
de Broglie-Bohm Theory ,Quantum to Classical

Transition and Applications in Cosmology

Charubutr Asavaroengchai

September 24, 2010

Submitted in partial fulfillment of the requirements for the degree of

Master of Science of Imperial College London

Abstract

Standard quantum mechanics has conceptual inconsistency regarding

measurement and ‘quantum to classical’ transition. We reviewed differ-

ent interpretations and the previous attempts to resolve this problem, with

emphasis on de Broglie-Bohm pilot wave theory. Decoherence scheme and

collapse process are discussed within the context of standard quantum the-

ory and de Broglie-Bohm theory. We applied guidance equation to solve for

late time solution of Guth-Pi upside-down harmonic oscillator model and

found result concuring with that of classical approximation from quantum

mechanics. We also reviewed the method for calculation of vacuam inflaton

field fluctuation and result from de Broglie-Bohm theory. .
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1 Introduction

Quantum mechanics, although a very successful theory for all practical purposes,

has conceptual issues regarding what is considered to be elements of reality [1].

The standard interpretation rejects the reality of objects, such as electrons, before

a process known as measurement. According to Born rule of probability distri-

bution, the measurement process has a special status in quantum mechanics as a

process that causes a collapse of wave function into one of the possibilities. Quan-

tum mechanics also states that a wave function contains all there is to describe a

physical system. If we were to take such a postulates seriously, then the picture

of the world would be disconnected. In particular, particles do not have localized

positions but are rather described by a wave function that gives us probabilities

of particles being in a particular positions.

The theory of de Broglie-Bohm is constructed to resolve such a disconnected

picture by giving an individual particle a localized position x(t) and a velocity as-

sociated with it ẋ(t). The velocity of the particle (or as termed by Bell as particle

beable) is a function of a wave function; in other words, it is “guided” by wave

function. Within this picture, we reduced the role of a wave function from a com-

plete description of physical system to that of a field set up by the configuration

of the system. Thus, particles would simply follow the trajectories of such field

the same way that a moving charged particle would follow a magnetic field line.

Given that we view the wave function as a guiding field; we can explore other

possibilities such as quantum non-equilibrium. In this case, we would consider the

situation where ρ 6= |ψ|2 and how this condition could possibly be made into ob-
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servable power spectrum from a process of inflaton field fluctuation that has been

postulated to have occurred in the early universe during inflationary era. During

such an era, the usual assumptions of the standard quantum theory, such as the

requirement to have an observer to make a measurement, raised a serious question

regarding the correctness of our picture of reality through such anthropocentric

model. One needs to be clear of each statement of each action in previously ill

defined in quantum theory.

The process of decoherence gives a partially fulfilled answer as to why we do

not observe large physical objects in superpositions or interference between them.

Such process eliminates the need to make a boundary between a classical apparatus

and a quantum state of object are to be measured by treating all of them on equal

footing i.e. states are to be treated as quantum states. The process of environmen-

tally induced selection (einselection) which would cause decoherence to occur is,

at the time, the best answer towards why a macroscopic object appears classical.

However, the process only reduced the possible outcome of a measurement to a

set of pointer states which are decohered, it still does not eliminate the special

status of measurement to cause a collapse of the wave function. This difficulty is

what makes the interpretation of de Broglie-Bohm theory more attractive, in which

we inferred no collapse since such a process is not needed within this interpretation.

There is no point in choosing a particular theory if it explains only to the same

level as its predecessor. However, de Broglie-Bohm theory has some features which

are not explicitly explained in standard quantum theory, which is the non-local

feature of multi-particle theory. While the correlation occurs in quantum theory it
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is not explicitly non-local. Other attempts with the theory have been to formulate

a relativistic field theory, one would need to find the variable that is an ontology

of the theory. For bosonic field theory, the obvious choice is field configuration

which leads to considerable success in formulating the theory. For fermionic field

theory, choosing the right ontology has been more difficult with limited success.

Since it is the assumption of the theory that we have continuity in trajectories

of particle, it is a natural question to ask whether such trajectories would also

be the same within appropriate classical limit, we will explore a one-dimensional

model of Guth-Pi, of which shows that, indeed, the same trajectory is found be-

tween that prediction of pilot wave and the implied classical approximation from

of standard quantum theory.

Lastly, I have attempted to include the point of view from various interpre-

tations on the topic found in previous literature. However not all of them could

have been included within. It is not because they are not important but because

there have been fewer developments into applications of those interpretations into

testable models. My hope is that the reader will gain a wider perspective into the

field of interface between foundations of quantum theory and classical physics.
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2 de Broglie-Bohm pilot wave theory

“We prize a theory more highly if, from the logical standpoint, it is not the result

of an arbitrary choice among theories which, among themselves, are of equal value

and analogously constructed.” - Albert Einstein.

The pilot wave mechanics, was first proposed by de Broglie [2] and revived

again by Bohm [3, 4]. As with quantum mechanics of Copenhagen interpretation,

the pilot wave theory in the non relativistic viewpoint describes a wave function

ψ(x1, ...,xk, t) that obeys Schrödinger’s equation

ıh̄
∂ψ(x1, ...,xk, t)

∂t
= (− h̄2

2m
∇2 + V (r))ψ(x1, ...,xk, t) (1)

where we have 3k dimensions of configuration space.

