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Abstract

Entanglement is an amazing feature of quantum mechanics which is a non-

trivial non-local correlation between states. It is studied and exploited

greatly in the field of quantum information. Traditionally, most quantum

systems of interest in quantum information is described by discrete variable

states, e.g. spin of particles. Thus, entanglement is studied to a consid-

erable extent in such state. Nevertheless, in practice, there are a number

of quantum systems that must be described by continuous variable states

such as electromagnetic fields in quantum optics. Thus, it is also important

to understand entanglement in the context of continuous variable states.

In particular, to be able to study entanglement properly, it is very neces-

sary to find a method to identify whether a state is entangled or separable

and to quantify how much entangled a state is. This report is a review of

several criteria and measures used to deal with entanglement in both Gaus-

sian and non-Gaussian continuous variable states, including some prelimary

backgrounds.
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1 Introduction

1.1 General Overview and Outline

Quantum mechanics is accepted to be one of the two pillars supporting mod-

ern physics together with General Relativity. Not only do they change and

extend our description of the world, but quantum mechanics is also a crucial

underlying principle in many of our modern technologies, e.g. the integrated

circuit (IC) and LASER. In addition, in the field of quantum information

sciences, information processing and communication technology is enhanced

greatly by employing many counter-intuitive properties of quantum systems

such as superposition of states, uncertainty values of observables, non-local

non-trivial correlation (entanglement), etc. These astounding properties

enable a number of new possible breakthrough technologies.

Among all of the amazing quantum features, entanglement may be the one

of the most interested. It was first studied and named by Erwin Schrödinger

in 1935. An entangled system is composed of two or more subsystems whose

overall state vector cannot be decomposed completely into a product of in-

dividual state vector of the subsystems. Thus, only the properties of the

overall system can be completely determined by the overall state vector. In

contrast, a subsystem cannot be described completely because of the lack

of a state vector corresponding to it, i.e. there is no well-defined state asso-
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ciated to the subsystem. This is the reason for the name entangled states

- subsystems are not independent from but correlate to one another in a

manner that preserve the behaviour of the overall system. Every manipula-

tion of a subsystem will not only affect the manipulated subsystem, but also

affect all the rest of the subsystems inevitably. For a bipartite entangled

state, an outcome of a measurement on system 1 seems to be able to influ-

ence another outcome of the same measurement on system 2 simultaneously

- even these two systems are space-like separated. This surprising property

was investigated in the seminal paper of Einstein, Podolsky, and Rosen, the

EPR paper [1], in 1935, in their attempt to point out the incompleteness of

a quantum description of reality. This turned out to be the underlying idea

leading to the famous Bell’s inequality [2] invented to enable experimental

discrimination between the classical correlation and quantum correlation.

It was, finally, Alain Aspect who conducted an experiment in 1982 [3], fol-

lowing an adapted idea of Bell and verified the correctness of the quantum

correlation.

Entanglement is not only interesting in the context of fundamental pure

science, but also in its application. Entanglement is exploited greatly as

a main resource in quantum information sciences to enhance the efficiency

of information processing and enable some classical impossibility. For ex-

ample, according to the E91 communication protocol proposed by Artur

Ekert in 1991 [4], it is possible to develop a much more secure protocol than

any of the classical possible methods. This is achieved by using the unique

property of non-local correlation of entangled states to precisely check the

presence of any eavesdropper. Another example is quantum teleportation

which, again, employs the non-local correlation to enable the transfer of an

unknown quantum state without sending the state through any medium.
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Also, entangled states shared by two parties before hand enables the two

parties to communicate two bits of information by transmitting only one

bit by using the superdense coding protocol. Furthermore, there are a num-

ber of works which consider that entanglement is a crucial phenomenon

in biological and chemical systems, e.g. the stability of DNA double helix

[5]. Thus, it is a crucial task in quantum information to find a method to

determine whether a state is entangled or not.

It is the main purpose of this dissertation to give a detailed survey of var-

ious methods used for determining whether a given bipartite system (two-

particle or two-mode system) is entangled or separable, with the emphasis

on the criteria for continuous variable systems. It starts later in this chapter

with the introduction about some general basic definitions and mathematics.

In chapter 2, a more detailed description about a discrete variable system,

qubit, is introduced and several measures and criteria of entanglement used

for qubit states will be explored with the emphasis on the Peres-Horodecki

method. This is to provide more basic backgrounds before considering con-

tinuous variable systems. In chapter 3, a description of continuous variable

(CV) systems are provided in the first part. Then, Wigner function is in-

troduced as a proper mathematical tool for studying such states in phase

space picture. This leads to a non-trivial simple type of states called Gaus-

sian states, the states of minimum uncertainty that precisely characterize

many systems in practice, such as LASER (coherent states) and thermal

states. In chapter 4, a generalization of Peres-Horodecki criterion for vari-

ance (second statistical moment) are shown to be a necessary condition for

the separability of general continuous variable states and also become a

sufficient condition for Gaussian states. Moreover, several measures of en-

tanglement for continuous states are described. In chapter 5, other criteria
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proposed by Hillery, Zubairy, and Nha [6, 7] are discussed and shown to be

sufficient conditions for entangled states. Several entangled states that are

not recognised by the Peres-Horodecki method discussed in chapter 4, the

non-Gaussian states, are shown to be recognized by this method. Finally, a

conclusion and possible future work will be discussed briefly in chapter 6.

1.2 Basic Definitions and Mathematics

1.2.1 State Vector and Hilbert Space

The mathematical description of the simplest quantum system, i.e. a single

particle (or single mode for continuous variable system), starts from the

definition of a state vector, denoted in Dirac ket notation as |ψ〉, which

is a unit-normed vector. This vector lives in a Hilbert space, which is by

definition a complete complex inner product space [8, 9]. It can be expanded

as a linear combination of basic vectors as follows,

|ψ〉 =
n∑
i=1

ϕi |ai〉

, where |ai〉 represents one of the basic vectors in one of the basis of H and

ϕi is the complex coefficient associating to each basic vector. It is assumed

in this case and from now on until the section of continuous variable systems

that H is completely spanned by finite n basic vectors.

Two different state vectors can be written as different linear combinations

under the same basis but with different coefficients. These coefficients rep-

resent the proportion of each basic vector in the state vector, which can be

found mathematically by performing an inner product,

ϕi = 〈ai|ψ〉 .
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1.2.2 Density Matrix and Mixed State

Any quantum state which can be represented completely by only a state

vector (in terms of any linear combination of a basis as above) is called a

pure state. However, the information about which exact state a quantum

system is in, is not typically available. In many cases, according to limited

knowledge, it is only possible to identify a set of possible states a system can

be in with corresponding probabilities. This is the concept of the statistical

ensemble of the states. In contrast to a linear combination of states, which

results in a single state and can be represented by a state vector, an ensemble

is a mixture of states which cannot be described completely by one state

vector. Thus, another method, called the density matrix, has to be employed

instead.

A density matrix ρ represents an ensemble of states (which also includes

a pure state, normally expressed by a state vector as described above) con-

sisting of a set of states ψj , each with probability pj , and defined in terms

of Dirac notation as,

ρ =
m∑
j=1

pj |ψj〉 〈ψj | =
m∑
j=1

pjρj

, where ρj is a short-hand notation of |ψj〉 〈ψj |. It is assumed here that ρ is

an ensemble of m states.

A valid density operator must have the following properties [9]:

• tr (ρ) = 1: This follows directly from the definition of a density matrix

and the fact that
m∑
j=1

pj = 1.

• All eigenvalues of ρ are not negative numbers: This also follows from

the fact that every probability pj cannot be negative.

10



• tr
(
ρ2
)
≤ 1: This follows from the fact that 0 ≤ pj ≤ 1. It can be

exploited to determine whether a state is pure (tr
(
ρ2
)

= 1) or mixed

(tr
(
ρ2
)
< 1).

The second property is very important since it provides a condition for

checking whether a bipartite state is separable. The definition of a separable

state and a bipartite state will be discussed later in this chapter while the

discussion about the separable condition based on the second property will

be presented in chapter 2 and 4.

1.2.3 Measurement

It is an assumption of quantum mechanics that a state contains all of the

information about its corresponding system. However, a state is an abstract

which cannot provide any physical realization by itself. In order to extract

physical information, measurements have to be performed on the state.

Measurements corresponding to measurable quantities can be represented

mathematically as linear Hermitian operators which map states in a Hilbert

space to other states in the same Hilbert space. Eigenstates of a Hermitian

operator must be orthogonal to one another and form a complete set over

the space that the operator is defined. This means that the eigenstates

of a measurement operator forms an orthogonal basis of the corresponding

Hilbert space.

Let M be a representation of a measurement corresponding to a mea-

surable quantity. A state |ψ〉 being measured by M is expressed as M |ψ〉

(Similarly, for a mixed state ρ, it can be written as
m∑
j=1

pjM |ψj〉〈ψj |M † =

MρM † = MρM .). In a special circumstance where the state being mea-

sured is an eigenstate of the measurement operator, the state after being
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measured will not change, i.e.

M |m〉 = m |m〉

, where |m〉 is an eigenstate, with eigenvalue m. In other cases where the

original state |ψ〉 is not an eigenstate, |ψ〉 can always be expressed as a

linear combination of the basis formed by the eigenstates as follows,

|ψ〉 =
∑
i

ϕi |mi〉 .

After being measured, |ψ〉 will be forced to change into one of the eigenstates

|mi〉 in the sum above. One of the weirdness of quantum mechanics is that

it is impossible to determine accurately which eigenstate the original state

will collapse into before the measurement is performed, even in principle.

It is only possible to determine the corresponding probability that the state

will collapse into each eigenstate |mi〉, which is equal to |ϕi|2. Let |mf 〉 be

the final state after measurement. The eigenvalue associated to this final

state, mf , can be interpreted as the outcome of the measurement and is

called the observable.

1.2.4 Expectation Value and Variance

Due to the statistical behaviour of a quantum state, the average result of a

set of measurement is called the expectation value and is denoted as 〈M〉.

This can be calculated, again, by performing an inner product, generally

written as [9],

〈M〉 = 〈ψ |M |ψ〉 .

12



In terms of a density matrix ρ, this is equivalent to

〈M〉 = tr(ρM)

, where on the right-hand side, the trace of the expression in the bracket is

calculated.

After defining the statistical average of an outcome, it is natural to define

variance, σ2, of the outcome as follows,

σM
2 =

〈
M −

〈
M2

〉〉
=
〈
M2

〉
− 〈M〉2 .

The uncertainty principle is defined as the relationship between the variance

of two operators. It can be shown using the definition of variance and the

Cauchy-Schwarz inequality that, in general [8],

σA
2σB

2 ≥ (
1

2i
〈[A,B]〉)2

, where [A,B] is the commutator between operator A and B. This is a very

crucial relation which all of the physical states have to satisfy. The violation

of this relation is exploited as the underlying principle for several separable

criteria for continuous variable system described in chapter 4 and 5.

1.2.5 Creation and Annihilation Operators

Apart from the measuring operators, there exist some operators which are

not Hermitian, i.e. the adjoint of them are not equal to themselves. These

operators do not stand for any measureable quantities. However, such oper-

ators are also very important in quantum mechanics since they can manip-

ulate states as well. Two remarkable operators of this type are annihilation
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and creation operators, denoted as a, a† respectively. They are the adjoints

of each other and they are not equal.

