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Abstract

We consider the pilot-wave formulation of scalar field theory with a view to

numerical modelling. We show that the standard k−space representations

of Bohm et al. (1987) unecessarily complicate the theory, and a simpler,

more natural approach may be taken. We show this first by considering

the functional-Wirtinger derivatives in the Bohm approach, and then con-

cretely by the use of canonical transformations prior to quantisation. We

then consider the volume element, and present an argument supporting it’s

representation in k−space. We discuss the low energy limit of the theory,

and suggest an attempt to construct a quantum mechanical sub-algebra

from the algebra of field operators. Finally we consider the the success of

our numerical approaches.
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1 Introduction

Pilot-wave theory, known variously as de Broglie-Bohm theory, Bohmian

mechanics, the causal or ontological interpretation is a group of formulations

of quantum theory the first of which was presented by Louis de-Broglie

in 1927, before being reformulated and re-presented by David Bohm in

1952. In their most basic form, that corresponding to elementary quantum

mechanics, they are characterised by the interpretation of the continuity

equation for the quantum probability density,

∂|ψ|2

∂t
+∇.

(
|ψ|2∇S

m

)
= 0 (1.1)

as a continuity equation for the normalised density ρ of an ensemble of

system configurations,

∂ρ

∂t
+∇. (ρq̇) = 0, (1.2)

each evolving such that if ρ = |ψ|2 at some time, then they will also be so

at any later time. S is the complex phase of the wavefunction; ψ = |ψ|eiS .

Under this interpretation, |ψ|2 each system state, often called the beable,

(in this case the configuration space vector) Q ∈ {q} necessarily moves
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according to the canonical guidance equations,

Q̇ =
∇S(q, t)

m

∣∣∣∣
q=Q(t)

. (1.3)

The relative advantages and disadvantages of a pilot-wave theory com-

pared to a Copenhagen mechanics is a very interesting question, and one

that we cannot do justice to here as we wish to move straight on to talk-

ing about field theories. We would emphasise how beneficial it can be to

know more than one formulation of the same Physics. Personally I find

the contrast between the two theories, and the possibility of equivalence of

innequivalence of the theories captivating.

1.1 Pilot-wave field theory

Bosonic field theories were first treated by Bohm in 1952, in the first ap-

pendix of the second of his seminal papers, while treating the electromag-

netic field in the Coulomb gauge. He took what seemed to be the obvious

extension of a configuration vector beable to the field theoretic case; the

field configuration became the beable. Despite the fame, or possibly in-

fame, of these papers, (or maybe because of it) it seems likely that this

was a part of the theory that took the back-seat a while. The forgetting a

fleeting mention in Bohm & Hiley (1984), a good discussion on the Bosonic

field didn’t surface until Bohm et al. (1987). Though this seems to have

solidified the field configuration as the beable of choice for Bosonic fields.

It also brought into question the requirement for Lorentz covariance on the

sub-quantum level; the ensemble covariant, trajectory not.

Fermionic fields, on the other hand, to did not receive pilot-wave treat-

ment until Bell (1984) presented a lattice model where the beables were the
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fermion numbers at each lattice point. Though this appears to be a notable

break from tradition, it has seen a resurgence in popularity, with the re-

cent development of two distinct continuous theories, Dürr et al. (2003) and

Colin & Struyve (2007), the former stochastic, the latter deterministic. The

anti-commuting field operators of Fermionic quantum field theories have his-

torically proven a greater challenge to those looking to develop reasonable

pilot-wave formulations.

1.2 Outline of dissertation

Although pilot-wave scalar field theory is now twenty three years old, there

has been little computational investigation into the properties of the be-

haviour of individual pilot-wave fields. Indeed the only two papers we could

find were Lam & Dewdney (1994a) and (1994b). This is as apposed to a

significant amount of work put into standard pilot-wave theory. This was

decided to be our focus, and it was kept deliberately open to allow for any

interesting leads that presented themselves to be pointed out.

In sections 2.1-2.2 we will introduce the theory in it’s canonical form;

the Schrödinger representation in x−space, and consider the possibilities

of direct simulation in x−space. As the project matured it became evi-

dent that the φ̃, φ̃∗ or it’s real version, described in Bohm et al. (1987) and

Holland (1993) were seeming to hinder calculations. These representations

involve splitting k−space in two, and doubling the number of operators de-

fined over them, something that we shall show is unnecessary. In the first

half of section 2.3 we give the motivation behind this thinking by showing

an apparent choice of representation emerging through consideration of the

functional derivatives. Toward the middle we will show concretely that the

new representation is valid through considering the Fourier transform as a
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canonical transform on the classical Hamiltonian. We will then derive the

representations of Bohm et al. (1987) using the same methods. In the penul-

timate part of 2.3 we will consider the volume element, and whether one can

extend a probabilistic interpretation to the k−space wavefunctionals. We

will then finish 2.3 by using our argument to develop guidance equations in

the three representations.

Section 2.4 will then consider the how the theory should act in a low

energy limit. We will suggest the possibility of a sub-algebra approximate

to that of quantum mechanics that could be formed in the low energy limit,

built from the field operators.

Section 3 will see us move on to numerical work. Though we have not

had time to perform explicit calculations, we will show at least that a likely

state in the φ(x) |0〉 is a localised state. We will then explain the structure

of the code that we developed, in the hope that it may aid future simulation.

2 Quantising the free massive scalar field for

practical calculations

2.1 Conventions and the reality condition

One usually introduces quantum field theory by first treating the scalar field

in the Fock representation. In the Fock representation entities such as |0〉

and â† are left in their vector language. This level of abstraction is unhelpful

when introducing field beables into the theory. To ease the interpretation

of the theory, pilot-wave quantum field theory is usually carried out in the

Schrödinger representation where our field beables take a solid algebraic

form. It is easy to mix up subtly differing expressions when working with

pilot-wave field theory literature, and as such we will re-derive the basic
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theory in several forms, highlighting the similarities and differences between

each. Since we require eventually to return from our analysis to calculate

actual field trajectories, we hope to keep the following discussion free for

ambiguity, and to provide solid, calculable expressions wherever possible.

We begin with the expression for the standard convention for the Fourier

transform we will use throughout. They are

φ(x) =

∫
d3k

(2π)3/2
eik.xφ̃(k), φ(x) =

1√
V

∑
k

eik.xqk (2.1)

φ̃(k) =

∫
d3x

(2π)3/2
e−ik.xφ(x), qk =

1√
V

∫
V
d3x e−ik.xφ(x) (2.2)

∫
d3x eik.x = (2π)3δ(3)(k),

∫
V
d3x eik.x = V δ(3)(k). (2.3)

It will be useful for the following discussion to use both continuum and

box normalisation for the field, displayed on the left and right of (2.1),(2.2)

and (2.3) respectively. The box normalisation makes the assumption of a

periodic field φ(x) = φ(x + Ln) ∀ n ∈ Z3, where the box is defined

as being of volume V and length L, it’s exact position is arbitrary. The

gain for making this assumption is realised in reducing the representation

of the field from an uncountably to a countably infinite number of field

variables i.e. discretising k−space. We may then talk of a wavefunction

instead of a wavefunctional, however one must be careful not to carry over

all the standard results of quantum mechanics into k−space unchanged.

We shall discuss some of the differences as we proceed. As the goal of this

project is the computational modelling of the pilot-wave theory of scalar

fields, and discretisation is a necessary process when dealing with computers,

we will also discuss discretising x−space briefly. We will however remain

using continuous variables for the majority of the time, as if nothing else,
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it simplifies much of the notation.

