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Abstract

A theoretical model of a 1D Gaussian density profile beam driving plasma
wakefield acceleration is derived and the optimum beam length for resonant
excitation of the wakefield is found to be σ =

√
2/κp. Then the particle-in-cell

code OSIRIS is used to simulate this plasma-beam interaction for a range of
beam densities and beam lengths, and the amplitude of the resulting wake-
field is found to closely agree with the predictions of the model. Finally A
2D cylindrical simulation of the untreated Super Proton Synchrotron beam is
examined and found to be unsuitable to drive plasma wakefield acceleration.
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1 Introduction

This chapter is an introduction to particle beam driven plasma wakefield ac-
celerators. The first section compares conventional radio frequency particle
accelerators with plasma wakefield accelerators. Then oscillations and electric
field strengths in plasmas are discussed and finally the limitations of proton
driven plasma wakefield acceleration (PD-PWA) are examined.

1.1 Conventional Radio Frequency Accelerators

Since the 1930’s, particle accelerators have been used to further understand
the fundamentals of particle physics. Colliders at the energy frontier are able
to test the predictions of the standard model, and by proving or disproving
them they advance the field of particle physics. Modern day accelerators are
no longer just used for fundamental research, but have a wide range of appli-
cations in industry, pharmacology and radiotherapy. New discoveries come
as particle accelerators are able to reach higher energy regimes, but as the en-
ergies increase so does the size and cost of the accelerators.

Constructing and running modern high energy particle accelerators is an
expensive and demanding task. Large facilities such as CERN, SLAC and
Tevatron have particle accelerators many that are kilometres long. These mod-
ern particle accelerators consist of a metal cavity wherein particles are ac-
celerated using an alternating electric field. Electric field gradients greater
than 100MVm−1 ionise the metal itself, destroying the accelerator, so to reach
higher particle energies one has to increase the length over which the parti-
cles are accelerated. With a circumference of 27km CERN is already the largest
machine in the world, and with a budget of 6.19 Billion as of 2010 it is one of
the most expensive scientific instruments ever built [1]. To keep ever increas-
ing the length of accelerators is not an economically viable option. Plasmas
offer a solution to this problem as they can support far greater electric fields
and therefore achieve the same energy gains over much shorter distances and,
being already ionised, are resistant to further destruction. For these reasons
plasma accelerators are an attractive alternative to conventional accelerators.
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1.2 Principles of Plasma Accelerators

A plasma can be defined as a quasi neutral gas of charged and neutral parti-
cles which exhibit collective behaviour [2]. A key quantity that characterises
a plasma is the plasma frequency 1.1. Consider displacing electrons in a cold
plasma. An electric field is produced that acts as a restoring force. The elec-
trons accelerate back towards the region of unmoved ions, gaining kinetic en-
ergy. Having reached their original equilibrium position, they overshoot, due
to the kinetic energy gained from the electric field, and an oscillation is set up.
This is called a Langmuir oscillation [3] and the frequency of this oscillation
is the plasma frequency. The ions’ inertia are too large to respond to the short
period of the oscillation and are considered static.

ωp =

(
e2ne

meε0

)1/2

(1.1)

Here, e is the electron charge, me is the electron mass, ε0 is the permittivity
of free space and ne is the electron plasma number density. Another important
quantity when considering PWA is the plasma wavelength.

λp =
2πc
ωp

(1.2)

The optimum low density beam length for resonant excitation of a wakefield
is Lb = λp/2 for constant density hard-edged beams and the standard devia-
tion is σ = π/2κp[4] for Gaussian density profile beams. Consider the 1D case.
The first half of the beam will exert a pulling force on the plasma electrons. At
the point at which those electrons have reached their maximum oscillation am-
plitude, λ/4, the beam will be centred on them and exert no net force. Then
on the electrons’ return journey the sign of the force of the beam will change,
and the pushing force will reinforce the oscillation setup by the first half of
the beam. The magnitude of the electric field that these electron plasma waves
are able to support is given by 1.3, which corresponds to a density change of
∆ne/ne = 1, beyond which they succumb to wave breaking. For high density
driving beams where beam number density,nb, is approximately equal to the
plasma number density, np, the electrons begin to move relativistically and the
plasma response becomes non-linear.

E =
ωpmec

e
(1.3)

The resonance condition effectively limits the attainable electric field strength,
and therefore acceleration of the witness beam. This is because high electric
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field strengths require high density plasmas 1.3, which need short beams to
resonantly excite them. For a plasma density of np = 1021/m3 simulations in-
dicate energy gains can exceed 200MeV/m [5], but this requires high density
beams of length Lb = 5.78× 10−4, a technically challenging task.

The Super Proton Synchrotron beam at CERN has a rms bunch length of
0.12m [?], which is over a hundred times longer than the plasma wavelength
at this density. This would resonantly excite a plasma of np = 1.93 × 1016,
which can support a maximum electric field strength of 1.33× 1016, over 200
times weaker than the field strength at np = 1021/m3, and would require an ac-
celerator length of 70km in order to accelerate electrons to 1TeV. Naively then
it would seem the SPS beam is unsuitable for PD-PWA. G. Xia et al. consider
using a 400m long bunch compressor on the SPS beam in order to achieve the
desired beam length [?]. However, there is a self modulation instability that af-
fects beams of length Lb > λp, modulating them at the plasma frequency. This
results in longer beams being cut into a series of short pulses, each of which
has Lb ∼ λp, that reinforce the wakefield established by the pulse in-front, the
cumulative effect being a high amplitude wakefield. One of the focuses of this
dissertation is to use the Particle-in-Cell code OSIRIS to simulate the untreated
SPS beam and investigate its suitability for PWA at high densities.

1.3 Plasma Wakefield Accelerators

A plasma wakefield accelerator is a device that fires a driving beam into a
plasma and uses the resulting oscillation of plasma electrons to accelerate a
witness beam. The process works by creating an accelerating structure that co-
moves with the beam. Following the beam are alternating regions of high and
low electron density that have a transverse focusing electric field and a longitu-
dinal accelerating electric field. Consider a short relativistic proton pulse driv-
ing a plasma. The beam enters the plasma and attracts the plasma electrons
towards the axis of beam propagation, leaving the heavier ions behind. The
electrons gain kinetic energy as they accelerate towards the beam and over-
shoot the axis, leaving a positively charged region of ions behind the beam.
A Langmuir oscillation is set up and as the electrons rush back in to fill the
positively charged region they ’pinch’ together behind the propagating proton
beam, creating a strong longitudinal electric field. A schematic illustration of
plasma wakefield acceleration is shown in figure 1.1.

This accelerating ’bubble’ structure co-moves with the driving proton beam
and can extend several λp behind the beam [6, 7] before heating effects dom-
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Figure 1.1: Illustration of a beam inducing a plasma wakefield

inate. Any electrons injected into the rear of this structure will be accelerated
by the longitudinal electric field. The resulting ’plasma wakefield accelera-
tion’ has been experimentally shown to give accelerating gradients of order
GeV/cm [8, 9], far greater than conventional radio frequency (RF) accelera-
tors. Both relativistic beams of charged particles [10] and intense laser pulses
[11, 12] have successfully been used to accelerate electron witness beams to
high energies. It is crucial for the phase velocity of the driving beam to be
close to the speed of light, c, so that the accelerated electrons do not outrun the
driving beam and escape the accelerating structure.