Creation and annihilation operators arise from the analysis of a special

system called harmonic oscillator. This type of system is characterized by

a quadratic convex potential function. Because every analytic potential

function at low energy can be well approximated by a quadratic potential,

harmonic oscillator systems are extremely important. A remarkable char-

acteristic property of this system is that it has discrete energy levels which

are equally spaced [10]. Thus, to explore its properties, it is best to use

the energy eigenstates as the basis. Also it is convenient to assign a non-

negative integer to each energy eigenstate, starting from |0〉 for the ground

state, |1〉 for the next higher energy eigenstate, and so on.

The origin of the names, creation and annihilation operators, becomes

clearer by observing the actions of the operators on a state.

For a state |n〉 except the ground state ,

a |n〉 =
√
n |n− 1〉 ,

a† |n〉 =
√
n+ 1 |n+ 1〉

The coefficients on the right-hand side are added to fulfil the normalization

condition of the state.

For the ground state, it is defined that,

a |0〉 = 0.

Though creation and annihilation operator themselves are not Hermitian,

when combining together, it can become a Hermitian operator. For instance,
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for the number operator defined as N = a†a, its adjoint is N † =
(
a†a

)†
=

a†a = N . Thus, it is a Hermitian operator. This number operator acts on

|n〉 as follows,

N |n〉 = a†a |n〉

= a†
√
n |n− 1〉

= n |n〉 .

So the eigenvalue is the order of the corresponding energy level. This is the

reason for the name of this operator.

Commutation relation is an important property between operators in

quantum mechanics. For creation and annihilation operators, the commu-

tation relation is as follows,

[a, a†] = 1 [a†, a] = −1

1.2.6 Order of Operators

Because of the non-commutativity of operators in quantum mechanics, order

of operators is very crucial because different order can lead to different

results. For example, for creation and annihilation operators,

aa† |n〉 = a
√
n+ 1 |n+ 1〉

= (n+ 1) |n〉 6= a†a |n〉 .

This derivation can be shown in another way by employing the commutation

relation between a and a†.

Suppose that b is an arbitrary operator and the combination of interest
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is composed of one b and two b†. Normal order is defined as that all of the

daggered operators are put to the left end and the undaggered operators are

put to the right end. This is denoted as : bb†
2

:= b†
2
b. The symbol :: means

to arrange the expression in a normal order. Anti-normal order is defined

as the reverse order of the normal order, i.e. all undaggered ones are on the

left and all daggered ones are on the right. This is written as
...b†

2
b
... = bb†

2
.

The symbol
...
... signifies to arrange the expression in an anti-normal order.

Symmetric order is defined as an expression of operators which mix together

both normal and anti-normal order equally. This ordering is expressed as

S(bb†
2
) = 1

3(bb†
2

+ b†bb†b+ b†
2
b). [11]

1.2.7 Bipartite System

The mathematical treatment of quantum mechanics becomes exponentially

complicated when it is applied to multiple particles (or multiple modes).

This is because the state vector now lives in a more complicated space

resulting from the tensor product of the corresponding Hilbert space, i.e.

H = H1⊗H2⊗H3⊗ . . . where each Hi is the Hilbert space associated to

each single particle (or single mode). Due to this difficulty and complexity

of many-particle system, most studies of interest have been done on a two-

particle system, which is technically called a bipartite system.

The Hilbert space of bipartite states can be expressed as follows,

H = H1⊗H2.

A state associating to this new space can be written as a linear combination

of a new basis constructed by a tensor product of the linear combination of

16



bases of each space. For instance, if bases of H1 and H2 are

{|a1〉 , |a2〉 , . . .}, {|b1〉 , |b2〉 , . . .}

respectively, then the new basis will be

{|a1〉 ⊗ |b1〉 , |a1〉 ⊗ |b2〉 , |a2〉 ⊗ |b1〉 , |a2〉 ⊗ |b2〉 , . . .}.

According to this basis, there is a set of states called separable states which

can be expressed in a special form as follows,

|ψ〉 = |ψ1〉 ⊗ |ψ2〉

, i.e. they can be written in a form being equivalent to tensor products be-

tween two state vectors, one living in the first Hilbert space and another one

living in the second Hilbert space. For a bipartite system to be separable,

it must be possible to write the density matrix in the following form [9],

ρ =
m∑
j=1

pjρ1
j ⊗ ρ2j

, where pj is the probability of the states ρj1 and ρj2 to be found in this ensem-

ble. The states that cannot be expressed in this form are called entangled

states.

1.2.8 Reduced Density Matrix

A state corresponding to any multi-partite system encodes the overall in-

formation about that whole system. However, there are many situations in

which only information of some parts of the system, e.g. the spin of only
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one particle in a bipartite system, is required. This leads to the definition of

a reduced density matrix which is the proper representation of a subsystem.

A reduced density matrix is obtained by performing a partial trace over all

but the subsystem in consideration. For simplicity, the following example

will be shown for a bipartite state only.

The reduced density matrix ρA for subsystem A is [9]

ρA = trB(ρAB)

, where ρAB is the density matrix of the bipartite system consisting of

subsystems A and B whereas trB(ρAB) represents the partial trace over

subsystem B.

The partial trace operation can be described as follows. First, every

density matrix of bipartite system can be written as a linear combination

in the following form,

ρAB =
∑
i,j,k.l

ci,jc
∗
k.l (|ai〉 ⊗ |bj〉) (〈ak| ⊗ 〈bl|)

, where
∑
i,j
|ci,j |2 = 1,

∑
k,l
|c∗k.l|2 = 1, and |ai〉 and |bj〉 are elements of or-

thonormal bases of HA and HB respectively. [9].

Performing partial trace over system B as follows,

ρA = trB
(
ρAB

)
=

∑
i,j,k.l

ci,jc
∗
k.l (|ai〉 〈ak|)⊗ tr (|bj〉 〈bl|)

=
∑
i,j,k.l

ci,jc
∗
k.l (|ai〉〈 ak|)⊗ 〈bl| bj〉

=
∑
i,k.l

ci,lc
∗
k.l (|ai〉〈 ak|)

The reduced density matrix shows a subtle relationship between entangle-
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ment and a mixed state. A reduced density matrix of a bipartite pure state

will be a mixed state if and only if the former state is entangled. To ex-

amine this result, an example is shown in [9] using a Bell state (maximally

entangled state),

ρ =

( |00〉+ |11〉√
2

)(〈00|+ 〈11|√
2

)
= (|00〉〈 00|+ |00〉〈 11|+ |11〉〈 00|+ |11〉〈 11|)/2

Performing partial trace over the second system,

ρ1 = tr2 (ρ)

=
1

2
[|0〉〈 0|tr(|0〉〈 0|) + |0〉〈 0|tr(|1〉〈 1|) +

|1〉〈 1|tr(|0〉〈 0|) + |1〉〈 1|tr(|1〉〈 1|)]

=
1

2
(|0〉〈 0|+ |1〉〈 1|)

=
I

2
.

The reduced density operator corresponding to subsystem 1 is a half of the

identity matrix which is manifestly a maximally mixed state because it is

composed of the pure states |0〉 and |1〉 equally. This result can be used as

a method to check whether a pure state is entangled or not. It reflects the

fact that the maximum knowledge available for an entangled state is the

overall state of the system as suggested first by Schrödinger. The attempt

to define a state to a subsystem (by performing partial trace) results in a

mixed states that obviously represents the lack of definite information about

the subsystem as has been discussed once above in the mixed state section.
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1.2.9 Von Neumann Entropy

States and information or knowledge of systems has been discussed so far.

However, it would be inconvenient and improper to continue the discussions

if it is not clear how information is defined. To examine the concept of

information properly, information needs to be quantified. This leads to the

idea of entropy as the measure of information.

The concept of entropy was first discovered, quantified, and interpreted by

many studies in the context of thermodynamics and statistical mechanics.

Later, Claude Shannon, unintentionally, with a suggestion from John von

Neumann, named a quantity in his mathematical communication theory as

(information) entropy. These two quantities, from two unrelated fields, un-

der the same name, were later shown to be surprisingly related. This is the

beginning and the most important idea of the field of quantum information

theory. It suggests that the physical degree of disorder of a system (statis-

tical mechanics entropy) is directly related to its information (information

entropy), according to the famous quote of Rolf Landauer: Information is

Physical!

In fact, apart from these two entropies, there are several more entropies

that have been defined. The discussion about entropies in quantum informa-

tion can be long and interesting. However, only von Neumann entropy will

be discussed here. Von Neumann entropy is a generalization of the thermo-

dynamics entropy and classical information entropy to quantum mechanical

systems. It is defined mathematically as,

S = −tr(ρlog2ρ)

, where S is the von Neumann entropy and ρ is the density matrix corre-
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sponding to the state under consideration. In addition, it is defined that

if ρ = 0, then S = 0 log2 0 = 0. In practice, ρ needs to be diagonalised

first before taking logarithm, multiply, and taking trace. It can be shown

that von Neumann entropy is always non-negative. The maximum value of

the entropy can be obtained when all of the eigenvalues associated with the

density matrix are the same, i.e. if, after being diagonalised,

ρdiag =


1
n

. . .

1
n


, where the entries 1

n follows from the property that trρ = 1 if the density

matrix is an n× n matrix. The corresponding entropy is

ρ = −n
[

1

n
log2

(
1

n

)]
= log2 (n)

On the other hand, the minimum value of the entropy is zero which occurs if

and only if the state is pure. This leads to the most notable basic property

of von Neumann entropy, i.e. the entropy of an entangled pure state is zero

while the entropy of any of its subsystems is positive (because the reduced

density matrices corresponding to the subsystems represent mixed states as

discussed before.) [9]. In general, it is possible for the overall entropy of a

system to be less than the sum of the entropies associated with its individual

subsystems, in the present of entanglement. This is called subadditivity

property which occurs in any entangled pure multipartite state. Hence,

von Neumann entropy can be employed to be a measure of entanglement

for a pure bipartite state which would be discussed in more details in the

following chapter.
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2 Entanglement Criteria and

Measures for Qubit

In this chapter, qubit which is the most simple quantum system will be

discussed. Qubit is an example of a discrete variable (DV) system. The

understanding of the concepts presenting in this chapter will help to under-

stand similar concepts in continuous variable systems later.

2.1 Terminology

2.1.1 bit

A bit is an abstract entity encoding two possible states, denoted in general

as 0 and 1. In computer sciences, information is represented in bits. Thus,

bit can be stated as a fundamental unit of information.

2.1.2 Qubit

The word qubit is the combination of two words, quantum and bit. Hence,

qubit is a fundamental unit of information in quantum information and

quantum computation sciences. A qubit system can be implemented by

any quantum systems whose Hilbert space can be spanned by only two

orthogonal states, so it is the simplest discrete variable quantum system.
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An example of this kind of system is the spin state of a spin-1/2 particle.

Because of this simplicity, qubit systems have been studied to a considerable

extent and a number of applications based on them have been proposed

consistently. The most manifest difference between a classical bit and a

qubit is that the state of a qubit can also be a combination between 0 and 1

(written in terms of state vectors), for example, |ψ〉 = 1√
2
(|0〉+ |1〉), which

results from the property of linear combination of quantum states. The

factor
1√
2

is the normalization factor. This possibility is the source of the

advantage of a qubit over a classical bit.

