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Abstract

To explain current observations the early universe must have been
incredibly flat and homogeneous. Tiny density fluctuations must have
been present to seed large scale structure. Any viable model of the
universe has to explain these cosmological puzzles and be able to gen-
erate a nearly flat spectrum of density perturbations, as required by
microwave background data. Inflation is a period of accelerated ex-
pansion in the very early universe. Combined with the big bang model
it forms the consensus model of cosmology. The cyclic model, inspired
by M-theory, describes a universe undergoing an infinite sequence of
cycles that start with a big bang and end in a big crunch. Each cy-
cle includes a slowly contracting ”ekpyrotic” phase. Both inflation
and an ekpyrotic phase can resolve the cosmological problems and
lead to the required perturbation spectrum. In this paper inflationary
cosmology and the cyclic model are compared. Their dynamics are
described using scalar fields and their solutions to the cosmological
problems are presented. Strengths and weaknesses of the models are
compared; open issues and conceptual problems are identified. The
observational signatures are contrasted and confronted with experi-
ments. Future possibilities to distinguish between the models due to
differing predictions for non-gaussianity and gravitational waves are
discussed.
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1 Introduction

The standard model describing the evolution of the universe is the big bang
model. In this model the universe originated in an infinitely hot and dense
state and has been expanding and cooling ever since. The big bang theory is
extremely successful and can accurately describe the evolution of the universe
from the time of nucleosynthesis until today. However, the behaviour of
the early universe preceding nucleosynthesis is uncertain. In the standard
big bang model the universe was radiation-dominated from the beginning
until at some point matter domination took over. During these two stages
the expansion of the universe was decelerating. While this is a very good
description of the long-term evolution of the universe, it has recently been
discovered that the expansion of the universe is accelerating [1, 2]. The
acceleration is assumed to be due to some mysterious form of self-repulsive
energy, called dark energy. This discovery was not predicted and has so far
been difficult to accommodate by the big bang model.

By combining the standard big bang model with observations of our uni-
verse one can extrapolate back in time to find the approximate properties
of the very early universe. To lead to a universe like ours the early universe
must have been extremely homogeneous, isotropic and flat. Additionally, as
discovered by the WMAP [3] and COBE satellites [4, 5], tiny density fluc-
tuations with a nearly gaussian, close to scale-invariant spectrum must have
been present. The origin of these fluctuations is unknown. Therefore, to
be in accordance with observations the early universe must have been in a
very special state, which requires extreme fine-tuning of initial conditions.
Explaining these features is one of the main issues of big bang cosmology.
Any successful cosmological model must offer a convincing argument as to
why the early universe was so flat and homogeneous, as well as providing a
mechanism to generate the required spectrum of density perturbations.

The most widely accepted mechanism to solve these cosmological problems
is a brief period of rapid accelerated expansion in the very early universe,
occurring shortly after the big bang and preceding nucleosynthesis. This so-
called period of inflation can explain the properties of the observed universe.
It is the most popular theory describing the early universe and can easily
be incorporated into the big bang theory, leading to the current consensus
model of cosmology.

Inflation first became popular when its potential to solve the major cosmolog-
ical problems was realised by Guth in 1981 [6]. The original model describes



exponential expansion occurring in a false vacuum, a state that is completely
empty but that has a non-zero energy density. It includes a first-order phase
transition from a supercooled inflating false vacuum state to the true vacuum
in which the energy density is zero. Therefore, the exponential expansion is
stopped via quantum barrier penetration which results in bubbles of true
vacuum appearing. These bubbles can collide, leading to a hot universe.
Unfortunately, it was soon found that such a scenario does not include a
successful graceful exit into the Friedmann stage and would eventually lead
to a highly inhomogeneous universe [7, 8]. In 1982 a different version of in-
flation, called new inflation, was proposed by Linde [9, 10, 11], and Albrecht
and Steinhardt [12]. The main concept of this version is that exponential
expansion of the universe occurs while a scalar field is slowly rolling down its
potential towards the global minimum, away from an unstable initial state.
Therefore, in contrast to old inflation, the important part of inflation occurs
away from the unstable false vacuum. New inflation, however, also turned
out to not be a desirable scenario, since it suffers from a number of fine-
tuning problems. In 1983 it was replaced by chaotic inflation [13]. Chaotic
inflation also relies on the slow-roll of a scalar field down a potential. How-
ever, while both new and old inflation require that the universe is in a state
of thermal equilibrium before inflation begins, chaotic inflation includes no
such assumption. In fact, for chaotic inflation the initial conditions can be
almost completely arbitrary [13]. As long as a sufficiently flat potential is
present chaotic inflation can occur. It thus avoids the problems faced by the
other two scenarios and is now the most widely accepted model of inflation.

The inflationary scenario discussed in this paper is chaotic inflation. The
dynamics of this scenario can be modelled using a scalar field which is slowly
rolling down a positive, flat potential in a Friedmann-Robertson-Walker uni-
verse. Since the universe grows exponentially during inflation, the observable
universe originated from a very small region. Using this exponential expan-
sion of space inflation can explain the flatness and large-scale homogeneity
of the universe, as well as the absence of topological defects. Most impor-
tantly, during inflation quantum fluctuations of the scalar field are amplified
and stretched beyond the horizon, where they are frozen. The perturba-
tions re-enter the horizon during the standard big bang phase and seed the
formation of structure. Inflation can thus explain the origin of large-scale
structure as well as the observed anisotropy of the cosmic microwave back-
ground (CMB). The density perturbation spectrum predicted by inflation is
almost scale-invariant with a nearly gaussian distribution [14, 15, 16, 17, 18],
which is in accordance with recent observations [3, 19]. Inflation also predicts
a nearly scale-invariant spectrum of gravitational waves which has not yet



been observed.

Even though inflation is an incredibly successful theory that is in excellent
agreement with observations, it contains some unresolved conceptual prob-
lems and has not conclusively been tested, yet. This leads to the question
if inflation’s successes in solving the cosmological problems are truly unique.
The achievements of the consensus model should not blind us to the fact that
there might be an alternative cosmological model that can more accurately
account for the current state of the universe, while also solving the problems
of standard big bang cosmology. In this review we present a set of models
inspired by string and M-theory that might achieve this, the ekpyrotic and
cyclic models of the universe. While many other alternative models exist,
this scenario is commonly seen as the most convincing alternative to the con-
sensus model. To quote Andrei Linde, one of the main developers of chaotic
inflation: ”The ekpyrotic/cyclic scenario is the best alternative to inflation
that I am aware of” [20]. This is why we choose this model to contrast with
inflationary and big bang cosmology.

The ekpyrotic universe can solve the problems of standard big bang cos-
mology and generate a nearly scale-invariant spectrum of perturbations that
agrees with observations without requiring an era of accelerated expansion in
the early universe. Instead, it relies on a period of ultra-slow contraction, the
ekpyrotic phase, occurring before the big bang. During this phase the Hub-
ble horizon is rapidly decreasing, while quantum fluctuations remain nearly
constant in scale. Therefore, quantum fluctuations can leave the horizon
and re-enter it after the big bang, leading to the formation of structure in
the post-big bang universe. A period of ”ekpyrosis” is involved in a number
of different cosmological models. The first attempt to use a pre-big bang
ekpyrotic phase to explain the state of the universe today was made when
the ekpyrotic model of the universe was proposed by Khoury, Ovrut, Stein-
hardt and Turok in 2001 [21]. This model is embedded in heterotic M-theory
[22, 23, 24, 25, 26] and relies on a five-dimensional braneworld scenario in
which two boundary branes approach each other along the fifth dimension
due to an attractive potential. The big bang corresponds to a collision of
the two branes, one of which represents our universe. The model can be
described in the four-dimensional effective theory using a scalar field rolling
down a steep, negative potential. It was soon realised that via this model a
scale-invariant spectrum of curvature perturbations could not be produced
[27]. Instead, an entropic mechanism relying on the presence of two scalar
fields was introduced to generate the required spectrum [28].



An important extension of the ekpyrotic scenario is the cyclic model of the
universe which was introduced by Steinhardt and Turok in 2002 [29, 30]. In
this model the universe is going through an infinite sequence of contraction
and expansion. Consecutive cycles are connected by a big crunch/big bang
transition, corresponding to a collision of two boundary branes, as in the
ekpyrotic model. After each collision the branes separate, but eventually
start attracting each other again. Each cycle includes an ekpyrotic phase,
a hot big bang phase and a period of quintessence domination. Therefore,
the model incorporates the recently observed accelerated expansion. The
cyclic model that employs the entropic mechanism of density perturbation
generation is known as the phoenix universe [31]. In this scenario after
each bounce only a very small fragment of the universe re-emerges as a flat,
expanding phase. Its reproduction crucially depends on the presence of an
extended period of dark energy domination [31, 32]. Just like the ekpyrotic
model, the cyclic model can be described in four dimensions using a scalar
field evolving along its potential. The cyclic potential takes both positive
and negative values.

The main problem facing ekpyrotic and cyclic models is matching the con-
ditions achieved during ekpyrosis across the big crunch/big bang singularity.
At this singularity the higher dimensional framework becomes important
and a better understanding of string theoretical effects is required to accu-
rately describe the transition from contraction to expansion. Due to the lack
of a consistent theory of quantum gravity, models involving a non-singular
bounce became popular. The most important such scenario is the new ekpy-
rotic universe which was introduced in 2007 [33]. This scenario reverses from
contraction to expansion before the quantum gravity regime is reached. It
requires a violation of the null energy condition which is achieved by includ-
ing a ghost condensate phase. Unfortunately, some serious problems with the
new ekpyrotic model have recently been discovered [34, 35]. Therefore, this
paper will focus on the cyclic universe scenario, in which the bounce is sin-
gular and string theoretical effects are important [36]. For the model to have
predictive power we will assume that the bounce preserves the properties
of the universe generated during ekpyrosis. Using the entropic mechanism
the cyclic model can then generate the nearly scale-invariant spectrum of
density perturbations that is observed today. In contrast to inflation, the
non-gaussian contribution to this spectrum is quite large [37] and the pre-
dicted gravitational wave spectrum is strongly blue [38].

While the consensus model and the cyclic model are conceptually very differ-
ent, both models agree with current observational data [3]. It will be future



observations that decide which of the two models is correct. We are living
in a very exciting time for cosmology. For the first time in history observa-
tions can be used to probe the physics of the very early universe. Ever since
COBE discovered anisotropies in the cosmic microwave background in 1992
[4] models of the universe have been tested using precise measurements of
the cosmological perturbation spectra. Satellite experiments like WMAP and
the future Planck mission can probe the microwave background to unprece-
dented accuracy. Cosmology no longer is a purely theoretical field, but in
the last two decades became a precision science that uses experimental data
to test the existing theories. Within the next few years it will be possible
to detect signatures of non-gaussianity and maybe even gravitational waves
to a high enough accuracy to determine which one of the two cosmological
models presented in this paper, if any, is correct.

Given these exciting prospects, this is an excellent time to contrast the cyclic
and inflationary cosmologies, uncover their theoretical weak points and com-
pare their observationally testable predictions. The purpose of this paper is
to provide such a comparison. It is emphasised that we are not aiming to
give a detailed review of the two models. For such a review of inflation one
should see e.g. [39, 40]. An excellent review of the ekpyrotic/cyclic scenarios
is given in [41]. The main aim of this paper is to compare, not to review. To
experts in cosmology it will be obvious that not all aspects of the models are
presented in full detail and that the focus is on parts that are needed for an
accurate comparison. For example, this paper concentrates on the simple,
single-field model of inflation and almost completely ignores multi-field infla-
tionary scenarios. Also, as stated earlier, we will focus on the cyclic model of
the universe and only rarely refer to the original ekpyrotic model. Addition-
ally, after a brief discussion of the higher-dimensional embedding the model
will mostly be presented in terms of the four-dimensional effective theory,
relying on a scalar field evolving along its potential. This is appropriate for
a comparison of the cyclic model with the consensus model, since inflation is
described using the same ingredients.

This paper is organised as follows. In section 2 the cosmological problems
of the standard big bang model are presented. In section 3 the concept of
single-field inflation is introduced. It is explained how inflation solves the
cosmological problems, the spectra of scalar and tensor perturbations are
calculated and the non-gaussian corrections are discussed. The cyclic model
of the universe is described in section 4. The dynamics of the ekpyrotic phase
and its solutions to the problems of big bang cosmology are presented. The
discussion is extended to two fields and the generation of curvature pertur-



bations is analysed. Predictions for the degree of non-gaussianity and the
spectrum of gravitational waves are given. Section 5 focuses on the compari-
son of the two models. Their strengths and weaknesses are explained and the
most urgent open issues are identified. Their observationally testable predic-
tions for scalar and tensor perturbations as well as non-gaussian corrections
are contrasted. The main conclusions are presented in section 6.



2 The Cosmological Problems

Flatness problem

The present-day universe is very close to being flat. In a decelerating universe
this requires the universe to be even closer to flat at earlier times. This
turns out to be a very restrictive requirement as can be seen from a simple
calculation. The first Friedmann equation reads !

my L=, (1

where a(t) is the scale factor, H(t) = a(t)/a(t) is the Hubble parameter,
with dotted quantities implying a time derivative a(t) = da(t)/dt, p(t) is the
energy density and k is a constant, with £ = —1,0,1 for an open, flat and
closed universe respectively. G is Newton’s constant. This can be rewritten
using the cosmological parameter Q(t) = p(t)/p (t), with p the critical
energy density that would make the universe spatially flat
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The first Friedmann equation then becomes
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This implies that the cosmological parameter at some earlier time ¢; can be
calculated as

H2<t0)a2(t0) (4)
H2(t;)a*(t;)

where tg is the age of the universe today. It is known that today Q(ty) =
1.02 4 0.02 [42] 2. In a matter dominated universe the scale factor grows as
a o< t2/3. Assuming that the age of the universe today is to ~ 4.3 - 10'7s and
at recombination ¢, ~ 1.2 - 10'3s, then Q(¢,) — 1 < 107*. The cosmological
parameter at recombination was very close to unity and thus the universe was
very close to being flat. This trend continues as one considers earlier times. In
a radiation dominated universe the scale factor grows as a o t'/2. Assuming
the universe was radiation dominated from the Planck time ¢, ~ 10745

Q) — 1= (Qto) — 1)

In the following natural units & = ¢ = 1 are used
?In fact, recent data give the more precise value of Q(tg) = 1.002370-093¢ [3]. However,
to estimate the extent of the flatness problem the precision of the value given is sufficient.



until matter-radiation equality occurring at t., &~ 2.0 - 10'%s, then at the
Planck time Q(¢,) — 1 < 107%. This corresponds to initial conditions that
are extremely fine-tuned. While this result is by no means unphysical, initial
conditions leading to such an extremely flat universe seem to demand an
explanation.

To emphasize the extent of the problem one should note that

Qty) —1=" “”l;w_( t’; j’)“(tpl) <1079, (5)

Thus, if the initial energy density was higher or lower than p.. by only
107°p,,, the universe would either have recollapsed a long time ago or be-
come empty so early that life as we know it would not exist.

Homogeneity /Horizon problem

The universe we observe today is very homogeneous and isotropic. Since it
consists of many patches that were out of causal contact at earlier times it
is unclear why such a high degree of homogeneity is observed on the horizon
scale.

The comoving particle horizon is the maximum distance a photon could have
travelled since the beginning of the universe until today. Any point that is
outside this horizon today has never been in causal contact with the observ-
able universe. The particle horizon d,, is defined as

dt
a(t)’

where it was assumed that the initial singularity occurs at ¢ = 0 and the speed
of light ¢ was restored. This factor will be written explicitely throughout
this section, since it has to be included in the calculations in order to obtain
correct results. After inserting a o< t" into (6) it reads

dy(t) = c- aft) / (6)

dy(t) = —— (7)

One should note that this is proportional to the Hubble radius 1/H (¢)  t.
A radiation dominated universe is described by n = 1/2 which leads to
d,(t) = 2 - ct. To get a rough idea of the extent of the horizon problem we
can assume that the universe was radiation dominated throughout its entire



lifetime. Using the times given in the discussion of the flatness problem the
particle horizon at these times can be found. The particle horizon today is
then given by d,(ty) ~ 8.3 Gpc. The particle horizon at recombination is
roughly d,(t,) ~ 230 kpc. Therefore, the universe we see today was made up
of many causally disconnected regions at recombination. However, the CMB
is known to be very homogeneous and isotropic with temperature fluctuations
of at most O(10™*)T. Furthermore, the phase of the acoustic oscillations is
the same in all of the previously causally disconnected patches. There is no
causal physical process that could be responsible for this homogeneity.

The situation is aggravated when looking at the universe at the Planck time.
To obtain a rough estimate of the extent of the horizon problem one compares
the size of our observable universe at the Planck time with the size of a causal
region at that time, again assuming the universe is radiation dominated, so
that d,(t) = 2 ct. The size of our homogeneous domain at some earlier time
t; is proportional to the scale factor at that time:

dn(t) ~ 2 - ety ) (8)

Qo

where 2 - ¢ty ~ 8.3 Gpc is the present horizon scale and dj,(t;) is the size of
our homogeneous domain of the universe at time ¢;. One can compare this
to the particle horizon at time ¢;, given by d,(t;) ~ 2 - ct;. Taking a(t) oc t'/2
one finds that at the Planck time

) (8)" g o
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This means that the homogeneous, isotropic domain of the universe observed
today was made up of approximately (10%°)3 = 10% causally disconnected
regions at the Planck time. To produce such a homogeneous and isotropic
domain the matter distribution had to be extremely homogeneous in each
of these regions. While the discussion above has focussed on a radiation
dominated universe it is clear that a problem of such extent will still exist
in a universe where at some stage matter domination took over. No causal
physical process could have smoothed out inhomogeneities to create such
homogeneous patches.

Origin of large-scale structure

If a solution to the homogeneity problem is found it still needs to be explained
how galaxies, galaxy clusters and other large scale structures observed today
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could form from such a homogeneous universe. More specifically, the origin
of the primordial inhomogeneities that seed the density fluctuations that are
observed both in the large scale structure of the universe and in the CMB has
to be found. A theory explaining structure formation should also explain the
almost perfect scale invariance in the amplitudes of the CMB anisotropies
found by WMAP [3].

The problem of the origin of large-scale structure can be reformulated using
the Hubble radius 1/H. In a decelerating universe, such as the universe in
the big bang theory, this radius is always increasing. The Hubble radius is
an important scale, since only inside this radius causal physics can operate.
As it increases during the standard big bang scenario, more and more scales
become smaller than the Hubble radius and enter the horizon. Once they
crossed the horizon they stay inside it for all time. This leads to the question
of how these perturbations that continuously enter the horizon were created.