1.4 Electron Injection Techniques

It is necessary that fast electrons are present in an established wakefield for
them to remain in the accelerating structure long enough to gain significant
energy. Wave-breaking can provide these fast electrons [13], but that requires
a high density driving beam (nb ∼ np). In the low density regime there are al-
ternative techniques to create fast electrons that will briefly be discussed here.
An electron beam with energy on the order of MeV can be fired directly along
the axis of propagation, and if timed and aligned perfectly, the electrons will
be caught in the accelerating structure and taken to higher energies [14]. Alter-
natively, if an electron driver is used that has a length comparable to that of the
plasma wavelength, the rear of the beam can be accelerated by the wakefield
[15]. Another technique is to dope a neutral gas with heavier elements. This
technique relies on the driving beam to ionise the gas and create the plasma
itself. As it does so a wakefield is set up, but the heavier elements hold onto
their electrons under stronger external electric fields than the background gas.
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Once the electric field provided by the driving beam approaches the magni-
tude of the electric field binding the inner electrons to their host atoms, barrier
suppression ionisation occurs. The point at which the electric field strength
of the beam is approximately equal to the electric field strength that binds the
electron to the nucleus the heavy atom is within the established wakefield - as
other atoms with lower binding energies have long been ionised. These newly
ionised electrons can then catch the wakefield and be accelerated.

In the following chapters important concepts to PWA are introduced and a
1D model for the excitation of a plasma by a gaussian density profile beam is
derived and the resonant beam length found. Then 1D OSIRIS simulations are
explored and compared to the predictions of the model. Finally a simulation
of the SPS beam is analysed and its feasibility in driving PWA discussed.
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2 Theory

This section outlines the theoretical concepts relevant to proton-plasma inter-
actions. First, the resonance conditions for proton-driven plasma wakefield
acceleration is discussed. Then a linear 1D model of proton-driven plasma
wakefield interaction is derived. Both the concepts and the model apply to the
PIC simulations in the Data Analysis section.

2.1 The Plasma Frequency

Starting off this chapter is the simple derivation of the plasma frequency quoted
in the introduction 1.1. Assuming the same set up of the displacement of a
sheet of electrons in a cold plasma in section ’Principles of Plasma Accelera-
tors’ and starting with the linearised continuity equation, equation of motion
and gauss’ law:

∇.E = − e∆ne

ε0
(2.1)

− eE = me
∂2x
∂t2 (2.2)

∂∆ne

∂t
+ ne∇.v = 0 (2.3)

Where E is the electric field, x is the spacial direction and v is the veloc-
ity. Assuming all oscillations are one dimensional and sinusoidal in space and
time, and writing quantities in terms of an equilibrium term and an oscillating
term, we find n = ne + ∆ne, E = E0 + E1, v = v0 + v1 and:

∆ne = ∆neei(κx−ωt) (2.4)

E = E1ei(κx−ωt) (2.5)

v = v1ei(κx−ωt) (2.6)
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Substituting 2.5 into 2.1, 2.4 and 2.6 into 2.3 and 2.6 into 2.2 we find:

imeωv = −eE (2.7)

ω∆ne − κnev = 0 (2.8)

iκE = e∆ne/ε0 (2.9)

Where κ is the wavenumber of the plasma. Solving equations 2.7, 2.8, 2.9
for ω and eliminating E, κ, ∆ne and v, we find an expression for the plasma
frequency ωp:

ωp =

(
e2ne

meε0

)1/2

(2.10)

2.2 1D Linear Model

1D solutions can be usefully applied. For example, a strong magnetic field
can constrict the movement of charged particles to the field lines and reduce
the system to 1D. To analyses the density profile of a plasma perturbed by a
charged driving beam traveling close to c, consider the plasma in three regions.
Region A is the plasma ahead of the driving beam. It remains unperturbed be-
cause the beam is traveling close to c, and fields will not propagate faster than
it. Region B is the plasma being perturbed by the beam as it passes. Region C
is the perturbed plasma behind the beam. Region A is trivial, B is described
by 2.11 with a forcing term, and C is described by 2.12 with the amplitude of
density oscillation determined by region B. This derivation focuses on Region
B and then uses boundary conditions to find region C.

In the linear regime the electrons oscillations can be described by simple
harmonic motion. We start with Newton’s second law 2.11:

d2α

dt2 me +
nee2

ε0
α = 0 (2.11)

Dividing through by me puts 2.11 in terms of ωp, refequ:plasmafreq:

d2α

dt2 + ω2
pα = 0 (2.12)

The driving force on an electron in the plasma from the beam is calculated.
Assume a Gaussian density profile for a proton beam, we find its Electric field
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using Gauss’s law:

∇.Eb =
ρb

ε0
=

e
ε0

nb(x)
=

e
ε0

nb0√
2πσ2

e
−(x−ct)2

2σ2 (2.13)

It is crucial to note at this point that the Gaussian chosen for the beam profile
has a total area of 1 - normalised by the co-efficient 1√

2πσ2 . So the total charge
of the beam, nb0 , remains constant. Therefore as the beam length increases,
the beam is ’stretched’ and the charge density decreases. Later we will con-
sider the case where the total charge of the beam is not fixed, and is instead a
function of the beam length. Integrating 2.13:

Eb =
enb0

ε02
er f
(

x− ct√
2σ

)
(2.14)

So the force acting on a plasma electron is found to be:

F = −eEb =
−e2nb0

ε02
er f
(

x− ct√
2σ

)
(2.15)

Including 2.15 as the forcing term in 2.11 the forced oscillation in region B is
found 2.16

d2α

dt2 + ω2
pα =

−e2

ε0me

nb0

2
er f
(

x− ct√
2σ

)
(2.16)

Expressing this in terms of the density change of the plasma electrons, ∆ne,
we find:

d2∆ne

dt2 + ω2
p∆ne = ω2

p
nb0

σ
√

2π
e
−(x−ct)2

2σ2 (2.17)

Transforming to the Quasi-Static frame, co-moving with the beam [16]. We
define ξ = x− ct and find:

d
dt

=
ξ

dt
d

dξ
+

dτ

dt
d

dτ
= −c

d
dξ

+
d

dτ
= −c

d
dξ

(2.18)

d2∆ne

dξ2 +
ω2

p

c2 ∆ne =
ω2

p

c2
nb0

σ
√

2π
e
−ξ2

2σ2 (2.19)

We note that the form of this equation is y′′ + ωy = f(ξ). Using Green’s
functions the solution to this general equation is:

y(ξ) =
∫ ∞

0
G(ξ,ξ ′) f(ξ ′)dξ ′ =

∫ ξ

0

1
ωp

sin ω(ξ − ξ ′) f(ξ ′)dξ ′ (2.20)
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Where G(ξ,ξ ′) =
1
ω sin(ω(ξ − ξ ′)) f(ξ ′) for 0 < ξ ′ < ξ and 0 otherwise. Taking

ωp/c = κp, where κp is the wavenumber of the plasma, and applying the
solution to 2.19:

∆ne(ξ) = κp
nb0

σ
√

2π

∫ ξ

0
sin
(
κp(ξ − ξ ′)

)
e
−ξ2
2σ dξ ′ (2.21)

An important subtlety to note is that the integral 2.21 is from 0 to ξ, where
0 is the point at which the beam begins and ξ is the point at which the beam
ends. There are two problems, firstly the Gaussian is centred at 0 in the quasi-
static frame, so integrating over these limits effectively ignores the first half of
the beam, leaving an infinitely sharp leading edge. Plasmas respond very dif-
ferently to hard edged beams and the integral as it stands does not represent
the Gaussian beam. Secondly a true Gaussian extends to ±∞, so the integra-
tion limits become ±∞ to encompass the entire beam we find 2.22.

∆ne(ξ) = κp
nb0

σ
√

2π

∫ ∞

−∞
sin
(
κp(ξ − ξ ′)

)
e
−ξ2
2σ dξ ′ (2.22)

Integrating 2.22 we find the analytic expression for the variation in the elec-
tron density of a plasma being perturbed by a relativistic Gaussian proton
beam of fixed charge 2.23.

∆ne(ξ) = κpnb0 sin(κpξ)e−
1
2 κ2

pσ2
(2.23)

Note that this linear solution applies to situations where the charge density
of the driving beam is considerably less than the charge density of the plasma
electrons. Plotting ∆ne/ne vs ξ we find a well behaved linear response of the
plasma 2.1.

