fact) and it is
not possible to heal the action by just subtracting some surface term before
performing the variation[41],[111].

The way out comes from the fact that the action includes higher order
derivatives of the metric and, therefore, it should be possible to fix more
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degrees of freedom on the boundary than those of the metric itself[41],[111].
There is no unique prescription for such a fixing in the literature so far. Note
also that the choice of fixing is not void of physical meaning, since it will be
relevant for the Hamiltonian formulation of the theory. However, the field
equations (168) would be unaffected by the fixing chosen and from a purely
classical perspective, such as the one followed here, the field equations are all
that one needs for a more detailed discussion on these issues|. Setting aside
the complications of the variation we can now focus on the field equations
(168). These are obviously fourth order partial differential equations in the
metric, since R already includes second derivatives of the latter. For an
action which is linear in R, the fourth order terms the last two on the left
hand side vanish and the theory reduces to GR. Taking the trace of Eq.(168)
leads to[41],[106],[111]:

f(R)R — 2f(R) + 3V, V*f(R) = 87GT (170)

where T' = g, T"" relates R with T differentially and not algebraically as
in GR, where R = —87GT . This is already an indication that the field equa-
tions of f(R) theories will admit a larger variety of solutions than Einsteins
theory. As an example, we mention here that the Jebsen- Birkhoffs theo-
rem[111], stating that the Schwarzschild solution is the unique spherically
symmetric vacuum solution, no longer holds in metric f(R) gravity. Without
going into details, let us stress that T' = 0 no longer implies that R = 0, or
is even constant.

Eq.(170) will turn out to be very useful in studying various aspects of
f(R) gravity, notably its stability and weak-field limit. For the moment, let
us use it to make some remarks about maximally symmetric solutions. Recall
that maximally symmetric solutions lead to a constant Ricci scalar. For R
= constant and 7),, = 0, Eq.(170) reduces to[41],[111]:

F'R—2f(R)=0 (171)

which, for a given f, is an algebraic equation in R. If R = 0 is a root of
this equation and one takes this root, then Eq.(168) reduces to R,, = 0 and
the maximally symmetric solution is Minkowski space-time. On the other
hand, if the root of Eq.(171) is R = C, where C is a constant, then Eq.(168)
reduces to R, = ¢,,C/4 and the maximally symmetric solution is de Sitter
or anti-de Sitter space depending on the sign of C, just as in GR with a
cosmological constant.
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Another issue that should be stressed is that of energy conservation. In
metric f(R) gravity the matter is minimally coupled to the metric. One can,
therefore, use the usual arguments based on the invariance of the action un-
der diffeomorphisms of the space-time manifold [coordinate transformations
followed by a pullback, with the field z#* — x* + &* vanishing on the bound-
ary of the space-time region considered, leave the physics unchanged, see
(Wald, 1984)] to show that T, is divergence-free. The same can be done
at the level of the field equations: a brute force calculation reveals that the
left hand side of Eq.(168) is divergence-free (generalized Bianchi identity)
implying that V, 7" = 0 (Koivisto,2006)[41],[111],[112],[115].

Finally, let us note that it is possible to write the field equations in the
form of Einstein equations with an effective stress-energy tensor composed
of curvature terms moved to the right hand side[41],[111]. This approach is
questionable in principle (the theory is not Einsteins theory and it is artificial
to force upon it an interpretation in terms of Einstein equations) but, in
practice, it has been proved to be useful in scalar-tensor gravity. Specifically,
Eq.(168) can be written[111] as:

_ 87GT, [f(R) — Rf'(R)] | [VuVul'(R) = 9wV V"f'(R)]
Gl“’ o / + v / /
f'(R) 2f'(R) f'(R)
(172)
or rC
4 e

Guu = W(TMV + T;Eyff)) (173>

with
. 1 f(R)—Rf'(R

100 = Ll B FE G 9 p(R) - guv, 0] ()
here the quantity Gesr = %can be regarded as the effective gravita-

tional coupling strength in analogy to what is done in scalar-tensor gravity
and positivity of Gy imposes that f'(R) > 0. Furthermore T,Sﬁf 7) is an effec-
tive stress-energy tensor which does not have the canonical form quadratic in
the first derivatives of the field f’(R), but contains terms linear in the second
derivatives. The effective energy density derived from it is not positive-
definite and none of the energy conditions holds[41],[111].
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5.4 f(R) in The Palatini Formalism

