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Introduction to the AdS/CFT Correspondence

Maria Dimou

September 2010

Abstract

This is a thesis of the Quantum Fields and Fundamental Forces MSc

at Imperial College London, introducing the ADS/CFT correspondence,

focused on the duality between N = 4, d = 4 Superconformal Yang Miils

theory and string theory on an AdS5×S5 background.
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1 Introduction

The human persuit of gaining a deep understanding in the fundamental laws of

nature, is what motivates the science of physics. The key starting point would,

obviously, be the quest of a consistent way to describe the interactions between

the elementary particles. The three basic theories that provide this description,

are Quantum Electrodynamics, weak interactions and Quantum Chromodynam-

ics. For the theory associated with the gravitational forces, however, there has not

yet been found a consistent way of quantization. Gravity is non-renormalizable,

thus, making the use of perturbative methods unsuccessful.

A rapidly developing physical theory that attempts to overcome that problem, is

string theory, which first emerged in the early 1960’s. Its fundamental objects are

open and closed strings, which, when quantised, give rise to some massless modes

and to a tower of massive particles. The fact that the spectrum of the closed string

contains a massless mode with spin two, demonstrates that every string theory

contains gravity, providing a way of its quantization. Quantum gravity was not

the original motivation for string theory, though.

QCD is also problematic under perturbation theory because of its running cou-

pling constant, that grows with the energy scale. At high energies, a perturbative

expansion is well defined; at low energies, on the contrary, the strong coupling

leads the associated elementary particles to form bound states with zero gauge

color: the hadrons. In that sense, it is said that QCD is asymptotically free. A

preceding way of describing hadrons at low energies, was through string theory.

The idea had its origin in the string like behavior of the quark-antiquark flux tubes

that are formed in the low energy dynamics of hadrons.

Such a connection between string theory and Yang Mills gauge theories, was pro-

posed by ’t Hooft [1], while seeking for a small parameter, in which perturbative

expansions would be valid in the strong coupling regime. The suggested dimen-
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sionless parameter was the number of colors N , of SU(N) gauge theories. For the

conjecture to be applied in QCD, the expansion should be made in a way, such

that the energy scale ΛQCD would remain constant in the perturbative expansion

of the β function. This lead to the choise: λ = g2
YMN , the ’t Hooft coupling,

is kept fixed, N → ∞ and the expansion is performed in 1/N . The graphical

representation is in terms of Feynman diagrams in the double line notation and it

is equivalent to the genus expansion of string world sheets. There is indeed such

a mapping between Yang Mills gauge theories and string theory in some back-

ground, formulated in the AdS/CFT correspondence.

The original conjecture of the AdS/CFT correspondence was made by Maldacena

[2] and stated thatN = 4 Superconformal Yang Mills theory in 4 spacetime dimen-

sions is dual to Type IIB string theory on AdS5 × S5. In the diagrams mentioned

above, each hole in a Riemann surface comes with a factor of gs, in the string

loop expansion, while, on the gauge theory side, it corresponds to a closed loop

with two vertices and it comes with a factor of g2
YM . This equivalence suggests

that g2
YM ∼ gs and that the expansion in 1/N corresponds to the string genus

expansion. But what is the bouckground in which this string theory lives?

The dual gauge theory lives in 4 flat dimensions. String theories, on the other

hand, only exist in 10 flat dimensions. We could perform a dimensional reduction

by considerind string theory on R4 ×M6, where M6 is a compact manifold but

strings are inconsistent in 4 flat spacetime dimensions. In fact, an attempt of

string quantization requires an extra ”Liouville” field and since the space where

a agravitational theory lives has the same number of dimensions as the number

of fields on the string, this extra field corresponds to an extra dimension, leav-

ing us then, with 5 dimensions. A key point of the AdS/CFT correspondence, is

the fact that the geometry of the boundary of the compactified AdS5 space is 4-
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dimensional Minkowski spacetime. The next step after this observation, would be

the compactification of the 10-dimensional Type IIB string theory, in particular,

of its low energy supergravity limt, on AdS5×S5. A way to think of Maldacena’s

conjecture is the following: A set of N coincidentl D3-branes is implemented into

the 10-dimensional Type IIB supergravity. D3-branes are (3 + 1)-dimensional ob-

jects where open strings can end and they are charged under (3 + 1)-form gauge

potentials. Their (3 + 2)-form field strengths belong to the supergravity multiplet

and their flux contributes to the stress-energy tensor, so that the geometry be-

comes curved. Specifically, it turns out that the near horizon geometry is AdS5,

while the geometry far away from the branes remains flat. On the other hand, the

D3-branes act as sources to the 10-dimensional Type IIB supergravity, they live

on the 4-dimensional Minkowskian boundary of the compactified AdS5 and their

world volume is governed by a N = 4 SU(N) SYM theory, which arises from

possible ways that open strings can stretch between the N branes.

For the correspondence to hold, the global symmetries of the two theories need to

match. This is indeed the case, as the isometries SO(2, 4)× SO(6) of AdS5 × S5

are mapped into the SU(2, 2) ∼ SO(2, 4) group associated with the 4-dimensional

Poincare symmetry, combined with the conformal symmetry times the SU(4)R ∼

SO(6)R R-symmetry group. Finally, the maximally supersymetric background

AdS5×S5 has 32 supersymmetries, while the 16 supersymmetries ofN = 4 SU(N)

gauge theory are enhanced to 32 by adding the conformal supersymmetries.

Except of the global symmetries the correlation functions should also be mapped.

This is realized by the establishing an 1-1 correspondance between the 5-dimensional

fields living on AdS and the composite operators that specify the field theory spec-

trum. Then, we can think of the boundary values of the fields, as sources for the

associated operators. In this content we identify the field theory’s generating
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functional with the on shell Type IIB effective action. This is expressed as:

eWCFT [φ0] = 〈e−
∫
d4x φ0(x)O(x)〉CFT ' eSAdS5

[φ]|φ(boundary)=φ0

and the correlation functions of the operators are given by:

〈O1 · · ·On〉 = (−1)n−1 δ

δφ0
1

· · · δ

δφ0
n

WCFT |φ0
i=0

Since, N = 4 SYM is a conformal theory, there is no need for the ’t Hooft

parameter λ to be constant and we can consider further useful limit. We shall

consider one very interesting limit in particular. When the radious R of the AdS5

and the S5 spaces is much larger than the string length, the curvature is small

string theory is approximated by supergravity (low energy limit). Because of the

relation (R/ls)
4 ∼ λ, the limit λ → ∞ where supergravity is a good approxima-

tion corresponds to the regime where the field theory is strongly coupled, as the

berturbative expansion in λ makes sense for λ � 1. This weak/strong duality is

one of the most important consequence of the AdS/CFT correspondence.
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2 Conformal Theories

The conformal group C(1, n − 1) in an n-dimensional Minkowski spacetime with

a metric η, is the group of linear coordinate transformations that leave the metric

invariant, up to a scale:

g′ab(x) = ∂ax
′c∂bx

′dηcd = Ω(x)ηab (1)

The conformal group is a symmetry of massless particles, preserving the structure

of the light cone. For massive particles to be included, we need to impose the

condition Ω = 1, which leaves us with just the Poincare subgroup. C(1, n− 1) for

n > 2 is finite and its killing vector is given by:

fa = αa + ωbaxb − ρxa + cb(2x
axb − ηabx2) (2)

where the first term corresponds to n translations, the second to n(n−1)
2

Lorentz

transformations, the third to 1 dilatation and the last term in the brackets corre-

sponds to n special conformal transformations.

By writing the killing vector as

fa = λAδ
Axa , λA ≡ (aa,

1

2
ωab, ρ, ca), (3)

we find the corresponding infinitesimal coordinate transformations:

δaT x
c = ηac Translations (4)

δabLx
c = ηbcxa − ηacxb Lorentz (5)

δDx
c = −xc Dilatations (6)

δaCx
c = 2xaxc − ηacx2 Special Conformal (7)
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Their commutation relation define the Lie algebra of the conformal group. Intro-

ducing a basis:

GA ≡ (pa, jab,∆, ka) (8)

by the rule:

f = λA(δAxa)∂a = iλGA (9)

we find the expressions:

ipa = ∂a (10)

ijab = xa∂b − xb∂a (11)

i∆ = xa∂a (12)

ika = 2xaxc∂c − x2∂a (13)

Instead of working in terms of the above differential realization, we can consider

the faithful matrix representation and introduce the conformal algebra, requiring

the basis:

GA = (P a, Jab = −J ba, D,Ka) (14)

that satisfies the same commutations relations as the basis 10-13. A generic ele-

ment of the group is the form: X = iλAG
A and the conformal group is obtained

by considering the exponantiation: g(λ) = eiλAG
A

.

The conformal group has the following subgroups:
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Scale+Translation:

[iD,D] = 0 (15)[
iP a, P b

]
= 0 (16)

[iD, P a] = P a (17)

(18)

Poincare:

[
iP a, P b

]
= 0 (19)

[iJab, P c] = ηacP b − ηbcP a (20)[
iJab, J cd

]
= ηbcJad − ηacJ bd + ηadJ bc − ηbdJac (21)

Scale+Lorentz:

[
iJab, Kc

]
= ηacKb − ηbcKa (22)

[iD,Ka] = −Ka (23)[
iKa, Kb

]
= 0 (24)[

iKa, P b
]

= 2ηabD − 2Jab (25)

The algebra of C(1, n − 1) is isomorphic to the algebra of the Lorentz group

SO(2, n), which is a set of pseudoorthogonal transformations in a (n+2)-dimentional

flat spacetime: Mn+2 with metric: ηµν = (−1, 1, ηab). Then, (µ, ν) = −2,−1, 0, 1, ..., n− 1

and (a, b) = 0, 1, ..., n− 1. Then, the SO(2, n) algebra is given by:

[iMµν ,Mρσ] = ηνρMµσ − ...cycl. perms (26)
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If we define the generators:

D = M−2,−1 , Jab = Mab, (27)

1

2
(P a −Ka) = M−2,a

1

2
(P a +Ka) = M−1,a

The, 26 gives the conformal algebra.

