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Abstract

This thesis focusses on the relation between causal sets and Lorentzian manifolds. Especially the

effects of curvature and non-trivial topology are investigated. It is described how causal sets can be

stochastically created from a given manifold via the sprinkling process. In the course of establishing

a causet equivalent for the language of partial differential equations both the retarded propagator

of the Klein-Gordon equation and a discrete version of the d’Alembert operator are examined. A

more generalized propagator is proposed that can handle the effects of non-trivial topology by using

the newly introduced homotopy matrix. The interplay of the propagator and spacetime curvature is

discussed in two and four dimensions. An algorithm to approximately recover the homotopy matrix

from the causal structure is given. The discrete d’Alembertian is used to make the scalar curvature of

causal sets visible in two dimensional de Sitter space. A hierarchy of different physical length scales

and their mutual interplay is numerically analysed. A proposed candidate for a two dimensional

causal set action is investigated both analytically and numerically for hints of topological invariance,

fluctuations and the reaction to the presence of curvature.
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Chapter 1

Introduction

1.1 Fundamental Physics And Discrete Spacetime

Today the established theories to describe space, time and matter are general relativity and quantum

field theory. We are aware that they do not give a complete description of nature yet. Especially the

unification of both appears to be a hard problem and a lot of effort is made to find a more general

theory of everything. The backbone of general relativity, quantum field theory and also of many

approaches that seek to supersede them is the notion of continuous spacetime which is described by

Lorentzian manifolds.

However we suspect that something must change fundamentally if we “zoom in” to very small

length scales. Clues for that are singularities that appear in general relativity and the fact that we

must cut off momentum integrals in quantum electrodynamics. The assumption that electrons behave

the same way on arbitrary small length scales leads to diverging amplitudes.

There is a wide variety of proposals what that fundamental change might be: Additional internal

particle structures or hidden dimensions are potential solutions. Others believe that the fabric of

spacetime itself will start to look different and on small scales can no longer be described by smooth

manifolds.

Causal sets are an alternative approach to describe spacetime. In causal set theory spacetime is

no longer assumed to be continuous but to be constituted of a discrete set of elements. The whole

causal, topological and metric structure, all the concepts that we know from continuous manifolds and

that we know work very well on bigger length scales, all this is conjectured to be encoded in nothing

but a partial order of the set elements. Not every causal set approximates a manifold. However the

“Hauptvermutung” of causal set theory is that if a set does start to look like a manifold on large scales

then this manifold is “approximately unique” [1].

The following thesis will discuss the relation of causal sets and smooth manifolds and how infor-

mation about curvature and topology is encoded in the partial ordering.
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1.2 Definition Of A Causal Set

A causal set or causet is a partially ordered locally finite set. That means it is a set C and a partial

order relation ≺ for elements of C that satisfy the following conditions:

• ≺ is transitive: (x ≺ y) ∧ (y ≺ z)⇒ x ≺ z.

• x ≺ x is not true.

• C is locally finite: n(x, y) = |{z ∈ C | x ≺ z ≺ y}| is finite ∀ x, y ∈ C where | · | denotes set

cardinality.

For x ≺ y we can also write y � x. For (x ≺ y) ∨ (x = y) we write x � y. Hence x ≺ y ⇔ (x �

y) ∧ (x 6= y). If x ≺ y and n(x, y) = 0 we write x ≺∗ y and say that y is linked to x.

An ordered subset c = (z1, z2, . . . , zn+1) ⊂ C with z1 ≺ z2 ≺ . . . ≺ zn+1 will be referred to as

n-chain with n jumps between successive elements. An ordered subset p = (z1, z2, . . . , zn+1) with

z1 ≺∗ z2 ≺∗ . . . ≺∗ zn+1 is called n-path with n jumps. Every n-path is a n-chain. An element

x ∈ s ⊂ C is called minimal in s if @ y ∈ s such that y ≺ x and maximal if @ y ∈ s such that x ≺ y.

The information about all relations ≺ between the set elements is equivalent to the knowledge of

all relations ≺∗ :

x ≺∗ y ⇔ (x ≺ y) ∧ (n(x, y) = 0), all other relations follow from transitivity

x ≺ y ⇔ ∃ a n-path p = (x, z1, . . . , zn−1, y) ⊂ C for some n ≥ 1

Consider a causal set C and label its elements in some order such that any element xi can be referred

to by some index i. Then we can define two adjacency matrices AC and AR with

(AC)ij =

 1 if xi ≺ xj

0 else
(AR)ij =

 1 if xi ≺∗ xj

0 else
. (1.1)

These matrices are called the causal matrix and the link matrix.

Discrete subsets of points of Lorentzian manifolds can be interpreted as causets where the order

relation is induced by causal relations on the manifold: We write x ≺ y if and only if x strictly precedes

y on the manifold, i.e. if y ∈ J+(x) ∧ x 6= y.

Throughout literature there are slight differences in the definitions of causal sets. In the end they

are all equivalent and describe the same concept. However the reader must be careful not to mix

things up.
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Chapter 2

Sprinklings

2.1 The Correspondence Between Causal Sets

And Lorentzian Manifolds

Causal sets are an attempt to replace the concept of smooth Lorentzian manifolds by a discrete graph

of causally related nodes. It has been shown that Lorentzian manifolds satisfying a causality condition

known as past and future distinguishing are fully characterized by their causal structure and a notion of

measuring volumes [2, 3, 4]. So a causal set must try to at least approximately encode this information

in order to be able to replace the manifold.

In a causet the causal structure of the elements is represented by the partial order relation on the

set. A prescription of measuring volume is given by counting the number of elements in a given subset

and multiplying this by an elementary Planckian volume that each single element “takes up”. These

are simple and precise definitions of causal relationship and volume. Yet it is hard to define a clear

understanding as to when a causal set can be regarded as approximation of a given smooth Lorentzian

manifold or the other way round depending on your point of view.

An attempt to tackle this issue is the concept of sprinkling. A sprinkling is a stochastic process to

generate a causal set from a Lorentzian manifold. This serves two purposes:

On one hand it helps establishing a relation between a causal set C and a manifold M by saying

C and M describe approximately the same universe if C is likely to be produced by a sprinkling into

M.

On the other hand it is the only way to generate causal sets at the moment that are definitely

“manifold like” whatever notion of comparison one might use. Attempts to create such causal sets

“from scratch”, i.e. from a fundamental dynamical law, are to this date not very successful [5, 6].
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2.2 The Sprinkling Process

The sprinkling process creates a causal set C from a (patch of a) Lorentzian manifoldM in a stochastic

way by randomly picking points fromM with a constant finite density ρ of points per spacetime volume

of M. The points form a partially ordered set with the order relation induced by the causal relation

on M.

Picking the points with a constant density means one expects ρ · V (Ω) points to be taken from

any region Ω ⊂ M, i.e. a single point is interpreted to “take up” the volume of about 1/ρ. Here

V (Ω) denotes the spacetime volume of the region Ω. Thus the volume measure on C on average agrees

with the one onM: The part of the causal set that corresponds to a region Ω will on average contain

ρ · V (Ω) elements with a volume of 1/ρ per element thus yielding V (Ω) as the expected volume.

Picking the points by chance also ensures that there will be no preferred or distinguished directions

on the manifold like choosing points from a grid would imply. This conserves any symmetries of the

spacetime.1 The random picking therefore ensures the compatibility of the causal set and the manifold

description.

If the volume of M is infinite so will be the number of points in C. However C will remain locally

finite meaning that the cardinality of any causal interval

n(x, y) = |{z ∈ C|x ≺ z ≺ y}| ∀ x, y ∈ C

will be finite as the volume V (x, y) of the causal interval between the points x and y on M will be

finite.

For upcoming calculations it is essential to know the probability distribution P(n(Ω) = n) describ-

ing how likely it is that a sprinkling into M will pick n points from the region Ω ⊂M. As described

for any region Ω the expected number of elements will be 〈n(Ω)〉 = ρ · V (Ω). Now consider a very

small region with a volume V (Ω)� ρ−1. It will most likely be empty (in the sense that no point from

it will be picked for the sprinkling) and if it does indeed contain points it will most likely be only a

single one. Thus the number of expected elements can be written as

〈n(Ω)〉 = ρ · V (Ω) ≈ 0 · P(n(Ω) = 0) + 1 · P(n(Ω) = 1) (2.1)

for V (Ω)� ρ−1 where we can neglect contributions of n(Ω) > 1. So one can conclude

P(n(Ω) = 0) ≈ 1− ρ · V (Ω)

P(n(Ω) = 1) ≈ ρ · V (Ω)

P(n(Ω) > 1) ≈ 0. (2.2)

1Poincaré symmetry is a continuum specific way of stating that there is no preferred frame. So naturally on a causet

there is no translation symmetry but still there is no preferred frame. So the symmetry is preserved in a more general

sense.
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Using this we can compute P(n(Ω) = n) for finite volumes: Split up the region into k parts of equal

volume V (Ω)/k then for large enough k all cells contain either none or one point with the respective

probabilities. So we only need to multiply the uncorrelated partial probabilities for the individual cells

with the correct combinatorial factor:

P(n(Ω) = n) = lim
k→∞

k
n

 (1− ρ · V (Ω)/k)(k−n)(ρ · V (Ω)/k)n

= lim
k→∞

k!

(k − n)! kn︸ ︷︷ ︸
→1

(
1− ρ · V (Ω)

k

)−n
︸ ︷︷ ︸

→1

(
1− ρ · V (Ω)

k

)k
︸ ︷︷ ︸
→exp(−ρ·V (Ω))

(ρ · V (Ω))n

n!

= exp(−ρ · V (Ω))
(ρ · V (Ω))n

n!
(2.3)

This is a Poisson distribution with a mean of ρ · V (Ω) and a standard deviation of
√
ρ · V (Ω). So for

very large ρ not only does the average of the volume measurement on C agree with the one onM but

also the fluctuations become smaller with
√
V (Ω)/ρ.

Note that the elements of a causal set generated by a sprinkling no longer contain any information

about their original position on the manifold. We may however sometimes remember that information

in order to compare the causet results to the continuum. Yet the only information that may be used

within causal set calculations themselves is the causal relation of points.

2.3 Creating A Sprinkling

As pointed out the sprinkling process is at the moment the only reliable way to create causal sets that

correspond to spacetimes that we usually describe with smooth Lorentzian manifolds. The sprinkling

process is therefore an indispensable tool in the investigation of the properties of such sets. Especially

for computer simulations we need to explicitly create causal sets from manifolds. Therefore it shall be

described how this can be achieved.

On a computer one usually can draw on a generator for pseudo random numbers that are evenly

distributed in the interval [0, 1] and thus by multiple calls of this generator one can create evenly dis-

tributed elements in [0, 1]d ⊂ Rd. To create sprinklings into a region Ω on a d-dimensional manifoldM

one must define a suitable map f : [0, 1]d → Ω, x 7→ z which distributes the points with homogeneous

density. Therefore for any region A ⊂ [0, 1]d and its image f(A) ⊂ Ω we must have:

V (Ω)

∫
A
ddx =

∫
f(A)

ddz
√
−g

Here g is the metric determinant on M and the factor V (Ω) on the left-hand side is required to

scale up the volume of the (hyper-)cube with unit edge length to the volume of Ω. Here f can be

interpreted as a coordinate transformation and thus we see that the Jacobian J = | det(∂z/∂x)| of

this transformation must satisfy

J = V (Ω)/
√
−g. (2.4)
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f must be both a surjective and an injective map between [0, 1]d and Ω apart from subsets of measure

zero.2

Having found such a map f the actual sprinkling can be performed like this: First one determines

the overall number of points one wants to sprinkle. One can do this by either fixing this number or by

fixing the density and then picking the total number of elements at random according to the Poisson

distribution. Then one picks the desired number of points from the hypercube [0, 1]d, which can be

done easily on a computer, maps them to Ω and deduces their causal relations.

Without further guidelines however it seems hard to find a map that satisfies the constraint Eq.

(2.4). But usually there is a straightforward way to construct a suitable map which should become

clear when looking at the following examples with increasing complexity.

2.4 Finding The Sprinkling Map

2.4.1 Minkowski 2d: M2

We consider sprinklings into a causal interval. Due to Poincaré symmetry we can always choose the

coordinates of the start- and endpoint to be (0, 0) and (T, 0) in the usual (t, x) coordinates with the

flat metric gµν = ηµν with
√
−g = 1. For a causal interval the most convenient coordinate system are

lightcone coordinates

u = 1√
2
(t+ x)

v = 1√
2
(t− x).

(2.5)

The Jacobian determinant of this transformation is 1 so
√
−g = 1 in (u, v)-coordinates. The causal

interval is described by (u, v) ∈ [0, a]2 with a = T/
√

2 and its volume is V = a2 = T 2/2. We must

now find a map

f : [0, 1]2 → [0, a]2, x = (x1, x2) 7→ z = (u, v)

with J = | det(∂z/∂x)| = a2.

As the metric determinant is constant in the (u, v)-coordinates we can tell that any point (u, v)

in the interval is equally likely. So one only needs to construct a suitable map that scales the two

dimensional square [0, 1]2 to [0, a]2 which can be done easily:

f :

 x1

x2

 7→
 u = a · x1

v = a · x2


One can immediately see that the Jacobian determinant of this transformation is indeed a2.

2f can also be chosen not to be injective, then
∑
i J(xi) = V (Ω)/

√
−g(z) for all xi s.t. f(xi) = z. We choose f to

be injective for simplicity.
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2.4.2 Minkowski 3d: M3

Consider now a causal interval on M3. Again one can use Poincaré symmetry and choose the points

confining the interval to be (0, 0, 0) and (T, 0, 0) in Cartesian coordinates (t, x, y). The causal interval

is {
(t, x, y) ∈ [0, T ]× R2 |

√
x2 + y2 ≤ min{t, T − t}

}
.

In dimensions higher than two the causal interval is no longer just a tilted square so we cannot simply

use the lightcone coordinates again.

There are two major approaches to generate a sprinkling into this region: One could sprinkle points

into the cube [0, T ]× [−T/2, T/2]2 that contains the causal interval. This is an easy task. Then one

throws away all points that are outside of the interval.

