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Abstract

We present generalised geometry as a natural mathematical language within which

to expressing supergravity theories, by virtue of the ability it provides to compos-

ite the metric g and B field into a single object. We motivate this via the roots

of supergravity in supersymmetry, before detailing the most tractable case of in-

terest; the NS sector of type II supergravity. The important quantities and field

equations are summarised, before we outline the relevant extended objects within

the theory; the Dabholkar Harvey fundamental string and the NS 5 brane. The

structure of generalised geometry is then investigated, with a view to the most

useful facets in this context, before the novel tools provided by generalised geom-

etry are outlined. It is hoped that this work can provide a clear and concise basis

for further developments in this area.



Chapter 1

Introduction

Supergravity is, as the name would suggest, a field of research concerning theories

of gravity incorporating some degree of supersymmetry; a conjectural symmetry

between bosons and fermions. Supersymmetry aims to unify these two families of

particles by postulating as of yet unobserved space-time symmetries, achieved in

practice by extending the familiar Poincaré group of spacetime symmetries. With

this in mind, the question which leads us to supergravity can be phrased in a very

natural way; whilst we can arrive at general relativity as the result of gauging the

Poincaré group, what results from gauging this new extended group of symmetries?

The result is a theory of gravitation incorporating supersymmetry, and as we will

see, some very useful properties.

1.1 Historical perspective

Investigations into supergravity first began in the mid 1970’s through the work

of Freedman, Van Nieuwenhuizen and Ferrara, at around the time that the im-

plications of supersymmetry for quantum field theory were first beginning to be

understood [1]. By promoting supersymmetry from a global to a local symmetry,

supergravity appeared to offer a way to combine general relativity and the strong,

weak and electromagnetic forces, generating considerable excitement. Although
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originally formulated in four dimensions, a number of subsequent developments

established a unique supergravity in eleven dimensions as a potential ‘theory of

everything’.

- 11 dimensions were shown by Werner Nahm to be the largest number com-

patible with a single graviton and no particles with spin greater than two

[2].

- Edward Witten demonstrated that a minimum of eleven dimensions are re-

quired to embed the gauge groups of the standard model in supergravity

[3].

- Sherk, Julia and Cremmer succesfully found the 11 dimensional classical

supergravity action [4].

- The N = 8 theory was found to predict rather than assume the correct

charges for fundamental particles, and potentially offered to replicate much

of the content of the standard model [5].

Indeed, Stephen Hawking argued in 1980 during his inaugural lecture as the

Lucasian Professor of mathematics that a ‘final’ theory based on eleven dimensional

N = 8 supergravity was near to completion, suggesting a 50% chance of success by

the end of the century [6]. This optimism however proved to be short lived, and in

particular it was not long before a number of gauge and gravitational anomalies

were discovered; seemingly fatal flaws which would render the theory inconsistent

[7].

Perhaps unsurprisingly, interest in supergravity subsequently waned. It was

known that some of these difficulties could be circumvented by moving to a ten

dimensional supergravity, however this would sacrifice the unique nature of the

eleven dimensional theory. Progress in this once-exalted theory faltered for a

number of years, until the first of a series of now famous developments began to

rekindle interest through advances made in a parallel field; superstring theory.
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1.1.1 The first superstring revolution

A series of rapid developments in the period from 1984-1985, the first superstring

revolution provided convincing arguments that the five superstring theories, previ-

ously considered irrelevant, were promising candidates for unification of the known

fundamental forces [8]. This both transformed the fortunes of superstring theory,

and brought its low energy limit; supergravity, back to the fore, albeit in ten di-

mensions. In particular, Michael Greene, John Schwartz and David Gross demon-

strated the existence of three (and only three) ten dimensional supergravities in

which the previously fatal anomalies cancel; type I, type IIA and type IIB [9][7].

1.1.2 The second superstring revolution

It took until 1994 for the first in a new series of breakthroughs; now known as

the second superstring revolution, for supergravity to experience a full resurgence.

Spearheaded by the work of Edward Witten, it came to be understood that the

five consistent superstring theories could be unified non-perturbatively into a single

eleven-dimensional framework; M theory [10]. This is considered by many to be

a contender for the much sought after ‘final theory of everything’, and has eleven

dimensional supergravity as its low energy limit. Needless to say, this development

has brought supergravity full circle, casting it squarely back into a field of active

research.

1.2 Supermotivations

There are a number of compelling reasons to study supergravity, some of which

we briefly outline.
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1.2.1 Supergravity as an effective field theory

The modern perspective of supergravity is as a low energy effective theory to a more

fundamental theory. The best candidate we have at present for this is string theory;

seemingly the only viable candidate for a theory of quantum gravity. Supergravity

allows us to investigate the low energy dynamics of string theory, where we can

simplify by disregarding complications relating to renormalisability. This approach

has yielded a number of insights; particularly into the various dualities in string

theory, some of which were first understood through supergravity models and

solutions. Some of the extended objects in string theory, such as D and p-branes,

were also first discovered as solutions to supergravity models [11].

1.2.2 AdS/CFT

Also known as gauge/gravity correspondence, the AdS/CFT correspondence is

a conjectured duality between certain string theories on curved spaces and con-

formal field theories. Pioneered by Maldacena in late 1997 [12], the AdS/CFT

correspondence has subsequently engendered one of the biggest revolutions in our

understanding of string theory. The correspondence also casts supergravity, as the

low energy limit of these string models, into a powerful tool for computations in

the strong coupling limit of the dual field theory [11].

1.2.3 Phenomenology

As we would expect from an effective field theory to string theory, supergravity

has an important role to play in particle physics phenomenology. Supergravity

theories in particular are known to have a number of useful properties in this

context, particularly regarding problems induced by supersymmetric extensions of

the standard model. These include the removal of the large cosmological constant

induced by spontaneous supersymmetry breaking, and an explanation for the lack

of experimental evidence for the goldstino particle predicted by supersymmetry;
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when supersymmetry is broken in supergravity the goldstino is ‘eaten’ by the

gravitino [13].