Monopole problem

Most Grand Unified Theories (GUTs) and other unification models predict
the existence of magnetic monopoles or other exotic heavy particles (graviti-
nos, Kaluza-Klein particles, etc.). Such superheavy particles could only have
been produced at very high temperatures, therefore they were formed almost
immediately after the big bang. None of these topological defects have so far
been detected. It has been found that the density of magnetic monopoles to-
day as predicted by the GUTs should be ny; ~ 107 —10""n,, [43, 44], where
n is the photon density. Therefore, the magnetic monopole density should
be roughly of the same order as the baryon density. However, searches for
magnetic monopoles in seawater have shown that ny; < 107%/gram, cor-
responding roughly to ny; < 1073%/nucleon [45]. Searches for magnetic
monopoles in the moon’s wake have given the even more restrictive value
of nyr < 10732 /nucleon [45]. Therefore, the prediction for the magnetic
monopole density strongly disagrees with the observed value.
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3 Inflation

Inflation is an epoch of accelerated expansion in the very early universe before
the period of radiation domination. It can naturally be incorporated into the
hot big bang model which postulates that the universe began in an infinitely
hot and dense state followed by expansion and cooling. Inflation can solve
the major cosmological problems discussed in section 2. In the following
the evolution of the universe during this period of rapid expansion will be
analysed using general relativity and scalar field theory.

In section 3.1 the basic single-field inflationary mechanism will be described.
In section 3.2 this description will be used to explain how inflation can solve
the cosmological problems of the standard hot big bang model. In section
3.3 the generation of scalar and tensor perturbations during a phase of ac-
celerated expansion will be discussed and an overview of the non-gaussianity
predicted by inflation will be given.

3.1 The Inflationary Universe

Inflation is a phase of accelerated expansion taking place shortly after the
big bang during which the scale factor a(t) increases nearly exponentially in
time. Accelerated expansion corresponds to @ > 0. The second Friedmann

equation reads ) o

a T

o= T(P + 3p). (10)
Therefore, accelerated expansion requires a violation of the strong energy
condition, so that p + 3p < 0. This condition can be realised using a simple
field theoretical model in which inflation is driven by a classical scalar field ¢
that is slowly rolling down a positive, flat potential V' (¢). This field is called
the inflaton. The energy-momentum tensor for a classical scalar field is given

by
TS = 4716405 — 83(30 0065 = V(0)). (1)

Here, repeated indices are summed over. Unless explicitely stated otherwise
this convention applies throughout the entire paper. It is assumed that the
universe is a flat, homogeneous and isotropic Friedmann-Robertson-Walker
universe, so that the metric is given by

ds* = gudatds” = d* — §5a° (1) da'da?, (12)
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where g¢,, is the metric tensor. Assuming that the field is homogeneous,
¢ = ¢(t), and identifying T = p and T} = —0’p, one can find from (11) that
the energy density p, and pressure py of the scalar field are given by

Py = %a? +V(9), (13)
po= 5%~ V(@) (14)

Substituting this into the first Friedmann equation (1) and setting £ = 0 one

finds $rC 1

Tr .

H? = T(§¢2 +V(9)). (15)

By substituting the first Friedmann equation (1) and its time derivative into

the second Friedmann equation (10) one can derive the energy conservation
equation

p=—3H(p+p). (16)

Defining the equation of state parameter w = p/p this can be integrated to
give

p oc a3+, (17)
After substitution of the above expressions for p,s and p, into (16) the energy
conservation equation for the inflaton field is found to be

¢+3Ho+ V=0, (18)

where it has been used that V = V¢¢ The dynamical system given by
(15) and (18) describes a homogeneous classical scalar field in an expanding
background. This system leads to inflation if the field is rolling down the
potential very slowly compared to the expansion of the universe. To ensure
this, during inflation the potential V' (¢) has to be very flat and much larger
than the scalar field kinetic energy. The conditions for slow-roll of ¢ and gb
are given in (19) and (20), respectively

S8 < V()] (19)

6| < 3H|d|. (20)

It can be seen that as long as (19) is fulfilled the equation of state parameter
is close to wy ~ —1. Thus, the slow-roll stage of inflation is characterised by
Py = —pey which does indeed correspond to accelerated expansion, as can be
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seen from (10). Using (17) the first Friedmann equation (1) can be rewritten
as 3H? ¢ ¢ cC c k
m T (o

G =@ T Tt T e @

Here, the ¢; are constants and the right-hand side of the equation gives the
contributions to the energy density of (from left to right) matter, radiation,
anisotropies, a scalar field component with equation of state w, and the
curvature. It has just been shown that during inflation wg ~ —1, such that
the scalar field component in (21) is roughly constant. Since the scale factor
a(t) increases in time the term with the lowest power of the scale factor in
the denominator will come to dominate the evolution of the universe. It can
easily be seen that all components besides the inflaton field quickly decay,
such that after a short amount of time the inflaton dominates the energy

density and the universe inflates.

(21)

Using the slow-roll conditions (19),(20) the evolution equations given in (15)
and (18) can be simplified to

N &G

1 = TV (o), 22)

3HG ~ —V,. (23)

Using these expressions and their time derivatives the slow-roll conditions
(19), (20) can be reformulated to give constraints on the shape of the poten-

tial
2

11 |V,
—— | 1 24
687G |V <h (24)
11 |V
- | 2= 1. 2
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These slow-roll conditions are commonly given in terms of the two slow-roll
parameters € and ¢, which are defined as

H 0

€ =

Then, during the slow-roll regime of inflation |e|] < 1 and |0| < 1.

By integrating H = a/a, using dt = d¢/¢ and inserting equations (22) and
(23) one can find the behaviour of the scale factor during slow-roll of the

inflaton s
a(ty) =~ a(ty)exp </¢>(t2) 87TG‘2((Q;)) dd)) . (27)

14



The potential is positive and V' (¢(t1)) > V(4(t2)), therefore (27) corresponds
to an exponential increase of the scale factor during inflation.

Inflation ends when the potential energy becomes smaller than the infla-
ton kinetic energy and the slow-roll conditions are no longer satisfied. The
universe enters a stage of reheating. The inflaton field ¢ oscillates around
the minimum of the potential V' (¢) and its energy is converted into ordi-
nary matter and radiation. The Standard Model particles produced interact
with each other and thermal equilibrium is reached. The universe enters the
well-known decelerating thermal Friedmann stage. For more details about
reheating see e.g. [46].

3.2 Inflation and the Cosmological Problems

In section 2 some of the major problems of the hot big bang model have
been introduced. In this section it will be shown how a period of accelerated
expansion in the very early universe can solve these problems.

Flatness problem

In the standard decelerating big bang scenario the observed flatness of the
universe today implies an extreme fine-tuning of the cosmological parameter
Q(t) at early times. This fine-tuning can be avoided by adding a sufficiently
long period of inflation before the radiation dominated phase. Using (21)
it has been shown in section 3.1 that as the universe expands the inflaton
comes to dominate the evolution of the universe. The relative energy density
of the curvature term decreases and the universe get closer and closer to
being flat. This trend can be quantified as follows. During inflation the scale
factor a(t) increases roughly exponentially. In this approximation the Hubble
parameter H(t) = a(t)/a(t) is constant. From (3) this implies that during
the expansion the cosmological parameter decreases rapidly as Q(t) — 1 «
a~2. Therefore, Q(t) is driven closer to unity during inflation. If from the
beginning of inflation at time ¢; until the end of inflation at time t; the scale
factor increases by a factor eV = ef(ts=%) this implies

Q@f) —1 . CL(ti) 2 — 2N
Q) 1 (a(t») e (28)

One can assume that at the beginning of inflation Q(¢;) — 1 ~ O(1). While
the exact value of 2 — 1 at the end of inflation is unknown, it is definitely
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larger than the corresponding value at the Planck time found in section
2. Therefore, the rough number of e-foldings the universe has to expand by
during inflation can be found by approximating Q(t;) ~ €(t,;). The resulting
number of e-folds will more than suffice to solve the flatness problem. In this
limit it is found from (28) that e a~ 107%°. This implies that if inflation
lasts a number of N = 70 e-foldings the value observed today 2o = 1.02+0.02
[42] is easily explained. For a larger value of N, €y = 1 with even higher
precision. Therefore, if inflation lasts sufficiently long the flatness problem is
solved and the radiation dominated epoch of the standard big bang scenario
naturally begins with locally negligible curvature.

Homogeneity /Horizon problem

The horizon problem is based on the observation that our universe is extremly
homogeneous, even though it consists of many patches that were causally
disconnected in the past. Inflation solves this problem. During inflation the
Hubble radius 1/H (t) is roughly constant. The physical wavelength a\ is
rapidly growing and can thus leave the Hubble radius. This implies that the
Hubble radius can be much smaller than the causally connected patch.

To quantify this one should recall the definition of the particle horizon (6).
During inflation the scale factor grows exponentially with time a(t) o< eff.
Inserting this into (6) and changing the lower integration limit to the begin-
ning of inflation ¢;, one can find that during inflation the particle horizon
grows approximately by
b dt c

d,(t)) = c-a(tf% e (29)
In section 2 the ratio of the size of our homogeneous domain of the universe
to the particle horizon size was investigated without considering inflation. As
a rough approximation one can assume that without a period of inflation this
ratio would be similar at time ¢; and at the Planck time ¢,,. We can then use
the result found in (9). One can see from (29) that when taking into account
inflation the value of the particle horizon at t; is bigger than predicted in
section 2, roughly by a factor of €. To solve the horizon problem, the ratio
of the size of our homogeneous domain to the particle horizon has to be
smaller than unity at time ¢;. From (9) one can see that this is achieved
if eV > 10%, corresponding to inflation lasting at least a number of e-folds
N =~ 70. For this number of e-folds of inflation the observable universe has
been in causal contact since the beginning of the radiation dominated epoch,
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which explains the isotropy of the CMB and the homogeneity of our causal
domain.

This approach included some strong approximations, so that only a rough
estimate of NV is obtained. However, this estimate agrees well with the values
usually quoted in the literature [47, 48]. The above calculation clearly illus-
trates how inflation can explain the large-scale homogeneity of the observable
universe by causing a rapid increase in the size of the particle horizon in the
very early universe.

Origin of large-scale structure

One of the most important achievements of inflationary models is the produc-
tion of density perturbations that can explain the deviation of the observed
universe from a perfectly homogeneous flat Friedmann-Robertson-Walker
model and can predict the observed large-scale structure. The inflation sce-
nario described in section 3.1 generates gaussian scalar density perturbations
with a nearly scale-invariant spectrum, as will be shown in the next section.
These perturbations can lead to the formation of galaxies and explain the
observed anisotropy in the cosmic microwave background. Inflation can also
generate a spectrum of gravitational waves, leading to additional anisotropies
in the microwave background.

In section 2 it was described how in a decelerating universe scales continu-
ously enter the Hubble radius. The origin of these scales is unknown. In-
flation manages to solve this problem in a very elegant manner. During
the exponential expansion the Hubble length 1/H is roughly constant and
the comoving Hubble length 1/aH is decreasing. The physical scales grow
rapidly during inflation and can therefore leave the Hubble radius. The am-
plitudes of these modes become ”frozen” at horizon crossing. After inflation
ends the universe begins to decelerate and the Hubble radius grows. Scales
start to re-enter the Hubble radius. Due to gravity these small perturbations
grow over time and eventually become the structures that are observed to-
day. Therefore, given a method of generation of small density perturbations
during inflation, the structure formation problem is solved.

During inflation small perturbations can be generated at the quantum level.
While inflation generally ”washes out” inhomogeneities, due to the uncer-
tainty principle the fields still undergo quantum fluctuations. These quantum
fluctuations will always be present. During inflation the physical wavelengths
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of these fluctuations increase exponentially. They are stretched beyond the
quantum level and effectively become classical modes when leaving the hori-
zon.

The explanation of the origin of large-scale structures is probably the most
important achievement of inflationary theories. In this section only an in-
tuitive argument has been given. The detailed calculation of the generation
of density perturbations during inflation and the derivation of the resulting
spectra will be given in section 3.3.

Monopole problem

One of the major cosmological problems is that, even though the magnetic
monopole density is predicted to be of the same order as the baryon density,
no magnetic monopoles have so far been observed. A similar problem applies
to other exotic heavy particles and topological defects.

If a period of inflation took place after magnetic monopoles had been pro-
duced this problem can be solved. During a period of accelerated expansion
particle densities decrease exponentially. Therefore, magnetic monopoles
and other defects formed before inflation can exist today, but their densi-
ties are extremely low. This explains why these objects are so far unde-
tected. Nucleons are created after inflation ends, so that their density is
unaffected by inflation. Therefore, due to inflation the monopole to nucleon
ratio strongly decreases. In section 2 it was stated that the measured mag-
netic monopole density is ny; < 10732 /nucleon. To account for this upper
bound on the monopole density, during inflation the horizon must have been
extended by a factor of at least eV = n}j/ ? 2 101°, 0 that without inflation
ny ~ O(1)/nucleon. This is solved by N > 23. Note that this is fulfilled
anyway if the minimum requirement on the number of e-foldings to solve the
flatness and horizon problems, N > 70, is satisfied.

Inflation could also take place before monopole production. Then a signifi-
cant amount of monopoles could be produced during reheating when the in-
flaton energy is transferred to radiation and particles. However, if the reheat-
ing temperature is significantly lower than the monopole mass, then magnetic
monopole production is avoided altogether, explaining why no monopoles are
observed today.
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3.3 Generation of Cosmological Perturbations

In this section the origin of the large-scale structure observed in the universe
today will be discussed. First the generation of scalar perturbations during
inflation will be analysed. Since we are dealing with small perturbations
calculations to linear order in the perturbations will suffice. This will lead
to a gaussian nearly scale-invariant spectrum of scalar perturbations. Af-
terwards non-gaussian corrections to this spectrum will briefly be discussed.
Finally, tensor perturbations will be analysed and the almost scale-invariant
gravitational wave spectrum predicted by inflation will be calculated.

Scalar perturbations

The metric of the homogeneous and isotropic background considered here
corresponds to the metric of a flat, homogeneous and isotropic Friedmann-
Robertson-Walker universe. It is given in (12). It will be useful to write this
metric in terms of the conformal time 7, defined as

T:/%. (30)

Most of the following calculations will be carried out using conformal time
7 instead of the cosmic time ¢. The background metric (12) can then be
written as

ds® = a*(7)(dr* — &;da"da?). (31)

We would like to investigate this background metric with small perturbations
superposed on it. There are three kinds of perturbations. Scalar perturba-
tions are probably the most important type, since they are responsible for
the large-scale structure of the universe. Vector perturbations are not as
interesting in the inflationary picture, since they decay very quickly. They
will not be discussed in this review. The last type are tensor perturbations,
corresponding to gravitational waves. To linear order these three types of
perturbations are uncoupled and can be dealt with one by one. This section
is devoted to the analysis of scalar perturbations.

We want to analyse small perturbations to linear order in an otherwise ho-
mogeneous and isotropic, flat Friedmann-Robertson-Walker universe. The
metric g, for this analysis is given by the unperturbed background metric

gffl),) given in (31) and a small metric perturbation dg,,

Guv = Q,SOV) + 5g;w- (32)
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The most general line element for investigation of the scalar metric pertur-
bations is given by [49, 50, 51]

ds* = a*(7)((1 + 2A)dr* + 2B drdx’ — ((1 — 24)8;; — 2E,;;)da'dz’).  (33)

It can be seen that four different scalar functions A, B, ¢, F show up in the
perturbed metric, all of which are functions of the space and time coordi-
nates. There is some gauge freedom in these quantities, as can be seen by
investigating the change of the metric g, under a coordinate transformation

ot — g =zt 4 ozt (34)
Under such a transformation the metric tensor changes as

ox® OxzP

o 9y I8 () (35)

I (2"7) =
Inserting (32) and Taylor expanding g (7 + 0x7) around z7, to first order
the metric perturbations transform as

0G0, = 0Gu — 9\ 0a02" — gQox%, — g{Wsas,. (36)

Using this equation one can find the transformation properties of the scalar
functions in the perturbed metric. One can decompose dz° into a scalar ¢
and a 3-vector v’ that has vanishing divergence, so that dz* = 9°C + v*, with
’UZZ = 0. Using this decomposition under the coordinate transformation (34)
the scalar functions transform as

A =A—5% - 27652% B = B—da"+(,,
“ (37)

¢,:¢+%5$0, E,:E—’—C‘

It can be seen that only two scalar functions, d2° and ¢, contribute to this
gauge transformation. Therefore, among the four scalar functions A, B, ¢, F
there are two reduntant degrees of freedom that can be removed without
affecting the physics. Two gauge invariant quantities that will be useful in
the following calculations are the two potentials

1
d=A- E(G(B -E.).;, YV=¢+HB-E,). (38)
Here, in analogy to the Hubble parameter H(t) for cosmological time, H(7) =
a-(7)/a(7) has been introduced. The invariance of the two potentials under
coordinate transformations (34) can easily be verified using (37). To simplify
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the following calculations we can eliminate the two redundant degrees of
freedom by fixing the gauge. Our choice of gauge is given by the conditions
B = E = 0. This is known as the longitudinal gauge. From (38) this implies
that ® = A and ¥ = 1.

In addition to the metric perturbations, the scalar field driving inflation is
also perturbed. This perturbation in the matter component leads to a pertur-
bation of the energy-momentum tensor given in (11). The perturbations of
the geometry and the matter are related by the perturbed Einstein equations

SGH = 8T GST". (39)

dG*# is the perturbed Einstein tensor which can be calculated from the metric
perturbations discussed above. This is a lengthy calculation which will be
omitted here. The details of this calculation are for example given in [48].
The perturbed Einstein equations in the longitudinal gauge read

2
8TGOTY = ﬁ(vzxp — 3H(H® + V), (40)
2
8TGOT) = E(ch +V.) (41)
. 1

—87GoT,_; = E(zqfﬂ — V(¥ — @)+ 2H(2V , + ) + (4H , + 2H*)D),

(42)
. 1

a

The first equation corresponds to (39) with u = v = 0, the second equation to
1 = 0 and v = 1, the third equation comes from the yp = v = i component and
the last equation corresponds to u = ¢ and v = j with ¢ # j. To further study
these equations the perturbation of the matter component to first order has
to be found. One can use the expression for the energy momentum tensor in
(11) and the perturbed Friedmann-Robertson-Walker metric (33). The scalar
field can be written as ¢ = ¢ +§¢, where ¢© depends only on time and §¢
is a scalar field perturbation that depends on all the spacetime coordinates.
The perturbed components of the energy-momentum tensor then read

1
a2

O0TY =
0 a

1
(0060 — AYD? +a*Vb0), 0T = —6Dd0;,
. 1 i
0T} = — (=060 . + AGD? + a*V400), 6T}, = 0.

a?