Let us instead use polar coordinates (τ, r, ϕ) this time:

t = τ

x = r · cos(ϕ)

y = r · sin(ϕ)

(2.6)

The causal interval is described by

Ω = {(τ, r, ϕ) ∈ [0, T ]× [0,∞[×[0, 2π] | r ≤ min{τ, T − τ}}

and
√
−g = r in these coordinates. The strategy to find a suitable sprinkling map f : [0, 1]3 →

Ω, (x1, x2, x3) 7→ (τ, r, ϕ) will be to map layers of the cube {(x1, x2, x3) | (x2, x3) ∈ [0, 1]2} with

constant x1 to layers of the interval with constant τ such that V (Ω) · x1 = V (Ωτ ) where Ωτ =

{(τ ′, r, ϕ) ∈ Ω | τ ′ ≤ τ} denotes the part of the interval with τ ′ ≤ τ . We define f1 : [0, 1]→ [0, T ], x1 7→

τ to satisfy this. Consider the volume of Ωτ :

V (Ωτ ) =

∫
Ωτ

d3z
√
−g

V (Ωτ | 0 ≤ τ ≤ T/2) =

∫ τ

0
dτ ′
∫ τ ′

0
dr

∫ 2π

0
dϕ r

=
π

3
τ3

V (Ωτ | T/2 ≤ τ ≤ T ) = V (ΩT )− V (ΩT−τ )

= 2V (ΩT/2)− V (ΩT−τ )

=
π

3

(
1

4
T 3 − (T − τ)3

)
(2.7)

We can then conclude that f1 has to satisfy

V (Ω) · x1 = V (Ωτ | τ = f1(x1)) . (2.8)

This condition can be solved for τ = f1(x1) and one finds

τ =

 T ·
(
x1
4

)1/3
for 0 ≤ x1 ≤ 1/2

T ·
(

1−
(

1−x1
4

)1/3)
for 1/2 ≤ x1 ≤ 1

. (2.9)
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Now we proceed by finding a function that maps lines of the cube {(x1, x2, x3) | x3 ∈ [0, 1]} with

constant x1 and x2 to subsets of Ω with constant τ = f1(x1) and constant r = f2(x1, x2) such that

the two dimensional volume V (Dτ,r) of the disc Dτ,r = {(τ, r′, ϕ) | 0 < r′ < r, ϕ ∈ [0, 2π]} satisfies

V (Dτ,r) = x2 · V (Dτ,rmax) with rmax = min{τ, T − τ}. The two dimensional metric for the disc is

formally obtained by pulling back the metric of M3 via the embedding of the disc into M3. The

two dimensional metric is Riemannian (since we are on a spacelike surface) and its determinant gives
√
g = r. So naturally V (Dτ,r) = r2π is the area of a regular Euclidean disc with radius r. One finds

V (Dτ,r | τ = f1(x1), r = f2(x1, x2)) = x2 · V (Dτ,rmax | τ = f1(x1), rmax = min{f1(x1), T − f1(x1)})

r2π = x2 · r2
maxπ

r = rmax ·
√
x2. (2.10)

Finally we need to take points from the line with constant x1 and x2 to the circles with constant τ

and r. As all ϕ are equally likely this can be done by

ϕ = f3(x3) = 2π · x3. (2.11)

Summarizing Eqns. (2.9,2.10,2.11) we find

0 ≤ x1 ≤ 1/2 : 1/2 < x1 ≤ 1 :

τ = T
(
x1
4

)1/3
τ = T

(
1−

(
1−x1

4

)1/3)
r = τ x

1/2
2 r = (T − τ)x

1/2
2

ϕ = 2π · x3 ϕ = 2π · x3

(2.12)

and it can be verified that in both areas |det (∂(τ, r, ϕ)/∂(x1, x2, x3))| = V (Ω)/r as required by Eq.

(2.4).

After placing the points in the interval it will be necessary to compute their mutual causal relations.

To this end it is probably most convenient to switch back to Cartesian coordinates which is readily

done by using Eqns. (2.6).

The precise sprinkling into the interval seems like a very tedious task and one would be tempted

to simply use the method with the cube that contains the interval briefly described above. However

this way turns out to be a valuable exercise for sprinklings into curved spacetimes where successively

finding the “sub maps” by integration is necessary.

2.4.3 Minkowski 4d: M4

Again we choose an interval that is bounded by (T, 0, 0, 0) and (0, 0, 0, 0) in Cartesian coordinates

(t, x, y, z). And again one has the choice between embedding the interval into a hypercube, do the

sprinkling into the cube and then remove unsuitable points or to find the more complicated map for
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the interval itself analogous to the 3d case. A sketch of the derivation of this map follows: We will

work in spherical coordinates

t = τ

x = r sin(θ) cos(ϕ)

y = r sin(θ) sin(ϕ)

z = r cos(θ)

(2.13)

in which the metric determinant yields
√
−g = r2 sin(θ). The causal interval is described by

Ω = {(τ, r, θ, ϕ) ∈ [0, T ]× [0,∞[×[0, π]× [0, 2π] | r ≤ min{τ, T − τ}} .

Like in three dimensions the first step will be finding a map f1 : x1 7→ τ that obeys

V (Ω) · x1 = V (Ωτ | τ = f1(x1))

where Ωτ = {(τ ′, r, θ, ϕ) ∈ Ω | τ ′ ≤ τ}. Integration yields

V (Ωτ | 0 ≤ τ ≤ T/2) =

∫ τ

0
dτ ′
∫ τ ′

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ r2 sin(θ) =

π

3
τ4

V (Ωτ |T/2 ≤ τ ≤ T ) = V (ΩT )− V (ΩT−τ )

=
π

3

(
1

8
T 4 − (T − τ)4

)
. (2.14)

So we find

τ =

 T ·
(
x1
8

)1/4
for 0 ≤ x1 ≤ 1/2

T ·
(

1−
(

1−x1
8

)1/4)
for 1/2 ≤ x1 ≤ 1

. (2.15)

The next coordinate to be fixed is r = f2(x1, x2) via the condition

V (Bτ,r | τ = f1(x1), r = f2(x1, x2)) = x2 · V (Bτ,rmax | τ = f1(x1), rmax = min{f1(x1), T − f1(x1)})

where Bτ,r = {(τ, r′, θ, ϕ) | 0 ≤ r′ ≤ r, θ ∈ [0, π], ϕ ∈ [0, 2π]} is a three dimensional ball and

V (Bτ,r) = 4π
3 r

3 its three dimensional volume. This gives

r = rmax · x1/3
2 . (2.16)

We proceed with θ = f3(x3) and the condition V (Sθ | θ = f3(x3)) = x3 ·V (Sπ) with Sθ = {(θ′, ϕ) | 0 ≤

θ′ ≤ θ, ϕ ∈ [0, 2π]} from which one deduces

2π(1− cos(θ)) = x3 · 4π

θ = arccos(1− 2x3). (2.17)

The map is completed by again using ϕ = 2π · x4 which together with Eqns. (2.15,2.16,2.17) gives:

0 ≤ x1 ≤ 1/2 : 1/2 < x1 ≤ 1 :

τ = T
(
x1
8

)1/4
τ = T

(
1−

(
1−x1

8

)1/4)
r = τ x

1/3
2 r = (T − τ)x

1/3
2

θ = arccos(1− 2x3) θ = arccos(1− 2x3)

ϕ = 2π · x4 ϕ = 2π · x4

(2.18)
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Once again one can verify that the condition for the Jacobian of this map (Eq. (2.4)) is satisfied and

once again it is probably a good idea to transform back to Cartesian coordinates in the end by using

(2.13).

2.4.4 de Sitter space 2d

De Sitter space plays an important role as a toy model spacetime as it exhibits curvature, serves as

a model for an expanding and shrinking universe and is yet simple enough to be treated more or less

analytically due to its high degree of symmetry [7]. It is therefore a natural first choice to investigate

the properties of causal sets in the presence of curvature.

In this thesis conformally flat coordinates (t, r) ∈ ]−∞, 0[ × ]−∞,∞[ will be used with the metric

gµν = (α/t)2 ηµν (see [7] for 4d, 2d can be done just analogously). We will consider sprinklings into a

causal interval Ω between points (t0, 0), (t1, 0), t0 < t1. Therefore one can use a sprinkling map from

(x1, x2) ∈ [0, 1]2 to (t, r) ∈ [t0, t1] × [−(t1 − t0)/2,+(t1 − t0)/2] and reject points that lie outside the

causal interval.

According to the by now well known procedure we start out by finding a map f1 : x1 7→ t such

that

V ([t0, t]× [−(t1 − t0)/2,+(t1 − t0)/2]) = x1 · V ([t0, t1]× [−(t1 − t0)/2,+(t1 − t0)/2])

with

V ([t0, t]× [−(t1 − t0)/2,+(t1 − t0)/2]) =

∫ t

t0

dt′
∫ +(t1−t0)/2

−(t1−t0)/2
dr
(α
t′

)2

=

∫ t

t0

dt′
α2 (t1 − t0)

t′2

= α2 (t1 − t0)

(
1

t0
− 1

t

)
.

So one finds

t =

(
1

t0
− x1

(
1

t0
− 1

t1

))−1

. (2.19)

As ∂rgµν = 0 one only needs to linearly map from x2 ∈ [0, 1] to r ∈ [−(t1 − t0)/2,+(t1 − t0)/2]. So

one gets for the complete sprinkling map:

f :

 x1

x2

→
 t =

(
1
t0
− x1

(
1
t0
− 1

t1

))−1

r = (t1 − t0) · (x2 − 1/2)

 (2.20)

To sprinkle a single point one picks from [0, 1]2 and uses f until one finds

(t, r) ∈ {[t0, t1]× R | r ≤ min{t1 − t, t− t0}} .

Like this we have avoided more complex integration over the causal interval. For later applications

however the volume of the causal interval is still needed. Let the causal interval be in between
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x = (t0, 0), y = (t1, r) with t1 − t0 ≥ |r| (there is translation symmetry along the spatial axis so this

choice of coordinates is always possible). The causal interval will then be divided into three parts (see

Fig. 2.1). Their respective volumes are

V1 =

∫ t0+T

t0

dt

∫ (t−t0)

−(t−t0)

(α
t

)2

= 2α2

(
log

(
t0 + T

t0

)
− T

t0 + T

)
V2 =

∫ t1−T

t0+T
dt (2T )

(α
t

)2

= 2α2

(
T

t0 + T
− T

t1 − T

)
V3 =

∫ t1

t1−T
dt

∫ (t1−t)

−(t1−t)

(α
t

)2

= 2α2

(
log

(
t1 − T
t1

)
+

T

t1 − T

)
.

Figure 2.1: Three parts of a causal interval on de Sitter 2d: T = (t1 − t0 − r)/2

This yields an overall volume of

V (x, y) = 2α2 ln

(
(t1 + t0)2 − r2

4 t0 t1

)
. (2.21)

As can be verified easily the curvature scalar is

R = 2/α2. (2.22)

2.4.5 Cylinder 2d

The cylinder spacetime is probably the easiest spacetime that exhibits non-trivial topology and is

therefore a suitable object to study the corresponding effects on causal sets. Sprinkling into a cylinder

spacetime is effectively the same as sprinkling into a rectangle on M2 with the exception that for the

computation of the causal relations one must take into account the altered topology.

So for a cylinder with height T and circumference L and Cartesian coordinates (t, x) with all

14



(t, x+ n · L) identified ∀ n ∈ Z the easiest sprinkling map is

t = T · x1

x = L · x2.
(2.23)

As the shape of a causal interval on a cylinder strongly depends on the relative position of the two

limiting points it is more convenient to always begin with a straightforward sprinkling into a rectangle

containing the whole area and to reject unsuitable points afterwards.
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Chapter 3

Propagators

3.1 Quantum Field Theory On Causal Sets

Eventually one would like to find a causal set based theory of everything that describes the behaviour

of spacetime, matter and their mutual interaction. This means that in a “final” theory the matter

living on a causal set must interact with the underlying set in a way that corresponds to what at the

level of today’s understanding is best described by Einstein’s equations. Such a theory has not been

found yet.

However it is considered an interesting exercise to construct a quantum field theory on a rigid causal

set analogous to the way that quantum field theory is investigated on fixed background spacetimes to

investigate effects like Hawking radiation of black holes. A natural starting point for this endeavour

is real scalar field theory described by the Klein-Gordon equation. Steven Johnston has set out to

find a procedure to determine the equivalent of the two point function of free real scalar field theory

〈0|T{φ(x)φ(y)}|0〉 on a causal set. The method consists of two major steps: First one needs to find

the equivalents for the advanced and retarded Green’s functions of the Klein-Gordon equation and

then one uses these functions to construct the Feynman propagator.1 The second step is hoped to be

independent of the structure of the causal set whereas the first step is at the moment only solved for

flat Minkowski spacetime in two to four dimensions. A detailed description of how to get the Feynman

propagator can be found in [8]. In [9] it is pointed out how the retarded Green’s functions for two

and four dimensional Minkowski spacetime are found by using a sum over paths approach which is a

somewhat intuitive equivalent of the path integral formalism.

Unfortunately this procedure does not seem to work on general causal sets. There are strong hints

that the presence of non-trivial topology and spacetime curvature require a separate treatment. The

following sections do not solve these problems completely but shed some light on the situation and

might help to reach a more complete solution.

1As pointed out in [8] the matrices for the advanced and retarded propagator are related by matrix transposition so

one only needs to find one of the two.
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Before we investigate the effects of non-trivial topology let us briefly state the main results for the

Klein-Gordon propagator in M2 according to [9]: Consider the elements of the set labelled in some

arbitrary order so that any element xi can be referred to by some index i. The formula for the retarded

propagator between two elements xi ≺ xj on a causal set corresponding to a causally convex patch of

M2 is

Kij = Iij + a (AC)ij + a2 b
(
A2
C

)
ij

+ a3 b2
(
A3
C

)
ij

+ . . .

