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Abstract

In this dissertation we firstly present a brief review of the Standard Model

of particle physics, focussing on aspects of the model that prove most rele-

vant in the context of explaining the observed oscillation of neutrinos. The

phenomenology of neutrino oscillations is then introduced, and different

possible extensions to the Standard Model that would allow for non-zero

neutrino masses, thereby allowing for the observed neutrino oscillations, are

discussed. After introducing the PT -symmetric formulation of quantum me-

chanics, we then turn to the so-called Model 8 solution of the PT -symmetric

Dirac equation found by Jones-Smith et al., and discuss its potential rele-

vance to the neutrino oscillation problem.
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1 Outline

The Standard Model of particle physics is incredibly successful in explaining

almost all experimental observations made at the energy scales currently

available to us. The observation of neutrino oscillations, however, proves to

be a major stumbling block. As we shall see, the fact that neutrinos can

oscillate between different flavour states is taken as an indication that they

in fact possess a non-zero mass. Under the constraints imposed on terms

permissible within the Standard Model Lagrangian, namely that they be

gauge invariant and renormalisable, generating this non-zero neutrino mass

is not possible.

As such, we are forced to make extensions to the Standard Model, and, as

will be shown, this broadly amounts to either supplementing the assumed

particle content with additional light, as-yet unobserved particles, or con-

ceding that the Standard Model is not a complete theory for energy scales

greater than that of the electro-weak sector. With regard to this second

possibility, the high energy nature of the new physics makes it very diffi-

cult to distinguish between alternative theories through experiment. Many

questions still remain, therefore, as to the exact mechanism behind observed

neutrino oscillations.

In the following two chapters of this dissertation we hope to present some

of the key features of the Standard Model and the problems faced when try-
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ing to incorporate neutrino oscillations. We also discuss the phenomenology

of neutrino oscillations and the implication that neutrinos appear to have

non-zero mass. Finally we discuss some possible extensions to the Stan-

dard Model that could be responsible for generating these masses and their

respective merits and downfalls.

One recent result in the field of non-Hermitian quantum mechanics, pre-

sented in [1] and [2], offers a potentially very interesting new possibility

in the context of neutrino oscillations. The field of non-Hermitian quan-

tum mechanics is concerned with finding Hamiltonians that, despite be-

ing non-Hermitian, still display the desired properties of having a real en-

ergy spectrum and unitary time-evolution. One particular subset of these

non-Hermitian Hamiltonians consists of those displaying symmetry under

the combined action of parity and time-reversal. This is the field of PT -

symmetric quantum mechanics, and has seen many developments over the

last decade, [3]. In [1] and [2], Jones-Smith et al. consider solutions to a

PT -symmetric Dirac equation. The 4-dimensional solution, dubbed Model

4, is found to be exactly equivalent to that of the Hermitian Dirac equation.

Unlike the 8-dimensional solution to the Hermitian Dirac equation, however,

which simply decouples into two 4-dimensional solutions, the 8-dimensional

solution of the PT -symmetric Dirac equation, dubbed Model 8, is found

to describe what looks like a new type of particle. Namely, under certain

conditions, the solution would appear to describe two irreducible massless

particles, despite having a non-zero mass matrix. As we shall see, this could

potentially lead us to the possibility of oscillations between the two mass-

less particles, which evidently is very appealing in the context of neutrino

oscillations.

In chapter 4 of this dissertation we will review the principles behind a
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PT -symmetric formulation of quantum mechanics before providing explicit

calculations for the Model 8 solution. We also explore the possibility of

extending the model to describe three flavours of massless particle by at-

tempting to make the natural extension to a 12-dimensional solution.

In our discussion of PT -symmetric quantum mechanics, we shall see that

it is always possible to find a mapping between the PT -symmetric for-

mulation and an equivalent Hermitian one. With the potentially striking

implications of the new Model 8 solution, we will therefore finish by stress-

ing the importance of determining this map. Doing so would allow us to

confirm whether or not the solution really does correspond to a new type

of particle, rather than being the PT -symmetric equivalent to one that is

already known.
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2 The Standard Model

Here we review key elements of the Standard Model that will help us to

understand the issues faced when trying to extend the model to include

neutrino masses.

2.1 The gauge group and particle content

The Standard Model of particle physics is a gauge theory with gauge group

SU(3) × SU(2) × U(1). The SU(3) element is responsible for interactions

involving the strong force and, being an eight-dimensional group1, has eight

associated spin-one gauge fields, called gluons, which we will label Gα
µ, with

α = 1, ..., 8 and µ being the Lorentz index. The remaining SU(2)× U(1) is

the electro-weak sector and gives us an additional three spin-one gauge fields

associated with SU(2) and one associated with U(1). We denote these W a
µ ,

with a = 1, ..., 3, and Bµ respectively. It is important to note that these

latter four gauge fields do not correspond directly with the W±
µ and Z0

µ

responsible for mediating the weak force and the photon, Aµ, responsible

for mediating the electromagnetic force. We will see, however, that these

more familiar objects are indeed linear combinations of W a
µ and Bµ.

The elementary particles of the Standard Model fall into representation of

1The group SU(n) has dimension n2 − 1, which follows from imposing the conditions
X† = −X and tr(X) = 0 on the group generators, which in turn follows from express-
ing M ∈ SU(n) as M = eX and requiring M†M = 1 and det(M) = 1.
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the SU(3), SU(2) and U(1) elements of the gauge group and carry quantum

numbers dubbed colour, weak isospin and weak hypercharge respectively.

Guided by experimental results, and in the absence of neutrino masses, the

particle content of the Standard Model is taken to be that given in Table

2.1.

Particles SU(3) rep. SU(2) rep. U(1) charge

(
νe

eL

)
,

(
νµ

µL

)
,

(
ντ

τL

)
1 2 −1

2

eR, µR, τR 1 1 −1(
uL

dL

)
,

(
cL
sL

)
,

(
tL
bL

)
3 2 1

6

uR, cR, tR 3 1 2
3

dR, sR, bR 3 1 −1
3

Table 2.1: Particle content of the Standard Model, with lepton and quark labels follow-
ing the usual convention and subscripts L and R labelling the handedness
of the particles. The neutrinos are taken to be left-handed (with no right-
handed components, as is experimentally the case for massless neutrinos) and
so the handedness label is omitted. The emboldened numbers also follow the
conventional notation whereby, for example, the 2 in the first row is a state-
ment that the lepton and its corresponding neutrino form a doublet under
the action of the SU(2) group. Here we have explicitly grouped leptons and
neutrinos into their SU(2) doublets and likewise for the quarks.

The particles listed in Table 2.1 are two-component Weyl spinors, and

were introduced as such in order to appeal to the possibly more familiar

notion of the Standard Model’s particle content. We can then choose to

present the left- and right-handed components of a particle in a single Dirac

spinor or with two Majorana spinors. So, taking the electron as an example,

we have2:

2Here σ2 is the Pauli matrix

„
0 −i
i 0

«
, and Weyl spinor indices are suppressed to

avoid over-complication of expressions.
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ψe
Dirac =

 eL

eR

 = e (2.1)

or ψeL
Majorana =

 eL

iσ2e
∗
L

 and ψeR
Majorana =

 −iσ2e
∗
R

eR

 . (2.2)

Following the notation of [4], we choose to use the Majorana notation and

also make the notation more compact so that:

ψ
lmL
Majorana = Em and ψ

lmR
Majorana = Em, (2.3)

where lm labels e, µ and τ for m = 1, 2, 3 respectively. Similarly, labelling

u, c and t with um, and d, s and b with dm, where m = 1, .., 3 in both cases,

we have:

ψ
um

L
Majorana = Um and ψ

um
R

Majorana = Um (2.4)

ψ
dm

L
Majorana = Dm and ψ

dm
R

Majorana = Dm. (2.5)

In the case of the neutrinos, we only have left-handed Weyl spinors and thus

only require a single Majorana spinor:

ψνm

Majorana = Vm, (2.6)

where νm corresponds to νe, νµ and ντ form = 1, 2, 3 respectively. With this

new notation, we can now re-express the particle content of the Standard

Model as shown in Table 2.2.

Finally, with a total Majorana spinor containing both left and right-

handed components as given in (2.2), it will be useful for us to know how

the corresponding, opposite-handed components of our Majorana spinors
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Particles SU(3) rep. SU(2) rep. U(1) charge

PLLm =
(
PLVm

PLEm

)
1 2 −1

2

PREm 1 1 −1

PLQm =
(
PLUm

PLDm

)
3 2 1

6

PRUm 3 1 2
3

PRDm 3 1 −1
3

Table 2.2: Particle content of the Standard Model using Majorana spinor notation. PL

and PR are the projection operators that pick out the left- and right-handed
components of a spinor respectively. The emboldened Lm and Qm represent
the explicit grouping of the particles into SU(2) doublets.

will transform, i.e. PRLm, PLEm, PRQm, PLUm and PLDm. Since these

objects are related to their partners by complex conjugation, they transform

under the complex conjugate representations. See Table 2.3.

Particles SU(3) rep. SU(2) rep. U(1) charge

PRLm =
(
PRVm

PREm

)
1 2 1

2

PLEm 1 1 1

PRQm =
(
PRUm

PRDm

)
3 2 −1

6

PLUm 3 1 −2
3

PLDm 3 1 1
3

Table 2.3: Transformation properties of the corresponding, opposite-handed compo-
nents of the Majorana spinors set out in Table 2.2. The notation 3 indicates
that the object transforms in the complex conjugate of the triplet represen-
tation.
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2.2 The Lagrangian

Given the ingredients of our gauge group and desired particle content, we

can now go about constructing the Lagrangian. In doing so, we need to

ensure that all terms are gauge invariant, Lorentz invariant and renormal-

isable. Once again following the notation of [4], it turns out that the most

general such Lagrangian is of the form:

L0 =− 1
2
Lm /DLm − 1

2
Em /DEm (2.7)

− 1
2
Qm /DQm − 1

2
Um /DUm − 1

2
Dm /DDm

− 1
4
Gα

µνG
αµν − 1

4
W a

µνW
aµν − 1

4
BµνB

µν

− g2
3Θ3

64π2
εµνλρG

αµνGαλρ − g2
2Θ2

64π2
εµνλρW

aµνW aλρ − g2
1Θ1

64π2
εµνλρB

µνBλρ.

The first two lines use the notation Em = E†
miγ0 and /D = γµDµ, where

γµ, with µ = 0, ..., 3, are the Dirac γ matrices3 and Dµ is the covariant

derivative4. The exact form of the covariant derivative is specific to the

field on which it is acting. Taking the generators of SU(3) for the 3 repre-

sentation to be 1
2λα and the generators of SU(2) for the 2 representation to

be 1
2σa, where λα with α = 1, ..., 8 are the eight 3 × 3 Gell-Mann matrices

and σa with a = 1, .., 3 are the three 2 × 2 Pauli matrices, the covariant

derivatives are given by:

3Following the conventions of [4] we are using the metric diag(−1, 1, 1, 1). This results
in our γ0 being anti-Hermitian, and it is related to the Hermitian γ0 associated with
the metric diag(1,−1,−1,−1) by γ0

+−−− = iγ0
−+++. Thus, substituting into our more

familiar expression Em = E†
mγ

0
+−−−, we pick up a factor of i.

4Not to be confused with the quark fields Dm.
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DµLm = ∂µLm +
[
i

2
g1Bµ −

i

2
g2W

a
µσa

]
PLLm (2.8)

+
[
− i

2
g1Bµ +

i

2
g2W

a
µσ

∗
a

]
PRLm,

DµEm = ∂µEm − ig1Bµ(PLEm) + ig1Bµ(PREm), (2.9)

DµQm = ∂µQm +
[
− i

6
g1Bµ −

i

2
g2W

a
µσa −

i

2
g3G

α
µλα

]
PLQm (2.10)

+
[
i

6
g1Bµ +

i

2
g2W

a
µσ

∗
a +

i

2
g3G

α
µλ

∗
α

]
PRQm,

DµUm = ∂µUm +
[
2i
3
g1Bµ +

i

2
g3G

α
µλ

∗
α

]
PLUm (2.11)

+
[
−2i

3
g1Bµ −

i

2
g3G

α
µλα

]
PRUm and

DµDm = ∂µDm +
[
− i

3
g1Bµ +

i

2
g3G

α
µλ

∗
α

]
PLDm (2.12)

+
[
i

3
g1Bµ −

i

2
g3G

α
µλα

]
PRDm,

where, for example, DµLm = Dµ(PLLm +PRLm), and g1, g2 and g3 are the

coupling strengths for the U(1), SU(2) and SU(3) elements of the gauge

group respectively.

Covariant derivatives take the place of ordinary derivatives in the first

five terms of Lagrangian (2.7) in order that invariance can be preserved

under local transformations. For this to be the case, we further require that

the gauge fields themselves transform in a specific way under the action

of the gauge group elements. Let us take M1 ∈ U(1), M2 ∈ SU(2) and
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M3 ∈ SU(3) to be of the form:

M1 = eihθ1(x), (2.13)

M2 = eiθ
a
2 (x)σa

2 a = 1, ..., 3 (2.14)

and M3 = eiθ
α
3 (x)λα

2 α = 1, ..., 8, (2.15)

where h is the weak hypercharge of the field on which M1 is acting and

θi
g(x) are the spatially dependent coefficients of the generators that make

this a local gauge theory. Then the required infinitesimal transformations

for our gauge fields will be:

δBµ =
1
g1
∂µθ1(x), (2.16)

δW a
µ =

1
g2
∂µθ

a
2(x)− εabcθb

2(x)W
c
µ, (2.17)

and δGα
µ =

1
g3
∂µθ

α
3 (x)− fα

βγθ
β
3 (x)Gγ

µ, (2.18)

where εabc and fα
βγ are the SU(2) and SU(3) Lie Algebra structure constants

respectively.

The terms in line 3 of (2.7) are the so-called Yang-Mills field strengths

associated with the gauge fields, and take the form:

Gα
µν = ∂µG

α
ν − ∂νG

α
µ + g3f

α
βγG

β
µG

γ
ν , (2.19)

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2εabcW

b
µW

c
ν , (2.20)

and Bµν = ∂µBν − ∂νBµ. (2.21)
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2.2.1 Lorentz invariance

Desiring a relativistic theory, we require all the terms in our Lagrangian to

be Lorentz invariant. Dirac spinors carry a representation Λ 1
2

of the group

Sp(3, 1) ∼= SL(2,C)5, which is the double cover of SO(3, 1), so that under

a Lorentz transformation ψ → ψ′ as:

ψ′(x) = Λ 1
2
ψ(Λ−1x′), (2.22)

where Λ is the Lorentz transformation for contravariant 4-vectors such that

x′µ = Λµ
νxν . The 4× 4 representation Λ 1

2
is reducible into two 2× 2 repre-

sentations of SL(2,C). This is made clear in the Weyl representation, where

the field consists of a left- and right-handed component, each transforming

differently under SL(2,C). Using this reducibility we are able to derive the

transformation properties of the objects contained in our Lagrangian.

Taking σµ = (1, σ1, σ2, σ3), where σi are the Pauli matrices, we can con-

struct the bi-spinor X:

X = xµσµ =

 x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

 . (2.23)

Being a bi-spinor, X transforms under SL(2,C) as X′ = AXA†, where

A ∈ SL(2,C). Thus, by taking X′ = x′µσµ = Λµ
νxνσµ we are able to find

the matrix A equivalent to the Lorentz transformation Λ:

X′ = x′µσµ = Λµ
νx

νσµ = AXA† = AxνσνA† (2.24)

=⇒ AσνA† = Λµ
νσµ. (2.25)

5Where ∼= means there is an isomorphism between the two groups.
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We have found that σµ transforms as a covariant vector under the Lorentz

transformations. Similarly, taking σ̃µ = (1,−σ1,−σ2,−σ3), we can con-

struct the bi-spinor X = xµσ̃µ transforming as X ′ = BXB†, which leads to

the relation Bσ̃νB† = Λµ
ν σ̃µ. As we might expect, A and B are related, [5],

and we find that for any Lorentz transformation AB† = 1. This allows us

to show also that A†σ̃νA = Λµ
ν σ̃µ and B†σνB = Λµ

νσµ.