The sinusoid in figure 2.1 extends to ±∞ with constant amplitude. This is
a result of the integration limits and describes region B as discussed earlier.
There is no region A in front of the beam or region B behind it as the Gaussian
is infinite, so figure 2.1 describes the entire system.

Figure 2.2 plots the amplitude of oscillation against σ and shows the opti-
mum σ of a beam for achieving the highest amplitude wakefield. Unsurpris-
ingly, as the beam length increases from the amplitude of oscillation decreases.
This is because the beam’s charge density decreases with length. Also note the
reverse applies, as σ decreases the beam is compressed, raising its peak density
above its initial nbpeak and therefore the amplitude of the established wakefield.
This advantageous feature is specific to this fixed charge model. Therefore, for
a fixed charge Gaussian beam, the largest amplitude wakefield is achieved as
σ→ 0.
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Figure 2.1: 1D analytic model (2.23) of the plasma response to a Gaussian pro-
ton beam with σ = 0.0011(c/ωp) and nb/ne = 0.001

Figure 2.2: 1D analytic model (2.23) of the plasma response to varying lengths
of a fixed charge Gaussian proton beams with σ = 0.0011(c/ωp)
and nb/ne = 0.001

Now we will consider the case where the charge density at the centre of the
Gaussian beam profile is fixed, and as the beam length is increased the total
charge of the beam increases - the variable charge model. First we modify nbx
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from equation 2.13 by dropping the coefficient that conserved the area of the
gaussian:

∇.Eb =
−enb0

ε0
e
−(x−ct)2

2σ2 (2.24)

Note the dimension of nb0 is not longer charge, but charge per unit length.
Integrating 2.24. Following the same treatment and skipping to the Green’s
function integral we find 2.25.

∆ne(ξ) =
√

2πκpnb0

∫ ∞

−∞
sin
(
κp(ξ − ξ ′)

)
e
−ξ2
2σ dξ ′ (2.25)

Integrating 2.21 we find the analytical expression for the variation in the
electron density of a plasma being perturbed by a variable charge proton beam
traveling close to c 2.26.

∆ne(ξ) =
√

2πκpnb0 σ sin(κpξ)e−
1
2 κ2

pσ2
(2.26)

To find the maxima and minima of equation 2.26 we first differentiate and
with respect to σ and set it to zero.

f (σ) = σe−
κ2

pσ2

2 (2.27)

f ′(σ) = (1− κ2
pσ2)e−

κ2
pσ2

2 = 0 (2.28)

This has two solutions, one at σ =
√

2/κp and one at σ = ∞. To find out
if they are maxima or minima we differentiate once more and evaluate the
function at σ =

√
2/κp and σ = ∞

f ′′(σ) = (κ3
pσ3 − 3κpσ)e−

κ2
pσ2

2 (2.29)

f ′′(∞) > 0, and is a minimum, whereas f ′′(
√

2/κp) < 0 and is a maximum.
Therefore we have found the resonance condition for a variable charge Gaus-
sian profile beam to be:

σresonance =

√
2

κp
(2.30)

This important result tells us not only the value of the maximum, but that
there is only one maximum for Gaussian profile beams.

Plotting ∆ne(ξ) against ξ will again show a sinusoidal response of the plasma,
however, plotting ∆ne(ξ) against σ gives us a different result. Figure 2.3 plots
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the wakiefield amplitude profile of equation 2.26.

Figure 2.3: 1D model of plasma response to varying lengths of a non-fixed
charge proton beam

In this plot nb0 = ne/1, 000. Note that as beam length goes to zero so does
the amplitude of the resulting wakefield. This makes sense as the charge of
the beam is proportional to length in this model, and as the length goes to
zero so does the charge of the beam and therefore its effect on the plasma.
Using the transformer ratio the maximum energy gain of a witness beam in
the wakefield created by a driving beam of resonant beam length is found to
be 1.52× Ebeam. This is assuming that the number of particles in the witness
beam is vanishingly small compared to that of the driving beam.

This result, although elegant, is unrealistic. No physical beams are truly
infinite and the Gaussian beams simulated in chapter 3 are truncated at σ = ±3
for computational purposes. With this in mind the integration is performed
again, with the new integration limits of ±3× σ

∆ne(ξ) =
√

2πκpnb0 σ
∫ 3σ

−3σ
sin
(
κp(ξ − ξ ′)

)
e
−ξ2
2σ dξ ′ (2.31)

Integrating 2.31 we find the expression for the variation in the electron den-
sity of a plasma being perturbed by a relativistic truncated Gaussian proton
beam of variable charge 2.32.
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(2.32)

Figure 2.4 shows the wakefield amplitude induced by the truncated Gaus-
sian beam (blue) as a function of σ and that of the non truncated beam (red)
2.26. Figure 2.4 is over a wider range of values for σ and again the density
change ∆ne has been scaled to the fractional density change, ∆ne/ne. Note that
the density no longer falls and stays at zero as σ increases, instead it ’bounces’
back up to a low fractional density before falling back down. The initial bounce
is of lower amplitude than the following. This bouncing continues as σ → ∞,
generating lesser peaks, and is a direct result of the truncation.

Figure 2.4: wakefield amplitude as function of beam length, characterised by
σ, for the truncated Gaussian model (blue) and the true Gaussian
model (red)

Figure 2.5 plots the difference between the two wakefield amplitude profiles
to investigate the truncations effect. In the region where the Gaussian compo-
nent of the beam dominates (σ ∼ 0− 0.004) the truncations effect both rein-
forces and diminishes the amplitude of the wakefield. This behaviour changes
once the amplitude of oscillation induced by the Gaussian component falls be-
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low the amplitude induced by the hard-edge of the truncation (σ ∼ 0.004+).
Then the behaviour seen is that of a hard-edged constant density beam, with
the amplitude of wakefield oscillation increasing as the length between the
two truncations approaches (λp/2) × (2N + 1) and falling to zero as it ap-
proaches (λp/2)× 2N, where N is an integer. Using MATLAB, the distances
between troths in the truncation-dominated region(σ ∼ 0.004) was found to
be π/3× (c/ωp) to within 2 significant figures. The factor of three is expected,
as the truncation is at 3σ and therefore increasing σ by x increases the length
between the two truncations by 3σ.

Figure 2.5: Difference in wakefield amplitude profiles between truncated and
non truncated models 2.26 2.32 as function of beam length

2.3 Non-linear Waves

There is another regime to be considered for proton driven plasma wakefield
acceleration, and that is when the charge density of the beam is approximately
equal to, or greater than the charge density of the plasma electrons. In this
regime non-linear effects come to dominate. When the charge density of the
beam approaches or exceeds the charge density of the plasma non linear be-
haviour is exhibited. The plasma electrons move relativistically, so the plasma
frequency, ωp, is modified by a lorentz factor, γ, 2.33 and the resonance condi-
tion of Lb = λp/2, where Lb is the length of the beam, is shifted.

Ωp =
nee2

γε0me
=

ω2
p

1 + Φ
(2.33)
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Also, the perturbation of the background electron density becomes as great
as the background electron density itself, and since negative densities are non-
physical, the system reacts instead by having larger regions of near zero elec-
tron density, followed by sharp peaks of very high electron density 3.11. The
high density peaks have an increased local plasma frequency and the driving
beam must be shorter to resonantly excite the plasma. This density profile can
no longer be described by a simple sinusoid and requires a different mathe-
matical approach ??:

Starting with the continuity equation:

∂ne

∂t
+

∂(nevx)

∂x
= 0 (2.34)

Where vx = px/γm is the longitudial velocity and px is the longitudinal
momentum.

In the general case where the plasma can be driven by a laser or a charged
particle beam we can write γ as:

γ2 = 1 +
p2

x
m2c2 +

e2A2

m2c4 (2.35)

Where the vector potential Ar = prc/e describes the contribution to the
electromagnetic fields by the laser pulse.