(44)

After inserting these expressions into the Einstein equations in (40) - (43)
one can immediately see from (43) that (¥ — ®),;; = 0, so that ¥ = &.
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Substituting this into (40) - (43), the Einstein equations read

V20 — 3H(H® + @) = 4nG (V¢ . — ApV? + a®V,0¢),  (45)
HE + &, = 4rGolV69, (46)
O, +3HD  + 2H , + H*)® = 4rG (¢ V56 . — APD? — a®Vy0).  (47)

\T

An important quantity to study the perturbations generated during inflation
is the intrinsic curvature perturbation on comoving hypersurfaces R, defined
as

R =1 %w. (48)

This quantity can be rewritten in terms of the potential ® using the Fried-
mann equations and the Einstein equation (46). It then reads

R = —<I>+%(HCI>+<1>). (49)

It can be seen that the intrinsic curvature perturbation R can be given
entirely in terms of gauge-invariant quantities. Therefore, it is also gauge
invariant. R is a very important quantity, because outside the horizon it is
constant on each scale for single-field inflation. This implies that its spectrum
gives the curvature perturbation amplitude of different modes when they
cross into the Hubble radius during the matter or radiation dominated epoch.
R can be expanded in Fourier space as

d3k ikx
R = / (%)%Rk(r)e . (50)

The power spectrum of the comoving curvature perturbation Pg (k) can then
be defined using the vacuum expectation value
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It should be noted that the power spectrum Pgr(k) depends only on the

magnitude of the wavenumber |k| = k.

In order to develop a correct understanding of the origin of perturbations
in the early universe one needs to quantize the perturbations. The effective
action during inflation is given by the sum of the actions for the gravitational
field and the scalar field. The equations of motion for linear scalar pertur-
bations can be derived from the action expanded up to second order in the
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perturbations. After a partial integration the action for a perturbed inflaton
field in a perturbed geometry is given by [49]

_ 4,1 3 2 (N2, RTT 9
S—/dzvﬁ—Q dxdT((v,T) (v:)” + zv). (52)

Here, two new variables have been introduced. The variable v which is related
to the comoving curvature perturbation as

v= 2R =a(d6 + %w) (53)
and the function z, defined as
O
=q—. 54
F=as (54)

It can be seen that the evolution of the perturbations can be investigated
using a single variable v. The corresponding action (52) is of the same form
as the action for a scalar field in Minkowski spacetime that has a time-
dependent effective mass mgff = —2.,./2.

The canonical momentum 7, (7, X) to the variable v(7,x) can be calculated
from the action (52) and is found to be

oL

ov

To(T, X) v, (7,%). (55)
The first step for quantization of the theory is the promotion of v(7,x) and
7o(7,%X) to operators v(7,x) and 7(7,x). One can then impose the stan-
dard quantum field theory equal time commutation relations on these two
operators

[0(7,%), 71, (7,X")] = i6*(x — X'),

(56)

[6(7, %), 0(7,%)] = [7o(1,%), 7o (1, %)] = 0.

The operator 0(7,x) can be expanded in Fourier space and then takes the
form

d’k . ,
o(r,x) = / (2#)% <Uk&k€ZkX +v}:&Le_ka>, (57)

where vy = vy (7) are complex and time-dependent coefficients. The operators

ayx and dL are the creation and annihilation operators that are known from
quantum theory. They satisfy the bosonic commutation relations

[ak, aj{,} — 5k — X)), l1e, dae] = [aL, aL] —0.  (58)
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Substituting the expression for (7, x) given in (57) and the corresponding
easily derivable expression for 7,(7,x) into the equal time commutation re-
lations (56) and using the bosonic commutation relations (58) one can find
the normalization condition for the coefficients vy (7)

VpUkr — UpV% , = —1. (59)

The quantization of the theory also requires the definition of the vacuum
state |0). Here it is defined by the condition

ax|0) =0, (60)

i.e. the vacuum state is the state that is annihilated by all ax. Other choices
for the vacuum state are possible, but this is the most natural choice.

By varying the action (52) with respect to v and then requiring this variation
to be zero the equation of motion for the functions vy can be found. In Fourier
space this equation of motion reads

Zrr
Vs + (B2 — 25 )uy, = 0. (61)
z
On small scales well inside the horizon, corresponding to k/aH — oo, the
influence of the spacetime curvature on the mode behaviour is negligible.
Therefore, these modes behave as if they were in the usual Minkowski vacuum
and vy approaches a plane wave form in the small wavelength limit

1 ik
v — —e ", 62
k %—wo \/ﬁ ( )
For modes in the long wavelength regime, corresponding to k/aH — 0,
k* < z,,/7 and the equation of motion (61) reduces to

z
Uk, rr =~ ;—T Uk, (63)

so that the solution v, o< z is found. For further attempts to solve the
equation of motion it should be noted that an explicit expression for z,,/z
can be found in terms of the slow-roll parameters defined in (26). It is given
by

, ¢ 4 )
24+2e+30+e0+0"+—+—|. (64)

z z

Zir Qa4 ad’2
= = Q
H H

Now it is time to return to the quantity of interest, the power spectrum of
the comoving curvature perturbation Pg (k). After promoting the comoving
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curvature perturbation R to an operator R and using the Fourier expansions
of R and © given in (50) and (57) the expectation value (0|R;RI |0) can be
found. One should use the operator version of (53) to related R and © and
make use of the vacuum state annihilation (60). Assuming that the vacuum
state is normalized (0|0) = 1 the power spectrum defined in (51) is found to
be

E oy
o2 22

PR(k?) = (65)

To get an idea of the shape of this power spectrum the system described
above will be investigated in the slow-roll regime. The equation of motion
(61) can be solved in the limit that the two slow-roll parameters € and ¢

given in (26) are constant. Assuming also that e < 1, the conformal time 7
defined in (30) is approximately given by

1
N ——. 66
’ (1 —¢€)aH (66)
For constant slow-roll parameters the derivatives in (64) can be neglected
and in this limit

f Al
z 72 (67)
where vg is given by 5
R = % + % (68)
The equation of motion in (61) then reads
v — 1
Uprr + (K% — RT2 L)vy, = 0. (69)

For v a real number the general solution to this equation is a linear combi-
nation of the Hankel functions of first and second kind

o= VIrl(er (R HQ) (k|7]) + c2(k)HE) (k| 7)), (70)
(

where H, 1,713 is the Hankel function of first kind of order v and correspondingly
Hﬁ?g is the Hankel function of second kind of order vr. In the asymptotic
past, kT — —oo, (70) should reflect the Minkowski vacuum state given in
(62). This asymptotic behaviour at small scales together with the correct
normalisation can be achieved by setting co(k) = 0 and ¢ (k) = \/77767;(”72+%)%.
The resulting expression for v, with the appropriate behaviour in the asymp-
totic past is then

A T\T| - 1\m

J61(1’7”2)2I—Iﬁg(k:|7'|). (71)

V. = 9
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For small, real arguments x < 1 the Hankel function of first kind H,(,;) (x)
can be approximated by

) — R (5) 7 (72

Noting that the large scale limit k/aH — 0 corresponds to small k||, this
approximation can be used in (71), so that the expression for v, becomes

eivrR=3)% [(vg)

V2k  T(5)
where it has been used that /7/2 = I'(3/2). This expression can be inserted
in (65) and, after using (54) and (66), gives an expression for the power

spectrum .
2 37 VR
Pht = - o 2 () (74)
I'(3) 2rlo| \ 2

To characterise the scale dependence of this power spectrum the spectral
index of the comoving curvature perturbation ng can be used. It is obtained
from the logarithmic momentum derivative of the scalar power spectrum

dinPr
~ dlnk
An exactly scale-invariant spectrum of curvature perturbations corresponds
to a scalar spectral index of ng = 1. A spectral index ng > 1 corresponds
to a blue-tilted spectrum and if ng < 1 the spectrum is red-tilted. One can
calculate the scalar spectral index to first order in the slow-roll parameters
by noting that to first order vz ~ %—F 2¢+9. In this approximation the scalar
spectral index is found to be

2UR=3 (k| r|)2 VR, (73)

Vi —

ng —

(75)

ns ~ 1 —4e — 20. (76)

Since during inflation the slow-roll parameters take very small values |e], |d] <
1, one can see that the resulting spectrum of scalar perturbations is very close
to being scale invariant. In fact, the chaotic inflation scenario discussed in
section 3.1 predicts a slightly red-tilted, nearly scale-invariant spectrum of
adiabatic perturbations, while other inflationary models can predict a blue-
tilted spectrum [47]. An example for this would be the hybrid inflation model
[52, 53|, which relies on the presence of more than one scalar fields.

The above calculation has been carried out assuming that the slow-roll pa-
rameters € and ¢ are small and time-independent. While this is only an
approximation, the obtained results are in fact quite accurate, so that a very
realistic expression for the scalar spectral index generated by single-field in-
flation was found.
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Non-gaussianity

In the above calculation the spectrum of primordial scalar perturbations
generated during single-field inflation has been discussed to linear order. To
this order the spectrum is gaussian. While non-gaussian corrections to this
spectrum do exist, their magnitude is very small. Therefore, a gaussian spec-
trum is a very good approximation. A thorough analysis of non-gaussianity
in single-field inflationary models is beyond the scope of this paper. Only
a brief description of the calculation procedure will be given and the final
results for the amount of non-gaussianity that is generated will be stated.
The discussion will focus on second-order non-gaussianity of the local form.
For a detailed analysis of higher order corrections to the spectrum of scalar
perturbations calculated to linear order in the perturbations one should see
e.g. [54, b5, 56].

The reason why non-gaussianities produced during inflation are small can
be understood using a simple intuitive argument. Density perturbations are
created when the inflaton is slowly rolling down an almost constant potential
V(¢), corresponding to an equation of state w ~ —1. Since the inflaton po-
tential is very flat, the self-interaction terms of the scalar field are small and
the inflaton behaves almost like a free field. In the perfect quantum limit a
completely free field would generate perfectly gaussian quantum fluctuations,
for which the two-point correlation function characterises the entire spec-
trum. Since the inflaton is not completely free, there are small non-gaussian
corrections to this spectrum. Their amplitude depends on the exact value
of the slow-roll parameter € and thus on how close the potential is to being
perfectly flat.

The amount of non-gaussianity generated during inflation can be found by
extending the calculation of the spectrum of scalar perturbations given above
to higher orders. One can expand the action (52) up to cubic order by tak-
ing into account non-linearities in the inflaton potential and in the Einstein
action. The cubic interaction terms in the lagrangian lead to a non-linear
evolution and can be used to compute the comoving curvature perturbation
R up to second order. One can then find the corresponding three-point
function. This function vanishes for purely gaussian perturbations and thus
provides information about the non-gaussianity in the density perturbation
spectrum. Deviations from gaussianity can be characterised by the non-
gaussianity parameter fyr, whose meaning becomes apparent when writing
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the comoving curvature perturbation as
3
R:Ro(l—i—ngLRo). (77)

Here, Ry is the gaussian linear curvature perturbation that was investigated
above. The second term on the right corresponds to second-order corrections.
These non-gaussian corrections are parameterised by fyr. This parameter
can be given in terms of the scalar spectral index as [55]

fNL%%(ns_l)_‘_fk? (78)
where fj is a momentum-dependent function that is first-order in the slow-
roll parameters. Since the scalar density perturbation spectrum is very close
to being scale invariant and the slow-roll parameters are much smaller than
unity, the value of fy predicted by inflation is very small. One can also see
that the higher the deviation from scale-invariance, the more important are
the non-gaussianities. Usually in models of single-field inflation |fy.| ~ 1 or
smaller [54].

It should be noted that a much larger non-gaussian signature can be gen-
erated in more complicated inflationary scenarios that include several fields
[57, 58] or complex kinetic terms [59].

Tensor perturbations

In addition to scalar perturbations inflation also generates a nearly scale-
invariant spectrum of tensor perturbations that could soon be observed as
primordial gravitational waves. Like the scalar perturbations, tensor per-
turbations originate from vacuum quantum fluctuations. The procedure to
calculate the spectrum of gravitational waves is almost the same as the cal-
culation of the scalar perturbation spectrum, so that some steps of the cal-
culation will not have to be repeated here.

The line element corresponding to a flat Friedmann-Robertson-Walker back-
ground with linear tensor perturbations reads [50, 51]

ds® = a*(1)(dr* — (045 — hyj)dax'da?). (79)

The tensor perturbations h;; are symmetric and satisfy d“h;; = 0 and hy;,; =
0, so that h;; is traceless and transverse. Also, the 3-tensor h;; does not trans-
form under the coordinate transformation (34) and therefore the quantity is
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gauge-invariant. Counting the number of degrees of freedom it is found that
the gravitational waves have two independent polarization states A = 1, 2.

To find the equation of motion and calculate the perturbation spectrum the
action expanded up to second order in the perturbations has to be used. It
contains the tensor part [49]

1
647G

Sy = / d*xdra®(r)n" 0,h0, ki, (80)
where n* = diag(1, —1,—1,—1) is the Minkowski metric. This action can
be written in a simpler way by setting D} = (1/v/327G)h! to get rid of the
prefactor. D; can then be expanded in Fourier space

2

D: / 'k D preac(k, A)e™™ (81)
i = €; ) ’
Vi (271_)% s Spk,)\ 7

where @y x = @i (7) are complex and time-dependent coefficients and €} (k, \)
is the time-independent polarization tensor. This tensor naturally satisfies
the same conditions as the tensor perturbations h;;, so that it is symmetric
and 07¢; = kie;; = 0. Additionally €(k, A)el*(k,0) = 6y,. To simplify the
following calculations it will be convenient to choose €;(k, \) = €;;(—k, A).
One can define the new variable

Uk, = APk - (82)

Using the properties of the polarization tensor given above and the Fourier
expansion of D; in (81) it can be seen that v_y ) = Vg After a partial
integration and neglecting a total derivative the action (80) can be rewritten
in terms of the variable vy ). It then reads

2
1 3 2 Qrr 2
=3 /drd kA:1 ( (k: - ) s ) (83)

As was done in the analysis of scalar perturbations the theory now has to be
quantized. The variable vy \(7) is promoted to an operator Uy (7). This op-
erator can be written in terms of the scalar modes vy (7) that have been used
when quantizing the scalar perturbations, and the creation and annihilation
operators ay, ,\,dL A\

2
d Uk, \
dr?

R . wnt
Uk, A = UkQk A + Ukak)\. (84)
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The creation and annihilation operators satisfy the usual commutation rela-
tions

[am,a;ﬁ] =Bk = K)o [ i, = [ab,dlﬁ,ﬁ] —0. (85)

Again the vacuum state |0) is defined as the state that is annihilated by the
annihilation operator ax |0) = 0.

The equation of motion for vx(7) can be derived by varying the action given
in (80). It is found to be

N G B} (86)
a

This is very similar to the equation of motion for the scalar perturbations
given in (61). The only difference is that the factor z,,/z is replaced by
a,r/a. Exploiting this similarity the behaviour of v on small scales and
large scales can immediately be found

1 —ikT
e Uk | & o O @ (87)

K — ,
a2k

To solve the equation of motion (86) a similar strategy as used for the analysis
of scalar perturbations can be applied. One should note that

Vg,

‘% = &%+ ida = (aH)*(2 - e). (88)

In the approximation that the slow-roll parameter € is constant the conformal
time is given by (66), so that (88) can be approximated as

= 89
a T2 (89)
Here, v gives the dependence on the slow-roll parameter e
1 1
== . 90
T T I (90)

The equation of motion for v, then reads

A <k2 - @> = 0. (91)

72

The power spectrum for gravitational waves Pr(k) can be defined using the
vacuum expectation value

.. 272
32mG - <0|90k,,\<PL7,\|0> = FPT(k)53(k — k). (92)
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The gravitational wave power spectrum results from the tensor perturbations
h;; and not from the rescaled variable D;; = h;;/v/ 327G with Fourier coef-
ficients i . This explains the origin of the prefactor of 327G. Using the
definition of the vacuum state ax |0) = 0 and the expansion of Uk y = aPy »
in creation and annihilation operators (84) one can find

2
N N v
Olgeadly 0) = 25570 ¥), (93)

where the factor 2 comes from the fact that there are two possible polarization
states A =1, 2.

One should note that the equation of motion (91) has exactly the same form
as the equation of motion (69) found when calculating the spectrum of scalar
perturbations, with vz replaced by vp. Following the exact same procedure
as in the analysis of the scalar perturbations the tensor power spectrum can
be obtained and is given by

% _ uT—1F<VT) H %—VT
P2 (k) = V327G - 2 F(%)(l—e)%(khb . (94)

The spectral index of tensor perturbations ny is defined as

dlnPT
" ik (95)

From the expression for the tensor power spectrum given in (94) one can find
nr =3 —2vp &~ —2¢, (96)

where the last expression is an approximation to lowest order in the slow-roll
parameter €. A scale-invariant spectrum corresponds to ny = 0. Since during
inflation € is small, the predicted spectrum of gravitational waves is close to
scale-invariant. Since € > 0 in inflationary models, ny < 0, such that the
predicted spectrum is tilted slightly to the red.

An important quantity is the tensor to scalar ratio r which is given by the
ratio of the tensor power spectrum to the scalar power spectrum
Pr
Pr’

r (97)

By inserting the expressions for the power spectra of curvature and tensor
perturbations given in (74) and (94), respectively, and using the equations

of motion during slow-roll inflation (22) and (23), as well as the definition
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of the slow-roll parameter in (26), this ratio is approximately found to be
r &~ 16e. One can easily relate this to the tensor spectral index given in (176)
to find

T = —8’/”LT. (98)

This is known as the consistency relation for single-field slow-roll inflation.

32



4 The Ekpyrotic/Cyclic Universe

The ekpyrotic model of the universe [21] is an attempt to solve all of the
cosmological problems described in section 2 without relying on a period
of inflation. Instead it includes a period of ultra-slow contraction, called
the ekpyrotic phase, that occurs before the big bang. Due to this period
the cosmological problems can be solved. The cyclic universe [29, 30] is an
extension of the ekpyrotic model. It incorporates an ekpyrotic phase while
also offering predictions concerning the far past and future of our universe.
In the ekpyrotic and cyclic models the big bang is not the beginning of time.
It is a physical event that is part of the history of the universe.