We have chosen to use the complex exponential form of the transform

throughout to be in keeping with standard QFT literature despite the fact

that it is redundant for some of our analysis. To understand why we must

consider the consequences of our reality condition. In Fourier transforming

we double the degrees of freedom of the field from a continuum of real vari-

ables, φ(x), (one for each x) to a continuum number of complex variables

φ̃(k) (one for each k). Remembering that our classical field is real then

forces us to identify φ̃(k) = φ̃(−k)∗ ⇔ qk = q∗−k. Although it often doesn’t

make it explicit, standard QFT literature associates R2 with each complex

plane and uses the field variables φ̃(k), φ̃(k)∗ to span this space. When

transformed into this basis the functional derivatives in the kinetic term of

the Hamiltonian turn into Wirtinger-functional derivatives, behaving much

like partial derivatives with respect to real variables. Then the reality con-

dition, φ̃(k) = φ̃(−k)∗ allows one to discard all the φ̃(k)∗ giving the theory

a kind of pseudo-real glaze.

Standard pilot-wave texts, e.g. Bohm et al. (1987), Holland (1993) ap-

ply the reality condition post-quantisation by restricting the theory to half

of k−space and imposing this on their field operators. One unfortunate

consequence of this formulation is that expressions like
∑

k f(k)â†(k) |0〉,

or the continuous version
∫
d3k f(k)â†k |0〉, no longer work in their usual

form. They result in a theory that, though perfectly permissible, seems to

emphasise the differences between itself and standard scalar field theory.

We show that by considering canonical transforms on the phase space

prior to quantisation, we find a choice of k−space representations, one of

which more closely resembles the aesthetics of the Fock-representation. Un-

fortunately this was discovered too far into the time allowed for this dis-
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sertation to make any impact on the computational work carried out. It

seems however that were further simulations to be carried out on scalar field

beables, this would be the representation in which to work.

The representation we work in for the simulations will be in terms of real

variables. This was decided early on as in this representation the connection

with Harmonic oscillators more apparent. We use the decomposition

φ̃(k) =
1√
2

(
φ̃a(k)− iφ̃b(k)

)
,

φ̃(−k) =
1√
2

(
φ̃a(k) + iφ̃b(k)

)
,

(2.4)

where the fields φ̃a and φ̃b, and their conjugate momenta are defined only

over a subset of {k} denoted {k/2}. We may construct this subset by re-

moving one by one, in any order, members whose negatives remain in the

set k while retaining the 0 element. One may however wish to define it as

something like

{k/2} = {k = (k1,k2,k3)|k1 > 0, k2 < 0}∪{k = (k1,k2,k3)|k1 ≥ 0, k2 ≥ 0}

(2.5)

in order to retain sensible integrals over this set. It will be useful to refer to

arbitrary members of this set as being distinct from members of {k}. We

use the shorthand +k ∈ {k/2}, −k /∈ {k/2}. We also use the primed notation

of Bohm et al. (1987) to denote integrals and sums over {k/2},

∫ ′
d3k,

′∑
k

. (2.6)

Finally, before we proceed to the process of quantisation, we note that proofs
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requiring the identity (2.3) still work, but present themselves as

∫ ′
d3k

(
eik.x + e−ik.x

)
= (2π)3δ(3)(x). (2.7)

2.2 x−space representation

Canonical quantisation in x−space

The classical Hamiltonian for the free massive scalar field is

H(t) =

∫
d3x

1

2

(
π(x, t)2 + (∇φ(x, t))2 +m2φ(x, t)2

)
. (2.8)

To quantise this we turn our fields into the operators with the standard

equal time commutation relations

[
φ̂(x), π̂(x′)

]
= iδ(3)(x− x′),

[φ̂(x), φ̂(x′)] = 0,

[π̂(x), π̂(x′)] = 0,

(2.9)

The lack of time-dependence of the field operators should alert the reader

to the fact that we have chosen to keep in the Schrödinger picture in ad-

dition to the Schrödinger representation. We take our first step into the

Schrödinger representation with a step analogous to that of standard quan-

tum mechanics. We choose the field operators

φ̂(x) = φ(x), π̂(x) = −i δ

δφ(x)
, (2.10)

which trivially satisfy the commutation relations. This may be done with

any properly defined canonical variables. We recommend Struyve (2009)

and Gitman & Tyutin (1990) for in depth discussion. These operators then
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act upon a wavefunctional, ψ[φ; t), which satisfies the functional Schrödinger

equation,

i
∂ψ[φ; t)

∂t
= Ĥψ[φ; t) =

∫
d3x

1

2

[
− δ2

δφ(x)2
+ (∇φ(x))2 +m2φ(x)2

]
ψ[φ; t).

(2.11)

Where the probability of finding the system in the state φ at time t is

|ψ[φ; t)|2. By assuming a polar form of the wavefunctional, ψ[φ; t) = |ψ[φ; t)|eiS[φ;t)

and separating the real and imaginary parts of (2.11) we find

∂S

∂t
+

1

2

∫
d3x

[(
δS

δφ(x)

)2

+ (∇φ(x))2 − 1

|ψ|
δ2|ψ|
δφ(x)2

]
= 0, (2.12)

∂|ψ|2

∂t
+

∫
d3x

δ

δφ(x)

(
|ψ|2 δS

δφ(x)

)
= 0, (2.13)

the quantum Hamilton-Jacobi and continuity equations respectively. The

continuity equation leads us to conclude the guidance equation

∂Φ(x, t)

∂t
=
δS[φ; t)

δφ(x)

∣∣∣∣
φ=Φ

, (2.14)

for a field configuration Φ(x, t).

Discretising x−space

We continue the discussion temporarily in one spatial dimension for ease of

representation. Since the functional derivatives in (2.11) and (2.14) turn to

partial derivatives under discretisation of x−space,

{x} → {x|x = εn∀n ∈ Z},

φ(x)→ φx,

δ

δφ(x)
→ ∂

∂φx
,

(2.15)
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and we will end up discretising k−space it is prudent to discuss this op-

tion. When we discretion x−space the Hamiltonian reduces to a sum over

harmonic oscillator Hamiltonians, each with an interaction term between

adjacent oscillators corresponding to the (∇φ(x))2 in (2.11). This may be

brought into an easier form to deal with via some guise of the finite difference

derivative. If we choose a second order centre difference, e.g.

∂φ

∂x

∣∣∣∣
x=x′

=
φx′+ε − φx′−ε

2ε
+O(ε2), (2.16)

we may remove some of the dependence of the (∇φ(x))2 term from the

spatial coordinate of other oscillators.

Ĥ =
1

2ε

∑
x

[
− ∂2

∂φ2
x

+

(
φx+ε − φx−ε

2ε

)2

+m2φ2
x

]
,

=
1

2ε

∑
x

[
− ∂2

∂φ2
x

+

(
m2 +

1

2ε2

)
φ2
x −

φx+εφx−ε
2ε2

]
.

(2.17)

Unfortunately, as one might imagine, it is impossible to separate the cross-

terms entirely.

Most of this work will focus on the development of methods in which

to evolve beables corresponding to each Fourier mode in the expansions

(2.1). Instead it may be easier for certain problems to use the k−space

solutions we will develop in subsequent sections to evolve the system directly

in real space. For instance, since the free Hamiltonian Fourier transforms

into a pure sum of HO Hamiltonians, we find that we are often left with

wavefunctionals of the form f(φ(x), . . . )ψ0[φ, t). The groundstate in this

situation, for reasons we will elaborate on later doesn’t contribute to the
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motion of the field, and as such our guidance equations reduce to

∂Φxi

∂t
= Im

(
1

f(φxi , . . . )

∂f(φx1 , . . . )

∂φx1

) ∣∣∣∣
φx1=Φx1 (t),...