The equation for the longitudinal momentum is:

∂px

∂t
= e

∂φ

∂z
−mc2 γ

∂z
(2.36)

Where φ denotes the electrostatic potential. Here the ∂φ/∂t term is the elec-
trostatic field and the ∂γ/∂z is the ponderomotive force from the laser. Also,
we will need Poisson’s equation:

∂2φ

∂z2 =
e
ε0
(∆ne + (sign?)nb − n0) (2.37)

Where nb is the proton number density of the driving beam. Applying the
quasi-static approximation. 2.36 becomes:

eφ = (γ− 1)mc2 − cpx (2.38)

Redefining the potentials in dimensionless form: Φ = eφ/mc2 and a =

eA/mc2 and applying the quasi-static approximation, we find a single wake-
field equation:
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∂2Φ
∂ζ2 =

1 + a2

2(1 + Φ)2 −
1
2
+

nb

n0
(2.39)

2.4 Efficiency

Perhaps the biggest limitation of particle driven plasma wakefield acceleration
is the transformer ratio 2.40. There is a upper limit to the maximum energy
gained by the witness beam, which is twice the energy of the driving beam.

R =
Ewitness max

Edrive max
≤ 2− Nwitness

Ndrive
(2.40)

Where Edrive max is the maximum electric field of the drive beam, Ewitness max

is the maximum electric field acting on the witness beam, Nwitness is the num-
ber of particles in the witness beam and Ndrive is the number of particles in
the driving beam. When the second half of the beam acts to fully reinforce
the oscillation established by the first half, 2Edrive = Ewitness, and when the
number of particles in the witness beam is far less than the driving beam,
Nwitness/Ndrive ∼ 0, and the transformer ratio is at its maximum value of 2. This
transformer ratio applies to longitudinally symmetric beams and can be over-
come with non-symmetric beams [17], but this would be a technical challenge.
Another method of increasing the energy gain of the witness beam above a fac-
tor of two is to use multiple driving beams to cumulatively increase the ampli-
tude of the wakefield [18]. When the driving beams are spaced π apart they all
lose energy to the wakefield at the same rate and the multi-beam transformer
ratio becomes Rmulti = M× R, where M is the number of driving beams.

2.5 Self modulation of long proton beams

The SPS beam at CERN is best described by a long Gaussian beam (L > λ)
relative to useful plasma densities - as discussed in the introduction 3.13. A
long beam described by a Gaussian profile will not efficiently produce a wake-
field directly, but there is a modulation effect which enables them to excite
the wakefield to high amplitudes. The head of the beam begins to generate
a wakefield within the body of the beam. Consider the first plasma electron
peak generate within the beam. It will act to pull the local protons in the beam
towards it, whilst the adjacent regions of ions act to push the proton beam
away from them, effectively cutting the first λ/2 of the beam from the rest.
The remaining beam then sets up a wakefield within itself and the process re-
peats, modulating the beam at the plasma frequency. This leads to positive

Page 23



feedback and and unstable modulation of the whole beam, effectively cutting
the beam into multiple short pulses. These pulses will be spaced ∼ π apart
and will each act to increase the magnitude of the wakefield, which attains an
amplitude of oscillation many times greater than any single pulse could.
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3 Data Analysis and Discussion

This section first familiarises the reader with 1D simulations in OSIRIS, the
form of the output and potential pitfalls and phenomena. Then it goes on
to examine beam length parameter scans over σ to find the length at which
a Gaussian beam resonantly excites the plasma. Finally a more detailed 2D
cylindrical simulation of a the Super-Proton-Synchrotron beam at CERN will
be examined and its potential to be used for PD-PWA is investigated.

3.1 1D Simulations In OSIRIS

3.1.1 A Typical 1D Simulation

Figure 3.1: 1D OSIRIS simulation of plasma electron response (blue) to a pro-
ton driving beam (red) where σ = (13π/40) ∗ (c/ωp) and the num-
ber density of the beam is nb peak = ne/1000

Figure 3.1 is a typical data dump of a 1D simulation. The blue line shows
the variation in the plasma electron charge density and the red line shows the
proton driver beam. Note that the proton driver beam has been shifted up
by 1, so both plots could be shown together. The size of the simulation box
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is 150× 3 cells and co-moves with the beam. The beam is propagating to the
right. To the right of the beam is the unperturbed cold plasma and to the left is
the resulting wakefield. After a certain number of time steps the data dumps
evolve to a point where they are largely unchanging, this is when the quasi-
static approximation applies. The beam has a Gaussian profile described by
equation 3.1.

nbξ
= e−

(
ξ√
2σ

)2

(3.1)

and has a number density of 0.001× ne at its centre. Also the Gaussian beam
has σ = 0.4710(c/wp) and is set to zero at 3× σ from the centre of the gaussian
for computational purposes. The energy of the proton beam is E = 450GeV,
which is high enough to remain relativistic after significant energy loss.

One assumption that can quickly be checked is that the ions’ response to the
driving beam is negligible compared to the electrons response, and thus can
be considered static. This assumption was used to derive equation 1.1.

Figure 3.2: Plasma’s electron and ion response to proton driver beam

Figure 3.2 shows the same simulation as figure 3.1, where the plasma elec-
trons response in blue and the plasma ions response in green. The amplitude
of density oscillation for the electrons is 0.0037× np where as the amplitude of
density oscillation for the ions is 2.77× 10−6 × np, over three orders of magni-
tude lower. Therefore the assumption that the ions remain static is a reasonable
one.
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3.1.2 Maintaining Pseudo 1D Symmetry

OSIRIS currently has no implemented 1D co-ordinate system, so a 2D Carte-
sian system with 1D symmetric initial conditions was used for the pseudo-1D
simulations. It was discovered early on that the simulations’ 1D symmetry
breaks down several λp behind the beam if certain conditions are not met.
Namely the resolution, number of particles per cell and the correct choice of
boundary conditions. Broken 1D simulations are presented and contrasted
against simulations with improved resolution/particles per cell and minimum
requirements for maintaining 1D symmetry are found.

Figure 3.3: Three data dumps three simulations, at the same time step, that
only differ by resolution. The top, middle and bottom plots have
resolution of 2.5, 10 and 15 respectively

Figure 3.3 shows the effect of resolution on 1D symmetry breaking. The
three data dumps are from three different simulation at the same time step.
Each simulation has a simulation box size of 200× 15 but varying spacial grid
sizes. The top plot in Figure 3.3 has a spacial grid size of 500× 15, the middle
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2000× 15 and the bottom 3000× 15. The resolution is calculated by dividing
the spacial grid size by the simulation box size and is 2.5× 1, 10× 1 and 15× 1
for the top, middle and bottom respectively. To the right of the top plot the
1D symmetry has broken, furthermore the wakefield in the x direction also
breaks down soon after it is established. The middle plot shows no 1D sym-
metry breaking, but there is still wakefield breakdown. The bottom plot shows
no sign of 1D symmetry breaking and very little distortion to the established
wakefield. For this reason a resolution of 10 is used in both the x and the y
direction in all further simulations.

3.1.3 OSIRIS Anomaly

Replotting figure 3.1, one can see that the amplitude of the wakefield increases
from right to left.

Figure 3.4: Re-plot of figure 3.1. A 1D OSIRIS simulation of plasma electron re-
sponse (blue) to a proton driving beam (red) where σ = (13π/40) ∗
(c/ωp) and the number density of the beam is nb peak = ne/1000

The amplitude of the wakefield between 0− 10 is a factor of 1.174 larger than
the initial amplitude of the wakefield. Either the amplitude of oscillation, once
set by the beam, is increasing with time; or the beam spreads out as it travels
through the plasma, lowering its peak density and therefore the amplitude of
the resulting wakefield. Figure 3.5 plots the beam over a range of time steps to
investigate the latter.