1.3 Overview

In this thesis we will primarily focus on type II supergravity in the Neveu-Schwarz

sector; that is, the bosonic part of type II supergravity. Of course there are two

type II supergravities; IIA and IIB, but as they differ only in fermion content

and we are concerned solely with bosons, this is inconsequential. In particular

we will focus on outlining the mathematics required to recast supergravity in the

language provided by generalised geometry; a relatively new topic in differential

geometry. As generalised geometry happens to provide a very natural formulation

for expressing supergravity theories, it is hoped that this approach may yield new

insights.

To this end, we will first look at supersymmetry, before supergravity etc. Sub-

sequently we will introduce other useful stuff. (I’ll set up the rest of this small

overview section once the rest of the chapter is finalised). In what follows some

familiarity with general relativity is assumed, readers lacking this background may

find Wald’s General Relativity a helpful resource in this regard. Throughout this

thesis we will also make extensive use of the language of differential forms, for those

who are unfamiliar in this regard we can thoroughly recommend M. Nakahara’s

‘Geometry, Topology and Physics’ as a resource.
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Chapter 2

Supersymmetry

“Discovery of supersymmetry would be more profound than life on

Mars”

- John H. Schwarz [11]

Supersymmetry, along with superstring theory, has arguably been the two defining

features of the high energy physics of the last few decades. An enormous subject

in its own right, it is also our starting point for understanding supergravity.

To this end we will first outline the roots of supersymmetry in the Coleman

Mandula theorem, before motivating the subject with some modern day theoreti-

cal results. We subsequently look at the superalgebra and supermultiplets of N=1

and N=2 supersymmetry, and touch on the N > 2 case. Finally, we introduce

global supersymmetry transformations, which lead us into the next chapter. For

interested readers there are a number excellent review articles which further es-

pouse the concepts developed within this chapter, we can particularly recommend

[14] and [15].
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2.1 A little background

The roots of the supersymmetry can be traced back to the 1967 paper ‘All Possi-

ble Symmetries of the S Matrix’ by Sidney Coleman and Jeffrey Mandula, which

comprises their eponymous theorem [16]. Therein, they provided rigorous proof

that under some reasonable assumptions, only certain symmetries of the S ma-

trix, and thus fundamental physics, can exist. The symmetries in question are

the familiar discrete C, P and T symmetries, internal global symmetries relat-

ing to conserved quantum numbers, and Poincaré invariance; essentially Lorentz

invariance combined with spacetime translations.

Supersymmetry can be viewed as an attempt to circumvent this bound. This

is achieved in practice by weakening one of these assumptions; namely that the Lie

algebra of the S matrix symmetries must consist solely of commuting generators.

To extend this algebra we allow also for the possibility of anticommuting gen-

erators, which transform in spinor representations of the Lorentz group. As each

irreducible representation of this extended algebra must contain several irreducible

representations of the Poincaré algebra; each corresponding to single particles, this

extension implies an inherent grouping of particles. These groupings are known as

supermultiplets and contain particles differing by spin 1
2
, which are related by the

action of the anticommuting generators. If supersymmetry is a facet of nature,

there must exist a raft of thus far unobserved particles to fully populate these

supermultiplets, each a superpartner to a known fundamental particle. The exis-

tence of these superpartners has a profound effect on physics, as we will see.

2.2 Motivations

Aside from the aesthetic appeal of a single framework relating fermions and bosons,

a number of quantitative results have spurred supersymmetry research [17].
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- The possibility for a high energy unification of the strong and electroweak

forces.

- A potential candidate for dark matter in superpartners.

- A solution to the hierarchy problem of the standard model.

Needless to say, evidence of supersymmetry is a hotly anticipated development in

the future of physics.

It seems natural at this point to consider the possibility of other symmetries po-

tentially arising from the introduction of these anticommuting generators. However

the work of Haag, Lopuszaǹski, and Sohnius has demonstrated that supersymme-

try is the only additional symmetry of the S matrix permitted by this particular

circumvention of the Coleman Mandula theorem [18]. The question remains as to

whether further weakening of some the assumptions of this theorem may permit

further, useful symmetries, however at present no meaningful examples have been

found [19]. This leads us to the not unreasonable assertion that at present, super-

symmetry should be considered the only viable extension of the known spacetime

symmetries of physics.

2.3 The Poincaré group

Our starting point for the mathematics of supersymmetry is the familiar Poincaré

algebra, the Lie algebra of the Poincaré group;

[Pµ, Pν ] = 0

[Mµν , Pρ] = iωµρPν − iωνρPµ

[Mµν ,Mρσ] = iωµρMνσ − iωµσMνρ − iωνρMµσ + iωνσMµρ

8



where P µ is the generator of translations, Mµν are the Lorentz generators, and ωµρ

is the Minkowski metric. The Poincaré group is of course the full symmetry group

of special relativity, including boosts, translations and rotations.

To include new symmetries we extend the Poincaré group via new anticom-

muting symmetry generators, and postulate their anticommutation relations. To

ensure that these unobserved symmetries do not conflict with experimental results

obtained thus far we must assume that supersymmetry is spontaneously broken,

allowing the superpartners to be more massive than the energy scales probed thus

far. A number of arguments suggest that supersymmetry breaking must be in-

trinsically related to the electroweak scale; roughly 0.1-1TeV [11]. If this is the

case, the superpartners of known elementary particles should lie roughly within

this range, and will hopefully be observable in the next few years at the CERN

Large Hadron Collider (LHC) and possibly at Fermilab’s Tevatron.