. (2.18)

Providing we have a x−space expression for f(φ(x), . . . ), it would then be

possible to evolve the system directly in x−space.

In standard quantum field theory one interprets the field operator φ̂(x)

as creating a particle at position x. In the Schrödinger representation φ̂(x)

acts by simple multiplication and as such, by comparing this action with

(2.18), we see that φ(k) produces a stationary field.

Due to the difficulty in Fourier transforming interaction terms, it seems

that this may be the only way to proceed in an interacting theory.

2.3 k−space representations

Motivation

To motivate our approach to the quantisation we first follow the approach of

Holland (1993), namely by attempting to Fourier transform the quantised

theory before applying the reality condition. The first step in this program

would be to transform the Hamiltonian

Ĥ =

∫
d3x

1

2

[
− δ2

δφ(x)2
+ (∇φ(x))2 +m2φ(x)2

]
. (2.19)

Although the second and third terms in the integrand transform easily, it

is not immediately clear how the functional derivatives, corresponding to

the conjugate momenta will transform. We would like to represent the

conjugate momentum densities in a form resembling the total -functional
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derivatives† of (2.10). We now have a complex field however, and we have

no reason to expect that total-functional-complex derivatives with respect

to the k−space wavefunctional exist. In fact whether they exist or not will

depend upon our choice of application of the reality condition. Through

judicious application of this condition we will be able to ensure that our

k−space wavefunctional does indeed satisfy the Cauchy-Riemann equations.

Before we go on however it is necessary to introduce some new notation.

Functional-Wirtinger derivatives

As we will be extending our discussion to functionals of a complex function,

which may or may not be holomorphic, we must consider the derivatives we

are using carefully. In treating normal functions f of a complex variable,

z = zr+izi, it is often useful to work solely in terms of the complex variables

z and z∗. When doing this we may express partial derivatives with respect

to z and z∗ in terms of the partial derivatives with respect to the real and

imaginary parts,
∂f

∂z
=

1

2

(
∂f

∂zr
− i ∂f

∂zi

)
,

∂f

∂z∗
=

1

2

(
∂f

∂zr
+ i

∂f

∂zi

)
.

(2.20)

These are called Wirtinger derivatives. When using the variables z and z∗

one sometimes finds a volume element on the complex plane written

dzrdzi =
1

2
dzdz∗, (2.21)

which may be motivated by evaluating the Jacobian determinant. Through-

out, we’ll use volume elements expressed in terms of the canonical variables

†we use the word total ’ in the sense that if {k} was a singleton and, there was no time
dependence, then the derivative would be a total derivative
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of the representation being used. These will be generalisations of (2.21),

though if one feels uncomfortable using such expressions then one may al-

ways convert back into real coordinates.

We will require to use Wirtinger-functional derivatives, and so in order

to distinguish between these and ordinary functional derivatives we will use

the slashed notation /δ, keeping the regular δ for total functional derivatives.

And so the k−space Wirtinger-functional derivatives with respect to the

wavefunctional are
/δψ

/δφ̃(k)
,

/δψ

/δφ̃(k)∗
. (2.22)

We will however drop this notation after this section when there will be

significantly less chance of confusion. Until then we emphasise that

/δ

/δφ̃(k)
6= δ

δφ̃(k)
. (2.23)

The choice of representation

Continuing, we note that since we have not yet applied our reality condition,

we may consider for the moment the possibility that our x−space field, φ(x)

is complex. Then the wavefunctional must becomes ψ = ψ[φr, φi] = ψ[φ, φ∗]

and we can write the kinetic term in our Schrödinger equation (2.11) as

−1

2

∫
d3x

/δ
2
ψ

/δφr(x)2
. (2.24)

It is easy to see then that when we apply the reality condition, and ψ =

ψ[φr, φi] → ψ[φr], that this term reverts back to the expression of (2.11).

Switching to our complex fields the term becomes

−1

2

∫
d3x

(
/δ

2

/δφ(x)2
+

/δ
2

/δφ(x)/δφ(x)∗
+

/δ
2

/δφ(x)∗2

)
(2.25)
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Here we may perform a little trick. Generally the chain rule does not exist

to the functional derivative as it’s domain and range exist within different

spaces. Noting however that we may consider the wavefunction as a func-

tional of either φ, φ∗ or φ̃, φ̃∗ and each couple of fields as functionals of each

other e.g.

φ̃[φ;k) =

∫
d3x

(2π)3/2
e−ik.xφ(x), (2.26)

we may construct the chain rule

/δ

/δφ(x)
=

∫
d3k

(
/δφ̃(k)

/δφ(x)

/δ

/δφ̃(k)
+
/δφ̃(k)∗

/δφ(x)

/δ

/δφ̃(k)∗

)
. (2.27)

From here it is simple to show that our Schrödinger kinetic term becomes

−1

2

∫
d3k

[
/δ

2

/δφ̃(k)/δφ̃(−k)
+ 2

/δ
2

/δφ̃(k)/δφ̃(k)∗
+

/δ
2

/δφ̃(k)∗/δφ̃(−k)∗

]
ψ[φ̃, φ̃∗].

(2.28)

It is now that we choose to impose our reality condition†, finding as we do

so that we may make all but one of these terms disappear. To illustrate,

if we specify that our wavefunction is a function of φ̃(k)∗ only, then only

the third term remains. If we choose to keep ψ as a function of both φ̃ and

φ̃∗ but to reduce the set over which they are defined to {k/2}, as we shall

when using real fields, then only the second term remains, and the range of

the integral halves. This is route taken implicitly by Holland (1993). In the

next section we will promote the choice to keep the first term only. To do

this we specify that ψ = ψ[φ̃], and we find the total Schrödinger equation

†Reminding ourselves again of what was discussed in section (2.1), i.e. that the wavefuc-
tional cannot be a function of both φ̃(k) and φ̃(−k)∗ as this would entail a probability
distribution that would allow φ̃(k) 6= φ̃(−k)∗.
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to be

−i∂ψ[φ̃, t)

∂t
=

1

2

∫
d3k

[
−

/δ
2

/δφ̃(k)/δφ̃(−k)
+
(
k2 +m2

)
φ̃(k)φ̃(−k)

]
ψ[φ̃; t),

(2.29)

where we have remembered that ψ does indeed have time dependence. The

other terms in the Hamiltonian, with a similar choice of forms, arise using

the same method. We note here that since for a standard function of a

complex variable the Cauchy Riemann equations may be written ∂f
∂z∗ = 0.

Our choice of application of the reality condition is the only one that ensures

that
/δψ

/δφ̃(k)∗
= 0, meaning a wavefunctional holomorphic in the function space

over which it is defined.

On the choice of canonical variables

Although we’ve shown that the reality condition allows us some freedom

as to the choice of the representation, we have not as of yet proved that

the choices outlined above are legitimate representations of the theory. To

prove this we prefer a different program of derivation to that described

above. We prefer to start with the classical theory, then to make a canonical

transformation into the variables we desire before quantising the theory. In

addition to justifying the choice of variables, this method also allows us to

make sense of how the volume element transforms.