Figure 3.5 shows the driving beam that created the wakefield in 3.4 at 6
different time steps, 1000 time steps apart, plotted in red, blue, green, cyan,
magenta and black. However, all the beam profiles are the same and sit on top
of each other, making only the black plot visible. From this we can see that
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Figure 3.5: Proton beam that excited the plasma in figure 3.4 at different time
steps

the peak density does not change over these time scales and therefore can not
explain the change in wakefield amplitude seen in figure 3.4.

Figure 3.6 plots the same simulation at two different time steps, both centred
on the driving beam, to investigate the former.

Figure 3.6: The resulting plasma electron wakefield at two different time steps

Figure 3.6 shows two data dumps from the same simulation as described by
figure 3.4, 5000 time steps apart, where a time step is normalised to (0.009×
1/ωp). The later data dump (cyan) actually sits exactly on top of the earlier
time step (blue) but has artificially been shifted for demonstration purposes.
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As seen, the later time step still creates the same initial amplitude wakefield
as the earlier time step. Furthermore, both show the exact same wakefield am-
plitude increase once the beam has passed. So the amplitude of the resulting
wakefield is in fact growing with time. One possible source of energy for this
growing oscillation is from the oscillation of the more massive ions. Figure 3.7
shows the small amplitude wakefield established in the ions from the same
simulation and timestep as figure 3.4.

Figure 3.7: The resulting plasma ion wakefield at two different time steps

As seen in figures 3.4 and 3.7 the wakefield of both the ions and electrons
grow with time. This is a non-physical result as there is no source of energy
for the wakefield to draw from once the beam has passed. This error can be
put down to numerical rounding issues of the OSIRIS code, and is important
to highlight as the true amplitude of the wakefield to be measured is that of
the initial wakefield, not that of the later error-amplified wakefield.

3.1.4 Low Density Beam Length Parameter Scans

Parameter scans of σ, characterising beam length, were run for numerous 1D
low density proton beam-plasma interactions in order to find the value of σ

for a Gaussian density profile beam to resonantly excite the plasma and to see
if the variable charge truncated Gaussian model 2.32 agrees with the simu-
lations. A template input deck was used for each batch of simulations, the
details of which can be found in table .2. The full input deck is found in the
appendix A. The details of each batch/parameter scan can be found in table
3.2. Note that the beam length is characterised by σ.

The beam is centred at x = 80, with the cold hard-edged plasma starting at
x = 130 and the simulation box moving at c in the x direction following the
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Parameter Value
Spatial grid 1300(x) 30(y)

Simulation box 130(x) 3(y)
Particles per cell 16 (4x, 4y)

Time step (1/ωp) 0.009 dt
Dump (time step) 1000
Beam composition Proton

Beam profile Truncated Gaussian
nsigm (σ) 3

Beam energy 450GeV
Plasma electron number density 1 (meε0ω2

p/e2)

Plasma ion number density 1 (meε0ω2
p/e2)

Table 3.1: 1D-Simulation Parameters

Parameter scan Beam density nb peak/ne Initial σ(c/ωp) σ iteration size (c/ωp)

Batch A 0.01 π/40 π/40
Batch B 0.003 π/40 π/40
Batch C 0.001 π/40 π/40
Batch D 0.0003 π/40 π/40
Batch E 0.0001 π/40 π/40
Batch F 0.000001 π/40 π/40

Table 3.2: Parameter scans over σ for low density gaussian proton beams

beam as it travels through the plasma. nsigm is a key quantity whose impact
is examined in 3.8. It determines after how many σ′s from the centre of the
Gaussian the density is artificially set to zero. Gaussian functions extend to
±∞ and it is a necessary computational fix to truncate them. Choosing high
values for nsigm include more of the Gaussian but require bigger simulation
boxes and longer run times to accommodate them. A value of nsigm = 3 was
chosen as it encompasses 99.7% of the particles in the beam whilst keeping
the amplitude of the Gaussian at the artificial hard edge at a modest 1.11% of
the central density. This low amplitude hard edge was found to still have a
detectable affect as shown in figure 3.8.

Figure 3.8 shows the amplitude of wakefield oscillation vs beam length for
Gaussian beams truncated at different points. The red data points are for a
Gaussian truncated at σ = 1, green truncated at σ = 2 and blue truncated at
σ = 3. With relative densities at the hard-edged truncation of nbtrunc /nbpeak =

0.607, nbtrunc /nbpeak = 0.135 and nbtrunc /nbpeak = 0.0111 respectively.
Simulated data inherently has no measurement error. The OSIRIS anomaly’s

effect mentioned earlier, where the amplitude of the wakefield increased with
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Figure 3.8: Three beams of density nbmax = 0.003× ne truncated at σ = 1, 2, 3
for red, green, blue respectively

time, could not be completely nullified as the fitting tool used needed a range
of data points to properly extract the amplitude, and the wider the range the
more error amplified data points were counted. This is why the error bars are
present and they represent a 95% confidence interval.

Figure 3.8 shows the lesser peaks predicted by the truncated variable charged
model 2.32. Furthermore it shows that the amplitude of the lesser peaks in-
creases as the points of truncation move closer to the central peak of the Gaus-
sian. In fact the amplitude of these lesser peaks increases linearly with the
amplitude of the density of the beam at truncation as shown in figure 3.9, al-
beit with only three data points.

Figure 3.9: Amplitude of lesser resonant peaks vs Fractional beam density at
hard-edged truncation

The resonance profiles in figure 3.8 are essentially a superposition of a Gaus-
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sian beam resonance profile with a lower density hard edge constant beam
resonance profile. Note that the distance between lesser peaks of the nsigm
= 1 (red) is twice that of the nsigm= 2 (green) and three times that of the
nsigm= 3 (blue). This is a result of the hard-edged component of the three sets
of beams being longer as nsigm is increased. The higher the value of nsigm of
a beam, the greater the length of its hard edge component and the quicker that
component falls in and out of resonance with the plasma as σ is increased.

Figure 3.10 compares the amplitude wakefield profile as a function of σ for
simulated data against the variable charge truncated Gaussian beam model.
The model fits the data well for short (σ < 0.4(c/ωp)) and long (σ > 1(c/ωp))
beam lengths, and diverges by a maximum factor of 1.0138 as the beam length
reaches resonance. If this divergence is physical, then the maximum energy
gain This divergence is minimised as the range over which the fitting tool acts
is reduced and is a result of the OSIRIS anomaly discussed earlier. Also, the
model’s prediction of lesser peaks at high beam lengths agrees with the sim-
ulated data and matches the first two peaks very closely. Further more it has
been established theoretically and via simulations that the resonance condition
in the linear regime is that given by equation 2.30. In summary the variable
charge truncated Gaussian model 2.32 accurately predicts the amplitude of the
wakefield established by a Gaussian proton beam perturbing a cold plasma.
Furthermore the model can be generalised to a Gaussian truncated at any point
by changing the integration limits of equation ?? to ±τ, where τ is the desired
point of truncation from the centre, Allowing the model to represent a wider
range of beam profiles.

3.1.5 High Density Beam Length parameter Scans and Non-linear
frequency shift

Parameter scans of beam length were run for 1D high density proton beam-
plasma interactions (nb np) to characterise the non-linear response of the plasma
and explore at which densities non-linear effects come to dominate. The value
of σ that causes a Gaussian high density beam to resonantly excite the plasma
is investigated. The details of these simulations can be found in table ??.