Two useful points to be stressed are: 1. In the interesting representation of the

conformal group, fields that are eigenfunctions of the scaling operator D, with

eigenvalues −i∆ and 2. Conformal symmetry sets certain constraints on the cor-

relation functions of a CFT. In particular, the dimension of the 1-,2- and 3-point

functions are fixed.
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3 AdS Space

The n-dimensional Anti de Sitter space is the Lorentzian analogue of the n-

dimensional hyperbolic space and constitutes the maximally symmetric vacuum

solution of Einstein’s equation in n dimensions, with a negative cosmological con-

stant, Λ.

In vacuum, (Tµν = 0), the Einstein’s equation becomes:

Gµν +
1

2
gµνΛ = Rµν −

1

2
gµνR +

1

2
gµνΛ = 0 (28)

By contracting with the metric, we find:

R =
n

n− 2
Λ (29)

and so,

Rµν =
1

n− 2
gµνΛ (30)

Since the Ricci tensor is proportional to the metric, AdSn space is an Einstein

space. By further requiring that:

Rµνρσ =
2

(n− 1)(n− 2)
Λ(gµνgρσ − gµσgνρ), (31)

the space is maximally symmetric.

For n = p + 2, AdSp+2 can be identified as a (p + 2)-dimensional hyperboloid,

which satisfies the equation:

x2
0 + x2

p+2 −
p+1∑
i=1

x2
i = R2 (32)
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in a flat (p+ 3)-dimensional space R2,4, with metric:

ds2 = −dx2
0 − dx2

p+2 +

p+1∑
i=1

x2
i . (33)

The isometry of this homogenous and isotropic space is by construction O(2, p+1),

the same as the one of the conformal group in (p+1) dimensions. In the Euclidean

version, the hyperboloid is represented as x2
0−
∑p+2

i=1 x
2
i = R2 in R1,5, with isometry

SO(1, 5).

3.1 Global coordinates

One parametrization that solves equation 32 is the following:

x0 = R coshρ cosτ (34)

xp+2 = R coshρ sinτ

xi = R sinhρ Ωi,

p+1∑
i=1

Ω2
i = 1

Then the metric becomes:

ds2 = R2(−cosh2ρ dτ 2 + dρ2 + sinh2ρ dΩ2
p), (35)

with Ω2
p being the line element of the p-sphere.

If we take ρ ∈ [0,+∞) and τ ∈ [0, 2π), the Minkowskian hyperboloid is covered

once. By noticing that near ρ = 0, ds2 ≈ R2(−dτ 2 + dρ2 + ρ2dΩ2
i ), which rep-

resents the disk S1 × Rp+1, we observe closed timelike curves in the τ direction,

corresponding to S1. In order to obtain a causal spacetime, we need to unwrap

that circle, by taking τ ∈ (−∞,+∞), which leaves us with a simply connected

space, the universal covering of the hyperboloid. When we refer to AdS, we will

always consider this universal covering.

13



3.2 Conformal Compactification

Using the global coordinates of Anti de Sitter space, it is easy to demonstrate the

important fact, that the boundary of the conformally compactified AdSn is the

conformally compactified (n− 1)-dimensional Minkowski space.

We start by looking at the conformal structure of flat Minkowski space, R1,p.

Conformal Compactification of R1,p

The metric of the (p+ 1)-dimensional Minkowski space is:

ds2 = −dt2 + dr2 + r2dΩ2
p−1, (36)

where dΩ2
p−1 is the line element of the unit (p − 1)-sphere. After the coordinate

transformation u± = t± r, we get:

ds2 = −du+du− +
1

4
(u+u−)dΩ2

p−1 (37)

Furthermore, by setting u± = tan ũ± we obtain:

ds2 =
1

cos2 ũ+ cos2 ũ−
(−dũ+dũ− +

1

4
sin2(ũ+ − ũ−)dΩ2

p−1

=
1

4 cos2 ũ+ cos2 ũ−
(dτ 2 + dθ2 + sin2θ dΩ2

p−1), (38)

where ũ± = 1
2
(τ ± θ).

The (t, r) half plane is now conformally mapped into the compact triangle in the

(τ, θ) plane, with θ ∈ [0, π] and τ ∈ [−π, π].
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After a conformal rescaling, we end up with:

ds′2 = −dτ 2 + dθ2 + sin2 θ dΩ2
p−1, (39)

which can be analytically continued to the maximally extended space, with θ ∈ [0, π],

τ ∈ (−∞,+∞). This space has the geometry of the Einstein Static universe,

R×Sp, with the north and south poles corresponding to θ = 0, π. We have there-

fore conformally embeded R1,p into R× Sp.

We saw that the conformal group of R1,p is SO(2, p + 1), with maximal compact

subgroup SO(2)× SO(p+ 1) and the generator of SO(2) is J0(p+2) = 1
2
(P0 +K0).

Now notice that the killing vector ∂τ that corresponds to the global time transla-

tion on R× Sp, has the form

∂τ =
1

2
(∂u+ + ∂u−) +

1

2
(u2

+∂u+ + u2
−∂u−) = H (40)

and can be identified with J0(p+2), with P0 = 1
2
(∂u++∂u−) andK0 = 1

2
(u2

+∂u+ + u2
−∂u−).

Moreover, SO(p + 1) rotates the p-sphere. Consequently, the universal cover of

the conformal group is identified with the isometry of the Einstein Static universe

and the generator H ensures that the correlation functions of a conformal field

theory on (p+1)-dimensional Minkowski space can be analytically extended to all

of the Einstein Static universe.

Conformal Compactification of AdSp+2

We now return to the universal cover of AdSp+2, with the metric in the form 35,

parametrized in the global coordinates (τ, ρ,Ωi). We see a copy of the p-sphere

plus a time τ ∈ (−∞,+∞). In this form, the SO(p + 1) × SO(2) subgroup

of the isometry SO(2, p + 1) of AdSp+2 is manifest, with the SO(2) goup corre-
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sponding to the translation in the time direction, with the killing vector ∂τ never

vanishing and always well defined and the SO(p+1) to the rotations of the sphere.

In order to show explicitly the causal structure of this space, let us use the new

coordinate θ, for which tan θ = sinh ρ, θ ∈ [0, π/2].

The metric becomes:

ds2 =
R2

cos2θ
(−dτ 2 + dθ2 + sin2θ dΩ2

p) (41)

and after a conformal rescaling,

ds′2 = (−dτ 2 + dθ2 + sin2θ dΩ2
p). (42)

This metric represents the geometry R × Sp+1. This time, however, θ ∈ [0, π/2],

which means that the universal cover of the AdSp+2 can be conformally mapped

into one half of the Einstein Static universe. Each value of τ defines a (p + 1)-

dimensional hemisphere, with a boundary at the equator, which has the topology

of a p-sphere. But, because τ ∈ (−∞,+∞), we have to introduce a boundary

condition on the R× Sp at θ = π/2.

It is now obvious that the boundary R × Sp at θ = π/2 of the conformally com-

pactified AdSp+2 is the conformally compactified R1,p.
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3.3 Poincare Coordinates

Another set of coordinates which parametrizes AdS, is given by a Lorentz vector

plus a fifth coordinate u > 0, defined by:

x0 =
1

2u
(1 + u2(R2 + ~x2 − t2))

xp+1 =
1

2u
(1− u2(R2 − ~x2 + t2))

xp+2 = R u t

xi = R u xi. (43)

Then,

ds2 = R2(
du2

u2
+ u2(−dt2 + d~x2), (44)

where we see the Minkowskian slices multiplied by u2, which means that for an

observer on a slice, all lengths appear to be rescaled by u. That is why these

coordinates are called Poincare. The subgroups SO(1, p) and SO(1, 1) are man-

ifest here, where SO(1, p) is the Poincare transformations on the slices, while

SO(1, 1) is associated with the dilatation of the cobformal group and is realized

as (u, t, ~x→ (λu, t/λ, ~x/λ).

The conformally equivalent metric ds′2 = ds2

u2 , has an R1,p boundary at u = ∞,

whereas u = 0 is a horizon, since the killing vector ∂t becomes null. This is not a

singularity, bacause these coordinates cover only half of the hyperboloid and we

can extend the metric after the horizon with a different set of coordinates, like the

global ones.

An additional useful form of the metric in Poincare coordinates is obtained by the
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redefinition:

u =
1

z
= er, (45)

so that

ds2 = R2(
dz2 − dt2 + d~x2

z2
) = R2(dr2 + e2r(−dt2 + d~x2)) (46)

and the boundary is at z = 0 or r =∞ while the horizon is at z =∞ or r = −∞.

3.4 Euclidean Rotation

In field theory it is often convenient to perform a Wick rotaion to Euclidean

signature. That way, the time-ordered correlation functions 〈0|T (φ1...φn)|0〉 of

fields in Minkowski spacetime are related to the correlation functions 〈φ1...φn〉 in

the Euclidean space. The same can be done for fields in AdS space, for theories

with a positive definite Hamiltonian [3, 4].

The Wick rotation expressed in the original coordinates is xp+2 → xE = −ixp+2

and sends the equation 32 to

x2
0 − x2

E − ~x2 = R2 (47)

and the equation 33 to

ds2
E = −dx2

0 + dx2
E + d~x2 (48)

In the global coordinates, τ → −iτ and the metric 35 becomes

ds2
E = R2(cosh2ρ dτE

2 + dρ2 + sinh2ρ dΩ2
p), (49)
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wheres in the Poincare coordinates, we get instead of equation 44,

ds2
E = R2(

1

u2
du2 + u2(dt2E + d~x2), (50)

by sending t→ −itE.

Notice, that even though Poincare coordinates cover only half of the AdS space,

the Euclidean rotation in t gives the same space as the Euclidean rotation in τ .

The Euclidean version of Minkowski R1,p is Rp+1, which can be compactified into

the sphere Sp+1, by adding a point at infinity. So, the Euclidean version of the

Minkowski slice at u = ∞, which constitutes the boundary of AdSp+2, is a Sp+1

sphere with one point removed; and the Euclidean AdSp+2 is mapped into a p+ 2-

diamensional disk. The full p+ 1-spherical boundary is recovered by adding the

u = 0 point that corresponds to spatial infinity; we see that the null plane u = 0

of the Lorentzian case, has now shrank into a point.
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4 Superstring Theory and Supergravity

The correspondence of interest is between conformal N = 4SU(N) Super Yang

Mills field theory on one hand and Type IIB 10-dimensional string theory, com-

pactified on AdS5×S5, on the other hand.