Let us first define the properties of the canonical transform relevant to our

discussion. We base our conventions and definitions upon those described in

Goldstein et al. (2002). Let us consider for simplicity a Hamiltonian theory

with N canonical variables qi and their respective conjugate momenta pi.
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We wish to treat restricted canonical transformations of the form

qi → Qi = Qi(q, p)i

pi → Pi = Pi(q, p). (2.30)

In such transformations the Hamiltonian does not change form, and may

simply be expressed in the new coordinates. Expressing the coordinates in

their symplectic form,

η =

q
p

 , ζ =

Q
P

 , (2.31)

the symplectic condition for a restricted canonical transformation is written

MJMT = J, (2.32)

where

Mij =
∂ζi
∂ηj

, J =

 0 1

−1 0

 . (2.33)

Here, 0 and 1 are N by N zero and identity matrices respectively. M is seen

to be the Jacobian matrix of the transformation. The symplectic condition

(2.32) may be written equivalently as

[ζ, ζ]η = J, (2.34)

where (
[ζ, ζ]η

)
ij

=
∂ζi
∂qk

∂ζj
∂pk
− ∂ζi
∂pk

∂ζj
∂qk

, (2.35)

the Poisson Bracket of ζi and ζj with respect to the the canonical variables
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η, although it may be taken with respect to any set of canonical variables.

These two equivalent expressions, (2.32) and (2.34) represent a necessary

and sufficient condition for the transformations (2.30) to be canonical, and

as such provide us with a method of testing the legitimacy of our different

Fourier representations. In the transition from the discrete to the continuous

case the indices on our matrix expressions become continuous, however we

will retain these expressions as we believe them to be instructive. In this

case 1kk′ → δ(k− k′), and so we choose to represent the continuous version

of J

J =

 0 δ

−δ 0

 . (2.36)

φ̃(k) representation

The standard x−space Lagrangian is

L[φ, φ̇] =
1

2

∫
d3x

[
φ̇2 − (∇φ)2 −m2φ2

]
. (2.37)

When we express this in terms of φ̃(k) with the transformation (2.2), it

becomes

L[φ̃,
˙̃
φ] =

1

2

∫
d3k

[
˙̃
φ(k)

˙̃
φ(−k)− (k2 +m2)φ̃(k)φ̃(−k)

]
. (2.38)

Dropping the slashed notation, the momentum field conjugate to φ̃ is then

πφ̃(k) =
δL

δ
˙̃
φ(k)

=
˙̃
φ(−k), (2.39)
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and we may write the Hamiltonian

H[φ̃, πφ̃] =

∫
d3k

˙̃
φ(k)πφ̃(k) − L

=
1

2

∫
d3k

[
πφ̃(k)πφ̃(−k) + (k2 +m2)φ̃(k)φ̃(−k)

]
. (2.40)

The Poisson bracket

[φ̃(k), πφ̃(k′)]φπ =

∫
d3x

(
δφ̃(k)

δφ(x)

δπφ̃(k′)

δπ(x)
− δφ̃(k)

δπ(x)

δπφ̃(k′)

δφ(x)

)

= δ(3)(k− k′), (2.41)

may then be evaluated by noting that

πφ̃(k) =

∫
d3x

(2π)3/2
eik.xπ(x) (2.42)

follows from (2.39). Writing ζ = (φ̃,πφ̃) and η = (φ,π), we find

[ζ, ζ]η =

 [φ̃, φ̃]η [φ̃,πφ̃]η

[πφ̃, φ̃]η [πφ̃,πφ̃]η

 =

 0 δ

−δ 0

 . (2.43)

To quantise we associate the Poisson brackets equal to delta functions with

commutators of the operators equal to imaginary delta functions. The only

non-vanishing relations are

[
ˆ̃
φ(k), π̂φ(k′)] = iδ(3)(k− k′). (2.44)

In the Schrödinger representation dictates field operators of the form

ˆ̃
φ(k) = φ̃(k), π̂φ(k′) = −i δ

δφ̃(k)
. (2.45)
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Our Hamiltonian operator is then

Ĥ =
1

2

∫
d3k

[
−δ2

δφ̃(k)δφ̃(−k)
+ (k2 +m2)φ̃(k)φ̃(−k)

]
, (2.46)

and we have a wavefunctional ψ[φ̃] that satisfies the Schrödinger equation

i∂ψ∂t = Ĥψ. The groundstate solution is

ψ0[ψ̃] = Ne−
1
2

∫
d3k Ekφ̃(k)φ̃(−k), (2.47)

from which it is simple to show that the groundstate energy is familiarly

divergent; E0 = 1/2
∫
d3k δφ̃(k)

δφ̃(k)
. The constant of proportionality N will be

left untreated until we have have considered the volume element and we

may apply a probabilistic interpretation to the k−space wavefunctional.

The creation and annihilation operators in this representation may be

derived as usual by finding an operator X̂ such that [Ĥ, X̂] = cX̂. Since it

may be shown that

[Ĥ,
ˆ̃
φ(k)] = −iπ̂φ̃(−k), (2.48)

[Ĥ, π̂φ̃(k)] = i(k2 +m2)
ˆ̃
φ(−k) (2.49)

We may construct an operator, a
ˆ̃
φ(k) + bπ̂φ̃(−k), that satisfies the correct

commutation relations with c = Ek. As such we conclude that these opera-

tors are the creation and annihilation operators, and that the energy of the

modes of the field φ are now discrete quantum numbers. The values of a

and b are determined by considering normalisation; something we will not

be ready to deal with until we have considered the transformation of the

volume element.

Once the volume element is treated the final form of the operators is
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found to be

a(k) =
1√
2Ek

(
Ekφ̃(k) +

δ

δφ̃(−k)

)
, (2.50)

a(k)† =
1√
2Ek

(
Ekφ̃(−k)− δ

δφ̃(k)

)
, (2.51)

so that upon rearranging and Fourier transforming we find that the x−space

field operators take their usual expansions,

φ̂(x) =

∫
d3k

(2π)3/2

1√
2Ek

(â(k)eik.x + â†(k)e−ik.x),

π̂(x) = −i
∫

d3k

(2π)3/2

√
Ek

2
(â(k)eik.x − â†(k)e−ik.x).

(2.52)

φ̃(+k), φ̃(+k)∗ representation

The Representation of Bohm et al. (1987) uses the variables qk and q∗k

defined over a discretised {k/2}. Here we present a continuum version of this

theory using the same program of derivation as with the φ̃(k) representation.

If we are to retain the fields φ̃(+k), φ̃(+k)∗ in the classical theory then

we must choose modified forms of (2.1) and (2.2). These forms are

φ̃(k) =

∫
d3x

(2π)3/2
e−ik.xφ(x), φ̃(k)∗ =

∫
d3x

(2π)3/2
eik.xφ(x), (2.53)

and their inverse

φ(x) =

∫ ′
d3k

(2π)3/2

(
eik.xφ̃(k) + e−ik.xφ̃(k)∗

)
. (2.54)

These may be derived easily by reducing {k} to {k/2} in (2.1) and (2.2),

using the reality condition φ̃(−k) = φ̃(k)∗. We emphasise that the fields

are only defined over {k/2}; one may not now talk of φ̃(−k). Using these
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fields the Lagrangian (2.37) may be written

L[φ̃, φ̃∗] =

∫ ′
d3k

[
˙̃
φ

˙̃
φ∗ − (k2 +m2)φ̃φ̃∗

]
, (2.55)

meaning the conjugate momenta fields are

πφ̃(k) =
δL

δ
˙̃
φ(k)

=
˙̃
φ(k)∗, πφ̃(k)∗ =

δL

δ
˙̃
φ(k)∗

=
˙̃
φ(k). (2.56)

Adopting symplectic notation,

η =

φ

π

 , ζ =



φ̃

φ̃
∗

πφ̃

πφ̃∗


, (2.57)