Batch name Beam density (nbmax/np) Initial σ(c/ωp) σ iteration size (c/ωp)

Batch G 0.1 π/40 π/40
Batch H 0.3 π/40 π/40
Batch I 1 π/40 π/40

Figure 3.11 shows a non-linear response to the high density driving beam.
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Figure 3.10: The amplitude of wakefield oscillation as a function of σ for 1D
simulations (Batch C 3.2) of Gaussian density profile beams of
peak number density nb = ne/1000 (red) and for the variable
charge truncated Gaussian beam model (blue) 2.32

Figure 3.11: Data dump of nb/np = 1 1D simulation at resonance (σ = 8π/40)
showing saw-tooth electron plasma density profile

The response is no longer sinusoidal density profile, but a saw-tooth electron
density profile. This is a result of the driving beam pulling electrons in from
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wider regions as its number density is increased. Note that the wakefield
destabilises over a smaller number of λp compared to the linear regime.

Figure 3.12 shows the amplitude of the wakefield as a function of σ for
three sets of high density beams. The red data points are for beams of den-
sity nb/np = 1, green nb/np = 0.3 and blue is for nb/np = 0.1. The blue
wakefield amplitude profile peaks at σ = 0.862(c/ωp), shifted below the res-
onance condition of the linear regime of σ =

√
2(c/ωp). The green wakefield

amplitude profile is shifted even greater to σ = 0.706(c/ωp) and the red pro-
file peaks at σ = 0.549(c/ωp). The nonlinear effects are not limited to shifting
the resonance peaks, but also generate lesser peaks of decreasing amplitude.
Figure 3.12 demonstrates that non-linear effects impact the resonance condi-
tion with beam densities as low as nb/np = 0.1, in the next section the SPS
beam is simulated at peak beam densities far lower than this value and well
within the linear regime.

Figure 3.12: Wakefield Amplitude plotted against beam length, σ, for high
density batches G, H, I. Absolute measurement of wakefield am-
plitude.
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3.2 2D-Simulations

There are a number of institutes with interest in PD-PWA .1 and the parameter
sets in table 3.13 and beam profile for the SPS beam in equation 3.2 have been
issued for easy comparison of simulations. The 2D cylindrical SPS simulation
was run with set 3 parameters and ran for a total of 256,000 time steps, which
corresponds to a physical time of 144 nano seconds. In this time the beam
propagated through the full 10 meters of plasma. The initial peak beam den-
sity is nb/ne = 0.00132 so one would expect a linear response by the plasma.
However, the length of the beam is 109.1 times longer than the plasma wave-
length and self modulation effects may cause a large non-linear wakefield to
form. The simulation was run with with a spacial grid of 6000(z) by 100(r) and
a simulation box size of 1200(z) by 20(r) and a resolution of 5(z) by 5(y). The
lower resolution was a necessary compromise to get the simulation run time
down. The number of particles per cell was 3(z) 3(r).

PS PS SPS ’LHC Bunch’ SPS ’LHC bunch’ SPS ’Totem bunch’
Parameter Set 1 Set 2 Set 3 Set 4 Set 5
Ep(GeV) 24 24 450 450 450
Np(1010) 13 13 11.5 11.5 3
σp(MeV) 12 12 135 135 80

σz(cm) 20 20 12 12 8
σr(µm) 400 400 200 200 100

σθ(mrad) 0.25 0.25 0.04 0.04 0.02
n0(cm−3) 1014 3× 1014 1014 1015 1015

Lp(m) 10 10 10 10 10

Figure 3.13: Parameter Sets for 2D cylindrical SPS beam simulations

np =
Np

2σ2
r σz(2π)3/2 e−r2/2σ2

r

(
1 + cos

(√
π

2
z
σz

))
(3.2)

Here, Ep is the energy of the proton beam, Np is the number of particles in
the beam, σp is the energy spread of the beam, σz is the longitudinal spread
of the beam, σθ is the divergence of the beam, n0 is the plasma density and
Lp is the length of the plasma through which the beam is to be simulated.
This density profile is sinusoidal in the x direction and falls to zero at z =

±
√

2πσz and is limited to this range. It is Gaussian in the radial direction and
of constant charge.

Figure 3.14 plots the beam profile described by equation 3.2 at time t = 0s.
Figure 3.15 takes this initial beam profile and subtracts the final beam pro-
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Figure 3.14: The SPS beam profile described by equation 3.2 and set 3 param-
eters from table 3.13. The axis spanning 0 to 6000 is increasing
in the direction of propagation and one unit is 1/(5× κp) meters.
The axis spanning 0-20 is in the radial direction, where the centre
of the beam sits at r = 0 and one unit is 1/(5× κp) meters. The axis
spanning 0-1.6 ×10−3 is the proton charge number density

file at time t = 144× 10−9s in order to highlight any self modulation effects.
No change of any kind is found and the beam remains unchanged. No self
modulation effect has taken place and no thermal spreading of the beam has
occurred over the 144 nano seconds.

Figure 3.16 shows the plasma’s response after 144 nano seconds. The plasma
is largely unperturbed until the beam has almost completely passed, at which
point it exhibits non-linear behavior and the amplitude of oscillation rises dra-
matically, peaking at ∆ne/ne = 1.186. Figure 3.17 examines this maximum
peak closer.
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Figure 3.15: The difference between the SPS beam at t = 0 as seen in figure
3.14 and the final beam at t = 144 × 10−9s The axis spanning 0
to 6000 is increasing in the direction of propagation where one
unit is 1/(5× κp) meters. The axis spanning 0-25 is in the radial
direction, where the centre of the beam sits at r = 12 and one unit
is 1/(5× κp) meters. The axis spanning -1 to 1 is the proton charge
number density

The profile of the wakefield seen in figure 3.17 is characteristic of the low
resolution simulations seen in 3.3. The middle plot of figure 3.3 has the same
resolution as the 2D SPS simulation and has minor disruptions (seen as stri-
ations) to its wakefield after 200 grid cells of wakefield propagation. The 2D
SPS simulation has a simulation box that is 1200 grid cells long, and therefore
a longer amount of time for any resolution induced disruptions to propagate.
This, taken with the lack of self modulation, introduces doubt that the high
amplitude oscillations seen at late times towards the back of the simulation
box are a physical result. In either case, the quality of the wakefield at late
times would produce a low quality witness beam with a wide energy spread.
The lack of self modulation can be explained by the lack of a hard edge. A
hard edge introduces a sudden force - as the cold plasma electrons do not see
the field of the beam until it arrives due to the field co-moving with the beam

Page 38



Figure 3.16: The plasmas’ response to the Gaussian beam seen in figure 3.14.
The axis spanning 0 to 6000 is increasing in the direction of prop-
agation where one unit is 1/(5× κp) meters. The axis spanning
0-25 is in the radial direction, where the centre of the beam sits at
r = 12 and one unit is 1/(5× κp) meters. The axis spanning 0− 3
is the proton charge number density

at c. This sudden force creates an initial high amplitude wakefield which dis-
rupts the body of the beam. A soft edge beam creates a low amplitude wake-
field which cannot modulate the beam over the time scales discussed. This
being said, there is a smoother, lower amplitude wakefield that propagates
through most of the simulation box as seen in figure 3.18. The wakefield is
on the limit of what OSIRIS is able to resolve, the hard edged steps are not a
result of a low spacial resolution, but instead of the fact that the oscillation is
of such a low amplitude. Each step corresponds to a fractional density change
of (∆ne/ne = 0.0000004)
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Figure 3.17: The Top left plot shows the first 100 cells of high amplitude oc-
sillation, as seen in figure 3.16. The top right plot then shows
wake siting at z = 30. The bottom plot shows the amplitude of
oscillation along the axis of propagation. The axis spanning 0 to
100 is increasing in the direction of propagation where one unit
is 1/(5× κp) meters. The axis spanning 0-1 is in the radial direc-
tion, where the centre of the beam sits at r = 2.5 and one unit is
1/(5 × κp) meters. The axis spanning 0-1.6 ×10−3 is the proton
charge number density
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Figure 3.18: This is a crop between 2600 to 3000 of the 6000 data points
along the axis of propagation and shows a low amplitude wake-
field. Each ’step’ corresponds to a fractional density change of
(∆ne/ne = 0.0000004).
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4 Conclusions

To conclude, the variable charge Gaussian beam model predicts wakefield os-
cillation amplitudes that agree with simulated data over the linear regime. The
resonance condition for a Gaussian beam was found and the effects of beam
truncation explored.