2.2 Entanglement Criterion

2.2.1 Partial Trace Criterion for Pure State

Entanglement is an interesting and important phenomenon of a quantum

system as being discussed in the previous chapter. It is crucial then to find

methods to determine whether a pair of qubits is entangled or not. In the

previous chapter, a simple method of partial trace has been shown to be able

to identify entanglement of a pure state by observing the reduced density

matrix. The state is entangled if the reduced density matrix represents a

mixed state and is separable if the reduced density matrix remains a pure

state. However, the partial trace method is limited to only pure states. To

be able to cope with every qubit state, either pure or mixed one, another

method called Peres-Horodecki criterion has to be employed.

2.2.2 Peres-Horodecki Criterion

Peres-Horodecki criterion (sometimes called Positive Partial Transpose: PPT)

is a simple separable condition for a bipartite state. Unlike the partial trace
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method, this criterion can be used for both pure and mixed states as well.

It was first proposed as a necessary condition for every separable state by

Asher Peres in 1996 [12]. By being a necessary condition, it means that

every separable state must satisfy this condition, though some entangled

states satisfy it as well. Later, Horodecki studied the criterion in more

details and discovered that it was not only a necessary but also sufficient

condition for separable states of 2 × 2 and 2 × 3 dimensions. Thus for a

bipartite qubit state (2 × 2 dimensions), this criterion can be exploited to

confirm exactly whether a state is entangled or separable.

The description and the principle underlying the criterion can be ex-

plained as follows. First, for every physical state, the density matrix must

be positive-semidefinite, i.e. all of its eigenvalues must not be negative.

Next, consider a separable state,

ρ =
m∑
j=1

pjρ1j ⊗ ρ2j .

To be valid, all of the density matrices must be positive-semidefinite. Let T

be an operator performing transposition, i.e. T (A) = AT , for an arbitrary

square matrix A. Then to perform transposition on the first subsystem

(partial transpose) is equivalent to operate T ⊗ I on the whole system (I is

the identity operator). This gives,

ρT1 = (T ⊗ I) ρ =
m∑
j=1

pjT (ρ1j)⊗ I (ρ2j) =
m∑
j=1

pjρ1j
T ⊗ ρ2j .

Because transposition does not change the eigenvalues of a matrix, ρ1j
T

must still be positive-semidefinite. Thus, ρ1j
T is a valid density matrix

representing a physical state. It implies directly that ρT1 is also a valid den-
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sity matrix, representing a physical separable bipartite system and must be

positive-semidefinite. This is the Peres’ necessary condition: Every physical

separable bipartite density matrix, when being applied by a partial trans-

pose, must still be a physical density matrix, i.e. all of its eigenvalues must

still not be negative. It was shown by Horodecki, as mentioned above, that

this is also a sufficient condition for a qubit system which means any qubit

states that do not satisfy this criterion are entangled.

To demonstrate the power of this criterion, it is best to consider a Werner

state,

ρ = p
∣∣Ψ+〉 〈Ψ+

∣∣+ (1− p) I
4

where p is as before, a positive value represent probability, ranged from 0

to 1. This is a mixed state which is composed of one of the maximally

entangled states: a Bell’s states,

∣∣Ψ+〉 =
1√
2

(|0〉 |1〉+ |1〉 |0〉)

∣∣Ψ+〉〈Ψ+| =
1

2
[(|0〉〈 0| ⊗ |1〉〈 1|) + (|0〉〈 1| ⊗ |1〉〈 0||) +

(|1〉〈 0| ⊗ |0〉〈 1|) + (|1〉〈 1| ⊗ |0〉〈 0|)]

, and a maximally mixed state, the identity matrix I. This mixture is a

function of p. It will become a pure state when p = 0 or 1. The details

about entanglement measures and a proof to show that this particular state

|Ψ+〉 is one of the maximally entangled states will be postponed until the

next section. The task now is to find the critical proportion of the mixture

pcrit which plays the role of the phase transition point for the whole system

to transform from a separable state to an entangled state and vice versa.

This is again going to show a subtle relationship between mixed states and
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entanglement. To help to track the calculation easier, it is better to rewrite

the density in the matrix form as follows,

|0〉 −→

 1

0

 , 〈0| −→ (1 0)

|1〉 −→

 0

1

 , 〈1| −→ (0 1)

∣∣Ψ+〉〈Ψ+| −→ 1

2



0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0


.

Thus,

ρ = p
∣∣Ψ+〉〈Ψ+|+ (1− p) I

4

=
1

2
p



0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0


+

(1− p)

4



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=
1

4



1− p 0 0 0

0 p + 1 2p 0

0 2p p + 1 0

0 0 0 1− p


.

(2.1)

This density matrix has to be positive-semidefinite, i.e. all of its eigenvalues

must not be negative. Next, applying transpose to the first subsystem only
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(partial transpose). This will provide,

T (
∣∣Ψ+〉〈Ψ+|) =

1

2
[(|0〉〈 0| ⊗ |1〉〈 1|) + (|1〉〈 0| ⊗ |1〉 0)

+(|0〉〈 1| ⊗ |0〉〈 1|) + (|1〉〈 1| ⊗ |0〉〈 0|)]

Hence,

ρT1 =
1

2
p



0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0


+

(1− p)

4



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



=
1

4



1− p 0 0 2p

0 p + 1 0 0

0 0 p + 1 0

2p 0 0 1− p



By Peres-Horodecki criterion, ρ is separable if and only if both ρ and ρT1

are positive-semidefinite and it will be entangled if there exist, at least,

one negative eigenvalue. Hence, the transition point must be the lowest

positive value of p that makes one of the matrices to be singular, i.e. has

a zero eigenvalue. This means the determinant of that matrix will vanish.

Therefore, the transition point can be found by solving for the positive

smallest solutions of two algebraic equations: det(ρ) = 0 and det
(
ρT1
)

= 0.

For this particular case,

det (ρ) = 0(
1

4

)4

(1− p)
[
(p+ 1)2 (1− p)− (1− p) (2p) (2p)

]
= 0

(1− p)2
[
(p+ 1)2 − 4p2

]
= 0
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(1− p)3 (3p+ 1) = 0

det
(
ρT1
)

= 0(
1

4

)4 [
(1− p)2 (p+ 1) (p+ 1)− (2p)2(p+ 1)2

]
= 0

(1− p)2(p+ 1)2 − (2p)2(p+ 1)2 = 0

(p+ 1)3 (1− 3p) = 0

The lowest positive value of p which is the transition point of the state from

separable to entangled is 1/3, i.e. pcrit = 1/3. Any state whose p is higher

than pcrit will be entangled.

2.3 Entanglement Measures

After being able to identify entangled states, it is natural to quantify the

degree of entanglement. There exist several measures, but what would be

presented in this report are only the von Neumann entropy and negativ-

ity. The reasons for choosing these two measures are because von Neumann

entropy is simple and powerful as the unique measure for bipartite pure

states, whereas the negativity is closely related to the Peres-Horodecki cri-

terion and will be shown later in chapter 4 to be generalized as a measure

for continuous state.

2.3.1 Von Neumann Entanglement Measure for Pure State

Von Neumann entropy briefly discussed in the previous chapter is an entan-

glement measure for a bipartite pure state. According to this measure, the

degree of entanglement of a subsystem with another subsystem is simply di-
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rect proportional to its entropy computed from the corresponding reduced

density matrix. It can be proved that the entropies of both subsystems are

the same, so the amounts of entanglement associated with them are the

same.

Because of this direct relation between entropy and entanglement, it can

be shown now that the Bell state |Ψ+〉 = 1√
2

(|0〉 |1〉+ |1〉 |0〉) introduced

before is one of the maximally entangled states.

ρ =
∣∣Ψ+〉〈Ψ+| = 1

2
[(|0〉〈 0| ⊗ |1〉〈 1|) + (|0〉〈 1| ⊗ |1〉〈 0|)

+(|1〉〈 0| ⊗ |0〉〈 1|) + (|1〉〈 1| ⊗ |0〉〈 0|)]

Finding the reduced density matrix of subsystem 1,

ρ1 = tr2(ρ)

=
1

2
(|0〉〈 0|+ |1〉〈 1|)

This is a diagonal matrix. Hence the diagonal entries are eigenvalues. Be-

cause both eigenvalues are equal, this density matrix possesses maximum

entropy. By the definition of the measure, it is proved that the Bell state

is the maximally entangled state as being claimed. Finding von Neumann

entropy of the subsystem 1,

S1 = −tr(ρ1 log2 ρ
1)

= −1

2
log2(

1

2
)− 1

2
log2(

1

2
)

= log2 2

= 1
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This is the magnitude of the entanglement of system 1 which, in this par-

ticular case, is the maximum value. The von Neumann entropy is zero for a

separable state and increase to the maximum value of one for a maximally

entangled state such as the Bell states. It can be proved that the magnitude

of entanglement of system 2 always has the same value as that of system 1

for pure state.

Von Neumann entropy has been proved to be the only measure of entan-

glement for a bipartite pure state and it is an available measure for a general

pure state. However, for a mixed state, the situation is more complicated.

Thus, another measure is required.

2.3.2 Negativity

Not only be used for detecting entanglement of a qubit system, but the

Peres-Horodecki criterion can also be extended to be a measure called neg-

ativity. To be rigorous, negativity is not exactly an entanglement measure,

but entanglement monotone. It quantifies the amount of entanglement that

is useful for various task in quantum information processing, e.g. tele-

portation. However, for qubit and Gaussian state, introduced in the next

chapter, negativity can be thought of as a measure. This simple idea of

negativity for qubit was proposed in [13]. The idea is based on the re-

sult after applying partial transpose to the system being examined. The

Peres-Horodecki criterion states that all of the eigenvalues of the partial-

transposed density matrix must not be negative for every separable state.

For qubit systems, this was shown to be equivalent to the statement that

there must be, at least, one negative eigenvalue for every entangled density

matrix being partial transposed [14]. The idea of negativity is that the de-

gree of entanglement reflects in the summation of the negative eigenvalues
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of the partial-transposed density matrix of the state. The description of

the measure may be made clearer by expressing in terms of mathematics as

follows [13],

ε(ρ) = 2
∑

i
(−λi−)

, where ε(ρ) is the negativity and λi
− is the ith negative eigenvalue of ρ.

Because, trρ = 1, it is manifest that 0 ≤ ε(ρ) ≤ 1.

To demonstrate the use of this measure, the Bell state |Ψ+〉 is employed

again. Performing partial transpose on subsystem 1,

ρT1 =
1

2



0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0



, where ρT1 is the density matrix after being performed partial transpose on

subsystem 1. This matrix has eigenvalues −1
2 ,

1
2 ,

1
2 ,

1
2 . Thus, the summation

of negative eigenvalue is just −1
2 and the negativity ε(ρ) is

ε(ρ) = 2
∑

i
(−λi−)

= 2× 1

2

= 1.

It is noteworthy that both quantifications provide the same interpretation

that the Bell state is the maximally entangled state.