= Iij +
∞∑
n=1

an bn−1 (AnC)ij

=
(
I + aAC · (1− a bAC)−1

)
ij

(3.1)

with

(AC)ij =

 1 if xi ≺ xj

0 else
. (3.2)

In the context of causal sets AC is sometimes referred to as the “causal matrix”. I is the identity

matrix with appropriate dimensions and a = 1/2, b = −m2/ρ with the mass m of the propagating

particle and the sprinkling density ρ (cf. Sec. 2.2). The matrix element
(
AkC
)
ij

gives the number of

different ways to travel causally from xi to xj via k intermediate jumps. Therefore the sum in Eq.

(3.1) can be understood as successively adding up the contributions from chains of increasing length

(cf. Sec. 1.2). The causal set is locally finite which means that AC is nilpotent and thus the sum

eventually terminates. K is the causet equivalent of the retarded Klein-Gordon propagator in the

sense that the expectation value of Kij averaged over all sprinklings equals the value of the retarded

continuum propagator evaluated at the positions of xi and xj for any non-zero density ρ.

3.2 The Cylinder Propagator

Let us now look at the retarded Klein-Gordon propagator on a cylinder spacetime with coordinates

(t, r) with (t, r + n · L) ∀ n ∈ Z identified. The metric is ηµν meaning that the cylinder is locally

indistinguishable from M2.

Fig. 3.1a shows the propagator on the continuous manifold whereas Fig. 3.1b shows the discrete

version according to Eq. (3.1) for comparison. The discrete version correctly approximates the con-

tinuum solution in the zones 0 and 1 (cf. Fig. 3.1d) but fails to do so in zones from 2 onwards. Zone

0 is spacelike to the perturbation origin at (0, 0) and in both methods the propagator in these regions

is explicitly set to 0 so the agreement is obvious. Zone 1 on its own is too small to be distinguishable

from a patch of M2 yet: the topology is the same. So we expect anything that works on M2 to also

work here. The situation changes fundamentally beyond that: Suddenly additional trajectories around

the cylinder are causally accessible. This is precisely when the agreement between Figs. 3.1a and 3.1b

breaks down.
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(b) discrete causal set, using AC
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(c) discrete causal set, using AH
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(d) different zones on cylinder

Figure 3.1: The retarded Klein-Gordon propagator on a cylinder with circumference L = 1, height

T = 2, mass m = 2, perturbation origin at (t = 0, r = 0) computed by different methods. For the

discrete cases a single sprinkling with N = 1000 elements was used.

This is no big surprise: In the continuum case the propagator on M2 and the cylinder agree in zone

1 but beyond the extra contributions from the additional trajectories must be taken into account. This

can readily be done by unrolling the cylinder and working in its covering space: Instead of the effect

of a single perturbation at (0, 0) on the cylinder one investigates the evolution of a whole series of

perturbations at (0, n·L) ∀ n ∈ Z in regular M2. Due to the linearity of the Klein-Gordon equation and

the principle of superposition these two cases can not be distinguished. Thus the cylinder propagator

GC from y = (ty, ry) to x = (tx, rx) is given by

GC(y, x) =
∞∑

n=−∞
GM2(y + (0, n · L), x) (3.3)

where GM2 is the normal M2 propagator. In fact the labelling of the cylinder zones in Fig. 3.1d is the

number of non-vanishing contributions in this sum.

Let us attempt the same approach for the causal set: Consider a sprinkling C into a cylinder

spacetime with height T and circumference L. Now take a patch (t, r) ∈ [0 : T ]× [−∞,∞] of M2 and

create a causal set C̃ by picking all the points xi,n = (ti, ri + n · L) ∀ n ∈ Z, xi = (ti, ri) ∈ C from the

patch with their induced order relations thereon.

To be precise C̃ cannot be considered a real sprinkling as the placement of the points xi,n for

different n is not independent and thus unwanted correlations in the probability distributions of
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elements per volume occur. It is therefore not per se clear whether the instructions of Eq. (3.1) really

give the appropriate propagator. One can treat the unrolled cylinder sprinkling in the same way as

a proper M2 sprinkling as long as one does not evaluate probabilities that involve multiple instances

of what was originally the same on the cylinder: Within a region of the covering space that does not

include multiple instances of what was originally the same region on the cylinder everything looks like

in a regular sprinkling. The probability distributions for two disjoint subsets of the covering space are

just as uncorrelated as on a M2 sprinkling as long as they remain disjoint when one reintroduces the

identification of points (t, r + n · L) ∀ n ∈ Z.

Let Kij(C) denote the causet propagator matrix element (i, j) obtained from the causal set C by

Eq. (3.1). To check whether K(i,n)(j,m)(C̃) gives the correct M2 equivalent propagator despite the

correlations in C̃ one must investigate the number of expected chains between the elements x(i,n)

and x(j,m). On M2 the infinitesimal probability to find a chain between two given endpoints y ≺ x

consisting of n− 1 intermediate elements zi in infinitesimal volumes d2zi is

ρn−1
n−1∏
i=1

d2zi. (3.4)

As the volume elements d2zi are infinitesimally small each of them can certainly be treated like

regular sprinkling region and as the points zi must be arranged in a causal order one can also be sure

that multiple d2zi do not lie at different instances of what was originally the same location on the

cylinder. Thus this density formula also holds for the pseudo sprinkling.

To get the overall number of expected chains with n intermediate jumps one must integrate over

all possibilities. Let I(y, x) denote the causal interval of two points y ≺ x on the sprinkling manifold.

We have: 〈
number of n-chains

between y and x

〉
=

∫
I(y,x)

d2z1

∫
I(z1,x)

d2z2 . . .

∫
I(zn−2,x)

d2zn−1 ρ
n−1 (3.5)

As the integration regions may be large enough to wrap around the cylinder the probability densities

evaluated for different chains may be highly correlated. However for taking the mean of a sum of

multiple random variables their mutual correlations are not relevant. Thus the number of expected

chains of any length from y to x is the same for a M2 sprinkling and the pseudo sprinkling and therefore

the propagators also give the same mean.

So in analogy to Eq. (3.3) we define the causet cylinder propagator between xi and xj ∈ C by

summing up the causet propagators between xi,n and xj,0 ∀ n ∈ Z on C̃:

K(C)ij :=
∞∑

n=−∞
K(C̃)(i,n)(j,0) (3.6)
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Let us look closer into the right-hand side of this equation:

K(C)ij =

∞∑
n=−∞

K(C̃)(i,n)(j,0)

=

∞∑
n=−∞

(
I(i,n)(j,0) +

∞∑
k=1

ak bk−1
(
AC(C̃)k

)
(i,n)(j,0)

)

= Iij +
∞∑
k=1

ak bk−1
∞∑

n=−∞

(
AC(C̃)k

)
(i,n)(j,0)

(3.7)

where we have used the fact
∑

n I(i,n)(j,0) = Iij . Consider now the matrix

(AH(C))ij :=

∞∑
n=−∞

(
AC(C̃)

)
(i,n)(j,0)

. (3.8)

By taking its square we find

(
AH(C)2

)
ij

=
∞∑

m,n=−∞

∑
k

(
AC(C̃)

)
(i,n)(k,0)

(
AC(C̃)

)
(k,m)(j,0)

=
∞∑

m,n=−∞

∑
k

(
AC(C̃)

)
(i,n+m)(k,m)

(
AC(C̃)

)
(k,m)(j,0)

=
∞∑

m,n=−∞

∑
k

(
AC(C̃)

)
(i,n)(k,m)

(
AC(C̃)

)
(k,m)(j,0)

=
∞∑

n=−∞

(
AC(C̃)2

)
(i,n)(j,0)

(3.9)

where the sum over k runs over all labelling indices of C and the discrete translation symmetry of

C̃ induced by unrolling the cylinder was used when setting
(
AC(C̃)

)
(i,n)(k,0)

=
(
AC(C̃)

)
(i,n+m)(k,m)

.

This calculation runs through for all higher powers of AH and thus we can rewrite Eq. (3.7) as

K(C)ij = Iij +
∞∑
k=1

ak bk−1
(
AH(C)k

)
ij

(3.10)

which is of the very same form as Eq. (3.1) except that AC is replaced by the new AH . Comparison

between Fig. 3.1a and 3.1c indicates that the new propagator is indeed working on the whole cylinder.

(AH)ij counts the number of copies of the initial perturbation source located at xi that are “visible”

at xj . This is equal to the number of equivalence classes of causal trajectories from xi to xj where

two trajectories are considered equivalent when they are homotopic. Therefore AH will be referred to

as the homotopy matrix.

3.3 Non-trivial Topology In Four Dimensions

To see how general the concept of the homotopy matrix is let us now consider a simple setup in four

dimensions. One starts out with regular M4. The retarded causet propagator thereon is found in a

way quite similar to Eq. (3.1) only this time one must not use the causal matrix but what is known
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as the link matrix. For M4 one has [9]:

Kij =
(
I + aAR · (1− a bAR)−1

)
ij

(3.11)

with

(AR)ij =

 1 if xi ≺∗ xj

0 else

a =

√
ρ

2π
√

6

b = −m
2

ρ

So one does not sum over all ways to travel from xi to xj but only over those with jumps between

nearest neighbours, i.e. paths (cf. Sec. 1.2). This propagator will correctly approximate the continuum

propagator only in the limit of high density ρ.

Now consider the compactification of one spatial dimension: Let M1 be the manifold obtained

by taking (t, r1, r2, r3) ∈ M4 with (t, r1, r2, r3) and (t, r1 + n · L, r2, r3) identified ∀ n ∈ Z and the

flat metric ηµν thereon. On the continuum an elegant way to find the propagator is again to go into

the covering space and sum over an appropriate set of M4 propagators. The retarded propagator

GM1(y, x) for the amplitude from y to x is

GM1(y, x) =
∞∑

n=−∞
GM4(y + (0, n · L, 0, 0), x)

where GM4 is the regular retarded M4 propagator.

Again we like to apply the same technique for the discrete case thus we again need an “unrolling”

C̃ of a sprinkling C into M1 which can be created by

C̃ = {xi,n = (ti, ri,1 + n · L, ri,2, ri,3) | ∀ xi = (ti, ri,1, ri,2, ri,3) ∈ C, ∀ n ∈ Z}

with causal relations implied by M4.

At this point it shall be emphasized once more that this is not a valid causal set operation. We are

cheating as we are remembering the original positions of the set elements on the sprinkling manifold.

For the sake of gaining a better understanding of things one may ignore the rules. But an operation

like this is not allowed to be part of a final causal set theory.

The next step is to check whether the pseudo sprinkling C̃ gives the correct retarded M4 causet

propagator via Eq. (3.11). Like on the cylinder the pseudo sprinkling obeys the same statistics as a

regular sprinkling as long as one does not “abuse” the fact that it was created by unrolling. In four

dimensions one does not sum over all chains but only over paths. So relative to the 2d probability

density for all chains Eq. (3.4) an extra factor for the probability that the causal volume between

two successive elements is empty must be added. The infinitesimal probability to find a path between
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given y and x with n− 1 intermediate elements is

ρn−1
n−1∏
i=1

d4zi · P(n(y, z1) = 0) ·
n−2∏
i=1

P(n(zi, zi+1) = 0) · P(n(zn−1, x) = 0). (3.12)

On M4 one has P(n(zi, zi+1) = 0) = exp(−ρ V (zi, zi+1)). This is not always true for the pseudo

sprinkling: When y and x are far enough apart paths must be considered where two successive elements

zi, zi+1 are so far apart that their intermediate causal volume actually reaches the regime where the

correlations induced by the unrolling process kick in. For these paths the probability formula must

be altered. Only a corrected volume which does not measure any same cylinder regions twice must be

considered. However for this corrections to become necessary the intermediate volume (on M4 and the

corrected version) must be at least of the order L4 and thus the path contribution will be suppressed

with an exponential exp(−ρO(L4)). As the propagator only works in the high density limit anyway

paths where these corrections become necessary are negligible compared to paths where the causal

volume between all successive elements is small. The integration to sum the total probability over all

paths is not affected by correlations just like in the 2d case. So again the pseudo sprinkling will give

the right propagator although this time it is only a (very good) approximation.

So exactly as in Eq. (3.6) the causet propagator for M1 sprinklings will be defined as

K(C)ij :=
∞∑

n=−∞
K(C̃)(i,n)(j,0). (3.13)

The same procedure as in Eqns. (3.7) to (3.10) is applicable only here one needs what will be dubbed

the homotopy link matrix AW (C) instead of AH(C) which is defined by:2

(AW (C))ij :=

∞∑
n=−∞

(
AR(C̃)

)
(i,n)(j,0)

(3.14)

So one finds

K(C)ij = Iij +

∞∑
k=1

ak bk−1
(
AW (C)k

)
ij

(3.15)

for sprinklings into M1.

3.4 Propagators And The Fundamental Homotopy Group

Consider the following premises: LetM be an n-dimensional Lorentzian manifold (with good enough

causality conditions to do QFT thereon) which has a universal covering space N with a covering map

f : N → M. Assume both M and N are path connected. In the continuum case the retarded

propagation amplitude GM(y, x) between two points y and x onM can be computed by summing up

the amplitudes GN (yi, x0) of the retarded propagator on N for all yi ∈ N such that f(yi) = y and a

fixed x0 ∈ N such that f(x0) = x. The causet propagator for a sprinkling on N can be computed by

using a sum over chains and/or paths.

2The letter W was chosen as subscript because it has the same relative position to R in the alphabet as H has to C
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Under these conditions for a sprinkling C intoM there is a pseudo sprinkling C̃ = {zi,n | f(zi,n) =

zi ∀ zi ∈ C} on N . The elements zi,n ∈ C̃ that satisfy f(zi,n) = zi will be called instances of zi ∈ C.

In analogy (metric determinants must be inserted) to Eqns. (3.4) and (3.12) the set C̃ will yield the

same number of expected chains and in the limit of ρ l2t � 1 the same number of expected paths as a

real sprinkling onto N . Here lt is the length scale from which on the potentially non-trivial topology

of M is relevant. Thus a propagator built from sums over paths and/or chains will give the same

expectation value. The retarded causet propagator between two elements zi and zj ∈ C is defined by

summing up the causet propagators from all instances of zi to a fixed instance of zj .