Let us begin considering the 10-dimensional flat case of Type IIB string theory, in

which we have implemented N parallel D3 branes. This system has two types of

perturbative excitations:

• closed string excitations, corresponding to excitations of the empty space;

in the low energy limit, only the massless states are excited, giving a gravity

supermultiplet in 10 dimensions and the associated effective Lagrangian is

the Type IIB Supergravity one.

• open string excitations, corresponding to the excitaions of the D-branes; the

low energy massless spectrum falls in aN = 4 vector supermaltiplet in (3+1)

dimensions and the associated Lagrangian is the one of N = 4U(N) Super

Yang Mills field theory [5].

The coupled effective action of the above system, has the the form:

S = Sbulk + Sbrane + Sint. (51)

where Sbulk corresponds to the 10-dimensional Supergravity, Sbrane is defined on the

(3+1)-dimensional brane worldvolume and Sint. describes the interactions between

the excitations of the brane and those of the bulk. The action of the bulk can be

expanded as free massless modes propagating, plus some interaction terms. The

brane action can be expanded in higher derivative terms as well. We will see that,

by taking the low energy limit (α′, ls → 0), all the interaction terms in Sbulk, the
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higher derivative terms in Sbrane and the whole of Sint. vanish, leaving us with two

decoupled systems:

• free supergravity in the 10-dimensional bulk

• N = 4U(N) conformal Super Yang Mills gauge theory on the (3+1) dime-

sional world wolume of the D3-branes.

These D3-branes are a special case of the Dp-branes, which are extended in (p+1)

spacetime dimensions massive objects, whose world volume is governed by a U(N)

gauge theory at low energy. They are charged under a (p+1)-form gauge potentials

and they can be thought of as sourses for the IIB supergravity background. Their

(p + 2)-form gauge field strenghts belong to the supergravity multiplet and their

flux, generated by implementing the branes in the background, contributes to the

stress-energy tensor, causing the geometry to curve.

We can identify the Dp-branes with the extremal solution of supergravity and by

looking at the weak coupling limit, where gs → 0, we see that the metric turns

out to be everywhere flat, except on the (p + 1)-dimensional hyperplane. The

result is just a localised defect in the flat spacetime. For a D3-brane solution

of supergravity in particular [6], the geometry near the horizon (near the brane)

becomes AdS5×S5. Strings propagate free in the flat spacetime, untill they reach

the branes. The decoupled systems now are:

• free supergravity in the 10-dimensional bulk

• low energy superstring theory on AdS5 × S5.

Comparing the two forms of the decoupled systems and noticing that the first

one is the same in both cases, we can make the conjecture that N = 4U(N)

Super Yang Mills field theory in (3+1)-dimensions is dual to Type IIB superstring

background AdS5 × S5 and lies on the boundary of AdS5, which, as we saw, is

Minkowski spacetime.
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Both theories have the same isometries: AdS5 is by definition symmetric under

SO(4, 2), that is isomorphic to the conformal group in (3+1) dimensions, un-

der which the field theory is invariant. The SO(6) symmtry of rotations of the

five-sphere can be identified with the SU(4) ≈ SO(6) R-symmetry group that

rotates the six scalars and the four fermions of the field theory. Finally, string

theory on AdS5 × S5 has 32 supercharges, while, from the field theory side, the

16 supercharges of the Yang Mills, are enhanced to 32, by adding the conformal

supersymmetries.

4.1 Maximal Supersymmetries

Strings with tension Ts = 1
2πα′

, where α′ is the Regge slope with units of space-

time length squared, when quantised, give rise to some massless modes and to a

tower of particles that have masses m2 ∼ 1
α′

. There is always the posibility for

the two endpoints of an open string to join, giving a closed string. Therefore,

closed strings are part of every string theory. The massless closed string spectrum

contains a rank-2 tensor, which can be decomposed into a symmetric tensor gµν ,

an antisymmetric tensor Bµν and a scalar field φ. That massless, spin-2 mode

is identified with the graviton and thus, every string theory contains gravity and

provides a consistent way of its quantization.

For string theory to be defined and treated with perturbative methods in a flat

space, the space needs to be 10-dimensional. 10-dimensional string theory is super-

symmetric, and at low energies, the effective action of the closed string’s massless

modes reduces to supergravity. We are interested in representations of supersym-

metry in which the graviton is massless and belongs to a massless supermultiplet

of states and fields with spin ≤ 2. This inequality leads to restrictions on the

maximal number of supercharges N that we can have in various dimensions.

22



Massless unitary supersymmetry representations require vanishing central charges

and the anticommutation relations of the fermionic supersymmetry generators

reduce to [7, 8]:

{Qa
α, (Q

b
β)†} = 2(Γµ)βαP

µδba , {Qa
α, Q

b
β} = 0 (52)

where Γµ are the standard Clifford-Dirac matrices and a, b = 1, ...,N . For the

massless representaions, we go to the frame Pµ = (E, 0, ..., 0, E), E > 0 and the

above equation becomes:

{Qa
α, (Q

b
β)†} = 2δba

4E 0

0 0


β

α

(53)

We see that half of the supercharges vanish: Qa
α = 0 , α = 1

2
dimS + 1, ..., dimS,

where S is the Dirac spinor representation, with complex dimension dimCS = 2[ d
2

].

The rest split into raising and lowering operators that alternate the helicity by 1/2.

The total number of raising operators is 1
2

1
2
NdimRS. Since total helicity takes

values from -2 to 2 with steps of 1/2, the maximum number of raising operators

is 8. Consequently,

NdimRS ≤ 32, (54)

which means that the maximum possible number of supercharges is 32.

E. Cremmer, B. Julia and J. Scherk [9] discovered a supergravity theory with

N = 1 in d=11 dimensions,the largest number of dimensions that saturates the

bound 54, which is unique and has 32 Majorana supercharges. Theories of lower

dimensions can be constructed via Kaluza Klein compactification of the d=11

theory. The string theories with maximal supersymmetry that contrain closed

23



as well as open strings, with their associated Dp-branes, but no tachyon, have

N = 2 in 10 dimensions. Namely, Type IIA (for p even) and Type IIB (for p odd)

string theories. We shall be interested in the second one and in its lower energy

supergravity limit in particular.

4.2 Type IIB Supergravity

The N = 2, d=10 Type IIB supermultiplet consists of the following fields:

Table 1: IIB Supergravity field content

Notation dof field

Gµν 35B Metric - Graviton
C + iΦ 2B Axion - Dilaton

Bµν + iA2µν 56B rank-2 antisymmetric
A4µνρσ 35B rank-4 antisymmetric

ψaµα , a = 1, 2 112F Majorana-Weyl Gravitinos
λaα , a = 1, 2 16F Majorana-Weyl Dilatinos

The two gravitinos have opposite chirality with respect to the two gravitinos and,

in that sense, the theory is parity violating (chiral). The fact that the field strength

F5 = dA4 of the rank-4 antisymmetric tensor is required by sypersymmetry to be

self-dual, gives rise to difficulties in writing a covariant action for this theory that

would yield all equations of motion. What we can do, is to write an action with

both dualities of A4, supplemented with the self-duality condition

F̃5 = ∗F̃5. (55)

There have been attempts to solve that problem, by writing ”locally defined co-

variant” actions [10, 11]. However, the action usually used is [14, 12, 13]:
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SIIB =
1

4κ2
B

∫
dx10
√
Ge−2φ

(
2R+ 8(∂φ)2 − |H3|2

)
−

− 1

4κ2
B

∫
dx10
√
G

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
+

+
1

4κ2
B

∫
dx10 (A4 ∧H3 ∧ F3) + fermions (56)

where
√
G =

√
−det Gµν ,

∫ √
G|Fp|2 ≡ 1

p!

∫ √
GGµ1ν1 · · ·GµpνpF̄µ1···µpFν1···νp and

the field strengths are defined as:

F1 = dC , H3 = dB , F3 = dA2 , F5 = dA4

F̃3 = F3 − CH3 , F̃5 = F5 −
1

2
A2 ∧H3 +

1

2
B ∧ F3 (57)

This is the low energy effective action of string theory restrected to massless modes.

It contains the parameter α′, (2κB
2 = (2π)7(α′)4), which is related to the string

length as ls =
√
α′ and the parameter gs, which is determined by the vacuum

expectation value of the dilaton field.

gs = 〈eφ〉 (58)

The first one determines the string tension Ts = 1
2πα′

and the masses of the string

modes, m2 ∼ 1
α′

, while the second determines the string coupling constant, con-

trolling string interactions and quantum corrections. They can be used to correct

the above action, as the effect of integrating out the massive modes gives higher

derivative corrections, proportional to powers of α’, while quantum corrections

involve arbitary number of derivatives, weighted by powers of gs. Thus, a physicsl

quantity can be expanded as:

∞∑
g=0

g2g−2
s fg

(
α′

R2

)
(59)
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Perturbative expansion, which makes sense in the weak coupling limit gs → 0,

is represented with Feynman graphs that constitute of Riemann surfaces with a

number of holes (loops), equal to the genus g. Each order corresponds to one only

graph, which is calculable and results in a non-trivial function of α′.

Type IIB supergravity is invariant under the group SU(1, 1) ∼ SL(2,R) and in

order to make that manifest, we introduce the complex objects:

τ ≡ C + ie−φ , G3 ≡
1√
Imτ

(F3 − τH3), (60)

by using, instead of the string metric gµν , the Einsten metric gEµν ≡ e−φ/2gµν .

Then,

SIIB =
1

4κ2
B

∫
dx10

√
GE

(
2RE −

∂µτ̄ ∂
µτ

(Imτ)2
− 1

2
|F1|2 − |G3|2 −

1

2
|F̃5|2

)
−

− 1

4iκ2
B

∫
dx10

(
A4 ∧ Ḡ3 ∧G3

)
+ fermions (61)

The dilaton-axion field is subjected to a Möbius transformation

τ → τ ′ =
aτ + b

cτ + d
, ad− bc = 1 , a, b, c, d ∈ R , (62)

Bµν , Aµν rotate into each other as G3 → G′3 = cτ̄+d
|cτ+d|G3

while the metric and the 4-form remain invariant.