The symplectic condition for a canonical transformation may be written

[ζ, ζ]η =



[φ̃, φ̃]η [φ̃, φ̃
∗
]η [φ̃,πφ̃]η [φ̃,πφ̃∗ ]η

[φ̃∗, φ̃]η [φ̃∗, φ̃
∗
]η [φ̃∗,πφ̃]η [φ̃∗,πφ̃∗ ]η

[π̃φ̃, φ̃]η [π̃φ̃, φ̃
∗
]η [π̃φ̃,πφ̃]η [π̃φ̃,πφ̃∗ ]η

[π̃φ̃∗ , φ̃]η [π̃φ̃∗ , φ̃
∗
]η [π̃φ̃∗ ,πφ̃]η [π̃φ̃∗ ,πφ̃∗ ]η


= J (2.58)

The non-zero Poisson brackets in this matrix are those in the top-right and

bottom-left quadrants. One finds, for instance, that

[φ̃(k), πφ̃(k′)]η = δ(3)(k− k′), (2.59)

[φ̃(k), πφ̃(k′)∗ ]η = δ(3)(k + k′). (2.60)

Noting that in this representation δ(3)(k+k′) = 0 as k,k′ ∈ {k/2}, equation
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(2.58) becomes

[ζ, ζ]η =



0 0 δ 0

0 0 0 δ

−δ 0 0 0

0 −δ 0 0


. (2.61)

The Hamiltonian in the newly discovered canonical coordinates is

H[πφ̃, πφ̃∗ , φ̃, φ̃
∗] =

∫ ′
d3k

[
πφ̃πφ̃∗ + (k2 +m2)φ̃φ̃∗

]
. (2.62)

To quantise we turn the canonical coordinates into operators, which in the

Schrödinger representation take the form

φ̃(k)→ ˆ̃
φ(k) = φ̃(k), φ̃(k)∗ → ˆ̃

φ(k)∗ = φ̃(k)∗

πφ̃(k) → π̂φ̃(k) = −i δ
δφ̃(k)

, πφ̃(k)∗ → π̂φ̃(k)∗ = −i δ
δφ̃(k)∗

.

(2.63)

The resultant Hamiltonian operator is

Ĥ =

∫ ′
d3k

[
− δ2

δφ̃δφ̃∗
+ (k2 +m2)φ̃φ̃∗

]
. (2.64)

It acts upon a wavefunctional ψ[φ̃, φ̃∗; t) to form a functional Schrödinger

equation i∂ψ∂t = Ĥψ. The groundstate wavefunctional is

ψ0[ψ̃, ψ̃∗] = N2e
−

∫ ′
d3k Ekφ̃φ̃

∗
. (2.65)

The φ̃, φ̃∗ is found to be very similar to the φ̃ representation of the previous

section. It does however have the unfortunate consequence of cluttering

the theory. One must define all k−space operators in their standard and
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complex conjugate form, and take a sum of their Fourier transforms to

retrieve the x−space equivalents.

Real representation

The majority of the computational work of this project was carried out

in the real representation before it was realised that said computational

work would have been a great deal less tiresome in the φ̃ representation.

Although the real representation has some advantages, it suffers from the

same problem as the φ̃, φ̃∗, namely the need to repeat many calculations.

The real representation’s main advantage is in the fact that it is com-

pletely separable into a product of modal Harmonic oscillators. This allows

one to construct a Hilbert space as a product of spaces isomorphic to those of

harmonic oscillators. If one then uses the equivalent of a quantum mechan-

ical position basis |x〉 for each of these subspaces, we may use the position

space representation for the HO raising and lowering operators as creation

and annihilation operators.

In addition to this, if one chooses the form of their canonical transforms

carefully, one may use them to translate a usable volume element into

k−space, and the interpretation of the wavefunctional becomes simply that

of an infinite dimensional HO. We shall discuss this further in the following

section, and for the moment introduce our canonical transformations,

φa(k) =
∫

d3x
(2π)3/2

√
2cos(k.x)φ, φb(k) =

∫
d3x

(2π)3/2

√
2sin(k.x)φ,

πφa(k) =
∫

d3x
(2π)3/2

√
2cos(k.x)π, πφb(k) =

∫
d3x

(2π)3/2

√
2sin(k.x)π,

(2.66)

which are again defined only over {k/2}, and are related to the classical φ̃, φ̃∗,

representation by φa(k) = 1√
2
(φ̃(k) + φ̃(k)∗), φb(k) = i√

2
(φ̃(k) − φ̃(k)∗).
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Their inverses are

φ(x) =

∫ ′
d3k

(2π)3/2

(√
2cos(k.x)φa(k) +

√
2sin(k.x)φb(k)

)
, (2.67)

π(x) =

∫ ′
d3k

(2π)3/2

(√
2cos(k.x)πφa(k) +

√
2sin(k.x)πφb(k)

)
. (2.68)

As we do not wish to subject the reader to another quantisation procedure,

which in any case is very similar to that of the previous two sections we

introduce the Hamiltonian in it’s transformed and quantised form

Ĥ =
1

2

∫ ′
d3k

[(
− δ2

δφa(k)2
+ (k2 +m2)φa(k)

)
+ (φa ↔ φb)

]
, (2.69)

and hence the groundstate in this representation is a simple product of HO

groundstates

ψ0[φa, φb] =
∏
k/2

ψ0(φa(k))ψ0(φb(k)), (2.70)

ψ0(φa(k)) =

(
Ek

π

) 1
4

e−
1
2
Ekφa(k)2 . (2.71)

The creation operators

â(k) =

√
Ek

2

(
ˆ̃
φa(k) +

i

Ek

ˆ̃πa(k)

)
,

=

√
Ek

2

(
φ̃a(k) +

1

Ek

δ

δφ̃a(k)

)
,

b̂(k) =

√
Ek

2

(
ˆ̃
φb(k) +

i

Ek

ˆ̃πb(k)

)
;

(2.72)

the annihilation operators, naturally their adjoint. They satisfy the com-
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mutators,

[â(k), â†(k)] = δ(3)(k− k′), [b̂(k), b̂†(k)] = δ(3)(k− k′), (2.73)

with all others vanishing. The field operators are found to be

φ̂(x) =

∫ ′
d3k

(2π)3/2
1√
Ek

(
cos(k.x)(â(k) + â†(k))

+sin(k.x)(b̂(k) + b̂†(k))
)

(2.74)

π̂(x) =

∫ ′
d3k

(2π)3/2
(−i)

√
Ek

(
cos(k.x)(â(k)− â†(k))

−sin(k.x)(b̂(k) + b̂†(k))
)

(2.75)

An argument for the volume measure

We have thus far interpreted the wavefunctional ψ[φ; t) in line with Bohm’s

original formulation, as defining some sort of probability function. In order

for one to interpret this concretely as a probability density we need a notion

of volume within our space of functions. We achieve this by using a notional

functional measure Dφ, which we assume to be a continuum generalisation

of the Lebesgue measure. One may naively represent this as
∏
{x} dφ(x).

However, as pointed out by Struyve (2009), such measures do not exist.

We do not wish to go into detail about this problem, and instead refer the

reader to Struyve (2009) for further discussion.

In order for us to have a probabilistic interpretation in our k−space repre-

sentations, it is necessary for us to be able to transform the volume element.