Though negativity is first derived from the special case of Peres-Horodecki

criterion, i.e. when the criterion is applied to qubit states and become both

necessary and sufficient separability conditions, negativity was proved to
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still be available for systems of higher dimension by [15]. In chapter 4, this

measure is generalized to Gaussian continuous variable systems.

32



3 Continuous Variable System

This chapter is about the introduction to continuous variable (CV) system.

Some basic terminologies and related mathematics will be presented. Phase

space distribution and Gaussian/Non-Gaussian state will be discussed at

the end. Entanglement of CV systems will be described in chapter 4 and 5.

3.1 Motivation

In his 1964 seminal paper, On the Einstein Podolsky Rosen paradox [1].

Bell examined correlation of spins between subsystems in a bipartite state

and proposed his famous Bell’s inequality to distinguish classical and quan-

tum correlations of states. His work did not only initiate the verifiable

study of the foundation of quantum mechanics, but also influence the use of

qubits and other discrete variable (DV) systems as crucial tools in the field

of quantum information. However, in the original EPR paper, Einstein,

Podolsky, and Rosen did not proposed their thought experiment based on

spins which are discrete variables. They investigated correlation of positions

and momentums which are continuous variables.

A reason that made Bell adapt the EPR experiment might be that DV

systems is simpler to handle mathematically. In addition, solely by DV, a

number of novel fundamental understanding and applications are available,

at least, in principle. However, DV systems are limited. The complete
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description of many quantum systems, e.g. quantized electromagnetic field

coupled to dissipative environment [11] and vibrational degree of freedom of

trapped ions [16] are properly realized by continuous variable (CV) systems.

Also, it is usually more difficult to experimentally deal with a DV system

efficiently. This can be obviously impressed by comparing an experiment

performing on a pair of photons to that performing on a pair of laser beams.

The former experiment requires special equipments designed to be able to

detect signals at very low intensity while the latter one does not. Hence, it

is interesting and crucial, both practically and fundamentally, to extend the

study about entanglement and other counter-intuitive quantum properties

to continuous cases.

3.2 Basic Definitions and Mathematics

3.2.1 Linear Combination of Continuous Basis

Basic mathematical treatments for continuous variables are similar to those

for discrete cases. A simple general rule is to change a linear combination

from summation with respect to discrete basis to integration with respect

to continuous basis instead. For instances, a state |ψ〉 can be expressed as

a linear combination in position basis as,

|ψ〉 =

∫
dxϕ (x) |x〉

, where |ϕ(x)|2 can be interpreted to be the probability of finding the system

between the interval x and x + dx which is called probability density. To

be able to determine only a small interval, not an exact value, is a nature

of continuous systems which distinguish them from discrete states. Given a
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state |ψ〉, the probability density, corresponding to the interval x′ to x′+dx,

can be found by performing inner product as follows,

|φ(x′)|2 = | < x′|ψ > |2.

By following this general rule, the mathematics concerning expectation

value, and variance are also similar to the discrete case [10]. Other defi-

nitions which are not related to the expansion into continuous basis do not

change. This is not only restricted to the position basis. It is the same for

any other continuous variables, e.g. momentum, as well.

To be rigorous, it must be emphasized that the position eigenstate, |x〉,

and any other eigenstates which form continuous bases are not in Hilbert

space. This follows from the fact that inner products of these states give

Dirac delta functions which make these states cannot be normalized. There-

fore, these states alone do not represent any physical entities, though they

can be used as bases to span physical states.

3.2.2 Position, Momentum, Creation, and Annihilation

Operators

Creation and annihilation operators have been discussed briefly in chapter

1. These operators are corresponding to a harmonic oscillator system which

is really important in the analysis of any analytic potential and oscillation.

In terms of position operator (x̂) and momentum operator (p̂), they can be

expressed as follows [17, 10],

a =
1√
2h̄ω

(ωx̂+ ip̂)
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a† =
1√
2h̄ω

(ωx̂− ip̂)

, where ω is the angular frequency corresponding to the oscillator.

The two equations above can be rearranged to be,

x̂ =

√
h̄

2ω
(a+ a†)

p̂ = −i

√
h̄ω

2
(a− a†).

The commutation relation between x̂ and p̂ follows directly from the com-

mutation relation between a and a†.

[x̂, p̂] = ih̄.

3.2.3 Quadratures

Two new operators can be defined from the definition of the annihilation

operator [17],

X̂ = Re(a) =

√
ω

h̄
x̂

P̂ = Im(a) =

√
1

h̄ω
p̂.

By substituting x̂ and ŷ into the definitions of the new operators, they will

become,

X̂ =
1√
2

(a+ a†) P̂ =
1√
2i

(a− a†).
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The commutation relation between these operators is,

[X̂, P̂ ] = i.

The definition of quadratures in general is two objects which are 90 degree

different in angle. In this context, the two operators, X̂ and Ŷ are 90 degree

apart from each other on a complex plain, so they can be called quadrature

operators. In addition, because they are only different from the position

and momentum operators by constant factors, they will be referred to as x̂

and p̂ from now on. In quantum optics, it is these quadrature observables

that are continuous.

3.2.4 Mode

Optical systems are important because most experiments in quantum infor-

mation are conducted by means of optics. Because of that, optical systems

have to be quantized. One of the most basic ideas of quantum optics is the

quantization of electromagnetic wave.

An electromagnetic wave is a system of oscillating electromagnetic fields.

Thus, due to the fact that every well-behaved oscillation can be expressed

as a sum of sinusoidal waves (Fourier analysis), which are the characteristic

motion of harmonic oscillator systems, it is sensible to represent the wave by

a set of harmonic oscillators. Harmonic oscillator systems are categorised

by their characteristic frequencies. Each distinct frequency is called mode.

Hence, an electromagnetic wave can be decomposed into modes of oscillation

[11].

Associate to each mode are a creation and an annihilation operators.

Distinct modes have distinct operators which commute between distinct
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modes. Let subscript k denote the mode with wave number k. A quantized

single mode electromagnetic field can be expressed in terms of creation and

annihilation operators as follows [17],

Êk(r, t) = E0(ake
i(k·r−ωkt+φ) + ak

†e−i(k·r−ωkt+φ))

, where E0 and φ is a real constant. Rewritten the expression,

Êk(r, t) = E0[(ake
iφ+ak

†e−iφ) cos(k · r−ωkt)+i(akeiφ−ak†e−iφ) sin(k · r−ωkt)]

The coefficients of the sine and cosine terms are π
2 radian apart. This can

be shown explicitly by rotating the coefficient of the cosine term by π
2

(ake
i(φ+π

2
) + ak

†e−i(φ+
π
2
)) = i(ake

iφ − ak†e−iφ)

Therefore, these are generalised quadrature operators which are continuous

functions of phase angle, denoted as x̂φk and p̂φk . They will return to be in

the same form as the definition of quadrature operators defined before when

φ = 0. Finally, the field is written in terms of these generalized quadrature

operators as,

Êk(r, t) =
√

2E0[x̂
φ cos(k · r− ωkt)− p̂φ sin(k · r− ωkt)].

The quadrature observables can be measured by a technique called homo-

dyne detection. It can be seen that these variables are continuous because

of the continuum of the phase angle φ.
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3.3 Phase Space and Wigner Distribution

3.3.1 Phase Space Representation

Phase space is an abstract space used for representing states of a system

in terms order pairs of positions and momenta. Classically, a state can be

represented as a point in a phase space because both position and momen-

tum of the state is allowed to have a precise value. However, this is not

permitted in quantum mechanics because of the uncertainty principle. A

pure quantum state must be represented by a smear that is characterized

by its uncertainty instead of a point.

Because of the similarity between quadrature operators and position and

momentum operators, it is convenient to employ phase space representation

for studying the behaviours of continuous variable systems. This can be

done by changing from the representation in terms of position and momen-

tum order pairs to the representation in terms of order pairs of quadrature

operators.

3.3.2 Wigner Distribution: A Quantum Phase Space

Distribution

In classical mechanics, statistical values of an ensemble of states, e.g. the

mean and variance of an observable, can be studied by its corresponding

probability distribution in phase space. This is similar for an ensemble of

quantum states. In quantum mechanics, an ensemble is equivalent to a

mixed state which is described by a density matrix. Nevertheless, unlike a

classical ensemble that has unique probability distribution, there are many

possible phase space distributions corresponding to a density matrix [17].

This is a consequence of the non-commutative property of quantum oper-
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ators, in particular creation and annihilation operators. Each distribution

is suitable for a specific type of operators, though it is possible to use any

distribution with any operator. Among all, three distributions are mostly

exploited: Glauber-Sudarshan P-function, Wigner function, and Husimi Q-

function. P-function and Q-function are appropriate distributions for op-

erators that are expressed in terms of normal and anti-normal order of a

and a† respectively whereas Wigner distribution is proper for the symmet-

ric ordered ones. Therefore, Wigner function is an appropriate distribution

for the quadrature operators for they are symmetric-ordered [11, 17]. Since

quadrature observables are the main continuous variables of interest in this

dissertation, the details about Wigner function is discussed in more details

in the following.

A general form of a Wigner representation of a single system density

matrix is [18, 19],

W (x, p) =
1

π

∫
dy(e2iyp 〈x− y| ρ |x+ y〉)

, where x, y and p are quadratures. The limit of the integral is all over the

space. Several properties of a Wigner function are as follows [20, 17, 11],

∫ ∫
W (x, p)dxdy = 1∫
W (x, p)dx = 〈p| ρ |p〉∫
W (x, p)dp = 〈x| ρ |x〉 .

The first equation above is the normalization condition. The second and

the third equations show how one-dimensional distributions can be obtained

from two-dimensional ones. These one-dimensional distributions are called
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marginal distributions. The nth statistical moment of an operator M̂ can

be calculated by

〈Mn〉 = tr(ρM̂n) =

∫ ∫
W (x, p)Mn(x, p)dxdp

, where M(x, p) is a unique function corresponding to the operator M̂ ,

defined on phase space. Suppose that S(x̂m, p̂n) is a symmetric ordered

operator. An example for m = 2 and n = 2 is S(x̂2, p̂2) = x3p2 + pxp+ p2x

[11, 17]. There is a linear convention between a quantum operator and a

classical one defined on phase space called Weyl correspondence [19] which

can be computed by Wigner function as follows [17],

〈
S(x̂m, p̂n)

〉
= tr(ρS(x̂m, p̂n)) =

∫ ∫
W (x, p)xmpndxdp.

Though it is a kind of distribution, Wigner function is not a proper prob-

ability distribution but a quasi-probability one. This is because it fails to

satisfy the positive semidefinition which is a necessary property of a proper

probability distribution. Nevertheless, due to its other elegant properties

that fit well with the requirements of a quantum representation of phase

space probability distribution for symmetric ordered operators, it is still

exploited as a very efficient tool for providing phase space description of

quantum ensembles [20, 17, 11]. As would be presented in the next chapter,

this distribution plays an important role in the extension of Peres-Horodecki

separable criterion from DV to CV systems.
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3.4 Gaussian States

A Gaussian state is the most simple but non-trivial class of continuous

variable systems [16]. It is characterized as a state whose Wigner function

is a Gaussian function. Hence, only information about mean and variance

are sufficient to describe a state. It is important and interesting not only

because of its simple mathematics, but also because of its broad applications,

for examples, many optical systems including LASER and thermal radiation

can be well realized as Gaussian states. There are three important subclasses

of Gaussian states: thermal state, coherent state, and squeezed state.