In this case, pilot wave theory retains the same solution as the standard quan-

tum mechanics when solving for ψ(x1, ...,xk, t), therefore, it has the same predic-

tion for non relativistic case. However, the main conceptual difference between

the pilot wave theory and the standard quantum mechanics is the interpreta-

tion of ψ(x1, ...,xk, t) within quantum mechanics. This is seen as a solution to

Schrödinger’s equation but with an ambiguous existence as Bohr’s complementary

interpretation as a wave function before a measurement and reduced to a localized

wave package or a particle after a measurement. From the pilot wave theory’s

standpoint, ψ(x1, ...,xk, t) is seen as an objective field. In order to obtain the

velocity of particles which belongs to this field, consider continuity equation for

fluid with density ρ and velocity v

∂ρ

∂t
+∇ · (ρv) = 0 (2)
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The quantity ρv is equal to the current density J. To obtain the guidance

equation, one only has to consider the analogue in quantum mechanics seriously,

where we instead consider J to be Noether’s current

J = i
∂ψ

∂x
ψ∗ − ∂ψ∗

∂x
ψ (3)

Now we simply equate ρ = |ψ|2, then we can write the velocity as

v =
J

|ψ|2
=

i

|ψ|2
(
∂ψ

∂x
ψ∗ − ∂ψ∗

∂x
ψ) (4)

There are two possible interpretations of this result. The first is to follow

Copenhagen interpretation, which means that such velocity does not exist and we

simply ignore the result. The second interpretation is to take the result seriously,

that the trajectories exist and particles are considered as real objects, independent

of measurement or collapse of wave function. The latter is where de Broglie-Bohm’s

interpretation stands.

Quantum mechanics is itself a statistical theory. An example of this would

be the Young’s double slit experiment, it is expected to predict the pattern on

the screen behind the slit as a probability equal to |ψ|2. In view of quantum

mechanics, only the statistics at large scale corresponding to |ψ|2 is predictable,

while on microscopic scale such as the trajectory for individual particle would be

principally impossible to predict, as it is ingrained that such trajectories do not

exist before a measurement. Since the trajectories do not exist, only the outcome

at the points of the measurement have physical meaning. In the point of view of

pilot wave theory, the wave function ψ(x1, ..., xk, t) guides the particles, in which

the statistical prediction resembles that of quantum mechanics |ψ|2 but owing to

classical statistical distribution in which the initial positions of particles inherit,

thus following different trajectories as given by the guidance equation.
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2.1 Quantum non-equilibrium and relaxation to equilibrium

The consequence of view point of pilot wave theory as outlined in previous section

follows that we can have a situation where ρ 6= |ψ|2, but this is not possible in

the context of quantum mechanics [7, 6]. The inequality between ρ and |ψ|2 is

called quantum non-equilibrium. If a system starts off at equilibrium ρ = |ψ|2,

then it will continue to be in the state of equilibrium. Moreover, the evolution of

the system from non-equlibrium into equlibrium is analogous to the evolution of a

closed system which always increases in its total entropy [8, 7]. We can measure

the difference between ρ and |ψ|2 by sub-quantum H-function

H =

∫
dx ρ ln(

ρ

|ψ|2
) (5)

In the process of relaxation, H will tends to approach zero. We must emphasize

the fact that it is not a priori requirement to have an equilibrium distribution in

de Broglie-Bohm theory, for example, in the early universe, the distribution did

not need to start off in equilibrium. However, it is expected that relaxation will

take place at time as the system undergoes virulent process, we also expect most

of the systems to be in an equilibrium state apart from those which have been

“frozen” in non-equilibrium [6].

2.2 Collapse of the wave function?

One of the areas with the greatest difficulties within the realms of quantum me-

chanics is the process known as the“collapse” of the wave function. Suppose we

have a wave function given by

|Ψ〉 =
n∑
i=1

ci|ψi〉 (6)
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Suppose we have a hermitian operator Â with eigenvalues λi

Â|ψi〉 = λi|ψi〉 (7)

According to the Born rule, if we were to make a measurement for hermitian

operator Â, then we would have the probability of obtaining eigenvalue λk as |ck|2,

thus, effectively collapsing the wave function Ψ −→ ψk. Various conceptual dif-

ficulties made this scheme more difficult to accept as a fundamental theory. It

is notable that the requirement to have a segregation between the measuring ap-

paratus and the object to be measured is rather artificial. While the measuring

apparatus is considered as an external classical system, the object is considered as

a wave function.

The scheme of “collapse postulate” was proposed by Von Neumann [14] where

we assign the basis vectors of “pointers” |ai〉 in addition to the initial superposition,

such that the pointer|ak〉 corresponds to the outcome of measurement in the state

|ψk〉 . The wave function may be written as

|Ψ〉 =
n∑
i=1

ci|ψi〉|ai〉 (8)

It can be seen that von Neumann’s collapse model does not resolve the con-

ceptual problem of measurement, but is merely a statement of a more consistent

system which includes the measurement pointer. The model still asserts that the

outcome of a measurement is intrinsically indeterministic and there is no clarifica-

tion of what constitutes a measurement process.

An attempt to resolve the measurement problem within the context outlined

above is given by Everett [15], we introduce the experience of observers to be part
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of the superposition of wave function. To illustrate this, we shall follow discussion

in Bohm and Hiley [5]. Suppose we have a wave function of spin ‘up’ | ↑〉 and

‘down’ | ↓〉

|Ψ〉 = α| ↑〉+ β| ↓〉 (9)

Following von Neumann, we also have ‘pointers’ for the apparatus, which are the

wave package corresponding to the ‘up’ and ‘down’ results of spin measurements.

|Ψ〉 = α| ↑〉|aα〉+ β| ↓〉| aβ〉 (10)

Everett introduces an observer having two separate memories of measurement,

|O(α)〉 and |O(β)〉 such that we can express the whole wave function as

|Ψ〉 = α|O(↑)〉| ↑〉|aα〉+ β|O(↓)〉| ↓〉| aβ〉 (11)

The interpretation is that, there exists an independent universal wave function

|Ψ〉 as given above, which includes the two separate memories of observer O(↑) and

O(↓). There exists two possible outcome of measurement | ↑〉 and | ↓〉 in which

if the observer finds the outcome | ↑〉 he would ‘branch out’ into the the state

|O(↑)〉| ↑〉|aα〉 , vice versa if he finds the outcome | ↓〉 he would be in the state

|O(↓)〉| ↓〉| aβ〉 with probability of being in the states |α|2 and |β|2 respectively.