There is a bijection between the instances zi,n of zi and the fundamental group ofM. Pick out one

instance zi,0 and choose a set of paths from zi,0 to all other zi,n. As N is simply connected all paths

between the same endpoints zi,0 and zi,n will be homotopic. Now take a zi,n and a corresponding path

and consider the projection of that path onto M via f . As f(zi,0) = f(zi,n) = zi this path is now a

loop. This loop can be identified with an element of the fundamental homotopy group of M. As for

any two paths linking zi,0 and zi,n there is a (endpoint fixing) homotopy Γ continuously deforming

one into the other also the two corresponding projected loops on M via f will be homotopic with a

homotopy f ◦ Γ. So there is a unique element of the fundamental group of M that can be associated

with zi,n.

Consider now two different instances zi,n and zi,m with respective paths from zi,0 on N . If the

two projected loops on M were homotopic the lifting property (see for example [10]) would induce

a homotopy of the two original paths on N which cannot exist as both paths have different ending

points. Thus different instances must be assigned different elements in the homotopy group.

Finally pick any element of the homotopy group and a representative loop at zi on M. Lift this

loop at the instance zi,0 to N and it will become a path to some zi,n i.e. for any homotopy class there

is a corresponding instance.

In summary, there is a map from the instances zi,n to the elements of the homotopy group of M.

This map is both injective and surjective and hence a bijection.

Both the cylinder in Sec. 3.2 and the manifold M1 in Sec. 3.3 are examples of what is described

here. Indeed the sums in the definitions of the homotopy matrices AH and AW in Eqns. (3.8) and

(3.14) can be interpreted as sums over the homotopy groups which are in both cases isomorphic to the

integers under addition Z. M4 with two and three compactified spatial dimensions are two additional

examples with homotopy groups that are isomorphic to Z2 and Z3 respectively.

3.5 Propagators And Curvature: 2d

All two dimensional spacetimes are conformally flat so there is always a coordinate system in which

the metric is of the form gµν = ω ηµν where ω is a positive function of the coordinates.
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Consider now the d-dimensional Klein-Gordon equation (�+m2)φ = 0 and the d’Alembertian

�φ = gµν∇µ∇νφ

= gµν
(
∂µ∂ν − Γαµν∂α

)
φ

where Γαµν is the Christoffel symbol. For a conformally flat metric gµν = ω ηµν this simplifies to

�φ = gµν
(
∂µ∂ν − Γαµν∂α

)
φ

=

(
ω−1ηµν∂µ∂ν −

1

2ω2
(2− d)ηµν(∂µω)∂ν

)
φ

For d = 2 one has �φ = gµν∂µ∂νφ. In the presence of curvature the Dirac delta distribution that

describes a perturbation on the right-hand side of the Klein-Gordon equation must be added an extra

factor of
√
−g−1 so that

∫
ddx
√
−gδ(d)

g (x − x0) is invariant of choice of coordinates with δ
(d)
g (x) =

√
−g−1 δ(d)(x − x0) and δ(d) being the d-dimensional Dirac delta distribution. In conformally flat

coordinates
√
−g = ωd/2. So for two dimensions the equation that needs to be solved for finding the

massless propagators in conformally flat coordinates is

ω−1ηµν∂µ∂νG(x− y) = ω−1δ(2)(x− y).

The factor ω−1 cancels and thus the equation takes the same form as in flat M2. Thus in conformally

flat coordinates which we choose to be called (t, r) just as in M2 the retarded massless propagator

is given by the same mathematical function of these coordinates t and r. Thus we know that the

massless causet propagator still works.

Let us now deal with the massive case: Given the massless retarded continuum propagator

G(y, x) = G(x − y) from y to x the massive propagator Gm(y, x) can be constructed as a pertur-

bation series given by

Gm(y, x) = G(y, x)−m2(G.G)(y, x) +m4(G.G.G)(y, x)− . . . (3.16)

with (A.B)(y, x) =
∫
d2z
√
−g(z)A(y, z)B(z, x). As the massive propagator is in general no longer

translation invariant it is no longer a function of x− y (except of course if ω is translation invariant).

Consider now the massless causet propagator Kij = a(AC)ij with a = 1/2 and the series

Km,ij = a(AC)ij + a2b ((AC)2)ij + a3b2 ((AC)3)ij + . . . (3.17)

with b = −m2/ρ which gave us the massive propagator on M2 (cf. Eq. (3.1) where we drop the

identity for now as it does not describe actual propagation). What is the expectation value of 〈Km,xy〉

for two points labelled by xi and xj that we assume to be elements of the causal set? For that we

need to know the expectation values 〈(AnC)ij〉. This is the expected number of chains from xi to xj

with n intermediate jumps which was computed for M2 in Eq. (3.5). For conformally flat spacetimes

we need to insert a metric determinant at each intermediate element zi.

〈(AnC)ij〉 =

∫
I(xi,xj)

d2z1

∫
I(z1,xj)

d2z2 . . .

∫
I(zn−2,xj)

d2zn−1 ρ
n−1

n−1∏
k=1

√
−g(zk) (3.18)
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Let now all integrals go over the whole manifold and insert factors 〈(AC)#(zi)#(zi+1)〉 at each jump.3

This is the trivial probability for the existence of a chain with one jump between two elements zi and

zi+1 given these elements are in the sprinkling. It is 1 if zi ≺ zi+1 and 0 otherwise. Hence Eq. (3.18)

can be written as

〈(AnC)〉(xi, xj) = (〈AC〉.〈AC〉 . . . 〈AC〉)︸ ︷︷ ︸
n convoluted factors

(xi, xj) · ρn−1 (3.19)

where xi and xj have been denoted as regular continuous arguments here as we assume xi, xj ∈ C for

any xi, xj that we want to look at and thus can treat them as continuous arguments.

Putting all this together one can write the expectation value for 〈Km,ij〉 on conformally flat space-

times as

〈Km〉(y, x) = G(y, x)−m2(G.G)(y, x) +m4(G.G.G)(y, x)− . . . (3.20)

where we have used a〈AC〉(xi, xj) = 〈K〉(xi, xj) = G(xi, xj) for the massless propagators and that the

powers of ρ from the denominator of b cancel with those from the expected number of chains. This is

the same as the massive continuum propagator.

Note that the validity of Eq. (3.19) does not rely on the fact that 〈AC〉 is so very simple and

basically only serves as effective limitation of the integration regions. It is sufficient that the random

variables in the single convolution factors are uncorrelated which they automatically are because

they describe propagation in non-intersecting regions. So the causet equivalent Eq. (3.17) of the

perturbation series Eq. (3.16) can also be used to find solutions to other additional terms in the

Klein-Gordon equation as long as their causet equivalent is known.

So we know that the procedure to get both the massless and the massive causet propagator

according to Eq. 3.1 still works in the presence of curvature for trivial topology in two dimensions

and additionally for all non-trivial topologies where Sec. (3.4) applies.

A curious example of this is two dimensional de Sitter space which has the topology of a cylinder.

So one would be able to apply the homotopy matrix method. However the non-trivial paths are

concealed by causality so there are no zones Hx(n > 1) for any x, the non-trivial topology is not

visible and one finds AH = AC . This is why the discussion of de Sitter space can be so readily

performed in conformally flat coordinates that do not contain the information about the cylinder

topology [7].

3.6 Propagators And Curvature: 4d

In four dimensions the situation is considerably more difficult. Not all spacetimes are conformally flat.

Moreover the form of the d’Alembertian in the conformally flat case is not as simple as in 2d. Using a

conformally coupled d’Alembertian some special cases can still be solved. This section however focuses

3#(zi) is a function to obtain the index of the element zi in the xi labelling.
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on the general case and examines if the retarded causet propagator given by Eq. 3.11 for m = 0 does

still approximate the continuum propagator correctly in general curved four dimensional spacetimes.

For general spacetimes obtaining the continuous retarded propagator analytically is an intractable

task. In [11] an explicit method to construct the retarded propagator for a large class of spacetimes

is given but it is still not straightforwardly applicable in practice. However this method teaches us

some things about the form of the solution. It is shown that the retarded massless propagator can

be decomposed into a singular part that lives on the future lightcone of the perturbation and a tail

that lives within. For m = 0 we can see right away that the causet propagator does not posses a

tail as it is only non-zero on the elements that are linked to the perturbation and these elements will

cling to the lightcone with increasing density. However the singular part is also not approximated

correctly. According to [11] the singular part of the retarded propagator from x to y can be written as

Gsingular(x, y) = U(x, y)δ+(σ(x, y)) where σ(x, y) is the Synge world function and δ+ is the Dirac-delta

limited to the future of y by a step function which is 1 if x is to the future of a spacelike hypersurface

that contains y. This sounds rather complicated but it is just picking out the future light cone of y.

It is shown that the function U(x, y) = ∆1/2(x, y) where ∆(x, y) is the van Vleck determinant.

In M4 the coefficient U is given by U = 1/(4π). In [9] it is shown that this is correctly approximated

by the causet propagator in the mean. It is tricky to investigate the value of the coefficient of a delta-

singularity. For M4 this problem was overcome by switching to the Fourier space where the singularity

is avoided. However Fourier transformation is not as powerful in general spacetimes as there is not

always a known set of complete functions let alone that it is so simple as the plane waves in flat space.

An alternative approach that works in the space domain shall be introduced here.

Let us start by noting that a continuum propagator is only well defined as a distribution and

therefore one must investigate the effect of two propagators as distributions in an integral and not

their “function values”. On a causal set integration over a volume corresponds to summing up values

at different elements multiplied with the Planckian volume. When comparing the effect of a causet

propagator to a continuum propagator as a distribution on a space of functions one can either port the

continuous test functions to the causal set by taking φx = φ(x) or one can port the causet propagator

of C onto the continuum via

Gcauset(y, x) =
∑
z∈C

Kyz(C)Vp
√
−g−1

δ(4)(x− z).

This must be interpreted as follows: y must be an element of C and Vp = ρ−1 is the Planckian volume.

Kyz gives the causet propagation amplitude from y to z and the symbol z in the δ-distribution refers

to the coordinates of z on the continuous manifold. Evaluating a continuous volume integral with

a test function and this propagator will yield the same result as porting the test function onto the

set and perform the discrete integral equivalent there. For the massless case the expectation value of
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Gcauset for a sprinkling assuming that y is always contained in the set is:

〈Gcauset(y, x)〉 =

∫
J+(y)

d4z
√
−g ρ (a exp(−ρ V (y, z))) Vp

√
g−1δ(4)(x− z)

=

 a exp(−ρ V (y, x)) for x ∈ J+(y)

0 else
(3.21)

Here J+(y) denotes the causal future of y, d4z
√
−g ρ is the infinitesimal probability to find a set

element at z, (a exp(−ρ V (y, z))) is the expectation value for the matrix element Kyz where the

contribution of the identity matrix (see Eq. (3.11)) has been dropped as it does not describe actual

propagation. As distributions are linear maps one can take this expectation value as the kernel in test

function integrals to get the expectation value of the integral.

As the continuum propagators contain δ(σ)-singularities let us investigate the effect of the ported

causet propagator on integrals along the gradient of the Synge world function. We will start with

M4. According to the conventions in [11] σ(y, x) = −τ(y, x)2/2 and for M4 we have V (y, x) =

πτ(y, x)4/24 = πσ(y, x)2/6 where τ(y, x) is the eigentime distance between y and x for y ≺ x.

So let us pick a contour through a point x0 on the future lightcone of y which moves along the

gradient of the Synge world function. The contour will be given by a function x(λ) with x(0) = x0 and

σ(y, x(λ)) = λ. We will integrate the product of the expectation value of the ported propagator Eq.

(3.21) and a test function h(x) in the limit of high sprinkling density ρ (as only then the propagator

is expected to work) along a part of the contour that contains x0. The integral is

I = lim
ρ→∞

∫ λb

λa

dλh(x(λ)) 〈Gcauset(y, x(λ))〉

with λ < 0, λ > 0. Assume h(x(λ)) can be expanded in orders of λ around h(x(0)) in a series

h(x(λ)) =
∑∞

k=0 hkλ
k. Then we have

I = lim
ρ→∞

∫ λb

0
dλ (h0 +O(λ)) a exp(−ρπλ2/6)

= lim
ρ→∞

h0
a

2

√
6

ρ
(3.22)

For the continuum M4 propagator one would obtain I = h0/(4π). So for both versions to coincide one

indeed needs to set a = 1
2π

√
ρ
6 as derived via Fourier transform.

Now let us look at what happens in the presence of curvature. We assume that x0 and an open set

containing x0 are in a convex normal neighbourhood of y which is the region where points are linked

to y by unique geodesics [11]. This is required to make sure that σ is a suitable integration parameter

around x0. In [12] the corrections to the volume of a causal interval on a four dimensional manifold

are given compared to the flat Minkowskian case. For us the relevant part is that the coefficient of the

leading order of σ is not changed. Hence the integral Eq. (3.22) will not change in the limit ρ→∞.

Therefore the singularity coefficient U given by the causet propagator will also be constant in the
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presence of curvature (at least near the perturbation origin where the volume formulas given in [12]

hold) which does not agree with the desired continuum result.

Thus unlike in two dimensions here additional rules to cope with curvature are required. In M4

the fact was used that the links of y cling to the future lightcone of y to model the singular part. In

the presence of curvature the singular part is no longer constant but depends on an integral along a

null geodesic in the lightcone. If one would like to model this integration one must first extend the

notion of lightcones on causal sets as the set of links themselves has no internal structure so a geodesic

cannot be modelled therein.
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Chapter 4

Topology

4.1 Recovering Topology From The Causal Set

The quest for the cylinder propagator in Sec. 3.2 has shown that it is necessary to recover the topology

of the original manifold from the causal set. As mentioned in Sec. 2.1 it has been proven [2, 3, 4] that

the causal structure of the points of a future and past distinguishing Lorentzian manifold is enough to

determine its topology. Therefore for high sprinkling densities one expects the topology to be somehow

encoded in the causal set. Thus it should be possible to approximately recover the homotopy matrix

AH from the causal matrix AC .

Of course this is not a new problem and there are already promising approaches to recovering the

continuum topology from the causal set: For example in [1] a simplicial complex is constructed from

a thickened maximal antichain and it is shown that the Betti numbers of this complex coincide with

the ones from the original manifold in a certain range of thickening-depth.