2.4 The SuperPoincaré group

The simplest extension of the Poincaré group is through the inclusion of the sym-

metry generators Qα and Q̄β̇. This defines the N = 1 supersymmetry algebra,

uniquely determined by the relations;

{Qα, Q̄β̇} = 2σµ
αβ̇
Pµ, (2.1)

[P µ, Qν ] = 0, (2.2)

where Q̄α̇ is the hermitian adjoint of Qα and σµ
αβ̇

= (1, σi), for the Pauli matrices

σi. It is important to note that as Qα is related to the generator of spacetime

translations Pµ, rather than an internal symmetry such as the SU(3) ⊗ SU(2) ⊗
U(1) symmetry of the standard model, supersymmetry must also indeed also be a
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spacetime symmetry.

2.4.1 Supersymmetry representations

To properly investigate supersymmetry representations we consider the action of

Qα and Q̄β̇ on a helicity eigenstate |λ0〉. We find

Q|λ0〉 = |λ0 −
1

2
〉, and Q̄|λ0〉 = |λ0 +

1

2
〉. (2.3)

From the anticommutation relations

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (2.4)

we can see that

QαQβ|λ0〉 = −QβQα|λ0〉 = 0, (2.5)

and the repeated action of Qα and Q̄β̇ can only create a finite number of states. In

the N = 1 case this action creates multiplets containing only two states; |λ0〉 and

|λ0 + 1
2
〉, denoted (λ0, λ0 + 1

2
). As this multiplet is not CPT invariant, we must

add the CPT conjugate to ensure that the supermultiplets satisfy CPT symmetry.

2.4.2 N = 1 Supermultiplets

As we are only interested in physical states, we also restrict our attention to

particles with a maximum spin of 2. The resulting N = 1 supermultiplets are

- Chiral; (0, 1
2
) and (−1

2
, 0), comprising a complex scalar and a Weyl fermion.

- Vector; (1
2
, 1) and (−1,−1

2
), comprising a gauge boson and a Weyl fermion.

- Gravitino; (1, 3
2
) and (−3

2
, 1), comprising a gravitino and a gauge boson.

- Graviton; (3
2
, 2) and (−2,−3

2
), comprising a graviton and a gravitino.
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2.5 Extended supersymmetry

It is of course possible to continue this extension of the Poincaré group, postulating

N supersymmetry generators QA
α (A = 1...N), and the relation

{QA
α , Q̄β̇B} = 2(σµ)αβ̇Pµδ

A
B. (2.6)

We also define

{QA
α , Q

B
β } = εABZ

AB (2.7)

where εAB is the Levi-Civita tensor, for some antisymmetric central charges ZAB

which commute with all the generators. The simplest extension from N = 1 su-

persymmetry, and the case of interest in this thesis, is N = 2. This holds the

promise to unify gravity and electromagnetism, via a supermultiplet containing

two gravitinos, the photon and the graviton. Excitement in this model was first

triggered by a powerful breakthrough; an explicit photon-photon scattering calcu-

lation known to be divergent in the Maxwell-Einstein system yielded finite results

due to cancellations from the new gravitino diagrams [5]. This set the scene for

the original development of supergravity as a finite theory of quantum gravity.

2.5.1 N = 2 Supermultiplets

N = 2 supermultiplets take the form of (λ0, λ0 + 1
2
, λ0 + 1

2
, λ0 + 1). They are

- Vector; (0, 1
2
, 1

2
, 1) and (−1,−1

2
,−1

2
, 0), comprising a gauge boson, two Weyl

fermions and a complex scalar.

- Weyl; (1
2
, 1, 13

2
) and (−3

2
,−1,−1,−1

2
), comprising a Weyl fermion, two gauge

bosons and a gravitino.

- Graviton; (1, 3
2
, 3

2
, 2) and (−2,−3

2
,−3

2
,−1), comprising a gauge boson, two

gravitinos and a graviton.
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2.6 N > 2 Supersymmetries

As an aside, It is of course possible to continue this extension into higher de-

grees of supersymmetry. There are a number of important facets of these N > 2

supersymmetries, some of which we briefly state.

- Since renormalizable theories have |λ| ≤ 1, N = 4 is the maximal supersym-

metry for renormalizable field theories. This is known as Super Maxwell or

Super Yang Mills theory, and is of special interest as it is UV finite, lacking

divergences in the quantum theory [11].

- As we consider massless particles with |λ| > 2 to be unphysical, N = 8 is

considered to be the maximum number of supersymmetries. For the inter-

ested reader there is a detailed discussion of the |λ| > 2 case in the ‘soft

photon’ section in Volume 1 of Weinberg’s The Quantum Theory of Fields,

Chapter 13.

2.7 Supersymmetry transformations

It is easy to see from the action of Qα and Q̄β̇ in the previous section that super-

symmetry transforms bosons into fermions and vice versa. In particular we can

consider infinitesimal supersymmetry transformations

δ1B ∼ ε1F (2.8)

δ2F ∼ ε̄2∂B (2.9)

for some bosonic and fermionic fields B and F. The anticommuting parameter ε

must have dimension [ε] = −1
2

in mass units, since [B] = 1 and [F ] = 3
2
. This

then implies the presence of the derivative operator in the second transformation,

to ensure dimensional consistency. It is the consideration of these variations that

12



leads us from supersymmetry to supergravity, and into the next chapter.
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Chapter 3

Supergravity I

“Gravity exists, so if there is any truth to supersymmetry then any

realistic supersymmetry theory must eventually be enlarged to a super-

symmetric theory of matter and gravitation, known as supergravity.

Supersymmetry without supergravity is not an option, though it may be

a good approximation at energies below the Planck Scale.”

- Steven Weinberg, The Quantum Theory of Fields, Volume III

Supergravity is the logical conclusion of supersymmetry. As elucidated in pre-

vious chapters, it has also been and remains a very important topic in theoretical

physics, having a key role to play in our understanding of string theory, M theory,

the AdS/CFT correspondence and many other topics of active research [11][20][21].

It is hoped that formulating aspects of supergravity in the natural language pro-

vided by generalised geometry, the aim of this thesis, will provide further insight

into these areas.