In the Weyl representation we have γ matrices satisfying the Dirac algebra

{γµ, γν} = ηµν1 given by6:

γµ =

 0 iσµ

iσ̃µ 0

 , (2.26)

and our left- and right-handed spinor components of ψ, φL and φR respec-

tively, transform as φL → AφL and φR → BφR under Lorentz transforma-

tions. Thus, considering the object ψψ = ψ†iγ0ψ:

ψψ =
(
φ†L φ†R

)
i

 0 −i1

−i1 0


 φL

φR

 (2.27)

= φ†LφR + φ†RφL, (2.28)

which, under a Lorentz transformation

−→ φ†LA†BφR + φ†RB†AφL (2.29)

= φ†LφR + φ†RφL, (2.30)

we see that we have a Lorentz scalar. Next consider the object ψγµψ =

6Recall that we are still using the metric diag(−1, 1, 1, 1)
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ψ†iγ0γµψ:

ψγµψ =
(
φ†L φ†R

)
i

 0 −iI

−iI 0


 0 iσµ

iσ̃µ 0


 φL

φR

 (2.31)

=
(
φ†L φ†R

) iσ̃µ 0

0 iσµ


 φL

φR

 (2.32)

= φ†Liσ̃µφR + φ†RiσµφL, (2.33)

which, under a Lorentz transformation

−→ φ†LA†iσ̃µAφL + φ†RB†iσµBφR (2.34)

= φ†LΛν
µiσ̃νφL + φ†RΛν

µiσνφR (2.35)

= Λν
µψγνψ, (2.36)

i.e. ψγµψ transforms as a covariant vector. Using the metric to raise the

index we find that ψγµψ transforms as a contravariant vector ψγµψ →

Λµ
νψγνψ.

Given that our Lagrangian also contains terms involving the projection

operators PL and PR (a general state ψ = PLψ+PRψ), it will also be useful

to know how these behave under Lorentz transformations. PL and PR can

be constructed in terms of a fifth γ matrix γ5 = −iγ0γ1γ2γ3 as7 :

PL =
1 + γ5

2
PR =

1− γ5

2
. (2.37)

As such, we need to know how the objects ψγ5ψ and ψγµγ5ψ transform.

Following similar methods to those used above, it can be shown that these

7Once again following the conventions of [4], we choose to define γ5 and the projection
operators in such a way as to give left-handed particles as the chirality +1 states and
right-handed particles the chirality -1 states.
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transform as a scalar and contravariant vector respectively.

The first five terms of Lagrangian (2.7) are of the form ψγµDµψ, so, given

the result ψγµψ → Λµ
νψγνψ, we can see that the contraction between the

contravariant Lorentz index of ψγµψ and the covariant Lorentz index of Dµ

will indeed leave these terms Lorentz invariant.

Looking at the remaining six terms, and using the fact that the spin-one

gauge fields transform as:

G′α
µ (x) = Λν

µG
α
ν (Λ−1x′), (2.38)

W ′a
µ (x) = Λν

µW
a
ν (Λ−1x′), (2.39)

and B′
µ(x) = Λν

µBν(Λ−1x′), (2.40)

we can once again see that the contraction over all Lorentz indices will leave

terms of the form BµνB
µν invariant.

In summary, due to the nice transformation properties of the objects ψψ,

ψγµψ, ψγ5ψ and ψγµγ5ψ, ensuring Lorentz invariance amounts to requiring

all Lorentz indices to be contracted over, leaving no ‘free’ Lorentz indices.

Aside on index notation

In the preceding discussion we have not explicitly included the SL(2,C) in-

dices. If we were to do so, then we would have two types of index - undotted

and dotted - corresponding to the fundamental and complex conjugate rep-

resentations. As such, in the case of SL(2,C), complex conjugation adds or

removes dots on indices. Each type of index can further be raised or lowered.

Listing objects carrying the different types of index and their transformation

14



properties under SL(2,C), we therefore have

λα → Aα
βλβ, (2.41)

χα → χβA−1
β

α, (2.42)

(λα)∗ ≡ λα̇ →
(
Aα

β
)∗
λβ̇ = A∗

α̇
β̇λβ̇ = λβ̇A

†β̇
α̇ and (2.43)

(χα)∗ ≡ χα̇ → χβ̇
(
A−1

β
α
)∗ = χβ̇

(
A−1

)∗
β̇

α̇ =
(
A−1

)† α̇
β̇χ

β̇, (2.44)

where Aα
β ∈ SL(2,C), and α, β, α̇, β̇ = 1, 2. These transformation rules

ensure that objects such as χαλα and χα̇λα̇ are invariant under the action

of SL(2,C). Explicitly including indices for the objects discussed in the

preceding section we would have

γµ =

 0 i(σµ)αβ̇

i(σ̃µ)γ̇δ 0

 (2.45)

and ψ =

 (φL)α

(φR)β̇

 , (2.46)

with (σν)αβ̇ → Aα
γ(σν)γδ̇A

†δ̇
β̇ , (2.47)

(σ̃ν)α̇β → Bα̇
γ̇(σν)γ̇δB†

δ
β , (2.48)

(φL)α → Aα
β(φL)β (2.49)

and (φR)α̇ → Bα̇
β̇(φR)β̇, (2.50)

where B = (A−1)† → AB† = 1.

2.2.2 Gauge invariance

In addition to Lorentz invariance, we also require that all the terms in our

Lagrangian be invariant under the action of the gauge group. As previously
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mentioned, it is the construction of our covariant derivatives and the varia-

tion of our gauge fields under the group action that is key in ensuring this.

Specifically, they are constructed in order that, for some spinor field ψ and

some general element M of the gauge group acting on ψ, we have:

Dµψ −→ MDµψ. (2.51)

Let us show for the most simple case that the forms of Dµ and gauge field

transformations stated earlier satisfy this. Taking the field Em, we have:

DµEm =DµPLEm +DµPREm (2.52)

= ∂µEm − ig1BµPLEm + ig1BµPREm

= ∂µPLEm + ∂µPREm − ig1BµPLEm + ig1BµPREm

−→ ∂µ

(
eiθ1(x)PLEm

)
+ ∂µ

(
e−iθ1(x)PREm

)
− ig1

[
Bµ +

1
g1
∂µθ1(x)

]
eiθ1(x)PLEm

+ ig1

[
Bµ +

1
g1
∂µθ1(x)

]
e−iθ1(x)PREm (2.53)

= i∂µθ1(x)eiθ1(x)PLEm + eiθ1(x)∂µPLEm

− i∂µθ1(x)e−iθ1(x)PREm + e−iθ1(x)∂µPREm

− ig1Bµe
iθ1(x)PLEm − i∂µθ1(x)eiθ1(x)PLEm

+ ig1Bµe
−iθ1(x)PREm + i∂µθ1(x)e−iθ1(x)PREm (2.54)

= eiθ1(x)∂µPLEm + e−iθ1(x)∂µPREm

− ig1Bµe
iθ1(x)PLEm + ig1Bµe

−iθ1(x)PREm

= eiθ1(x)DµPLEm + e−iθ1(x)DµPREm. (2.55)
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So, as required, we have the results:

DµPLEm → eiθ1(x)DµPLEm (2.56)

and DµPREm → e−iθ1(x)DµPREm. (2.57)

Note that we have had to consider the covariant derivative acting on

PLEm and PREm separately as they transform differently under the gauge

group. Although we will not show it explicitly here, the same behaviour

DµPLψ −→ MLDµPLψ and DµPRψ −→ MRDµPRψ holds for all the other

fields and their covariant derivatives, where ML and MR are the forms of

gauge transformation associated with the left- and right-handed components

of the field ψ respectively.

We will now look at how these results give us gauge invariance. In doing

so, we will make use of the following properties of the γ matrices and the

projection operators:

P 2
L = P 2

R = 1 (2.58)

PLPR = PRPL = 0 (2.59)

γ5† = γ5 → P †
L = PL , P †

R = PR (2.60){
γ5, γµ

}
= 0 → PLγ

µ = γµPR , PRγ
µ = γµPL. (2.61)

Let us consider some general Majorana field ψM :

ψMγ
µDµψM =

(
PLψM + PRψM

)
γµDµψM (2.62)

=
(
PLψMPR + PRψMPL

)
γµDµψM (2.63)

= PLψMγ
µPLDµψM + PRψMγ

µPRDµψM (2.64)

= PLψMγ
µDµPLψM + PRψMγ

µDµPRψM . (2.65)
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In the case of Em, with our results (2.56), (2.57) and the fact that

PLEm → e−iθ1(x)PLEm and PREm → eiθ1(x)PREm under the action of

the gauge group, it is clear that the U(1) factors cancel to leave the ex-

pression (2.65) invariant under a gauge transformation. Next consider the

field PLLm and explicitly include the SU(2) indices. By convention, PLLm

carries a lower index (PLLm)a, with a = 1, 2, and the act of taking the

complex conjugate raises or lowers an index so that PLLm carries a raised

index
(
PLLm

)a. In particular,

(
PLLm

)a =
(
(PLLm)†

)a
γ0 (2.66)

= ((PLLm)a)
† γ0, (2.67)

so, taking (PLLm)a −→ (M2)
b

a (PLLm)b for M2 ∈ SU(2), we have:

((PLLm)a)
† γ0 −→

(
(M2)

b
a (PLLm)b

)†
γ0 (2.68)

=
(
(PLLm)†

)b (
(M2)

†
) a

b
γ0 (2.69)

=
(
PLLm

)b ((M2)
†
) a

b
. (2.70)

Thus, including the action of U(1) as well (Lm being a singlet under the

SU(3) element of the gauge group), we have
(
PLLm

)a
γµDµ (PLLm)a trans-

forming as:

(
PLLm

)a
γµDµ (PLLm)a (2.71)

−→
(
PLLm

)b
e

i
2
θ1(x)((M2)

†) a
b γ

µ (M2)
c

a e−
i
2
θ1(x)Dµ (PLLm)c (2.72)

=
(
PLLm

)b
γµDµ (PLLm)b , (2.73)

where we have used the fact that M2 ∈ SU(2) is unitary and so
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((M2)
†) a

b (M2)
c

a = δ c
b . A similar result holds for the term PRLmγ

µDµPRLm,

where PRLm will carry a raised index (PRLm)a as it is related to PLLm by

complex conjugation. Following exactly the same arguments for the fields

Q, U and D we can therefore see that the first two lines of (2.7) are indeed

invariant under the action of the gauge group.

Finally we consider the field-strength terms. In doing so, let us take the

case of the non-Abelian field strength W a
µν , from which we will be able to

infer the corresponding results for Gα
µν and Bµν . With the definitions

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2ε

abcW b
µW

c
ν , (2.74)

δW a
µ =

1
g2
∂µθ

a
2(x)− εabcθb

2(x)W
c
µ and (2.75)

δW a
µν = ∂µδW

a
ν − ∂νδW

a
µ + g2ε

abcδW b
µW

c
ν + g2ε

abcW b
µδW

c
ν , (2.76)

we can then use the Jacobi identity for the structure constants and the fact

that partial derivatives commute to show that

δW a
µν = θb

2(x)ε
bacW c

µν = iθb
2(x)(T

b
adj)

acW c
µν , (2.77)

where (T b
adj)

ac = −iεbac are the three SU(2) generators in the 3 × 3 ad-

joint representation, i.e. we have found that W a
µν transforms under the

adjoint representation. If we then consider the term −1
4W

a
µνW

aµν and use

δ(−1
4W

a
µνW

aµν) = −1
2δW

a
µνW

aµν = −1
2θ

b
2(x)ε

bacW c
µνW

aµν , we see that be-

cause εbac is antisymmetric under a↔ c, whilst W c
µνW

aµν is symmetric, this

term is indeed invariant: δ(−1
4W

a
µνW

aµν) = 0. A similar result holds for

the term −g2
2Θ2

64π2 εµνλρW
aµνW aλρ due to the fact that εµνλρ = ελρµν . For the

equivalent terms involving Gα
µν the same derivation applies, where we can

use the antisymmetry of fα
βγ under β ↔ γ. In the case of Bµν the invari-
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ance is easier to see. As the group U(1) is Abelian, the structure constants

vanish, and so δBµν = 0, immediately giving us the required invariance.

In short, if in each term of our Lagrangian we were to explicitly write all

indices carried by the various objects under the SU(2) and SU(3) elements

of the gauge group, then for gauge invariance we would require that all in-

dices be contracted over, leaving no ‘free’ indices. We would further require

that the charges under the U(1) symmetry of all objects within each term

sum to zero.

It is important to note that the requirement for gauge invariance plays a

key role in relation to particle masses. In the Lagrangian (2.7) we have no

mass terms for any of our fields, let alone the neutrinos. By simply consid-

ering the U(1) properties of a generic mass term of the form 1
2m

2ψMψM
8,

we can see that it is not gauge invariant. Using the properties (2.58)-(2.61)

we have:

1
2
m2ψMψM =

1
2
m2
(
PLψM + PRψM

)
(PLψM + PRψM ) (2.78)

=
1
2
m2
(
PLψMPR + PRψMPL

)
(PLψM + PRψM ) (2.79)

=
1
2
m2
(
PLψMPRψM + PRψMPLψM

)
, (2.80)

and given that PLψM and PRψM both carry the same charge −h under

U(1) and PRψM and PLψM the same charge +h, this transforms as:

1
2
m2
(
PLψMPRψM + PRψMPLψM

)
(2.81)

−→ 1
2
m2
(
e−2ihθ1(x)PLψMPRψM + e2ihθ1(x)PRψMPLψM

)
, (2.82)

8Where the subscript M simply indicates that these are Majorana fields.
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i.e. it is not a gauge invariant term and so cannot appear in our Lagrangian.

This prohibition of explicit mass terms in our Lagrangian leads us to the

Higgs mechanism as a source for our field masses.

2.2.3 Renormalisability

The last request that we make of a term in our Lagrangian is that it be

renormalisable. For some given term in our Lagrangian, calculations of

the corresponding physical interactions are performed perturbatively in its

coupling strength, or vertex factor if we are thinking in terms of Feynman

diagrams. For any diagram containing a loop there is an associated integral

over the loop momentum, and this integral is often infinite if no upper bound

is placed on the loop momentum. As we consider higher-order diagrams in

our calculations, with more and more vertices and loops, we might expect

to encounter many infinite terms.

Let us consider a term in our Lagrangian of the form λψ1ψ2....ψm, where λ

is the coupling strength and ψ1ψ2....ψm is some Lorentz and gauge invariant

combination of fields. Working in natural units, if we were to put a cut-off

on our loop integrals, at some value Λ say, then we would expect that for

a diagram of order N our integral would behave as λNΛD, where D is the

superficial degree of divergence. If D > 0 then the diagram is superficially

divergent, as it will diverge in the limit Λ →∞9. By dimensional arguments,

it is possible to show, [6], that for a diagram of order N with E external

legs in d dimensions, the superficial degree of divergence is given by:

D = d− [ψ1ψ2....ψE ]−N [λ], (2.83)
9Note that the actual behaviour of a certain interaction calculation may differ from

that predicted by D. Diagrams deemed not to be divergent by (2.83), may contain
divergent sub-diagrams and therefore be divergent. Equally, divergent terms in the
expansion may act so as to cancel.
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where [ ] denotes the dimension of the enclosed object in natural units and

ψ1ψ2....ψE is the set of fields corresponding to the E external legs. From

the form of (2.83) we can see that there are three possibilities10:

(1) [λ] > 0 Degree of divergence decreases at higher

orders, giving a finite number of divergent terms

→ Super-renormalisable

(2) [λ] = 0 Degree of divergence independent of order

→ Renormalisable

(3) [λ] < 0 Degree of divergence increases at higher

orders, giving an infinite number of divergent terms

→ Non-normalisable

In order to determine [λ], and thereby determine into which category we

fall, we use the fact that the action containing our Lagrangian must be

dimensionless:

[S] = 0 = [
∫
ddxL] = d[x] + [L] −→ [L] = d, (2.84)

which in turn gives us:

[L] = d = [λψ1ψ2....ψm] = [λ] + [ψ1ψ2....ψm] (2.85)

−→ [λ] = d− [ψ1ψ2....ψm]. (2.86)

In 4 dimensions, we therefore require that [ψ1ψ2....ψm] ≤ 4 in order for

our theory to be renormalisable.

But what does it mean for our theory to be renormalisable? We see that

even in the case that [λ] ≥ 0 we have some infinite terms in our expansion.

10Assuming [ψ1ψ2....ψm] > 0
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What we find is that when performing a calculation of a certain interaction

with a cut-off in place, our final expression will be a function of our coupling

strength λ, our cut-off Λ and the coupling strengths of the other relevant

terms in our Lagrangian. The coupling strengths in our theoretical La-

grangian, however, are not the coupling strengths that we can measure, but

the two will be related. If, after re-expressing our final expression in terms

of the coupling strengths we can measure, we find that the Λ dependence

drops out, then we say our theory is renormalisable.