4.3 p-brane Solutions in Supergravity

The equations of motion of the Type IIB supergravity action, are satisfied by a par-

ticular set of objects that are invariant under the group Rp+1 × SO(1, p)× SO(9− p)

and preserve half of the supersymmetries. They are massive objects, extended in

p-spacelike directions and charged under a p+ 1-gauge potential. They couple to
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the supergravity action by:

Sp−brane = Tp

∫
dxp+1√g + qp

∫
dxp+1Ap+1 (63)

These solutions are called black p-branes [6, 15], as they are a generalization of

rotating black holes. The first part of the above action defines their tension Tp

and the second, their charge qp. A more useful quantity than the charge itself, is

its flux on a (8− p)-sphere surrounding the source.

∫
S8−p
∗Fp+2 = N (64)

By the Dirac quantization condition, the fluxN takes integer values and its relation

with the charge is given by N = qp(2π)pgs(α
′)(p+1)/2. The tension of the brane

is identified with the energy per unit volume, in the p-spacelike directions. As a

rotating black hole solution, it contains naked singularities, which are avoided by

imposing the condition for the energy density to be greater than the charge.

E = Tp ≥
N

(2π)pgs(α′)(p+1)/2
(65)

This is the BPS bound for the 10-dimensional supersymmetry and the solutions

that saturate it are called extremal p-branes. They preserve half of the 32 su-

persymmetries of Type IIB supergravity, i.e. they are 1/2 BPS objects. The

associated solution is:

ds2 = H−1/2(r)dxµdx
µ +H1/2(r)dy2 (66)

A0...p = H(r) (67)

eφ = gsH(r)(3−p)/4 (68)

H(r) = 1 +
CgsN(α′)(7−p)/2

r7−p (69)

27



where xµ, µ = 0, ..., p are the coordinates of the (p+ 1)-dimensional world volume

of the brane, yi, with i = 1, ..., 9−p, are the directions transverse to the brane and

r2 = yiyi is the radial distance. The horizon collapses on the singularity, located

at r = 0. The supergravity equations of motion are satisfied for 66 and 68 for any

harmonic in the transverse space function H(yi). So, we can generalize 69, which

represents a single extremal p-brane of charge N, located at the point ~y = 0, by

considering the function:

H(yi) = 1 + Cgs(α
′)(7−p)/2

N∑
a=1

1

|y − ya|7−p
(70)

This is the multicentered solution, corresponding to N parallel extremal p-branes

of unit charge, located at the ponts ~ya. The fact that the multicenter solution still

saturates the BPS bound, means that the gravitational attraction of the extremal

p-branes compensates their gauge repulsion, as the tension is equal to the charge

by equation 65. Then, the energy of a system of extremal p-branes, equals the

sum of the energies of the single branes and the potential energy is zero. Thus,

the p-branes can get seperated or be brought closer to each other with no energy

cost.

This classical supergravity description of black p-branes makes sense when the

curvature of the brane geometry is much smaller than the string scale and also,

the effective string coupling eφ is also small, such that string loop corrections may

be neglected.

Apart from the background fields of the IIB supergravity multiplet, p-branes have

additional fields living on their world volume. Let us consider flactuations in the

transverse directions to a p-brane. By writing the Nambu-Goto action in terms

of the induced metric on the world volume of the brane, allowing variations of the
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transverse positions and then expanding in power series, keeping the terms up to

two derivatives, we recognise a term corresponding to the standard kinetic terms

for 9−p scalar fields. We can argue then, that there are 9−p scalar fields living on

the world volume of the p-brane and they parametrize its position in spacetime.

Figuring out what other fields could be living on the brane, is straight farward

for the case of the extremal p-branes. As 1/2 BPS objects, preserving half of

the supersymmetries of the background, they should have 1
2
32 = 16 supercharges.

And the only supermultiplet with 16 supercharges, in any dimensions, is the vector

supermultiplet, which indeed includes 9 − p scalar fields. Thus, supersymmetry

fixes the fields on the world-volume of the extremal p-brane as well as their effective

Lagrangian, up to two derivatives.

4.4 D-branes in String Theory

When p-branes are to be extended to solutions of the full Type IIB String theory,

they will be subject to α′ corrections. We see from equation 69, that in the weak

coupling limit gs → 0, where perturbation theory can be applied in string theory,

the metric is everywhere flat, except on the (p + 1)-dimensional hypersurface of

the brane, where it becomes singular. Strings propagate in the flat 10-dimensional

spacetime and when they reach the deformation yielded by a brane, the interac-

tion taking place is characterised by suitable boundary conditions on the string

dynamics.

A string is parametrized by a spatial coordinate σ ∈ [0, π]. In ortder to extremize

the Polyakov action and get the equations of motion, we need to set to zero

the boundary contribution of the total derivative: ∂σX
µδXµ at σ = 0, π. The

appropriate conditions for this to be satisfied are:

• Neuman boundary conditions: ∂σX
µ = 0, σ = 0, π, which means that the
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end points of an open string are allowed to move freely on the hypersurface

of the brane, and

• Dirichlet boundary conditions: δXµ = 0, σ = 0, π, which means that the

end points are not allowed to become detached from the brane.

Imposing the above conditions on two different set of coordinates

∂σX
µ = 0 , µ = 0, ..., p+ 1

X i = const , i = p+ 1, ..., 10, (71)

we fix the end ponts of the open strings to move on a (p+1)-dimensional hypersur-

face of the 10-dimensional spacetime. The Poincare group R10 × SO(1, 9) brakes

then to a lower dimensional one, Rp+1 × SO(1, p), defined on this hypersurface,

times the SO(10− p− 1) group of rotations in the transverse space.

In string theory, these hypersurfaces that provide boundary conditions for the

open strings’ dynamics, are called Dp-branes (Dirichlet branes) [16, 17, 18]. They

can be thought of as stringy solitons that carry Ramond-Ramond charges and

provide an alternative description of the extremal p-branes in supergravity.

Quantization of open strings ending on D-branes, gives rise to the first, massless,

excited states, which are classified as the either the longtudinal to the brane string

oscillations, corresponding to a gauge field Aµ, µ = 0, ..., p + 1 or the transverse

ones, corresponding to scalar fields Φi, i = p+1, ..., 10. The scalars are interpreted

as fluctations of the brane in the transverse space with SO(9− p) isometry, under

which they transform as a vector. We also obtain their fermionic superpartners,

which we shall ignore. Higher excited states, give a tower of massive string modes,

with m2 ∼ 1
α′

.
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The vector field and the 9 − p scalars form a U(1), abelian, massless vector su-

permultiplet with 16 supercharges, as expected. At leading order, their effective

action can be obtained by dimensional reduction of the 10-dimensional U(1) Su-

per Yang Mills gauge theory. Taking into account the higher order corrections,

determined by the string perturbative expansion of open and closed strings, the

world volume action plus interactions with the background is:

Sp = − Tp

∫
dp+1σ

(
e−φ
√
−det (P [G+B]µν + 2πα′Fµν)

)
+

+ qp

∫
dp+1σ P

[∑
Ap+1e

B+2πα′F
]

(72)

Where the first part is the Born-Infeld action [19, 20] and describes the coupling of

the world volume fields to the massless Neveu-Schwarz fields Gab,Φ and Bab, the

second part is the Wess-Zumino action that describes the coupling to the massless

background Ramond-Ramond forms and Tp = qp = 1/(2π)pgs(α
′)(p+1)/2.

For defying the pull-backs P [...] of the background tensors to the world volume of

the brane, we first define the world volume by setting:

xi = 0, for i = p+ 2, ..., 10

and then we map the coordinates parametrinzing the world volume, to the space-

time coordinates corresponding to that hypersurface:

σa = xa, for a = 0, ..., p+ 1.
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The metric pull-back then becomes:

P [Gab] = gµν
∂xµ

∂σa
∂xν

∂σb

= Gab + (Gia∂b +Gib∂a)x
i +Gij∂ax

i∂bx
j

= Gab + 4πα′(Gia∂b +Gib∂a)Φ
i + 4π2α′

2
Gij∂aΦ

i∂bΦ
j (73)

We now see the already mentioned kinetic terms of 9 − p scalar fields Φi, which

are identified with

xi = 2πα′Φi, (74)

so that they get dimensions of [length]−1 and describe the displacements of the

brane in the transverse directions. The background fields in the action 79 are

functionals of these scalar fields.

4.5 Gauge Field Theories on D-Branes

As we saw, equation 70 describes a set of N parallel D-branes with unit charge,

located at the points ~ya, whereas equation 69 referes to a single D-brane of charge

N . We can actually think of the latter, as the limit of the more generic function

70, in which all the branes coincide. The vector supermultiplets that live on the

D-branes originate from the quantization of open strings that end on their hyper-

surfaces. When both ends of such a string are attached to the same brane, its

length can be arbitarily small, resulting in a massless supermultiplet that corre-

sponds to an abelian U(1) gauge theory. The symmetry of a set of N identical

parallel D-branes will be U(1)N . However, there is also the possibility of the

string stretching between two different branes. Then its length is bounded by the

branes’ distance and the corresponding multiplets will have massive modes, with

m ∼ |~y1 − ~y2| /α′. Now, when the branes come close enough to one another, so as
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to be thought of as coincident, the masses of these multiplets become zero and the

gauge symmetry of the set is enhanced to U(N), with N2 vector fields, associated

with N2 possible massless strings. By ignoring thel factor U(1) that corresponds

to the overall positions of the coincident branes, we are left with a pure SU(N)

Yang Mills theory on (p+ 1) dimensions [21].

Inversely, a massless vector field coming from a quantised string connecting two

different coincident branes, will gain mass once we seperate the branes and the cor-

responding gauge symmetry U(2) will be spontaneously broken into U(1)×U(1).

This mechanism described above from the point of view of D-branes in string

theory or, equivalently, extremal p-branes as supergravity solutions, can also be

described in terms of gauge field theories in (p+ 1) dimensions.