The ekpyrotic and cyclic models are strongly inspired by string and M-theory.
They rely on the braneworld picture of the universe. This picture is based
on five-dimensional heterotic M-theory [22, 23, 24, 25, 26|, a unified theory
of gravity and particle physics. It proposes the existence of two parallel
boundary branes which contain the bulk spacetime between them. The bulk
spacetime is five-dimensional, while the branes are (3+1)-dimensional and
can be infinite in these dimensions. The fifth dimension is confined to a line
segment whose endpoints are the two boundary branes. Since the theory is
embedded in M-theory, each spacetime point is associated with six additional
dimensions. Therefore, the scenario relies on an overall eleven-dimensional
theory that consists of a ten-dimensional spacetime and a line segment.

One of the two boundary branes in the set-up corresponds to our universe.
All matter and forces live on the branes. Only gravity is unbound and free
to propagate in the bulk spacetime. Therefore, the only type of interaction
between the two separated branes is gravitational. An attractive force, de-
scribed by a scalar potential V' (¢), acts between the branes. They approach
each other along the fifth dimension and eventually collide. This slightly inel-
lastic collision is identified with the hot big bang of standard cosmology and
leads to matter and radiation being produced in the universe. After the col-
lision the branes separate again. It should be noted that during the collision
only the orbifold dimension becomes zero, while the other four dimensions
are finite at the big bang. The effective four-dimensional scale factor does
vanish, but the brane scale factors are finite at the collision, so that the big
bang happens at finite temperature and density. Therefore, the big bang
singularity is a very mild singularity [36]. While for a proper modelling of
the behaviour of the universe at the singularity a theory of quantum gravity
is needed, due to its mildness the understanding of the physics involved has
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already significantly improved (see e.g. [60, 61, 62, 63, 36, 64]) and there is
hope that this issue can be resolved in the near future.

While the higher-dimensional picture is important for a thorough under-
standing of the ekpyrotic model, almost all aspects of the scenario can be
described using a four-dimensional low energy effective theory. The main
aim of this paper is to describe an alternative cosmological model and its
solutions to the cosmological problems in enough detail to contrast it with
inflationary cosmology. To achieve this, investigating the four-dimensional
effective description is sufficient and we will focus on this in the following.
For details about the fundamental theory and the embedding of the effec-
tive theory in heterotic M-theory see e.g. [65, 66, 41] and references therein.
In the four-dimensional theory the ekpyrotic universe can be analysed us-
ing general relativity and scalar field cosmology, similar to the analysis of
inflation in section 3.

The cyclic universe is an important scenario based on the ekpyrotic model.
It includes an ekpyrotic phase that solves the cosmological problems, while
also explaining the existence of dark energy. It aims at providing a complete
history of the universe. The cyclic model also relies on the braneworld picture
inspired by heterotic M-theory and the set-up is exactly the same as described
above. The main difference is that while the ekpyrotic scenario assumes
only one brane collision, the cyclic universe predicts infinitely many. In
the cyclic model after the branes bounce and separate, due to a spring-like
force between the branes they eventually start attracting each other again.
This force is very weak when the branes are far apart, but it increases as
they approach each other. After a long time the branes are very close and
the potential energy becomes negative, inducing a second ekpyrotic phase
and ultimately a second brane collision. The process then repeats itself,
resulting in a cyclic evolution of the universe. The small attractive force
operating between the boundary branes is identified with the dark energy
that is observed today. The cyclic model of the universe can also be described
using an effective four-dimensional theory.

In section 4.1 the properties of the single-field ekpyrotic phase will be dis-
cussed. Afterwards, a detailed description of the cyclic universe will be given
in section 4.2. In section 4.3 it will be explained how the ekpyrotic/cyclic
universe manages to solve the major cosmological problems. An analysis of
the generation of scalar and tensor perturbations, including a discussion of
non-gaussianity, will be given in section 4.4. For the analysis of the scalar
perturbations the scenario will be extended to include two scalar fields.
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4.1 The Ekpyrotic Phase

The main prediction of the ekpyrotic model of the universe is the existence of
an ekpyrotic phase preceding the big bang. The ekpyrotic phase is a period
of slow contraction during which the scale factor is almost constant, while the
Hubble radius is rapidly decreasing. Ekpyrosis requires an ultra-stiff equation
of state w > 1. Using this ultra-slow contracting phase the ekpyrotic model
can solve all of the cosmological problems described in section 2.

The ekpyrotic phase can be described using a scalar field ¢ rolling down a
potential V' (¢). The requirements on the potential can be found from the
equation of state for the field. Using the average energy density pgs and
average pressure p, of a scalar field given in (13) and (14) respectively, one

finds -

wy = L2 = M (99)

Ps 50>+ V()

An equation of state w, > 1 can thus only be fulfilled if the potential V' (¢)
is negative during the ekpyrotic phase. Another condition on the potential is
that it must be very steep. Therefore, the ekpyrotic phase can be described
by a scalar field rolling down a steep, negative potential. Considering the
first Friedmann equation rewritten as in (21) one can see that in this sce-
nario the scalar field comes to dominate the evolution of the universe. The
universe is contracting during the ekpyrotic phase, so that the scale factor
a decreases in time. Therefore, the term with the highest power of a in the
denominator comes to dominate. In the absence of the scalar field this would
be the anisotropy term c,/a% The universe would become increasingly in-
homogeneous which would lead to a state that is excluded by observations.
In the presence of a scalar field with equation of state wy > 1 the picture
is different. In this case the power of the scale factor in the denominator of
the corresponding term is 3(1 + wy) > 6, therefore the energy density in the
scalar field starts to dominate during the ekpyrotic phase as a — 0, while
the relative energy densities of the anisotropy and other matter terms quickly
decay.

The general ekpyrotic scenario can involve more than one scalar field. The
action for N decoupled scalar fields ¢;, i = 1, ..., N, with corresponding po-
tentials V;(¢;), that interact only via gravity is given by

R 1 N ) N
S = /d4x\/—_g <—m t3 ;au¢ia bi — ;‘/z‘(ﬁbi))a (100)

35



where R is the Ricci scalar and ¢ is the determinant of the metric tensor g, .
The equations of motion for this action can easily be derived, using that each
of the scalar fields has an energy density p; given by (13). Choosing again
as background a homogeneous and isotropic Friedmann-Robertson-Walker
spacetime that is spatially flat, and neglecting the contribution of other mat-
ter components to the energy density, one finds from the first Friedmann
equation (1) with k£ =0

H? = SWG( Z¢2+ZV asz). (101)

The equations describing the evolution of the scalar fields can be found from
energy conservation (16) which is given independently for each field. They
read

b+ 3Hd + Vi, =0, (102)
where V; 5, = 0V;/0¢;, with no summation implied. Since most of the cos-
mological problems can be solved using single-field ekpyrosis, for simplicity
we will focus on this case for now. We will return to the case of several
scalar fields when discussing the origin of densiy perturbations. For a single
scalar field the equations of motion reduce to the standard equations of single
scalar field cosmology that have already been obtained in section 3 and are
given in (15) and (18). In the higher dimensional theory the scalar field ¢
parameterises the distance between the two boundary branes. Its potential
V(¢) represents the attractive force that leads to the branes approaching
each other and ultimately causes the big crunch.

A simple choice for a steep, negative potential is a negative exponential
V() = —Voe, (103)

where V) and ¢ are positive constants. For this potential the equations of
motion are solved by the scaling solution [67, 68]

aft) o< (7. 6(t) = /s log (— %t) p="C" (o

Using the time dependence of a(t), the Hubble parameter H(t) during ekpy-
rosis can be found. It is given by H(t) = p/t, so that during the ekpyrotic
phase the Hubble radius is decreasing in time. Using this scaling solution
and the expression for the potential (103) and inserting it into (99) the cor-
responding equation of state is found to be constant and is given by
2
wp=g- =1 (105)
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The time of the big crunch is commonly defined as ¢ = 0, thus the time
variable is negative and increasing during the ekpyrotic phase ¢ < 0. Then,
from the scaling solution (104) it can easily be seen that the scale factor
decreases in time, which corresponds to a contracting universe. The condition
for this contraction to be slow, and thus for a(t) o« (—t)? to be slowly varying,
is that p is very small p < 1. It can be seen from (105) that this condition
leads to the desired equation of state w, > 1. Therefore, in order to have a
slowly contracting ekpyrotic phase it is required that

€

H_1 1 106
H ) > 1, (106)
where the fast-roll parameter € has been defined. This parameter leads to
constraints on the steepness of the ekpyrotic potential V(¢). Using the scal-
ing solution (104) and the expression for the potential (103) two conditions
on the potential to ensure fast-roll can be derived

2

I |V,
1 V¢¢
167G ‘ Vv ' > (108)

4.2 The Cyclic Universe

The cyclic universe is a cosmological model which postulates that the universe
is undergoing an endless sequence of expansion and contraction, while also
incorporating a period of dark energy domination in the cycle. It is based on
the ekpyrotic scenario, so that the evolution of the universe can be described
using a scalar field ¢ moving along its effective potential V' (¢). Even though
in most models more than one field is involved, for simplicity in this section
we will focus on the single-field scenario. The extension of this description
to multiple-field models is straightforward. In the higher dimensional theory
the scalar field parameterises the distance between the two boundary branes.
A scalar field value of —oo corresponds to zero distance between the branes
and thus represents the big crunch/big bang transition. There is an upper
bound ¢,,,, on the value of the scalar field, which implies that there is a
finite maximum brane distance. In order to generate a cyclic universe, the
potential V' (¢) has to fulfil a number of constraints [69]:

e For ¢ > 0 the potential needs to approach a shallow, positive plateau.

37



6 7
O —- . :l T 1
= - 0
) 5 k' % 2

I'ul O.'

| J Ir" 4

I| .’II

| |

| f

|I |
| |
i A
|I II

Ill\u.l'l"l

Figure 1: A possible shape of the interbrane potential V' (¢) in the cyclic
scenario. The behaviour of the scalar field ¢ with respect to this potential
is shown. The plot has been reproduced from [29]. Black, grey, white and
broken circles correspond to dark energy domination, the ekpyrotic phase,
kinetic energy domination and radiation domination, respectively. Details
about the different stages 1 - 7 can be found in the article.

e For ¢¢,q < ¢ < 0 the potential needs to be negative and steeply decreas-
ing as ¢ decreases. Here, ¢.,q is the scalar field value at the minimum
of the potential V 4(dena) = 0.

e For ¢ — —oo the potential rapidly approaches zero V(¢) — 0.

It should be noted that there is some freedom in the first and third condi-
tions, so that there are a number of different potentials that can lead to a
cyclic universe. An example of a potential fulfilling these conditions and thus
leading to a successful realization of the cyclic model is depicted in figure 1.
Using this example of a cyclic potential the different stages of a cycle can be

described.

One can start the cycle at the dark energy dominated universe today, with
equation of state w ~ —1 (stage 1). At this stage the energy density of
the universe is dominated by the potential energy of the scalar field and the
expansion is slowly accelerating. The scalar field is either very close to or
has already passed its maximum value. It then starts slowly rolling down the
shallow plateau of the potential of positive height Vj towards negative values
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of ¢ (stage 2). For a scalar field ¢ with potential V' (¢), when neglecting the
matter and radiation contributions to the energy density and pressure, the
second Friedmann equation (10) reads

g = % v, (109)

3
Therefore, accelerated expansion @ > 0 is only given as long as V(¢) > (]'52.
The scalar field kinetic energy becomes important as V' (¢) approaches zero.
Acceleration stops, but the scale factor is still growing and the universe is in
a state of decelerating expansion as the potential becomes negative (stage 3).
At some point the kinetic energy exactly cancels the negative potential energy
$?/2 = =V (¢) and according to the first Friedmann equation (15), again ne-
glecting the radiation and matter components, the Hubble parameter is zero
H(t) = 0. From (109) one can see that at this point d(t) < 0. Therefore,
the universe reversed from expansion to slow contraction and the Hubble pa-
rameter becomes negative. The scalar field enters the ekpyrotic phase with
w > 1 and is rolling down the steep, nearly exponential potential (stage 4).
This period is of vital importance, since during it density fluctuations are
created, which ultimately lead to the formation of large scale structure. As
the scalar field rolls down the potential its kinetic energy grows. It moves
past the potential minimum at ¢.,s and continues towards ¢ — —oo. Po-
tential energy is converted to scalar field kinetic energy and the evolution of
the universe becomes increasingly kinetic energy dominated. The equation
of state becomes w &~ 1. The scale factor a(t) decreases and as the uni-
verse approaches the bounce the potential energy tends to zero V(¢) — 0
(stage 5). The scalar field takes a finite amount of time to reach negative
infinity. The scale factor becomes zero at the big crunch/big bang, reverses
and starts increasing again, the universe expands. It should be noted that
while the four-dimensional scale factor a(t) becomes zero at the big crunch,
in the higher dimensional picture the brane scale factors remain finite at the
collision. At the big crunch some of the kinetic energy of the scalar field
is converted to relativistic and non-relativistic matter and the post-big bang
universe is reheated to a large, finite temperature. After the big bang there is
an expanding kinetic phase (stage 6), almost symmetrical to the contracting
kinetic phase preceding the big bang, except that the scalar field acquires a
small boost at the bounce. This is needed for the field to overcome Hubble
damping due to radiation and increase enough to reach positive values again.
In fact, after the big bang there are two kinetic energy dominated phases,
separated by a very short w > 1 phase. However, it has been shown that all
these phases can effectively be treated as just one kinetic phase [70]. While
immediately after the bounce the universe is still kinetic energy dominated,
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during the expanding phase this energy is rapidly redshifted away and the
universe soon enters the radiation dominated epoch (stage 7). The scalar
field experiences Hubble damping during radiation domination and the fol-
lowing matter dominated epoch, which correspond to w = 1/3 and w = 0,
respectively. These two epochs are exactly the same as in the standard hot
big bang picture. The structure that exists in these phases was seeded dur-
ing the ekpyrotic phase preceding the big crunch/big bang transition. The
field reaches its maximum value ¢,,,, > 0, turns around and starts slowly
rolling down the potential plateau again. The potential energy of the scalar
field comes to dominate over the radiation and matter components and the
universe returns to the accelerating dark matter dominated stage (stage 1),
where the cycle started.

A possible expression for a potential with the properties described above is
V(9) = Vo(e" — e ) F(9), (110)

where 0 < b < 1 and ¢ > 1. F(¢) is a function that approaches unity for
G > Gend, Where ¢e,q is the scalar field value at the minimum of the potential
V(¢), and rapidly becomes zero as ¢ drops below ¢.,q. As long as it satisfies
these conditions the exact form of the function F(¢) is not important for
the success of the cyclic model. The constant Vj corresponds roughly to the
value of the dark energy density observed today. It should be noted that
during the ekpyrotic phase ¢e,q < ¢ < 0, so that the negative exponential in
(110) dominates and the expression for the potential can be approximated
by V(¢) ~ —Vye . This is the ekpyrotic potential that is known from (103)
in the previous section.

During each cycle the universe undergoes a large net expansion. The ap-
proximate number of e-folds by which the scale factor grows per cycle is
[70]

2Vke

Nae + Ny + =5 (111)

Here, Ny is the number of e-folds of dark energy domination, N, is approxi-
mately the number of e-folds of matter and radiation domination and the last
term quantifies the expansion during the kinetic energy dominated phase(s).
During the ekpyrotic phase the scale factor decreases by a very small amount,
so that its contribution to the overall change of the scale factor during a cycle
can be neglected. In contrast to this large net expansion, some quantities un-
dergo a periodic evolution and return to their original value after each cycle.
This is true for example for the Hubble parameter. It is decreasing during
the standard hot big bang evolution and during kinetic energy domination.
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During the dark energy dominated epoch it is approximately constant. In
the ekpyrotic phase it undegroes a large increase which balances the decrease
in the preceding phases. This leads to the condition [70]

Nek ~ 2(Nr + ’yke), (112)

where N is defined by the growth of the Hubble parameter which increases
by a factor of eMNer during the ekpyrotic phase. (112) is the condition that
needs to be fulfilled for the Hubble parameter to return to its original value
after each cycle. Other locally measurable quantities also undergo zero net
change per cycle, most notably the entropy density. Typical values for the
number of e-folds of the respective regimes are for example N, & 55, yg &= 7
and Ng. ~ 60 [41, 31]. From (112) this leads to N ~ 124. Also, from
(111) it can be seen that for these values the scale factor grows by a factor
of approximately e'?° every cycle.

The evolution of the cyclic universe can be described by the first and second
Friedmann equations, given in (1) and (10). The background metric is the
flat, homogeneous and isotropic Friedmann-Robertson-Walker metric (12).
The energy density of the universe is composed of a scalar field, radiation
and non-relativistic matter. The radiation energy density p, and the matter
energy density p,, are both coupled to the scalar field. This coupling is given
by a function 3(¢). Using the expression for the energy density of a scalar
field py in (13), the first Friedmann equation (1) reads

TG
3

2 =T (L# V) + 8@+ o)) (13)
Using the expressions for the energy density and pressure of a scalar field
(13) and (14) and recalling that for radiation p, = p,/3, while for matter
pm = 0, the second Friedmann equation (10) is found to be

L TE(# v+ (b gen)). 10

a 3 2
The coupling (3(¢) is of crucial importance to the cyclic model. The matter
and radiation energy densities couple to the effective scale factor of the brane
af3 instead of the usual four-dimensional scale factor a, so that p, o (a3)™*
and p,, o< (af)73. By choosing 3 appropriately one can ensure that a3 be-
comes constant and nonzero as a — 0 [36]. Therefore, due to their coupling
to the scalar field ¢, the energy densities of matter and radiation are finite at
the big crunch. Using the energy conservation equation in (16), where p and
p represent the sum of all energy densities and pressures that are present,
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respectively, and making use of the scaling of the matter and radiation den-
sities with the brane scale factor, the equation governing the evolution of the
scalar field ¢ can be found. It is given by

b+ 3HG =~V — B65 pm. (115)

It can be seen that the radiation density does not show up in this dynamical
equation of motion. This makes sense, because for p, o< (a)™* the term
B34(¢)p, is independent of ¢.