The Λ cut-off approach to renormalisation explicitly breaks gauge invari-

ance. We are therefore forced to turn to other approaches, such as that

of Dimensional Regularisation, if we desire a gauge invariant formulation.

Despite this issue of gauge invariance, however, the inclusion of a cut-off

in our calculations is nicely intuitive. It is the statement that we only ex-

pect our theory to be valid up to the energy scale Λ, beyond which there

is new physics yet to be discovered. The effect of the new physics is to

give us this discrepancy between the theoretical coupling strengths of our

Lagrangian and the ones that we can measure, but once we account for this,

in a renormalisable theory our calculations of interactions become indepen-

dent of Λ, i.e. become independent of the high energy physics. This is a

good indication that our theory is valid up to the energy scale Λ.

We will see later that the requirement for our theory to be renormalisable

comes into question when considering extensions to the Standard Model

that would allow for neutrino oscillations.
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2.3 The Higgs Mechanism and particle masses

If we take our Lagrangian (2.7) and set aside all the interaction terms, i.e.

only consider the terms at zeroth order in coupling factors g1, g2 and g3,

then we are left with the Lagrangian:

Lfree =− 1
2
Lm/∂Lm − 1

2
Em/∂Em (2.87)

− 1
2
Qm/∂Qm − 1

2
Um/∂Um − 1

2
Dm/∂Dm

− 1
2

(∂µG
α
ν ∂

µGαν − ∂µG
α
ν ∂

νGαµ)

− 1
2

(∂µW
a
ν ∂

µW aν − ∂µW
a
ν ∂

νW aµ)

− 1
2

(∂µBν∂
µBν − ∂µBν∂

νBµ) .

We recognise this as the Lagrangian for fifteen massless spinor fields and

twelve massless vector fields. As pointed out in section 2.2.2, explicit mass

terms are prohibited by the requirement for gauge invariance.

In order to generate mass terms for our fields, we must therefore introduce

a new field, the Higgs field, whose vacuum expectation value breaks the

gauge symmetry such that:

SU(3)× SU(2)× U(1) −→ SU(3)× Uγ(1). (2.88)

Our electroweak symmetry SU(2)×U(1) is broken down to a single Uγ(1)

symmetry, which corresponds to electromagnetism. With the number of

generators associated with the electroweak sector being reduced from four to

one, we thereby imply that three have been broken. We can then infer that

the three gauge fields associated with these three broken generators will have

gained a mass, whilst the gauge field associated with the remaining Uγ(1)
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symmetry remains massless. It is these broken and unbroken generators

that correspond to W±
µ , Z0

µ and Aµ.

The simplest object that we can introduce for breaking the symmetry is a

doublet of complex scalar fields transforming under SU(3)× SU(2)× U(1)

as (1,2, 1
2). Using the notation of [4], we label the new Higgs field φ with:

φ =

 φ+

φ0

 . (2.89)

Taking the complex conjugate of this field, and for a moment including

the SU(2) indices, we get the object:

φ∗a = (φa)∗ =

 φ+∗

φ0∗


a

, (2.90)

which transforms under SU(3) × SU(2) × U(1) as (1,2,−1
2). But, under

SU(2) there is an invariant tensor εab:

εab =

 0 1

−1 0


ab

, (2.91)

which we can use to lower the index on φ∗ to give the object:

φ̃a = εabφ
∗b =

 φ0∗

−φ+∗


a

(2.92)

transforming under SU(3) × SU(2) × U(1) as (1,2,−1
2). With these new

objects, we are now able to include the following additional gauge invariant
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terms in our Lagrangian:

LH =− (Dµφ
†)(Dµφ)− V (φ†φ) (2.93)

− (fmnPLLmPREnφ+ f †nmφ
†PREnPLLm)

− (hmnPLQmPRDnφ+ h†nmφ
†PRDnPLQm)

− (gmnPLQmPRUnφ̃+ g†nmφ̃
†PRUnPLQm).

Given the transformation properties of φ, its covariant derivative is given

by:

Dµφ = ∂µφ−
i

2
g2W

a
µσaφ−

i

2
g1Bµφ. (2.94)

V must be a function of φ†φ in order to satisfy gauge invariance. Fur-

thermore, in order to satisfy renormalisability, we can only have terms of

up to order (φ†φ)2. The actual form of potential taken is:

V (φ†φ) = λ

[
φ†φ− µ2

2λ

]2

(2.95)

= λ(φ†φ)2 − µ2φ†φ+
µ4

4λ
, (2.96)

where λ and µ are constants. In order to ensure the reality of our Lagrangian

we require λ and µ2 to be real, for the potential to be bound from below we

require that λ be positive, and in order that the potential have a vacuum

expectation value that breaks the SU(2)×U(1) symmetry we require µ2 to

be positive.

The potential is minimised by the vacuum expectation value φ†φ = µ2

2λ .

Without loss of generality, we may take our vacuum field φv to ‘lie in a

given direction’, i.e. we are able to choose how to distribute this vacuum

expectation value amongst the four components Re(φ+), Im(φ+), Re(φ0)
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and Im(φ0). We make the choice which turns out to make the spectrum of

our theory most transparent11:

φv =

 0

v√
2

 , where v is real and satisfies v2 =
µ2

λ
. (2.97)

As hinted at previously, we find that there is only a single linear combina-

tion of our SU(2)×U(1) generators that leaves the vacuum state invariant.

Let’s call this linear combination ζI , which satisfies ζIφv = 0. There are a

further three linear combinations of the SU(2)×U(1) generators, which we

will label ζ1, ζ2 and ζ3, that do not leave φv invariant, i.e. ζiφv 6= 0. It can

be shown, [7], that the three objects ζiφv span a three dimensional subspace

of φ, which allows us to re-express our field φ as an expansion around its

vacuum state φv using the following parameterisation:

φ = eiθi(x)ζi

 0

1√
2
(v +H(x))

 i = 1, 2, 3, (2.98)

where H(x) is a real scalar field. Next, exploiting the gauge invariance

of our Lagrangian, we can use a gauge transformation to take us into the

unitary gauge, leaving us with:

φ =

 0

1√
2
(v +H(x))

 . (2.99)

Substituting this into our Lagrangian and writing out the SU(2) doublet

components explicitly, we find a form for LH from which we can read off

our field masses:

11If a different ‘direction’ were chosen, we could always rotate it back to this form via a
gauge transformation, exploiting the gauge invariance of our Lagrangian.
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LH =− 1
2
∂µH∂

µH − λv2H2 − λvH3 − λ

4
H4 (2.100)

− 1
8
g2
2(v +H)2(W 1

µ + iWµ2)(W 1µ − iW 2µ)

− 1
8
(v +H)2(−g2Wµ3 + g1Bµ)(−g2W 3µ + g1B

µ)

− 1√
2
(v +H)(fmnPLEmPREn + f †nmPREnPLEm)

− 1√
2
(v +H)(hmnPLDmPRDn + h†nmPRDnPLDm)

− 1√
2
(v +H)(gmnPLUmPRUn + g†nmPRUnPLUm).

Comparing the term −λv2H2 to the standard mass term for a spin-zero

scalar field, which takes the form −1
2m

2
HH

2, we determine that, to lowest

order, m2
H = 2λv2 = 2µ2.

The standard mass term for a spin-one field is −1
2m

2WµW
µ. Thus, from

the term −1
8g

2
2(v + H)2(W 1

µW
1µ + Wµ2W 2µ) we can read off the masses

m2
W 1 = m2

W 2 = 1
4g

2
2v

2.

Next we make the substitution12:

Z0
µ =

−g1Bµ + g2W
3
µ√

g2
1 + g2

2

, (2.101)

and identify cos θW = g2√
g2
1+g2

2

and sin θW = g1√
g2
1+g2

2

so that

Z0
µ = cos θWW 3

µ − sin θWBµ, (2.102)

where θW is the weak-mixing or Weinberg angle. This gives us the term

−1
8v

2(g2
1 + g2

2)Z
0
µZ

0µ, from which we read off the mass m2
Z = 1

4v
2(g2

1 + g2
2).

12The
p
g2
1 + g2

2 factor gives us the correct normalisation for the field strength terms we
acquire for Z0

µ and Aµ on making the relevant substitutions for W 3
µ and Bµ in our

Lagrangian (2.87).
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The massless combination of W 3
µ and Bµ orthogonal to Z0

µ, labelled Aµ, is

given by:

Aµ = sin θWW 3
µ + cos θWBµ. (2.103)

Being massless, Aµ is the gauge field associated with the remaining un-

broken symmetry Uγ(1), i.e. the photon, and the generators for this sym-

metry will be some linear combination of the four generators of the initial

SU(2)×U(1) symmetry. Let us try to find this combination. Transforming

as (1,2, 1
2) under SU(3) × SU(2) × U(1), our φv will transform under a

constant gauge transformation as:

δφv =
1√
2
δ

 0

v

 =
i

2
θa
2σa

1√
2

 0

v

+
i

2
θ1

1√
2

 0

v


=
i

2
v√
2

 (θ1
2 − iθ2

2)

(θ1 − θ3
2)

 . (2.104)

Thus, in order that our φv be invariant, i.e. δφv = 0, we require θ1
2 = θ2

2 =

0 and θ1 = θ3
2 ≡ θγ . This tells us that the combination Q = 1

2σ3 + h is the

generator for our unbroken symmetry. The associated conserved quantity

is the electric charge.

With our knowledge of this unbroken symmetry, we can now recover W±
µ

from the fields W 1
µ and W 2

µ . If we substitute our particular transformation

parameters in to equation (2.17), remembering that we are dealing with a

rigid gauge transformation, then we have, in matrix form:
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δ


W 1

µ

W 2
µ

W 3
µ

 = θγ


0 1 0

−1 0 0

0 0 0




W 1
µ

W 2
µ

W 3
µ

 =


W 2

µ

−W 1
µ

0

 , (2.105)

from which we can see that W 1
µ and W 2

µ transform amongst themselves.

Defining

W±
µ ≡ 1√

2
(W 1

µ ∓ iW 2
µ) (2.106)

we see that these fields will transform as δW±
µ = ±iθγW

±
µ , i.e. they carry

charge ±1 under the Uγ(1) symmetry. Their masses are given by mW± =

mW 1 = mW 2 . Also note that because the fieldsW 3
µ and Bµ do not transform

under the Uγ(1) symmetry, Z0
µ and Aµ carry zero charge.

Thus we have recovered the familiar gauge bosons W±
µ , Z0

µ and Aµ, and

all except the photon have acquired a mass through the Higgs Mechanism.

We now move on to the fermions. The relevant terms here are those in

the last three lines of (2.100). As it stands, the matrices fmn, gmn and

hmn are not diagonal and so we are unable to read off the fermion masses

immedately. However, by redefining our fermion fields as

PREm = M e
mnPRE

′
n, PLEm = M e∗

mnPLE
′
n, (2.107)

PRUm = Mu
mnPRU

′
n, PLUm = Mu∗

mnPLU
′
n,

PRDm = Md
mnPRD

′
n and PLDm = Md∗

mnPLD
′
n

and making appropriate choices for M e
mn, Mu

mn and Md
mn we are able to
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bring these terms into the diagonal form13

− 1√
2
(v +H)fm̂(PLEmPREm + PREmPLEm) (2.108)

− 1√
2
(v +H)hm̂(PLDmPRDm + PRDmPLDm)

− 1√
2
(v +H)gm̂(PLUmPRUm + PRUmPLUm),

where we have now dropped the primes and the hat on the third m index in

each term indicates that it does not invoke Einstein summation. The fm̂,

gm̂ and hm̂ are all real and positive. Also note that in order for the kinetic

terms of our Lagrangian to remain in the standard form, we require M e
mn,

Mu
mn and Md

mn to be unitary matrices. Using the result PRPL = PLPR = 0,

we can now write (2.108) as

− 1√
2
(v +H)fm̂

(
(PLEm + PREm)(PLEm + PREm)

)
(2.109)

− 1√
2
(v +H)hm̂

(
(PLDm + PRDm)(PLDm + PRDm)

)
− 1√

2
(v +H)gm̂

(
(PLUm + PRUm)(PLUm + PRUm)

)
.

Finally, making the identifications PLEm+PREm = em etc, where em are the

Dirac fields for the electron, muon and taon for m = 1, 2 and 3 respectively,

we have

− 1√
2
(v +H)

(
fm̂emem + hm̂dmdm + gm̂umum

)
. (2.110)

From this we are now able to read off the masses of the Dirac fields em, dm

and um as 1√
2
fm̂v, 1√

2
hm̂v and 1√

2
gm̂v respectively.

The key point here with regard to neutrino masses is that because there is

13See [4] for proof that this is always possible.
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no right-handed neutrino in the Standard Model, we are unable to construct

a gauge invariant Yukawa term involving the Higgs field that would generate

a neutrino mass in the same way as shown above for the other fermions.

2.4 Accidental symmetries and additive conserved

charges

Whilst we will not explicitly go through all the interaction terms of the

Standard Model Lagrangian here, what one finds is that in addition to

being invariant under the action of the gauge group there are other global

symmetries, namely

Ue(1)× Uµ(1)× Uτ (1)× UB(1). (2.111)

These symmetries were not requirements of our initial Lagrangian, but are

by-products of requirements we have imposed on it. As such, we call them

accidental symmetries. For the leptons we have the three symmetries14

PLLm → eiαmPLLm, (2.112)

PREm → eiαmPREm (2.113)

and correspondingly

PRLm → e−iαmPRLm and (2.114)

PLEm → e−iαmPLEm. (2.115)

14Note that the repeated index is not summed over here.
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In terms of Dirac fields, this is equivalent to em → eiαmem and vm →

eiαmvm. By Noether’s theorem we know that associated with any such

symmetry there is a conserved current

Jµ =
δL

δ(∂µψa)
δψa, (2.116)

where ψa represent the fields contained in the Lagrangian, and a conserved

charge

Q =
∫
d3xJ0 (2.117)

In our case, expressing the relevant kinetic terms as

−1
2
Lmγ

µ∂µLm − 1
2
Emγ

µ∂µEm =− 1
2
PLLmγ

µ∂µPLLm (2.118)

− 1
2
PRLmγ

µ∂µPRLm

− 1
2
PLEmγ

µ∂µPLEm

− 1
2
PREmγ

µ∂µPREm

we have

Jµ =− 1
2
PLLmγ

µiαmPLLm +
1
2
PRLmγ

µiαmPRLm (2.119)

+
1
2
PLEmγ

µiαmPLEm − 1
2
PREmγ

µiαmPREm,
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which in turn gives us15

Q =
1
2
αm

∫
d3x
[
− (PLLm)†PLLm + (PRLm)†PRLm (2.120)

+ (PLEm)†PLEm − (PREm)†PREm

]
=

1
2
αm

∫
d3x
[
− e†LmeLm − v†LmvLm (2.121)

− eTLme
∗
Lm − vT

Lmv
∗
Lm − eTRme

∗
Rm + e†RmeRm

]
= − αm

∫
d3x
[
e†mem + v†mvm

]
, (2.122)

where

em =

 eLm

eRm

 and vm =

 vLm

0

 (2.123)

are the Dirac fields for the three flavours of lepton and neutrino respectively.

In the canonical second quantisation we have Dirac fields given by

em(x) =
∫

d3p
(2π)3

√
2Ep

∑
s

[
um(p, s)am

p,se
ip·x + vm(p, s)bm†

p,se
−ip·x

]
,

(2.124)

where am
p,s and bm†

p,s can be viewed as the electron annihilation operator

and anti-electron creation operator respectively, um(p, s) and vm(p, s) are

four-component vectors and p and s label the momentum and spin state of

the particles respectively. Moving into momentum space we thus find

Q = −αm

∫
d3p

(2π)3
∑

s

[
am†
p,sa

m
p,s − bm†

p,sb
m
p,s + cm†

p,sc
m
p,s − dm†

p,sd
m
p,s

]
, (2.125)

where cm†
p,s/cm

p,s and dm†
p,s/dm

p,s are the creation/annihilation operators for

the neutrinos and anti-neutrinos respectively.

15Remembering that as we are using the metric ηµν = diag(−1, 1, 1, 1), ψ = ψ†iγ0 and
(γ0)2 = −1.
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As we know from the formalism of creation and annihilation operators,

objects of the form a†a correspond to number operators. Thus, as we are

integrating over all particle momenta and summing over all spin states,

this conserved charge corresponds to a conservation of particle numbers.