Also since guidance equations are usually induced via interpreting the quan-

tum probability as an ensemble probability, the volume element seems vital

to the construction of a pilot-wave theory. For this reason we present an

argument for it’s transformation.
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Since the Fourier transform is linear, it might seem that we can relate Dφ

to it’s k−space via

Dφ = |det(M)| Dφ̃, (2.76)

where M is the Jacobian Matrix of the transformation. As such it seems

that we must evaluate a functional determinant. This is a highly non-

trivial expression. We may get a taste of what evaluating this expression

may involve through looking at a discrete case. As the Jacobian matrix

must be square for us to take it’s determinant, the only sensible scheme of

discretisation would be one in which we discretise the sets {x} and {k} to

have the same cardinality N . In this case the transforms may be represented

as

φxi =
1√
N

∑
j

eikj .xi φ̃kj
, φ̃kj

=
1√
N

∑
i

eikj .xiφxi . (2.77)

Using the Einstein summation convention, the Jacobian would then be

J = εi1...iN
∂φ̃ki1

∂φx1

. . .
∂φ̃kiN

∂φxN

,

=
√
Nεi1...iN ei(ki1

.x1+···+kiN
.xN ),

(2.78)

where εi1...iN is the totally antisymmetric Levi-Civita tensor. This clearly

becomes ill defined in the continuous case. The problem becomes more un-

settling if we remind ourselves that guidance equations are generally derived

such that an ensemble of systems will statistically reproduce the quantum

probability distribution.

Fortunately we may make an argument for the existence of a k−space

volume element, with the assumption of the x−space element, by the use

of one of Poisson’s integral invariants. If one considers a discrete canonical

transformation η → ζ, one may take the determinant of the symplectic
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condition (2.32), to find that the Jacobian matrix for the transformation

satisfies det(M)2 = 1. As one takes the absolute value of det(M) in trans-

forming the phase space volume element,

dη = |det(M)|dζ, (2.79)

one may conclude that for a canonical transformation the phase space vol-

ume element is invariant. This is the last of Poisson’s integral invariants.

The transforms (2.67) and (2.68) have some useful properties. Firstly

they are real and canonical, implying det(M) = ±1. Secondly the transfor-

mations do not mix the fields and their canonical conjugates, and as such

the matrix M takes block diagonal form. The determinant reduces to a

product of determinants,

det(M) = det



δφ
δa 0 0 0

0 δφ
δb 0 0

0 0 δπ
δπa

0

0 0 0 δπ
δπb


(2.80)

= det

(
δφ

δa

)
det

(
δφ

δb

)
det

(
δπ

δπa

)
det

(
δπ

δπb

)
. (2.81)

Thirdly we note, from the form of (2.67) and (2.68), the equality of the first

and third, and of the second and fourth factors in the product (2.81). We

deduce

det

(
δφ

δa

)
det

(
δφ

δb

)
= ±1, (2.82)
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and finally, (2.76) becomes

∏
x

dφ(x) =

′∏
k

da(k)db(k). (2.83)

This may be extended, using the same kind of trick as (2.21), to the two

complex representations we have described. The complex volume elements

in these cases are

∏
x

dφ(x) =

′∏
k

1

2
dφ(k)dφ(k)∗ (2.84)

=
∏
k

1

2
dφ(k). (2.85)

Probabilistic interpretation and guidance equations

If we take the imaginary part of the functional Schrödinger equation in the

real representation we find the continuity equation,

∂|ψ|2

∂t
+

∫
d3k

[
δ

δφa

(
|ψ|2 δS

δφa

)
+

δ

δφa

(
|ψ|2 δS

δφa

)]
= 0, (2.86)

which by the standard pilot-wave interpretation would imply the guidance

equations,

∂Φ̃a(k)

∂t
=

δS

δφ̃a(k)

∣∣∣∣
φ̃=Φ̃

,
∂Φ̃b(k)

∂t
=

δS

δφ̃b(k)

∣∣∣∣
φ̃=Φ̃

. (2.87)

In the complex representation the one finds the continuity equation

∂|ψ|2

∂t
+

∫
d3k

δ

δφ̃(k)

(
|ψ|2 δS

δφ̃(−k)

)
. (2.88)
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As such the guidance equations in the complex representation are

∂Φ̃(k)

∂t
=

δS

δφ̃(−k)

∣∣∣∣
φ̃=Φ̃

. (2.89)

In the complex φ, φ∗ representation the continuity equation is

∂|ψ|2

∂t
+

∫ ′
d3k

[
δ

δφ̃

(
|ψ|2 δS

δφ̃∗

)
+

δ

δφ̃∗

(
|ψ|2 δS

δφ̃

)]
= 0. (2.90)

As such, the guidance equations for the complex field are

∂Φ̃

∂t
=

δS

δφ̃∗

∣∣∣∣
φ̃=Φ̃

,
∂Φ̃∗

∂t
=
δS

δφ̃

∣∣∣∣
φ̃=Φ̃

, (2.91)

as expected. Before we move one we would like to highlight a possible

misinterpretation of these guidance equations. In using Wirtinger calculus

we have rather blurred the distinction between real and complex variables.

Since these variables now form our beables, this deserves clarification. In the

complex φ̃,φ̃∗ representation we seem to have guidance equations for both

the field φ̃ and it’s complex conjugate, and since we have been treating these

fields as independent variables one could be tempted to proclaim these as

independent beables. This of course does not make sense.

If they are not to be considered independent beables, then we must find

that

(
∂Φ∗

∂t

)
=

(
∂Φ

∂t

)∗
. (2.92)

This follows logically from a property of the Wirtinger derivatives†, namely

†See Bouboulis (2010) for a proof

32



that for a function f = f(z, z∗),

(
∂f

∂z

)∗
=

(
∂f∗

∂z∗

)
, (2.93)

Thus the second set of equations in (2.91) is equivalent to the first, and we

may discard one set. A similar argument may be made for the beables φ̃(k)

in the φ̃ representation.

2.4 Particle states and the low energy limit

Part of the motivation of this project was in the question of how the stan-

dard results of non-relativistic quantum mechanics may be retrieved in a

low energy quantum field theory. It is possible that an investigation into

this may be more fruitful if considering a pilot-wave theory. The pilot-

wave ontology allows us to consider the behaviour of a single quantum field,

rather than the forced abstraction of a wavefunctional or Fock vector. Since

the ontology of the pilot-wave formulation of quantum mechanics is that of

point particles, a necessary requirement of a pilot-wave quantum field theory

must be that it approximates this point particle ontology in some suitable

non-relativistic limit. One imagines that this must involve stable-localised,

possibly solitonic field excitations that, imbued with some kind of measur-

able function characterising position, would follow trajectories approximate

to the trajectories described by a quantum mechanical guidance equation.

To this end we introduce some work of Valentini (1992) concerning lo-

calised particle states. We work for the moment in the φ̃ representation.

If we define the positive and negative frequency field operators

φ̂(x) = φ̂+(x) + φ̂−(x) =

∫
d3k

(2π)3/2
1√
2Ek

(â(k)eik.x + â†(k)e−ik.x), (2.94)
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π̂(x) = π̂+(x) + π̂−(x) =

∫
d3k

(2π)3/2
(−i)

√
Ek

2
(â(k)eik.x − â†(k)e−ik.x),

(2.95)

and normalise our Fock states†

|k〉 =
√

2Ekâ
†(k) |0〉 , (2.96)

such that

〈k|k′〉 = 2Ekδ
(3)(k− k′). (2.97)

(where we have used [â†(k), â†(k′)] = δ(3)(k− k′)) we may define the oper-

ator,

X̂ = 2i

∫
d3xxφ̂−(x)π̂+(x). (2.98)

This has been designed to mimic the action of the quantum mechanical

position operator. The eigenkets of this operator are, in line with standard

interpretations of quantum field theory, the those created by the x−space

field operator acting upon the vacuum;

|x〉 = φ̂(x) |0〉 =

∫
d3k

(2π)3/2
1√
2Ek

â†ke
−ik.x |0〉

=

∫
d3k

(2π)3/2
1

2Ek
e−ik.x |k〉 .