The expyrotic phase is preceded by a period of dark energy domination. Dur-
ing this period of accelerated expansion the radiation and matter densities
become negligible, therefore the equations of motion describing ekpyrosis are
dominated by the scalar field and its potential. When neglecting the radi-
ation and matter components the first Friedmann equation (113) and the
equation of motion for the scalar field (115) reduce to the single-field equa-
tions of motion (15) and (18) respectively. These are the same equations as
found in section 4.1 when discussing the dynamics of the ekpyrotic phase.
Since we also found that in the ekpyrotic period the cyclic potential (110) re-
duces to the ekpyrotic potential V(¢) ~ —Vpe=°?, during the ekpyrotic phase
of the cyclic model the scaling solution (104) can indeed be used. Similarly,
a scaling solution for the kinetic energy dominated phase can be derived.
During this phase the radiation and matter energy densities can again be
neglected. Additionally, the potential tends to zero as ¢ decreases. There-
fore, in this phase one can approximate V(¢) ~ 0, V,(¢) ~ 0. The first
Friedmann equation in the cyclic model (113) then reduces to

_ AnG

H? = T&. (116)

The equation of motion for the scalar field (115) is also significantly simplified
¢+ 3Hd=0. (117)

Then, from (116) one can find that the scale factor depends on the scalar field

as a(¢p) o« eV, Using this and the evolution equation for the scalar field
(117) one can find an expression for ¢(¢) during kinetic energy domination
which can then be used to find the dependence of the scale factor on time.
This leads to the scaling solution in the kinetic energy dominated phase

a(t) o< (—t)3, o(t) = log(—t) + ¢,  (118)

127G
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where ¢g is a constant. From this expression one can see that the kinetic
energy density scales as a=®. One should recall that the anisotropy energy
density scales with the same power of a. This implies that the relative impor-
tance of anisotropies after the ekpyrotic phase is constant as the big crunch

is approached.

An important variation of the cyclic model, the so-called Phoeniz Universe,
has recently been proposed [31, 32]. While the discussion above focussed on
the single-field version of the cyclic model, this scenario unfortunately does
not lead to the generation of scale-invariant curvature perturbations [27].
The most popular approach to generating the required spectrum of pertur-
bations is the entropic mechanism [28]. The cyclic model of the universe that
relies on this mechanism is called the phoenix universe. The entropic mecha-
nism requires at least two scalar fields that evolve along an unstable classical
trajectory during the ekpyrotic phase. This mechanism will be discussed in
detail in section 4.4. Even though the correct scalar perturbation spectrum is
generated, due to the instability of the trajectory a large part of the universe
is diverted from it by quantum fluctuations, inhomogeneities grow and even-
tually almost the entire universe becomes trapped inside black holes. This
leads to an important modification of the cyclic universe scenario discussed
above. While in the single-field case virtually the entire universe survives
after each cycle, in the phoenix universe an extremely large fraction of the
universe does not make it through the ekpyrotic phase. The cyclic model is
saved by the phase of accelerated expansion that precedes ekpyrosis. If this
phase lasts sufficiently long, the region of space that can stay on the classical
trajectory during ekpyrosis expands enough to, after the big bang, form the
flat and homogeneous universe observed today. In the single-field model only
a few e-folds of accelerated expansion were required to ensure that the cyclic
model was a stable attractor. In contrast, in the phoenix universe a much
longer duration of this phase is needed. The required number of e-folds is
roughly [31]
2y

Nde>Nek_ r_?- (119)

Using the approximate values N, =~ 55, v &~ 7 [41] and the resulting N ~
124 which was found above gives Ny > 64. If this requirement is satisfied,
a tiny initial patch that fulfils the right conditions will grow from cycle to
cycle and lead to a sufficiently large homogeneous and isotropic domain to
represent the observable universe. One can picture this evolution as most
of the universe turning to "ash” at the end of each cycle, while only a tiny
fraction makes it to the next cycle to form a new flat, homogeneous and
isotropic universe. This explains the name ”phoenix universe”.
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4.3 The Ekpyrotic/Cyclic Universe and the Cosmolog-
ical Problems

Flatness problem

A phase of ekpyrotic contraction preceding the big bang can account for the
flatness of the universe observed today. Using (21) it can be seen that in
a contracting universe the energy density component with equation of state
w > 1 dominates the evolution, while the relative importance of the spatial
curvature rapidly decreases. Therefore, the universe becomes increasingly
flat during the ekpyrotic phase.

To quantify this statement, one should recall the expression for the cosmo-
logical parameter Q(t) given in (3). It is known from (104) that the scale
factor is slowly decreasing during the ekpyrotic phase, while the Hubble pa-
rameter is growing rapidly. Therefore, during the ekpyrotic phase a(t) can
be approximated to be constant. The relation in (4) can then be written as

QR —1  (HED\" o,
ﬂ<t5k>—1”<H<t§k>> = (120)

where t&F and t* are the times at which the ekpyrotic phase begins and ends,
respectively. Since from (104) it is known that during ekpyrosis H(t) oc t71,
this can be rewritten in terms of #{* and t*. (120) then reads

Q) -1 (ti’“)g‘ (121)

1ok
tb

Since the big crunch/big bang transition occurs at t = 0, || is decreasing
during the ekpyrotic phase. Therefore, the ratio in (121) is smaller than
unity and the universe is flattened during the contraction.

Today the cosmological parameter is of order unity. The ekpyrotic phase
is separated from a state of the universe as observed today by a period
of acceleration during which the cosmological parameter will become even
closer to unity. Therefore, one can use Q(tf*) — 1 ~ O(1). Furthermore,
let us assume that the radiation dominated phase starts at the Planck time.
While this is certainly an overestimate, it will provide a good idea of how
stringent the conditions on the duration of the ekpyrotic phase have to be to
solve the flatness problem. At the Planck time the value of the cosmological
parameter is Q(t,)—1 < 107% as known from section 2. Assuming that a flat
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universe can re-emerge as such after the big crunch, and that the value of the
cosmological parameter at the end of the ekpyrotic phase is approximately
the same as at the beginning of radiation domination, one can find from (121)
that

|t > 10%)eck). (122)

If the ekpyroptic phase ends sufficiently close to the big crunch/big bang
transition, this will lead to a short minimum duration. Assuming that the
ekpyrotic phase ends approximately 10%¢,; before the big crunch, as suggested
in [41], we find

teF] > 10%0 - 10% - 1075 = 107 1%, (123)

Compared to cosmological time scales this is a very short minimum duration,
so that the condition for solving the flatness problem is easily fulfilled. This
condition can be reformulated in terms of N.;. Using the same approxima-
tions as above, from (120) it can be found that solving the flatness problem
requires N, > 70. As was discovered in section 4.2, in the cyclic model
a typical value is N, ~ 120. Therefore, the requirement on N is easily
fulfilled and the flatness problem can be solved.

Between the ekpyrotic phase and the onset of radiation domination there is
a kinetic energy dominated phase. In order for the above considerations to
be valid we have to make sure the flatness accomplished during the ekpyrotic
phase is not destroyed during kinetic energy domination. The scale factor

undergoes a net increase of a factor % in this phase. Using the scaling
solution (118) this leads to a shrinking of the Hubble parameter H(t) o
a=3(t) by a factor of e=?%<. Using (4) it can then be found that during the
kinetic energy dominated phase the cosmological parameter changes as

Q(tkln) - 1 8Yke
—C £ —e 124
Q(ﬁgln) -1 e 3, ( )

where 15" ~ % and t*" are the times at which kinetic energy domination
begins and ends, respectively. Since vz, > 1, during this phase the universe
becomes less flat. For example, v, &~ 7 [41] would lead to a ratio of approxi-
mately e' ~ 108. Therefore, in order to solve the flatness problem, a longer
duration of the ekpyrotic phase than given in (123) is needed. However, the
effect of the kinetic energy dominated phase is relatively small and the re-
sulting required duration is still very short, so that the flatness problem can
easily be solved.
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Homogeneity /Horizon problem

The universe that we observe today is incredibly homogeneous within the
horizon. From (21) it can be seen that if a scalar field component with
equation of state w > 1 is present in a slowly contracting universe, the
relative importance of the anisotropy term decreases and the scalar field
comes to dominate the energy density. Therefore, during the ekpyrotic phase
the universe becomes increasingly homogeneous. During the following kinetic
energy dominated phase with equation of state w = 1 the anisotropy term is
constant relative to the scalar field energy density, so that the homogeneity
generated during the ekpyrotic phase is preserved.

In the cyclic model the universe was not created at the big bang, but has
been in existence for a large number of cycles, possibly infinitely many. It was
shown in section 4.2 that the scale factor undergoes a large net increase every
cycle. Therefore, in the previous cycle the region that is inside our horizon
today was only a few kilometres in diameter. The Hubble parameter returns
to its original value after each cycle, so that the Hubble radius H~'(¢) today
has a similar value as it had at this stage of the previous cycle. Therefore,
even though earlier in the hot big bang phase the regions making up the
observable universe were causally disconnected, they had plenty of time to
be in causal contact in the previous cycle. This explains why the universe is
so homogeneous on large scales within the horizon.

Origin of large-scale structure

During the ekpyrotic phase cosmological perturbations can be generated that
lead to the formation of galaxies and temperature fluctuations in the mi-
crowave background after the big bang. Scalar density perturbations with a
nearly scale-invariant spectrum can be formed, which then seed the formation
of large-scale structure in the next cycle. The origin of these perturbations
can be explained using the higher dimensional braneworld picture. The two
boundary branes become very flat and parallel when approaching each other
during the ekpyrotic phase. However, during the brane movement quantum
fluctuations cause small ripples in the branes, leading to differences in the
exact time of collision across the branes. Since areas where the collision
takes place earlier have more time to cool, the result is small fluctuations
in the temperature across the universe that can be observed in the cosmic
microwave background.
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In order to explain the origin of the modes that enter the horizon during
the hot big bang phase, a similar strategy as in inflationary cosmology is
applied. The modes were once in causal contact, but left the horizon during
the ekpyrotic phase. To accomplish this they had to increase in size relative
to the horizon. In the ekpyrotic phase this is achieved due to a rapidly
decreasing Hubble radius |H(t)|™!, so that the horizon is shrinking, while
the size of the fluctuation modes stays approximately the same. Therefore,
the quantum fluctuations eventually span superhorizon scales. Modes leave
the horizon during the ekpyrotic phase and eventually re-enter it during the
hot big bang phase. Due to gravity these perturbations then grow with time
and ultimately lead to the formation of large structures.

During the ekpyrotic phase both scalar and tensor perturbations are gen-
erated. The ekpyrotic model also predicts the generation of a significant
amount of non-gaussianity. The detailed calculations of the spectra of scalar
and tensor perturbations will be given in section 4.4.

Monopole problem

The cyclic universe scenario manages to explain the absence of magnetic
monopoles and other topological defects in a simple manner. In this model
the matter in the universe is created at a slightly inelastic collision of branes.
At this collision some of the scalar field kinetic energy is converted to radi-
ation and non-relativistic matter and the hot big bang phase begins. The
collision happens at a finite temperature, so that the temperature of the re-
heated universe is also finite. The mass scale at which unwanted relics are
produced coincides with the mass scale of grand unified theories of approxi-
mately 106 GeV. If the maximum temperature that is reached in the cyclic
universe lies well below this scale, formation of heavy topological defects
will be highly suppressed. This can explain why a negligible abundance of
magnetic monopoles is observed.

4.4 Generation of Cosmological Perturbations

In the ekpyrotic/cyclic model of the universe density fluctuations are gener-
ated during the ekpyrotic phase preceding the big bang. These fluctuations
seed the formation of large-scale structures during the hot big bang phase. In
this scenario both scalar and tensor perturbations are generated. In the fol-
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lowing first the scalar perturbations will be analysed to linear order, then the
non-gaussian corrections will briefly be discussed and finally the spectrum of
tensor perturbations will be calculated.

Scalar perturbations

The generation of scalar perturbations in the ekpyrotic/cyclic universe dif-
fers somehow from the mechanism applied in single-field inflation that was
discussed in section 3.3. The fluctuations of only one scalar field cannot lead
to the generation of a perturbation spectrum with the required properties
during the ekpyrotic phase. For generation of the correct spectrum at least
two fields have to be present. In the single-field case the Newtonian potential
® does acquire a nearly scale-invariant spectrum, but the spectrum of the
curvature perturbation on comoving hypersurfaces R turns out to be very
blue [27, 71, 72]. Such a spectrum is observationally exluded [3]. The ex-
planation for this is that Newtonian potential and curvature perturbations
correspond to two different modes that do not mix. In a contracting uni-
verse the Newtonian potential corresponds to a growing mode time-delay
perturbation. The curvature perturbation, which is the growing mode in
an expanding universe, corresponds to the decaying mode in the ekpyrotic
phase. Therefore, in a single-field ekpyrotic model a scale-invariant spectrum
of curvature perturbations cannot be obtained.

There are several ways to tackle this problem. One approach is to employ
mixing of the Newtonian potential and the curvature perturbation at the
bounce. When the two types of modes mix the time-delay mode could domi-
nate on large scales, leading to a nearly scale-invariant perturbation spectrum
after the big bang. Such models usually employ higher dimensional effects
and the breakdown of the four-dimensional effective theory close to the big
crunch. Examples for such a mixing have for example been given in [73, 74].
Unfortunately, a complete five-dimensional description of the scenario does
not exist and matching the description at the bounce with the effective four-
dimensional theory remains difficult.

A different approach in which an almost scale-invariant spectrum of curva-
ture perturbations can be obtained before the big bang has recently been
discovered, the entropic mechanism [28, 75]. A major advantage of this ap-
proach is that it can fully be described by ordinary four-dimensional effective
physics. In the following we will rely on this mechanism in order to demon-
strate how a nearly flat spectrum of curvature perturbations can be generated
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in the ekpyrotic/cyclic model. The entropic mechanism requires the presence
of at least two scalar fields, which move along an unstable classical trajec-
tory. In the higher dimensional set-up underlying the model, the presence
of two scalar fields can easily be accommodated [65, 66]. One of the fields
parameterises the separation of the two boundary branes, while the other
one corresponds to the volume modulus of the internal Calabi-Yau manifold.
During the ekpyrotic phase both fields roll down a steep, negative potential,
so that each field develops nearly scale-invariant perturbations. This leads
to a nearly scale-invariant spectrum of entropy perturbations, which in a
collapsing universe corresponds to a growing mode [76]. This spectrum can
be converted to a spectrum of curvature perturbations with the same prop-
erties before the big crunch. Such a conversion can for example be achieved
using a bounce of the four dimensional scalar field trajectory at a boundary
in moduli space when approaching the big crunch/big bang transition. Such
boundaries do occur naturally in the higher dimensional theory, as will be
discussed below. After the big bang the entropy perturbations decay and
only the nearly scale-invariant spectrum of curvature perturbations, which
are growing mode perturbations in an expanding universe, is left to seed the
large-scale structures observed today.

The following analysis of the entropic mechanism of generating scalar pertur-
bations during the ekpyrotic period is based on the calculation in [28]. Part
of the calculation is very similar to the corresponding derivation in single-
field inflation, so that for the details of these steps the reader will be referred
to section 3.3.

The action describing the generation of entropy perturbations via the en-
tropic mechanism is the two-field version of the ekpyrotic action (100)

R 1

S = /d4x\/—g (—— + =

1
167G 28ﬂ¢1au¢1 + 58;%}528“@52 - V(¢1a ¢2)> : (125)

This is the action for two scalar fields with canonical kinetic energy that
interact only through gravity. The background evolution is described by the
two-field version of the scaling solution given in (104). Both of the fields roll
down a steep, negative potential. The overall potential V' (¢1, ¢5) is therefore
given by the sum of two ekpyrotic potentials

Vg1, ¢2) = Ve Jedér _ Vge’f”d@, (126)

where ¢; is a slowly varying function of the corresponding scalar field ¢; =
ci(¢;) and Vi, Vo > 0 are positive constants. In the following it will be
assumed that the two fields simultaneously approach —oo. The dynamics of
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this system can be described in terms of two new variables o and s [77, 78].
o defines the ekpyrotic or adiabatic direction pointing along the trajectory.
s defines the direction transverse to the trajectory and thus transverse to o.
The two variables are given by a rotation in field space

0 = cos ¢y + sin O¢s, s = cos Oy — sin Oy, (127)

where 6 is the angle of the field space trajectory. In the following calculations
it will be useful to work with the time-derivative of ¢ which is given by

o= B+ & (128)

The equation of motion for ¢ can be found by adding up the equations
governing the evolution of the two scalar fields ¢q,49 given in (102) and
making use of the expression for ¢ (128). It is found to be

G+3H6+V, =0, (129)

with V, = V4 cost + V4, sinf. This expression for V,, could alternatively
be written entirely in terms of the two scalar fields and the potential by using
that [79]

cos@zﬁ, sin&zﬁ.
o o

(130)

One can take the derivative of one of these expressions and use the evolution
equations for the scalar fields and o given in (102) and (129), respectively.
After substituting the expressions involving 6 using (130) one can find an
equation relating the change of the angle of the background trajectory in
time to the potential defined in (126)
i Y92 = V&1
)

g

(131)

Now that the general scenario is set up the behaviour of the perturbations
can be analysed. Using the variables ¢ and s one can identify two differ-
ent types of perturbations. Entropy or isocurvature perturbations ds are
perturbations transverse to the direction of the background trajectory, i.e.
along the entropic direction defined by s. Perturbations along the ekpyrotic
direction ¢ and thus along the trajectory correspond to adiabatic or curva-
ture perturbations do. From (127) the perturbations can be found and, after
substituting (130), are given by
_ 0291 — 0192

_ 5¢1G§1 + 5¢2¢2 5s

o o

oo

(132)

50



Both of these perturbation modes are gauge-invariant. Here, the variable
of interest is the entropy perturbation ds, since in a contracting universe ds
corresponds to a growing mode.

It should be noted that due to the presence of more than one scalar field the
background trajectory is unstable to small perturbations [28, 80]. In fact, it
moves along a ridge of the potential [77] and has to follow it closely for a
sufficient amount of time for this model to work. This is precisely what led
to the modification of the cyclic universe scenario that was discussed at the
end of section 4.2, the so-called phoenix universe.

The general equation of motion for the entropy perturbation in Fourier space
is found for example in [79] and reads

05+ 3Hos + (392 + k— + vss) 55 = — ¢ (ﬁ> D, (133)
271G &

Here, V4 is the second derivative of the potential V' (¢1, ¢2) with respect to
the variable s. To simplify the analysis of this equation it will be assumed
that the trajectory is given by a straight line in field space, such that the
angle of the trajectory does not change in time § = 0. In fact, from the
scaling solutions in (104) and (118) one can see that ¢; o ¢t~!. This implies
that tan(d) = ¢1/¢, is time independent, and thus taking § = 0 is a well-
motivated approximation during the ekpyrotic and kinetic phases. As can be
seen from (130) this also implies that the time derivatives of the two scalar
fields are the same up to a constant factor él = éz /7, with 7 a constant
which is usually of order unity. Additionally, from (131) one can see that
this approximation leads to a constraint on the potential, given by

‘/,¢>1 (b.Q - V,¢2él =0. (134)

Using the proportionality of ¢ and ¢, one can integrate this to find

V(r bo) = V(1) + 72V (ﬁ) , (135)

where V' is some function and a constant term has been ignored.