Denoting the number of m-flavour leptons N+
m, the number of m-flavour

anti-leptons N−
m, the number of m-flavour neutrinos Nv

m and the number of

m-flavour anti-neutrinos Nv
m we have the conserved quantities

individual Lepton number Lm = N+
m +Nv

m −N−
m −Nv

m (2.126)

and total Lepton number L =
∑
m

Lm. (2.127)

In the case of the quarks, it turns out that whilst we do have conservation

of the total quark number, we do not have conservation of individual quark

generation numbers. This is a result of the fact that when we consider the

charged-current interactions of the electro-weak sector16 and express fields

in terms of their mass eigenstates, we pick up terms of the form

Vmnumγ
µPLdn + V †

mndmγ
µPLun, (2.128)

where Vmn is the Kobayashi-Maskawa matrix. Being non-diagonal, these

terms don’t allow us the individual Um(1) symmetries um, dm → eiαmum,

but do allow us the symmetry um, dm → eiαum for all m. This is the UB(1)

symmetry, where B is the Baryon number and the fields um and dm are

in fact chosen to carry charge 1
3 so that um, dm → ei

α
3 um. This choice of

fractional charge is made in order that the baryons/anti-baryons, which are

states of 3 quarks/antiquarks, have charge ± under the symmetry.

Briefly returning to the leptons, it is worth mentioning that when we

16i.e. those involving W±
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consider their charged-current interactions we also find terms of the form

Umnemγ
µPLvn + U †

mnvmγ
µPLen, (2.129)

where Umn is a unitary matrix. However, because there are no mass terms

for the neutrinos and the rest of the Lagrangian is invariant under the

redefinition of our fields vm → U †
mnvn, we are able to exploit U †U = 1 and

bring the terms into diagonal form.

The accidental symmetries just considered are well confirmed by experi-

ments. However, we will see in the following section that in introducing a

neutrino mass we are potentially forced to relinquish Lepton number con-

servation.
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3 Neutrino oscillations and

extensions to the Standard

Model

Neutrinos within the Standard Model are taken to be left handed and mass-

less. However, there is now much experimental evidence indicating that

free neutrinos oscillate between flavours. For example, as first detected by

Raymond Davis’ experiment in the late 1960’s, the flux of solar neutrinos

detected on earth is a third of what we expect, suggesting that electron-

neutrinos oscillate into other states whilst in transit from the sun to the

earth. Similarly, experiments such as Kamiokande have detected a deficit

in atmospheric muon-neutrinos, and this deficit is seen to increase with the

distance between the point of creation and detection.

As originally set out by Gribov and Pontecorvo, [8], the observation of

neutrino oscillations is taken as evidence that they are in fact not mass-

less. As such, any theory of particle physics is required to accommodate

non-zero neutrino masses. For the Standard Model, this proves to be a

major stumbling block as, with the assumed particle content, gauge invari-

ance and renormalisability, there is no way in which a non-zero neutrino

mass can be generated. The Standard Model must therefore be extended

in order to accommodate neutrino masses, and in doing so we are forced to
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allow the conditions of assumed particle content and renormalisability to be

relaxed. In the following section we hope to outline the reasons for this con-

nection between neutrino oscillations and their having mass. We will also

discuss some of the most popular extensions to the Standard model that

accommodate these masses and what it means to relax our initial criteria

in making these extensions. For a review of neutrino oscillation phenomena

and experimental results see, for example, [9] and [10].

3.1 Oscillation phenomenon and particle masses

The basic principle behind neutrino oscillations is fairly simple. If we al-

low neutrinos to have a mass, then, as with the quarks, the neutrino mass

eigenstates and weak interaction or flavour eigenstates will in general not

be the same. In any experiment where neutrinos are measured, the mea-

surement is made via the neutrinos weak interaction with the detector. As

such, our measurements tell us the flavour of the neutrino. Equally, the

neutrinos being detected will originally have been created via a weak in-

teraction, and thus start off in some particular flavour eigenstate. Between

the point of creation and the point of detection, however, the states will

evolve according to the free Hamiltonian, whose eigenstates are the mass

eigenstates1. Thus, if we expand our initial flavour eigenstate in terms of

mass eigenstates and each of these components evolve differently according

to the free Hamiltonian, then our neutrino will not remain in the initial

flavour eigenstate. Instead, whatever the final state is in terms of the mass

eigenstates, we must then re-express this as a sum of flavour eigenstates in

order to determine a prediction for the neutrino flavour we will measure.

1We restrict ourselves to considering oscillations in vacuo here.
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Let us take our flavour eigenstates |να〉 and the mass eigenstates |νi〉 to

be related by the unitary mixing matrix U as

|να〉 = Uαi|νi〉 and |νi〉 = U †
iα|να〉, (3.1)

where we take the general case of n mass and flavour eigenstates so that

i, α = 1, ..., n. If our state is initially a flavour eigenstate and we take it to

be produced at x = 0 and t = 0, then we have

|ν(0, 0)〉 = |να〉 = Uαi|νi〉. (3.2)

After time t and at position x, this state will have evolved to

|ν(x, t)〉 = Uαie
−iEit+ipi·x|νi〉 = Uαie

−iEit+ipi·xU †
iβ|νβ〉. (3.3)

If we are then interested in the probability of measuring the neutrino to

be in some flavour eigenstate |νγ〉, then we must calculate the amplitude

〈νγ |ν(x, t)〉:

〈νγ |ν(x, t)〉 = e−iEit+ipi·xUαiU
†
iβ〈νγ |νβ〉 = e−iEit+ipi·xUαiU

†
iγ . (3.4)

The relativistic dispersion relation for a particle of mass mi and momen-

tum pi is given by

Ei =
√
|pi|2 +m2

i . (3.5)

If we assume that the energy of our neutrino is known accurately enough

to allow us to say Ei = E for all i but that the finite size of the source and
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detector allow for a range of possible neutrino momenta, then we can write

|pi| =
√
E2 −m2

i = E

√
1−

m2
i

E2
' E

(
1− m2

i

2E2

)
, (3.6)

where we have used E � mi. Substituting this result into (3.4) and using

the approximation x ≈ t for small mi we get2

〈νγ |ν(x, t)〉 = e−i
m2

i x

2E UαiU
†
iγ . (3.7)

To determine the probability of measuring neutrino flavour state |νγ〉 we

require |〈νγ |ν(x, t)〉|2:

|〈νγ |ν(x, t)〉|2 = ei
m2

j x

2E U∗
αjU

T
jγe

−i
m2

i x

2E UαiU
†
iγ (3.8)

= ei
(m2

j−m2
i )x

2E UαiU
†
iγU

∗
αjU

T
jγ (3.9)

= ei
∆m2

jix

2E U †
jαUαiU

†
iγUγj , (3.10)

where ∆m2
ji = m2

j −m2
i . As such, we see that our probability for measuring

a given flavour state has acquired a phase that depends on x, E and ∆m2
ji,

and it is this phase factor that can account for the observed oscillation

phenomenon. If all our neutrinos were massless, then this phase factor would

not have appeared and we would not expect to see oscillations. Another

important point to note is that our measurements are only sensitive to mass-

squared differences. This means that we would only require one neutrino

to be massive in order to observe oscillations, and also means that if all

neutrino masses were non-zero but degenerate then we would not observe

the oscillation effect.

2Note that without loss of generality we have also made the simplification of taking p
and x to lie along the same direction.
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The arguments outlined above are somewhat simplistic, but determining

a full Quantum Field Theory formulation of the oscillation phenomenon

is something that has proven to be difficult. For a discussion of the sim-

plifications made in the above formulation and a review of the numerous

other approaches that have been taken and their associated problems see

[11]. Surprisingly, the final predictions of the simple analysis included here

and the various, more complete QFT formulations do, in general, all agree.

However, it has been suggested in [12] that a full QFT formulation does in

fact give corrections to these standard oscillation equations.

3.2 Mechanisms for massive neutrinos

As already mentioned, with the assumed particle content and conditions of

invariance under the action of the gauge group and renormalisability, there

is no way in which a neutrino mass can be generated within the Standard

Model. In light of the experimental evidence for neutrinos having mass, we

are therefore forced to consider relaxing one or more of the constraints of the

Standard Model. In the following section we consider some such possibilities

and find that, as well as having to relax the condition of renormalisability

and alter the assumed particle content, the conservation of lepton numbers

is also brought into question.

3.2.1 Relinquishing particle content

Perhaps the most natural extension to propose would, in analogy with Em,

Um and Dm, be the introduction of right-handed neutrino fields Vm trans-

forming as (1,1, 0) under the action of the gauge group. Being singlets
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under the SU(3) and SU(2) elements of the gauge group and carrying zero

charge under the U(1) element, this type of neutrino is said to be sterile.

With the introduction of these fields we are then able construct the Dirac

neutrino field

νm = PLVm + PRVm =

 νLm

νRm

 (3.11)

just as we were able to for the other fermions. Furthermore, we are also

able to construct the Yukawa term

−(kmnPLLmPRVnφ̃+ k†nmφ̃
†PRV nPLLm), (3.12)

which, after symmetry breaking, will give us

− 1√
2
(v +H) (km̂νmνm) (3.13)

in exact analogy with the other leptons considered earlier. From this we

are able to read off the neutrino masses 1√
2
km̂v. Unlike the other leptons,

however, we are faced with an additional complication due to the fact that

the fields Vm transform as (1,1, 0). Given their transformation properties,

we are permitted to construct the gauge invariant Majorana mass term

1
2MmnV mVn. In fact, as such, the Dirac neutrino we defined in (3.11) is

actually ill-defined unless Mmn = 0. Furthermore, this Majorana mass

term does not preserve individual or total Lepton numbers. Once again in

analogy with the the other leptons, under the individual Lepton number
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symmetries we have PRVm → eiαmPRVm, which gives us

1
2
MmnV mVn =

1
2
Mmn(PLV mPRVn + PRV mPLVn) (3.14)

→ 1
2
Mmn(ei(αn+αm)PLV mPRVn + e−i(αn+αm)PRV mPLVn),

and thus demonstrates that 1
2MmnV mVn is not invariant under the individ-

ual transformations or under the total Lepton symmetry where PRVm →

eiαPRVm for all m. In order to preserve even the total Lepton number we

must therefore take Mmn = 0, which in turn allows us to define the Dirac

spinor as in (3.11).

Even after taking Mmn = 0 there are some important issues remaining.

Firstly, in order to produce the observed tiny neutrino masses, we would

require the matrix elements of kmn to be many orders of magnitude smaller

than those of fmn, gmn and hmn. Whilst this is not disallowed, and we

concede that there is already an element of arbitrariness in the values of

other fundamental constants in the Standard Model and in settingMmn = 0,

such a fine tuning of these matrix elements close to zero does not seem very

desirable.

Secondly, whilst total Lepton number is still preserved, we see that in-

troducing the Yukawa term involving Vm does cause the individual Lepton

number symmetries to be broken. As discussed in section 2.4, the rea-

son that individual Lepton numbers were conserved whereas only the total

quark number was conserved was due to the fact that in the case of the

leptons we were free to redefine our fields Vm as we liked in order to leave

the charged-current interaction terms diagonal. With the introduction of

the new Yukawa term, however, this is no longer the case and, as with the

quarks, we pick up a CKM-like matrix called the Pontecorvo Maki Nak-
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agawa Sakata (PMNS) matrix in our charged-current interactions. The

resulting non-diagonal form then prevents individual Lepton numbers from

being conserved.

Another natural question to ask is why do we not observe these additional

right-handed neutrino states? Despite the fact that our new fields are sterile,

we would expect the existence of these sterile neutrinos (and in general we

might consider the possibility that there are more than three additional

sterile neutrinos) to have some effect on the observed rates of interactions

involving the observed neutrinos, as the known neutrinos can oscillate into

the sterile states. We are able to use the lack of evidence for such effects to

constrain the mixing between the sterile neutrinos and those observed.

If, for a moment, we were to allow for the non-conservation of Lepton

number, then after symmetry breaking our mass terms could be expressed

in matrix form as

−1
2

(
(
−−→
PLV)T (

−−→
PLV )T

) 0 v√
2
k

v√
2
kT M


 −−→

PRV
−−→
PRV

+ h.c., (3.15)

where, for example,
−−→
PRV denotes a 3-component vector composed of the

elements PRVm for m = 1, 2, 3, and h.c. refers to the Hermitian conjugate.

Diagonalising this mass matrix we find that there are three mass eigenstates

whose masses are eigenvalues of the matrix M and three whose masses are

eigenvalues of the matrix µM−1µT . Thus, as the magnitude of the elements

of M are increased, three of the states masses also increase, whilst the

remaining three become inversely smaller. This is known as the seesaw

mechanism, and is particularly relevant if we imagine there to be as yet

unseen particles at mass scales much greater than that of the electro-weak

sector. It would appear to offer a more natural explanation of the small
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neutrino masses observed than requiring the elements kmn to be very small.

Furthermore, if new particles and their corresponding physics are present

beyond the energy scales of the Standard Model, then we may well find that

Lepton number conservation does break down at these scales, in which case

the non-zero Mmn becomes acceptable.

3.2.2 Relinquishing renormalisability

As discussed in section 2.2.3, enforcing renormalisabilty amounts to the

statement that we consider our theory to be correct for the energy scales

in question, and we therefore restrict ourselves to interaction terms with

[ψ1, ..., ψm] ≤ 4. This is equivalent to restricting the dimension of the in-

teraction term coupling constants, let us denote this by [λ], to [λ] ≥ 0. In

allowing non-renormalisable terms with [ψ1, ..., ψm] > 4, their coupling con-

stants correspondingly satisfy [λ] = −d, where d > 0. If we take the energy

scale at which our theory breaks down to be Λ, then we can take λ ∝ Λ−d

and, as such, the non-renormalisable interaction terms are suppressed by a

factor of Λ−d. The greater the degree of non-renormalisability, the more the

corresponding interaction term will be suppressed. This is an indication of

the limited effect we expect the high-energy physics to have on our lower

energy calculations. If Λ is sufficiently greater than the energy scales in

which we are interested, then we might justifiably restrict ourselves to con-

sidering ‘first-order’ non-renormalisable terms with d = 1, or equivalently

[ψ1, ..., ψm] = 5.

In the Standard Model we have the set of fermion fields Lm, Em,Qm, Um

and Dm. Let us label these fermion fields generically with Fi, where i =

1, ..., 15. We also have the gauge bosons Gα
µ, W a

µ and Bµ. Let us label these

generically as Xj with j = 1, ..., 12. Finally we have the Higgs field φ. Also
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note that the covariant derivative Dµ has [Dµ] = 1. The kinetic terms for

the fermion fields are all of the form F i/∂Fi. From the requirement that the

action be dimensionless and in the case of working in 4 dimensions, we can

therefore deduce that [Fi] = 3
2 . Similarly, from the Yang-Mills field strength

terms we can deduce that [Xj ] = 1, and from the Higgs field kinetic term

we also have [φ] = 1. In trying to find an interaction term with dimension

5, we are therefore limited in the possible combinations of the various fields

and covariant derivatives. Requiring the dimension 5 term to be Lorentz

and gauge invariant further restricts the possible combinations. It turns

out, [4], that the only permitted dimension 5 term is

−qmnφ̃a(PLLa
mPRLb

n)φ̃b − q†nmφ̃
∗b(PRLnbPLLma)φ̃∗b, (3.16)

where we have explicitly included the SU(2) indices and qmn ∝ Λ−1. Be-

cause of the success of the Standard Model at describing most of particle

physics at the energy scales we have probed, we expect Λ, i.e. the new

physics, to be at a scale much greater than that of the electro-weak sector.

As such, we can assume that it is a good approximation to restrict ourselves

to considering only the dimension-5 interaction term and to neglect higher

dimension interaction terms which will be suppressed by factors of Λ−2 and

greater.

After symmetry breaking, and in the unitary gauge, the term (3.16) be-

comes

−1
2
(v +H)2(qmnPLVmPRVn + q†nmPRVnPLVm), (3.17)

which we can recognise as giving the neutrino field a Majorana mass term

and additional neutrino-Higgs interaction terms. As such, the only effect the

dimension-5 term produces on the energy scales that we have been able to
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probe thus far is the introduction of a neutrino mass of order v2qmn. Given

the Λ−1 dependence of qmn, the size of this neutrino mass naturally comes

out small, which is perhaps more desirable than the scenario considered

earlier where we were forced to choose tiny kmn elements.

The high-energy physics

Having established that the existence of new physics at energy scales far

greater than that of the Standard Model provides an appealing explanation

for the observed neutrino oscillations and associated tiny neutrino masses,

this naturally begs the question - what is the new physics? Whilst there

are many proposed ideas as to what lies beyond the Standard Model, here

we return to one possible extension as was discussed in section 3.2.1. If we

introduce heavy, sterile, right-handed neutrino fields labelled Vm, then our

Standard Model Lagrangian can be supplemented by

LV = −1
2
V m/∂Vm−

1
2
MmnV mVn− (kmnPLLmPRVnφ̃+k†nmφ̃

†PRV nPLLm).