As mentioned in the previous section, one can deduce the action of the maxi-

mally supersymmetric (p+ 1)-dimensional gauge theory through the dimensional

reduction of the 10-dimensional theory. The bosonic part of the latter is:

−
∫
dx10Tr[FµνF

µν ] , Fµν = ∂µAν − ∂νAµ + i [Aµ, Aν ] (75)

When lowering the dimensions to (p+1), the 10-dimensional vector is divided into

a vector Aa, a = 0, ..., p + 1 and 9 − p adjoint scalars Φi, i = p + 2, ..., 10, all

represented as N × N hermitian matrices. The boundary conditions force the

derivatives with respect to the transverse directions to vanish. Then, the part of

the action associated with the scalar fields becomes:

∫
dxp+1

10∑
i=p+2

Tr
(
∂aΦ

i + i
[
Aa,Φ

i
])2

+
10∑

i,j=p+2

Tr
[
Φi,Φj

]2
(76)
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For the supersymmetry to be respected by the vacuum, the minimum of the scalar

potential must be zero, i.e. [Φi,Φj] = 0. Therefore, the matrices representing the

scalar fields can be simultaneously diagonalized and their vacuum expectation

values take the form:

Φi = diag
(
Φi

1, ...,Φ
i
N

)
(77)

Then, the term [Aa,Φ
i]

2
gives

∣∣Akla ∣∣2 10∑
i=p+2

∣∣Φi
k − Φi

l

∣∣2 , (78)

which shows that the diagonal components of the N ×N matrix Aa are massless,

while the off-diagonal ones aquire a mass, proportional to |Φi
k − Φi

l|, k 6= l.

The correspondance is obious by considering that the vacuum expectation values

of the scalar fields defines the positions of the N D-branes in spacetime, as in

equation 81. In the case where all the eigenvalues Φi
1, ...,Φ

i
N are equal, all of the

N gauge fields remain massless and they are obtained by the quantization of open

strings, each one of them having both end points on the same D-brane; the asso-

ciated symmetry is U(1)N . If n of the eigenvalues are distinct, then the symmetry

is U(1)N−n × U(n), with n massive and N − n massles gauge fileds, coming from

the quantization of strings streching between these n branes that were seperated

from the rest of the system.
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4.6 D3-Branes

Let us now focus on the specific case of D3-branes. For p = 3, the solution 66-69

to the supergravity equations of motion becomes:

ds2 = H−1/2dxµdx
µ +H1/2(dr2 + r2dΩ2

5) (79)

A4 = H(r) (80)

eφ = gs (81)

H(r) = 1 +
CgsN(α′)2

r4
(82)

This particular solution has the following properties:

• The world volume of the brane has a 4-dimensional Poincare symmetry

R4 × SO(1, 3).

• The dilaton and the axion fields are constant.

• The geometry is regular at r = 0.

• It is self dual (the magnetic dual of the D3-brane is also a D(10-4-3)=D3-

brane).

For a set of N parallel D3-branes, located at the points yi, the solution is:

H(yi) = 1 + Cgs(α
′)2

N∑
a=1

1

|y − ya|4
(83)

We define the radius R of the brane as:

R2 = α′
√
CgsN (84)

When the radius is large comparing to the string scale α′, i.e. gsN � 1, the

supergracity low energy limit constitues a reliable approximation to the full string
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theory. Even when we take N to be large, we can demand gs � 1, so that pertur-

bative methods can be applied.

Using the parameter R, the metric 79 can be rewritten as:

ds2 =

(
1 +

R4

r4

)−1/2

dxµdx
µ +

(
1 +

R4

r4

)1/2

(dr2 + r2dΩ2
5) (85)

We can study the geometry in to interesting limits:

• r � R: In this case, when studying the geometry far from the brane, we see

that the deformation vanishes and we recover flat 10-dimensional spacetime.

• r � R: The metric near the brane becomes:

ds2 ≡ r2

R2
dxµdx

µ +R2dr
2

r2
+ r2dΩ2

5 (86)

which corresponds to the product of two Einstein spaces: AdS5 × S5.
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5 The Maldacena AdS/CFT Correspondence

In the previous sections, it was shown that on the world volume of Dp-branes, im-

plemented in a Type IIB string theory background, live (p+1)-dimensional gauge

theories. For the case p=3 in particular, the world volume theory is N = 4, d = 4

Superconformal Yang Mills, while the theory near the brane horizon is Type IIB

string theory (or supergravity) on AdS5 × S5. We are now about to describe the

AdS/CFT (Anti-de-Sitter/Conformal Field Theory) correspondence, that exam-

ines the equivalences between these two theories.

5.1 The Maldacena Limit

Maldacena’s conjecture about the N = 4, d = 4 SYM ↔ IIB string theory on

AdS5×S5 duality was inspired by the fact that each of the two theories decouples

from the system in which it is considered, in the same limit: α′ → 0.

On one hand, we consider the N = 4, d = 4 SYM theory living on the world

volume of N parallel D3-branes, implemented in a Type IIB string background.

Performing an expansion in α′ of the effective action for the coupled system of the

branes and the bulk, we get the leading terms:

1

gs

∫
dx4F 2

µν +
1

α′4

∫
dx10
√
GRe−2φ + ... (87)

where the coupling constant is fixed by the vacuum expectation value of the dila-

ton. It is obvious that when α′ → 0, the theory on the brane decouples from the

theory in the 10-dimensional bulk.

On the other hand, when considering the D3-brane solution of supergravity, in

the limit α′ → 0, the decoupled system is again the 10-dimensional bulk and the
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near horizon geometry of AdS5 × S5, the so called ”throat”. This limit however,

should be approached in a cosnistent way, such that the physical observables are

kept finite. More specifically, as mentioned in section 4.5, the mass of a gauge

vector field is given by the mass of an open string, stretching between two branes.

That is: m ∼ ∆r
α′
∼ δΦ (remember that the transverse positions of the brane are

parametrized by the vacuum expectation values of the SYM scalar fields).

We want to keep this quantity fixed and so, we define a new variable u ≡ r/α′

The correct way to take the Maldacena limit then, is:

α′ → 0

r → 0

gs : fixed

N : fixed

u ≡ r

α′
: fixed (88)

The new form of the metric 86, in the near horizon limit, is:

ds2 ' α′
[

u2

√
CgsN

dxµdx
µ +

√
CgsN

du2

u2
+
√
CgsN dΩ2

5

]
(89)

The fact that the spacetime AdS5×S5 deformation caused by the branes decouples

from the 10-dimensional flat bulk, as α′ → 0, can be seen from the function 83,

which we now write as:

H(r) = 1 +
CgsN

α′2u4
(90)

This can alternatively be thought of as zooming in on the N = 4, d = 4 conformal

Super Yang Mills field theory on the D3-world volume, by taking r → 0.
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It therefore, makes sense to propose the duality between N = 4 SYM and Type

IIB superstring theory or supergravity on AdS5 × S5 background.

Let as now state the relations between the parameters of the two theories.

N Comparing the N = 4 SYM action

S =
1

g2
YM

∫
d4xTr

(
−1

2
F 2
µν − iψ̄aγµDµψa − (DµΦi)2 + cabi ψa[Φ

i, ψb] + [Φi,Φj]2
)

and the kinetic term of the brane/bulk coupled effective action for the gauge fields

S ∼ 1
gs

∫
dx4Tr(−F 2

µν) + ..., the relation

g2
YM ∼ gs (91)

between the gauge theory coupling with the constant value of the dilaton is sug-

gested. More precisely, when writing the SYM action using the complex coupling

τ that combines gYM with the instanton angle θI , such that the Montonen-Olive

symmetry is manifest, and also combine the axion and the dilaton fields into the

complex field 60, the identification becomes (restoring the correct proportionality

constants):

τ ≡ 4πi

g2
YM

+
θI
2π

+
C0

2π
+

i

gs
(92)

N The parameter N of the SU(N) gauge group is identified with the flux of the

5-form Ramond-Ramond field strength on the 5-sphere.

∫
S5

∗F5 = N (93)

N AdS5 and S5 have the same radius R, with R2 ∼ α′
√
λ, where λ = g2

YMN is

the t’ Hooft coupling of the gauge theory. The dimensionless parameters of the
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theories are related by:

gs ∼
λ

N
R2

α′
∼
√
λ (94)

The Maldacena conjecture in its strong form, suggests that the correspondence

holds for all values of N and gs ∼ g2
YM . That would involve the full Type IIB string

theory on the AdS5 × S5. However, string quantization on such a background is

highly non-trivial and in order to deal with that, we rather consider some useful

limits of the original statement.

5.2 The t’ Hooft Limit

T’ Hooft proposed that an SU(N) Yang Mills gauge theory has a well defined

perturbative expansion in the parameter 1
N

, if we take the number of colours N

to be large, while keeping the coupling λ fixed:

N →∞ , gYM → 0 , λ ≡ g2
YMN : fixed. (95)

The graphical representation of this expansion constitutes of Feynman diagrams

in the double line notation

(→ : fundamental rep., ← : antifundamental rep., 
 : adjoint rep.). The com-

putation of each one of them involves:

∞∑
g=0

N2−2gfg(λ) (96)

and for N →∞, it is dominated by the Riemann surfaces of minimal genus g. By

looking at equation 59, we see that the above expression is equivalent to the loop

expansion in string theory, with string coupling gs ∼ λ/N .
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Therefore, the large N limit of the N = 4 conformal Super Yang Mills theory

corresponds to the classical Type IIB string theory on AdS5 × S5.

5.3 The Large λ Limit

One further limit, is to take the parameter λ to be large as well. This can still

be achived even when gs → 0, so that the string loops are suprresed. Then,

α′/R2 → 0 and the higher derivative terms, as well as the massive string modes,

are also suppresed (remember that higher derivative expansion is essentially an

α′ expansion), leaving us with an effective supergravity. From the field theory

side, λ needs to be � 1 for the perturbation theory to be well defined. In other

words, the weak coupling regime of the string theory corresponds to the strong

coupling regime of the field theory. This strong/weak coupling duality exhibits

the usefulness of the AdS/CFT correspondence. So, in the limit:

N →∞ , λ→∞ , gYM � 1 (97)

N = 4 conformal Super Yang Mills theory corresponds to the classical Type IIB

supergravity on AdS5 × S5 and the correlation functions of the strongly coupled

field theory can be computed using classical supergravity. When N and λ are

finite, we rather turn into the full string theory. The field theory perturbative

expasions are taken either in 1/N , corresponding to string loop corrections in

string theory, or in 1/
√
λ, corresponding to α′ corrections. For every order in

1/N , there are infinite number of Feynman diagrams in field theory, leading to

an extremely complicated funvtion fg(λ). In supergravity, however, every order

is associated with only one graph and for g = 0 (planar field theory graphs)

and λ large, the function fg(λ) can be calculated. Further corrections in 1/
√
λ

correspond to string loop corrections, while going beyond the weak gs coupling

regime, requires world-sheet corrections.