3.4.1 Thermal state

A thermal state arises in the situation when the system of interest is in

thermodynamic equilibrium. This means that the only available information

about the system is the average energy defined in terms of its temperature

[11]. Thus it is a maximally mixed state constrained by energy, i.e. a

quantum canonical ensemble, which cannot be represented by a single state

vector. A thermal state is a good approximation of vacuum at non-zero

temperature. In general, a density matrix of a thermal state at temperature

T is in the form [11],

ρ =
exp(−βĤ)

tr
[
exp(−βĤ)

]
. , where Ĥ is a Hamiltonian operator, β =

1

kBT
is the thermodynamic

beta, and kB is the Boltzmann constant. For a single mode, this can be

further manipulated to be,

ρ =
exp(−βh̄ωn̂)

tr [exp(−βh̄ωn̂)]
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, where ω is the frequency of the mode and n̂ is the number operator.

Using this density matrix, the Wigner distribution for a single mode ther-

mal state is [21],

Wth(x, p) =
1− e−ωβ

π(1 + e−ωβ)
exp

[
−(1− e−ωβ)

1 + e−ωβ
(x2 + p2)

]
.

Obviously, this is a Gaussian function.

3.4.2 Coherent State

This is the most important state that represents LASER operating far above

threshold and is also the basis for many other concepts in the field of quan-

tum optics [11]. It was first applied to explain electromagnetic fields by Roy

J. Glauber, a 2005 Nobel laureate in physics, in his 1963 work.

A Glauber displacement operator is defined as

D̂(α) = e(αâ
†−α∗â)

A coherent state |α〉 is created from a vacuum state |0〉 by Glauber displace-

ment operator as follows,

|α〉 = D̂(α) |0〉 .

It is the eigenstate of the annihilation operator, i.e.

a |α〉 = α |α〉 .

, where |α〉 denote the coherent state [11]. Because a =

(
x̂+ ip̂√

2

)
, where x̂

and p̂ are quadrature operators, it is sensible to infer that α =
x+ ip√

2
.

The density matrix of a single mode coherent state is simple |α〉 〈α|. It

43



can be proved that the Wigner function for a single mode coherent state is

in the form,

Wco(x, p) =
4

π
e−

1
2
|(x2+p2)|.

, which is manifestly a Gaussian function.

3.4.3 Squeezed State

Squeezed states arise purely from properties of quantum mechanics and play

a very important role as a basis for many non-linear optical phenomena. The

characteristic of this state is that the variance of one of the quadrature x̂

(or p̂) is less than 1
2 which is the lowest bound in the cases of both vacuum

and coherent states [11]. This brings about together with a compensation

in the rise of the variance of the other operator p̂ (or x̂) such that the

uncertainty principle is not violated (i.e. σ2x̂σ
2
p̂ ≥

1
4). According to the

fact that the uncertainty of a system is equivalent to the area it possesses

on phase space, the representation of a squeezed state forms an ellipse on

phase space, in contrast to a vacuum and a coherent states which form

circles. Hence, by performing a squeezing operator on a coherent state, the

circle will be squeezed and become an ellipse of identical area.

The squeezed operator is [11]

Ŝ†(ζ) = e−
ζ
2
â†2+ ζ∗

2
â2

= exp

[
−1

2
â†2 exp (iϕ) tanh r

]
exp

[
−1

2

(
â†â+ ââ†

)
ln (cosh r)

]
exp

[
1

2
â2 exp (−iϕ) tanh r

]

, where ζ = reiϕ and ϕ and r are real numbers characterizing the operator.

This is essentially Glauber displacement operator with â2 instead of â.

44



The single mode squeezed vacuum state |ζ〉 is created from the vacuum

state |0〉 by this squeezing operator as follows,

|ζ〉 = Ŝ(ζ) |0〉 .

It can be proved that the Wigner function for a single mode vacuum squeezed

state, with ϕ = 0, is in the form [11],

Wsq(x, p) =
2

π
exp

{
−2
[
exp (−2r) p2 + exp (2r)x2

]}
.

, which is, again, a Gaussian function.

3.5 Non-Gaussian States

An example of states in this class is the number of particle state, i.e. Fock

state. The characteristic of a non-Gaussian state is that its Wigner function

is not Gaussian. Hence, only the first and the second statistical moments

are not enough to describe it and the mathematics concerning this state is

more difficult than a Gaussian one. Also, it is harder to deal with in the

experimental aspects because it requires other techniques than the Gaus-

sian operations which are more complicating or sensitive to conditions, such

as photon counting. It is an advantage of CV system for enable easier im-

plementation on real experiments compared to DV system. However, it

is possible that the complication of non-Gaussian state might devalue this

preference at some points. Anyway, there are ideas of using non-Gaussian

states to enhance the efficiency of quantum technology. For example, in [22],

it was shown that the possibility of long distance quantum communications

based on continuous variable systems is confirmed by allowing non-Gaussian
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operations in the protocols. Furthermore, it was recently discovered by [23]

that non-Gaussian states can improve an efficiency and robustness of a

quantum teleportation protocol significantly compared to Gaussian states.

Hence, non-Gaussian systems are also interesting and important, though

there are several drawbacks due to its complication. Currently, the knowl-

edge about this kind of state is increasing because a great number of quan-

tum researchers are putting their efforts into this field of research. Fruitful

results are expected to be achieved in the near future.
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4 Gaussian Entanglement

4.1 Overview

In the previous chapter, a brief introduction to continuous states and some

of its mathematical treatments are presented. It has been shown how to rep-

resent a quantum ensemble in a phase space picture by a quasi-probability

distribution called Wigner function. By that, states can be categorized by

the forms of their corresponding Wigner functions as Gaussian and non-

Gaussian states. The prestige status of Gaussian states is briefly described

together with several important subclasses of the states.

In this chapter, a separability criterion proposed by R. Simon [18], which

is basically a generalization of the Peres-Horodecki criterion to CV systems,

and two entanglement measures: von Neumann entropy and negativity for

CV systems [24] are explored. In addition, it will be shown that the sim-

plicity of a Gaussian state provides an impressive result, i.e. it enhances the

separable condition, from just a necessary one for a general CV state, to be

also a sufficient condition in the case of a Gaussian state. Hence, it becomes

also an entanglement criterion that can be employed to test exactly whether

a Gaussian state is entangled or not.

Before the criterion and measures are presented, it is important to define

what an entanglement is in CV systems, so that the following discussion
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will be placed on a firm ground of understanding. Just like DV systems, a

bipartite CV separable state is the state that can be expressed in terms of

a summation of tensor products between two subsystems density matrices,

i.e. it can be written as

ρ =
∑
j

pjρ1
j ⊗ ρ2j .

An entangled state is the state that cannot be expressed in this form. The

result of an entanglement is that the properties and behaviours of the sub-

systems correlate to each other in a non-trivial fashion. The only difference

between DV and CV systems is that, while DV is described by a discrete

basis, CV is described by a continuous basis instead such as the quadratures.

4.2 Peres-Horodecki Criterion for CV system

4.2.1 Partial Transpose as Reflection of Momentum

A two-mode CV system ρ can be expressed in terms of a Wigner function

as [18],

W (x1, p1, x2, p2) =

(
1

π

)2 ∫ ∫
dy1dy2(e

2i(y1p1+y2p2))×∑
j

pj 〈x1 − y1| ρ1j |x1 + y1〉 ⊗ 〈x2 − y2| ρ2j |x2 + y2〉

, where x1, x2, p1 and p2 are the quadrature variables defined in chapter 3.

Performing transposition only on the subsystem 2 (partial transpose). It

will become

WPT (x1, p1, x2, p2) =

(
1

π

)2 ∫ ∫
dy1dy2(e

2i(y1p1+y2p2))×
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∑
j

pj 〈x1 − y1| ρ1j |x1 + y1〉 ⊗ 〈x2 + y2| ρ2j |x2 − y2〉

,where the superscript PT denotes partial transpose. Redefine the variable

y2 to be −y′2.

WPT (x1, p1, x2, p2) =

(
1

π

)2 ∫ ∫
dy1(−dy′2)(e2i(y1p1−y

′
2p2))∑

j

pj 〈x1 − y1| ρ1j |x1 + y1〉 ⊗
〈
x2 − y′2

∣∣ ρ2j ∣∣x2 + y′2
〉

=

(
1

π

)2∑
j

pj

∫
dy1(e

2i(y1p1)) 〈x1 − y1| ρ1j |x1 + y1〉 ⊗∫
(−dy′2)e(−p2)y

′
2
〈
x2 − y′2

∣∣ ρ2j ∣∣x2 + y′2
〉

= W (x1, p1, x2,−p2).

The equation on the first line is nearly in the same form with the original

Wigner function, except for minus signs. On the second line, the minus sign

in the exponential is grouped with p2. Since p2 =
dy′2
dt

, it is obvious that

−p2 =
−dy′2
dt

. Thus, the expression in the second and the third line are

exactly equal. This shows an obvious equivalence between partial transpose

operation and the reflection of a momentum direction.

According to Weyl correspondence, Wigner distribution relates quantum

operators to their corresponding phase space variables [17] in which, for this

situation, the operators and variables are the quadratures. For convenience,

the quadratures are put together into a column vector. The quadrature

49



operators and variables are expressed as follows,

ξ̂ =



x̂1

p̂1

x̂2

p̂2


, ξ =



x1

p1

x2

p2


A matrix related to the commutators between the quadrature operators, Ω,

can be written as [24, 18], Simon]

Ω =

 J 0

0 J

 , J =

 0 1

−1 0



where [ξ̂α, ξ̂β] = iΩαβ and α and β = 1, 2, 3, 4. The result of performing

a partial transpose operation on the Wigner function can be seen to be

equivalent to performing a operator Λ on ξ, where Λ = diag(1, 1, 1, -1).

4.2.2 Uncertainty Principle as Separable Criterion

According to quantum mechanics, every physical state is required to fulfil

the uncertainty principle. In fact, Nha and Zubairy shows in [7] that the

converse is also true, i.e. every state that satisfies the uncertainty principle

is a physical state in quantum mechanics. In other words, it is the difference

between the second statistical moment and the squared of the first moment

that constrain a physical state. Therefore, the satisfaction of the uncertainty

relation can be exploited to check whether a state is permitted or not, i.e. it

can be used as a separable criterion in a similar way that the positivity of a

density matrix does. In addition, because whether a state is mixed or pure,

entangled or separable, does not depend on the first or the second statistical
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moment but its difference in terms of covariance, the first moment can be

set to be nil for convenience without any loss of generality.

To define the uncertainty principle for quadrature operators, a covariance

matrix V must be defined as follows [18],

Vαβ =
〈{

∆ξ̂α,∆ξ̂β
}〉

= tr
({

∆ξ̂α,∆ξ̂β
}
ρ̂
)

=

∫
d4ξ∆ξα∆ξβW (ξ)

, where

∆ξ̂α = ξ̂α −
〈
ξ̂
〉

∆ξα = ξα − 〈ξ〉

and

{
∆ξ̂α,∆ξ̂β

}
= (∆ξ̂α∆ξ̂β + ∆ξ̂β∆ξ̂α)/2

=
1

2

〈
ξ̂αξ̂β + ξ̂β ξ̂α

〉
−
〈
ξ̂α
〉〈
ξ̂β
〉
.