Within the context of this interpretation, all possible outcomes occur, but the

observer can only observe one of the possible outcomes at a time. There is no

‘collapse’ of wave function as it is assumed that the universal wave function is the

complete description, independent of observer’s experience. Each of the observer’s

experience would represent a different world complementary to the other one.

Within the context of de Broglie-Bohm theory, we must take the ‘collapse’ of

wave function differently. We shall illustrate with the approach of [9, 11].
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Within standard quantum theory, a simplified model of a measurement of a spin

component of spin 1/2 particle can be given by the interaction

H = g(t)σ
∂

ı∂x
(12)

Where g(t) is time dependent coupling and σ is the Puali matrix for chosen com-

ponent. The initial state of wave function

ψm(0) = φ(r)am (13)

Where φ(x) is a narrow wave package centered at r=0 and spin index is given by

m = 1,2. Solving Schroedinger’s equation we find.

ψm(t) = φ(x− (−1)mh)am|h(t) =

∫ t

c

dt‘g(t‘) (14)

As t → ∞ the components of the wave package ψ(x − (−1)mh) will separate in

space for two spin components m =1,2 .Measurement of spin will yield the value

+h or −h with probability of obtaining outcome m as |am|2.

In the point of view of de Broglie-Bohm theory, we can determine the trajectory

from (4) , with ρ(x, t) = ψ∗(x, t)ψ(x, t) and j(x, t) = ψ∗(x, t)gσψ(x, t).

We find that

dx

dt
= g

∑
m |am|2|φ(x− (−1)mh)|2(−1)m∑

m |am|2|φ(x− (−1)mh)|2
= ±g (15)

We easily retrain the same result x = ±h. It is noteworthy to make a comment

on the result obtained above using de Broglie-Bohm theory; firstly that the only

process of measurement we have is a position measurement x, secondly and im-

portantly, there is no “wave package reduction” or “collapse of wave function” but

instead we obtained an effective collapse when there is no overlap between the two

wave packages at time t0 such that.

ψ1(x, t0)ψ2(x, t0) = 0 (16)
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When the condition (16) is satisfied, the trajectories can be considered indepen-

dent of one another and we have an effective collapse.

Although the notion of a ‘collapse’ in quantum mechanics and ‘effective collapse’

could explain very well with simple experiments such as the double slit or spin

measurement, in order to explain the macroscopic world proposals base on deco-

herence scheme have been employed, which we shall explain in section 3 of the

paper

2.3 Non-locality

In the celebrated paper by Einstein, Podolsky and Rosen [1] the authors raised

an objection to quantum mechanics in what is now known as EPR Paradox, that

the wave function, as assumed by standard quantum mechanics to be ‘complete’

description of physical system, is in fact incomplete by their definition of com-

pleteness as

(1)“every element of physical reality must have counter part in physical theory”

(2)“If, without in any way disturbing a system, we can predict with certainty (i.e.,

with probability equal to unity) the value of a physical quantity, then there exists

an element of physical reality corresponding to this physical quantity”. Within the

original EPR argument, the objection raised against the completeness of wave the

function is as follows.

Suppose we have two systems I,II which are allowed to interact from time t=0

to t=T such that the wave function at time t > T is Ψ. Let A be a physical

quantity corresponding to system I, such that a1, a2, ... are the eigenvalues of A,

the corresponding eigenfunction is u(x1)and of system II as φ(x2) we may express
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the wave function of system I+II as

Ψ =
∞∑
n

un(x1)φn(x2) (17)

Suppose a measurement is made and eigenvalue ak is obtained, then system of I

and II has its wave packet into uk(x1)φk(x2). Furthermore, if we were to measure

instead a physical property B of system I with eigenvalues b1, b2, .... and eigenfunc-

tion v(x1) the wave function of system I+II must now be written as

Ψ =
∞∑
n

vn(x1)ψn(x2) (18)

If the result obtained from this measurement is br then the wave packet has been

reduced to vr(x1)ψr(x2). The objection to having wave function as a complete de-

scription of reality is that one can, by arbitrary choice of measurement of property

A or B on system I assign either φk or ψr on system II even though both systems

are no longer locally interacting. Furthermore, the measurement on I results in

immediate collapse of II into the corresponding reduced wave packet.

In the framework of de Broglie-Bohm theory, we fundamentally concur with the

objection that the wave function Ψ is not the complete description of the system,

as we also have trajectories of particles x(t) assigned with the wave function which

is continuous in time as in (4). Bohm [4] suggested that for n-body treatment

within de Broglie-Bohm theory we have 3n dimension trajectories, such that each

i particle has velocity defined by

dxi

dt
= ∇i

S(x1,x2, ...,xn, t)

m
(19)

and the wave function of the system is entangled ψ(x1, x2, ..., xn, t), any a mea-

surement of particle xi will bring instantaneous ‘uncontrollable disturbance’ to the

wave function. Although the disturbance is expected to instantaneous, no useful
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information sent using this method in quantum equilibrium ρ = |ψ|2 vice versa in

non equilibrium real instantaneous communication may be established at statisti-

cal level [19, 20]

2.4 Pilot wave model for quantum field theory

The construction of pilot wave models, is base on defining the ‘beables’ of the

theory. What we mean by a beable of the theory is an object, such as an electron

with a localized position, that is assumed to exist independent of observation. In

the case of non relativistic pilot wave mechanics, we defined the beable of the

theory to be the trajectories of particles x1,x2, ...,xn. The usual choice of beable

for the construction of pilot wave quantum field theory is the field configuration.