We have already mentioned that the Einstein equations can be derived using,
instead of the standard metric variation of the EinsteinHilbert action, the
Palatini formalism, i.e., an independent variation with respect to the metric
and an independent connection (Palatini variation).The action is formally
the same but now the Riemmann tensor and the Ricci tensor are constructed
with the independent connection[1],[41],[111]. Note that the metric is not
needed to obtain the latter from the former. For clarity of notation, we
denote the Ricci tensor constructed with this independent connection as R,

and the corresponding Ricci scalar is R = g"”R,,,. The action now takes the
form|[1],[41],[111],[112],[113],[114],[119]:

1

vl = TonG

[ d'aV=g S (B) + Sur(gyu 0) (175)

We note that the matter action SM is assumed to depend only on the
metric and the matter fields and not on the independent connection. This
assumption is crucial for the derivation of Einsteins equations from the linear
version of the action (175) and is the main feature of the Palatini formalism.

It has already been mentioned that this assumption has consequences for
the physical meaning of the independent connection[1],[41],[111],[119]. Let
us elaborate on this: recall that an affine connection usually defines parallel
transport and the covariant derivative. On the other hand, the matter ac-
tion Sy is supposed to be a generally covariant scalar which includes deriva-
tives of the matter fields. Therefore, these derivatives ought to be covariant
derivatives for a general matter field. Exceptions exist, such as a scalar field,
for which a covariant and a partial derivative coincide, and the electromag-
netic field, for which one can write a covariant action without the use of the
covariant derivative. However, Sy, should include all possible fields. There-
fore, assuming that Sy, is independent of the connection can imply one of
two things[41],[111]: either we are restricting ourselves to specific fields, or
we are implicitly assuming that it is the Levi-Civita connection of the metric
that actually defines parallel transport. Since the first option is implausi-
bly limiting for a gravitational theory, we are left with the conclusion that
the independent connection F’\W does not define parallel transport or the
covariant derivative and the geometry is actually pseudo- Riemannian. The
covariant derivative is actually defined by the Levi-Civita connection of the
metric {};}.

75



This also implies that Palatini f(R) gravity is a metric theory|[1],[41],[111]
in the sense that it satisfies the metric postulates (Will, 1981). Matter is
minimally coupled to the metric and not coupled to any other fields. Once
again, as in GR or metric f(R) gravity, one could use diffeomorphism in-
variance to show that the stress energy tensor is conserved by the covari-
ant derivative defined with the Levi-Civita connection of the metric, i.e.,
v, T" =0 (@MT # £ (). This can also be shown by using the field equa-
tions, which we will present shortly, in order to calculate the divergence of
T,,, with respect to the Levi-Civita connection of the metric and show that it
vanishes. Clearly then, Palatini f(R) gravity is a metric theory according to
the definition (not to be confused with the term metric in metric f(R) gravity,
which simply refers to the fact that one only varies the action with respect
to the metric). Conventionally thinking, as a consequence of the covariant
conservation of the matter energy-momentum tensor, test particles should
follow geodesics of the metric in Palatini f(R) gravity. This can be seen by
considering a dust fluid with 7}, = pu,u, and projecting the conservation
equation V7,3 = 0 onto the fluid four-velocity «“.Similarly, theories that
satisfy the metric postulates are supposed to satisfy the Einstein Equiva-
lence Principle as well(Will, 1981).Varying the action (175) independently
with respect to the metric and the connection, respectively, and using the
formula[41],[111],[119]:

R, = VoI*,, =V, — 6T, (176)
gives
1
F(R) By = 5 f(R)gu = 81GT (177)

~Va(V=9f (R)g™) + Vo (v/=gf' (R)g"*)5}) = 0 (178)

where T, is the usual energy momentum tensor,@ . denotes the covariant
derivative defined with the independent connection I'*,,, and (uv), [uv] de-
notes symmetrisation or anti-symmetrisation over the indices u and v respec-
tively. Taking now the trace of Eq.(178) we get[41],[111],[112],[113],[114],[119]:

Va(vV=gf'(R)g*") =0 (179)

Hence the field equations can be written as[41],[111],[112],[113],[114],[119]:
1

F'(R)R(uw) — 5/ (R)gu, = 87GT,, (180)
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Va(V=9/'(R)g™) =0 (181)