(3.18)

As we saw in section 3.2.1, taking Mmn to be large would generate the

observed small neutrino masses via the seesaw mechanism. Because the

sterile neutrinos are taken to be very massive, we would not expect to see

them at the energy scales we are capable of probing, but we might expect to

see indications of their existence through non-renormalisable terms in our

Lagrangian. Following the argument set out in [4], we are able to see that

a possible source of the dimension-5 non-renormalisable term mentioned

above is the interaction shown in figure 3.1, where a virtual sterile neutrino

is exchanged between two Higgs fields and two leptonic fields. The matrix
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Figure 3.1: Feynman diagram for an interaction between two Higgs fields
φ̃ and two lepton fields L via the exchange of a virtual sterile
neutrino.

element for this interaction is given by

kmok
T
pnφ̃a

(
PLLa

m

[
M − i/p

M2 + p2

]
op

PRLb
n

)
φ̃b + h.c., (3.19)

where h.c. refers to the Hermitian conjugate. In the case where we are

taking M to be large, so that M � p, this amplitude approximates to the

form

kmok
T
pnφ̃a

(
PLLa

mM
−1
op PRLb

n

)
φ̃b + h.c. (3.20)

= (kM−1kT )mnφ̃a

(
PLLa

mPRLb
n

)
φ̃b + (kM−1kT )nmφ̃

∗b (PRLnbPLLma

)
φ̃∗a.

This is exactly the dimension-5 interaction term discussed above with qmn =

(kM−1kT )mn, and after symmetry breaking we will get mass terms with

masses of order v2(kM−1kT )mn. We can see that the more massive we take

the scale of the new physics to be, i.e. the larger we take M(↔ Λ) to

be, the lighter our standard neutrinos will be. This is an example of the

seesaw mechanism embedded within the particular scenario of beyond-the-
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Standard-Model physics where very massive neutrino states are postulated

to exist.

In summary, we have seen that the observed oscillation of neutrinos can

be explained by allowing neutrinos to have a small but non-zero mass. As

it stands, these non-zero masses cannot be generated within the Standard

Model, but there are numerous ways in which the model can be extended to

do so. In doing so, however, we are forced to either alter the particle content

of the Standard Model or to concede that our theory is not a complete one

if we consider energy scales beyond that of the electro-weak sector.

The lack of evidence for the additional light particles required in the first

type of extension would perhaps point us towards preferring the second, and

at the very least it places limits on the mixing that can take place between

these new particles and those already known to exist. Furthermore, the

first type of extension requires certain constants within the model to be

tuned very close to zero, which, although not forbidden, does not seem very

desirable.

In the second type of extension, the suggestion that there exists new

physics at energy scales beyond those already probed would seem perfectly

reasonable. Due to the very nature of this high energy physics, however,

we can only hope to observe clues of its existence through the suppressed,

non-renormalisable interaction terms in our Lagrangian. As such, it is not

possible to determine the exact nature of the new physics, and at present

there are numerous propositions that could account for the oscillation of

neutrinos. One important consequence of the particular extension we con-

sidered is the appearance of a term which breaks Lepton number conser-

vation. Observation of this non-conservation could therefore play a crucial
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role in elucidating the nature of the mechanism whereby neutrino masses

are generated.

One particular process in which we might expect to see this breaking

of Lepton number conservation is double Beta decay. This is the pro-

cess whereby certain nuclei stable against single Beta decay can decay via

the very rare process of two neutrons simultaneously decaying to protons.

Within the Standard Model this takes place via two decays of the form

n → p + e− + νe. If Lepton number conservation is violated, however, we

can also have n+ n→ p+ p+ e− + e−. The two different processes can be

distinguished by the energy spectra of the resulting electrons, and as such

it is possible to place limits on the size of coupling constants for Lepton

non-conserving interaction terms in our Lagrangian.
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4 Non-Hermitian Quantum

Mechanics

In Quantum Mechanics, one of the fundamental requirements is that the

Hamiltonian be Hermitian. Imposing H† = H ensures that the eigenvalue

spectrum is real and that the time evolution operator U(t) = exp(−iHt) is

unitary, which in turn ensures that quantities such as 〈ψ | A | φ〉 are time in-

dependent, where A is an operator corresponding to some time-independent

observable and therefore commutes with H. Whilst the consequences of tak-

ing H† = H are desirable, the condition itself is purely mathematical, with

no physical motivation. As such, one might consider whether this require-

ment is too restrictive. Perhaps there is a wider spectrum of Hamiltonians

that would still give us the desired real eigenvalues and unitary time evolu-

tion. Furthermore, perhaps this more general set of Hamiltonians could be

dictated by some underlying physical reasoning.

The mathematical field of pseudo-Hermiticity is concerned exactly with

the relaxing of this requirement for Hermiticity. A linear operator A is said

to be pseudo-Hermitian if there exists an Hermitian operator η such that

A† = ηAη−1, and it has been shown that every Hamiltonian with a real

spectrum is pseudo-Hermitian, [13]. Note that in the case of Hermitian

operators, η = 1.
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Hamiltonians displaying symmetry under the combined action of parity,

P, and time-reversal, T , form a subset of these pseudo-Hermitian Hamil-

tonians, and have received particular attention over the past decade. It is

this subset that we will now discuss.

4.1 PT symmetric Hamiltonians

Using the notation HPT = PT H(PT )−1, the requirement for our Hamilto-

nian to display PT symmetry gives us

HPT = H =⇒ PT H(PT )−1 = H =⇒ [H,PT ] = 0. (4.1)

Under a certain set of conditions, such a Hamiltonian can be used to con-

struct a PT -formulation of quantum mechanics. Let us first remind our-

selves of what we have in the standard formulation of quantum mechanics

where H† = H:

(i) The set of states |ψi〉 satisfying H|ψi〉 = Ei|ψi〉 form a basis for the

Hilbert space of the system, where Ei are the positive, real energy

eigenvalues of H and |ψi〉 the corresponding eigenstates1.

(ii) With respect to the standard inner product on the Hilbert space, de-

fined as (ψ, φ) = 〈ψ|φ〉, where 〈ψ| = |ψ〉†, these states are orthogonal.

(iii) Also with respect to the standard inner product, the states have positive-

definite norm. For suitably normalised states, these last two require-

ments can be summarised as orthonormality, requiring 〈ψi|ψj〉 = δij .

(iv) The states |ψi〉 obey unitary time-evolution, which by the definition of

1We do not consider degenerate eigenstates here.
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the standard inner product ensures the time-independence of the inner

product and of the expectation values of time-independent observables.

In our PT -formulation, we would therefore like to reproduce this set of

properties. In trying to do so, there are two scenarios that we must consider:

that where T 2 = 1, which is appropriate to bosons, and that where T 2 = −1,

which is appropriate to fermions. To see that these two possible scenarios

exist we must consider the nature of the time-reversal operator T . If we

wish for energies to remain positive under time-reversal then we require

that it be an anti-linear operator, [14]. As such, T acts on a state |ψ〉 as

T |ψ〉 = Z|ψ〉∗, where Z is a linear operator. Requiring that T 2 leave a state

unchanged up to a phase factor we have

T 2|ψ〉 = ZZ∗|ψ〉 = λ|ψ〉 =⇒ ZZ∗ = λ =⇒ Z∗ = λZ−1, (4.2)

where |λ|2 = 1. Taking the complex conjugate of this we get Z = λ∗Z−1∗,

which, acting from the right with Z∗ gives us ZZ∗ = λ∗. This in turn gives

us the result (ZZ∗)2 = |λ|2 = 1, but we also have (ZZ∗)2 = λ2, from which

we deduce λ = ±1. Let us consider each of these in turn.

4.1.1 Even T symmetry: T 2 = 1

In this scenario, let us assume that the eigenstates of a PT -symmetric

Hamiltonian are also eigenstates of the operator PT . Note that if PT

were a linear operator then this would follow directly from the statement

[H,PT ] = 0, but with PT being anti-linear, this is no longer the case.

Taking PT |ψ〉 = λ|ψ〉 we act from the left with PT and use the properties
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[P, T ] = 0, P2 = 1, T 2 = 1 and thus (PT )2 = 1, which gives us

(PT )2|ψ〉 = |ψ〉 = PT λ|ψ〉 = PT λ(PT )2|ψ〉 = λ∗λ|ψ〉 (4.3)

=⇒ |λ|2 = 1. (4.4)

We now take the expression H|ψ〉 = E|ψ〉, act from the left with PT , use

the property [H,PT ] = 0 and insert the identity to give

PT H|ψ〉 = PT E|ψ〉 = PT E(PT )2|ψ〉 = E∗λ|ψ〉 (4.5)

= HPT |ψ〉 = Hλ|ψ〉 = Eλ|ψ〉 (4.6)

=⇒ E = E∗. (4.7)

We have therefore shown that if an energy eigenstate |ψ〉 of H is simul-

taneously an eigenstate of PT then the energy eigenvalues are real. The

regime in which this requirement holds is referred to as that of ‘unbroken’

PT -symmetry, and within this regime we see that we satisfy the first re-

quirement for our PT -formulation of quantum mechanics. Proving that one

is in the regime of ‘unbroken’ PT -symmetry, however, can be very difficult.

The remaining properties required of the states, namely that they be or-

thonormal and evolve in time in such a way as to preserve the inner product

are, however, not satisfied if we consider these properties with respect to

the standard inner product. As such, we are led to consider an alternative

inner product on our Hilbert space.

Alternative inner products

An inner product is a way to combine two vectors in a vector space to give

a complex number. Taking a vector space V and vectors vi ∈ V , the inner
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product between two vectors, denoted (vi, vj), has the following properties:

• (vi, vj) = (vj , vi)∗

• (vi, vj + vk) = (vi, vj) + (vi, vk) and (vi + vj , vk) = (vi, vk) + (vj , vk)

• (vi, cvj) = c(vi, vj) and (cvi, vj) = c∗(vi, vj) for c ∈ C

We can further require that the inner product be positive-definite, that is

(vi, vi) ≥ 0 and (vi, vi) = 0 only for vi = 0.

If we consider a set of basis states for our Hilbert space, labelled ei, then

we are able to express the inner product of any two vectors in our vector

space in terms of those between these basis states. For

v1 =
∑

i

vi
1ei and v2 =

∑
j

vj
2ej , (4.8)

and using the properties of the inner product, (v1, v2) is given by

(v1, v2) = (
∑

i

vi
1ei,

∑
j

vj
2ej) (4.9)

=
∑
i,j

(vi
1ei, v

j
2ej) (4.10)

=
∑
i,j

vj
2(v

i
1ei, ej) =

∑
i,j

vi∗
1 v

j
2(ei, ej). (4.11)

The inner product (ei, ej) is called the kernel of the inner product. In the

case of an orthonormal basis, the kernel is simply δij , which leaves us with

the familiar expression

(v1, v2) =
∑

i

vi∗
1 (1)vi

2 = v†1v2. (4.12)

In Hermitian quantum mechanics we have ei = ψi and (ψi, ψj) = 〈ψi|ψj〉 =
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δij , which means that we recover the familiar expression for the standard

inner product (4.12). Furthermore, as |ψi〉 evolves in time as |ψi(t)〉 =

exp(−iHt)|ψi(0)〉, 〈ψi| = |ψi〉† and H = H†, we find that the inner product

is time independent:

〈ψi(t)|ψj(t)〉 = 〈ψi(0)|eiH†te−iHt|ψj(0)〉 (4.13)

= 〈ψi(0)|eiHte−iHt|ψj(0)〉 (4.14)

= 〈ψi(0)|ψj(0)〉. (4.15)

In PT quantum mechanics, given that H† 6= H, we lose this time-

independence of the inner product, as well as the orthogonality of the dif-

ferent eigenstates of H, [15]. We must therefore look to define our inner

product differently. In analogy with the Hermitian case, a sensible guess

might be to define it as

(ψi, ψj)PT = (PT |ψi〉)T |ψj〉. (4.16)

It turns out, [3], that such a definition can only get us so far. The orthogo-

nality condition is satisfied and, due to the fact that PT commutes with H,

this inner product is also time-independent2. However, the norm of a state

with respect to this inner product is neither positive-definite nor correctly

normalised, and can even be zero!

We firstly turn to the issue of normalisation. In (4.4) we showed that in

the ‘unbroken’ regime the eigenstates satisfy PT |ψi〉 = λi|ψi〉, where λi is

a pure phase. Thus, if we define a new state |ψi〉
′
= λ

+ 1
2

i |ψi〉 we have the

2We are making the simplifying assumption here that H is symmetric. However, this is
not a necessary condition. See [3] and references therein.
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result

PT |ψi〉
′
= PT λ+ 1

2
i (PT )2|ψi〉 (4.17)

= λ
− 1

2
i λi|ψi〉 = λ

+ 1
2

i |ψi〉 (4.18)

= |ψi〉
′
, (4.19)

which gives us the correct normalisation. Note that |ψi〉
′
is still an eigenstate

of H, as required.

In order to tackle the issue of non-positive-definite norm we introduce a

new linear operator C, which acts on the states as follows3:

C|ψi〉 = si|ψi〉, (4.20)

where si is the sign of (ψi, ψi)PT and we have dropped the prime so that

|ψi〉 now corresponds to the correctly normalised state. From this definition

we see that C2 = 1. C also satisfies the conditions

[C,H] = 0 and [C,PT ] = 0, (4.21)

which in turn gives us the result

[CPT ,H] = 0. (4.22)

With this new linear operator we are now able to define the CPT inner

product

(ψi, ψj)CPT = (CPT |ψi〉)T |ψj〉 (4.23)

that, in addition to satisfying the conditions already satisfied by the PT

3Not to be confused with the charge conjugation operator.
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inner product (4.16), also satisfies the condition of a positive-definite norm.

Given that C is defined explicitly in terms of the eigenstates of the Hamil-

tonian, (4.20), it will in turn depend on H itself. We therefore say that the

CPT inner product is dynamically determined. In order to construct C and

subsequently (ψi, ψj)CPT we first require knowledge of all the eigenstates

of H and the signs of their norms under the PT inner product. As such,

this task is in general a very difficult one and often can only be carried out

perturbatively.

Pseudo-Hermiticity and equivalent Hermitian Hamiltonians

Perhaps a more elegant way in which to recast some of the preceding dis-

cussion is in the context of pseudo-Hermiticity. Following the arguments

of [16], the statement of pseudo-Hermiticity mentioned earlier, whereby H

is pseudo-Hermitian if H† = ηHη−1, with η being some linear, Hermitian,

invertible operator on the vector space spanned by the eigenstates of H,

is equivalent to the requirement that H be Hermitian with respect to the

inner product 〈〈ψ, φ〉〉 defined as 〈〈ψ, φ〉〉 = (ψ, ηφ) = 〈ψ|η|φ〉. That is to

say 〈〈Hψ, φ〉〉 = 〈〈ψ,Hφ〉〉. This equivalence can be shown as follows:

〈〈Hψ, φ〉〉 = 〈〈ψ,Hφ〉〉 (4.24)

=⇒ 〈ψ|H†η|φ〉 = 〈ψ|ηH|φ〉 (4.25)

=⇒ H†η = ηH (4.26)

=⇒ H† = ηHη−1. (4.27)

It is shown in [17] that if we take the case where H is symmetric under an

anti-linear symmetry such as PT and we restrict ourselves to the regime of

unbroken PT symmetry, which ensures that the eigenvalue spectrum of H
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is real, then we can always construct an inner product of the form 〈〈ψ, φ〉〉

that is positive-definite. As such, we can then take η to be a positive-definite

operator, which in turn allows us to express η in terms of its positive square

root, η = ρ2. ρ will be linear, Hermitian4 and invertible.

If we now define a new Hamiltonian h as

h = ρHρ−1, (4.28)

then we can see that it is Hermitian with respect to the standard inner

product as follows:

h† = ρ−1†H†ρ† = ρ−1ηHη−1ρ = ρ−1ρ2Hρ−2ρ = ρHρ−1 = h. (4.29)

The Hermitian Hamiltonian h is equivalent to H in that it has the same

eigenvalue spectrum. The eigenstates of h are given by ρ|ψi〉, where |ψi〉

are the eigenstates of H, so, if we consider the inner product of two such

eigenstates of h, then we get 〈ψi|ρ†ρ|ψj〉 = 〈ψi|η|ψj〉, which we know to be

the correct inner product for this system. Thus, although the eigenvalue

spectra of h and H are identical, relations between their eigenvectors will

differ. This could potentially be very useful, as it suggests that by moving

from one basis to the other, one might be able to take two states that are

initially very ‘close’ and difficult to distinguish between and make them

much easier to distinguish.