For one thing the author of this thesis has a certain aversion to the introduction of new intermediate

length scales like the thickening-depth. So the potential of methods that do not need a new length

scale should be carefully examined. For another thing the method presented in [1] focuses on the

detection of the topology of a given set without taking into account causal accessibility which must

be considered for the problem in question.

This chapter will discuss approaches to an algorithm that can approximately recover the homotopy

matrix AH from the causal matrix AC on sprinklings into some Lorentzian manifolds. For two given

points x ≺ y one must find the number of equivalence classes of causal paths from x to y where two

paths will be considered equivalent when they are homotopic.

4.2 Intersecting Lightcones

In this section an algorithm will be discussed that can approximately recover the homotopy matrix

AH from the causal matrix AC on sprinklings into the cylinder manifold (see Sec. 2.4.5).
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For a manifold M the symbols J+,−(x) will refer to the causal future or past of a given point x

on M where we adopt the convention that x ∈ J+,−(x). J̃+,−(x) will refer to the lightcone only i.e.

J̃+,−(x) is the subset of J+,−(x) that has zero eigentime distance from x. The eigentime distance of

two points is integrated along a geodesic linking the points. In case there are multiple geodesics like

on the cylinder the smallest possible eigentime will be chosen. Hx(n) will refer to the set of points

y ⊂ J+(x) such that between x and y there are n equivalence classes of causal trajectories.

Let us first discuss how the zones Hx(n) can be identified on the continuous cylinder manifold. Note

how the set J̃+(x) forms a grid wrapping around the cylinder that separates the different homotopy

zones Hx(n) (cf. Fig. 3.1d). This is understandable as each time one crosses a branch of the lightcone

a new class of paths becomes accessible and one skips to the next zone Hx(n + 1). The point where

zones Hx(1) and Hx(3) meet can be interpreted as simultaneous crossing of two branches.

The first point that can be reached from x via two separate paths is z1 where the two light cone

branches intersect for the first time after emerging from x. All other points of Hx(2) lie to the future

of that point. In fact any point to the future of z1 is in some Hx(n) for n > 1 and no point in the past

of z is in some Hx(n) for n > 1. So

Hx(1) = J+(x) \ J+(z1). (4.1)

After the two branches meet at z1 they set out on another turn around the cylinder and will intersect

again at z2. Therefore one finds on a cylinder that Hx(n+ 1) = Hz1(n) and thus that

Hx(n | n > 1) = J+(zn−1) \ J+(zn). (4.2)

When trying to port these rules to the causal set C obtained by sprinkling on the cylinder one

faces two difficulties: On a causal set there is no exact correspondence to the lightcones thus the

identification of the points zi is complicated. To make things worse the probability that any of the

intersection points zi is chosen for the sprinkling is zero. So the rules given above cannot be applied

as is.

Recall that J+(z) on M can be written as

J+(z) =
⋂
y∈Ω

J+(y) (4.3)

for an arbitrary set Ω ⊂ J−(z) such that z ∈ Ω. In particular J+(z1) is the intersection of the futures

of all y ∈ Ωx(1) = J̃+(x)∩ J̃−(z1) that is the piece of the future lightcone of x that connects x and z1.

For Ωx(1) there is an approximate equivalent on a causal set: Consider the set of sprinkled elements

that are future links of x i.e. {y ∈ C | x ≺ y ∧ n(x, y) = 0}. The corresponding probability density for

such a point to be placed at y � x during a sprinkling is given by ρ·P(n(x, y) = 0) = ρ exp(−ρ V (x, y)).

For high densities this distribution becomes concentrated in areas with small V (x, y) which is a small
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(a) ρ = 20
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(b) ρ = 200

Figure 4.1: The function exp(−ρV (x, y)) for x = (0, 0), y = (t, r) on the cylinder manifold for different

ρ. This function determines the shape of the future link density of x. For large ρ it is only non-zero

along the lightcone from x to z = (0.5, 0.5) ≡ (0.5,−0.5)

region that clings to the lightcone between x and z1 (see Fig. 4.1). So a potential replacement of Eq.

(4.1) is

Hx(1) = J+(x) \

 ⋂
y∈Ωx(1)

J+(y)

 (4.4)

with

Ωx(1) = {y ∈ J+(x) | n(x, y) = 0}

J+(x) = {y ∈ C | x ≺ y}.

Note that in a slight abuse of notation the symbols Hx(1),Ωx(1) and J+(x) are now used for subsets

of the sprinkling C intoM. Each of them is clearly an attempt to model what is described by the same

symbol on M itself so the double use of the symbols should not be too confusing. Be however aware

of the subtle difference of J+(x) on the causet and on the manifold: x /∈ J+(x) on C but x ∈ J+(x)

on M.

On the continuum the next step was to swap x for z1 and z1 for z2 to get Hx(2) (cf. Eq. (4.2)).

This cannot be done here. Think of the properties a point z1 that was part of the sprinkling would

need: it would have to be to the past of every point in J+(x) \Hx(1) but none of the points of Hx(1)

would be in its future. Then we would use the future links of that point to construct what would be

the future of z2 just as with the set Ωx(1) in Eq. (4.4). Given such a hypothetical point z1 one would

construct Ωx(2) = {y ∈ J+(x) | n(z1, y) = 0} and

Hx(2) = Hz1(1) = J+(z1) \

 ⋂
y∈Ωx(2)

J+(y)


as above. Luckily one does not need the point z1 itself to be able to get Hx(2): what would be J+(z1)
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can be obtained by taking J+(x) \Hx(1) and

Ωx(2) = {y ∈ H+
x (2) | J−(y) ∩H+

x (2) = ∅} (4.5)

with

H+
x (n) = J+(x) \

n−1⋃
k=1

Hx(k).

This means Ωx(2) is the subset of elements in H+
x (2) = J+(x) \ Hx(1) that are minimal in H+

x (2).

Under this condition they would be future links of the hypothetical element z1. Note that here also

the convention y /∈ J−(y) has been chosen for the causal set. Combining all this one finds that higher

order zones are obtained by

Hx(n) = H+
x (n) \

 ⋂
y∈Ωx(n)

J+(y)

 (4.6)

with

Ωx(n) =
{
y ∈ H+

x (n) | J−(y) ∩H+
x (n) = ∅

}
.

Ωx(n) is the set of minimal elements in H+
x (n). It can be verified that this is a consistent successive

construction of the zones that at each step only requires information that already is available. Knowing

all sets Hx(n) for all x ∈ C it is easy to write down the homotopy matrix AH .

Unfortunately when applying this algorithm to actual cylinder sprinklings it turns out not to work

as well as was hoped (cf. Fig. 4.2a). Although the probability density for the points in Ωx(1) is looking

promising (see Fig. 4.1) it turns out that the number of links close to where the point z1 would be is

very small even in the high density limit. Thus the rule Eq. (4.4) approximates the continuum rule

Eq. (4.3) rather poorly because Ωx(1) does not necessarily contain a point near the actual z1 even for

high ρ.

A potential alternative for Ωx(1) is the following:

Ωx(1) = {y ∈ C | J+(y) ∩ (C \ J+(x)) = ∅} (4.7)

These are the points that are maximal in the subset of C that is not to the future of x. So it will

cling to the lightcone of x from outside. The probability distribution for this set looks like in Fig. 4.1

flipped horizontally with z sitting at (0, 0). It can be shown that with increasing density points near

z will become more likely and thus that the approximation works well. Likewise all higher Ωx(n) are

no longer chosen to be minimal in H+
x (n) but to be maximal in C \H+

x (n):

Ωx(n) = {y ∈ C | J+(y) ∩ (C \H+
x (n)) = ∅} (4.8)

Fig. 4.2b shows this modified algorithm in action and Fig. 4.2c shows the difference between the

modified algorithm and the correct manifold result. One can see that the algorithm works well for

most points but that with increasing number of paths the borders of the homotopy zones are detected
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(a) Hx(n) with Ωx(n) obtained according to Eq. (4.6)
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(b) Hx(n) with Ωx(n) obtained according to Eq. (4.8)
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(c) Difference of AH obtained from the modified algorithm

and the correct manifold value

Figure 4.2: (AH)yx for x = (0, 0), y = (t, r) obtained by the causet algorithm for a sprinkling onto the

cylinder with L = 1, 〈N〉 = 10000. Two different choices of getting Ωx(n) are shown.

less and less precisely. These errors would however only become observable if a particle coherently

propagates much further than the circumference L.

The main flaw of the modified algorithm is that it must rely on the existence of enough elements

spacelike to the perturbation source x to make the set Ωx(1) a good approximation. If we were only to

consider a sprinkling into a causal interval this algorithm will not be able to get the correct homotopy

matrix entries for the minimal elements in that interval. Therefore strictly speaking the retarded

propagator from x depends on elements that are spacelike to x. This certainly violates some sense of

aesthetic.

4.3 Potential And Boundaries Of Generalizations

The algorithm has been introduced and explicitly discussed on the smooth cylinder manifold. So this

alone would make applying the algorithm on a causal set a “cheat” as we put our knowledge that the

set is a cylinder sprinkling into the process.

However it is easy to see that the algorithm applied to a M2 sprinkling would simply yield (AH)xy =

(AC)xy for all elements x where sufficient spacelike elements to form a good Ωx(1) are available and

with the possible exception of some y at the future boundary of the sprinkling area. The trivial and

the cylinder topology are the two most important possible topologies in two dimensions. More exotic
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ones like for example the “trousers” cause problems in defining even a continuum propagator and thus

can safely be ignored for our purposes.

The presence of curvature will bend the lightcones and could therefore potentially mess with the

concept of using the intersection points to determine the homotopy zones. However as long as one

can find a coordinate system (t, x) in which the tangent vector ∂t is always timelike and ∂x is always

spacelike then the algorithm is bound to work.

Putting all this together one might say that the algorithm works on all relevant two dimensional

manifolds and we do not have to know precisely which one the sprinkling was done in to use it.

In dimensions higher than two the intersection of two lightcones will no longer be just a point but

in general a d − 2 dimensional hypersurface. Thus the trick to write the future of the intersection

point z like in Eq. (4.3) will not be applicable in higher dimensions and therefore the whole procedure

will not work. How to solve this problem is still an open question.
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Chapter 5

Discrete D’Alembertian

5.1 Towards Replacing Differential Calculus

One of the most important tools in modern physics is differential calculus: Since its invention it has

been used to formulate all major physical theories: Newtonian mechanics, electrodynamics, general

relativity, quantum mechanics and quantum field theory. By giving up smooth manifolds the causal

set approach also throws away this powerful tool. Maybe a theory can be built without notions

of derivatives. However for the attempt to model “normal” field theory on a causal set it seems

reasonable to investigate equivalents of differential operators thereon. One might think the first job is

to find partial derivatives, as in the continuum they can be used to build all higher order operators.

However partial derivatives imply a notion of tangent spaces which is also not developed yet on causal

sets. Thus it has actually been easier to directly start out with the scalar d’Alembertian which on a

Lorentzian manifold is given by

� = gµν ∇µ∂ν (5.1)

where ∇ denotes the covariant derivative with the torsion free metric connection.

In his seminal paper [13] Rafael Sorkin develops the concept of the discrete d’Alembertian for a

causal set. Scalar fields on a causal set can be interpreted as vectors assigning a value to each point of

the set. Thus an operator that acts linearly on fields must naturally be a matrix on that vector space.

For a two dimensional1 causal set C and a function φ thereon the discrete d’Alembertian is given

1i.e. a sprinkling into a two dimensional manifold

35



by

(Bφ)x =
4

l2p

−1

2
φx +

∑
y∈C,y≺x

f(n(y, x))φy

 (5.2)

with

f(n) =



1 if n = 0

−2 if n = 1

1 if n = 2

0 else

n(y, x) = | {z ∈ C | y ≺ z ≺ x} |.

lp denotes the discreteness scale given by ρ−1/2. In this thesis a set {y ∈ C | n(y, x) = n} for some

fixed n will be referred to as a “layer”. The d’Alembertian is obtained by summing over the three

closest layers in the past of x where closeness is understood in terms of cardinality of the intermediate

causal interval.

It can be shown that for M2 sprinklings this operator yields

〈(Bφ)x〉 = �φ+ corrections (5.3)

with corrections that die away as the sprinkling density grows. Here φ must be given as a continuous

function on M2 and the causal set field is generated by taking φx = φ(x). Thus for functions that vary

slowly on the discreteness scale lp and given an observation scale lo such that lo � lp the discrete B

and the continuous � are indistinguishable.

In the presence of curvature one finds [14]:

〈(Bφ)x〉 = (�− 1

2
R)φ+ corrections (5.4)

Unfortunately this does not yet solve the problem. Although the expectation value tends to the

right answer in the limit of high densities the fluctuations actually grow with the total number of

elements. This does not have to be a problem: If the observation scale is large enough one might only

be able to detect the averaged d’Alembertian over a region of the scale l2o which might be a more well

behaved quantity.

It is assumed however that big fluctuations are unfavourable and thus a less volatile operator was

sought. The new candidate is [13]

(Bkφ)x =
4

l2k

−1

2
φx + ε

∑
y∈C,y≺x

fε(n(y, x))φy

 (5.5)

with

fε(n) = (1− ε)n
(

1− 2 ε n

1− ε
+
ε2 n (n− 1)

2 (1− ε)2

)
ε = (lp/lk)

2.
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Here a new, intermediate length scale lk is introduced, called the nonlocality scale. A larger lk

increasingly damps the fluctuations however it also introduces new corrections. So in order to get

both small fluctuations and small corrections lk is supposed to be in between the discreteness scale

lp and our observation scale lo. The discreteness scale is conjectured to be of the order of the Planck

length. That would be lp ≈ 10−35m. Given an energy scale of 1 TeV the current observation scale is

roughly lo = 10−16m. So a priori there is plenty of “space” for the new intermediate scale. Nevertheless

we should keep in mind that the introduction of a new physical length scale is a strong assumption

that needs to be justified at some point.

The operator in Eq. (5.2) is referred to as the local discrete d’Alembertian whereas Eq. (5.5)

is called nonlocal. In the non-local version the way the layers contribute to the d’Alembertian is

“smeared out” over more layers (see Fig. 5.1a). In the limit ε→ 1 both versions coincide.