It is now easy to see how the Palatini formalism leads to GR when f(R)=R.
In this case f'(R) = 1 and Eq.(181) becomes the definition of the Levi-Civita
connection for the initially independent connection F’\W . Then, R, is the
usual Ricci tensor and R the Ricci scalar and Eq.(180) gives the Einstein
field equations. This reproduces the result that can be found in textbooks
(Misner et al., 1973; Wald, 1984). Note that in the Palatini formalism for
GR, the fact that the connection turns out to be the Levi-Civita one is
a dynamical feature instead of an a priori assumption. It is now evident
that generalizing the action to be a general function of R in the Palatini
formalism is just as natural as it is to generalize the EinsteinHilbert action
in the metric formalism. Remarkably, even though the two formalisms give
the same results for linear actions, they lead to different results for more
general actions|1],[41],[111],[112],[113],[114],[119].

Taking the trace of Eq.(180) we get[41],[111],[114],[119]:
f'(R)R —2f(R) = 8rGT (182)

For all cases in which T = 0, including vacuum and electro-vacuum, R
will therefore be a constant and a root of the equation:

f(R)R—2f(R) =0 (183)

Eq.(183) can also be identically satisfied if f(R) oc R?. This very particu-
lar choice for f leads to a conformally invariant theory (Ferraris et al., 1992).
As is apparent from Eq.(182),if f(R) o< R? then only conformally invariant
matter, for which T = 0 identically, can be coupled to gravity. Matter is not
generically conformally invariant though, and so this particular choice of f is
not suitable for a low energy theory of gravity[41],[111].

Consider now Eq.(181) and we define a metric conformal to g, such
that[41],[111],[114],[119]:
Ty = f'(R) Gy (184)

and therefore:

V=t = f'(R)y/=g9"" (185)
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Then Eq.(181)becomes the definition of the Levi-Civita connection[41],[111],[114],[119]
of h,, and can be solved algebraically to give:

1
I‘)\MV — §h/\g(auhf1/0' + ayhy,o' - ao-huy) (186)

[0u(f'(R)gva) + 0o (f'(R)guo) — 0o (f' (R)gu)]  (187)

The Ricci tensor transforms under conformal transformations[41],[111],[114],[119]

Ry = Bty s (Tl (Vo (R) =775 (V¥ =5, 9V (F)
(188)
contracting with g,, we then get:
R R+ s (Vuf (R)(VF () + 5oV, VS () (159)
Plugging Eq.(188) and Eq.(189) into Eq.(180) we get:
G = 35 T 0w B4 5 (V¥ =00V = 3 (Tl VTl )= 500V

(190)

Notice that, assuming that we know the root of Eq.(182),R = R(T), we
have completely eliminated the independent connection from this equation.
Therefore, we have successfully reduced the number of field equations to one
and at the same time both sides of Eq.(190) depend only on the metric and
the matter fields. In a sense, the theory has been brought to the form of GR
with a modified source.We can now deduce the following[41],[111],[114],[119]:

e If f(R)=R then the theory reduces to General Relativity

e For matter fields with T =0, due to Eq.(183),R and consequently f(R)
and f'(R) are constants and the theory reduces to GR with a cosmological
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constant and a modified coupling constant G/ f’. If we denote the value of R
when T = 0 as Ry, then the value of the cosmological constant is given by:

1 f(Ro), Ro
,(Ro—f,(RO) —I

) (191)

e In the general case T' # 0, the modified source on the right hand side of
Eq.(190) includes derivatives of the stress-energy tensor, unlike in GR. These
are implicit in the last two terms of Eq.(190), since f’ is in practice a function
of T, given that f' = f’(R) and R = R(T).

5.5 f(R) in The Metric-Affine Formalism

As we already pointed out, the Palatini formalism of f(R) gravity relies on
the crucial assumption that the matter action does not depend on the in-
dependent connection[1],[41],[111]. We also argued that this assumption rel-
egates this connection to the role of some sort of auxiliary field and the
connection[41],[111]. carrying the usual geometrical meaning of the parallel
transport and definition of the covariant derivative remains the Levi-Civita
connection of the metric. As we have already discussed in Subsection3.2, in
metric-affine theories the metric and the connection are independent, as in
the case of the Palatini Formalism, however in this metric-affine theories of
gravity there is a direct coupling between matter and connection[1],[41],[111],
as the action includes covariant derivative of matter fields with the covariant
derivatives defined using the connection. Hence the matter action would
be a function of the independent metric and connection and the matter
fields Sy = Su(gu, I, %). We have seen the metric-affine action for
gravity in Subsection3.2, hence replacing R with f(R) the action is there-
fore[1],[41],[111],[112],[113],[117],[118]:

1
Sma = m / d4x\/—_gf(R) + SM(.g;wa F/\um ¢) (192)

In Subsection3.2 we discussed in detail what is the general set-up for
metric-affine theories of gravity. We know that in such a theory the metric
and connection are independent, however, some part of the connection is
still related to the metric, as the non-metricity tensor is set to be equal to
zero. In this case the connection is left to be completely unconstrained and
hence to be determined by the field equations[41],[111].But leaving the con-
nection completely unconstrained comes with some problems.Lets consider
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the projective transformation[41],[111]:

I, =T, +6.8 (193)

where &, is an arbitrary covariant vector field.It can be shown that the
Ricci tensor transforms as[41],[111],[117],[118]:

Rp,u — R/J,l/ - 28[#&/} (194)

However given that the metric is symmetric, this implies that the curva-
ture scalar does not change and hence[41],[111],[117],[118]:

R—R (195)

or in other words R is invariant under projective transformations. There-
fore the Einstein-Hilbert action or any other action that is a function of R,
as in our case, is projective invariant in metric-affine gravity However, the
matter action is not generically projective invariant and this would be the
cause of an inconsistency in the field equations.We could try to avoid this
problem by generalizing the gravitational action in order to break projec-
tive invariance. This can be done in several ways, such as allowing for the
metric to be non-symmetric as well, adding higher order curvature invariants
or terms including the Cartan torsion tensor.However, if one wants to stay
within the framework of f(R) gravity, which is our subject here, then there
is only one way to cure this problem: to somehow constrain the connection.
In fact, it is evident from Eq.(193) that, if the connection were symmetric,
projective invariance would be broken|[41],[111},[117],[118].

Lets see again what is the meaning of projective invariance, which is very
similar to gauge invariance in the the theory of Electromagnetism. Projec-
tive invariance tells us that the corresponding field can be determined up
to a projective transformation Eq.(193). In this case the field is just the
connections.If we want to break this invariance we have to fix some degrees
of freedom in the same way we do with gauge fixing. The number of degrees
of freedom which we need to fix is obviously the number of the components
of the four-vector used,for the transformation, i.e., simply four.This tells us
that the connection satisfies some constraints but it cannot be assumed to
be the most general connection we can construct|[41],[111].
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The degrees of freedom we need to fix is four and are related to the non-
symmetric part of the connection. Then we should set[41],[111},[117],[118]:

$=8,=5,"=0 (196)

without, of course, this to mean that the part of the connectionI'), = 5,7
must vanish, but mainly that I', = S, ,” =I', = S,,,7 This constrained can
be imposed by simply adding a Lagrange multiplier B*. Hence the action

for the most general metric-affine f(R) theory of gravity is given by:

Sima = 1G/ d*ar/=gf(R) + Snt(Gua Ty ) + Sear - (197)

167

where S/ is the action of the Lagrange Multiplier given by[41],[111],[117],[118]:

Spar = / d*z\/=gB"S, (198)

We now vary the action independently with respect to the metric, connec-
tion, and lagrange Multiplier in order to get the field equations[41],[111],[112],[113],[117],[118]:

/(B Ry = 5§ (R)gu = $7GT, (199

= [=VA(/=3f (R) ")+ Vo (V=g (R)g" )"\ +2f (R)(g" Sr,” =" S, 8"
+g" S Y) = 8nG(A,M — BIF§Y)) (200)

5,7 =0 (201)

(o}

Where A" is called the hyper-momentum tensor and mimics the role
of the energy-momentum tensor. Furthermore S_,"” is the Cartan-Torsion
tensor as discussed in Subsection3.2 and is equal to the anti-symmetric part
of the connection. Taking the trace of Eq.(199) over the indices p and v and
using Eq.(200) we have that[41],[111],[112],[113],[117],[118]:

2

B = S0, (202)
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Hence we can now write the field equations as[41],[111],[112],[113],[117],[118]:

1
if(R)g;w = 87TGT;W (203)