(2.99)

†Differing from Valentini (1992) we prefer to follow Peskin & Schroeder (1995) in using
a Lorentz invariant definition of the single mode states. This makes only superficial
difference to the formulation of Valentini.

34



One may verify that,

X̂ |x〉 =

∫
d3y y

∫
d3k

(2π)3

d3k′

(2π)3

d3k′′

(2π)3

1√
2Ek

√
Ek′

Ek′′
ei(−k.y+k′.y−k′′.x)â†kâk′ â

†
k′′ |0〉

=

∫
d3y y

∫
d3k

(2π)3

d3k′

(2π)3

1√
2Ek

ei(−k.y+k′.y−k′.x)â†k |0〉

= x

∫
d3k

(2π)3

1√
2Ek

e−ik.xâ†k |0〉

= x |x〉 .
(2.100)

The normalisation of these states is

〈x′|x〉 = 〈0| φ̂(x′)φ̂(x) |0〉

=

∫
d3k

(2π)3

1

2Ek
e−ik.(x−x

′)

= D(x′ − x),

(2.101)

the Feynman propagator for spacelike separations. As this goes as e−m|x
′−x|,

for large m/|x′ − x|, it may be possible to consider |x〉 an approximation

to a quantum mechanical position basis. Then a state vector would be

represented

|ψ〉 =

∫
d3x |x〉ψQM (x), (2.102)

where ψQM (x) is a one particle wavefunction. If this were possible then the

obvious extension would be to attempt to construct an operator with the

eigenvalue k. The total momentum operator,

P̂ = −
∫
d3xπ̂(x)∇φ̂(x) =

∫
d3k k â†(k)â(k), (2.103)

suffices. The eigenkets of P̂ are simply the Fock states. If these operators

were to mimic the results of quantum mechanics then their commutator
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must at least approximate the correct solution, [X̂, P̂] ' i1. The quan-

tum mechanical Lie algebra would then correspond to a sub-algebra of that

of the field theoretic algebra. As current forms of X̂ and P̂ differ, this

seems unlikely in the current formulation. There are however a couple of

different forms of the total momentum operator, corresponding to different

constructions in the classical theory. We may also construct a new non-

total momentum operator. A quantum theory should by constructed from

it’s canonical variables, and as such the factor x in the integrand of (2.98)

is a bit of an oddity. We note however that there is a factor p in the in-

tegrand of (2.103), corresponding a gradient operator. We wonder whether

it would not be possible to formulate these operators purely in terms of

canonical operators. We very much regret that time constraints have meant

that we’ve not been able to investigate this possibility further.

If we attempt to extend these ideas to multiple particle states we find

some results that may aid analysis. To illustrate; if we take the most obvious

approach by defining a two particle state as

|x,x′〉 = φ̂(x)φ̂(x′) |0〉 =

∫
d3k

(2π)3

d3k′

(2π)3

1√
2Ek

1√
2Ek′

â†kâ
†
k′e
−ik.xe−ik

′.x′ |0〉

+
1

2Ek
δ(3)(x− x′) |0〉 ,

we find an encouraging delta function preventing us creating two particles

in one position. However if we act the position operator on this state we

find

X̂ |x,x′〉 = (x + x′) |x,x′〉 . (2.104)

As the commutator of the two field operators vanishes it is impossible to

single out one of the particles upon which to act an operator, implying oper-

ators of this type would not be able to tell us the position of a single particle

36



in a multiple particle state. Similarly we find P̂ |p,p′〉 = (p + p′) |p,p′〉,

and |p,p′〉 = |p′,p〉. A quantum mechanical position operator should be

formulated in terms of configuration space, and a momentum operator the

momentum analogue of configuration space. The product of these spaces

is of course phase space. These operators, in their current formulation, are

unable to act in this way. Particle creation and annihilation might seem

to be a great hurdle in constructing a working sub-algebra. Since, in a

low energy limit there should not be particle creation/annihilation, and one

assumes the dimensionality of phase space before constructing quantum me-

chanical position and momentum operators, it seems reasonable to assume

the number of ’particles’ when constructing X̂ and P̂.

3 Computational simulation

We began our investigation into field trajectories with the intention of sim-

ulating trajectories of general solutions of (2.69). It was hoped that a

program designed to do this could then be applied to the greatest num-

ber of specific problems. As already mentioned, the real representation in

hindsight was probably not the wisest choice of representation in which to

work. The Hilbert space of the real representation, when quantised so that

it’s canonical variables become operators, is larger than the Fock space in

which the theory is required to operate. As such much of the programming

involved duplication of processes for variables that, once the initial condi-

tions had been specified, could have been reduced to simpler expressions.

Much of the methodology however, is applicable to further undertakings in

this area.
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3.1 A computable expression for field trajectories

When moving from continuum to box normalisation of k−space as specified

by the transforms (2.1) and (2.1), we make the associations

φ̃(k)↔ qk,

∫
d3k

(2π)3
↔ 1

V

∑
k

,
δ

δφ̃(k)
↔ ∂

∂qk
. (3.1)

We make the further association† qk = 1√
2
(ak − ibk), to find the real repre-

sentation. The Hamiltonian becomes

i
∂ψ

∂t
=

′∑
k

1

2

[
−
(
∂2

∂a2
k

+
∂2

∂b2k

)
+ E2

k(a2
k + b2k)

]
ψ. (3.2)

Although in general the solutions of this equation are not product wave-

functions, and we shall be constructing ones that are not, the groundstate

plainly is. We write it

ψ0(a,b) = eiθ
′∏
k

ψ0(ak)ψ0(bk), (3.3)

ψ0(ak) =

(
Ek

π

) 1
4

e−
1
2
Eka

2
ke−

1
2
iEkt (3.4)

a simple product of modal harmonic oscillator groundstates. From this we

may construct any state of the free system by acting a number of creation

operators,

â†k =

√
Ek

2

(
ak −

1

Ek

∂

∂ak

)
, (3.5)

b̂†k =

√
Ek

2

(
bk −

1

Ek

∂

∂bk

)
, (3.6)

†Note that we have retained hats on all operators to avoid confusion with field variables
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on a number of groundstates and taking a superposition with some relative

phases. Since we are dealing with harmonic oscillators the creation operators

act such that

ψn(ak) = ψ0(ak)

√
1

2nn!
Hn(

√
Ekak)e−iEkt = ψ0(ak)hn(ak), (3.7)

where Hn(
√
Ekak) are the Hermite polynomials in

√
Ekak. In the case

where our wavefunction is a product, the phases in (3.7) will sum to produce

an overall phase in (3.3). In any wavefunction with an overall phase, the

guidance equations,

∂αk

∂t
= Im

(
1

ψ

∂ψ

∂ak

) ∣∣∣∣
ak=αk(t)

,
∂βk
∂aκ

= Im

(
1

ψ

∂ψ

∂bk

) ∣∣∣∣
bk=βk(t)

(3.8)

may be seen to vanish. This is analogous to the standard quantum mechan-

ical case.