Fig. 5.1b illustrates how the points in a M2 sprinkling contribute to the overall value of the

d’Alembertian.
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Figure 5.1: The non-local d’Alembertian

5.2 Physical Length Scales

Computing the discrete d’Alembertian of a constant function enables one to study the scalar curvature

of a given set. This relies on a sensitive interplay of various different physical length scales: The

discreteness scale lp, the non-locality scale lk, the curvature scale lc = |R|−1/2 and the length scale

associated with the volume of the sprinkling region Ω: lv = V (Ω)1/2. We need lp � lk so that the

averaging effect of the non-local d’Alembertian kicks in. At the same time we need lp and lk � lc so

that the underlying discrete network is fine enough to capture all the relevant information about the

spacetime curvature. Finally we need lc . lv so that the sampled spacetime volume is at least big

enough to make the deviation of curved space from flat space detectable. For everything to work out

just fine we want

lp � lk � lc . lv. (5.6)
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De Sitter space offers a nice test object to study this hierarchy with the aid of numerical simulations.

We will work in two dimensions and in conformally flat coordinates (cf. Sec. 2.4.4). In these coordi-

nates the scalar curvature is R = 2/α2 (cf. Eq. (2.22)) and the volume of a causal interval bounded

by the points x = (t0, 0), y = (t1, 0), t1 > t0 is (cf. Eq. (2.21))

V (x, y) = 2α2 ln

(
(t0 + t1)2

4 t0 t1

)
. (5.7)

So for a sprinkling with an expected number of elements N = ρ · V (x, y) into this interval we find

lp = (V (x, y)/N)1/2 = αN−1/2
(

2 ln
(

(t0+t1)2

4 t0 t1

))1/2

lc = |R|−1/2 = α
√

2

lv = V (x, y)1/2 = α
(

2 ln
(

(t0+t1)2

4 t0 t1

))1/2
.

(5.8)

For a well working d’Alembertian we would like N � ln
(

(t0+t1)2

4 t0 t1

)
� 1 and lk must be chosen

appropriately.

5.3 Numerical Preliminaries

There are some issues concerning the numerical evaluation of the discrete d’Alembertian on a sprinkling

which shall be mentioned before proceeding to discussing the actual results.

First there is the finiteness of the sprinkling interval. According to Eqns. (5.2) and (5.5) one is

supposed to sum over all {y ∈ C | y ≺ x} so surely the shape of the sprinkling interval somehow

influences the resulting value of the d’Alembertian. Analytical calculations for the expectation value

usually assume an unbounded sprinkling area which can naturally not be realized on a computer. Let

Ncard(x, n) denote the cardinality of the n-th layer, i.e. the number of elements y such that n(y, x) = n

i.e.

Ncard(x, n) = |{y ∈ C | n(y, x) = n}|. (5.9)

On full Minkowski space 〈Ncard(x, n)〉 is infinite. To get reasonable results for the d’Alembertian on

finite sprinkling intervals these intervals must be at least so big that the cut-off has about the same

effect on every layer.

Fortunately geometry comes to the rescue in the de Sitter 2d case case. The expectation value of

Ncard is finite even for unbounded regions:

〈Ncard(x, n)〉 =

∫
y∈J−(x)

d2y
√
−g ρ(ρV (y, x))n

n!
exp(−ρ V (y, x)) (5.10)

Plugging in the suitable metric determinant and volume formula and parametrising the past J−(x) of

x = (t1, 0) appropriately this integral reads

〈Ncard(x, n)〉 =

∫ t1

−∞
dt

∫ +(t1−t)

−(t1−t)
dr
ρα2

t2

(
2 ρα2 ln

(
(t1+t)2−r2

4 t1 t

))n
n!

(
(t1 + t)2 − r2

4 t1 t

)−2ρα2

(5.11)
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For general n this integral is quite intractable. For the special case n = 0 the finiteness can be shown

by an upper bound estimation. If the number Ncard(x, 0) for any x is finite so will be all higher

Ncard(x, n > 0) for any given n. If x has only a limited number of links in the past and each of these

again has only a limited number of links in the past then Ncard(x, 1) is bound to be finite as well and

so on and so forth. This means there is an intrinsic cut-off in de Sitter 2d which suppresses to some

extent the difference between an infinite and a large enough finite sprinkling region. The necessary

interval size can be estimated by evaluating Eq. (5.11) numerically.

Then there is the scale factor α introduced by the embedding of de Sitter 2d into M3. For the

d’Alembertian of the constant function φ = 1 we expect (B φ)x = −α−2 so at first glance it seems

like a good test to search for this particular dependence for varying α. However a closer look reveals

that α is merely a superficial scale having no real influence on the structure of the sprinkling. This

can be seen in various places:

For example all the length scales in Eq. (5.8) are proportional to α. Thus α has no influence on

their relative size. The integral Eq. (5.11) is invariant under rescaling α→ λα and ρ→ ρλ−2. If one

considers a sprinkling into a given causal interval I(x, y) with a given number of expected elements N

then one will find ρ = N/V (x, y) = (. . .) · α−2. So rescaling α automatically rescales ρ in a way that

leaves ρα2 invariant and thus the value of Eq. (5.11). The invariance becomes most obvious in the

sprinkling map Eq. (2.20) which shows no dependence on α whatsoever. Due to conformal flatness

also the causal relations of two given points are not influenced by α. Given this not only is the integral

Eq. (5.11) but in fact the whole structure of the sprinkled set independent of α.

Thus if we parametrize lk relative to α e.g. lk = α l′k like the other physically relevant scales (Eq.

(5.8)) then rescaling α will leave invariant the causal structure of the set as well as the parameter

ε = (lp/lk)
2 thus making the prefactor 4

l2
(p,k)

in Eqns. (5.2) and (5.5) the only remaining dependence

of B and Bk on α which leaves exactly the α−2 proportionality that one would have expected.

So we can simply fix α to some arbitrary value and do not have to collect simulation data for

different values which of course saves a lot of otherwise uselessly wasted computation effort.

Another simplification becomes possible when computing the d’Alembertian of the constant func-

tion φ = 1. Then Eq. (5.5) can be written as

(B(φ = 1))x =
4

l2k

−1

2
+ ε

∑
y∈C,y≺x

f(n(y, x))


=

4

l2k

(
−1

2
+ ε

∞∑
n=0

f(n)Ncard(x, n)

)

and

〈(B(φ = 1))x〉 =
4

l2k

(
−1

2
+ ε

∞∑
n=0

f(n) 〈Ncard(x, n)〉

)
. (5.12)
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Thus for the computation of the expectation value one can first gather data about the expectation val-

ues of Ncard(x, n) without having to specify a non-locality scale lk. Then one can use this distribution

to evaluate the expectation value of Bk for arbitrary lk without further simulations.

5.4 Simulation Results

The aim of the simulations is to investigate the discrete d’Alembertian of the constant function φ = 1

on sprinklings into de Sitter 2d in order to study the scalar curvature. Both mean and fluctuations

of the d’Alembertian shall be examined. The sprinklings are created on a causal interval I(x0, x1)

between the points x0 = (t0, 0) and x1 = (t1, 0) and the d’Alembertian evaluation point x is always

chosen to be the futuremost point in the sprinkling. Given the strict definition of 〈Bφ〉x the element

x should have been fixed to always sit exactly at the tip of the interval. But numerics indicate that

the results are not significantly affected by this.

The first step in the simulations is to gain data about the distribution of Ncard(x, n). Figs. 5.2a and

5.2b illustrate data of two major simulation sets. In both cases it was chosen t0 = −150, t1 = −1, α = 1.

t0 has been chosen very small in order to reach the regime of the intrinsic cut-off for at least the first

couple of layers. This has been verified via numerical integration. The simulations differ in the total

number of expected elements 〈N〉 which has been chosen to be 1000 and 10000 respectively in order

to study the influence of that quantity.

Figs. 5.2c and 5.2d show a close-up on the first layers and additionally the results of numerical

integration where one must unfortunately conclude the numerical integration for 〈N〉 = 1000 did not

yield useable results.

This data can now be used to compute the discrete d’Alembertian for any non-locality scale

according to Eq. (5.12). Fig. 5.3a and 5.3b show the mean value and the standard error for varying

lk, Fig. 5.3c shows a combined plot. For α = 1 and the constant function φ = 1 one would expect

〈(Bkφ)x〉 = −R/2 = −1. Clearly this is not the result one gets in the regime for larger lk where the

fluctuations are small. With increasing lk the mean value drifts further away from Bk = −1 and one

can see in Fig. 5.3a and 5.3c that after lk passes the curvature scale lc = R−1/2 ≈ 0.71 the discrepancy

becomes even worse. As the combined plot shows both data series coincide in the regime of small

error. So one can deduce that the sprinkling size is unlikely to have an influence on the observed

deviations. For lk → lp both plots give hope that the mean might tend towards Bk = −1 as predicted

by theory. However the fluctuations become so large that the limit of the local d’Alembertian seems

to be numerically intractable.

Fig. 5.3d shows the standard deviation of single evaluations for both data series. One can see that

for the local versions the fluctuations grow with 〈N〉 whereas for the non-local version the fluctuations

are clearly damped with increasing lk and also that given a fixed lk the fluctuations become smaller
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The inset shows an extreme closeup on which the small but

existent fluctuations of the simulation data can be seen.

Figure 5.2: 〈Ncard(x, n)〉 on de Sitter 2d for the topmost element x in a causal interval between

(−150, 0), (−1, 0) for 〈N〉 expected elements, obtained by simulation and numerical integration of Eq.

(5.11). The shown standard deviations are estimated from the standard deviations of bundles of 10,000

runs. For 〈N〉 = 1000 numerical integration appears to be unstable.

with increasing 〈N〉.

The relation between lk and the fluctuations can be understood when looking at the high relative

standard deviation of the layer cardinality data Ncard(n, x) in Fig. 5.2. Given a high non-locality scale

the data is averaged over many layers and thus the fluctuations become suppressed. For small lk even

the hardly noticeable noise in the data averaged over many runs (cf. inset in Fig. 5.2d) is enough to

severely disturb the mean value.

To still get a glimpse of how the d’Alembertian behaves in the limit lk → lp one can try to fall

back on numerically integrated layer data. For the 〈N〉 = 10000 case seemingly reasonable results up

to n ≈ 80 were obtained (see Fig. 5.2b) and so it is worth a try to plug these into the d’Alembertian

computation. The outcome is shown in Fig. 5.3b. For large lk the weight function f(n) lives long

enough to “see” that layer data is only available up to n = 80 and thus the results are invalid. Only

when this boundary becomes invisible to f(n) one can see reasonable values that are indeed very close

to the expected result Bk = −1. For lk → lp even the precision of this data is no longer good enough

and so the mean diverges at this “wall”. It is hard to estimate the error for this dataset but the mean
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Figure 5.3: 〈Bk(φ = 1)x〉 on de Sitter 2d for the topmost element x in a causal interval between

(−150, 0), (−1, 0) for 〈N〉 expected elements and varying non-locality scale lk, obtained by simulation

and numerical integration. The shown standard deviations are estimated from the standard deviations

of bundles of 10,000 runs.

is nevertheless a good indicator that the d’Alembertian might indeed approach Bk = −1 in the limit

of small non-locality.

This presented simulation data has demonstrated that lp � lk is necessary for reasonable small

fluctuations and has given us a hunch that lk � lc might be helpful to keep corrections small. However

one would want this relation to be established more solidly and furthermore the interplay of lc and lv

has not been seen yet. To this end another set of simulations is discussed here that can give insight

in these two relations.

The setup will be to compare sprinklings into intervals of varying volume to study what happens

when lc � lv. In this limit one would expect a transition to Minkowskian behaviour as the curvature

should become less and less detectable. The sprinkling intervals are again chosen to be causal intervals

between x0 = (t0, 0) and x1 = (t1, 0) with t0 = −150 fixed and varying t1 ∈ [−145,−1]. As the ratio

of the volumes V (x0, x1|t1 = −1)/V (x0, x1|t1 = −145) = O(104) it seems unsuitable to keep the

sprinkling density ρ fixed. Instead the number of expected elements 〈N〉 = ρ ·V will be kept constant.

This however induces another difficulty: The different causal sets will have very different discreteness
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scales.

A priori a causal set has no notion of fundamental length scale whatsoever. All “higher” scales

like curvature and volume scale are measured only in terms of the only natural available measure for

size: The number of elements. We like to associate a fundamental length scale to the distance of two

neighbouring points in order to make the comparison with manifolds possible. But when one wants to

compare the properties of two causal sets one should ensure that the associated fundamental length

scales are comparable.

As the transition of the de Sitter sprinklings towards Minkowski space is to be investigated a

Minkowski sprinkling with the same discreteness scale will serve as reference. By rescaling the coor-

dinate system (t, x) → (λ · t, λ · x) a Minkowski sprinkling can be resized to any desired discreteness

scale. Under such a rescaling the non-locality scale transforms like lk → λ · lk and the d’Alembertian

Bk → λ−2Bk.
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Figure 5.4: 〈Ncard〉 of the topmost element of a sprinkling into causal intervals between (t0, 0) and

(t1, 0) on de Sitter 2d compared to data from a Minkowski sprinkling with same number of elements.

For t1 → t0 one can see a transition from de Sitter towards Minkowski.

The transition of de Sitter into Minkowski already becomes visible when looking at the cardinality

of the layers (see Fig. 5.4): The closer t0 and t1 become the weaker becomes the variation of the metric

determinant throughout the interval and thus the more de Sitter space looks like M2. However the de

Sitter layer data already looks quite indistinguishable for t1 . −80 whereas the full d’Alembertian is

still able to separate de Sitter from Minkowski for t1 & −120 as we shall see.