This is a symmetric ordered function. Note that there is an equivalence

between the average calculated by performing trace with a density matrix

and that calculated by an integral of Wigner function according to Weyl

correspondence.

The uncertainty principle in this context can be written as [24],

V +
i

2
Ω ≥ 0 (4.1)
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Every physical state needs to fulfil this relation. The proof is as follows,

Vαβ +
i

2
Ωαβ =

1

2

〈
ξ̂αξ̂β + ξ̂β ξ̂α

〉
−
〈
ξ̂α
〉〈
ξ̂β
〉

+
i

2
Ωαβ

=
1

2

〈
2ξ̂αξ̂β − iΩαβ

〉
−
〈
ξ̂α
〉〈
ξ̂β
〉

+
i

2
Ωαβ

=
〈
ξ̂αξ̂β

〉
−
〈
ξ̂α
〉〈
ξ̂β
〉

=
〈
ξ̂αξ̂β

〉

, where on the second line, the commutation relation is employed. The

conclusion on the last line is the result of choosing the first moment to

be zero. Thus only the value of the second moment is involved. This is

equivalent to V +
i

2
Ω = tr

(
ρξ̂2
)

which, from the positivity of ρ, must not

be negative. This completes the proof. Moreover, because tr (Ω) = 0, it

means some of the eigenvalues of Ω are not positive. Hence, it can imply

further that V ≥ 0. This inequality is the starting point of the criterion for

CV system.

It is simple to extend this relation to other Hermitian operators. This is

done by employing the fact that the quadratures form a complete basis on

phase space, so every Hermitian operator of a two-mode state can be defined

uniquely by a matrix of four real numbers. For example an operator χ(d)

can be expressed as χ(d) = dT ξ̂ = d1x̂1 + d2p̂2 + d3x̂1 + d4p̂2, where d

is the matrix containing the four real number di, i = 1, 2, 3, 4. [18] The

corresponding uncertainty relation can be obtained by the same procedure

as that for ξ.

Similar to the Peres-Horodecki for DV systems, by performing partial

transpose, another inequality is obtained. As it is shown above that the

effect of partial transpose operation on a Wigner function is equivalent to

operating Λ = diag(1,1,1,-1) to ξ, the partial transpose will change the
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former inequality V +
i

2
Ω ≥ 0 to be

ΛV Λ +
i

2
Ω ≥ 0. (4.2)

By the Peres-Horodecki criterion, this inequality must also be fulfilled by

every separable state.

4.2.3 Invariant Form of Separable Condition

Two subsystems in a bipartite state are typically separated apart and op-

erations normally perform locally to one of the subsystems. This local op-

eration together with classical communication denoted as LOCC is a very

important operation in quantum information. Thus, a practical separable

criterion should take this local operation into account too. To develop the

two inequalities to satisfy this task, the covariance matrix is examined.

A covariance matrix of a two-mode state is a 4×4 skew-symmetric matrix,

the symmetry of which is described by a symplectic group, Sp(4, R). A

symplectic group is a group of operations that preserves a skew-symmetric

matrix. Sp(4, R) means symplectic group of 4× 4 dimensional matrix with

only real entry. The covariance matrix is a skew-symmetric because of

the symplectic relation between quadrature operators. In this case, the

elements of the group are corresponding to any unitary operators acting on

the system. By imposing the condition of local operation, the operator can

be divided into two blocks with respect to each system [18]. Let Slocal be

an element of the group, it is expressed in a matrix-form as,

Slocal =

 S1 0

0 S2


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, where S1, S2 ∈ Sp(2, R). The local operation constraint reduces the former

symmetry group to be one of its subgroup, Sp(2, R)⊗ Sp(2, R).

This form of the symmetry operator suggests that the form of the covari-

ance matrix of a separable state, i.e. the state that is preserved under local

operation, should be

V =

 A C

CT B


, where A,B and C are 2 × 2 matrices. The unitary operator in the form

described above operate on each block of the covariance matrix as follows,

A→ S1AS
T
1 B → S2BS

T
2 C → S1CS

T
2 .

This operation must preserve several entities such as detA,detB, detC,

and trAJCJBJCTJ , where J is the skew-symmetric matrix that has been

presented before. These entities altogether can form another inequality

that is equivalent to the separable inequality presented, with an additional

property of manifestly invariance under local operation.

detAdetB +

(
1

4
− detC

)2

− tr
(
AJCJBJCTJ

)
≥ 1

4
(detA+ detB)

(4.3)

This equivalence between the two inequalities (4.1) and (4.3) can be proved

directly by substituting terms calculated from a specific matrix written in
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the form,

V0 =



a 0 c1 0

0 a 0 c2

c1 0 b 0

0 c2 0 b


. (4.4)

, into both (4.1) and (4.3) inequalities.

However, it was proved by Duan [25] that it is always possible to transform

any covariance matrix into the above form by a proper local transformation.

Hence, every covariance matrix is proved to satisfy the new inequality above.

Next, the equivalence inequalities to (4.2) followed from (4.3) will be

derived. Partial transpose operation is equivalent to the similarity trans-

formation by the matrix Λ, i.e. Ṽ = ΛV Λ, where Ṽ is the transformed

covariance matrix. By considering how each block of V , i.e. A,B and C, is

transformed, it appears that only block C is changed, i.e.

c2 → −c2 detC → −detC

It is easy to verify straightforwardly that the trace term will not change.

Finally, this leads to the change of (4.3) to be

detAdetB +

(
1

4
+ detC

)2

− tr
(
AJCJBJCTJ

)
≥ 1

4
(detA+ detB)

(4.5)

It is different from (4.3) only in the sign in front of the detC term. This

inequality is equivalent to (4.2). A separable state must satisfy both (4.3)

and (4.5).
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It is even more convenient to express the inequalities as follows,

detAdetB +

(
1

4
− | detC|

)2

− tr
(
AJCJBJCTJ

)
≥ 1

4
(detA+ detB) .

(4.6)

The absolute sign enables the combination of (4.3) and (4.5) into one. Thus,

this is the final form of the Peres-Horodecki criterion for continuous state

proposed by Simon [18].

Before continuing to the next section, it is best to summarise again that

(4.1) and (4.3) are the conditions in which every physical or permitted state

must satisfies while the satisfaction of (4.2) and (4.5) are only necessary for

separable states. It should be emphasised that, in general, the inequalities

(4.2) and (4.5) are only necessary conditions for a CV separable state, but

not sufficient ones. Therefore, they are not entanglement necessary condi-

tion.

4.2.4 Gaussian States: From Separability to Entanglement

Criterion

Nevertheless, this is not the case for Gaussian states. Due to the simplic-

ity of the states, the Peres-Horodecki separability criterion becomes also

a sufficient condition. This means it can be employed to detect exactly

whether a Gaussian state is entangled or separable. A Gaussian state is

simple because the complete description of the state can be made by only

two information, the first and the second statistical moments. Furthermore,

it has been discussed that it is the variance that constrain a physical state

and it is possible to assign a zero mean value to the state without any loss of

generality. Therefore, the separability of a Gaussian state can be completely
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described by the knowledge of its second moment solely. This becomes more

manifest when considering the Wigner function of a general Gaussian state,

W (ξ) =
(
4π2
√

detV
)−1

exp
(
−1

2ξ
TV −1ξ

)
, which is characterized only by

V . According to [18], a Gaussian state is separable if V ≥ 1
2 . Thus, the

remaining task is to show mathematically that the Gaussian state that ful-

fils the separable inequality (4.6) is separable by checking its covariance

matrices.

Comparing between (4.3) and (4.5). (4.3) is the condition that every

physical state has to obey while only separable states follow (4.5). Hence, a

conclusion that can be drawn immediately is a state with detC ≥ 0 always

fulfils both condition simultaneously. In other word, it always fulfil (4.6).

Hence, first, this class of states is required to check whether all of them are

separable.

Every physical state can provide a variance matrix V0 in the form of (4.4).

Two local squeezing operators which are elements of Sp(2, R)⊗Sp(2, R)can

be formed as Slocal1 =diag
(
x, x−1, x−1, x

)
and Slocal2 =diag

(
y, y−1, y−1, y

)
.

After being operated by the two local squeezing operators, the covariance

matrix will become [18],

V ′0 = Slocal1Slocal2V0Slocal2Slocal1 =



y2x2a 0 y2c1 0

0 y−2x−2a 0 y−2c2

y2c1 0 y2x−2b 0

0 y−2c2 0 y−2x−2b


Suppose first that detC > 0. It is possible to choose x = [(c1a+c2b)/(c2a+

c1b)]
1/4. By performing rotations with an equal amount of angle on x1 −

x2 and p1 − p2 planes, the covariance matrix can be manipulated to be

diagonal, denoted as V0
′′ = diag(κ+, κ

′
+, κ−, κ

′
−), where κ± = 1

2 [y2x2a +
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x−2b ± [(x2a− x−2b)2 + 4c21]
1/2

] and κ′± = 1
2y
−2{x−2a + x2b ± [(x−2a −

x2b)2 + 4c22]
1/2}. Consider V ′′0 +

i

2
Ω ≥ 0 which is the condition that every

state has to fulfil. By choosing an appropriate y, it is possible to set all

the eigenvalues of V ′′0 to be greater than
1

2
. Hence, V ′′0 ≥

1

2
. This means

that the state corresponding to V ′′0 is separable. Note that rotations of the

two planes by an equal angle are just the change of basis. It does not affect

the uncertainty relation, so the state corresponding to V ′0 is also separable.

Finally, because V ′0 and V0 are related by local canonical transformations,

the conclution is V0 is separable for detC > 0.

For detC = 0 case, suppose that c1 ≥ 0 and c2 = 0. It is possible to

transform V0 using a diagonal matrix diag
(√

2a, 1/
√

2a,
√

2b, 1/
√

2b
)
. This

will result in,

V ′0 =



2a2 0 2abc1 0

0 1/2 0 0

2abc1 0 2b2 0

0 0 0 1/2


, where V ′0 is the transformed V0. The inequality associated to this covari-

ance matrix, V ′0+ i
2Ω ≥ 0, implies that V ′0 ≥ 1

2 . Hence the state associated to

this covariance is separable and the original state is proved to be separable

too.

Eventually, it has been shown that, the states with detC ≥ 0 must be

separable. This is a sufficient condition. Combining together this result with

the inequality (4.6), the Peres-Horodecki separability criterion for CV states

become also an entanglement criterion. It can be employed to check exactly

which Gaussian state is separable or entangled. Explicitly, for detC ≥ 0,

the states are confirmed to be separable automatically. For detC < 0,

there are two possibility. If the states violate (4.6), then they are definitely
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entangled. On the other hand, if they satisfy the condition, then so do their

mirror reflection counterparts with detC > 0. Thus, their counterparts are

separable states. This means, in return, the original states are separable

since the mirror reflection of a separable state is also separable. The last

note for this section is that the sufficient condition arises because Gaussian

state can be completely described by the second moment.