Taking a superposition of (3.3), an arbitrary wavefunction for our field

may be represented

ψ(a,b) = ψ0(a,b)
∑
i

cieiθ
i

∏
k/2

hn
i
k(ak)hm

i
k(bk)

 (3.9)

Since the ψ0 and it’s derivative are real any contribution that the ground-

state wavefunction may have made drops out of the guidance equations

leaving our final result for an arbitrary field

∂ακ

∂t
= Im

∑i c
ieiθ

i
[∏

k/2 h
ni
k(ak)hm

i
k(bk)

]
∂
∂aκ

(
lnhn

i
κ(aκ)

)
∑

i c
ieiθi

[∏
k/2 h

ni
k(ak)hm

i
k(bk)

]
 ∣∣∣∣

a=α(t)b=β(t)

.

(3.10)

Although this isn’t the prettiest of equations it is general, exact and quite
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computable. More so the bulk of this equation is polynomial and mod-

ern computers are very efficient in calculating polynomials, as apposed to

exponents or logarithms where they must resort to power series.

The simplest non-trivial case is the superposition of a groundstate and

a state with one excited mode in the first excited state, n1
k = 1. The

corresponding polynomial is then h1(ak) =
√

2Ekake
−iEkt and ,with all

other h0 = 1, the velocity of the system in the kth direction is

∂αk

∂t
= Im

(
c2eiθ

2√
2Eke

−iEk

c1eiθ1 + c2eiθ2ak
√

2Eke−iEk

)∣∣∣∣
a=α(t)b=β(t)

. (3.11)

The velocity in all other directions will be zero.

3.2 Position eigenstates

We may retrieve the wavefunction of the localised field excitations of 2.4 by

taking the inner product of the state with the basis of the representation

we are working in. In the current case we have the basis {|a,b〉}, where

a = (ak1 , ak2 , . . . ), b = (bk1 , bk2 , . . . ) normalised in the usual way,

〈a,b|a′,b′〉 = δ(3)(ak1 − a′k1
)δ(3)(bk1 − b′k1

) . . . (3.12)

The groundstate in this basis is

|0〉 =

∫
dadbψ0(a,b) |a,b〉 . (3.13)

The discrete version of the single particle state is then

|x〉 ≡ 1√
V

′∑
k

1√
Ek

(
â†kcos(k.x) + b̂†ksin(k.x)

)∫
dadbψ0(a,b) |a,b〉 .

(3.14)
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Figure 0.1: A likely φ(x) in |x = (π, π)〉 calculated on a 7 by 7 grid of k
points, with m = 20

making the wavefunction

ψx(a,b) ≡ 〈a,b|x〉 (3.15)

=
1√
V

′∑
k

√
2 (cos(k.x)a(k) + sin(k.x)b(k))ψ0(a,b). (3.16)

This, in the φ̃ representation, takes the form ψx[φ̃] =
∫

d3k
(2π)3/2

eik.xφ̃(x)ψ0[φ].

One may verify these equations by using the reverse canonical transforma-

tions (2.1) and (2.67).
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Plotting a likely |x〉

If the assertion made in section to 2.4, namely that a pilot-wave field theory

must produce localised fields in the low energy limit is true, then a likely

field configuration of |x〉 must be localised. A simple verification of the

plausibility of this was carried out. A basic Monte-Carlo random stepper

algorithm was written to find the maxima of the probability amplitude

corresponding to (3.16). Assuming a two dimensional x−space for ease of

plotting, the sum was taken over grids of k of varying sizes. It was found

that with the computational resources available to us, convergence to a

field configuration was not possible. This impeded for possibility of varying

m. Nevertheless, as shown in figures 0.1, 0.2 and 0.3, the resultant field

configurations are clearly localised.

3.3 On constructing a code to calculate a general field

trajectory

As we are not presenting results there is no benefit to be gained by detailing

the finer parameters of the code generated. Instead we wish to outline

the structure of the code we wrote as we believe, due to it’s generality, it

may be useful to others considering simulating similar trajectories. The

code has been made available at http://nicku.co.uk with documentation

and instructions for compilation under a GPL license.

The outline problem was: solve equation (3.17) for a general wavefunction

(3.9) constructed from a arbitrary number of product wavefunctions, each

with an arbitrary number of excitations in an arbitrary number of modes.

The actual algorithm was a Runge-Kutta-Fehlberg, as described in Press

et al. (1992).
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Figure 0.2: A likely φ(x) in |x = (π, π)〉 calculated on a 9 by 9 grid of k
points, with m = 20

The equation for a free field trajectory,

∂ακ

∂t
= Im

∑i c
ieiθ

i
[∏

k/2 h
ni
k(ak)hm

i
k(bk)

]
∂
∂aκ

(
lnhn

i
κ(aκ)

)
∑

i c
ieiθi

[∏
k/2 h

ni
k(ak)hm

i
k(bk)

]
 ∣∣∣∣

a=α(t)b=β(t)

,

(3.17)

requires a code with great flexibility. The greatest problems to surmount

were, we think

� Firstly, and most importantly, (3.17) implies that there will only be

motion in the k−space directions in which there excitations in the

superposed wavefunctions, so the trajectory must be calculated in an

arbitrarily dimensional space.
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Figure 0.3: A likely φ(x) in |x = (π, π)〉 calculated on a 17 by 17 grid of k
points, with m = 20

� Secondly, there may be an arbitrary number of superposed fields each

with an arbitrary number of excited oscillators.

� Finally, though products must necessarily be calculated over the Her-

mite polynomials of each respective product wavefunction in the su-

perposition, the k−sub-configuration space of each wavefunction may

overlap.

These three points, when combined suggested a program with large de-

rived data types, the first of which (named wvfn) was that containing all
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Figure 0.4: The program produces a real-time video as it run of the field
trajectory. This is a screenshot of some typical output.

the information required to calculate

cieiθ
i

∏
k/2

hn
i
k(ak)hm

i
k(bk)

 . (3.18)

for a product wavefunction. There was required to be an arbitrary number

of these, so a linked listed structure with each wvfn pointing to the next was

the most appropriate choice. Since the configuration space of the system

was different from the configuration space of each product wavefunction,

the actual position of the system in k−space was kept in terms of a basis

consisting of all excited modes in a separate derived type ppos. The modes

in each wvfn, then point to the position vectors in ppos so that we need not

update positions in wvfn; as the trajectory progresses we only need update

the positions in the ppos. Finally, as we calculate each velocity vector in

the basis contained in ppos, we need to be able to know where the relevant
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excited oscillators in the wvfn are. To this end we used an idea found in

Metcalf & Reid (1999). Arrays of pointers are not included in the Fortran

standard, though the same effect may be achieved by using a derived type.

The elements of the vectors ppos are then able to contain pointers to the

excitations to be summed over, in the same way that the excitations point

to the positions.

4 Summary and conclusions

In this dissertation we began by wishing to make numerical simulations of

the low energy limit of scalar field theory. We did not manage to achieve

this within the available time, though we have developed a code that can

do this. We showed that the standard k−space representations used for the

theory complicate it unnecessarily, and showed that a simple one is valid.

We also made a plausible argument for the volume element in k− space,

something that is surely vital to a pilot-wave theory.

We very much regret that we have not had the time to try to develop a

low energy sub-algebra of the field operator algebra. The non-relativistic

limit is something that We feel should be an integral part of a quantum field

theory. For a pilot wave theory, where one may simulate the trajectories of

point particles of known wavefunctions with ease, it could be very profitable

to compare the difference between low energy field trajectories and point

particles.
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Figure 0.5: This represents the underlying structure of the code. The need
to iterate over both the configuration space coordinates and over
product wavefunction excitations is achieved through ordering in
ppos and the wvfn respectively. The pointers, represented in red
link each oscillator excitation in the wvfn to its k−space basis
vector and coordinate in ppos and vice versa. The iterations
may then descend down the arrays, and obtain all information
they require.
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