41



5.4 Mapping The Symmetries

The most important check of the AdS/CFT correspondence is that both theories

have the same global unbroken symmetries.

N The maximal bosonic subgroup of the conformal N = 4, d = 4 Super Yang

Mills is SU(2, 2)× SU(4)R ∼ SO(2, 4)× SO(6)R, where SU(2, 2) ∼ SO(2, 4) is

associated with the Poincare symmetry in 4 dimensions, combined with the con-

formal symmetry and SU(4)R ∼ SO(6)R is the R-symmetry group that rotates

the supercharges into one another. In the string theory side, SO(2, 4) is by defi-

nition the isometry group of AdS5 spacetime, while SO(6) is associated with the

rotations on the 5-sphere.

N This subgroup is enhanced to the full SU(2, 2|4) supergroup of the CFT, by

addding to the 16 supersymmetries, the 16 conformal supersymmetries. On the

other hand, D3-branes have 16 supercharges, being 1/2 BPS objects, which are

enhanced to 32, as the near horizon AdS5 space is a maximally sypersymmetric

space. Thus, both theories have 32 supersymmetries.

N Furthermore, N = 4 SYM has the discrete, global Montonen-Olive or S-duality

symmetry, which is manifest when the coupling gYM and the instanton angle θ are

combined into the complex coupling

τ ≡ 4πi

g2
YM

+
θI
2π
.

Except from the invariance under θ → 2π, τ → τ + 1 of the theory, there is also a

τ → −1/τ invariance and those two together yield the S-duality symmetry group:
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SL(2,Z), with generator:

τ → aτ + b

cτ + d
, ad− bc = 1, a, b, c, d ∈ Z. (98)

In the AdS side, the SL(2,Z) symmetry is manifest when using the complex field:

τ ≡ C0

2π
+

i

gs
.

Note that in the ’t Hooft limit, S-duality becomes inconsistent, as, for θI = 0, it

maps gYM → 1/gYM and λ→ N2/λ.

5.5 Mapping the CFT Operators to the Type IIB Fields

The elementary fields of the conformal theory are not renormalized, so the spec-

trum is rather specified by a set of gauge invariant composite operators. Any

irreducible conformal supermultiplet consists of one superconformal primary op-

erator O, which is the operator of lowest dimension, and of its higher dimensional

descendants O′, that arise when applying the supercharges Q, ([Q] = 1/2), to O:

O′ = [Q,O]± (99)

Therefore, a superconformal primary operator can not be given by the commu-

tator of any other operator with Q. Keeping that in mind and looking at the

supersymmetry transformations of the elementary fields, we conclude that the

superconformal primary operators can only invole the scalar fields (without any

derivatives or scalar commutators) arranged in a way that ensures gauge invari-

ance. For that reason, we introduce the single trace operators of the form:

str
(
Φi1Φi2 · · · Φin

)
, str : symmetrized trace (100)
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They are totally symmetric in the indeces of the SO(6)R fundamental representa-

tion and they can be decomposed into irreducible operators, by isolating the the

traces. The traceless part is then, denoted by {i1...in}. In the simplest cases, we

have:

∑
i

Tr ΦiΦi

Tr Φ{iΦj} (101)

The unitary representations of the N = 4 superconformal algebra, which are in

one-to-one correspondence with the superconformal chiral primary operators, are

labeled by the SO(2, 4) quantum numbers: (j1, j2): spin, ∆: conformal dimension

and by the representations of SU(4)R.

The conformal dimension of every operator in a unitary representation, satisfies a

bound, set by the spin and the SU(4)R quantum numbers. For the scalar primary

operators, there are four forms of the bound, which were worked out in [44]. What

we are particularly interested in, is a classification of the multiplets into two kinds:

1 Chiral (or BPS) multiplets: These multiplets contain primary operators that

are annihilated by some combination of the supercharges. Their length is

shortened, as they include less conformal primary fields than the generic

representations. An interesting feature of the chiral multiplets is that their

conformal dimensions ∆ are unrenormalised.

2 Non-Chiral (or non-BPS multiplets): Here, the primary operators do not

commute with any of the supercharges. The dimensions ∆ take continu-

ous values, as opposed to the chiral ones, and they are not protected from

quantum corrections.
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The simplest case of a BPS operator is the 1/2 BPS operator, in the [0, k, 0], k ≥

2 SU(4)R representation. It preserves 1/2 of the supersymmetries, its conformal

dimension is k and has the general form:

O∆(x) =
1

nk
str
(
Φ{i1(x) · · · Φik}(x)

)
: 1/2 BPS (102)

Out of the above single trace operator, we can construct multiple trace 1/2 BPS

operators and out of the latter, we can further constract 1/4 and 1/8 BPS opera-

tors.

In order to find the field contents of the SU(2, 2|4) irreducible representations on

the AdS side, we perform a Kaluza-Klein compactification of the 10-dimensional

space onto the compact manifold S5. Then, the 10-dimensional supergravity fields

are decomposed in an expansion on the 5-sphere. For the scalars, for instance, we

write:

φ(x, y) =
∞∑
∆

φ∆(x)Y∆(y), (103)

where φ(x, y) are the 10-dimensional fields, with the coordinates x, y parametrizing

the AdS5 and the S5 spaces respectively, Y∆ is a basis for the spherical harmonics

on the sphere and φ∆(x) are the 5-dimensional fields living on AdS5. The indepen-

dent φ∆(x) are combinations of Kaluza-Klein modes of different 10-dimensional

bulk fields and they transform in representations of the SO(6) group of rotations

on the sphere. The full spectrum consists of a graviton multiplet and an infinite

number of KK modes [45, 46, 47]. Each mode receives a mass contribution, which

is determined by the rank ∆ of the totally symmetric traceless representations of

SO(6). For the scalars for exaple, the relation between the mass of the fields and
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the conformal dimension is:

m2R2 = ∆(∆− 4)

For the rest of the fields, see Table 2. Every KK mode falls into an SU(2, 2|4)

representation and we obtain the same chiral multiplets as the ones of N = 4

SYM. Therefore, there is an 1-1 correspondence between the fields from the Type

IIB reduced supergravity and the chiral operators of N = 4 SYM. Single trace

operators are associated with single particles on ADS, while multiple trace oper-

ators, which can be formed by the single traced ones using OPE, are associated

with bound states.

N 1/2 BPS supergravity excitations with a span of spin 2 correspond to chiral

primary operators of the form: O2 = TrΦ{iΦj} plus descendents.

N 1/2 BPS supergravity KK excitations with a span of spin 2 correspond to chiral

primary operators of the form: O∆ = TrΦ{i1 ...Φi∆} plus descendents.

N non-BPS Type IIB massive string modes correspond to non-chiral operators

like: TrΦiΦi

N multiparticle states correspond to products of operators at different points:

O∆1(x1)...O∆n(xn)

N bound states correspond to products of operators at the same point: O∆1(x)...O∆n(x)
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6 Correlation Functions

6.1 Holographic Principle

Our aim is to relate two theories of different dimensions. More specifically, we are

about to show a correspondence between 4-dimensional objects (operators) in a

Yang-Mills theory and 5-dimensional objects (fields) in supergravity. This attempt

is consistent with the so called ”holographic principle” [22, 23], according to which,

a quantum theory of gravity in a spacetime with dimensions d, can be described by

an other theory that lives on the boundary of that space, thus having dimensions

d − 1. Moreover, the degrees of freedom of the boundary theory need to be less

than one per Planck area, such that the entropy satisfies the Bekenstein bound

[24]. This bound states that the maximum entropy of a space is proportional to

the area of its boundary.

S ≤ Area

4GN

The important ingredient of holography that is used in our case of interest, is that

the number of degrees of freedom within a region of spacetime, grows with the

area of its boundary and not with its volume. Therefore, physics on AdS5 can

be captured by a local field theory that lives on its 4-dimensional Minkowskian

boundary. But the fact that the field theory has infinte number of degrees of free-

dom, as it is conformal, and the Minkowskian boundary where it lives, is infinite

as well, makes counting the degrees of freedom per Planck area preblematic. To

deal with this, we introduce an energy cutoff in the field theory which corresponds

to a cutoff in the radial distance in AdS5. Then, sending this cutoff to zero, takes

us to the horizon of AdS5 and to the UV regime of the field theory.
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6.2 The Bulk-Boundary Correspondance

Even though the supergravity low energy description of string theory, which is

valid at large N and large ’t Hooft coupling λ, is associated with the weakest

form of the AdS/CFT correspondence, it is this limit that we work in, in order

to calculate the planar contributions to n-point correlation functions of the Super

Yang Mills gauge theory operators.

On the supergravity side, all 10-dimensional fields are decomposed onto Kaluza-

Klein towers on S5. We will be considering the 5-dimensional fields φ(z, xµ), which

we shall call bulk fields, that live on AdS5 and their dynamics is described by an

effective action SAdS5 .

The basic assumption of the correspondence is that every bulk field is associated

with a single trace operator O [34, 36, 37, 38, 39], that belongs to the spectrum

of the 4-dimensional Super Yang Mills theory. They both have the same SO(2, 4)

quantum numbers and there is a relation between the mass m of the field and the

scale dimension ∆ of the operator. For scalar fields in particular, this relation is:

∆ =
d

2
±
√
d2

4
+m2

We can view the value of the bulk field on the boundary as a source for the cor-

responding operator, producing its correlation functions. More precisely, we add

in the field theory Lagrangian an interaction term between the operator and the

boundary field, identified with the generating functional for connected correla-

tion functions of O. The extension of the source to the bulk is supported if the

5-dimensional field is a solution of the equations of motion that follow from the

extremization of SAdS5 . The mathematical expression of the above statetment is:

eWCFT [φ0] = 〈e−
∫
d4x φ0(x)O(x)〉CFT ' eSAdS5

[φ]|φ(boundary)=φ0 (104)
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By differentiating WCFT ' SAdS5 with respect to the sources φ0
i and then setting

φ0
i = 0, we get the planar contributions to the n-point connected correlation

functions for the gauge invariant field operators.

〈O1 · · ·On〉 = (−1)n−1 δ

δφ0
1

· · · δ

δφ0
n

WCFT |φ0
i=0 (105)

Note that, since the sources are set to zero after the differentiation, interaction

terms in the action with more than n fields will not contribute to the computation

of the n-point function. Explicit calculations involve the expansion of both sides

of expression 106 in a power series with respect to the sources. This semi-classical

expansion can be represented in terms of tree level diagrams for the supergravity

fields, the so called Witten diagrams.