For a straight trajectory the source term on the right hand side of the equa-
tion of motion for the entropy perturbation (133) vanishes and the equation
simplifies to

. . k2
05+ 3Hés + (? + v) = 0. (136)
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We would like to have an equation of motion of the same form as (69), so
that the results of section 3.3 can be used. To achieve this a new variable
v = ads is introduced and substituted for the density perturbation. Also,
from now on conformal time 7 instead of cosmological time t will be used.
The equation of motion in (136) then reads

vor+ (K2 = 2y @®Vys) v =0, (137)

In order to solve this equation the term in the brackets preceding v will
be expressed in terms of the fast-roll parameter €, which has been defined
in (106), and its derivative with respect to M = In(a(t)/a(t%,)). In the
following, derivatives of € with respect to M of second order, €y, and
higher will be neglected and the results will be given to sub-leading order in

€.

The first expression of interest in (137) is a ./a. This can be rewritten in
terms of the fast-roll parameter by using its definition in (106), substituting
H by the scale factor and its derivatives and rewriting the resulting expression
in terms of conformal time. One finds that
a rr _
L =H*(2—¢). (138)
a
The second term of interest is anss. To express this is terms of the fast-
roll parameter one should notice that the approximations used here imply
that V,, = V. From the two-field versions of the equations of motion
in the ekpyrotic phase, given in (101) and (102), one can see that H =
—47G(¢2 + ¢3). One can then relate the fast-roll parameter € to the variable
o as
_ o
To find an expression for V., = V,, one should differentiate this expression
twice with respect to time and use the fact that €, = H '€ and that terms
of order € /) are neglected. One should then differentiate the equation of
motion for o given in (129) and substitute derivatives of ¢ by expressions
involving the fast-roll parameter. After a few calculations one obtains
5
Ve~ H?(6€ — 28 + §€,M). (140)

The next step is to find an expression for ‘H in terms of conformal time. Such
an expression can be derived using (138), which can be rewritten as

77:’; =1-¢ (141)
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This can be integrated to give

1 T
= /0 dreé(r) — 7. (142)

One can solve the remaining integral using a step-by-step procedure. The
expression 1 = d(7)/dr is inserted under the integral and an integration by
parts is carried out. After applying this procedure twice (142) reads

1 —T—I—TE—TQET—F/ dr (1(7€,) 7). (143)
H ' 0 n

The remaining integral in this expression can be neglected. One can see this
by rewriting the expression underneath the integral using €, = He ) and
inserting an approximate expression for H. Such an expression can be found
by calculating the dependence of a(t) in (104) on conformal time

a(t) o< (—71)7-7. (144)

Assuming p is constant one can then write H = a ,/a in terms of € and find
that to leading order H = (¢7)~!. Using this one obtains

_ e
(T6-) .7 = (GTM> TR - (GTM> . (145)
T M

’ € €

)

One can thus see that the integral in (143) is of O(¢72), so that it can be
neglected. An expression for H can then be obtained from (143). It is given
by

1 1
Hrey ——————. 146
E1- ) e
Again neglecting terms of O(¢72) or higher one can find
1 2 26
2 — (142428 147
H (76)2(+€+€2 (147)

Using this in combination with (138) and (140) the equation of motion for v
in (137) reads

Vg —z
Vor (k:2 - 4) =0, (148)

where

T (149)

This is exactly the same equation as (69), which was found during the analysis
of the evolution of scalar perturbations during inflation, with vz substituted
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by v, and v exchanged with v. We are primarily interested in determining
the spectral index ng, since this will be contrasted with the value generated
during inflation and compared to observations in section 5.2. The precise
shape of the power spectrum is of less interest, because for an exact esti-
mate of the amplitude of the curvature perturbations more details about
the conversion process from entropy to curvature perturbations would have
to be known. Following the same steps as in section 3.3 one can find the
wavenumber-dependence of the variable v in the large-scale limit

)
(k)| o k\/_E (150)
The power spectrum of the entropy perturbation Ps is defined as
13
Pss(k) = ﬁ|55|2- (151)

Recalling that és = v/a and inserting this and (150) into (151) it can easily
be seen that Pss(k) oc k*72s. The spectral index of the spectrum of entropy
perturbations generated during the ekpyrotic phase is then given by

(152)

The positive term on the right-hand side is a gravitational contribution which
tends to shift the spectrum to the blue. The negative term has a non-
gravitational origin and shifts the spectrum to the red. Depending on which
term dominates the ekpyrotic scenario can lead to a slightly blue or a slightly
red spectrum. The fast-roll parameter is very large, usually of O(100), so
that, independent of which one of the terms dominates, the deviation from
scale-invariance is very small.

It has been shown that during a slowly contracting phase a nearly scale-
invariant spectrum of entropy perturbations can be obtained using the en-
tropic mechanism. However, what is observed today is a spectrum of nearly
scale-invariant curvature perturbations. Therefore, a mechanism to convert
entropy perturbations to curvature perturbations is needed. Such a conver-
sion can happen due to a bending of the trajectory in field space. There
are different possibilities for how this type of conversion can take place. The
most important conversion mechanisms are kinetic conversion [28], ekpyrotic
conversion [77, 78] and conversion via modulated preheating [81].

For conversion via modulated preheating the conversion takes place shortly
after the big bang. It relies on the presence of massive matter fields and their
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coupling to ordinary matter, with a coupling strength that depends on the
entropy perturbation ds. While this leads to a viable theory of conversion,
its predictive power is limited, since the exact dependence of the coupling on
0s is unknown.

The ekpyrotic conversion mechanism relies on the conversion taking place
during the ekpyrotic phase, when the trajectory moves away from the ridge
of the potential and falls off one of the sides. While this is an acceptable
conversion mechanism, the resulting predictions for non-gaussianity [82] do
not agree well with observations [19].

Due to the shortcomings of ekpyrotic conversion and conversion via mod-
ulated preheating, this review will focus on kinetic conversion. Curvature
perturbations are created from entropy perturbations shortly before the big
crunch, when the universe is in the kinetic energy dominated phase. This
leads to predictions for the spectral tilt and non-gaussianity [82] that agree
well with observations [19]. It should however be noted that, in order for the
conversion not to happen during the ekpyrotic phase, the trajectory must
stay very close to the ridge of the potential for a sufficiently long period of
time.

Kinetic energy domination starts at the end of the ekpyrotic phase at time
te® . For kinetic conversion of entropy perturbations to curvature pertur-
bations a bending of the trajectory in scalar field space after this time is
required. Such a bending occurs naturally in the higher-dimensional pic-
ture. As discussed at the beginning of section 4, the cyclic model can be
described by a scenario in heterotic M-theory relying on the collision of
two branes which have opposite tensions. The negative tension brane en-
counters a spacetime singularity shortly before the collision, at which the
six-dimensional manifold shrinks to zero size [83]. In the effective four-
dimensional theory this leads to a boundary between field and manifold
space at ¢o = 0, so that the scalar field space is restricted to the half plane
—00 < @1 < 400,—00 < @y < 0. Close to the boundary at ¢ = 0 an effective
repulsive potential becomes important. Due to this potential the background
trajectory bounces off the boundary, leading to a bending of the trajectory
just before the big crunch/big bang transition. This bounce is assumed to
be elastic, so that none of the field’s energy is lost.

This scenario illustrates that a bending of the trajectory taking place just
before the big crunch can easily be accommodated in the higher-dimensional
picture. To keep this discussion general, the following calculation will apply
to any such bending occurring during kinetic energy domination, independent
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of its origin.

The quantity of interest is the curvature perturbation on comoving hyper-
surfaces R. The time derivative of this quantity can be found from the
perturbed Einstein field equations and is given by [79]

. H /[ k2 D? ¢z ]

R = VU — 871Gy, s ). 153

bt ( i D ) (153)

Here, ¥ is the potential defined in (38), g¢;;(¢) is the Kéhler metric and
D?/Dt? is the geodesic operator on scalar field space. Since the case of
two scalar fields is considered, in this section Roman indices correspond to
i,7 = 1,2. The quantity s is defined as

¢z g]k¢ 5¢

Grst" 0"
Since the analysis is carried out in flat scalar field space, the metric reduces to
gij = 0ij. Also, the geodesic operator simplifies to a normal time derivative.

The two variables s! and s? can then be calculated. Using the definition of
the entropy perturbation ds in (132) one finds

st =8¢ — (154)

st = —g'bgﬁ, §% = gz'slis. (155)
g g

Combining this with (153) it can be seen that R depends on the entropy
perturbation ds, such that a nonzero entropy perturbation can source a cur-
vature perturbation. One should note that our main interest is superhorizon
entropy perturbations. Therefore, it is sufficient to work in the large-scale
limit, in which the first term on the right-hand side of (153) can be neglected.
This gives )
D 7
R~ —8rG— 5@] Dtﬁ
It can be seen that for a straight line background trajectory in scalar field
space one finds R = 0 and the entropy perturbation does not source the cur-
vature perturbation. For a successful conversion a deviation from a straight
trajectory is needed. We will assume that this deviation results from an in-
stantaneous reflection of ¢ off a boundary at ¢, = 0 at time ¢,. It should
be noted that, while this is a convenient choice, the results are actually in-
dependent of the exact position of the boundary or which of the two fields is
reflected. The trajectory in field space can be described by

(156)

Q52 t<ty = —0492517 éz t>t, = +@€51, (157)
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where a > 0 is a constant and (b.l is constant and negative $1 < 0 close to
the bounce. This implies that before the bounce ¢, was growing, while after
the bounce it is decreasing. Since the bounce happens instantaneously it can
be described by a delta function, so that

D¢,
Dt?

= 20, (t7)0(t — ty). (158)

Inserting this into (156) it can be seen that on large scales a nearly scale-
invariant spectrum of entropy perturbations is instantaneously converted into
a spectrum of curvature perturbations with the same properties.

In order to find an expression for the curvature perturbation on comoving
hypersurfaces (156) needs to be integrated. Since conversion happens during
the kinetic energy dominated phase, the calculation can be simplified by
making use of the scaling relation (118). This relation implies that H(t) =
(3t)~1. Using this, inserting (158) and the expression for s* given in (155)
into (156) and then evaluating the integral using the delta function, one finds

$10

.9 .
Vo + 07
Ultimately, the quantity of interest is the variance of the spatial curvature

perturbation, < R? >. Making use of (157) and applying the two-field
version of the first Friedmann equation (116) to substitute ¢;, one obtains

R = 167G tb . (SS(tb). (159)

647G 2
<RZ>= 2T a 5 < 0s” > (160)
3 (1+a?)

It can be seen that, in this approximation, the behaviour of the entropy per-
turbation gets directly translated into the curvature perturbation. Therefore,
the spectrum of curvature perturbations inherits the spectral index and thus
also the near scale-invariance from the entropy perturbation spectrum.

One can use the almost perfect scale-invariance of the entropy spectrum to
get a rough idea of the value of < R? >. This is done by approximating
< §5? > to be completely scale invariant, so that, after restoring the Planck
constant i, it is given by [28]

dk 1

02 >=h [ ——.
<052 472 kt?

(161)

Unfortunately, this approximation is only valid until the end of the ekpyrotic

phase at % ;. At this time kinetic energy domination begins and the potential
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becomes irrelevant. After inserting H(t) = (3t)~! the equation of motion
(136) in the large scale approximation during kinetic energy domination reads

05 + % =0. (162)
This results in a logarithmic time-dependence of the entropy perturbation
during the kinetic phase ds = A + Bln(—t). One should recall that dur-
ing the ekpyrotic phase ds o t'. By requiring the expressions for ds
during the kinetic phase and the ekpyrotic phase and the corresponding
first derivatives to coincide at ¢t = ¢, one can determine the constants
A and B. It is then found that during the kinetic energy dominated phase
ds(—t) = ds(—t ) (1+In(—t ) —In(—t)). After inserting this and (161) and
using that the time at which the ekpyrotic phase ends can be approximated
as tF 2 = 2(2|V (¢ ))])~L, (160) finally reads

end end

e . a? tf N\ [ dk
< R2 >=Hh 3.2 62’V<te712d)’ <m) <1 +1In < tbd>> /? (163)

This is of course just a rough estimate. However, it has been found that values
of ¢ and V(t% ) that lead to a value of < R? > that matches observations
can easily be accommodated by heterotic M-theory [84]. Therefore, the cyclic
model is able to achieve a realistic value for the amplitude of the curvature

perturbations, which is an important finding for the consistency of the model.

One should note that in order for the ekpyrotic/cyclic model to have pre-
dictive power one has to make an assumption about how the pre-big bang
contracting universe passes through the singularity and matches onto the
post-big bang expanding universe. There are many different theories about
the dynamics at the big crunch/big bang transition and their effect on the
evolution of the spectrum of curvature perturbations (see e.g. [74, 72, 85,
63, 27, 86, 87, 71, 88, 89, 90, 60]). Unfortunately, no complete description
of these dynamics has been developed so far. Therefore, in this paper it will
be assumed that the exact dynamics at the bounce are not important, so
that the generated perturbations can pass through the bounce unmodified
[27]. Furthermore, it is assumed that the evolution of the perturbations is
essentially uneffected by the dynamics in the early pre-big bang universe,
up to the stage of nucleosynthesis. Of course, these assumptions need to be
re-investigated as soon as the physics of the bounce is better understood.
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Non-gaussianity

In the previous section the curvature perturbations generated via the entropic
mechanism have been analysed to linear order. When extending this analysis
to include higher-order terms one can find non-gaussian corrections to the
calculated spectrum. A detailed calculation of the amount of non-gaussianity
generated in the ekpyrotic/cyclic model is beyond the scope of this paper.
For such a calculation see e.g. [82, 91]. However, since a strong non-gaussian
signature is an important prediction of the model, in this section the results
of these papers will be stated and a rough outline of the main steps of the
calculation will be given.

Density perturbations are generated during the ekpyrotic phase when the
scalar fields are rolling down a steep potential. Due to the steepness of the
potential substantial non-linear self-interactions of the scalar fields are tak-
ing place during this process, leading to the generation of a large amount
of non-gaussianity. The non-gaussianity predicted by the ekpyrotic/cyclic
model is generally of local form [92]. In order to calculate the non-gaussian
signature generated during the ekpyrotic phase, the calculation of the evolu-
tion of scalar perturbations given in the previous section has to be extended
to include second-order terms. The analysis can also be carried out to higher
orders in perturbation theory, however, the second order non-gaussianity is
the most important contribution and we will limit our discussion to this. The
entropy perturbation can then be written as 6s = sV + §s®) | where §s™) is
the linear, gaussian part that has been analysed above and s corresponds
to a second-order perturbation. The starting point for the calculation is the
equation of motion in (136), extended to include second-order terms. Again
the analysis can be carried out in the large-scale limit. By expanding the
potential given in (126) up to third order in terms of o and s and using the
resulting expression to simplify the equation of motion, the entropy pertur-
bation ds(t) up to second order in the field perturbations can be found.

After the non-gaussianity in the entropy perturbation is generated it is im-
printed on the curvature perturbation R. Different possible conversion mech-
anisms have been discussed in the previous section. We will again assume
that the conversion happens shortly before the big bang during kinetic en-
ergy domination. This is a valid choice, since the amount of non-gaussianity
predicted by models that rely on conversion during the ekpyrotic phase [82]
does not agree well with current data [19]. The resulting non-gaussian con-
tribution to the curvature perturbation is the non-gaussianity that can be
measured today. The evolution of the curvature perturbation on large scales
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given in (156) also has to be extended to include second-order terms. The
curvature perturbation on comoving hypersurfaces is then given by (77). As
in the inflationary scenario, Ry is the gaussian curvature perturbation that
has been calculated in the previous section and the second term corresponds
to a non-gaussian contribution. The non-gaussianity parameter fyr is the
quantity that we wish to calculate. The contributions to this parameter can
be subdivided into three parts fag = firrinsic 4 fareo e 4 freflect"  The
first parameter, farinsic g a result of the nonlinearity in the entropy per-
turbation that is directly translated into non-linearity in the curvature per-
turbation. Therefore, this contribution is caused directly by self-interactions
of the scalar fields during the ekpyrotic phase. The second term, far9"*,
results from the nonlinear relation of the curvature perturbation and the en-
tropy perturbation and is generated during the ekpyrotic phase. The last
term, fii'“"" has the same origin, but is generated during the process of
conversion. The conversion takes place during the kinetic energy dominated
epoch, therefore the equation of motion (162) applies in the large-scale limit.
Assuming that the conversion is gradual, such that the second and higher
time derivatives of the bending angle are zero, the evolution of the first and

second order entropy perturbations during conversion can be studied.

After a few calculations the three contributions to fy; can be found. The
intrinsic contribution is found to be proportional to /€, where € is the fast-
roll parameter during the ekpyrotic phase defined in (106). The intrinsic
contribution can be of either sign. far"*“? is independent of €, so that it
only shifts the overall result by a constant. The same is true for the reflected
contribution, which corresponds to a negative shift. The exact value of the
shift resulting from f;fglemd and f}'\%egmwd depends on the properties of the
conversion. The overall value of fyy, for conversion during the kinetic energy

dominated phase is approximately given by [82]

3
fNL = 503\/g+ 5, (164)

where c3 is a constant of order unity. It can be seen that, depending on
the sign of c¢3, the non-gaussianity parameter fy; can be either positive or
negative. For typical values of € =~ O(100) fy is of order a few tens, which
corresponds to a significant and soon detectable observational imprint. Also,
due to the dependence on €, there exists a correlation between the non-
gaussianity and the spectral tilt. As can be seen from (152) the higher €, the
redder the spectral index ngss. Using (164) this implies that the redder the
spectral index, the larger the degree of non-gaussianity.
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Tensor perturbations

During the ekpyrotic phase in addition to scalar perturbations a spectrum
of primordial gravitational waves is generated. The analysis of tensor per-
turbations in the ekpyrotic/cyclic model is very similar to that in single-field
inflation, therefore we refer to section 3.3 for further details of some steps in
the calculation.

The perturbed background metric for the analysis of tensor perturbations
was given in (79), where h;; are the gauge-invariant tensor perturbations
that are of interest here. The aim of this calculation is to determine the
wavenumber-dependence of the tensor power spectrum Pr(k), so that the
corresponding spectral index ny can be found. The first steps of the analysis
are identical to the calculations in section 3.3. Therefore, the equation of
motion that has to be solved is given by (86) and reads

fre + (K2 = 2 fi= 0, (165)
where the variable f, = v has been defined to be able to distinguish between
the calculations in this section and the calculations in section 3.3. To solve
this equation an expression for a,./a valid during the ekpyrotic phase has
to be found. Using the scaling of the scale factor with conformal time given
in (144) one can find that

&:i(( r__ ) (166)

a T2

Then, (165) can be written as
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frrr + (k;2 - TTQ 4) , (167)

where the parameter vy depends on p and thus also on the fast-roll parameter
E=1/p as
1
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This is exactly the same equation as given in (91), so that the same solution

mechanism as in section 3.3 can be applied. Using (92) and (93) and recalling
that f, = v, the tensor power spectrum Pr is given by

3 2
Pr(k) = 64nG 2]

on2 a?