The 2D simulation of the untreated SPS beam revealed a lack of self modu-
lation and produced a noisy, high amplitude, low quality wakefield. Longer
simulations of higher resolution and run time may shed light on whether the
self modulation effect would eventually dominate and whether the quality of
the wakefield is also a result of the resolution of the simulation. The simu-
lation suggests that the SPS beam would be unsuitable for plasma wakefield
acceleration, although the high amplitude of the plasma oscillation does sug-
gest that there are potentially high energy gains to be made if beam treatment
could result in a more stable wakefield being produced.

Further work includes:

• Deriving a model that describes the response of the plasma to a driv-
ing beam of any density, i.e. accommodates the non-linear regime and
comparison with simulations

• Methods of beam cutting to create a hard leading edge for the SPS beam

• Simulations of a hard-edged, cut, SPS beam to explore the self modula-
tion instability and its effect on the quality and amplitude of the resulting
wakefield

• Simulations of multiple resonant length beams fired into the plasma and
the effects of positive reinforcement of the resulting wakefields
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5 Appendix

.1 Institutes with Interest in using the SPS Beam for
PWA

Institutes that have expressed interest in PD-PWA Cockcroft Institute: Swapan
Chattopadhyay Imperial College: Ken Long, Jarolslaw Pasternak, Jrgen poz-
imski Oxford: (john adams institute): Andrei Seryi, Ken Peach, Simon Hooker
RAL / STFC: bob Bingham, Rob Edgecock, Peter Norreys UCL: Jon Butter-
worth, Alexey Lyapin, Matthew Wing from the debriefing of a meeting con-
centrated on the simulation results for long beams (citation unavailable)

.2 Template Input Deck for 1D Parameter Scans

The input deck used in the high and low density parameter scans is given
below, where line 345 (σ) is scanned over within each batch, and line 343 (peak
beam density) is different for each batch.

1 [frame=single]

2 ! OSIRIS INPUT DECK

3

4 !COMMENTS

5

6 ! this is a very first simulation with particle beams - more to report later

7 !

8 !

9

10 !INPUT DATA

11

12 !--- this is a new one - I have no documentation --

13 !/ &nl_storage

14 !/

15 !--------------the node configuration for this simulation ----------------

16
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17 node_conf

18 {

19 node_number(1:2) = 4, 1,

20 if_periodic(1:2) = .false., .true.,

21 }

22

23

24 !----------------------- spatial grid -------------------

25

26 grid

27 {

28 nx_p(1:2) = 1500, 30,

29 coordinates = "cartesian",

30 }

31

32

33 !-------- time step and global data dump timestep number ----------

34 time_step

35 {

36 dt = 0.009,

37 ndump = 1000,

38 }

39

40 !---------------- restart information ---------------------------

41 restart

42 {

43 ndump_fac = 0, file_name = ’ ’,

44 if_restart = .false.,

45 }

46

47 !---------------- spatial limits of the simulations -------------

48 !(note that this includes information about

49 !the motion of the simulation box)

50

51 space

52 {

53 xmin(1:2) = 0.000d0, 0.000d0,

54 xmax(1:2) = 150.0, 3.0,

Page 46



55 if_move = .true., .false.,

56 }

57

58 !----------------- time limits ----------------

59 time

60 {

61 tmin = 0 , tmax = 200,

62 }

63

64 !----------------- field solver set up ----------------

65

66 el_mag_fld

67 {

68 b0(1:3) = 0.0d0, 0.0d0, 0.0d0,

69 e0(1:3) = 0.0d0, 0.0d0, 0.0d0,

70 }

71

72 !--------------- boundary conditions for em-fields -------------

73

74 emf_bound

75 {

76 type(1:2,1) = 30, 30,

77 type(1:2,2) = 5, 5,

78 }

79

80 !---------------- diagnostic for electromagnetic fields ---------------

81

82 diag_emf

83 {

84 ndump_fac_all = 1, file_name_all = ’ ’,

85 ndump_fac_ave = 0, file_name_ave = ’ ’,

86 n_ave(1:2) = 1, 1,

87 ifdmp_efl(1:3) = .true. , .true. , .true. ,

88 ifenv_efl(1:3) = .false. , .false. , .false. ,

89 ifdmp_bfl(1:3) = .true. , .true. , .true. ,

90 ifenv_bfl(1:3) = .false. , .false. , .false. ,

91 }

92
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93

94 particles

95 {

96 num_species = 3,

97 }

98

99 !-------------------- diagnostics for all particles ------------------

100

101 diag_particles

102 {

103 ndump_fac = 1, file_name = ’ ’,

104 if_particles_all = .false.,

105 gamma_limit = 0.0d0,

106 particle_fraction = 1.0d0,

107 }

108

109

110

111 !----------- information for species 1 -----------------------------

112

113 species

114 {

115 num_par_max = 2000000,

116 rqm = -1.0,

117 num_par_x(1:2) = 4, 4,

118 vth(1:2) = 0.0d0 , 0.0d0 ,

119 vfl(1:2) = 0.0d0 , 0.0d0 ,

120 den_min = 1.d-12,

121 if_unneutralized = .false.,

122 num_dgam = 0,

123 dgam = 0.0,

124 n_sort = 0,

125 }

126

127

128 !-------------- density profile for species 1---------------------

129 !number of points in profile along each direction

130
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131 num_x

132 {

133 num_x = 6,

134 }

135

136 !actual profile data

137

138 profile

139 {

140 fx(1:6,1) = 0, 0, 1, 1, 1, 1,

141 x(1:6,1) = 0, 150.0, 151.570796327, 153.141592654, 25000.0, 300000.0,

142 fx(1:6,2) = 1, 1, 1, 1, 1, 1,

143 x(1:6,2) = 0, 20, 40, 70, 100, 250,

144 }

145

146

147 !-------------- boundary conditions for species 1-------------------

148

149 spe_bound

150 {

151 type(1,1) = 5, type(2,1) = 5,

152 type(1,2) = 5, type(2,2) = 5,

153 }

154

155

156 !-------------- diagnostic for species 1 -------------------

157

158 diag_species

159 {

160 ndump_fac_pha = 1,

161 ps_xmin(1:2) = 0, 0, ps_pmin(1:3) = -1, -1, -1,

162 ps_xmax(1:2) = 150.0, 3.0, ps_pmax(1:3) = 1, 1, 1,

163 ps_nx(1:2) = 1500.0, 3.0, ps_np(1:3) = 400, 200, 200,

164 if_x2x1 = .true. ,

165 if_p1x1 = .true. ,

166 if_p2x1 = .true. ,

167 if_p3x1 = .false. ,

168 if_p1x2 = .true. ,
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169 if_p2x2 = .true. ,

170 if_p3x2 = .false. ,

171 if_p2p1 = .true. ,

172 if_p3p1 = .false.,

173 if_p3p2 = .false.,

174 }

175

176

177 !----------- information for species 2 - H ----------------------------

178

179 species

180 {

181 num_par_max = 2000000,

182 rqm = 1836,

183 num_par_x(1:2) = 4, 4,

184 vth(1:2) = 0.0d0 , 0.0d0 ,

185 vfl(1:2) = 0.0d0 , 0.0d0 ,

186 den_min = 1.d-12,

187 if_unneutralized = .false.,

188 num_dgam = 0,

189 dgam = 0.0,

190 n_sort = 0,

191 }

192

193

194 !-------------- density profile for species 2---------------------

195 !number of points in profile along each direction

196

197 num_x

198 {

199 num_x = 6,

200 }

201

202 !actual profile data

203

204 profile

205 {

206 fx(1:6,1) = 0, 0, 1, 1, 1, 1,
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207 x(1:6,1) = 0, 150.0, 151.570796327, 153.141592654, 25000.0, 300000.0,