A Witten diagram is essentially a disk, with the interior representing the AdS

bulk and the boundary circle representing the boundary of AdS. A 4-diamensional

source living on the circle, can be extended to a point in the bulk via a boundary-

to-bulk propagator K, while vertex points in the interior of AdS, which represent

interaction terms in SAdS5 , can be connected via a bulk-to-bulk propagator G.

6.3 Bulk Fields

We refer to the fields that live on the 4-dimensional Minkowskian boundary of

AdS5 as boundary fields. On one hand, as already mentioned, they act as sources

for the primary operators which specify the spectrum of the conformal field the-

ory. On the other hand, they constitute they limit value of the AdS5 bulk fields on

its boundary and they can be extended to the full 5-dimensional configurations,

φ(xµ)→ φ̃(xµ, x5) with µ = 0, 1, 2, 3, when the appropriate boundary condiotions

are imposed.
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We will work with the Euclidean version of AdS5, with the metric given in Poincare

coordinates and the boundary corresponding to z = 0 (see equations 45, 50). The

radious R is set equal to one for simplicity.

ds2 =
dx2

µ + dz2

z2
(106)

Consider the effective action for a massive scalar field φ̃(xµ, z):

S ∼
∫
dx5
√
G
(
Gmn∂mφ∂nφ+m2φ2

)
=

∫
dzdxµ

1

z5

(
z2(∂zφ)2 + z2(∂µφ)2 +m2φ2

)
(107)

The bulk fieds satisfy the equation of motion:

∂z

(
1

z3
∂zφ

)
+ ∂µ

(
1

z3
∂µφ

)
=

1

z5
m2φ (108)

Looking at the z-dependence only and writing the field as a power series, φ =
∑∞

n=0 anz
n,

we get:

∞∑
n=0

(
−3anz

n + ann(n− 1)zn −m2anz
n
)

= 0

⇒ n(n− 4) = m2

⇒ n = 2±
√

4 +m2 (109)

Let us keep the largest value of this solution and call it ∆. Then,

∆(∆− 4) = m2 (110)

and the equation of motion has two linearly independent solutions:

φ ∼ φ0z
4−∆ + φ1z

∆ (111)
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Taking into account the xµ dependence as well, we will just have some corrections

depending on z and xµ but the coefficients of φ0, φ1 will still have the same

behaviour:

φ(z, xµ) ∼
[
φ0(xµ)z4−∆ +O(z)

]
+
[
φ1(xµ)z∆ +O(z)

]
(112)

What distinguishes the two solutions, is the property of renormalizability at the

boundary z = 0, where the metric 106 blows up.

∫
dx5
√
G|φ|2 →∞ (113)

The solution proportional to φ0 is not properly squared normalizable. Thus, it

does not correspond to bulk excitations; it is rather used us the coupling of external

sources to the supergravity [25]. Notice that in order to get the five dimensional

field configuration in the bulk we should set φ̃(z, xµ) → f(z)φ(xµ) instead of

simply requiring φ̃(z, xµ) = φ(xµ). The reason is that the equation of motion

either diverges, for ∆ > 4, or vanishes, for ∆ < 4 at the boundary. And the only

case where we get a constant value is when ∆ = 4. So, the necessary boundary

condition is

φ(z, xµ)→ z4−∆φ0(xµ) (114)

Given the value of the boundary field φ0(xµ), φ1(xµ, z) can be uniquely determined

and we will obtail a complete solution for the bulk theory in AdS5.

In order to deal with divergences that ocuur as z → 0 while calculating several

observables in AdS5, it is appropriate to introduce a cutoff ε. Then the boundary

conditions should be imposed at z = ε and in the end we may send this cutoff to

zero. By doing this however, we do not have the full symmetry of AdS5 anymore

and thus, we can not find an exact solution in phase space. An exact expression can
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be found instead, in terms of Bessel functions in momentum space pµ, conjugate

to xµ. The Fourier transform of the 5-dimensional field is:

φ(z, xµ) =

∫
dp4eipµx

µ

φ(z, pµ) (115)

and the value at the cutoff is denoted by:

φp(z = ε) ≡ φ0
pε

4−∆ (116)

The equation of motion 108 becomes

[
(∂z)

2 − 3z∂z − (p2z2 +m2)
]
φ(z, pµ) = 0 (117)

which by setting φp = (pz)2f(pz), takes the form of a Bessel function

(pz)2 d2f

d(pz)2
+ (pz)

df

d(pz)
−
(
∆ + (pz)2

)
f = 0 (118)

with two solutions: z2I∆−2(pz) and z2K∆−2(pz).

For z → 0,

z2I∆−2(pz)→ z2

[
(pz)

2

]∆−2
1

Γ(∆− 2 + 1)
∼ z∆,

while

z2K∆−2(pz)→ z2

[
(pz)

2

]2−∆
1

Γ(∆− 2 + 1)
∼ z4−∆.

The first solution increases exponentially as z → ∞ and by requiring regularity

in the deep interior, we need to exclude it. We only keep z2K∆−2(pz), the non

renormalizable solution, which is exponentially vanishing as z → ∞. Then, the
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normalized solution for the bulk field is:

φp(z, pµ) =
z2K∆−2(pz)

ε2K∆−2(pε)
φ0
pε

4−∆ (119)

6.4 2-point Functions

Having found the solution to the supergravity equation of motion, subject to

the appropriate Dirichlet boundary condition, we shall now evaluate the on-shell

quadratic action, in order to obtain the generating functionalWCFT [φ0] ' SAdS5|z=ε

for the 2-point correlation function of the Yang Mills theory.

Integrating the action 110 by parts, yields:

SAdS5 ∼
∫
AdS5

√
Gφ(−�+m2)φ+

∫
∂AdS5

√
Gφ∂nφ (120)

Since the first term vanishes on the equation of motion, we are left with just the

boundary contribution:

SAdS5 ∼
1

z3

∫
dx4φ∂zφ |z=ε (121)
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Substituting φ from equation 115 and φ(pµ, z) from equation 119, we get:

SAdS5 ∼
1

z3

∫
dx4

∫
d4pd4qeipxφp∂ze

iqxφq |z=ε

=
1

z3

∫
d4pd4q (2π)4δ4(p+ q)φpφq∂z(log φq) |z=ε

=
1

z3

∫
d4pd4q (2π)4δ4(p+ q)

z2K∆−2(pz)

ε2K∆−2(pε)
φ0
pε

4−∆ z
2K∆−2(qz)

ε2K∆−2(qε)
φ0
qε

4−∆ ·

· ∂z(log
z2K∆−2(qz)

ε2K∆−2(qε)
φ0
qε

4−∆) |z=ε

=
1

z3

∫
d4pd4q (2π)4δ4(p+ q)φ0

pε
4−∆φ0

qε
4−∆ ·

· {∂z log[z2K∆−2(qz)] + ∂z log(φ0
qε

4−∆)− ∂z log[ε2K∆−2(qε)]} |z=ε

=
1

z3

∫
d4pd4q (2π)4δ4(p+ q)φ0

pε
4−∆φ0

qε
4−∆ · ∂z log[z2K∆−2(qz)] |z=ε

' WCFT [φ0] (122)

The 2-point correlation function is then given by:

〈O∆(p)O∆(q)〉 = − δ

δφ0
p

δ

δφ0
q

WCFT

= − δ

δφ0
p

δ

δφ0
q

1

z3

∫
d4pd4q (2π)4δ4(p+ q)φ0

pε
2(4−∆)φ0

q · ∂z log[z2K∆−2(qz)] |z=ε

= −(2π)4δ4(p+ q)

ε3
ε2(4−∆)∂ε log[ε2K∆−2(qε)] (123)

For ∆ − 2 integer, which is the case in most applications of the AdS CFT corre-

spondence, the asymptotic behavior of the Bessel function near ε = 0, is of the

form:

K∆−2(qε) = (qε)−(∆−2)[a0 + a1(qε)2 + a2(qε)4 + ... ] +

+ (qε)∆−2 log(qε)[b0 + b1(qε)2 + b2(qε)4 + ... ]
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Then,

〈O∆(p)O∆(q)〉 =
(2π)4δ4(p+ q)

ε4
{−2 + (∆− 2)(1 + c2(qε)2 + c4(qε)4 + ... )−

− 2b0(∆− 2)

a0

(qε)2(∆−2) log(qε)(1 + d2(qε)2 + ... )}

with ai, bi, ci, di being functions of (∆− 2) and 2b0(∆−2)
a0

= (−1)(∆−2−1)

22(∆−2−1)Γ(∆−2)2 [26].

The divergent terms that ocuur when we take the limit ε→ 0, are local polynomi-

als in q. In quantum field theory, these divergences are cured, by using appropriate

local counter terms. Thus, as they are scheme dependent and physically unim-

portant, we can ignore them. We also drop the momentum conservation factor,

while the two factors of ε4−∆ that originate from the boundary condition 114, are

absorbed into the definition of the operators O(p), O(q). We finally end up with

the 2-point correlation function in momentum space:

〈O∆(p)O∆(−p)〉 =
(−1)(∆−2)

2(2∆−6)Γ(∆− 2)2
p2∆−4 log p (124)

The phase space correlator is obtained using differential regularization [27] or by

analytic continuation in (∆ − 2) [28, 29], so that the Fourier transform back to

coordinate space can be defined.

〈O∆(x1)O∆(x2)〉 =
(2∆− 4)(Γ(∆)

π2Γ(∆− 2)

1

|x1 − x2|2∆
(125)

The above result is in agreement with the 2-point correlation function calculated

using the Ward identities which involve the 3-point function 〈O∆(x1)O∆(x2)Jµ(x3)〉,

where Jµ is a conserved current.

Restoring the AdS radius R, the relation 110 between the mass and the scale
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dimension of a scalar field becomes:

m2R2 = ∆(∆− 4) (126)

We see that positivity of energy, m2 > 0, requires ∆ > 4, while the bound which

is set by unitarity is just ∆ ≥ 1. In fact, operators with scale dimensions ∆ < 4

exist and their energy is still positive, provided that the Breitenlohner-Freedman

bound [30] m2R2 ≥ −4 is satisfied.