As such, we must first outline the basic features of type II supergravity as

they stand today. In this chapter we establish the roots of supergravity via local

supersymmetry transformations, before outlining the proceeding to the type II

supergravity action. We subsequently elicit the behaviour of the two that couple

to the NSNS sector of type II supergravity; the Dabholkar Harvey fundamental
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string and the NS 5 brane.

There is a large volume of supergravity literature in existence with a number of

differing conventions, which can unfortunately render initial efforts into the subject

a confusing experience. However there are a number of excellent resources that we

can recommend for further study, particularly Bernard de Wit’s lecture series and

P. Van Nieuwenhuizen’s 1980 review article ‘Supergravity’ [21] [5].

3.1 Local supersymmetry

In everything set out so far, we have implicitly assumed global supersymmetry.

We now turn to consider the consequences of promoting supersymmetry from a

global to a local symmetry, which as we will see, is the root of supergravity. From

the relations

δ1B ∼ ε1F, (3.1)

δ2F ∼ ε̄2∂B, (3.2)

we can consider the effect of successive supersymmetry variations;

{δ1, δ2}B ∼ aµ∂µB; aµ = ε̄2γ
µε1. (3.3)

It is straightforward to see that these successive transformations result in spacetime

translations. If we promote supersymmetry a local symmetry; i.e. εα −→ εα(x),

then we find translations aµ∂µ are generated which are necessarily spacetime depen-

dent. These general coordinate transformations are of course the basis of general

relativity, which leads us to the surprising statement that local supersymmetry

necessarily implies gravity. This conclusion is of course the root of supergravity.
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3.2 Vielbeins

As we have now established, the nature of local supersymmetry naturally predi-

cates both gravity and fermions. Any description of supergravity must therefore

be able to incorporate spinors in curved spacetime.

The most convenient way to achieve this is via the vielbein, or Cartan, for-

malism. In the standard formulation of general relativity, the metric gµν is the

fundamental object. From this we can define the Christoffel symbols;

Γαµν =
1

2
gαβ(gβµ,ν + gνβ,µ − gµν,β), (3.4)

and subsequently the Riemann tensor;

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
σν − ΓρνλΓ

λ
σµ. (3.5)

However we can also consider that at each point of our spacetime manifold

there exists a tangent space, isomorphic to d-dimensional Minkowski space MD.

Due to the absence of curvature, Lorentz transforms are well defined in these

tangent spaces. By formulating a gravitational theory in terms of these tangent

spaces rather than the spacetime manifold itself, we can circumvent some of the

issues created by this curvature. To leverage this we define a local orthonormal

basis eµa(x) (a = 0, 1, .., D − 1) of tangent vectors, such that

gµν = ηabe
a
µe
b
ν , (3.6)

where ηab is a flat Minkowski metric, i.e. diag(+1,−1, . . . ,−1). These eaµ(x) are

the vielbeins. They transform covariantly under general coordinate transforms

and contravariantly under local coordinate transforms, as we would expect from

their index structure. Bearing this in mind we can raise and lower via the general

16



metric gµν and the Minkowski metric ηab;

eaµ = ηabgµνe
ν
b . (3.7)

To ensure that the metric is invertible, we also define an inverse vielbein êµa , such

that

êµae
a
ν = δµν . (3.8)

We can think of vielbeins as elements parametrising the coset

GL(4)

SO(3, 1)
, (3.9)

where GL(4) matrices acting on the curved space indices parametrise general co-

ordinate transformations, whilst the Lorentz group acts on the flat space indices.

It is from this that we can see the importance of vielbeins in this context; as GL(4)

does not admit a spinorial representation, vielbeins are simply required to couple

fermions into gravity.

3.3 Type II supergravity

We now turn out attention to type II supergravity; the 10 dimensional low energy

limit to type II string theory. This theory is rooted in N = 2 supersymmetry, with

32 supersymmetries generated by two 16 dimensional Marjorana-Weyl fermions.

There are two ‘flavours’ of type II supergravity, distinguished by the chirality of the

supersymmetry generators ε1,2; in type IIA the generators have opposite chiralities,

in type IIB they are the same.

For issues of simplicity, we are primarily concerned with the bosonic content

common to both theories; known as the NSNS sector. This terminology originates

from the Neveu-Schwarz-Neveu-Schwarz boundary conditions that which source

these bosonic fields states in the string theory must obey. To concretely elucidate
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the properties of the theory, we require an action. Our starting point is therefore

the bosonic part of the type II action;

SNS =
1

2κ2
10

∫
d10x
√
−ge−2Φ(R + 4(∂Φ)2 − 1

2
|H3|2). (3.10)

Wherein;

- g =
√

detgµν

- the coupling constant κ is given by 2κ2
10 = 16πg,

- Φ is the scalar dilaton field,

- R is the Ricci scalar R = gµνRµν ,

- H3 is the Neveu-Schwarz 3 form field strength, defined as H3 = dB2, for

some Kalb-Ramond field B2.

It is important to note that this action is valid in the string frame, which differs

by a scaling factor from the conventional Einstein frame used in general relativity.

More explicitly; gEµν = e−2φgµν , for the string frame metric gµν and the Einstein

frame metric gEµν .

It is also illuminating to consider that we can arrive at this action via com-

pactification of the full 11 dimensional supergravity action on a torus, which seems

to imply that in the strong coupling limit of type II theory, a new 11th dimen-

sion becomes accessible. This quirk of the theory was one of many things which

were only fully understood in the light of M theory, and the events of the second

superstring revolution.
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3.3.1 Field equations

From the Euler-Lagrange equations it is a straightforward task to derive the field

equations for this action;

RMN −
1

4
HMRSHN

RS +∇M∇NΦ = 0, (3.11)

∇2(e2Φ)− 1

6
e−2ΦHMRNH

MNR = 0, (3.12)

∇M(e2Φ)HMNR = 0. (3.13)

(3.14)

Additionally, we have the Bianchi identity:

dH3 = 0. (3.15)

3.3.2 SUSY variations

As we would expect, the Type II supergravity supermultiplets contain a doublet

of dilatinos λ1,2, and a doublet of gravitinos δψ1,2. The supersymmetry variation

of these doublets is then;

δψ1 = (DMε)
1 =

(
∇M +

1

4
HM

)
ε1 (3.16)

δψ2 = (DMε)
2 =

(
∇M −

1

4
HM

)
ε2 (3.17)

δλ1 =

(
∂Φ +

1

2
H

)
ε1 (3.18)

δλ2 =

(
∂Φ− 1

2
H

)
ε2 (3.19)
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3.4 Fundamental strings

Having established the fundamentals of the NSNS sector of type II supergravity,

our attention now turns to the two basic extended objects present in the theory.