Fig. 5.5 shows the results of 〈Bk〉 for different t1. For t1 = −145 one has V (x0, x1) ≈ 5.75 ·

10−4, lp ≈ 7.58 · 10−4 and the ratio lc/lv ≈ 30. The smallest fluctuations in the causal structure of

the set become amplified with a prefactor of 4 · l−2
p ≈ O(1010) (cf. Eq. (5.5)) which causes a very big

fluctuation scale and thus makes it impossible to detect a curvature that is so small in comparison. For

t1 = −120 the two sets are already distinguishable within the accuracy of errorbars and for t1 = −80

43



-40

-20

 0

 20

 40

 0  0.001  0.002  0.003  0.004  0.005  0.006  0.007  0.008  0.009

-B
k

lk

lp=7.58E-004

Minkowski
de Sitter, t1=-145

-4

-2

 0

 2

 4

 6

 0  0.01  0.02  0.03  0.04  0.05  0.06

-B
k

lk

lp=4.98E-003

Minkowski
de Sitter, t1=-120

-4

-2

 0

 2

 4

 6

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

-B
k

lk

lp=1.39E-002

Minkowski
de Sitter, t1=-80

-4

-2

 0

 2

 4

 6

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

-B
k

lk

lp=3.43E-002

Minkowski
de Sitter, t1=-30

-4

-2

 0

 2

 4

 6

 0  0.1  0.2  0.3  0.4  0.5  0.6

-B
k

lk

lp=5.39E-002

Minkowski
de Sitter, t1=-10

-4

-2

 0

 2

 4

 6

 0  0.2  0.4  0.6  0.8  1

-B
k

lk

lp=8.53E-002

Minkowski
de Sitter, t1=-1
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Lighter lines indicate standard errors. The horizontal grey line shows R/2 = 1. Data is averaged over

1.00 million runs.

there is no doubt left that one sprinkling is flat and the other one is curved. Although at t1 = −80

the ratio lc/lv ≈ 1.6 this already seems to be enough to make the curvature detectable. Possibly the

intrinsic cut-off of de Sitter geometry hinders the d’Alembertian from seeing the full causal set and

thus it is not that important how big the volume of the whole set is after all.

As there is no curvature scale on Minkowski the discrepancy of the Minkowski d’Alembertian for

large lk must be due to the finiteness of the sprinkling interval. For t1 = −145,−120,−80 one can see

that the de Sitter data starts to diverge in the same way and thus probably for the same reason. For

t1 = −10,−1 however the de Sitter data starts to leave the ideal level earlier and one can conclude

that this must be due to corrections in orders of lk/lc. In all plots lc = R−2 ≈ 0.707 but only in the

plots for big t1 lk becomes comparably large. Unfortunately only very little is known about the exact

form of these corrections. They are expected to be of the general form l
2(n+m−1)
k �mRn. In any case

one can state that lk � lc keeps corrections down.
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Chapter 6

Action

6.1 Winnowing Wheat From Chaff1

For very large N the set of all causal sets with cardinality N will be dominated by sets that allow

no manifold interpretation whatsoever [15]. It is therefore of vital importance for the causal set

programme to find the ones that do.

To this end a quantity is looked for that can somehow distinguish between an arbitrary and a

manifold like causal set. In the causal set context such a quantity is called action because it is

expected to act analogous to the action in quantum mechanics: There the principle of least action

isolates the classical path from the huge spectrum of all paths. In a similar fashion it is hoped the

causal set action will find the sets that have a continuous manifold approximation and are classical

solutions of Einstein’s equations to boot (see [14] for a discussion of this).

In [14] a candidate for two dimensions is proposed:

S(C) =
∑
x∈C

−1

2
+

∑
y∈C∩J−(x)

f(n(y, x))

 (6.1)

with

J−(x) = {y ∈ C | y ≺ x}

n(y, x) = |{z ∈ C | y ≺ z ≺ x}|

f(n) =



1 if n = 0

−2 if n = 1

1 if n = 2

0 else

The action consists of two components: The part that only depends on the sum over x is called the

local contribution whereas the part that depends on the sum over x and y will be referred to as bilocal.

Up to a prefactor this is simply adding up the local discrete d’Alembertian of φ = 1 evaluated at

1This section is named after a talk that Joe Henson gave at the Causets at DIAS II conference in December ’09
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each point of the set:

S(C) =
l2p
4

∑
x∈C

(B(φ = 1))x (6.2)

The expectation value for the action of a causal set sprinkled into a region Ω of a two-dimensional

Lorentzian manifold is

〈S〉(Ω) =

∫
Ω
d2x

√
−g(x) ρ

(
−1

2
+

∫
Ω∩J−(x)

d2y
√
−g(y) ρ

∞∑
n=0

P(n(y, x) = n) f(n)

)

= −1

2
ρ V (Ω) +

∫
Ω
d2x

∫
Ω∩J−(x)

d2y
√
g(x)g(y) ρ2 p(ρ V (y, x)) (6.3)

with p(x) = (1− 2x+ x2/2) exp(−x).

Sometimes it seems a little more convenient to change the order of integration of x and y and one

might use ∫
Ω
d2x

∫
Ω∩J−(x)

d2y F (x, y) =

∫
Ω
d2y

∫
Ω∩J+(y)

d2xF (x, y) (6.4)

for some integrand F (x, y). Naturally the proposition of a candidate must be followed by evaluating its

suitability. This is what the following chapter is about. The expectation value for selected sprinkling

regions shall be investigated to gain a rough picture of the behaviour of S.

6.2 Causal Intervals On M2

For a causal interval on two dimensional Minkowski space the expectation value of the action can be

computed analytically. Just like in Sec. 2.4.1 first Poincaré symmetry is used to pick coordinates in

which the interval is bounded by (0, 0) and (0, T ) in Cartesian coordinates and then one switches to

lightcone coordinates (u, v) ∈ Ω = [0, a = T/
√

(2)]2 (cf. Eq. (2.5)). The volume of the causal interval

with edge lengths ∆u and ∆v is V (I((0, 0), (∆u,∆v))) = ∆u ·∆v. Plugging all this into Eq. (6.3) one

finds

〈S〉(Ω) = −ρ a
2

2
+

∫ a

0
dux

∫ a

0
dvx

∫ ux

0
duy

∫ vx

0
dvy ρ

2 p(ρ∆u∆v)

with ∆u = ux − uy, ∆v = vx − vy

= −ρ a
2

2
+

∫ a

0
dux

∫ a

0
dvx

∫ ux

0
d∆u

∫ vx

0
d∆v ρ2 p(ρ∆u∆v)

= −ρ a
2

2
+

∫ a

0
dux

∫ a

0
dvx

[
[integrand 1]∆v=vx

∆v=0

]∆u=ux

∆u=0

with integrand 1 = −ρ
2

(1− ρ∆u∆v) exp(−ρ∆u∆v)

[g(ξ)]ξ=αξ=β = g(α)− g(β).

Hence

〈S〉(Ω) = −1

2
(1− exp(−ρ a2)). (6.5)
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The edge length a depends on the choice of coordinates. The value a2 = V (Ω) however is Lorentz

invariant. So one finds for arbitrary causal intervals on Minkowski 2d:

〈S〉(Ω) = −1

2
(1− exp(−ρ V (Ω))) (6.6)

Consider now splitting up the interval Ω into four smaller intervals Ωi according to Fig. 6.1a. When

computing the expected action one can split up the contributions into the actions of the four sub inter-

vals plus the bilocal contributions when x and y are lying in two different intervals. Let 〈S2〉(Ωi,Ωj)

denote the expected bilocal contributions from all x ∈ Ωi and all y ∈ Ωj . Then one gets

〈S〉(Ω) =
4∑
i=1

〈S〉(Ωi) + 〈S2〉(Ω2,Ω1) + 〈S2〉(Ω3,Ω1) + 〈S2〉(Ω4,Ω1) + 〈S2〉(Ω4,Ω2) + 〈S2〉(Ω4,Ω3) (6.7)

The bilocal summands can be computed using the same integral as in Eq. (6.5) and adjusting the

(a) (b)

Figure 6.1: Splitting up a causal interval on Minkowski 2d to compute the action

boundaries (and naturally dropping the local component). This yields

〈S2〉(Ω2,Ω1) =

∫ a

0
dux

∫ b+d

b
dvx

∫ ux

0
duy

∫ b

0
dvy ρ

2 p(ρ∆u∆v)

=

∫ a

0
dux

∫ b+d

b
dvx

[
[integrand 1]∆v=vx

∆v=vx−b

]∆u=ux

∆u=0

=
1

2
(1− exp(−a b ρ)− exp(−a d ρ) + exp(−a (b+ d) ρ)) (6.8)

〈S2〉(Ω4,Ω1) =

∫ a+c

a
dux

∫ b+d

b
dvx

∫ a

0
duy

∫ b

0
dvy ρ

2 p(ρ∆u∆v)

=

∫ a+c

a
dux

∫ b+d

b
dvx

[
[integrand 1]∆v=vx

∆v=vx−b

]∆u=ux

∆u=ux−a

= −1

2
(1− exp(−(a+ c) (b+ d) ρ)

+ exp(−a (b+ d) ρ) + exp(−c (b+ d) ρ)) + exp(−(a+ c) b ρ) + exp(−(a+ c) d ρ)

− exp(−a b ρ)− exp(−a d ρ)− exp(−c b ρ)− exp(−c d ρ)) (6.9)

The contributions for the combinations (3,1),(4,2) and (4,3) can be obtained from 〈S2〉(Ω2,Ω1) by

swapping the appropriate parameters. Putting together all parts of Eq. (6.7) one exactly recovers Eq.

(6.6).
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Now one might want to continue this game and split up the interval even further like in Fig. 6.1b.

To compute the action one must again sum up all local and bilocal terms. We already know the

local contributions and the bilocal ones from two intervals that share either an edge or a vertex (cf.

〈S2〉(Ω2,Ω1) and 〈S2〉(Ω4,Ω1) in Fig. 6.1a). Now one must work out the remaining ones like (4,1),(7,1)

and (9,1) in Fig. 6.1b. It turns out they only consist of exponentials that quickly die away as the

density is raised. All that one is left with in this limit is −1/2 for every sub interval, 1/2 for every

edge between two sub intervals and −1/2 for every two sub intervals that share a vertex. One could

write

〈S〉 = −1

2
(F−E + V) (6.10)

where F denotes the number of faces i.e. intervals, E the number of shared edges and V the num-

ber of shared vertices. This strongly reminds one of the computation of the Euler characteristic of

triangulations of two dimensional manifolds and motivates the question: Is the expected action (to

some extent) a topological constant? It is obvious that the formula can be applied to arbitrary areas

constructed from tilings of causal intervals as long as each interval is large enough to neglect the

corrections and as long as the created areas are causally convex meaning that for any two points y ≺ x

picked therefrom their causal interval I(y, x) is also wholly contained in the area. This is required to

make the used formula for the intermediate volume V = ∆u∆v valid. It is not hard to verify that

each of these constructions will yield an expected action 〈S〉 = −1/2 in the limit.

So for example the region sketched in Fig. 6.2a will give 〈S〉 = −1/2 in the limit of high density

but the region in Fig. 6.2b will not.

(a) causally convex (b) not causally convex

Figure 6.2: Different regions constructed from causal intervals on M2

6.3 Causal Intervals On The Cylinder

Naively applying formula Eq. (6.10) to a causal interval on a cylinder with circumference L and

height T with L ≤ T ≤ 2L one might come up with a subdivision as sketched in Fig. 6.3a. Taking

into account the topological identification one finds F = 8,E = 12,V = 4 thus yielding a predicted

high-density expectation value of 〈S〉 = 0. Performing corresponding simulations this is what one will
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(a) L ≤ T ≤ 2L (b) How to compute V (y, x | x ∈ Hy(2)).

Figure 6.3: Computing the action on a cylinder

actually find. However we have not shown yet that formula Eq. (6.10) is applicable to the cylinder

after all. The segmentation of the causal interval in Fig. 6.3a has been chosen such that formula

Eq. (6.6) for the faces and formulas Eq. (6.8) and (6.9) for the bilocal contributions of two intervals

that share an edge or a vertex can still be applied as the cylinder topology does not yet affect these

cases. But the computation of contributions like (5,1),(6,1) and (8,1) differs from the Minkowski setup

because alternative paths between two points that go around the cylinder are now accessible and thus

the intermediate causal volume V (y, x) is altered.

For the computation of bilocal contributions for points with two equivalence classes of paths

between them (cf. Secs. 3.2 and 4.2) one first needs the appropriate formula for the volume of the

intermediate causal interval. Fig. 6.3b illustrates that for x ∈ Hy(2) the right answer is

V (y, x | x ∈ Hy(2)) = 2 ·∆u∆v + ∆u (a+ b−∆v) + ∆v (a+ b−∆u) = (a+ b) (∆u+ ∆v) (6.11)

where ∆u = ux−uy,∆v = vx−vy, (a+b) = L/
√

2 and one must be aware that the coordinate systems

of x and y do not have the same origin. For all 2-path cases we will use these shifted coordinates

where the x origin is shifted to the point (0, L/
√

2) = (L/
√

2, 0) given in y-coordinates .For the 1-path

cases we will keep the former one with coinciding origins.

For points taken from intervals 1 and 8 respectively there are combinations when three different

path classes are accessible. Before one tries to find the correct volume formula for that case one should

notice that the intermediate volume for two such points will be at least V (y, x | x ∈ Hy(3)) ≥ (a+ b)2.

Thus the integrand for the bilocal contributions will be suppressed with a factor of exp(−ρ (a + b)2)

which makes the integral safely negligible.

Having established this one can start writing down the integrals for all the bilocal contributions

on the cylinder. As the different homotopy zones force a further splitting up of the integrals it seems

convenient to rethink the earlier introduced artificial splitting up into subintervals to keep things as
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simple as possible. 〈S2,n−path〉(Ωi) will denote the bilocal contribution to the action expectation value

for all x ∈ Ω and all y ∈ Ωi where x and y are linked by n different homotopy classes of trajectories.

Parity symmetry will be used in Eqns. (6.14) and (6.16) to summarize two identical terms. The

split-up of the x-integration in some cases is illustrated in Fig. 6.4a. Furthermore Eq. (6.4) is used

to swap the integration order for convenience.

Let us start with all the 1-path contributions for which we can fall back on integrals in Eqns.

(6.5,6.8,6.9) by adjusting the boundaries.