208 fx(1:6,2) = 1, 1, 1, 1, 1, 1,

209 x(1:6,2) = 0, 1.1, 1.3, 2, 2.2, 3,

210 }

211

212

213

214 !-------------- boundary conditions for species 2-------------------

215

216 spe_bound

217 {

218 type(1,1) = 5, type(2,1) = 5,

219 type(1,2) = 5, type(2,2) = 5,

220 }

221

222

223 !-------------- diagnostic for species 2 -------------------

224

225 diag_species

226 {

227 ndump_fac_pha = 1,

228 ps_xmin(1:2) = 0, 0, ps_pmin(1:3) = -0.1, -0.1, -0.1,

229 ps_xmax(1:2) = 150.0, 3.0, ps_pmax(1:3) = 0.1, 0.1, 0.1,

230 ps_nx(1:2) = 1500.0, 3.0, ps_np(1:3) = 400, 200, 200,

231 if_x2x1 = .true.,

232 if_p1x1 = .true.,

233 if_p2x1 = .true.,

234 if_p3x1 = .false.,

235 if_p1x2 = .true.,

236 if_p2x2 = .true.,

237 if_p3x2 = .false.,

238 if_p2p1 = .true.,

239 if_p3p1 = .false.,

240 if_p3p2 = .false.,

241 }

242

243 !----------- information for species 3 -----------------------------

244
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245 species

246 {

247 num_par_max = 2000000,

248 rqm = 1836.0,

249 num_par_x(1:2) = 4, 4,

250 vth(1:2) = 0.0d0 , 0.0d0 ,

251 vfl(1:2) = 0.0d0 , 0.0d0 ,

252 den_min = 1.d-12,

253 if_unneutralized = .true.,

254 num_dgam = 1,

255 dgam = 479.6,

256 n_sort = 0,

257 }

258

259

260 !-------------- density profile for species 3---------------------

261 !actual profile data

262

263 num_x

264 {

265 num_x = 6,

266 }

267

268 profile

269 {

270 profile_type(1:2) = gaussian, piecewise-linear,

271 f_cent(1) = 0.001,

272 x_cent(1) = 100.0,

273 x_sigm(1) = 0.0785,

274 n_sigm(1) = 3,

275 fx(1:6,2) = 1, 1, 1, 1, 1, 1,

276 x(1:6,2) = 0, 0.9, 1.0, 1.0, 1.0, 3.0,

277 }

278

279

280 !-------------- boundary conditions for species 3-------------------

281

282 spe_bound
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283 {

284 type(1,1) = 5, type(2,1) = 5,

285 type(1,2) = 5, type(2,2) = 5,

286 }

287

288

289 !-------------- diagnostic for species 3 -------------------

290

291 diag_species

292 {

293 ndump_fac_pha = 1,

294 ps_xmin(1:2) = 0, 0, ps_pmin(1:3) = 0, -5, -5,

295 ps_xmax(1:2) = 150.0, 3.0, ps_pmax(1:3) = 500, 5, 5,

296 ps_nx(1:2) = 1500.0, 3.0, ps_np(1:3) = 250, 200, 200,

297 if_x2x1 = .true. ,

298 if_p1x1 = .true. ,

299 if_p2x1 = .true. ,

300 if_p3x1 = .false. ,

301 if_p1x2 = .true. ,

302 if_p2x2 = .true. ,

303 if_p3x2 = .false. ,

304 if_p2p1 = .true. ,

305 if_p3p1 = .false.,

306 if_p3p2 = .false.,

307 }

308

309

310

311 !-------------- number of pulses ---------------------------

312

313 pulse_sequence

314 {

315 num_pulses = 0,

316 }

317

318 !--------------------- information for pulse 1 -------------------

319

320 pulse
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321 {

322 iflaunch = .false., wavetype = 1,

323 w0 = 100, rise = 90, fall = 90, length = 0.00,

324 vosc = .6, rkkp = 1, pol = 90, phase = 0,

325 start = 0, focus = -300, offset(1) = 0,

326 time = 0.0,

327 }

328 !--------------------- information for pulse 2 -------------------

329 pulse

330 {

331 iflaunch = .false. , wavetype = 1,

332 w0 = 20, rise = 90, fall = 90, length = 0.00,

333 vosc = 1.5, rkkp = 1, pol = 90, phase = 0,

334 start = 180, focus = -300, offset(1) = 0,

335 time = 0.0,

336 }

337

338

339 smooth

340 {

341 ifsmooth(1) = .false.,

342 smooth_level(1) = 3,

343 swfj(1,1,1) = 1, swfj(2,1,1) = 2, swfj(3,1,1) = 1,

344 swfj(1,2,1) = 1, swfj(2,2,1) = 2, swfj(3,2,1) = 1,

345 swfj(1,3,1) = 1, swfj(2,3,1) = 2, swfj(3,3,1) = 1,

346 ifsmooth(2) = .false.,

347 smooth_level(2) = 3,

348 swfj(1,1,2) = 1, swfj(2,1,2) = 2, swfj(3,1,2) = 1,

349 swfj(1,2,2) = 1, swfj(2,2,2) = 2, swfj(3,2,2) = 1,

350 swfj(1,3,2) = 1, swfj(2,3,2) = 2, swfj(3,3,2) = 1,

351 }

352

353 !--------------- diagnostic for currents ---------------------------

354

355 diag_phy_field

356 {

357 ndump_fac_all = 1, file_name_all = ’ ’,

358 ndump_fac_ave = 0, file_name_ave = ’ ’,
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359 n_ave(1:2) = 2, 2,

360 ifdmp_phy_field(1:3) = .true. , .true. , .false. ,

361 }

362

363

364 !----------------- smoothing for charge -----------------------

365

366 smooth

367 {

368 ifsmooth(1) = .false.,

369 smooth_level(1) = 3,

370 swfj(1,1,1) = 1, swfj(2,1,1) = 2, swfj(3,1,1) = 1,

371 swfj(1,2,1) = 1, swfj(2,2,1) = 2, swfj(3,2,1) = 1,

372 swfj(1,3,1) = 1, swfj(2,3,1) = 2, swfj(3,3,1) = 1,

373 ifsmooth(2) = .false.,

374 smooth_level(2) = 3,

375 swfj(1,1,2) = 1, swfj(2,1,2) = 2, swfj(3,1,2) = 1,

376 swfj(1,2,2) = 1, swfj(2,2,2) = 2, swfj(3,2,2) = 1,

377 swfj(1,3,2) = 1, swfj(2,3,2) = 2, swfj(3,3,2) = 1,

378 }

379

380 !---------------- diagnostic for charge --------------------

381

382 diag_phy_field

383 {

384 ndump_fac_all = 0, file_name_all = ’ ’,

385 ndump_fac_ave = 0, file_name_ave = ’ ’,

386 n_ave(1:2) = 2, 2,

387 ifdmp_phy_field(1) = .true.,

388 }

389

390 !--------------- antenna parameters -------------------

391

392 antenna_array

393 {

394 n_antenna = 0,

395 }

396
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397 antenna

398 {

399 a0 = 0.50, omega0 = 1.0,

400 t_rise = 753.5, t_fall = 753.5, t_flat = 0.00,

401 w0 = 44.0, w0_2= 44.0,

402 x0 = 157.1,

403 ant_type = 1, delay = 0,

404 spin = 0, phase = 0, pol=0, tilt=0, focus = 251.33,

405 }

406

407 antenna

408 {

409 a0 = 0.50, omega0 = 1.0,

410 t_rise = 753.5, t_fall = 753.5, t_flat = 0.00,

411 w0 = 44.0, w0_2= 44.0,

412 x0 = 157.1,

413 ant_type = 1, delay = 90,

414 spin = 0, phase = 0, pol=90, tilt=0, focus = 251.33,

415 }
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