The first of these is the Dabholkar Harvey (DH) fundamental string, a singular

supergravity solution which couples to the NSNS sector and preserves half of the

spacetime supersymmetries [22][23].

The DH fundamental string corresponds to the most basic classical solution of

string theory, and has been subsequently extended by Waldram and Sen to allow

for the inclusion of momentum and charge flowing along the string [24][25]. Our

starting point is the combined action;

S = SNS + Sσ, (3.20)

= SNS −
µ

2

∫
d2σ(
√
γγMN∂MX

µ∂NX
νgµνe

αΦ + εMN∂MX
µ∂NX

νBµν), (3.21)

for a sigma model action Sσ. This encodes the coupling of the string to the dilaton,

metric and the 3 form field strength, with the parameter α = 1√
2
. From this

combined action we find a seemingly intractable system of nonlinear of equations

of motion, however there exists a simple ansatz;

ds2 = eJ [−dt2 + (dx1)2] + eKdx · dx. (3.22)

We can solve this for a single scalar function E(r);

J = E(r) , K = E(r) Φ = αE(r) B01 = −eE(r), (3.23)

where x1 is the direction along the string, and r2 = x · x = ηijx
ixj(i, j = 2...9).
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3.5 NS 5 branes

The other primary solution of interest is the NS 5 brane; an extended 5 dimen-

sional object which is the electromagnetic dual of the fundamental string. The

solutions arise from considerations related to Dirac’s magnetic monopoles; in 3+1

dimensions we have the familiar relations

dF = 0, d∗F = jE, QE =

∫
S2
∞

∗F. (3.24)

Dirac conjectured that magnetic monopoles may exist, which would obey dual

versions of these relations;

dF = jM , d∗F = 0, QM =

∫
S2
∞

F. (3.25)

We now consider an analogous situation in a D dimensional string theory. Firstly

we require the 2 form potential B introduced previously, as we are now coupling to

the world sheet of a string rather than the world line of a particle, through
∫
S
B.

This generates the 3 form field strength H = dB, and the analogous equations

become;

dH = 0, d∗H = jE, QE =

∫
SD−3
∞

∗H. (3.26)

The dual equations are;

dH = jM , d∗H = 0, QM =

∫
S3
∞

H. (3.27)

We are interested in objects with the fixed magnetic charge QM ; so in D = 10 we

can look for solutions which are spherically symmetric in the 4 directions bounded

by S3
∞, and independent of the other 5 spatial dimensions plus time. We have the

field equation

d∗(e−2ΦH) = 0, (3.28)
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trivially as a result of spherical symmetry. From a generalisation of Birkhoff’s

theorem we can say that for a given mass M and charge QM there exists a unique

solution. If (
QM

M

)
>

(
QM

M

)
C

, (3.29)

where C indicates some critical value, the solution is a black p-brane with a hidden

singularity. As we wish to avoid naked singularities we consider the so called

extremal case, where; (
QM

M

)
=

(
QM

M

)
C

. (3.30)

The solution in this case is supersymmetric and takes the form;

gMN = e2ΦδMN , (3.31)

gµν = ηµν , (3.32)

HMNP = −εQMNP∂QΦ, (3.33)

e2Φ = e2Φ(∞) +
QM

2π2r2
, (3.34)

where the xµ are tangent to the 5-brane, xM are transverse, and r2 = xMxM . This

solution is the NS 5 brane. It carries the magnetic charge for the NS NS 2 form

B, and is solitonic in nature; it is a localised classical solution to the supergravity

field equations, rather than a D-branes or string.

Having now elucidated the key facets of the NS sector of type II supergravity,

we turn our attention to generalised geometry; the succinct mathematical language

which seems ideal for expressing these solutions.
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Chapter 4

Generalised Geometry

In contrast to supergravity, generalised geometry is a relatively new area of re-

search. It arises from generalised complex geometry, an area of mathematical

research concerning geometric structures which generalise and unify the seemingly

disparate notions of complex and symplectic geometry. The generalised structures

in question were first introduced by Hitchin in the context of his work classify-

ing low dimensional special geometries [26], and further developed by his students

Gaultieri and Cavalcanti [27][28]. In generalised geometry we are primarily con-

cerned with a few key aspects of generalised complex geometries; particularly the

differential geometry of the generalised tangent spaces.

It is already known that this approach supercedes older concepts in bihermi-

tian geometry [29], allowing a succinct description of the geometries investigated

by Gates, Hull and Roček in the context of nonlinear sigma models [30]. By virtue

of a natural O(d, d) metric, generalised geometry also particularly offers a very

natural framework within which to understand T-duality; a symmetry between

quantum field theories central to the development of string theory [31]. The for-

malism of generalised geometry has also shed new light on other aspects of string

theory, particularly regarding mirror symmetry [32], and through the development

of generalised Calabi-Yau manifolds [26]. As if these successes were not enough
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however, we will see that in this chapter that the structure of generalised geome-

try additionally provides us with a remarkably natural language within which to

describe various aspects of supergravity.

To this end, we will first detail the properties of generalised geometry via the

linear algebra of so called ‘generalised tangent spaces’. Subsequently we will elicit

the differential geometry of these spaces, through the Courant bracket. Finally

we will outline the specific tools required to express supergravity in the language

of generalised geometry; generalised metrics, generalised vielbeins and generalised

Lie derivatives.