4.3 CV Entanglement Measures

There exists several entanglement measures for CV system. In this section,

only two of them will be presented: von Neumann entropy (or entropy of

entanglement) and negativity. These are just generalisations of the measures

from DV state. As usual, the measures for Gaussian states are based on

variances.

Recall that, in thermal equilibrium, a density matrix can be expressed as

[11],

ρ =
exp(−βĤ)

tr[exp(−βĤ)]

Represent in Fock state using number basis, the density matrix for one mode

can be recasted as,

ρ = (1− exp(−βh̄ω))
∞∑
n=0

exp(−βh̄ωn)

The term before summation is computed using the convergence of a geo-

metrical series.

The average number of a boson (e.g. photon) is calculated by

n̄ = tr(ρn̂)
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= (1− exp(−βh̄ω))
∞∑
n=0

(n)exp(−βh̄ωn)

= (1− exp(−βh̄ω))

(
− 1

h̄ω

d

dβ

) ∞∑
n=0

exp(−βh̄ωn)

= [exp(βωh̄)− 1]−1

Thus,

exp(−βh̄ω) =
n̄

1 + n̄

Substitute this back, the density matrix is represented in terms of the av-

erage n̄ as,

ρ =
∞∑
n=0

n̄n

(1 + n̄)n+1
|n〉〈n|

Consider the covariance matrix of a bipartite Gaussian state, V . Williamson

theorem confirms that it can always be transformed into a diagonal ma-

trix, diag(ν1, ν1, ν2, ν2) [18, 24]. These diagonal elements are correspond-

ing to the terms, x̂21, p̂
2
1, x̂

2
2 and p̂22, respectively. The quadrature opera-

tors can be represented in terms of creation and annihilation operators as

x̂i =
1√
2

(
ai + a†i

)
and p̂i =

1√
2i

(
ai − a†i

)
, i = 1, 2. The variances corre-

sponding to these operators in number basis have the forms [24],

νxi = νpi = 〈n| 1
2

(
a†iai + aia

†
i

)
|n〉

= 〈n| 1
2

(
2a†iai + 1

)
|n〉

= n̄+
1

2

Thus, n̄i = νi −
1

2
. This suggests that every density operator of a Gaussian

bipartite state can be written in the form a tensor product between two
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single-mode density operators as follows,

ρ⊗ = ⊗
i

2

2νi + 1

∞∑
n=0

(2νi − 1)n

(2νi + 1)n
|n〉〈n|

Finally, the density matrix is written in terms of variance as required.

4.3.1 Entropy of Entanglement

Similar to its DV counterpart, the entropy of entanglement or von Neumann

entropy is the unique measure of entanglement for a bipartite pure state.

Follow from the definition of the von Neumann entropy, it is shown in [26,

17, 24, 27] that

Si =

(
2ν1 + 1

2

)
log2

(
2ν1 + 1

2

)
−
(

2ν1 − 1

2

)
log2

(
2ν1 − 1

2

)

, where Si is the entropy of the subsystem i, for i = 1, 2. Nevertheless, for

pure state, S1 = S2. The range of value for this particular measure is from

0 for a separable state to 1 for a maximally entangle state.

4.3.2 Negativity

The idea of negativity is discussed in chapter 2. Briefly, the original state is

partial-transposed. The negativity is equal to the summation of the negative

eigenvalues of the partial-transposed density matrix.

A partial-transposed density matrix can be represented in the form,

ρ⊗PT = ⊗
i

2

2ν̃i + 1

∞∑
n=0

(2ν̃i − 1)n

(2ν̃i + 1)n
|n〉〈n| .
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From the definition of negativity in chapter 2,

c = 2
∑

i
(−λi−).

This is equivalent to

ε(ρ) = tr|ρ̃| − 1.

Substitute the density matrix in the form of variance into the above equa-

tion. Consider the term,

tr|ρ̃| = 2

2ν̃i + 1

∞∑
n=0

(2ν̃i − 1)n

(2ν̃i + 1)n

For ν̃i ≥ 1
2 , this term is equal to 1. For ν̃i <

1
2 , this term is equal to

1

ν̃i
.

Therefore, the negativity is equal to

ε(ρ) = max[0,
1

2ν
− 1].

The state is separable if ε(ρ) = 0. One of the advantages of negativity is

its simplicity and wide availability. Thus, it is greatly used in the study of

Gaussian state.
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5 Non-Gaussian Entanglement

5.1 Overview

The previous chapter is devoted for Gaussian states. It has been shown

that Gaussian states are special because of its simplicity, nice features, and

broad applications. However, as discussed briefly in chapter 3, non-Gaussian

entanglement is also crucial to study because it provides promising results

leading to the improvement of several important communication protocols.

It is claimed in [17] that the true power of quantum mechanics can only

be exploited via non-Gaussian states and non-Gaussian interactions. An

example of non-Gaussian state is the number of photon state in quantum

optics.

A guiding idea to develop entanglement criteria for non-Gaussian states is

hinted in the Peres-Horodecki criterion for Gaussian state. As the criterion

for Gaussian states is expressed in terms of variance, an interesting question

to ask is if it is also possible and convenient to formulate an entanglement

condition for non-Gaussian states in terms of variance.

This question has positive answers. In this chapter, entanglement crite-

ria for non-Gaussian states from two papers are reviewed. The first one is

proposed by Mark Hillery and M. Suhail Zubairy in 2006 [6] and the other

one is published in 2008 by Hyunchul Nha and M. Suhail Zubairy [7]. For
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convenience to refer to these two works later on, the former will be denoted

as H-Z whereas the latter will be refered to as N-Z. The underlying principle

of both criteria are uncertainty principles. In fact, the differences between

these criteria are just the choices of operators and uncertainty relations be-

ing used. Different choices provide different conditions and require different

experimental techniques to measure.

The main ideas and methods of both H-Z and N-Z are very similar. They

constructed a particular form of operators and study the uncertainty re-

lations of these operators to seek for necessary conditions for separability

which is equivalent to sufficient conditions for entanglement.

The entanglement measures for non-Gaussian states will not be presented

in this chapter because they are too complicated. Generally, it is difficult to

extend the simple existing measures from discrete variable case to contin-

uous case except for Gaussian states, the simplicity of which enables that

generalisation to be simple to deal with.

5.2 Hillery and Zubairy Criteria

H-Z construct two sets of operators. The first set satisties su(2) algebra, so

they are spin-like operators. The other set satisfies su(1, 1) algebra which is

isomorphic to sp(2, R) algebra [28]. The importance of these two groups in

quantum optics were shown in [29]. Briefly, su(2) is related to the interac-

tions between atom and photon whereas su(1, 1) is related to the non-linear

parametric generation and conversion of two photons. H-Z entanglement

criteria are based on the comparing between two inequalities, one is derived

for every physical states to fulfil while the other one is a necessary condition

that every separable state needs to satisfies. Thus, a sufficient condition for
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a state to be entangled is concluded to be the satisfaction of the former con-

dition but violate the latter one. The criteria for both groups of operators

are separately descibed below. This is essentially what is described in [6]

with some additional explanations in details.

5.2.1 su(2) operators

The spin-like operators are defined as L1 = ab† + a†b, L2 = i(ab† − a†b),

and L3 = a†a+ b†b, where the operators a and b are annihilation operators

associating to different modes. These operators obey the su(2) commutation

relation, i.e. [Jk, Jm] = iεkmnJn, where Ji = Li/2. The variances of the

operators can be expressed as

(∆Li)
2 =

〈
(Li)

2
〉
− 〈Li〉2

for i = 1, 2. By using the definition of Li, it is straightforward to derive the

following,

(∆L1)
2 + (∆L2)

2 = 2

[
〈(Na + 1)Nb〉+ 〈Na(Nb + 1)〉 − 2

∣∣∣〈ab†〉∣∣∣2]

, where Na = a†a and Nb = b†b. For separable state, this equation becomes,

(∆L1)
2 + (∆L2)

2 = 2

[
〈(Na + 1)〉 〈Nb〉+ 〈Na〉 〈(Nb + 1)〉 − 2

∣∣∣〈a〉〈b†〉∣∣∣2]
(5.1)

According to Cauchy-Schwarz inequality:

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉
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Set y = 1 and x = a, this will give |〈a〉|2 ≤ 〈a, a〉 =
〈
a†a

〉
= 〈Na〉. This is

also true for b, i.e. |〈b〉|2 ≤ 〈Nb〉. Hence,

(∆L1)
2 + (∆L2)

2 ≥ 2 (〈Na〉+ 〈Nb〉) (5.2)

This is a separability condition, but just for product state. To extend it to

cover all of the separable states, recall that a general separable state can be

expressed as the sum of product states. The variance of an observable B

for a separable state ρ =
∑
m pmρm where, pm is the probability associated

to each density matrix of a product state ρm is

(∆B)2 = tr
(
ρB2

)
− [tr (ρB)]2

=
∑
m

pmtr
(
ρmB

2
)
−
(∑

m

pmtr (ρmB)

)2

=
∑
m

pmtr
(
ρmB

2
)
−
(∑

m

pmtr (ρmB)

)2

+
∑
m

pm[tr(ρmB)]2 −
∑
m

pm[tr(ρmB)]2

=
∑
m

pm (∆Bm)2+
∑
m

pm[tr(ρmB)]2

−
(∑

m

pmtr(ρmB)

)2

≥
∑
m

pm (∆Bm)2

The inequality will become an equation if the expectation value of B with

respect to each state ρm is vanished. This shows that the variance of any

observable calculated with respect to the overall system density matrix of a

separable state can never less than the summation of variance of individual

subsystems.
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Another inequality can be found by considering, the commutators

(∆L1) (∆L2) ≥
1

2i
|〈[L1, L2]〉|

1

4
[L1, L2] = i

L3

2
1

2i
[L1, L2] = L3 = a†a− b†b = Na −Nb

Therefore, (∆L1) (∆L2) ≥ |〈Na −Nb〉|. This leads further to the relation,

(∆L1 −∆L2)
2 ≥ 0

(∆L1)
2 + (∆L2)

2 ≥ (∆L1) (∆L2) + (∆L2) (∆L1)

≥ 2 |〈Na −Nb〉| (5.3)

This relation, in contrast with (5.2) that is a condition for separable state,

(5.3) is a condition for every physical state. It is obvious that there exists

some states which satisty only (5.3) but fail to satisfy (5.2). Those states

are confirmed to be entangled. Thus, these relations together are necessary

condition for separable states and sufficient for entangled states.

By further examining (5.1), the inequality (5.2)will be violated if 〈NaNb〉 <∣∣∣〈ab†〉∣∣∣. This indicates that

〈NaNb〉 <
∣∣∣〈ab†〉∣∣∣2 (5.4)

is an entanglement condition. However, Cauchy-Schwarz inequality states

that every physical state must obey

∣∣∣〈ab†〉∣∣∣2 ≤ 〈Na (Nb + 1)〉 (5.5)

It is, again, obvious that there exists some states that satisfy both (5.5) and
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(5.4) because (5.4) is obviously weaker than (5.5). Hence, (5.4) combines

the essences of both (5.2) and (5.3) in determining an entangled state within

one condition. The satisfaction of (5.4) is sufficient to confirm that the state

in consideration is entangled.