There are some subtle reasons behind such choice, notably for bosonic field the-

ory in which it is not possible to make the theory Lorentz invariant if we are to

choose position of particles instead of field configuration to be the beable of the

theory, although the choice of field configuration is also not Lorentz invariant, it is

expected to behave indifferently to Lorentz invariant quantum field theory under

the quantum equilibrium condition.The conventional choice of representation is of

functional Schrödinger representation. We shall give only a summary of the impor-

tant results for the construction of bosonic field theory here and a brief overview

with problems of construction a fermionic field theory. Please see Struyve [11, 13]

for more detailed overview.

Canonical quantization

We may represent a field that is dependent upon continuous coordinate variable
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x by φ(x), where the field ψ(x) is considered to be the beable of the system. The

field velocity may be defined as

∂φ(t0,x)

∂t
= φ̇(t,x) (20)

And the field momentum may be defined as

Πφ(x) =
δL

δφ̇(x)
(21)

Where L is the Lagrangian of the system. The Hamiltonian of the system can be

written as,

H =
1

2

∑
r,s

∫
d3xd3yΠφ,r(x)hφrs(x,y)Πφs(y) + V (φ) (22)

where hφrs(x,y) is the Hamiltonian density. We have the corresponding canonical

relation,

[ψ̂r(x), Π̂(y)] = iδrsδ(x− y) (23)

We define the field operators as ψ̂(x) → ψrx, Π̂ψr(x) → −i δ
δψr(x)

, where these

operators act on wave functional Φ(ψ) , which has inner product

〈Φ1|Φ2〉 =

∫
(ΠrDφr)Φ

∗
1(ψ)Φ2(ψ) (24)

Time dependent wave functional is defined as

〈φ|Φ(t)〉 = Ψ(φ, t) (25)

which satisfies the functional Schrödinger’s equation,

i
∂

∂t
Ψ(φ, t) = HΨ(φ, t) (26)

Using Hamiltonian defined in (22) we have

i
∂

∂t
Ψ(φ, t) = (

1

2

∑
r,s

∫
d3xd3yΠφ,r(x)hφrs(x,y)Πφs(y) + V (φ))Ψ(φ, t) (27)
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The beable of this theory is chosen to be the field φ(x), thus just like in non-

relativistic Bohmian mechanics that has particle positions x(t) as the beable with

a velocity ẋ(t) as defined in (4), the field has a field velocity as

φ̇(x) =
∑
r

∫
d3yhφrs(x,y)

δS

δφr(y)
(28)

with Φ = ΦeiS

Fermionic field theory

Further attempts have been made on constructing a fermionic field theory, notably

by Holland and Valentini, differing on the choice of beables. Holland chose what

he defined to be angular variables in momentum space αk = (αk, βk, γk) with the

wave functional as Ψ(α, t). Valentini’s approach is to define Grassman fields as

the beables of theory u†, u guided by the wave functional Ψ(u†, u, t). There are

some difficulties relating to formulating a fermionic field theory within the theme

of pilot wave, please see [13] for more detailed discussion of the problems.
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3 Quantum to classical transition

Quantum theory is an atomistic theory, initially made to explain systems on atomic

scale, such as electrons orbiting an atom or molecular structures. For all practical

purposes of experiments within an atomic physics lab, the theory we have could

explain the phenomenon which we construct an experiment to observe on those

microscopic scale. Within those constructions, an idea to separate a quantum sys-

tem which is the object of experiment such as the spin of electrons and classical

system which includes the experimenter, the air in the lab and the whole macro-

scopic world.

Einstein was often quoted [16] for asking “Is there moon there when nobody

looks?”, the question may sound absurd but during the early days of quantum the-

ory made perfect sense, displaying the absurdity in which postulates of quantum

mechanics requires the world to be. If one were to take the Copenhagen interpre-

tation seriously, the moon (at least the dark side of it) would be a wave function

ΨM until an astronomer decides to look at it, not only that but distance quasars

and unexplored galaxies without ‘intelligible life’ would also be some form of wave

function.

Such question could have been avoided by a professional physicist, until one

starts to consider a more absurd postulate; that the whole universe is a wave func-

tion [17, 18]. The question that can no longer be avoided is how such a system

which behaves quantum mechanically could have spontaneous transition into clas-

sical system.
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3.1 Decoherence approach

The analysis of quantum system in the framework of Copenhagen interpretation

is usually as follows; there is an object to be measured which is described using

quantum mechanics and the apparatus - this is a classical system use for measure-

ment of the object. The ‘classical apparatus’ is a macroscopic object, and would

not obey the law of quantum mechanics such as superposition of states or evolving

according to Schrödinger’s equation. But it is difficult to define line between a

macroscopic ‘classical system’ and a macroscopic quantum system when system of

‘macroscopic’ number of electrons have been shown to behave quantum mechani-

cally [29, 28]. Zurek [?, ?, 26] proposed a scheme of decoherence , which explains

how quantum system transforms into a classical system via interaction with the

environment. We shall follow the approach as extensively reviewed in Zurek [24]

and Schlosshauer [31].