. (168)

(169)
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Using the wavenumber-dependence of fr = vy in the large-scale limit given
in (73) and replacing vg with vp, the tensor spectral index np is found to be

dinPp
" ke

— (170)

€—3’

Since the fast-roll parameter is usually of O(100), this leads to a tensor
spectral index of ny = 2, which corresponds to a strongly blue spectrum
of gravitational waves. This implies that on large scales the amplitude of
gravitational waves is extremely small. For example, a gravitational wave
that is roughly the size of today’s horizon would have an exponentially small
amplitude that is impossible to observe in the near future. At high frequen-
cies the spectrum is cut off [38]. This can be explained by noting that after
the ekpyrotic phase, as the universe becomes kinetic energy dominated, the
higher-dimensional spacetime is locally equivalent to Minkowski spacetime
[36]. Therefore, gravitational waves that leave the horizon during kinetic
energy domination are not amplified.
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5 Inflationary Cosmology versus the Cyclic
Universe

In the previous sections two different cosmological models and their solutions
to the standard problems of cosmology have been discussed. In section 3 the
single-field model of inflation was described. Inflation can easily be incorpo-
rated into the hot big bang model, leading to the current consensus model
of cosmology. In this model the universe is created at the big bang, which is
followed by a brief period of rapid accelerated expansion. During this period
of inflation the cosmological problems are solved and density perturbations
are generated. After this phase the well-known standard big bang scenario
takes over.

The second model that has been discussed is the cyclic universe. This model
was investigated in section 4. Each cycle begins with a big bang at which,
in this scenario, space and time remain finite. The model does not include
a period of inflation, so that the radiation dominated epoch begins almost
immediately after the big bang. After the standard hot big bang phase the
universe enters a period of dark energy domination. This period is crucial for
the success of the model. Eventually, a slowly contracting ekpyrotic phase
begins during which the cosmological problems are solved and the seeds for
structure formation in the next cycle are generated. The crunch ensues and
the cycle begins anew.

There are a number of key differences between these two models. In the
consensus model space and time have a beginning at the big bang singularity,
when the universe was in a state of nearly infinite temperature and density. In
contrast, the cyclic model does not postulate the existence of a beginning. It
can undergo an infinite amount of cycles and is thus infinite in both space and
time. The big bang in this model corresponds to a physical event, a transition
from contraction to expansion at which the temperature and density remain
finite. In inflationary cosmology the cosmological problems are solved by a
short period of rapid expansion in the very early universe. Due to the recent
discovery of dark energy [1, 2] the model also has to include a second period
of accelerated expansion, whose origin is so far unexplained. The consensus
model does not make a clear prediction about the future of the universe. In
the cyclic model the cosmological problems are solved using a long-lasting,
slowly contracting phase preceding the big bang. The model only includes
one period of accelerated expansion per cycle, caused by dark energy, which
is an important ingredient of the model. It does not include a period of high-

63



energy inflation. The cyclic model does predict the future of our universe.
After an extended period of dark energy domination the universe will start
contracting and is headed for a big crunch.

It has been shown that both a period of inflation in the early universe and an
ekpyrotic phase preceding the big bang can solve the cosmological problems
described in section 2. Most importantly, both models can predict a spec-
trum of nearly scale-invariant adiabatic density perturbations, as required
by observations. However, both inflation and ekpyrosis face a number of
challenges and are so far incomplete. In section 5.1 the main advantages and
problems of the two models will be contrasted. One could limit this discus-
sion to comparing inflation and ekpyrosis and their mechanisms of solving
the cosmological problem. However, the existence of a viable model of the
universe that these periods can be embedded in is crucial for their success.
Therefore, in this section instead the corresponding cosmological models, the
consensus model and the cyclic model, will be contrasted. In section 5.2 the
predictions of the two models concerning the spectra of scalar and tensor
perturbations, as well as the degree of non-gaussianity will be compared and
the current observational bounds will be given. Future experiments leading
to the possibility of distinguishing between the two models will be mentioned.
These efforts will focus on the search for primordial gravitational waves and
signatures of non-gaussianity, for both of which the two models predict very
different results.

5.1 Strengths and Problems of the Models

Over the past three decades single-field inflation has become the most popular
theory to describe the very early universe and is now an accepted element of
the consensus model of cosmology. As demonstrated in section 3.2, inflation
can explain the observed flatness and large-scale homogeneity of the universe,
as well as provide an explanation for the lack of magnetic monopoles and
other topological defects. Most importantly, as shown in section 3.3, during
inflation a nearly scale-invariant, gaussian spectrum of curvature perturba-
tions is generated that can provide an explanation for the origin of large-scale
structure. As will be shown in section 5.2, the predicted spectrum is in ex-
cellent agreement with observations of the cosmic microwave background.
Inflation has outlasted numerous competitors and predicted a nearly scale-
invariant spectrum of primordial density perturbations [14, 15, 16, 17, 18]
previous to the first observation of such a spectrum [4]. The production of a
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spectrum of scalar perturbations similar to the inflationary spectrum now is
an absolute necessity for the success of a cosmological model.

Compared to most other theories inflation has a major advantage concerning
the properties of the big bang. The dynamics at the big bang singularity
are unknown and until the development of a consistent theory of quantum
gravity no significant progress in the understanding of the singularity can be
made. In chaotic inflation no major fine-tuning of the initial conditions for
the inflaton field is required [13] and inflation works practically independently
of the properties of this singularity, which makes it a viable model even in
the absence of a theory of quantum gravity. As long as a scalar field, initially
larger than the Planckian value, with a sufficiently flat potential to allow
for slow-roll can exist shortly after the big bang, inflation takes place and
leads to a universe compatible with observations. Therefore, a wide range of
possible pre-inflationary states exist. It should however be mentioned that
inflation is geodesically incomplete towards the past [93], which implies that
it does not work for completely arbitrary initial conditions.

Inflation can easily be incorporated into the standard hot big bang model.
In addition to solving many of the model’s problems, it also provides an ex-
planation for the origin of radiation and elementary particles in the universe.
As was briefly explained in section 3.1, in inflationary cosmology matter and
radiation are created through the decay of the inflaton field during a period
of reheating that takes place after the field has reached its minimum (see e.g.
46)).

Inflation and the hot big bang model offer accurate predictions and com-
pelling explanations for the current state of the universe. The assumptions
of the model are physical and agree well with observations. However, many
of these assumptions are so far unproven, rendering the theory incomplete.
Furthermore, besides its predictive and explanatory strength, the consensus
model faces a number of conceptual problems and some of the main questions
posed when inflation was first discovered are still unanswered today.

While in this review we focus on single-field chaotic inflation, numerous ver-
sions of inflation exist, some conceptually very different from the scenario
described in this paper, but all agree with present observational data. Ex-
amples are for instance hybrid inflation [52, 53] which requires the presence
of multiple fields, or k inflation [94] which relies on the existence of non-
trivial kinetic terms in the action. Distinguishing between these models and
choosing the correct one from the large number of available theories will be
extremely difficult and requires much better observational techniques than
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are currently available. Furthermore, instead of one period of accelerated
expansion, there could be several stages of inflation, each with its own in-
dividual properties. While this is by no means a reason to abandon the
theory, it would be nice to find a mechanism to narrow down the number of
candidates and thus increase the predictive power of inflation.

Inflation relies on a semi-classical description of the early universe. However,
for a complete theory a full quantum description is necessary. This is es-
pecially true for the investigation of quantum fluctuations during inflation.
For fluctuations that have sub-Planckian wavelengths at the beginning of
inflation, quantum gravity effects could be important and lead to a different
spectrum than predicted by the standard inflationary model. Furthermore,
attempts to embed inflation in theories of quantum gravity encountered some
unexpected difficulties and even though a lot of progress has been made (for
a recent review see e.g. [95]), models of inflation in string theory still face a
number of serious problems.

While inflationary and big bang cosmology can accurately predict and explain
many properties of our universe, the recent discovery of dark energy [1, 2]
was a complete surprise. The observed cosmic acceleration was not predicted
and the role dark energy plays in the model is still unclear today. To agree
with observations the consensus model has to include two types of cosmic
acceleration. The energy densities of these two types of inflation are different
by a hundred orders of magnitude, so that so far no natural link between
them could be found. The observed acceleration can be incorporated into
inflationary and big bang cosmology by assuming that during reheating, in
addition to matter and radiation, dark energy is produced. However, in
order to achieve the correct ratios of these components, significant fine-tuning
is needed. Explaining the exact value of the vacuum density is a major
problem for cosmology. The vacuum density is positive, close to constant
and extremely small [1, 2]. Despite many attempts, so far no convincing
mechanism to explain these properties that is compatible with the consensus
model has been found.

Most importantly, some of the major conceptual problems of inflationary and
big bang cosmology that have been known for decades are still unsolved. The
state of the universe before inflation is unknown. It is postulated that the
universe starts out in an inflating state, but no explanation is offered about
why it would start out in this state, how it entered the period of inflation,
or what is the origin of the inflaton field. A dynamical theory proving that
inflation is an attractor state in the early universe is still lacking. There is
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not much hope that these issues will be resolved in the near future. While it
is almost certain that inflation has to be preceded by an initial singularity,
representing the origin of the universe and the beginning of time, without a
theory of quantum gravity the properties and dynamics of this singularity
will remain unknown. Additionally, even the nature of the inflaton field
is uncertain. In this paper it has been assumed that the inflaton field is
a scalar field. While most inflationary theories rely on this assumption,
numerous other possibilities exist. For example, the field could be a fermionic
condensate, a construct related to the curvature scalar as in Starobinsky’s
model [96], or have completely different properties. It can be seen that in
the consensus model there are various open issues regarding the beginning
and first moments of the universe. Due to the difficulties of incorporating
dark energy into the model, the long-term future of the universe is just as
uncertain. The resolution of these issues is crucial for developing a complete
theory of the universe, however, in the last few years not much progress has
been made.

Several of the above problems can be solved by anthropic arguments [97, 98].
Life can only exist in regions of the universe that fulfil the right conditions.
Therefore, even if certain properties of the observable universe seem highly
improbable, we are still likely to observe them, because for different proper-
ties life of this form would not exist, so that observing them is impossible.
While this approach does make sense, it is uncertain if the anthropic selection
mechanism is strong enough to explain all the puzzling features of our uni-
verse. Also, this approach still leaves the question of the origin of the universe
unanswered. Most importantly, relying on anthropic arguments is scientifi-
cally unappealing. The argument contrasts our universe with hypothetical
other universes that will never be observed and whose properties cannot be
known. The argument cannot be tested experimentally and therefore will
never be verified or dismissed. Clearly it would be much more favourable to
solve these problems using a scientific theory that makes quantifiable predic-
tions and can be tested.

It can be seen that inflationary and big bang cosmology still suffers from a
large number of problems that have to be addressed. This does not mean that
inflation is wrong. It is still the most successful model that exists. However,
we should remind ourselves that so far there is no direct proof for a period of
accelerated expansion in the early universe. The discussion above illustrates
that the current model requires improvement and is incomplete. Therefore,
despite the successes of inflation and the consensus model, alternative cos-
mological theories should also be explored. This is an excellent way to find
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out if the predictions of inflation are truly unique. If no successful alternative
is found, the confidence in inflation will be greatly increased. If a legitimate
competing theory can be formulated we would enter an exciting new stage in
cosmological research, trying to establish which alternative is the true model
of the universe. Any alternative model must be able to solve the standard
cosmological problems and to generate a spectrum of curvature perturba-
tions that agrees with observations. One model that accomplishes this and
additionally offers solutions for a variety of other problems while relying on
physically plausible assumptions is the cyclic model of the universe.

As was shown in section 4.3, the cyclic model can solve the flatness, homo-
geneity and magnetic monopole problems of standard big bang cosmology.
It can also generate a spectrum of nearly scale-invariant curvature pertur-
bations, as was demonstrated in section 4.4. It can solve these cosmological
problems without relying on a period of high-energy inflation in the early
universe. Instead, it includes a period of ultra-slow contraction preceding
the big bang. In the cyclic model the properties of the universe observed
today are the result of such a phase of ekpyrotic contraction that occurred
in the previous cycle. Ekpyrosis is a genuinely novel approach to explain the
existence of a flat, homogeneous universe containing the observed large-scale
structure.

One of the main strengths of the cyclic model is that it includes dark energy.
In contrast to almost all other cosmological models it provides an explanation
for the origin of dark energy and the corresponding cosmic acceleration. In
the cyclic model this acceleration is caused by the same scalar field that drives
the entire cosmic evolution. Dark energy is a vital ingredient of the model. It
establishes cyclic evolution as a stable attractor solution. More importantly,
an extended period of dark energy domination is required for a universe like
ours to emerge after each crunch, as has been explained when discussing the
phoenix universe in section 4.2. It should be noted that dark energy, a kind
of low energy inflation, is not required to solve the cosmological problems.
The ekpyrotic phase can achieve this on its own [70, 99]. In contrast to
the consensus model, the cyclic model only requires one period of cosmic
acceleration, and this acceleration has been confirmed by observations. More
precisely, during the first stages of dark energy domination the cyclic model
predicts an equation of state w ~ —1. As the scalar field rolls down the
potential, w is predicted to increase. Current observational data suggests
that today w = —0.980+0.053 [1], which agrees well with the value predicted
by the cyclic model. No increase of this equation of state has been observed
so far, however, according to the cyclic model such a change could most likely
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only be detected on much larger time scales.

In the consensus model different issues are approached with individual theo-
ries and separate solutions. In contrast, the cyclic model provides a complete
picture of cosmic evolution while relying only on branes and their motion.
In the four-dimensional picture an entire cycle can be described using scalar
fields evolving along a potential, so that, unlike in inflationary cosmology, the
behaviour of the early universe and the late universe is determined by the
same elements. The cyclic model manages to describe all phases of cosmic
evolution using a simple approach that makes efficient use of the different
ingredients. A detailed description of this approach was given in section 4.2.
In addition to including the hot big bang phase and dark energy, the cyclic
model also predicts the future of our universe. The universe will undergo an
extended period of dark energy domination and then enter a slowly contract-
ing phase which will ultimately lead to a big crunch. After this crunch the
universe will start expanding again and enter a new hot big bang phase. The
cycles can continue into the distant future. Equivalently, one can follow the
cycling backwards in time into the infinite past, so that no explanation for
the beginning of the universe or the origin of time is needed.

In the cyclic model of the universe the big crunch/big bang singularity is
comparatively well understood. While in standard big bang cosmology the
singularity is a mysterious moment of creation at which space and time come
into existence and whose dynamics and properties are unknown, in the cyclic
model the singularity corresponds to a physical event and is relatively mild.
In the higher-dimensional picture the big bang occurs at the collision of two
boundary branes and corresponds to a smooth transition from contraction
to expansion. The collision is well-behaved and does not correspond to the
beginning of time or the vanishing of the three large spatial dimensions.
While there are several unresolved issues related to the big crunch/big bang
transition in the cyclic model, the basics of the higher-dimensional picture
are well-established [36, 65] and many efforts in string theory and M-theory
are currently underway to clarify this picture (see e.g. [60, 61, 62, 63, 36, 66,
65]). A very encouraging recent development has been the investigation of
a toy model of a big crunch/big bang transition in the context of AdS/CFT
correspondence [100, 101]. Therefore, while the behaviour of the universe
when passing through the singularity is not completely understood yet, the
situation looks much more hopeful than attempts to describe the singularity
in inflationary and big bang cosmology.

Compared to the consensus model of cosmology the cyclic model of the uni-
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verse involves enormous time scales. These time scales can allow for new
approaches to solve long outstanding cosmological problems. For example,
it has been realised that the cyclic model could explain the incredibly small
value of the vacuum energy density that is observed today [30, 102]. This
so-called cosmological constant problem is one of the greatest challenges in
physics. Previous attempts to solve this problem failed, because the required
amount of tuning could not be achieved in the limited amount of time avail-
able between the big bang singularity and today. However, in the cyclic
model time existed before the big bang and thus much larger time scales are
involved. Therefore, this problem can be circumvented. While the details of
the solution mechanism are not fully established yet, a compelling argument
has been presented in [102].

The cyclic model proposes convincing solutions to the standard cosmologi-
cal puzzles, as well as offering an intriguing new outlook on elements of the
universe that are so far unexplained by inflationary and big bang cosmology.
However, many of the model’s predictions have not yet been tested. Further-
more, some of its core assumptions have been challenged and the descriptions
of certain aspects of the model that are crucial to its validity are incomplete
at present.

Supporters of inflationary cosmology have pointed out that the cyclic model
makes some dubious assumptions. It has been questioned if particle pro-
duction at the big crunch/big bang transition could really be accompanied
by an increase in scalar field kinetic energy [20]. Furthermore, it has been
claimed in [103] that during ekpyrosis classical field inhomogeneities could
be amplified, which would lead to chaos when approaching the big crunch
resulting in the breakdown of the model. Further growth of inhomogeneities
is expected for models that involve more than one field [77]. Also, compared
to inflationary cosmology, the generation of the correct spectrum of density
perturbations in the cyclic model is more complicated. While for single-field
inflation only a single phase of exponential expansion is required, the cyclic
model relies on at least two fields and a two-step process, creation of entropy
perturbations and conversion into curvature perturbations. Therefore, infla-
tion might be preferable due to its simplicity and due to the fact that the
success of the cyclic model relies on some unproven assumptions.

A major weak point of the cyclic model is that at present no complete theory
that could underlie the braneworld scenario is known. A complete quantum
theory describing this scenario is necessary for the consistency of the cyclic
model. Most importantly, the cyclic potential could not yet be derived from
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first principles, so that in the current model it has to be chosen by hand.
The scalar potential is responsible for the entire cosmic evolution, therefore
a fundamental derivation of a potential of the required shape in heterotic
M-theory or a similar setting is of crucial importance. We are encouraged
by the fact that in supergravity negative potentials are very natural and dif-
ferent possible origins of the cyclic potential have been proposed in recent
years. Most importantly, the attractive force acting between the two bound-
ary branes could be a result of virtual exchange of membranes that stretch
between the branes. Some encouraging first investigations of this possibil-
ity can be found in [104, 105]. Therefore, there is hope that a potential of
the required shape could soon be found. However, despite many attempts a
complete derivation of the cyclic potential from a fundamental theory is still
lacking.