T [VA(V=af (R)g") + Vo (V=g (R)g"7)d")]

fI(R)R(W) -

2
+2/ (R)g"* S, = 8nG(A™ — SAVY) (204)

S,,7 =0 (205)

By splitting Eq.(204) into a symmetric and an antisymmetric part and
performing the appropriate contractions and manipulations we find that[41],[111],[117],[118]:

A =0=5,=0 (206)

Hence this has the two following implications[41],[111],[117],[118]:

e Any torsion is introduced by matter fields for which A, is non-vanishing.
e Torsion is not propagating, since it is given algebraically in terms of the
matter fields through A A[” “I'Tt can, therefore, only be detected in the pres-
ence of such matter fields. In the absence of the latter, space-time will have
no torsion.

Similarly we can use the symmetrized version of Eq.(204) to show that
the symmetric part of the hyper-momentum A )\(” Y) is algebraically related to
the non-metricity @,,». Therefore, matter fields with non-vanishing A /\(” v)
will introduce non-metricity.In this case things are slightly more complicated
because part of the non-metricity is also due to the functional form of the
Lagrangian itself. There are, however, certain types of matter fields for which

A =0 such as[41],[111],[117,[118]:

oA scalar field, since in this case the covariant derivative can be replaced
with a partial derivative.Therefore, the connection does not enter the matter
action.

e The electromagnetic field (and gauge fields in general), since the electro-
magnetic field tensor F),, is defined in a covariant manner using the exterior
derivative. This definition remains unaffected when torsion is included.
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On the contrary, particles with spin, such as Dirac fields, generically have
a non-vanishing hyper-momentum and will, therefore, introduce torsion. A
more complicated case is that of a perfect fluid with vanishing vorticity.
If we set torsion aside, or if we consider a fluid describing particles that
would initially not introduce any torsion then, as for a usual perfect fluid in
GR, the matter action can be written in terms of three scalars: the energy
density, the pressure, and the velocity potential. Therefore such a fluid will
lead to a vanishing A" However, complications arise when torsion is taken
into account: Even though it can be argued that the spins of the individual
particles composing the fluids will be randomly oriented, and therefore the
expectation value for the spin should add up to zero, fluctuations around this
value will affect space-time. Of course, such effects will be largely suppressed,
especially in situations in which the energy density is small, such as late time
cosmology[41],[111],[117],[118].

Because of Eq.(206) we can now see that the field equations of metric-
affine f(R) gravity reduce to the field equations (177) and (178) of the Palatini
f(R) gravity in the case where A" = 0. Furthermore, in vacuum where the
energy-momentum tensor 7}, vanishes, the field equations of the Palatini f(R)
gravity reduce to the Einstein Field equations with an effective cosmological
constant[41],[111].

In conclusion, metric-affine f(R) gravity appears to be the most general
case of f(R) gravity. It includes enriched phenomenology, such as matter-
induced non-metricity and torsion. It is worth stressing that torsion comes
quite naturally, since it is actually introduced by particles with spin (exclud-
ing gauge fields). The theory reduces to GR in vacuum or for conformally
invariant types of matter, such as the electromagnetic field, and departs from
GR in the same way that Palatini f(R) gravity does for most matter fields
that are usually studied as sources of gravity. However, at the same time, it
exhibits new phenomenology in less studied cases, such as in the presence of
Dirac fields, which include torsion and non-metricity. Finally let us stretch
that the Palatini f(R) gravity is really a metric theory in contrast with the
metric-affine f(R) gravity which is not a metric theory. Therefore T" is
not divergent free with respect to the covariant derivative defined with the
Levi-Civita connection, in the metric-affine f(R) theory. Furthermore the
physical meaning of the above statement is subtle as in metric-affine gravity
TH* does not have the usual meaning of the energy-momentum tensor as in
GR, for instance, it does not reduce to the special relativistic tensor at an
appropriate limit and at the same time there is also another quantity, the
hyper-momentum, which describes matter characteristics[41],[111].
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6 Summary-Conclusions

In this paper we have presented a detailed review of Einstein’s theory of
General Relativity which is the most successful theory of Gravity. We have
reviewed the main principles that underlie this theory, the Einstein-Hilbert
action from which we can derive the Einstein Field equations that describe
the theory of General Relativity, and we have argued that GR is a classical
theory that respects the principle of covariance, exhibits universal coupling
to all matter fields, and satisfies the Einstein Field equations, a set of ten(10)
non-linear PDE’s. Hence if we deviate from the above axioms of GR then we
have what we call modified gravity. We also presented the various astrophys-
ical tests, such as the perihelion precession of mercury’s orbit, the deflection
of light by the sun, gravitational red-shift and others, that are used to test
and actually verify the validity of the theory.