Let us introduce a quantum which we are interested in making a measurement,

we shall call this system S , which is in a superposition of states |φi〉; i = 1, ..., n

such that |Ψ〉 =
∑n

i |φi〉, we define a pointer state to be a particular state |φk〉

which is singled out by the environment. An einselection is decoherence imposed

selection of the preferred set of pointer states that remain stable in the presence

of the environment. The novelty of decoherence is egalitarian treatment of the

components of the system; measured system S, apparatus A and environment E

,are treated as quantum states. To demonstrate the scheme, let us introduce one

bit system S with basis | ↑〉, | ↓〉 and apparatus with basis |A0〉, |A1〉 such that the

basis of system S act on apparatus as

| ↑〉|A0〉 = | ↑〉|A1〉, | ↑〉|A1〉 = | ↑〉|A1〉 (29)
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and

| ↓〉|A1〉 = | ↓〉|A0〉, | ↓〉|A0〉 = | ↓〉|A0〉 (30)

where 〈A0|A1〉 = 0 If the system is initially a pure state

|Ψ〉 = α| ↓〉+ β| ↑〉 (31)

such that α2 + β2 = 1, a premeasurement is letting the system interact with the

apparatus

|Ψ〉|A0〉 = (α| ↓〉+ β| ↑〉)|A0〉 = α| ↓〉|A0〉+ β| ↑〉|A1〉 (32)

Now if we introduce the environment E into the system with basis |e0〉, |e1〉 initially

in state |e0〉, the environment will ‘perform a premeasurement’ on the system

(α| ↓〉|A0〉+ β| ↑〉|A1〉)|e0〉 = α| ↓〉|A0〉|e0〉+ β| ↑〉|A1〉|e1〉 (33)

After the interaction of the measurement, the density matrix is now reduced to

only the diagonal terms

ρE = Tre(|Ψ〉〈Ψ|) = |α|2| ↓〉〈↓ |A0〉〈A0|+ |β|2| ↑〉〈↑ |A1〉〈A1| (34)

as long as we have the orthogonality condition on the environment basis

〈e0|e1〉 = 0 (35)

When we have a condition that the density matrix is reduced to a diagonal

term (“Schmidt state”) only, such as in (34), the claim by Zurek implies that we

have reduced a quantum system into a classical system; a result of measurement

would not yield any superposition of states. Although the scheme of decoherence
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demonstrated within simplified system indicates how suppression of interference

could occur as long as the condition (35) is satisfied. Further justification of how

to segregate the systems of S,A,E would be useful.

De-correlation time

The central idea behind the decoherence approach is for the density matrix ρ

to be reduced to only diagonal terms, the example we shown earlier for one bit

system is rather oversimplified. Other cases have been considered , such as where

the environment is a massless scalar field by Unruh and Zurek[35] or collection of

harmonic oscillators model of Caldiera-Leggett [30]. Decoherence problem, viewed

this way can be solved by finding the master equation dρ
dt

= L̂ρ where the density

matrix ρ evolves in time.Thus, the process of decoherence is time-dependent and

will give rise to a de-correlation timescale, in which the off-diagonal terms of density

matrix are essentially reduced and the system of interest becomes ‘classical’ . For

a one dimensional particle interacting with harmonic oscillators (or a field Φ ) this

is in the form of [23]

τD = τR(
h̄

δx
√

2mkBT
)2 (36)

where δx is the separation of wave packet, kB is Boltzmann’s constant, T is tem-

perature and τR is relaxation time which is proportional to 2m/η where η = ε2/2

came from interaction with the scalar field. In general, this will be dependent on

the form of the Hamiltonian and not necessary in the same form as (36), but an

order of magnitude consideration would give a large object with large mass, like

planets or the moon a very short de-correlation time, while a small object such

as an electron a much longer time, due to relative magnitude difference of masses

mmoon/melectron ∼ 1053.
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3.2 decoherence in de Broglie-Bohm

The context in which decoherence has been applied to as a solution to ‘sponta-

neous’ emergence of classicality, has been under the framework of Copenhagen

interpretation and moreover to substantiate the claim of Many Worlds Interpreta-

tion (MWI). One still fundamentally has not altered the special role of observer,

but rather give a result that is consistent with experience of observers who never

see macroscopic objects as a quantum superposition by suppressing the terms that

allow interference. However, there still is a ‘quantum to classical‘ boundary, such

as that observers are treated as ‘classical system’ with special ability to record

information when making a ‘measurement’ thus still collapsing (see chapter 2) the

wave function.

Within de Broglie-Bohm’s framework of ontological theory, there is a mixture

of mutual agreement and disparity with the framework of decoherence. The fun-

damental hypothesis that de Broglie-Bohm holds is that particle beables do have

continuous trajectory x(t), guided within a wave function or a wave packet like

particles of dust sustaining in droplets of water. Since the hypothesis is that the

only intrinsic unpredictability of the theory is only at the initial moment when the

particle beable goes into one of the wavepacket by classically random process, if

we were to view the process of decoherence, the view would be incompatible with

MWI. However, for practical purposes, the same approach involving ‘interaction’

with the environment has been employed to resolve the issue.

Bohm and Hiley [5] proposed a scheme base on macroscopic object by colli-

sion with stream of particles and the ‘shadow’ position where the particles have
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been blocked. The wave function of the whole system has been modified, such

that probability P of having effective collapse as in 16 is enhanced with increasing

number n particles hitting it P ∼ en. Appleby [27] has further applied the pilot

wave model to the Caldeira-Leggett model of environmentally induced ‘decoher-

ence’. Appleby has shown that there are two requirements to consider the system

as classical, to have approximately diagonal density matrix after an elapsed time

and to need Bohmian velocity to lie within classical range. The criteria being

used, is often employed in the analysis of quantum to classical transition, is the

requirement for the Wigner function to be strictly non-negative.