As generalised geometry is a relatively new area of research, there is unfortu-

nately a dearth of easily accessible introductory material, especially for the physics

orientated reader. That said however, we can recommend Zabzine’s lecture series

as a useful starting point for many physicists [33], and Gaultieri’s thesis as a sub-

sequent comprehensive mathematical overview [27].

4.0.1 Conventions

It is worthwhile stating at this point that we shall follow the usual conventions

regarding the Lie derivative and interior product, so that for some vector fields

X,Y;

LX = iXd+ diX , L[X,Y ] = [LX ,LY ], i[X,Y ] = [LX , iY ]. (4.1)

4.1 Generalised Tangent Spaces

As the equivalence class of atlases we can use to cover a manifold, differential

structures play a fundamental role in differential geometry. Two of the most

important differential structures in the context of theoretical physics are complex

and symplectic, which, upon first inspection, appear unrelated. The central theme

of generalised complex geometry however, is that both these structures should
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be considered special cases of a more general geometric structure, existing in the

direct sum space TM ⊕ TM∗ of the tangent and cotangent spaces. This we refer

to as the generalised tangent space, elements of which are pairs (X, ξ) = X + ξ, of

vector fields X ∈ TM and 1-form fields ξ ∈ TM∗. As X and ξ have components

Xi and ξi respectively, for (i = 1...D) we can treat this formal sum as a generalised

vector V with 2D components

V I =

Xi

ξi

 . (4.2)

4.1.1 Inner product & Flat metric

To aid in our understanding of these spaces, it is firstly important to investigate

their linear algebra. For an n dimensional tangent space TM , we consider a 2D

dimensional generalised tangent space TM⊕TM∗. This is naturally endowed with

a symmetric inner product:

〈X + ξ, Y + ω〉 =
1

2
(ξ(Y ) + ω(X)), (4.3)

which, in coordinates (dxµ, ∂µ), we can recast in matrix form:

〈X + ξ, Y + ω〉 =
1

2

(
X ξ

)0 1

1 0

Y
ω

 . (4.4)

We can express this more explicitly in a component wise fashion;

〈X + ξ, Y + ω〉 =
1

2

(
Xi ξi

) 0 1DxD

1DxD 0


IJ

Yj
ωj

 , (4.5)
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which defines a flat metric

η =
1

2

 0 1DxD

1DxD 0

 . (4.6)

This has signature (D,D), and is invariant under the orthogonal group O(TM ⊕
TM∗) ∼= O(D,D). This metric is congruent to the more conventional diag(+1,−1)

form, through Sylvester’s law of inertia.

4.1.2 SO(D,D) action

As we will show however, we can further reduce to the special orthogonal subgroup

SO(TM ⊕TM∗) ∼= SO(D,D) by defining a canonical orientation on TM ⊕TM∗.

Firstly note that we can decompose the highest exterior power as

∧2D (TM ⊕ TM∗) = ∧DTM ⊕ ∧DTM∗, (4.7)

and that there exists a natural pairing between ∧kTM and ∧kTM∗;

(v∗, u) = det(v∗i (uj)), (4.8)

for v∗ = v∗1 ∧ ... ∧ v∗k ∈ ∧kTM∗ and u = u1 ∧ ... ∧ uk ∈ ∧kTM . This allows us to

identify ∧2DTM ⊕ TM∗ = R, so that we can specify a canonical orientation on

TM⊕TM∗ by some number in R. To preserve both this orientation and the inner

product we require the special orthogonal group SO(TM ⊕ TM∗) ∼= SO(D,D).

4.2 The Courant Bracket

Our next step is to define a bracket operation on this generalised tangent space;

the Courant bracket. This was first introduced in T. Courant and Weinstein’s

work on Dirac structures; essentially the real analogues of generalised complex
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structures [34][35]. Encoding the differential geometry of the generalised tangent

space, the Courant bracket is central to our discussion of generalised geometry. It

is defined as

[X + ξ, Y + ω] = [X, Y ] + LXω − LY ξ −
1

2
d(iXω − iY ξ), (4.9)

where [X,Y] is the Lie bracket of two vector fields, and X+ξ, Y +ω ∈ TM⊕TM∗.

The Courant bracket essentially generalises the action of the Lie bracket, from

sections of the tangent bundle to sections of the generalised tangent bundle.

4.2.1 Diffeomorphism Invariance

For a smooth manifold M the symmetries of the Lie bracket on the tangent bundle

π : TM −→ M can be described by the bundle automorphism (F, f); a pair of

diffeomorphisms F : TM −→ TM and f : M −→ M . Graphically we can

represent this as

TM
F //

π

��

TM

π

��
M

f
// M

where (F, f) preserves the commutativity of the diagram. If we dictate that F

must preserve the Lie bracket, i.e.

F ([X, Y ]) = [F (X), F (Y )] ∀ X, Y ∈ TM, (4.10)

then F = f∗, the push forward of the tangent space, defined at a point p as;

f∗ : TMp −→ TMf(p). (4.11)
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As f is a diffeomorphism, the push forward f∗ must also be a diffeomorphism. Oth-

erwise stated, invariance under diffeomorphisms is the only symmetry preserving

the Lie bracket on TM .

In an analogous fashion we can define a ‘generalised’ bundle automorphism

(F, f) for F : TM ⊕ TM∗ −→ TM ⊕ TM∗ and f : M −→M , where the diagram

TM ⊕ TM∗ F //

��

TM ⊕ TM∗

��
M

f
// M

commutes. Under the requirement that F preserves the Courant Bracket;

F ([X + ξ, Y +ω]) = [F (X + ξ), F (Y +ω)] ∀ X + ξ, Y +ω ∈ TM ⊕ TM∗, (4.12)

we see that F = f∗ ⊕ f ∗, for the pushforward f∗ of the tangent space and the

analogous pull-back f ∗ of the cotangent space, is an automorphism of TM⊕TM∗.