The main challenge facing the cyclic model is the lack of nonlinear match-
ing conditions from a contracting to an expanding universe. While classical
and semi-classical analyses of the big crunch/big bang transition are well-
established, a full quantum treatment is still missing. A successful transition
is of crucial importance for the consistency of the cyclic model, since without
a smooth transition repeating cycles are impossible. Solving the singularity
problem is especially important for the validity of the theory of perturbations.
It has been shown in section 4.4 that an almost scale-invariant spectrum of
curvature perturbations can be generated before the big crunch. It was as-
sumed that this spectrum is conserved when the universe passes through
the bounce [27]. The success of the entire model rests on this unproven as-
sumption. Without a full quantum treatment of the bounce this assumption
cannot be proven and it is uncertain if the model can really predict the ex-
istence of a nearly scale-invariant spectrum of curvature perturbations after
the big bang.

A better understanding of the cosmic singularity has to come from the higher-
dimensional setting and the dynamics at the big crunch/big bang transition
ultimately have to be derived from string theory. The singularity in the
cyclic model has briefly been described at the beginning of section 4. The
fifth dimension momentarily shrinks to zero while the three large dimensions
remain finite and time continues smoothly. The brane scale factors are finite
and there is no curvature singularity. However, gravitational fluctuations
could be of significant size. When approaching the singularity the geometry
of the universe is approximately flat [36]. Dangerous modes, if present, are
diluted during the ekpyrotic phase and only start to dominate after quantum
gravity becomes important [99]. Due to these properties the singularity is
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one of the mildest possible and there is hope that it can soon be resolved
in string theory. While much progress has been made over the past years, a
formal description of the bounce within string theory is still missing and the
matching rules at the brane collision could not be derived so far. Currently,
experts are studying lower-dimensional toy models [100, 101, 106]. While
results from these models are encouraging, the calculations are very compli-
cated and much work is left to be done. Without a complete understanding
of the dynamics at the singularity the perturbation spectrum predicted by
the cyclic model remains questionable. Without a consistent quantum the-
ory even the matching of basic properties of the universe across the crunch
is uncertain. This could affect the predictions of flatness and homogeneity.
Therefore, a quantum theory describing the dynamics at the bounce is ur-
gently needed for a consistent formulation of the cyclic model. Without such
a theory the model’s predictions are not reliable.

It can be seen that, while the cyclic model is a promising candidate for an
alternative model to inflationary cosmology, much work remains to be done.
Given that this model has only been proposed a few years ago and that it
is competing with a model that has been carefully studied for almost thirty
years, this should not come as a surprise.

It can be concluded that both the consensus model and the cyclic model
offer physically plausible and convincing explanations for the state of our
universe. However, both models still contain a large number of open issues
and need to be improved. Ultimately, the correct model will be determined
from observations. Therefore, in the following section the experimentally
testable predictions of the models are compared, recent experimental data is
given and potentially significant future developments are discussed.

5.2 Experimentally Testable Predictions

In section 3.3 and section 4.4 the predictions of the inflationary and cyclic
models for the perturbation spectra have been given, respectively. In the
following these predictions will be compared with observational data. First,
the results for scalar perturbations will be discussed, then we will comment
on the degree of non-gaussianity predicted by each of the models and finally
the generated spectra of gravitational waves will be compared.
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Scalar perturbations

The scale-dependence of the spectrum of scalar perturbations can be quan-
tified by the scalar spectral index ng. For single-field inflation this spectrum
has been analysed to linear order in the perturbations and the spectral index
nig! was found in (76). Tt is given by

nigl ~ 1 — 4e — 26, (171)

This expression is to lowest order in the slow-roll parameters € and d, which
were defined in (26). Since during inflation these parameters are much smaller
than unity, the spectrum of scalar perturbations is close to scale invariant.
¢ is always positive, while 0 can have either sign. Therefore, in theory nisnf
can be slightly larger or slightly smaller than unity. In practice most infla-
tionary models predict a red-tilted spectrum. This can be seen explicitely
by considering the example of power law inflation. In this scenario the scale
factor grows as some power of time a(t) o t?, where ¢ is a positive constant.
This implies that the Hubble parameter is given by H(t) = ¢/t. Using the
equations of motion during inflation that are given in (22) and (23) explicit
expressions for the slow-roll parameters in power law inflation can be found.
They are given by

1

-, 0=——. (172)
q q

After inserting this into (171) the spectral index predicted by power law

inflation is found to be N
il =12, (173)

q

Since ¢ > 0, the spectral index nisnf < 1, which corresponds to a red-tilted
spectrum. Also, since during inflation the scale factor is rapidly increasing, ¢
must be quite large, so that the deviation from scale invariance is small. This
is of course just a basic example. However, the simplest versions of chaotic
inflation make similar predictions for the properties of the scalar perturbation
spectrum. While the exact value of nfgnf depends on the shape of the potential
in the investigated model, in general it can be said that single-field inflation
predicts a nearly flat, sightly red-tilted spectrum of adiabatic perturbations.
The scalar spectral index in these models falls roughly within the range
0.92 < ng? < 0.97 [107]. It should be noted that these predictions can
be violated in more complicated versions of inflation that include additional
scalar fields or complicated potentials.
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The scale-dependence of the spectrum of entropy perturbations generated
during the ekpyrotic phase, resulting from the analysis of perturbations to
linear order, has been found in (152). It was shown in the large-scale ap-
proximation that these entropy perturbations can be converted into curva-
ture perturbations with exactly the same spectrum. Therefore, the curvature
perturbations inherit the spectral index from the entropy perturbation spec-
trum. The scalar spectral index predicted by the cyclic model, ngkp , is thus

given by )
ekp “

ng ~1+ =
where € is the fast-roll parameter defined in (106) and M is related to the
logarithm of the scale factor as M = In(a(t)/a(t%,)). The second term on
the right-hand side is a gravitational contribution. Since it is positive it tends
to make the spectrum blue. The third term on the right-hand side is a non-
gravitational contribution which tends to make the spectrum red. For an
exponential potential one can use the scaling solution in (104). The fast-roll
parameter is then given by € = 1/p, and in this approximation p > 0 is a
constant. The non-gravitational contribution to the spectral index vanishes

and (174) becomes

€ M
= (174)

nd? =1+ 2p. (175)

This clearly corresponds to a blue spectrum. During ekpyrosis the scale factor
is slowly varying, so that p < 1. Therefore, the spectrum is close to scale
invariant. For more general potentials the non-gravitational term can become
important, so that some cyclic models predict a red-tilted spectrum. In fact,
€ m = 0 is an unrealistic statement, since the steepness of the potential has
to decrease for the ekpyrotic phase to end and kinetic energy domination
to take over. While the precise value of the spectral index depends on the
shape of the potential, the predictions of the simplest cyclic models roughly
fall within the range 0.97 < n%? < 1.02 [28]. Therefore, this model can
lead to both slightly blue and slightly red spectra of scalar perturbations. It
should be noted that methods of generating curvature perturbations other
than the entropic mechanism are still considered, some of which can lead to
a range of n%” that is shifted to slightly lower values (see e.g. [108]).

Comparing this with the predictions for the spectral index from single-field
inflation it can be seen that both models lead to a nearly flat spectrum of
curvature perturbations. The predicted range of values for the scalar spectral
index in the cyclic model is shifted slightly to the blue compared to the values
permitted by inflation. Therefore, a highly precise measurement of the scalar
spectral index could provide an indication as to which of the two models more
accurately predicts the properties of our universe.
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The bound on the scalar spectral index of the power spectrum of primordial
curvature perturbations from seven-year WMAP data combined with BAO
and Hy measurements is ng = 0.9631+0.012 [3]. It can be seen that, within the
error range, both inflationary and cyclic models can satisfy this constraint.
A blue spectrum is experimentally ruled out, such that a purely exponen-
tial ekpyrotic potential can be excluded. However, as stated above, such
a potential was already disfavoured due to theoretical considerations. The
observed spectral index is slightly more compatible with the range predicted
by single-field inflation. Overall however, based on this observed value none
of the two models has a clear advantage. It could even be argued that both
of the models gain credibility for being able to satisfy this relatively strin-
gent constraint. While the error bars might shrink in the future, to be able
to determine which of the two models is more realistic other experimentally
testable predictions should also be compared.

Non-gaussianity

The non-gaussian contribution to the spectrum of scalar perturbations in
simple, single-field inflationary models is very small. As estimated in section
3.3 these models predict an approximate value of | f}\%\ < 1. This level of
non-gaussianity is extremely small, so that it cannot be detected in near-
future experiments. It should be noted that inflationary models that include
multiple fields or complex kinetic terms are able to generate a significantly
larger amount of non-gaussianity [57, 58, 59].

A significant level of non-gaussianity is an important prediction of the cyclic
model of the universe. In this model the non-gaussianity parameter fkaf is
usually of order a few tens and can have either sign. It is predicted to roughly
fall in the range —60 < fu? < +80 [109], the exact value depends on the
details of the conversion from entropy to curvature perturbations. Therefore,
in the cyclic model obtaining a value of | f]f]kf | &~ 1is very unnatural. Typical
values of f;,kf are more than an order of magnitude larger than the values
obtained in single-field inflation. It should also be noted that there is a
correlation between fo? and the spectral index. A relatively red spectrum
of curvature perturbations implies a large amount of non-gaussianity. Given
the discussion of the scalar spectral index in the previous section it can be
expected that a significant amount of non-gaussianity is generated in the
cyclic model.

It can be seen that very different levels of non-gaussianity are predicted by
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single-field inflation and the cyclic model. This makes the non-gaussian con-
tribution to the spectrum of scalar perturbations one of the most important
probes of the very early universe. A detection of primoridal non-gaussianity
with fyr >> 1 would immediately rule out the single-field inflationary sce-
nario. Even though more complicated models of inflation could account for
such a discovery, this would require fine-tuning of the parameters. In con-
trast, the presence of a significant amount of non-gaussianity is completely
natural in the cyclic model. The constraint on local non-gaussianity by seven-
year WMAP data combined with SDSS data is —5 < fi5* < 59 [19]. This
constraint allows for both an almost perfectly gaussian spectrum of curva-
ture perturbations as predicted by single-field inflation, as well as the levels
of non-gaussianity that are generated in the cyclic model. It should be noted
that the largest possible amounts of non-gaussianity in the cyclic model are
observationally excluded, which by some is seen as supporting single-field in-
flationary models. On the other hand, recently the detection of a primordial
signal of local non-gaussianity was claimed [110], which can be explained by
the cyclic model but by far exceeds the value predicted by single-field infla-
tion. While there is some doubt about the validity of this discovery, it is an
encouraging development for supporters of the cyclic universe.

In conclusion, current observational data of primordial non-gaussianity can
be explained by both cyclic and single-field inflationary models. Uncertain-
ties in the measurements will improve dramatically as soon as data from
the Planck satellite becomes available. In this experiment values as small
as |fnr| > 5 could be detected. If a non-gaussian signature is found by the
Planck satellite mission this will strongly support the cyclic model. If no
such signature is detected, inflationary cosmology is favoured by the data.
This is encouraging. In a couple of years we should have a strong indication
which of the two theories is correct. To establish the favoured theory as the
valid cosmological model the experimental search for gravitational waves will
be of crucial importance.

Tensor perturbations

The spectral index characterising the spectrum of tensor perturbations in
single-field inflation has been found in (96) and, to lowest order in the slow-
roll parameters, is given by

nitl a —2e. (176)
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Here, € is the slow-roll parameter defined in (26). A scale-invariant spec-
trum would correspond to nf” = 0. Since € is much smaller than unity
during inflation, the predicted spectrum of tensor perturbations is nearly
scale-invariant. Because ¢ > 0, the tensor spectral index n?ff < 0, so that
the deviation from a flat spectrum is due to a slight tilt to the red. Therefore,
single-field inflationary models predict a slightly red, nearly scale-invariant
spectrum of gravitational waves. The exact value of né?f depends on the
shape of the potential.

An important observational quantity is the tensor to scalar ratio r which was
defined in (97) and is related to n*/ as shown in (98). Therefore,

r=16e = —8n’. (177)

This is known as the consistency relation and holds for single-field inflation.
Since € < 1 it can be seen that the amplitude of gravitational waves is much
smaller than the amplitude of scalar perturbations. This relation does not
apply in models of inflation that involve more than one field. Single-field
inflationary scenarios usually predict the scalar to tensor ratio to be within
the range 0 < r < 0.3. While this is not very restrictive, it has been argued
that, for inflationary models that satisfy n’S"f > 0.95 and are thus consistent
with observations, a value of 7 > 1072 can be expected [111]. While this is a
well-justified lower limit, there exist a number exceptions to this statement.
In a few models of inflation the amplitude of the generated gravitational
waves is so small that it is undetectable in the near future. This is especially
true for string theory inflation models [112].

The tensor spectral index predicted by the cyclic model of the universe was
calculated in (170) and is given by

€—3
e—1
where € is the fast-roll parameter defined in (106). Since € is of O(100), this
gives a tensor spectral index of approximately neTkp ~ 2, which corresponds
to a strongly blue spectrum of gravitational waves. The amplitude of these
gravity waves is extremely small on large scales. In fact, on the largest
observable scales the dominant contribution to the amplitude is expected
to result from the backreaction of the scalar fluctuations onto the geometry

[113]. Therefore, according to this model primordial gravitational waves will
most likely never be detected.

ekp
TLT ~ —

) (178)

Compared to inflationary models the amplitude of gravitational waves on
large scales in the cyclic model is strongly suppressed. While inflation pre-
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dicts a nearly scale-invariant, slightly red spectrum of tensor perturbations,
the spectrum in cyclic models is very blue with an amplitude that is orders
of magnitude too low to be detected by current and near-future experiments.
Therefore, gravity waves are probably the most important observational test
to distinguish between single-field inflation and the cyclic model. A detec-
tion of an imprint of tensor perturbations in the polarization of the cosmic
microwave background is consistent with inflationary models, but cannot be
explained by cyclic models. Such a detection would unambiguously rule out
the ekpyrotic and cyclic scenarios.

Unfortunately, so far not much data is available. Gravitational waves have
not yet been detected and therefore no observational constraints on the tensor
spectral index np exist. Seven-year WMAP results combined with BAO and
Ho measurements suggest that r < 0.24 at the 95% confidence level [3].
This is easily compatible with both inflationary cosmology and the cyclic
model. However, the situation might improve in the near future. For high
enough amplitudes the Planck satellite mission might detect indirect proof for
primordial gravitational waves imprinted on the CMB. If gravitational waves
are detected, their amplitude can be measured and the spectral index can be
found, then the consistency relation (177) could be tested. The confirmation
of this relation would be an incredible success for single-field inflation and
once and for all establish it as the model describing the very early universe. It
should be noted that, while the absence of gravitational waves would focus
much attention on the cyclic model, it would not altogether rule out the
concept of inflation, since several inflationary scenarios are able to produce
gravity waves with an unobservably small amplitude.

There are several other ways to distinguish between single-field inflationary
cosmology and the cyclic model that have not been discussed here. The run-
ning of the scalar spectral index has been ignored, because so far there is no
observational evidence that this quantity is significant. Non-gaussianity in
inflationary and cyclic models could be further contrasted by investigating
the third-order nonlinearity parameter gyr. However, no strong observa-
tional constraints on this value exist so far. It has also recently been pointed
out that some cyclic models predict a spatial variation of dark energy in the
universe [31]. This could be further investigated.
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6 Conclusions

In this paper two competing cosmological models have been presented. While
the models are conceptually very different, they both agree well with observa-
tions. The consensus model combines the hot big bang model with a period
of inflation in the early universe. The cyclic model predicts a cyclic evolution
with each cycle including a slowly contracting ekpyrotic phase. Both infla-
tion and the ekpyrotic phase can solve the standard cosmological problems
and lead to the generation of a nearly scale-invariant spectrum of curvature
perturbations. While both models offer accurate predictions and physically
plausible explanations for the observed state of the universe, each model faces
some conceptual problems.

The main shortcoming of the cyclic model is the lack of a complete quantum
description. A derivation of the cyclic potential from a fundamental theory
has so far not been possible and without a quantum theory the dynamics
of the bounce cannot be fully understood. Observational predictions of the
cyclic model heavily rely on the assumption that perturbations are conserved
when passing through the singularity. Without a proof of this behaviour the
predictions of the model are not reliable. The dynamics of the singularity are
also unknown in the consensus model. However, inflation can work almost
independently of these dynamics and the predictions of the model do not rely
on them. Therefore, even though finding an embedding in a theory of quan-
tum gravity is important for the consistency of both cosmological models,
only the cyclic model loses credibility due to the lack of it. While efforts are
currently underway to develop a complete description of the bounce in string
theory and much progress has already been made, until such a description is
found the model is incomplete.

Inflationary cosmology suffers from its own conceptual problems. The origin
and nature of the inflaton field are unknown and how the universe entered
inflation is unexplained. The future of the universe is equally uncertain. In
contrast, the cyclic model provides a complete picture of cosmic evolution.
Dark energy is an important ingredient of the model, while its role in the con-
sensus model is unclear. However, the success of the cyclic model depends on
the validity of unproven assumptions. In contrast, once the universe has en-
tered inflation the dynamics are well-understood, so that reliable predictions
can be made.

While both models are very appealing, inflationary cosmology seems to be
better understood. This is not surprising. Inflation has been around for
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decades, while the cyclic model is a relatively new theory which is still in
full development. Much effort is made to improve it and there is hope that
its main problems can soon be solved. Ultimately, the correct model will be
determined from observations. While inflationary cosmology and the cyclic
model both predict a nearly scale-invariant spectrum of curvature perturba-
tions, the models differ in their predictions of non-gaussianity and gravita-
tional waves. Single-field inflation leads to undetectably small non-gaussian
corrections and a nearly scale-invariant, slightly red-tilted spectrum of grav-
itational waves. In contrast, the cyclic model predicts a strong non-gaussian
signature which could soon be detected, while the gravitational wave spec-
trum is very blue, with unobservably small amplitudes on large scales.

Both the cyclic model and inflationary cosmology are compatible with cur-
rent observations. This could change when data from the Planck satellite
mission becomes available. The Planck satellite can detect small levels of
non-gaussianity and could observe an imprint of primordial gravitational
waves on the cosmic microwave background. The discovery of a strong non-
gaussian signal would rule out single-field inflation. The lack of such a signal
would disfavour the cyclic model and a detection of gravitational waves would
unambiguously rule it out. Both the absence of gravitational waves and a
non-gaussian signal would support the cyclic model, but could also be ex-
plained by more complicated models of inflation. However, this would require
fine-tuning, while in the cyclic model these results occur naturally.

This is a very exciting time for cosmologists. Within a couple of years obser-
vational data will give a strong indication of whether inflationary cosmology
or the cyclic model more accurately predicts the state of our universe.
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