Another nice property of the above formulation of our positive-definite

inner product is that its time-independence is clear to see5:

4Note that η and ρ are Hermitian with respect to the standard inner product rather
than with respect to 〈〈 , 〉〉.

5Here we use the result M−1eAM = eM−1AM , where A and M are linear operators.
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〈ψi(t)|η|ψj(t)〉 = 〈ψi(0)|eiH†tηe−iHt|ψj(0)〉 (4.30)

inserting the identity = 〈ψi(0)|ηη−1eiH
†tηe−iHt|ψj(0)〉 (4.31)

= 〈ψi(0)|ηeiη−1H†ηte−iHt|ψj(0)〉 (4.32)

= 〈ψi(0)|ηeiHte−iHt|ψj(0)〉 (4.33)

= 〈ψi(0)|η|ψj(0)〉. (4.34)

In our specific case, we have shown that the CPT inner product is positive-

definite and, as such, we find that η−1 = CP, [16][18]. This makes it clear

that, as with the construction of C, the construction of η and subsequently ρ

is in general not an easy task, as it requires knowledge of all the eigenstates

of H and the sign of their norm with respect to the PT inner product.

One useful method for constructing C is to parametrise it as

C = eQ(x̂,p̂)P, (4.35)

where Q is an Hermitian function of x̂ and p̂, [3]. We then try to solve for Q

by imposing the conditions [C,PT ] = 0, [C,H] = 0 and C2 = 1. Given this

parametrisation we see that η−1 = eQ and so ρ = e−
Q
2 , which tells us that

the equivalent Hermitian formulation of the system described by H will in

general be non-local, as h is potentially a function of arbitrarily high powers

of p̂.

Taking this form of ρ we can now show explicitly for the case of a PT
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symmetric Hamiltonian that h as defined in (4.28) is indeed Hermitian, [3]:

h† = e
Q
2 H†e−

Q
2 (4.36)

= e
−Q
2 eQH†e−Qe

Q
2 . (4.37)

Now note that eQ = η−1 = CP and e−Q = η = PC, so we have

h† = e
−Q
2 CPH†PCe

Q
2 , (4.38)

but asH† = ηHη−1 = PCHCP, [C,H] = 0 and C2 = 1, we haveH† = PHP,

leaving us with

h† = e
−Q
2 He

Q
2 = h. (4.39)

One final comment we make is relating to observables within this PT

formulation of quantum mechanics. In the normal Hermitian formulation,

an operator A must satisfy A† = A in order to be associated with some

observable, as this ensures its eigenvalues are real and the corresponding

eigenvectors are orthonormal. This comes from the requirement that A be

self-dual with respect to the standard inner product, i.e. (Aψ, φ) = (ψ,Aφ).

Thus, the natural extension into non-Hermitian quantum mechanics is to

require that the operator for an observable be self-dual with respect to the

relevant inner product, i.e. 〈〈Aψ, φ〉〉 = 〈〈ψ,Aφ〉〉. In the case of a PT -

symmetric Hamiltonian we therefore require (Aψ, φ)CPT = (ψ,Aφ)CPT . To

see how this gives us our real eigenvalue spectrum and orthonormality of

eigenvectors, we use the standard argument that exploits the properties of
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an inner product:

〈〈Aψi, ψj〉〉 = 〈〈ψi, Aψj〉〉 (4.40)

=⇒ 〈〈λiψi, ψj〉〉 = 〈〈ψi, λjψj〉〉 (4.41)

=⇒ λ∗i 〈〈ψi, ψj〉〉 = λj〈〈ψi, ψj〉〉 (4.42)

=⇒ (λ∗i − λj)〈〈ψi, ψj〉〉 = 0, (4.43)

where ψi are eigenvectors of A with eigenvalue λi. Thus, considering the case

i = j and exploiting the fact that 〈〈 , 〉〉 is defined so as to give a non-zero,

positive definite norm, we establish that the eigenvalues are real. And in the

case i 6= j, assuming no degeneracy, we therefore establish 〈〈ψi, ψj〉〉 = 0.

4.1.2 Odd T symmetry: T 2 = −1

The generalisation of the PT formulation of quantum mechanics to the case

of T 2 = −1 follows the same principles as outlined in the previous section,

namely we look for a new inner product that gives us our desired properties

for the eigenvectors and eigenvalues of H. It is made more tricky, however,

by the fact that we are unable to find states which are invariant under the

action of PT . The details of how to construct the relevant inner product

are given in [19] and [2], and we will not include them here. The relevant

inner product is found to be

(ψ, φ)CPT = (CPT |ψ〉)TZ|φ〉, (4.44)

where Z corresponds to the linear operator used to define the anti-linear

operator T as T |ψ〉 = Z|ψ〉∗.

Armed with these new inner products, we are thus able to construct a
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formulation of quantum mechanics that allows us to replace the requirement

for the Hamiltonian to be Hermitian with the requirement that it be PT -

symmetric. This condition of PT -symmetry is perhaps more appealing than

that of Hermiticity in the sense that, rather than being purely mathematical,

it does have some physical motivation.

4.2 PT -symmetric Dirac equation

Having introduced the principles behind a formulation of quantum mechan-

ics that imposes PT symmetry on the Hamiltonian rather than Hermiticity,

we now look at what consequences this has when applied to the Dirac equa-

tion. We follow the analysis set out in [1] and [2], where a new solution to

the Dirac equation is discovered that would appear to describe two flavours

of massless particle, despite having a non-zero mass matrix. This leads us

to the possibility of having mass and flavour eigenstates that do not coin-

cide, and in the case of massive neutrinos we saw that this in turn led to

the possibility of flavour oscillations. We finish by attempting to extend the

model to describe three flavours of massless particle and questioning how

certain we can be that the findings of Jones-Smith et al. do indeed point to

a new type of solution.

4.2.1 The Dirac Equation

Before the Dirac equation, negative energies and negative probability den-

sities were two key problems associated with taking the wavefunction of

a particle to satisfy the relativistic Klein-Gordon equation, [20]. It was

observed that the second of these issues could be alleviated by replacing

the Klein-Gordon equation with one that only contained first-order time
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derivatives. As such, desiring a relativistically covariant equation that still

reproduced the correct relativistic energy-momentum relation for a massive

particle, Dirac proposed6

Eψ = i
∂ψ

∂t
= −iα · ∇ψ +mβψ = Hψ (4.45)

and required that the αi, with i = 1, 2, 3, and β satisfy the relations

{αi, αj} = 2δij , {αi, β} = 0 and β2 = 1, (4.46)

known as the Dirac algebra, [21]. In order to ensure that the energy eigen-

values of (4.45) be real, the αi and β were all taken to be Hermitian. The

requirements (4.46) are such that on squaring (4.45) we reproduce the rel-

ativistic energy-momentum relation , and we can check that this is indeed

the case:

E2ψ = (−iα · ∇+ βm)2 ψ (4.47)

=
(
−αiαj∇i∇j − imαiβ∇i − imβαi∇i +m2β2

)
ψ (4.48)

=
(
−1

2
(αiαj∇i∇j + αjαi∇j∇i)− im{αi, β}∇i +m2

)
ψ (4.49)

=
(
−1

2
{αi, αj}∇i∇j +m2

)
ψ (4.50)

=
(
−∇i∇i +m2

)
ψ (4.51)

=
(
p2 +m2

)
ψ as required, (4.52)

where we have used the fact that ∇i∇j = ∇j∇i and p = −i∇.

Evidently the αi and β cannot be normal numbers if they are to satisfy

the Dirac algebra, but we are able to find matrices that do so. From the

6Note that we are using natural units.
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conditions (4.46), we can see that α2
i = 1 and β2 = 1, which tells us that the

αi and β have eigenvalues ±1. We can further show that all the elements

of the algebra are traceless. Taking αiβ + βαi = 0 and using β2 = 1 we

deduce Tr(αi) = −Tr(βαiβ), and by the cyclicity of the trace and once

again using β2 = 1 we are left with Tr(αi) = −Tr(αi), which can only hold

if Tr(αi) = 0. By a similar argument using the fact that α2
i = 1 and the

cyclicity of the trace, we also find Tr(β) = 0. We now note that if we have

a set of αi and β that solve the algebra, then so too will the set UαiU
−1

and UβU−1. In the case where we require αi and β to be Hermitian, the

U is a unitary transformation. By taking four different transformations

that diagonalise the four elements αi and β in turn, and using the fact that

Tr(UαiU
−1) =Tr(αi) = 0, our knowledge that the diagonal elements are

±1 leads us to the conclusion that the matrix forms of αi and β must be of

even dimension.

We start by considering a 2× 2 representation. We know that the Pauli

matrics

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 and σ3 =

 1 0

0 −1

 (4.53)

satisfy the algebra {σi, σj} = 2δij , so we can make the association αi ↔ ±σi.

However, in trying to find a 2 × 2 matrix that anti-commutes with all the

σi, it can be shown by considering some general 2 × 2 matrix that such a

matrix does not exist. As such, we are unable to satisfy the algebra, except

in the case where m = 0. It turns out, however, that the algebra can be
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satisfied by a 4× 4 representation, and one particular form of this is

αi =

 σi 0

0 −σi

 and β =

 0 1

1 0

 . (4.54)

As such, the wavefunction ψ must be a four-component object, and Dirac

showed that such a wavefunction could be interpreted as one describing a

spin-half particle and its antiparticle, each having two spin states.

In this block-diagonal form, we see that the αis are just the direct sum

of the 2 × 2 representations ±σi. We note here that ±σi are independent

representations as if one could be mapped to the other by a similarity trans-

formation, UσiU
−1 = −σi, then this would imply Uσi + σiU = 0, which we

know to be impossible. If we therefore take our four-component wavefuntion

to be of the form

ψ =

 ψL

ψR

 , (4.55)

where ψL and ψR both have two components, then the Dirac equation has

two parts:

−iσi∇iψL +mψR = i
∂ψL

∂t
(4.56)

and iσi∇iψR +mψL = i
∂ψR

∂t
. (4.57)

So we see that we can consider our system in terms of two two-component

objects coupled by a mass. As outlined in [2], a more general representation

for αi would be

αi =

 V σiV
−1 0

0 −WσiW
−1

 , (4.58)

where V and W represent similarity transformations. Any 4 × 4 represen-
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tation of αi and β can be shown to be unitarily equivalent to the αi given

in (4.58) and β given in (4.54).

Having found a 4× 4 representation for the Dirac algebra, one might try

to look for higher-dimensional ones. However, it can be shown, [2], that

if one tries to find an 8 × 8 representation, it simply decouples into two

independent 4× 4 representations.

4.2.2 Useful properties of the Dirac algebra and Pauli

matrices

Before moving on to the non-Hermitian case, we first point out some results

that will be useful to us later on. Similar to the proof that there is no matrix

that anti-commutes with all three Pauli matrices, by simply considering

some general 2× 2 matrix A, it can be shown that

(i) if [A, σi] = 0 for i = 1, 2, 3, then A = aσ0, where a ∈ C,

(ii) there is no A satisfying Aσ∗i = σiA and

(iii) if Aσ∗i = −σiA then A = aiσ2, where a ∈ C.

Another useful observation, as discovered by Dirac, is the relation between

the αi and the Lorentz group generators. Taking the generators of the

boosts to be Ki, where i = 1, 2, 3 labels boosts in the x, y and z directions

respectively, and the generators of rotations to be Ji, where i = 1, 2, 3

labels rotations about the x, y and z axes respectively, the Lie algebra of

the Lorentz group can be summarised as

[Ji, Jj ] = iεijkJk, [Ji,Kj ] = iεijkKk and [Ki,Kj ] = −iεijkJk. (4.59)
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If we make the associations Ji ↔ − i
2αjαk and Ki ↔ i

2αi, where in the

association for Ji the labels i, j and k are always an even permutation of

123, then, using the Dirac algebra, it can be shown that these objects do

indeed satisfy the Lorentz algebra. The αi can thus be used to form a

representation of the Lorentz group, and this observation allows one to

prove the Lorentz covariance of the Dirac equation, [2].

4.2.3 Swapping Hermiticity for PT -symmetry

In moving to the case of a PT -symmetric Dirac Hamiltonian, the method

employed in [2] was to try and start with the most general possible forms

for objects such as the αi and β, and to let the specific forms be deduced

by imposing the desired requirements such as that the Hamiltonian be PT -

symmetric.

A relativistic energy-momentum relation

Starting from the same proposed form for the Dirac Hamiltonian (4.45)

and imposing that the correct relativistic energy-momentum relation be

reproduced on squaring this, we recover the same requirements {αi, αj} =

2δij and {αi, β} = 0. Hermiticity played no role in deriving these conditions

originally, but rather was imposed independently, so we would expect to

reproduce these same anti-commuation relations.

Parity, Time-reversal and Lorentz Transformations

If we take the specific forms for P and T acting on some state ψ(r) as

Pψ(r) = Sψ(−r) and T ψ(r) = Zψ∗(r), and recall that P2 = 1, T 2 = −1
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and [P, T ] = 0, then we have the following results

P2 = 1 ⇒ P−1 = P, S2 = 1 ⇒ S−1 = S (4.60)

T 2 = −1 ⇒ ZZ∗ = −1 ⇒ Z∗ = −Z−1 ⇒ T −1ψ = −Zψ∗ (4.61)

[P, T ] = 1 ⇒ SZ = ZS∗. (4.62)

The operators for rotations about axis i and boosts along axis i are given

by

Ri(θ) = e−iθJi and Bi(ζ) = e−iζKi (4.63)

respectively, where θ is the angle of rotation and ζ the rapidity of the boost.

Under parity and time-reversal transformations these transform as

PRi(θ)P−1 = Ri(θ), (4.64)

PBi(ζ)P−1 = Bi(−ζ), (4.65)

T Ri(θ)T −1 = Ri(θ) (4.66)

and T Bi(ζ)T −1 = Bi(−ζ). (4.67)

Thus, by acting on some state ψ(r) with these operators and using the

results (4.60)-(4.62), we deduce

Se−
1
2
θαjαkSψ(r) = e−

1
2
θαjαkψ(r) −→ SαjαkS = αjαk (4.68)

Se
1
2
ζαiSψ(r) = e−

1
2
ζαiψ(r) −→ SαiS = −αi (4.69)

Ze−
1
2
θα∗j α∗k(−Z∗)ψ(r) = e−

1
2
θαjαkψ(r) −→ Zα∗jα

∗
kZ

∗ = −αjαk (4.70)

Ze
1
2
ζα∗i (−Z∗)ψ(r) = e−

1
2
ζαiψ(r) −→ Zα∗iZ

∗ = αi. (4.71)

It can be seen that if the second and fourth of these conditions hold, then
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the first and third follow, so we can summarise the results as

{S, αi} = 0 and Zα∗i = −αiZ. (4.72)

A PT -symmetric Hamiltonian

The requirement for the Hamiltonian to be PT -symmetric can be expressed

as [H,PT ] = 0. Thus, by acting on some state ψ(p, r), which we take to be

a plane-wave solution, and taking the matrix forms of P and T , we have

αipiSZψ
∗(p,−r) + βSZψ∗(p,−r) = SZ (αipiψ(p,−r))∗ + SZβ∗ψ∗(p,−r)

=⇒ αiSZ = SZα∗i and βSZ = SZβ∗. (4.73)

Self-duality of the Hamiltonian

As discussed previously, for a Hamiltonian displaying invariance under some

given anti-linear symmetry, and in the regime of that symmetry being un-

broken, the appropriate inner product for formulating a quantum theory is

one with respect to which the Hamiltonian is self-dual. In the case of a

PT -symmetric hamiltonian we require the CPT inner product, defined as

(ψ, φ)CPT = (CPT |ψ〉)T (−Z†)|φ〉, (4.74)

and so self-duality of the Hamiltonian gives us

(Hψ, φ)CPT = (ψ,Hφ)CPT (4.75)

=⇒ (CPT H|ψ〉)TZ†|φ〉 = (CPT |ψ〉)TZ†H|φ〉 (4.76)

= (PT HC|ψ〉)TZ†|φ〉 = (PT C|ψ〉)TZ†H|φ〉, (4.77)
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where we have used the fact that [C,PT ] = 0 and [C,H] = 0. If we take the

explicit matrix forms for our C, P and T operators7 then this gives us

(SZH∗C∗|ψ〉∗)TZ†|φ〉 = (SZC∗|ψ〉∗)TZ†H|φ〉 (4.78)

〈ψ|C†H†ZTSTZ†|φ〉 = 〈ψ|C†ZTSTZ†H|φ〉. (4.79)

Combining these results with (4.73) we find

β = −ZTβTZ† and αi = ZTαT
i Z

†. (4.80)

With this set of conditions, it is now possible to deduce the forms of αi

and β required to solve the PT -symmetric Dirac equation.