It is worth commenting on the validity of Wigner function(see appendix A.)

as a test for classicality here. While many authors (see Zurek) use the criteria

that whenever the function is positive, one can consider the subjected system as

classical, its use is unwarranted apart from the fact that when the function is

positive, in some case it resembles the classical Gaussian probability distribution

in phase space [21]. Further on, it has been shown that WKB Wigner function

does not reproduce a classical limit and decoherence is necessary [32, 33]
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4 Applications in Cosmology

The application of quantum theory in cosmology is a non-trivial matter, when one

consider an object such as the entire universe, then issues that were plaguing the

foundations of quantum mechanics could not be as easily brushed aside without

having a serious conceptual inconsistency. While it is a debatable topic about the

ontology of electron before a ‘measurement’, one find a much greater difficulty in

requiring state of the universe to be ‘measured’ by an ‘observer’ or having deco-

herence by ‘environment’. Apart from the pressing conceptual issues which are

acknowledged in various works, quantum theory has been very well developed in

terms of vacuum fluctuations of the inflaton field, which led to observable predic-

tions on the CMB spectrum. We will highlight the issues here and review where

pilot wave theory has been applied,our attempt to solve a toy model of one dimen-

sional upside-down harmonic oscillator and the discussion of future applications.

4.1 Overview of Inflation

The first inflationary model was proposed by Starobinsky [38] with the inflation

driven by quantum corrections to vacuum Einstein’s equations. A simpler model

was developed by Guth’s “old inflation” [37], which solved the three classic cos-

mological puzzles of flatness, horizons and monopoles problems. We shall refer

to Weinberg’s “Cosmology” [39] for the detailed discussions of the problems. The

model suffered from vacuum phase transition problem, which led to the introduc-

tion of the “new inflation” model by Linde [40], Albrecht and Steinhardt [41]. A

“chaotic inflation” model was proposed by Linde [42] to resolve issues regarding

the requirement for initial thermal equilibrium in early universe.
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Regardless of the details of aforementioned inflationary models, all of them,

by construction, satisfies ‘slow-roll’ condition. We assume that an inflaton scalar

field φ exists during an early time - on an approximately flat plateau of potential

V (φ). The scenario here is φ starts to slowly roll down this potential V (φ) towards

the minimum value. The viability of this depends on V (φ) satisfying the flatness

conditions [43]

ε(φ) << 1, |η(φ)| << 1 (37)

where the parameters are defined by

ε(φ) =
M2

PL

2
(
V ′

V
)2, η(φ) = M2

PL

V ′′

V
(38)

and MPL is defined to be Planck mass, V ′ = dV
dφ

. Inflation can only be sustained

if the conditions above are satisfied, it is assumed that when ε(φ) ∼ 1, then the

inflation ends.

4.2 Guth-Pi “upside-down” harmonic oscillator

The key feature of inflationary model, as we identified in previous section, is to

have a “slow-rollover” phase transition. Motivated by this problem, Guth and Pi

has constucted a ‘toy model’ that emulates the slow-rollover process [36].

The model is characterized by having the potential

V (x) =
1

2
kx2, k > 0 (39)

With the initial condition that at t=0 the wave function is centered at x=0,

which the Guth and Pi claimed that for ”simplicity” the wave function is chosen

to be “Gaussian”. The equation of motion in one dimension is then governed by

Schrödinger’s equation

ih̄
∂ψ(x, t)

∂t
= − h̄2

2m

∂2ψ(x, t)

∂x2
− 1

2
kx2ψ(x, t) (40)
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The solution is

ψ(x, t) = A(t)e−B(t)x2 (41)

with parameters

a2 =
h̄√
mk

, w2 =
k

m
, b =

a

sin(2φ)1/2
(42)

where φ is an additional parameter that gives distribution of x. Guth and Pi

asserted that a describes a length scale comparing to Bohr’s radius. Further on

with parameterization of A(t) and B(t) in terms of above variables, they found

that for late time t→∞, the wave function becomes

ψ(x, t) ∼ (2/π)1/4b−1/2exp[−1

2
(wt+ iφ)]exp[−e−2wtx

2

b2
+
ix2

2a2
] (43)

Guth and Pi then computed the position-momentum commutator [x, p] to be neg-

ligible in region where x2 >> a2. Further on, they asserted that the wave function

‘must not be described by a classical trajectory, but instead by a classical proba-

bility distribution’ which is

f(x, p, t) = |ψ(x, t)|2δ(p−
√
mkx) (44)

whereas two additional criteria for this distribution function f(x, p, t) are imposed

upon

a) f(x,p,t) must satisfy classical equation of motion

∂f

∂t
+ ẋ

∂f

∂x
+ ṗ

∂f

∂p
= 0 (45)

b) Any expectation value from ψ is equal to f(x, p, t) in the limit given.

The result shows that ‘classical trajectories’ which described by f(x, p, t) can be

parametrized by

x(t) = Cewt (46)
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After solving for C, which thehy assumed inherited Gaussian probability distribu-

tion of x, the trajectory can be written as

x(t) = ±bew(t−τ) (47)

where τ is the time delay in the classical solution which can be written as C =

±be−wτ .

Pilot wave solution

In pilot wave theory, one can readily use the late time solution (43) to calculate

the velocity with

dx

dt
=

i

2|ψ|2
(ψ
∂ψ∗

∂x
− ψ∗∂ψ

∂x
) (48)

with no additional assumption, we obtain

dx

dt
=

x

a2
(49)

which can be integrated to obtain

x(t) = Cexp[
t

a2
] (50)

where C is constant of integration and using relations in (42) we can rewrite this

as

x(t) = Cexp[
twm

h̄
] (51)

Within the framework of pilot wave theory, trajectory of the particle always

exists and is a characteristic of the theory. The theory also asserts that initial

distribution is classical, hence a Gaussian distribution as Guth and Pi has as-

sumed. It could also give the same characteristic result to (47),(46), as m,h are

taken as constants and can be absorbed into a rescaling of t. The trajectories

then automatically inherit the classicality condition imposed a) and b). The inter-

pretation we must have for pilot wave theory solution is ,however, different from
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that of standard quantum theory which Guth and Pi assumed. We take that the

particle beable roll down from resting with continuous trajectory at all time and

coincide with classical trajectory as described by Guth and Pi in the late time limit.