In Chapter3 we have examined different formulations of GR, such as the

Palatini formalism, the Metric-Affine gravity, the Vierbein formalism, and
briefly discussed a few others. We have seen that in order to derive the
Einstein Field equations we make the assumptions of Riemannian geometry,
the vanishing of torsion, and we also assume that the connection is metric
compatible. Making a variation of the action with respect to the metric we
obtain the Einstein Field equations. In the Palatini formalism, however, we
don’t immediately assume that the connection is metric compatible. As the
matter of fact we assume that the connection and the metric are indepen-
dent, but the matter is still coupled to the metric, and that R is a function of
the connection and not the usual curvature scalar. Varying the action with
respect to the metric we get that the connection is indeed the Levi-Civita
connection, and varying the Einstein-Hilbert action with respect to the con-
nection we get the Einstein’s field equations. The Palatini procedure when
dealing with the Einstein-Hilbert action is that we derive the compatibility
os the connection with the metric rather than assume this.
One further procedure is to keep the metric and connection independent
and this time allow matter to couple not only to the metric but also to the
connection. We still assume exactly what we have assumed in the Palatini
formalism, however, in this case there is an additional condition: Matter can
couple to the connection. This is the Metric-Affine formalism. At the end
we can derive the vanishing of torsion and non-metricity from the Einstein-
Hilbert action and of course recover the Einstein field equations.
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In general what we have seen so far is that if we consider the Einstein-
Hilbert and use the metric formalism, or the Palatini and metric-affine for-
malisms, we get the same field equations, namely, Einstein’s field equations.
However, for alternative theories of gravity other than General Relativity,
different procedures and formalisms, given different field equations.

We have also presented in Chapter4 a possible modification of GR, namely,
Chern-Simons modified theory, that is second order in curvature and there-
fore plausible from a high energy perspective[33],[59]. We have shown that
the CS correction arises naturally in the Standard Model as a gravitational
(ABJ) anomaly-cancellation mechanism, and it further required in String
Theory to cancel the Green-Schwarz anomaly[33],[59]. We have also shown
that CS gravity has a preferred direction with respect to the gravity waves
that are produced during inflation, hence the chiral anomaly works together
with inflation to amplify the production of leptons, leading to a viable model
of leptogenesis[33],[59],[68],[69]. We have seen that the CS modified grav-
ity yields the same physics as does the Classical GR. For example, the
Schwarzchild solution holds without any modification because the CS cor-
rection vanish for this space-time and hence the modified theory passes the
three classical tests of GR: 1) Perihelion advance of Mercury 2) The bending
of light by the Sun 3) The slowing down of of clocks by gravity. Finally if the
CS corrections are truly present in nature then they would be quantum sup-
pressed and hence we need to examine in more detail the coupling strength
in front of the CS correction that would be quantum suppressed at least at
the electro-weak level, or even at Planck level[33].

In Chapterb we have presented the very-well known modifications of GR,
called f(R) theories of gravity as the gravitational part of the action is a
function of the Ricci curvature scalar. This could be a linear function, or
non-linear. There are several models examined in many papers, such as
[111], where the reader can have a detailed review and analysis. We have
presented some toy models, for example the B2 model admits early inflation,
other models may admit early inflation or late acceleration or even both,
but it depends on the model and the assumptions made. We have discussed
f(R) theories of gravity in the metric formalism, the Palatini Formalism and
the metric-affine formalism. The corresponding field equations depend on
whether the theory is linear or not, in R. For example if f(R)=R in the
Palatini formalism then this reduces identically to GR. It turns out that the
metric-affine f(R) gravity is the most general case of f(R) theories. Matter
induces torsion and non-metricity and hence an enriched phenomenology. In
vacuum it reduces to GR, and deviates from GR the same way the Palatini
f(R) gravity does for most matter fields that are considered to be sources of
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gravity. We have to emphasize the fact that the Palatini f(R) gravity is a
metric theory, whether the metric-affine f(R) gravity is not.
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