4.3 Solutions to the PT -symmetric Dirac equation

4.3.1 Model 4

Using the terminology of [2], Model 4 is the four-dimensional solution to

the PT -symmetric Dirac equation. They start by noting that, as with the

Hermitian Dirac equation, any 2×2 representation for the αi must be of the

form V σiV
−1 or −WσiW

−1. In the Hermitian case, the similarity transfor-

mations V and W were required to be unitary, in order that Hermiticity of

the αi be preserved. Here, however, we no longer need to make that restric-

tion. Having generalised the two possible types of 2×2 representations, the

7We have not had to use an explicit form for C as yet; here we will simply use C|ψ〉 =
C|ψ〉.
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Model 4 representation is taken to be the direct sum of these:

 V σiV
−1 0

0 −WσiW
−1

 . (4.81)

With this as a starting point, the procedure is then to apply the various

conditions set out in the previous section and thereby determine the exact

forms of β, S and Z. All the details of this procedure for Model 4 are given

in [2], and we will not include them here. The resulting αi and β are given

by

αi = U

 σi 0

0 −σi

U † and β = U

 0 mσo

mσ0 0

U †, (4.82)

where U is a unitary matrix. This result is somewhat surprising. Despite the

fact that Hermiticity was not imposed at the outset, the various conditions

imposed on the system in requiring it to be PT -symmetric conspire to give

us Hermitian αi and β unitarily equivalent to the solutions (4.54) we found

for the Hermitian Dirac equation. As such, it would appear that in terms of

a theory for free fermions, we could equally well replace our assumption that

the Dirac Hamiltonian be Hermitian with the one that is PT -symmetric.

4.3.2 Model 8

After establishing the equivalence of the Model 4 solution with that of

the Hermitian Dirac equation, Jones-Smith et al. then construct an eight-

dimensional representation for αi and β. The procedure is exactly as for

Model 4 and so is not explicitly given in [2]. We therefore use this as an

opportunity to give an example of the procedure.
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In analogy with Model 4, the starting point is to take αi to be the direct

sum of four 2× 2 representations

αi =



V σiV
−1 0 0 0

0 V σiV
−1 0 0

0 0 −WσiW
−1 0

0 0 0 −WσiW
−1


. (4.83)

Next we take Z to be of the general form

Z =



A B C D

E F G H

I J K L

M N O P


, (4.84)

where each entry is a 2×2 matrix. By imposing the condition Zα∗i = −αiZ

and using the result that there is no A satisfying Aσ∗i = σiA and that if

Aσ∗i = −σiA then A = aiσ2, where a ∈ C, we find that Z can take the form

Z =



V aiσ2V
−1∗ 0 0 0

0 V biσ2V
−1∗ 0 0

0 0 Wciσ2W
−1∗ 0

0 0 0 Wdiσ2W
−1∗


,

where a, b, c, d ∈ C. Requiring ZZ∗ = −1 then gives us |a|2 = |b|2 = |c|2 =
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|d|2 = 1, which means that they are all pure phases. We thus have

Z =



V eiφaiσ2V
−1∗ 0 0 0

0 V eiφbiσ2V
−1∗ 0 0

0 0 Weiφciσ2W
−1∗ 0

0 0 0 Weiφdiσ2W
−1∗


.

By imposing the condition αi = ZTαT
i Z

† and using the properties (iσ2)† =

(iσ2)T = −iσ2 and σ2σ
T
i σ2 = −σi we find



V σiV
−1 0 0 0

0 V σiV
−1 0 0

0 0 −WσiW
−1 0

0 0 0 −WσiW
−1


= (4.85)



V −1†σiV
† 0 0 0

0 V −1†σiV
† 0 0

0 0 −W−1†σiW
† 0

0 0 0 −W−1†σiW
†


,

which gives us

V †V σi = σiV
†V and W †Wσi = σiW

†W. (4.86)

Next recall that if [A, σi] = 0 for i = 1, 2, 3, then A = aσ0, where a ∈ C.

Furthermore, as the combinations V †V and W †W are Hermitian, we know

that in their diagonal forms the entries will be real and positive. We can

thus take V †V = v2σ0 and W †W = w2σ0, where v, w ∈ R. From this we

can also infer that V −1 = 1
v2V

† and W−1 = 1
w2W

†, which in turn tells us

that the matrices 1
vV and 1

wW are unitary. Plugging these results into our

74



expressions for αi and Z we have

αi =


v−1V σiv

−1V † 0 0 0

0 v−1V σiv
−1V † 0 0

0 0 −w−1Wσiw
−1W † 0

0 0 0 −w−1Wσiw
−1W †

 ,

Z =


v−2V eiφa iσ2V

T 0 0 0

0 v−2V eiφb iσ2V
T 0 0

0 0 w−2Weiφc iσ2W
T 0

0 0 0 w−2Weiφd iσ2W
T

 .
(4.87)

If we then define the unitary matrix U as

U =



v−1V e
1
2
iφa 0 0 0

0 v−1V e
1
2
iφb 0 0

0 0 w−1We
1
2
iφc 0

0 0 0 w−1We
1
2
iφd


, (4.88)

then we have

αi = U



σi 0 0 0

0 σi 0 0

0 0 −σi 0

0 0 0 −σi


U † (4.89)

and Z = U



iσ2 0 0 0

0 iσ2 0 0

0 0 iσ2 0

0 0 0 iσ2


UT . (4.90)
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Given these forms for αi and Z, we posit that S and β are of the form

S = UΣU † and β = UBU †. Now, taking the condition {S, αi} = 0, we have

Σ



σi 0 0 0

0 σi 0 0

0 0 −σi 0

0 0 0 −σi


+



σi 0 0 0

0 σi 0 0

0 0 −σi 0

0 0 0 −σi


Σ = 0. (4.91)

Exploiting the results that there is no matrix that anti-commutes with all

σi and that if [A, σi] = 0 for i = 1, 2, 3, then A = aσ0, where a ∈ C, we find

that Σ can take the form

Σ =



0 0 aσ0 0

0 0 0 bσ0

cσ0 0 0 0

0 dσ0 0 0


, (4.92)

where a, b, c, d ∈ C. The condition S2 = 1 also gives us Σ2 = 1, which in

turn gives us c = a−1 and d = b−1. The condition SZ = ZS∗ is equivalent

to

Σ



iσ2 0 0 0

0 iσ2 0 0

0 0 iσ2 0

0 0 0 iσ2


=



iσ2 0 0 0

0 iσ2 0 0

0 0 iσ2 0

0 0 0 iσ2


Σ∗, (4.93)

from which we deduce that a and b are in fact real.
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Now we consider the condition {αi, β} = 0. In terms of B this gives us



σi 0 0 0

0 σi 0 0

0 0 −σi 0

0 0 0 −σi


B + B



σi 0 0 0

0 σi 0 0

0 0 −σi 0

0 0 0 −σi


= 0, (4.94)

which, using the known properties of matrices that commute or anti-commute

with all σi, gives the most general possible form of B as

B =



0 0 kσ0 lσ0

0 0 mσ0 nσ0

pσ0 qσ0 0 0

rσ0 hσ0 0 0


, (4.95)

with k, l,m, n, p, q, r, s ∈ C. Next, taking the condition β = −ZTβTZ†,

which is equivalent to

B = −



iσ2 0 0 0

0 iσ2 0 0

0 0 iσ2 0

0 0 0 iσ2


BT



iσ2 0 0 0

0 iσ2 0 0

0 0 iσ2 0

0 0 0 iσ2


, (4.96)

we find



0 0 kσ0 lσ0

0 0 mσ0 nσ0

pσ0 qσ0 0 0

rσ0 hσ0 0 0


=



0 0 pσ0 rσ0

0 0 qσ0 sσ0

kσ0 mσ0 0 0

lσ0 nσ0 0 0


(4.97)
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=⇒ B =



0 0 kσ0 lσ0

0 0 mσ0 nσ0

kσ0 mσ0 0 0

lσ0 nσ0 0 0


. (4.98)

Finally, taking the condition Sβ = β†S, which amounts to ΣB = B†Σ, we

have
akσ0 amσ0 0 0

blσ0 bnσ0 0 0

0 0 a−1kσ0 a−1lσ0

0 0 b−1lσ0 b−1nσ0

 =


k∗a−1σ0 l∗b−1σ0 0 0

m∗a−1σ0 n∗b−1σ0 0 0

0 0 k∗aσ0 m∗bσ0

0 0 l∗aσ0 n∗bσ0

 .
(4.99)

From this we can read off the following conditions

a2k = k∗ ⇒ a = ±1 and k is real or a = 0 (4.100)

b2n = n∗ ⇒ b = ±1 and n is real or b = 0 (4.101)

abl = m∗ (4.102)

and bam = l∗. (4.103)

Taking the case a = b = 1, we have

B =



0 0 kσ0 lσ0

0 0 l∗σ0 nσ0

kσ0 l∗σ0 0 0

lσ0 nσ0 0 0


, (4.104)

which, in terms of the real parameters m0,m1,m2 and m3, we can express
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as

B =



0 0 (m0 +m3)σ0 (m1 − im2)σ0

0 0 (m1 + im2)σ0 (m0 −m3)σ0

(m0 +m3)σ0 (m1 + im2)σ0 0 0

(m1 − im2)σ0 (m0 −m3)σ0 0 0


.

(4.105)

Summarising, we have

αi = U



σi 0 0 0

0 σi 0 0

0 0 −σi 0

0 0 0 −σi


U †, (4.106)

β = U

 0 M

M∗ 0

U †, (4.107)

S = U



0 0 σ0 0

0 0 0 σ0

σ0 0 0 0

0 σ0 0 0


U † and (4.108)

Z = U



iσ2 0 0 0

0 iσ2 0 0

0 0 iσ2 0

0 0 0 iσ2


UT , (4.109)

where M =

 (m0 +m3)σ0 (m1 − im2)σ0

(m1 + im2)σ0 (m0 −m3)σ0

 . (4.110)
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These are the results given in [1] and [2]. Note especially the non-Hermitian

nature of β, which means that unlike Model 4, Model 8 does differ from its

counterpart in the Hermitian formulation.

Following the method of [2], we now look at solutions to a Dirac equation

with αi and β of the form above. If we consider plane-wave solutions of the

form ψ = u exp(i(p · r − Et)), where u is an eight-component vector, our

Dirac equation looks like



σ·p 0 (m0 +m3)σ0 (m1 − im2)σ0

0 σ·p (m1 + im2)σ0 (m0 −m3)σ0

(m0 +m3)σ0 (m1 + im2)σ0 − σ· p 0

(m1 − im2)σ0 (m0 −m3)σ0 0 − σ· p


u = Eu.

(4.111)

Now note that the diagonal elements of our Hamiltonian are proportional

to the two-dimensional helicity operator. As such, if we consider solutions

of the form

u =



aξ±

bξ±

cξ±

dξ±


=



a

b

c

d


⊗ ξ±, (4.112)

where ξ± are the positive and negative helicity eigenstates satisfying
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σ · p ξ± = ±|p|ξ± = ±pξ±, then our problem reduces to


±p 0 (m0 +m3) (m1 − im2)

0 ±p (m1 + im2) (m0 −m3)

(m0 +m3) (m1 + im2) ∓p 0

(m1 − im2) (m0 −m3) 0 ∓p




a

b

c

d

 = E


a

b

c

d

 .

(4.113)

As in [2], we now restrict ourselves to the case where m1 = m3 = 0 and we

suggestively write the remaining equation as

 ±pσ0 m0σ0 +m2σ2

m0σ0 −m2σ2 ∓pσ0


 A

B

 = E

 A

B

 , (4.114)

where A and B are two-component vectors. This is named the restricted

Model 8. From its association with the y-component of spin for a spin-half

particle, we know σ2 to have two eigenvectors with eigenvalues ±1. If we

denote these ζ± and consider solutions of the form

 A

B

 =

 αζ±

βζ±

 =

 α

β

⊗ ζ±, (4.115)

where α, β ∈ C, then we further reduce the problem to

 ±p m0 +m2

m0 −m2 ∓p


 α

β

 = E

 α

β

 for ζ+ (4.116)

and

 ±p m0 −m2

m0 +m2 ∓p


 α

β

 = E

 α

β

 for ζ−. (4.117)

Regardless of our choice of signs, i.e. our choice of ξ± and ζ±, the de-
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terminant of these matrices is −p2 − m2
0 + m2

2. Further note that in all

cases the matrix is traceless, which tells us that the eigenvalues are of equal

magnitude and opposite sign. Combining these two observations gives us

E = ±
√
p2 +m2

0 −m2
2. (4.118)

Thus there are eight solutions in total, which we list here for completeness8:

 p m0 +m2

m0 −m2 −p


 α

β

⊗ ζ+ ⊗ ξ+ = E

 α

β

⊗ ζ+ ⊗ ξ+

 −p m0 +m2

m0 −m2 p


 α

β

⊗ ζ+ ⊗ ξ− = E

 α

β

⊗ ζ+ ⊗ ξ−

 p m0 −m2

m0 +m2 −p


 α

β

⊗ ζ− ⊗ ξ+ = E

 α

β

⊗ ζ− ⊗ ξ+

 −p m0 −m2

m0 +m2 p


 α

β

⊗ ζ− ⊗ ξ− = E

 α

β

⊗ ζ− ⊗ ξ−

(4.119)

Defining m2
eff = m2

0 −m2
2, the eight solutions can be associated with two

spin-1
2 particles of mass meff and their antiparticles.

A case of particular interest is when m0 = m2, i.e. meff = 0. In this

situation we have a Hamiltonian that describes two massless fermions but

that also has a non-zero mass matrix. As we have seen in earlier discus-

sions, if a Lagrangian has both mass and interaction terms for some set of

fields, these terms are in general not simultaneously diagonal, i.e. mass and

flavour eigenstates do not coincide. In the case of neutrinos, we saw that

8There are eight as each of the four scenarios has a positive and a negative energy
solution.
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this leads to the possibility of oscillations between the flavour eigenstates.

As such, the observation of particle flavour oscillations is usually taken as

an indication that those particles are massive. In the PT formulation of

the Dirac equation, however, the properties of this new eight-dimensional

solution would seem to suggest that perhaps we no longer need draw this

conclusion, which is potentially very appealing in the context of the neutrino

oscillation problem.

Given that there are three neutrino flavours, we now attempt to extend

the findings of [1] to three-flavours of massless particle.

4.3.3 Model 12

In order to try and describe three particle flavours we move to a twelve-

dimensional representation for αi and β, and start with αi of the form

αi =



V σiV
−1 0 0 0 0 0

0 V σiV
−1 0 0 0 0

0 0 V σiV
−1 0 0 0

0 0 0 −WσiW
−1 0 0

0 0 0 0 −WσiW
−1 0

0 0 0 0 0 −WσiW
−1


(4.120)

The procedure is then entirely equivalent to that shown in the previous

section for Model 8, and we will not give the details here. After successively

applying the various conditions on αi, β, S and Z, we find the 12 × 12
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representations to be the natural extension of those from Model 8. Namely

αi = U



σi 0 0 0 0 0

0 σi 0 0 0 0

0 0 σi 0 0 0

0 0 0 σi 0 0

0 0 0 0 σi 0

0 0 0 0 0 σi


U †, (4.121)

β = U

 0 M

M∗ 0

U †, (4.122)

S = U



0 0 0 σ0 0 0

0 0 0 0 σ0 0

0 0 0 0 0 σ0

σ0 0 0 0 0 0

0 σ0 0 0 0 0

0 0 σ0 0 0 0


U † (4.123)

and Z = U



iσ2 0 0 0 0 0

0 iσ2 0 0 0 0

0 0 iσ2 0 0 0

0 0 0 iσ2 0 0

0 0 0 0 iσ2 0

0 0 0 0 0 iσ2


UT , (4.124)
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where

U =



v−1V e
i
2 φa 0 0 0 0 0

0 v−1V e
i
2 φb 0 0 0 0

0 0 v−1V e
i
2 φc 0 0 0

0 0 0 w−1We
i
2 φd 0 0

0 0 0 0 w−1We
i
2 φe 0

0 0 0 0 0 w−1We
i
2 φf


(4.125)

and

M =


(m0 +m7)σ0 (m1 − im2)σ0 (m3 − im4)σ0

(m1 + im2)σ0 m0σ0 (m5 − im6)σ0

(m3 + im4)σ0 (m5 + im6)σ0 (m0 +m7)σ0

 . (4.126)

Taking plane-wave solutions of the form ψ = u exp(i(p · r − Et)), where

u is now a twelve-component vector, our Dirac equation looks like



σ·p 0 0

0 σ·p 0 M

0 0 σ·p

− σ· p 0 0

M∗ 0 − σ· p 0

0 0 − σ· p


u = Eu (4.127)
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As with M8, we then take solutions of the form

u =



aξ±

bξ±

cξ±

dξ±

eξ±

fξ±


=



a

b

c

d

e

f


⊗ ξ±. (4.128)

Also notice that hidden within M is the operator for the y-component of

spin in the spin-1 representation. We therefore choose to restrict ourselves

to the case where m1 = m3 = m4 = m5 = m7 = 0 and m2 = m6, in order

that we can reduce our equation to

 ±p1 m01+m2Jy

m01−m2Jy ∓p1


 A

B

 = E

 A

B

 , (4.129)

where A and B are three-component vectors and

Jy =
1√
2


0 −i 0

i 0 −i

0 i 0

 . (4.130)

Note that we have absorbed a factor of
√

2 into m2 in order to keep things

tidy. We call this the restricted Model 12.