It is an interesting question to ask whether a ‘trajectory’ given in the classical

limit as defined by quantum theory will always coincide with trajectories predicted

by de Broglie-Bohm theory. It is more economical in theoretical inventory to im-

ply one continuous trajectory than to assume that such trajectory does not exist

then show that it is statistically equivalent to having continuous existence. So far

within the same approximations from Schrödinger’s equations we have found no

conflicting results. Future work should identify a class of solutions ψ and approxi-

mations which we can always take such trajectories to be classical. One definition

of classical limit is the requirement to have commuting operators (equivalent to

Dirac’s original definition of limits of h̄→ 0 ). One is keen to simply test ψ with

Wigner function for positive definite condition. However we must be careful as

Wigner function is only a ‘heuristic’ classical test. When one obtains a ‘classical’

ψ at time t = t′ in which we obtain an agreement between de Broglie-Bohm’s

trajectory and a classical approximation, future work should be put into analyzing

the behavior of trajectory predicted by de Broglie-Bohm from t=0 to t=t’ whether

the transition is smooth or of virulent nature.

4.3 Inflaton field fluctuation

One of the most remarkable features of the quantum field theory is that vac-

uum expectation value of a field in flat space is non-zero. However the standard

treatment is to simply ignore the subject as “it has absolutely no meaning until
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someone measures it” [43]. One of the key ingredients of inflation is the inflaton

field φ which is treated as a quantum field that undergoes fluctuations φ+δφ. The

model in which this process has been developed in detail by Muhkanov et al ([44]

see also chapter 8 of [45]) in which the vacuum fluctuation of inflaton field occurs

during inflation. For selective modes of the field ,microscopic quantum fluctuations

are amplified to galactic scale. We shall follow [43, 46, 47] accounts in literature.

Starting with a scalar field coupled to gravity, with Einstein-Hilbert action

S =

∫
d4x
√
−g(− 1

16πG
R +

1

2
∂uφ∂

uφ− V (φ) (52)

The background space-time is assumed to be de Sitter

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) (53)

During accelerated expansion, the equation of motion of φ is given by

φ̈+ 3Hφ̇− ∇
2

a2
φ+

dV

dφ
= 0 (54)

assuming a free field V (φ) = 1/2m2φ2 .

We are interested in an expansion of φ in different modes of momentum

φ(k, t) =
∑
p

φk(t)eik·r (55)

with solution as superposition of plane waves

φ =
1

L3/2

∑
k

√
1

2Ek
(ake

i(k·r−Ept) + a†ke
−i(k·r−Ekt)) (56)

where L is the size of the box that we expand the modes into to avoid infrared

wavelength problem. We can re-write the Fourier component as

φ(k) = wk(t)ak + w∗k(t)a
†
−k (57)
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if we consider the fluctuations to for different k modes, it can also be expanded as

δφ(k) = wk(t)ak + w∗k(t)a
†
−k (58)

Now we must solve (54) for (58), δφk can be treated as fields with different k

modes. Within Hubble horizon, we can neglect the mass term, thus equation of

motion (54) becomes

δ̈φ+ 3Hφ̇+
k2

a2
δφ = 0 (59)

Components wk from must also satisfy the equation of motion

ẅk + 3Hẇk +
k2

a2
wk = 0 (60)

Which has the solution yielding

wk =
1

(2k3L3)1/2
(iH + k/a)exp[

ik

aH
] (61)

The vacuum expectation value can be computed by using wk solution. Bunch-

Davies vacuum is defined by ak|0〉 = 0. The commutation relations between

creation operator a† and annihilation operator ak are

[ak, a
†
p] = δkp, [ak, a

†
p] = [ak, a

†
p] = 0 (62)

With the commutation relations obtained, it is straightforward to compute vacuum

expectation value using (58)

〈0||δφk|2|0〉 = |wk|2 (63)

In which we can define spectrum as

Pδφ =
L3k3

(
√

2π)2
k3〈|δφ|2〉 (64)
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using (63,61), we then have the spectrum as

Pδφ =
H2

(2π)2
+

k2

(2aπ)2
(65)

We assume that modes start as k >> a(t)H in the ground state, as a(t) grows

exponentially the wavelength will reach Hubble radius k = aH where it exits the

horizon, thus we can neglect the second term and we have standard result

Pδφ = (
H

2π
)2 (66)

Note that in literature, conformal time is often used and a Fourier integral is

preferred over summation of k modes. Nevertheless the result obtained in (66) is

standard.

Possibility of Non-equilibrium Vacuum

The result for the power spectrum obtained earlier is obtained by standard quan-

tum theory. Valentini [6] suggested that the vacuum wave function with a Gaussian

amplitude

ψkr =
1√

2π42
e−q

2
kr/24

2

(67)

In standard quantum theory qkr is treated as a random variable. But with de

Broglie-Bohm theory, it can be treated as a ‘beable’ of the theory with de Broglie-

Bohm velocity field. For equilibrium distribution ρ = |ψ|2, the result will be of

standard quantum theory. However for non equilibrium distribution ρ 6= |ψ|2, we

will obtain a different power spectrum, characterized by ‘non-equilibrium factor’

ξ(k) such that

P dBB
φ =

H2

4π2
ξ(k) (68)

the factor ξ(k) is at this moment introduced to be an arbitrary function to be

later constrained. It can lead to possibility of breaking Herrison-Zeldovich scale
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invariance.

There are more subtle issues regarding the analysis of this scheme concerning

the quantum-to-classical transition. Although the process yields an expectation

value of vacuum 〈|δk|2〉 of k modes, they are still considered to be superposition

states. According to quantum theory, there is no particular value until a mea-

surement is made. This is a severe position because such expectation value, as we

have shown, have observable effect in large scale density perturbation. Requiring

a measurement to be made by modern day cosmologists would have intriguing

implications.