This is as we would expect; the geometry we are describing here is invariant under

diffeomorphisms.

4.2.2 B Field transformations

In contrast however to the action of the Lie bracket, the Courant bracket also

possesses non-trivial automorphisms defined by forms. Through X → iXB, we

can view a closed 2-form B ∈ ∧2T ∗M as a map TM −→ TM∗. By exponentiating

B we find

eB =

1 0

0 1

+

 0 0

B 0

 =

 1 0

B 1

 , (4.13)

which allows us to define an orthogonal bundle mapping;

eB : X + ξ → X + ξ + iXB. (4.14)
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This can be thought of as a shear transformation, which fixes projections to TM

and shears in the TM∗ direction. It is then straightforward to see that

[eB(X + ξ), eB(Y + ω)]

= [X + ξ + iXB, Y + ω + iYB]

= [X + ξ, Y + ω] + [X, iYB] + [iXB, Y ]

= [X + ξ, Y + ω] + LXiYB −
1

2
diXiYB − LY iXB +

1

2
diY iXB

= [X + ξ, Y + ω] + LXiY − iYLXB + iY iXdB

= [X + ξ, Y + ω] + i[X,Y ] + iY iXdB

= eB[X + ξ, Y + ω] + iY iXdB.

Since B is closed, the Courant bracket is therefore invariant under the action

of a closed 2-form. Furthermore, it can be proved that diffeomorphisms and B

field transformations are the only automorphisms of the Courant bracket [27].

This implies that the automorphism group consists of the semi-direct product

Diff(M)nΩ2
closed(M); a generalisation of a direct product group which requires

only one subgroup to be normal, required as the diffeomorphism group is not nec-

essarily normal. It is worthy of mention at this point that the notational similarity

between this 2-form and the 2-form B field detailed in the previous chapter is of

course not accidental, they are the same object.

We can now see that through the consideration of a generalised tangent space,

there exists a natural framework for describing geometries endowed with a metric,

an action of SO(D,D), 2-form gauge invariance and diffeomorphism invariance.

As these geometries and symmetries arise in string theory and supergravity, gener-

alised geometry seems an ideal construct within which to investigate both theories.
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4.3 Generalised Metrics

The primary tool offered by generalised geometry in the context of type II super-

gravity is that of the generalised metric G. Originally introduced by Gualtieri, this

is essentially the generalisation of a Riemannian metric on TM to TM ⊕ TM∗,

which composites the 2-form B field and the conventional metric g into a single

object [27].

We arrive at this generalised metric by considering a reduction from theO(D,D)

structure of the generalised tangent bundle E to an O(D) × O(D) structure,

achieved by splitting E into two d-dimensional orthogonal sub-bundles; E =

C+⊕C−. With the requirement that η splits into a positive definite metric on C+

and a negative definite metric on C−, the subgroup then required to preserve each

metric separately is O(D)×O(D).

The splitting TM ⊕ TM∗ = C+ ⊕ C− defines a positive definite generalised

metric through

G = η|C+ − η|C− . (4.15)

We can view G as a symmetric automorphism of TM ⊕ TM∗, since G = G∗ and

G : E −→ E, with ± eigenspaces C±.The simplest form of G is

G0 =

0 g−1

g 0

 , (4.16)

where g is the usual Riemannian metric. However, we may write this in a more

general form by accounting for B field transformations;

G =

 1 0

−B 1

0 g−1

g 0

 1 0

B 1

 =

g −Bg−1B Bg−1

−g−1B g−1

 . (4.17)

This metric provides a natural way to encode the g and B fields of type II super-

gravity, via the O(D,D)/O(D)×O(D) coset space.
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4.4 Generalised Vielbeins

With this metric in mind we can now define generalised vielbeins, which transform

in representations of theO(D)×O(D) product group rather than the Lorentz group

of conventional vielbeins. There are several ways to construct these, the most

straightforward way is to consider a basis of one forms EA ∈ E∗, (A = 1 . . . 2d).

We require that G and η can be expressed in the form;

η = ET

1 0

0 −1

E G = ET

1 0

0 1

E. (4.18)

Then for two sets of ordinary vielbeins ea± with inverse ê±a, satisfying

gmn = ea±me
b
±nδab and (4.19)

gmn = êm±aê
n
±bδ

ab, (4.20)

or equivalently;

g = eT±e± and (4.21)

g−1 = ê±ê
T
±, (4.22)

we find explicitly that

E =
1√
2

 e+ − êT+B êT+

−(e− + êT−B) êT−

 =
1√
2

 êT+(g −B) êT+

−êT−(g +B) êT−

 . (4.23)

We have a basis for C+ in the first D of these generalised vielbeins, and a basis

for C− in the second D generalised vielbeins.
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4.5 Generalised Lie Derivatives

There are a few other pieces of differential geometry we must develop before we

can ultimately proceed to formulate supergravity entirely in terms of generalised

geometry. Given the importance of Lie derivatives in differential geometry, it seems

natural to consider ‘generalised’ Lie derivatives. For two vector fields X and Y

can derive the Lie derivative of Y with respect to X;

LXY = diXY + iXdY, (4.24)

by considering the infinitesimal transformations generated by X. Proceeding anal-

ogously, for two generalised vectors V = X + ξ and U = Y + ω we can consider

an infinitesimal transformation generated by X and a B field dξ, and define a

generalised Lie derivative;

LVU = LXY + (LXω − iY dξ). (4.25)

Naturally, this reduces to the normal Lie derivative in the absence of any B fields.