We usually choose to define ∆ as the largest solution of equation 109 because it

is the normalizable one and it satisfies the unitarity bound. However, there are

cases in which both solutions are normalizable and they give rise to correlators of

two operators with different dimension. Then, the choice is made according to the

transformation properties of the relevant fields under supersummetry or under a

global bosonic symmetry [31, 32, 33].

The mass-dimension relation for fields of arbitary spin is shown in the table below

[34, 35].
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Table 2: Relation between mass and scale dimension

Fields Dimension (R = 1)

scalars ∆± = 1
2
(d±

√
d2 + 4m2)

spinors ∆ = 1
2
(d+ 2|m|)

vectors ∆± = 1
2
(d±

√
(d− 2)2 + 4m2)

p-forms ∆± = 1
2
(d±

√
(d− 2p)2 + 4m2)

1st order d
2
−forms, d:even ∆ = 1

2
(d+ 2|m|)

spin-3/2 ∆ = 1
2
(d+ 2|m|)

massless spin-2 ∆ = d

6.5 AdS5 Propagators

For the computation of the n-point functions with n > 2, it is more convinient

to work in coordinate space, where the the conformal invariance is more obvious.

Since higher order terms in the action are now taken into account,

SAdS5 ∼
∫
dx5
√
G

(
1

2
(∂φi)

2 +
1

2
m2
iφ

2
i +

n∑
k=3

λi1...ikφi1 · · · φik

)
(127)

the equations of motion are no longer linear

(
−�+m2

)
φ = λφn (128)

and they can not be solved exactly. We therefore employ the iterative solution:

φzero(z, xµ) =

∫
dx′µK∆(z, xµ − x′µ)φ0(x′µ) (129)
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φone(z, xµ) = λ

∫
dx′µG∆(z − z′, xµ − x′µ)[φzero(z′, x′µ)]n (130)

By inserting φone in the right hand side of 128, we find an expression for φtwo and

we keep proceeding in this perturbative manner.

Equation 129 refers to the extension of a massive scalar field from the boundary

point xµ to a bulk point (z, x′µ), which is now defined using the boundary-to-bulk

propagator K∆(z, xµ − x′µ), satisfying the Klein-Gordon equation

(−�+m2)K∆(z, xµ − x′µ) = 0 (131)

Its behavior at the boundary is specified by requiring:

K∆(z, xµ − x′µ)→ z4−∆δ(xµ − x′µ) , z → 0 (132)

The above limit suggests that, as we approach the AdS boundary, K∆ looks like

a delta function at z = ∞. Notice that the solution z∆ of the Klein-Gordon

equation, see equation 114, is zero on all of the boundary except at that specific

point, where it is infinity. As mentioned in section 3.4 , in order to obtain the full

4-dimensional spherical boundary of the compactified Euclidean AdS5, the point

z =∞ had to be added. The unique solution of 131 that also satisfies 132, is:

K∆(z, xµ − x′µ) =
Γ(∆)

π2Γ(∆− 2)

(
z

z2 + (xµ − x′µ)2

)∆

(133)

When considering interaction terms, we need the bulk-to-bulk propagator that

appears in equation 130. It solves the equation:

(−�+m2)G(z − z′, xµ − x′µ) =
1√
G
δ(z − z′)δ(xµ − x′µ) (134)
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and it is given by the hypergeometric function [40, 12]:

G∆(u) =
Γ(∆)Γ(∆− 3/2)

(4π)5/2Γ(2∆− 3)
(2u−1)∆F

(
∆,∆− 7

2
; 2∆− 3;−2u−1

)
, (135)

u =
[(z, xµ)− (z′, x′µ)]2

2zz′

6.6 3-point Functions

For the calculation of the 3-point function, the action 127 for three scalar fields,

reduces to:

SAdS5 ∼
∫
dx5
√
G

(
1

2
(∂φi)

2 +
1

2
m2
iφ

2
i + λφ1φ2φ3

)
(136)

There is only one interaction term which corresponds to one cubic vertex in the

bulk. Therefore, there is only one graph, including three boundary-to-bulk prop-

agators. The correlation function for the associated operators reads:

〈O∆1(x1)O∆2(x2)O∆3(x3)〉 = −λ
∫
dx5
√
GK∆1(z, x− x1)K∆2(z, x− x2)K∆3(z, x− x3)

=
λa1

|x1 − x2|∆1+∆2−∆3|x1 − x3|∆1+∆3−∆2|x2 − x3|∆2+∆3−∆1
(137)

Evaluation of the x-integral [28] determines the constant a1.

a1 = − Γ[(∆1 + ∆2 −∆3)/2]Γ[(∆1 + ∆3 −∆2)/2]Γ[(∆2 + ∆3 −∆1)/2]

2π4Γ(∆1 − 2)Γ(∆2 − 2)Γ(∆3 − 2)
·

· Γ[(∆1 + ∆2 + ∆3)/2] (138)

The cubic couplings of the supergravity fields in AdS5 × S5 are obtained by ex-

panding in fluctuations around the background metric and the F5 field strength

[43].
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7 Conclusions

Dualities between string theories and quantum field theories through different ap-

proaches, seem to provide valuable ways of extracting information about the two

sides. The importance of AdS/CFT correspondece lies in the insight given on the

strongly coupled Yang Mills theories by the weak/strong duality. In the interest-

ing limit of large N and strong coupling, the field theory’s observables can receive

a successful perturbative treatment using a classical gravitational theory.

Another important point is that the correspondence is realised holographically,

the theories involved differ in the number of spacetime dimensions by 1, with one

theory lying on the boundary of the other. Because of the infinite amount of

degrees of freedom, associated with conformal invariance, in order to check the

holographic principle is satisfied, we need to introduce a cutoff δ. In the field

theory side, this cutoff is some energy scale, whereas in the gravity side it is

related to a radial position. Then, going from the interior of AdS to the boundary

by sending this cutoff to zero, corresponds to going to the UV regime of the field

theory. Considering for example the N = 4 SYM on the S3 unit sphere, the

number of d.o.f goes like ∼ N2δ−3. On the other hand, the area of a surface in

AdS, for δ → 0, in Planck units is:

Area

4GN

=
VS5R3δ−3

4GN

∼ N2δ−3

Therefore, we conclude that AdS/CFT correspondece satisfies the holographic

bound. The statement that any field theory- AdS duality is holographic should

be understood as checking whether, for different values of R ( i.e. for different

values of N), the number of d.o.f. goes like the area of the space or like its volume.

Such a holographic description is usefull for considering aspects of black holes. We

would expect it to provide information about the suitable treatment of black holes
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singularities. It moreover concludes that the evolution of black holes is unitary,

as the theory on the boundary is unitary.

The main purpose of this thesis, was the introduction to the Maldacena’s conje-

cure, that states the correspondence betweenN = 4 Superconformal YM and Type

IIB string theory on AdS5×S5 background, with the identifications:
g2
YM

4π
= g2

s and

R2 = α′
√

4πgsN . This is the original, strong form of the conjecture. However, by

also considering limits where it becomes more useful, it can be summarized into

the following three forms:

• strong form → all values of N and gs ∼ g2
YM→ full string theory.

• ’t Hooft limit → λ = g2
YMN : fixed, N∞ → classical string theory on

AdS5 × S5.

• weak limit→ λ→∞, N →∞ classical supergravity on AdS5 × S5.

In order to make the above arguments manifest, we started by studying the ge-

ometry of AdS5. The key features of that space are:

1 It has maximal supersymmetry, i.e. 32 supercharges

2 It has, by constraction, an SO(2, 4) isometry, which is the conformal group

in 4 dimensions.

3 The boundary of the conformally compactifiedAdS5 is 4-dimensional Minkowski

spacetime.

Then, 10-dimensional Type IIB superstring and supergravity theories were di-

cussed and in that content, p-branes were introduced as 1/2 BPS solutions to the

supergravity equations of motion, preserving half of the supersymmetries of the

background and they were extended to the notion of Dp-branes in string theory,

were open strings can end. The key points in that section were:
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1 Thinking of the Dp-branes as sources embedded in the Type IIB background,

they cause a deformation of the geometry in the near horizon region, which,

in the p=3 case, corresponds to AdS5 × S5. In the low energy limit the flat

spacetime in the region far away from the branes decouples and we are left

with just the near horizon curved geometry.

2 On the world volume of a set of N coincident 3-branes, lives an SU(N) vector

supermultiplet with 16 supersymmetries, which are enhanced to 32 when we

add the conformal supersymmetries. This is associated with the fact that

the near horizon region is AdS.

Having motivated the AdS/CFT correspondence, we then moved on to the match-

ing of the parameters, the symmetries and the observables, finishing with a demon-

stration of how to calculate the Yang Mills correlation functions of composite oper-

ators, using the boundary fields of AdS space as sources, formulating a generating

functional that is actually, the sypergravity 5-dimensional effective action, evalu-

ated on the equations of motion. It turns out that the 1-, 2- and 3-point functions

satisfy the constraints that follow from conformal invariance, while 4-point func-

tions are lees constrained.

Since the AdS/CFT correspondence was first introduced there has been a large

number of ckecks on it, with remarkably successful results. However, there are

some points to be stressed about its possible extentions.

The systems that have been taken under consideration, have a UV fixed point

but they are not characterized by asymptotical freedom. The key point of the

correspondence that has drawn all this attention, is the duality between weak and

strong coupling. The problem is, that if a theory is weaky coupled at high ener-

gies, then the AdS’ curvature is large and the full string theoretical approach is

required, something that is not yet achievable. Recent considerations that attempt
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to overcome this problem, suggest the introduction of a UV cutoff in the geometry,

such that QCD dynamics could be approached by phenomenological models.

Another significant direction in which future studies need to be focused, is the

extension of the corespondence to theories with less symmetries. In non super-

symmetric Yang Mills theories, the field content is much smaller and we do not

have a way to treat the extra fields. Furthermore, there are attempts to introduce

fundamental fields into the correspondence, in order to describe QCD, as N = 4

SYM only contains the vector supermultiplet, in which all fields are transformed

in the adjoint representation.

Let us finish by pointing out the need for the AdS/CFT correspondence to be ex-

tended to theories that are very symmetric in the UV regime but in the IR regime

they deform into theories with less symmetries. Conformal symmetry is given up,

in order to get descrete mass spectra, leading to more interesting theories, from a

phenomenological point of view.
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