We know Jy to have three eigenvectors with eigenvalues ±1 and 0. We
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label these eigenvectors ζ±,0 and consider solutions of the form

 A

B

 =

 αζ±,0

βζ±,0

 =

 α

β

⊗ ζ±,0, (4.131)

where α, β ∈ C. This now gives us three sets of solutions:

 ±p m0 +m2

m0 −m2 ∓p


 α

β

 = E

 α

β

 for ζ+, (4.132)

 ±p m0

m0 ∓p


 α

β

 = E

 α

β

 for ζ0 (4.133)

and

 ±p m0 −m2

m0 +m2 ∓p


 α

β

 = E

 α

β

 for ζ−. (4.134)
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Listing all possible combinations of ξ± and ζ±,0 we have

 p m0 +m2

m0 −m2 −p


 α

β

⊗ ζ+ ⊗ ξ+ = E

 α

β

⊗ ζ+ ⊗ ξ+

 −p m0 +m2

m0 −m2 p


 α

β

⊗ ζ+ ⊗ ξ− = E

 α

β

⊗ ζ+ ⊗ ξ−

 p m0

m0 −p


 α

β

⊗ ζ0 ⊗ ξ+ = E

 α

β

⊗ ζ0 ⊗ ξ+

 −p m0

m0 p


 α

β

⊗ ζ0 ⊗ ξ− = E

 α

β

⊗ ζ0 ⊗ ξ−

 p m0 −m2

m0 +m2 −p


 α

β

⊗ ζ− ⊗ ξ+ = E

 α

β

⊗ ζ− ⊗ ξ+

 −p m0 −m2

m0 +m2 p


 α

β

⊗ ζ− ⊗ ξ− = E

 α

β

⊗ ζ− ⊗ ξ−

(4.135)

In all six cases we see that the matrices are traceless, meaning that they

each have two eigenvalues of equal magnitude but opposite sign. In the case

of ζ+ and ζ−, we have the same situation as in Model 8, with energies given

by E = ±
√
p2 +m2

eff and m2
eff = m2

0−m2
2. In the case of ζ0, however, the

energies are given by E = ±
√
p2 +m2

0.

Altogether we therefore have twelve solutions to our equation, correspond-

ing to the three spin-1
2 particles. Two of these are potentially massless, if

m0 = m2 holds, but the third has a non-zero mass m0. As such, this first

natural extension of the surprising Model 8 solution does not appear to

give us another new massless solution describing three flavours of mass-
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less particle with a non-zero mass matrix. It consequently seems not to be

a candidate for potentially allowing oscillations between three flavours of

massless particle.

The appearance of a massive particle in this 12 × 12 representation was

a result of the fact that in decomposing the solutions we made use of the

spin-1 representations of spin operators and their eigenvectors. Specifically,

the massive state corresponds to the fact that one of the eigenvectors has

eigenvalue zero. It would therefore be interesting to look at higher dimension

solutions, for example 16× 16, where it might be possible to decompose the

solutions using the spin-3
2 representation, which has no zero eigenvalue.

Without going through a complete analysis, one might expect to find that

the 2N×2N representation of the PT -symmetric Dirac equation generalises

to  σ · p⊗ 1 M

M∗ −σ · p⊗ 1

u = Eu (4.136)

for plane-wave solutions, where the form of M is the natural extension of

(4.126) to an N × N matrix and u is a 2N -component vector. If we then

take solutions of the form u = v ⊗ ξ±, where v is an N -component vector,

and further assume that the real parameters within M can be chosen such

as to give

 ±p1 m01+m2Sy

m01−m2Sy ∓p1


 A

B

 = E

 A

B

 , (4.137)

where Sy is the N/2-dimensional representation for the y-component of spin

and A and B are N/2-component vectors, then we can see that there will

always be at most two particles that have the same meff . Being more
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explicit, if we take solutions of the form

 A

B

 =

 αζn

βζn

 =

 α

β

⊗ ζn, (4.138)

where α, β ∈ C and ζn for n = 1, ..., N/2 are the N/2 eigenvectors of Sy

with eigenvalues sy = −N/2−1
2 , ..., N/2−1

2 , then we will have meff given by

m2
eff = m2

0 − s2ym
2
2. Consequently, except for the case where sy = 0, the

two eigenvectors that have eigenvalues of the same magnitude but opposite

sign will be associated with particles of the same mass meff . Thus, if we

want to choose m0 and m2 in such a way as to give meff = 0, this will

hold for at most two particles, and only one in the case that our particle

corresponds to sy = 0. This would suggest that within the framework of a

restricted form of M , in going to higher dimensions we will not find any new

massless solutions that could potentially allow for oscillations between more

than two flavours of massless particle. Performing a more complete analysis

where these restrictions on M are lifted would certainly be of interest.

4.3.4 Does the restricted Model 8 describe new physics?

As we have seen, the 8-dimensional solution to the PT -symmetric Dirac

equation displays the striking characteristic of allowing a non-zero mass

matrix to describe two particles of zero mass. If considered alongside in-

teraction terms in a more general Lagrangian, this would in general lead to

a set of mass eigenstates and a set of flavour eigenstates that do not coin-

cide. In the case of neutrinos, we saw that a similar discrepancy between

mass and flavour eigenstates led us to the possibility of neutrino oscilla-

tions, and so we might expect the same to be true here. If this were to

be the case, oscillations between flavours of massless particles would be a
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new phenomenon, and certainly of great interest in relation to the problem

of observed neutrino oscillations. We must note, however, that the exact

mechanism for the oscillations could not be as described earlier for the neu-

trinos. In the formulation for neutrinos, we relied on the fact that mass

and flavour eigenstates did not coincide and the fact that the different mass

eigenstates evolved differently between creation and detection as a result of

their having different masses. Explicitly, the phase factor giving rise to the

observed oscillation effect was a function of ∆m2
ij = m2

i −m2
j . Thus, in the

case of the restricted Model 8 solution, where mi = mj = 0, the phase fac-

tor would vanish and we would not predict the observation of oscillations,

despite the fact that the mass and flavour eigenstates may not coincide.

Even if an alternative mechanism for achieving oscillations does not exist,

however, the restricted Model 8 solution still represents a remarkable new

type of solution, and so it is natural to approach it with some caution. In the

Hermitian case we find that the 8-dimensional representation of the Dirac

equation can be decomposed into a direct sum of two 4-dimensional ones

via a unitary transformation, and as such it does not describe a new type

of particle. A first step in testing the validity of the new solution would

therefore be to confirm that the same decomposition is not possible for the

non-Hermitian case. If we were able to decompose the representation into

two 4-dimensional ones, then, due to the known equivalence of the Hermitian

and PT -symmetric 4-dimensional representations, we would establish that

the 8-dimensional solution did not represent a new type of particle.

In the context of pseudo-Hermiticity, finding the equivalent Hermitian

Hamiltonian and corresponding eigenstates is also of great interest to us, as

it would allow us to verify that the new solution is not simply an already

known solution in disguise. As we saw previously, in going from a PT

91



formulation to the equivalent Hermitian one, the solutions |ψ〉 get mapped

to ρ|ψ〉, where ρ can be parameterised using Q(x̂, p̂), a Hermitian function

of x̂ and p̂, as ρ = e−
Q
2 . It is argued by Jones-Smith et al. that due to

the non-local nature of this mapping, the resulting solutions ρ|ψ〉 cannot be

equivalent to the reducible 8-dimension solutions found by directly solving

the 8-dimensional Hermitian Hamiltonian. As such, it is argued that these

new solutions are indeed irreducible and represent a new type of particle.

Whilst this argument is certainly valid, the explicit form of ρ is yet to

be calculated, and thus we suggest that one cannot be certain of the drawn

conclusion. The reason for our doubting the certainty of this conclusion is

based on the results of [22]. In this paper, the PT symmetric Hamiltonian

H(x, t) = ψ(x, t)(−i /∇+m1 +m2γ
5)ψ(x, t), (4.139)

where m2 ∈ R, is shown to describe a particle with physical mass µ2 =

m2
1 − m2

2. This mass is therefore real in the scenario m2
1 ≥ m2

2, and this

corresponds to the region of unbroken PT symmetry. Bender et al. then

proceed to calculate Q and indeed find that the Hermitian Hamiltonian, h,

equivalent to H is that of a particle with mass µ2 = m2
1 −m2

2, namely

h = ψ(x, t)(−i /∇+ µ)ψ(x, t). (4.140)

Furthermore, whilst the transformation ρ of ψ is in general non-local, in

this case ψ is found to transform as

ψ → e−
1
2
ηγ5
ψ (4.141)

and ψ → ψe−
1
2
ηγ5
, (4.142)
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where m2 is parameterised as m2 = εm1 with ε ≤ 1 and ε = tanh(η), which

is in fact local. As such, we suggest that a similar result could be found for

the transformations of the restricted Model 8 solutions.

One way in which to establish whether or not a similar result holds in

the restricted Model 8 is to explicitly calculate ρ given our knowledge of the

solutions set out in (4.119). Alternatively, it might prove easier to try and

exploit the results of [22]. In the formulation we have followed, the presence

of a γ5 mass term would actually appear as a term proportional to γ0γ5,

in the same way that our αi correspond to γ0γi. Thus, if we were able to

show that our restricted Model 8 matrix



σ·p 0 m0σ0 −im2σ0

0 σ·p im2σ0 m0σ0

m0σ0 im2σ0 − σ· p 0

−im2σ0 m0σ0 0 − σ· p


(4.143)

could be brought into the form



 σ·p m0σ0

m0σ0 − σ· p

+m2σ0γ
0γ5 0

0

 σ·p m0σ0

m0σ0 − σ· p

+m2σ0γ
0γ5


,

(4.144)

where γ0 and γ5 take the appropriate form of their 2×2 representation, then

we would have a direct sum of two Hamiltonians of the form (4.139), which

we know to be equivalent to an Hermitian representation of two particles

with mass µ2 = m2
1 − m2

2. In the special case m1 = m2 these would be

massless.
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Given that we already know the transformation that would bring the

Hermitian matrix



σ·p 0 m0σ0 0

0 σ·p 0 m0σ0

m0σ0 0 − σ· p 0

0 m0σ0 0 − σ· p


(4.145)

into the form

 σ·p m0σ0

m0σ0 − σ· p

 0

0

 σ·p m0σ0

m0σ0 − σ· p




, (4.146)

and it so happens that this transformation leaves the non-Hermitian element



0 0 0 −im2σ0

0 0 im2σ0 0

0 im2σ0 0 0

−im2σ0 0 0 0


(4.147)

invariant, the task remaining is to find a transformation that would bring

the matrix (4.147) into the form

 m2σ0γ
0γ5 0

0 m2σ0γ
0γ5

 (4.148)

without changing the form of (4.146). We note that because we require

the resulting Hamiltonian to be PT -symmetric, the transformation matrix
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is also required to be PT symmetric. We can see this as follows: if H ′ =

MHM−1, where H is PT -symmetric, and we also require H ′ to be PT -

symmetric, then we have

PT H ′PT = H ′ = PTMHM−1PT (4.149)

= PTMPT PT HPT PTM−1PT (4.150)

= PTMPT HPTM−1PT (4.151)

= PTMPT H(PTMPT )−1 (4.152)

→ PTMPT = M. (4.153)

Determining the existence or non-existence of such a transformation is key

in establishing the validity of this seemingly new type of particle.
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5 Closing remarks

We have seen that the Standard Model of particle physics, as it stands, is

unable to account for the observed oscillation of neutrinos between flavour

eigenstates. Allowing neutrinos to have a small but non-zero mass is widely

accepted as the mechanism by which this phenomenon can be explained,

and with its assumed particle content and requirements for gauge invariance

and renormalisablity, no such mass generating terms are permitted within

the Standard Model Lagrangian. In order to accommodate these non-zero

masses, we are therefore required to make extensions to the Standard Model,

and we have considered two possible examples.

In the first example, the particle content of the Standard Model was

supplemented with a light, sterile, right-handed neutrino, which allowed for

neutrino masses to be generated in exactly the same way as for the other

fermions - via the Higgs mechanism. Problems with this model were the

lack of evidence for the proposed right-handed neutrinos and the fact that

it required some of its parameters to be tuned very close to zero.

The second example was one in which the requirement for renormalisabil-

ity was relinquished, which amounts to conceding that the Standard Model

is not a complete theory for energy scales greater than that of the electro-

weak sector. We saw that the only Lorentz and gauge invariant term to

‘first-order’ of non-renormalisability was exactly that required to generate
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a neutrino mass without introducing any new, light particles. Furthermore,

the neutrino mass generated was inversely proportional to the energy scale

of the new physics, so naturally came out small. As a specific example of

what the new, high-energy physics might be, we looked at the possibility

that there exist very massive right-handed neutrino states, and we saw how

these could give rise to the dimension-5, non-renormalisable term that in

turn generates the neutrino mass. Given their large mass, we would not

expect to have observed these proposed states directly, but non-zero neu-

trino masses could be an indication of their existence. Although this second

type of mechanism is perhaps more appealing, we noted that due to the

high-energy nature of the new physics, it is not possible for us to determine

its exact nature through experiment.

Having established the uncertainty that remains in trying to incorporate

neutrino oscillations and their associated non-zero mass into the Standard

Model, we then turned to a recent result in the field of PT -symmetric

quantum mechanics that could potentially offer an interesting new possibil-

ity. Following the work of Jones-Smith et al., we saw that the 8-dimensional

solution to the PT -symmetric Dirac equation, dubbed the restricted Model

8 solution, might be able to allow for oscillations between between two

flavours of massless particle. This was by virtue of the fact that the Dirac

equation contained a non-zero mass matrix, despite the massless nature of

the particles it described, which in turn leads to the possibility that flavour

and mass eigenstates do not coincide. We stressed, however, that the exact

mechanism behind the oscillations could not be the standard one used to

describe the phenomenon of massive neutrino oscillations, as this requires

a non-zero ∆m2
ij , which would not be the case in the restricted Model 8

scenario. We also stressed that before we can conclude for certain that a
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new type of particle has indeed been found, an explicit calculation of the

equivalent Hermitian Hamiltonian and its solutions should be calculated.

If the validity of this new type of particle is confirmed, and an alter-

native mechanism for describing the oscillations can be determined, then

its potential relevance in the context of neutrino oscillations is certainly of

great interest. The first natural question is whether or not a higher di-

mensional solution can be found that would allow for 3-flavour oscillations.

Our initial analysis would suggest that such a solution does not exist, but

a more complete analysis that places fewer restrictions on the form of the

mass matrix is certainly worth pursuing. Jones-Smith et al. have already

set out a reformulation of the restricted Model 8 as a quantum field the-

ory in [1] and [2], but the question of how to incorporate this new type

of particle into the Standard Model is one that remains to be addressed.

Lastly, seeing as the new type of particle comes out of the restricted Model

8, an exploration of other, potentially new solutions where these restric-

tions are lifted should also be considered. Equally, given that a new type

of solution was found when considering an 8-dimensional representation of

the PT -symmetric Dirac equation, this might suggest that there will be

additional new types of solution if we consider higher-dimensional represen-

tations. Even if these solutions don’t describe 3-flavour oscillations, they

are still of great interest.
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