Whilst the normal Lie derivative on vector fields is equivalent to the Lie bracket,

our generalised Lie derivative on generalised vectors fields is equivalent to the

Dorfman bracket [V, U ]D [36]. It is the antisymmetrisation of this Dorfman bracket

that gives us the now familiar Courant bracket.
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Chapter 5

Conclusions

The intention of this thesis was to investigate generalised geometry as a framework

within which to express supergravity theories. This stems from the natural way in

which generalised geometry incorporates the action of both a conventional metric

and a 2 form B field. To this end we have firstly developed and motivated the

NSNS region of type II supergravity; the sector in which the B field has the

greatest role to play. This has been achieved firstly by assessing the roots of

supergravity in supersymmetry, and subsequently via the investigation of type

II supergravity and of the extended objects present in the theory. Finally we

have elucidated the structure of generalised geometry, and outlined some useful

‘generalised’ tools. Given the natural way in which generalised geometry expresses

the relevant quantities, we can conclude that the language it provides seems ideal

for supergravity theories; almost tailor made.

5.1 Further work

The next step in this regard is to recast the NSNS sector of type II supergravity

in the language of generalised geometry, utilising the tools and methods outlined

herein. A natural continuation of this would of course be to investigate the entirety

of type II supergravity in generalised terms. Further research is also ongoing into
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generalised geometry as the ‘language’ of T duality, further shedding light on

aspects of string theory [31].

Extensions of generalised geometry are also possible, in the context of current

theoretical physics the most important being exceptional generalised geometry. By

replacing the natural O(D,D) action with the exceptional U-duality group ED(D),

exceptional generalised geometry may provide an analogously natural language in

which to express 11 dimensional supergravity theories, and thus potentially M the-

ory [37] [38]. Ultimately, generalised geometry may prove to be a key development

in the history of fundamental physics.

34



Bibliography

[1] D. Freedman, P. van Nieuwenhuizen, and S. Ferrara Progress To-

ward a Theory of Supergravity, Phys. Rev. D 13 3214-3218,1976

[2] W. Nahm, Nuclear Physics B Volume 135 Issue 1, pp 149-166 1978

[3] E. Witten, Nuclear Physics B Volume 186, Issue 3, pp 412-428, 1981

[4] E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven

dimensions, Physics Letters B76 pp 409-412, 1978

[5] P. van Nieuwenhuizen, Supergravity, Phys. Rept. 68 (1981) 189

[6] S. Hawking, Is the end in sight for theoretical physics? : an inaugural

lecture, Cambridge University Press, Bib ID 1468904 1980

[7] M. Green, J. Schwarz Anomaly Cancellations in Supersymmetric D=10

Gauge Theory and Superstring Theory,Physics Letters B149 1984 pp. 11722

[8] P. Candelas, G.T. Horowitz, A. Strominger, and E. Witten, Nucl.

Phys. B258 46 (1985)

[9] D.J. Gross, J.A. Harvey, E. Martinec, and R. Rohm,Phys. Rev. Lett.

54 502 1985

[10] E. Witten, Magic, Mystery and Matrix, Notices of the AMS, October 1998,

11241129

35



[11] J. H. Schwarz, Introduction to Superstring Theory, arXiv:hep-ex/0008017

[12] J. Maldacena, The Large N Limit of Superconformal Field Theories and

Supergravity, Adv. Theor. Math. Phys 2: 231252, arXiv:hep-th/9711200

[13] R. Arnowitt, P. Nath, Supersymmetry and Supergravity: Phenomenology

and Grand Unification, arXiv:hep-ph/9309277

[14] J. Lykken, Introduction to Supersymmetry, arXiv:hep-th/9612114v1

[15] A. Bilal, Introduction to Supersymmetry, arXiv:hep-th/0101055v1

[16] S. Coleman and J. Mandula, All Possible Symmetries of the S Matrix,

Phys. Rev. 159, 1251 (1967)

[17] D. I. Kazakov Beyond the Standard Model (In Search of Supersymmetry)

arXiv:hep-ph/0012288

[18] R. Haag, J. Lopuszanski, and M. Sohnius, Nucl. Phys. B 88, 257 1975

[19] H. van Dam and L. Biedenharn,Phys. Lett. B 81, 313 1979 (an interesting

attempt at this)

[20] B. de Wit and D.Z. Freedman, Supergravity The basics and beyond, Su-

persymmetry, NATO ASI B125 135, eds. K. Dietz, R. Flume, G. von Gehlen,

V. Rittenberg (Plenum, 1985)

[21] B. de Wit, Supergravity, arXiv:hep-th/0212245v1

[22] A. Dabholkar, G.W. Gibbons, J. A. Harvey and F. Ruiz Ruiz,

Superstrings and Solitons, Nucl. Phys. B340 33 1990

[23] A. Dabholkar and J. A. Harvey, Nonrenormalization of the superstring

tension, Phys. Rev. Lett. , 63 478 1989

36

http://arxiv.org/abs/hep-ex/0008017
http://arxiv.org/abs/arXiv:hep-th/9711200
http://arxiv.org/abs/hep-ph/9309277
http://arxiv.org/abs/hep-th/9612114v1
http://arxiv.org/abs/hep-th/0101055v1
http://arxiv.org/abs/hep-ph/0012288
http://arXiv.org/abs/hep-th/0212245v1


[24] D. Waldram, Charged String-like Solutions of Low-energy Heterotic String

Theory, arXiv:hep-th/9210031v1

[25] A. Sen, Macroscopic Charged Heterotic String, arXiv:hep-th/9206016

[26] N. Hitchin, Generalized Calabi-Yau manifolds, arXiv:math/0209099v1

[27] M. Gaultieri, Generalized Complex Geometry, D.Phil. thesis, Oxford Uni-

versity, 2003, arXiv:math/0401221v1

[28] G. R. Cavalcanti, New aspects of the ddc-lemma, D.Phil. thesis, Oxford

University, 2004, arXiv:math/0501406v1

[29] U. Lindström, A brief review of supersymmetric non-linear sigma models

and generalized complex geometry, arXiv:hep-th/0603240

[30] Gates, S. J., Hull, C. M. and Roček, M, Twisted multiplets and new
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