The attempt to resolve this issue has largely been from the decoherence scheme

[48, 49, 50, 51, 52], with different choices of the ‘environment’ to cause decoherence

to distinguish the fields into pointer basis. One choice of ‘environment’ is using

entanglement between the sub-Hubble and super-Hubble modes of oscillation [49]

between the short wave length modes and the long wave length modes. Burgess

et al suggested that decoherence would be possible using as weak interaction as

gravity. However the identification of actual source is still a pending issue. It is

arguable that decoherence is fool proof because either the entanglement between

sub-Hubble and super-Hubble modes or an unidentified ‘environment’ should be

effective. To test for classicality, most of the work examined the Wigner function.

The assumption is that, a postive-definite outcome of Wigner function implies a

Gaussian distribution, hence classical. Other claim of classicality [48] is to ignore

the non-commutativity between the defined operators because of the ”growing”

and ”decaying” modes on super-Hubble scale. A less popular test for classicality

is the test for the entanglement [52]. The work claims that entanglement that does
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not occur in classical mechanics, hence would be useful to another test. Nambu

found by using lattice field model, when expanding a patch to super-Hubble scale,

disentanglement occurs and non-commutativity of the operators becomes negligi-

ble.

However, unsatisfied with the validity of standard procedure using the decoher-

ence scheme [46, 55], Sudarsky el al proposed an alternative ”collapse scheme” [56]

base on Penrose’s idea of gravitationally induced collapse. The exact mechanism

is assumed to depend on the nature of yet undiscovered quantum gravity theory.

However they could give also give a different power spectrum to (66) , but the

result depends on what they introduced as collapse parameters.

In the framework of de Broglie-Bohm theory, we rely on the same decoherence

procedure to cause an effective collapse, with a possibility of having modified power

spectrum, if non-equilibrium was a precondition as in (68). It is still a questionable

assumption to straightforwardly use operators derived for quantum theory, and a

different formalism could invalidate the other assumptions followed.
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5 Conclusion and further remarks

We have reviewed the recent development of de Broglie-Bohm theory here. The

fundamental theme of the applications of the theory that is different from quan-

tum theory of Copenhagen interpretation. It is the association of trajectories

to particles, which gives a more continuous picture of the world. However, the

true success of the theory still lies within non-relativistic regime with solutions to

Schrödinger’s equation. We have shown that trajectories from de Broglie-Bohm

theory has remarkably followed that of ‘classical approximation’ from standard

quantum theory. In particular we have shown to be the case with one-dimensional

harmonic oscillator toy model for slow-roll condition of Guth-Pi.

For applications into field theory, many studies has been done in bosonic the-

ory. However difficulty has been faced with fermionic theory, where the choice of

beables is not as simple. The problem of choosing a beable of the theory seems to

plague into applications where it is more subtle. It requires a more definite criteria

for what could be considered as fundamental beables of the theory. We have es-

pecially focused on the quantum-to-classical transition, which we have found that

both quantum theory and de Broglie-Bohm theory require decoherence process to

cause an apparent suppression of superposition. The positive-definite condition

of Wigner function has often been used as a criteria for a system to be classi-

cal, which is also claimed to resemble Gaussian statistics. Other criteria we have

found includes condition in which non-commutativity can be neglected. EPR type

entanglement is also another type of criteria. We lastly reviewed the process of

inflaton field fluctuations which we derived the power spectrum and shown how

non-equilibrium condition can possibly modify the result. The difficulty of pilot

wave approach, as we identified in last section. It is that one can not simply take

34



any wave function from quantum theory and assign trajectories to the beables. We

argued that quantum theory ignores the microscopic details while de Broglie-Bohm

theory is strictly describing microscopic configurations. The attempt wiithin quan-

tum cosmology to use the same procedure that was successful in non-relativistic

Schrödinger’s equation. scale factor a(t) and field configuration ψ(x)to obtain tra-

jectories of the beables of the system [53] . The result found is incompatible with

the experimental bound of power spectrum, thus disregarded.

Consequently, we are led to question why it seems that only true success has

been with non-relativistic Schrödinger’s equation. It is a questionable practice

whether choosing an arbitrary variable to be a beable of the system will ever lead

to correct physical law. Any of such variable, if deemed to be real, must be a

conserved physical quantity. One would notice that, that the correctness of the

guidance equation in non-relativistic system relies on Noether’s theorem. Noether’s

current is a fundamental , conserved quantity. It is of no surprise that we could

obtain the guidance equation (4). We consider it as a reasonable question to ask

whether it is a general principle that a conserved quantity of the wave function

such as Noether’s current can always be assigned a trajectory by assuming that

the quantity obeys continuity equation. If this is the case, then we have another

way of finding such quantity. We must find the conserved Noether’s current which

is obtained by the considering the symmetry of the system. We can subsequently

find the guidance equation for such quantity. If such principle is found to exist,

then there will be no need to look for new conserved quantity. We will only need

the correct form of continuity equation, Noether’s current and the associated wave

function in order to obtain the guidance equation.
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A Wigner Function

Wigner function W (x, p)is a function in phase space. For a system with wave

function ψ(x) we may obtain the Wigner function by doing transformation

W (x, p) =
1

2πh̄

∫ +∞

−∞
dueipu/h̄ψ∗(x+

u

2
)ψ(x− u

2
) (69)

Which also has useful properties∫
dxW (x, p) = |ψ̄(p)|2 (70)

∫
dpW (x, p) = |ψ(x)|2 (71)

where ¯ψ(p) is a Fourier transform of ψ(x). Because (69) is not strictly positive, it is

considered to be a quasi-probability distribution. A positive probability is required

for the function to describe a classical probability distribution, thus in literature

it is often the case that Wigner function with negative values are considered to be

in quantum state, this is however only a heuristic argument.
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