It is possible to generalise inequalities to cover the cases of am(b†)n in

which for m = n = 1 would provide the same results as that are already

obtained. Consider a pure product state,

∣∣∣〈amb†n〉∣∣∣2 = |〈am〉|2 |〈bn〉|2 ≤
〈

(a†)mam
〉〈

(b†)nbn
〉

=
〈

(a†)mam(b†)nbn
〉

The inequality is the consequence of Cauchy-Schwarz inequality. To find the

condition for a general separable state, it is convenient to define A = am

and B = bn.

∣∣∣〈AB†〉∣∣∣ =
∑
k

∣∣∣tr(pkρkAB†)∣∣∣
≤

∑
k

pk
∣∣∣tr(ρkAB†)∣∣∣

≤
∑
k

pk
(〈
A†AB†B

〉
k

)1/2
≤

(∑
k

pk

)1/2(∑
k

pk
〈
A†AB†B

〉
k

)1/2

≤
(∑

k

pk
〈
A†AB†B

〉
k

)1/2

This proves the validity of the inequality
∣∣∣〈amb†n〉∣∣∣2 ≤ 〈

(a†)mam(b†)nbn
〉

for a general separable state.
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5.2.2 su(1,1) operators

The operators which satisfy this algebra are expressed in the form, K1 =

ab+a†b†, K2 = i(a†b†−ab) and K3 = a†a− b†b. The mathematical method

to find separability condition for these operators is slightly more difficult

than that of the su(2) operators. Define a new operator which is a function

of a phase φ as

K(φ) = eiφa†b† + e−iφab.

This operator becomes K1 when φ = 0 and become K2 when φ =
π

2
. It

is proved in [6] that states are separable if K(φ) ≥ 1 and entangled if

K(φ) < 1.

It is also possible to find other inequalities corresponding to this class of

operators. Consider an example associating to a product state,

|〈ab〉| = |〈a〉 〈b〉| ≤ [
〈
a†a

〉〈
b†b
〉

]1/2

Therefore,

|〈ab〉| ≤ [〈Na〉 〈Nb〉]1/2 (5.6)

As usual, this inequality for product states is still valid for general separable

states, i.e.

|〈ambn〉| ≤ [
〈(
a†
)m

am
〉〈(

b†
)n
bn
〉

]1/2. (5.7)

Separable states are required to fulfil this condition.
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In general, for m = n = 1,

|〈ab〉| ≤ [〈Na + 1〉 〈Nb + 1〉]1/2. (5.8)

As always, this is the condition for every physical state to fulfil. There exist

states that fulfil (5.8) but fail to fulfil (5.6). Those states are confirmed to

be entangled. (5.6) together with (5.8) provide another sufficient condition

for entanglement. In other words, the satisfaction of [〈Na〉 〈Nb〉]1/2 < |〈ab〉|

confirms that the state in consideration is entangled.

To manifestly see the power of this criterion, consider a two-mode squeezed

vacuum state

|ψ〉 =
(
1− x2

)1/2 ∞∑
n=0

xn |n〉a |n〉b

, where 0 ≤ x ≤ 1. To check the state using (5.6), relevant terms are

computed as follows.

|〈ab〉| = |〈ψ| ab |ψ〉|

=

∣∣∣∣∣(1− x2
) ∞∑

n

x2nn

∣∣∣∣∣
=

x

1− x2

The second line comes from the action of annihilation operators on the state,

i.e. a |n〉a =
√
n |n− 1〉a and b |n〉b =

√
n |n− 1〉b. Next, the term 〈Na〉 is

calculated by

〈N〉a = 〈ψ |Na |ψ 〉

=
(
1− x2

) ∞∑
n

nx2n

=
x2

1− x2
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The term 〈Nb〉 is equal to this value too. Substitute these values into the

inequality (5.6), the inequality will be invalid because 0 ≤ x ≤ 1. This

disagreement indicates that this state is entangled.

So far, it has been shown that a simple idea of comparing between two

inequalities, one to be obeyed by every physical state and another one to

be satisfied by every separable state, leads to several criteria both in terms

of su(2) and su(1, 1) operators. It is discovered that, finally, the two con-

ditions, in each case, can be summarised into one sufficient condition of

entanglement. These conditions have an impact in practice because crucial

operations in quantum optics can be catagorised mathematically into these

two groups.

Next, another criterion invented by Nha and Zubairy will be presented.

It will be shown to be a generalised criterion such that the su(2) criterion

of H-Z is a special case.

5.3 Nha and Zubairy Criteria

Similar to the previous criteria, in this work, particular operators are con-

structed and two inequalities are generated and compare to obtain a suf-

ficient condition of entanglement. However, instead of mainly employing

Cauchy-Schwarz inequality to generate the inequality relation, N-Z used

Schödinger-Robertson inequality which is a stronger uncertainty relation

compared to the traditional Heisenberg one. The general form of Schödinger-

Robertson inequality for two operators, A and B, is

〈
(∆A)2

〉〈
(∆B)2

〉
≥ 1

4
|[A,B]|2 +

1

4
〈∆A∆B〉2S
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, where 〈∆A∆B〉S ≡ 〈∆A∆B + ∆B∆A〉. Note that this inequality becomes

the Heisenberg uncertainty if the last term is vanished.

This is one inequality. Another inequality is obtained via partial-transpose

operation, just as being done in the Peres-Horodecki method. For a bipartite

continuous variable state, this is equivalent to the reflection of the second

component of the quadrature operator of the second subsystem. The ful-

filment of both inequalities simultaneously is required if the state under

consideration is separable, though some entangled states may also satisfy

them in the same way. The violation of one of the inequality confirms that

a state is entangled. This is then become a sufficient condition for entan-

glement.

In fact, N-Z started their paper by showing first that the satisfaction

of uncertainty relations is a sufficient condition for a permitted state in

quantum mechanics. Then the criterion was derived for discrete variable

states. For continuous states, two sets of operators were constructed. Two

quadrature opeators, X
(m)
i ≡ a†mi + ami and Y

(m)
i ≡ −i

(
a†mi − ami

)
, for i =

1, 2, are defined for the first set. These operators can be combined together

to become Hermitian operators: H1 = X
(m)
1 +X

(n)
2 and H2 = Y

(m)
1 + Y

(n)
2 .

A separable condition in the form of Schrödinger-Robertson inequality is

straighforwardly expressed as,

∆2H1∆
2H̃2 ≥

〈
C

(m)
1 + C

(n)
2

〉2
+
〈

∆H1∆H̃2

〉2
S

, where C
(m)
i ≡ [ami , a

†m
i ] and H̃2 ≡ Y

(m)
l − Y

(n)
2 . This form of H̃2 is

equivalent to the reflection of momentum on phase space which is the result

of partial-transpose operation acting on the density matrix.

Another set of operators are defined as Xmn ≡ a†m1 an2 +am1 a
†n
2 and Ymn ≡
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−i
(
a†m1 an2 − am1 a

†n
2

)
which, again, provide Hermitian operators as follows,

H1 = a†m1 a†n2 + am1 a
n
2 and H2 = −i

(
a†m1 a†n2 − am1 an2

)
. These operators

provide an inequality in the form,

(
∆2Xmn +

〈
C

(m)
1 C

(n)
2

〉) (
∆2Ymn +

〈
C

(m)
1 C

(n)
2

〉)
≥
〈

[am1 a
n
2 , a
†m
1 a†n2 ]

〉2
+ 〈∆Xmn∆Ymn〉2S

These two inequalities have an amazing feature that they can be shown to

be a generalisation of several existing criteria [25, 30, 31, 32, 7] in a sense

that those other criteria are special cases of this one. It can be proved that

even H-Z criteria presented in the previous section are also a special case

of these two inequalities. An experimental test to verify these criteria is

seemed to be possible according to an experimental scheme proposed by

Shchukin and Vogel [33]. Therefore, N-Z criterion is very promising.

5.4 Discussion

Before ending this chapter, there are two points that should be emphasised.

Firstly, the uncertainty principle has been exploited as the crucial underly-

ing principle of every criterion discussed, even the Peres-Horodecki one in

the previous chapter. It has also been proved in [7] that the fulfilment of the

uncertainty principle is both a necessary and sufficient condition for a valid

quantum physical state. Secondly, the criteria that have been discussed here

act as sufficient conditions, but not necessary ones. This means that there

may exist some entangled states which fulfil the separable inequalities, thus

cannot be detected by these methods. To ensure that an entangled state is

recognised, a necessary and sufficient condition is required. However, such

condition has not been discovered and it might not exist. This is a very dif-
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ficult problem in which many researchers in quantum information are trying

to solve. In practice, because there is no perfect single criterion, many cri-

teria may have to be employed together to increase the efficiency of the

test. For example, the advantage of Peres-Horodecki method, introduced in

chapter 4, is that it is not only a sufficient but also a necessary condition of

entanglement of Gaussian states. However, it cannot detect some entangled

states in Fock basis. On the other hand, Hillery-Zubairy condition has an

advantage of being able to detect entangled Fock states, but it fails to be a

necessary condition. In the situation that requires higher accuracy, various

criteria must be exploited together.
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6 Final Remark

Several entanglement criteria and measures has been discussed both for dis-

crete variable systems and continuous variable systems. Start from the most

basic definitions and formalisms in quantum mechanics, the argument has

been gradually develop step-by-step, from Hilbert space, state vectors and

density matrices to the definition of variance and entropy, from pure and

mixed states to separable and entangle states, and from the detials about

DV states to Gaussian states and non-Gaussian states in CV systems. The

Peres-Horodecki separability criterion, first proposed and proved to be a nec-

essary and sufficient condition for separability of a class of low dimensional

DV states, is later proved to provide a necessary condition for separability

of general CV states. Specifically for Gaussian states, the Peres-Horodecki

becomes also a sufficient condition for separable states which means that it

can be used to detect precisely whether a Gaussian state is separable or en-

tangled. Moreover, the criterion is shown to provide density matrices with

negative eigenvalues which can be exploited as an entanglement measure for

DV and Gaussian states, called negativity. For non-Gaussian state, several

criteria are presented following from the results of the works of Hillery and

Zubairy in 2006 and Nha and Zubairy in 2008.

Entanglement is a unique property which distinguish the quantum de-

scription of the world from the traditional classical ones. In the context of
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pure sciences, entanglement is an exciting property which is highly counter-

intuitive but true. The understanding of the transition from a separable

state which is classical to an entangled state which is purely quantum is ab-

solutely important for the more comprehensible understanding of quantum

mechanics. Also, the existence of the upper limit of entanglement points

to something which is much more fundamental than what is known todays.

In terms of application, it is this non-trivial non-local correlation of states

that enables the possibility to develop breakthrough technologies. Hence,

inventions of entanglement criteria and measures are really important as

necessary tools to study this amazing phenomenon efficiently. Neverthe-

less, until now, there is no perfect entanglement criterion and measure for

non-Gaussian CV state. Thus, it is a very crucial task to develop a better

criterion and measure for this particular system in the near future. It has

been described in the text that the generalised entanglement criterion pro-

posed by Nha and Zubairy [7] is seemed to be very powerful and promising.

It may enable to unify existing entanglement criterion into one. Therefore,

it is a good starting point for a future work to continue.
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