〈S2,1-path〉(Ω1) =

∫
Ω1

d2y

∫
Ω∩Hy(1)

d2x ρ2 p(ρ V (y, x | x ∈ Hy(1)))

=

∫ a

0
duy

∫ a

0
dvy

∫ a+b+uy

uy

dux

∫ a+b+vy

vy

dvxρ
2 p(ρ∆u∆v)

=

∫ a

0
duy

∫ a

0
dvy

[
[integrand 1]∆v=a+b

∆v=0

]∆u=a+b

∆u=0

= −ρ a
2

2

((
1− ρ (a+ b)2

)
exp(−ρ (a+ b)2)− 1

)
(6.12)

〈S2,1-path〉(Ω2) =

∫ a

0
duy

∫ b

0
dvy

([
[integrand 1]

∆v=a+b−vy
∆v=0

]∆u=a−uy

∆u=0

+
[
[integrand 1]∆v=a+b

∆v=a+b−vy

]∆u=a−uy

∆u=0

+
[
[integrand 1]

∆v=a+b−vy
∆v=0

]∆u=a+b

∆u=a−uy

)
=

1

2

(
ρ a b+ exp(−ρ a2) + (−1 + ρ a2 − ρ a b) exp(−ρ a (a+ b))

−ρ a (a+ b) exp(−ρ (a+ b)2)
)

(6.13)

〈S2,1-path〉(Ω5) =

∫ a

0
duy

∫ a

0
dvy

([
[integrand 1]

∆v=a−vy
∆v=0

]∆u=a−uy

∆u=0

+2
[
[integrand 1]

∆v=a−vy
∆v=0

]∆u=a+b

∆u=a−uy

)
=

1

2

(
1− exp(−ρ a2) + ρ a2(1− 2 exp(−ρ a (a+ b)))

)
(6.14)

〈S2,1-path〉(
⋃

i=4,6,7,8

Ωi) =

∫ a+b

0
duy

∫ a+b

0
dvy

[
[integrand 1]

∆v=a+b−vy
∆v=0

]∆u=a+b−uy

∆u=0

=
1

2

(
−1 + exp(−ρ (a+ b)2) + ρ (a+ b)2

)
(6.15)

In the high density limit terms with a factor exp(−ρ (a+b)2) can be neglected. Not generally negligible

however are terms with factors exp(−ρ a2) or exp(−ρ a (a+ b)) as for T only slightly larger than L the

value of a will be very small and thus these terms are significant. In the calculations for the 2-path

regions the negligible terms will be dropped right away to keep things a little tidier. The 2-path
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contributions are:

〈S2,2-path〉(Ω1) =

∫
Ω1

d2y

∫
Ω∩Hy(2)

d2x ρ2 p(ρ V (y, x | x ∈ Hy(2)))

=

∫ a

0
duy

∫ a

0
dvy

(∫ a

uy

dux

∫ a

vy

dvxρ
2 p(ρ (a+ b) (∆u+ ∆v))

+2 ·
∫ a

uy

dux

∫ a+b+vy

a
dvxρ

2 p(ρ (a+ b) (∆u+ ∆v))

)

=

∫ a

0
duy

∫ a

0
dvy

([
[integrand 2]

∆v=a−vy
∆v=0

]∆u=a−uy

∆u=0

2 ·
[
[integrand 2]∆v=a+b

∆v=a−vy

]∆u=a−uy

∆u=0

)
with integrand 2 =

ρ2

2
(∆u+ ∆v)2 exp(−ρ (a+ b) (∆u+ ∆v))

=
1

ρ2(a+ b)4
(−3

− exp(−2ρa(a+ b))(3 + 4ρab+ 4a2ρ+ 2ρ2a4 + 4ρ2a3b+ 2ρ2a2b2)

+ exp(−ρa(a+ b))(6 + 4ρab+ 4ρa2 + ρ2a4 + 2ρa3b+ ρ2a2b2)
)

+ corr.(6.16)

〈S2,2-path〉(Ω2) =

∫ a

0
duy

∫ b

0
dvy

[
[integrand 2]

∆v=a+b−vy
∆v=0

]∆u=a−uy

∆u=0

=
1

2(a+ b)4ρ2
(−2ρb(a+ b)

+ exp(−ρa(a+ b))(6 + ρ(a+ b)2(2− ρa2 + 2ρab+ ρ(b2 − a2)a2))

−2 exp(−2ρa(a+ b))(3 + 2ρa(a+ b)(2 + ρa(a+ b)))) + corr. (6.17)

〈S2,2-path〉(Ω5) =

∫ a

0
duy

∫ a

0
dvy

[
[integrand 2]

∆v=a−vy
∆v=0

]∆u=a−uy

∆u=0

=
1

(a+ b)4ρ2
(3− 2ρa(a+ b)

exp(−ρa(a+ b))(−6 + ρa(a+ b)(−2 + ρa(a+ b)(1− ρa(a+ b))))

exp(−2ρa(a+ b))(3 + 2ρa(a+ b)(2 + ρa(a+ b)))) + corr. (6.18)

Due to parity symmetry x↔ −x one knows 〈S2〉(Ω,Ω2) = 〈S2〉(Ω,Ω3).

Putting together all non-negligible 1-path and the local contributions one has

〈S2,1-path,local〉(Ω) =
1

2
exp(−ρa2)− (1 + ρab) exp(−ρa(a+ b)) + corr. (6.19)

The 2-path contributions yield

〈S2,2-path〉(Ω) =
−2

(a+ b)2ρ
+ exp(−ρa(a+ b)) (1 + ρab

+
1

(a+ b)4ρ2

(
(6 + 2ρ(a+ b)(2a+ b)− ρ2(a+ b)2b2 + ρ3(a+ b)3ab2)

−2 exp(−ρa(a+ b))(3 + 4ρa(a+ b) + 2ρ2a2(a+ b)2)
))

+ corr. (6.20)

According to Fig. 6.3a the relation between a, b, T and L is:

a = (T − L)/
√

2

b = (2L− T )/
√

2 (6.21)
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(a) Illustration of the three separate regions for the x

integration used in Eq. (6.13). The same has been

applied in Eqns. (6.14) and (6.16)

(b) Interval segmentation

of the cylinder for T > 2L

Figure 6.4: Illustration of integral regions for the cylinder action.

Fig. 6.5a shows a plot of the action and the two contributions. For T → 1 the action approaches the

Minkowskian limit −1/2. For T only slightly greater than L the exponential corrections to the simple

“faces-edges+vertices” rule dominate and cause a spike. For T → 2L the non-exponential 2-path

corrections are all that is left.

For the sake of completeness let us now look at the cylinder with T > 2L and consider a segmen-

tation of Ω according to Fig. 6.4b: For all y ∈ Ω1 one has Hy(1) ⊂ Ω and Hy(2) ⊂ Ω. The complete

contribution of Ω2, i.e. y ∈ Ω2 and the local contribution of Ω2 is simply the earlier computed cylinder

action for T = 2L. So for assembling the complete action one needs to compute

〈S2,1-path〉(Ω,Ω1) =

∫
Ω1

d2y
[
[integrand 1]

∆v=L/
√

2
∆v=0

]∆u=L/
√

2

∆u=0

= (T − 2L) · L · ρ
2

+ corr. (6.22)

〈S2,2-path〉(Ω,Ω1) =

∫
Ω1

d2y
[
[integrand 2]

∆v=L/
√

2
∆v=0

]∆u=L/
√

2

∆u=0

= 0 + corr. (6.23)

and the local contribution of Ω1 which is −ρV (Ω1)/2 = −ρ(T − 2L)L/2. Up to negligible corrections

this cancels with 〈S2,1-path〉(Ω,Ω1). So all that is left is the contribution of Ω2 for which one can use

formulas Eqns. (6.19) and (6.20) where one can now safely neglect all exponentials as a = a+b = L/
√

2.

The result is:

〈S | cylinder with T ≥ 2L〉 =
−4

L2ρ
(6.24)

In Fig. 6.5b one can see the excellent agreement of the analytic result with simulation data: All

features of the data are precisely predicted. For very large ρ one can neglect all 2-path contributions

and can fall back to the simple rule of Eq. (6.10) as was done naively at the beginning of this discussion.
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(a) The expected action of a cylinder-interval for L ≤ T ≤

2L with L = 1, 〈N〉 = 100: The 2-path contributions and

the rest are shown separately.
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(b) The expected action of a cylinder-interval for L =

1, 〈N〉 = 100 and 〈N〉 = 200 compared with simulation

results. For T ≤ L one can see the Minkowski-transition.

Figure 6.5: The expected action for causal intervals with height T on the cylinder with circumference

L = 1

6.4 The Causal Convexity Conjecture

Let us now return to M2. At the end of Sec. 6.2 it was briefly discussed that causally convex patches

of M2 that are built from causal intervals of finite size all yield 〈S〉 = −1/2 in the high density

limit. Consider now a rectangle with edges parallel to the t and x axis. Analytic computation of the

expectation value 〈S〉 is particularly tedious because this type of region is not causally convex: the

causal interval of two points near one of the side edges may poke out of the rectangle itself. Therefore

averaged simulation data shall be used for the discussion. A sprinkling into a rectangle has three

independent parameters that fully characterise the whole setup. A possible choice is the spatial width

w, the height along the time-axis h and the sprinkling density ρ.2 The expectation value 〈S〉 must

be fully determined by these three parameters. The finished causal set has no notion of the original

length scale that we were measuring w, h and ρ with. Thus whatever form the function 〈S〉(w, h, ρ)

might have it must be invariant under rescaling

w → λ · w

h → λ · h

ρ → λ−2 · ρ.

(6.25)

Fig. 6.6 shows simulation data for two different setups with power-law fits. Fig. 6.6a shows 〈S〉 for

constant w and h and varying ρ, Fig. 6.6b for constant w and ρ and for varying h. Given the small

relative errorbars the power-law fits look quite convincing and we will assume for now that 〈S〉 can at

least in the regime covered by the simulations be written in the form

〈S〉 = Const · hαwβργ . (6.26)

2width w, height h and absolute number of expected elements N would be another valid choice that is perfectly

equivalent

53



 2

 4

 8

 16

 100  200  400  800  1600

|S
|

ρ

fit results:
a=0.51
b=0.33

mean with standard error
power law fit

(a) Simulation data for the action of a rectangle in M2 for

w = h = 1, varying density ρ with a power-law fit. Data

averaged over 106 to 107 runs. Fit function: ρa · b.
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(b) Simulation data for the action of a rectangle in M2 for

w = 1, ρ = 100, varying height h with a power-law fit.

Data averaged over 106 to 107 runs. Fit function: ha · b.

Figure 6.6: Numerical results for the action of a rectangle in M2.

The aforementioned scale invariance (cf. Eq. (6.25)) demands α + β − 2γ = 0. From simulation 1

(Fig. 6.6a) one is tempted to deduce γ = 1/2 and from simulation 2 (Fig. 6.6b) that α = 1. It follows

β = 0.

The fact that for constant ρ the width does not affect the value of the action whereas 〈S〉 ∝ h

supports the assumption that only elements that are near the spatial borders, but not elements in

the bulk of the area, far away from these borders, do contribute to the action. At the same time

for large density the bilocal contributions where both elements are near the spatial borders are the

only ones that are affected by the causal non-convexity of the sprinkling region. Thus it is tempting

to suppose that causal non-convexity causes the unbounded growth of the action whereas for convex

causal intervals and constructions made thereof it is always −1/2. In fact one might go so far as to

conjecture that on M2 the expected action of any causally convex region is −1/2. To this date there

is no proof for this conjecture but as far as the author is aware there is also no counter-example yet.

6.5 Fluctuations Of The Action

At the beginning of this chapter the action was introduced as a potential tool to identify manifold like

causal sets and the mean of the action has been investigated on certain manifold patches. However

when it comes to deciding whether a single given causal set is similar to some kind of manifold, not

only the mean but also the closeness of a single evaluation to that mean is important. In short: One

must investigate the fluctuations of the action.

Recalling Eq. (6.2) the action is the sum of the local discrete d’Alembertian, without the prefactor

4 ·l−2, over every point of the set. As was pointed out, the fluctuations of the local d’Alembertian grow

with the number of set elements. So for the summed up action there are two potential effects: If the

correlations of the d’Alembertian evaluated at different points are small then it should approximately

hold

σS =
√
N σB′
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where B′ denotes the d’Alembertian without the prefactor and σX denotes the fluctuations of the

quantity X. An estimate shows that the fluctuations of B′ should asymptotically scale like
√

log(N)

for large N .3 So for weak correlations the action fluctuations should scale at least like
√
N and thus

the action in the introduced form is unlikely to be a suitable measure for manifold-likeness.

But it could also be possible that there are strong anti-correlations between the d’Alembertians

of neighbouring points which lead to a smoothing effect and make the action a more well behaved

quantity.
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Figure 6.7: Fluctuations of the action of a causal interval in M2 with a fit to σS(〈N〉) = b ·

(〈N〉 log〈N〉)a.

Unfortunately numerical simulations indicate that the fluctuations grow with N as shown in Fig.

6.7. The fit is not very good but it is clear that the action grows roughly like
√
〈N〉 and thus there

seems to be no hope for a damping induced by anti-correlations. Of course this is only an assumption

based on the numerical data that is available which can not give a comprehensive picture of what is

going on. Still it seems reasonable to think about alternatives to the currently proposed action. A

potential enhancement could be using the non-local d’Alembertian to damp fluctuations. However

we have seen in Chapter 5 that the introduction of the intermediate length scale also introduces new

correction terms so the consequences of this step must be carefully investigated.

6.6 The Action And Curvature

Earlier in this chapter hints that the action might be a topological invariant have been mentioned.

So we naturally have to study how it reacts to the presence of curvature. Again we will use two

dimensional de Sitter space as a simple object of study. Unfortunately here both the analytical and

numerical approach are very challenging: The integrals for the expectation value are made harder

by the conformal factor of the metric that significantly complicates the volume formula. Numerical

3This was revealed to the author in private communication with Fay Dowker.
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simulations however require enormous computational effort for large causal sets. As one needs to

analyse the cardinality of all possible causal intervals in the set the number of necessary computation

steps roughly scales like O(N3). At the same time as has been indicated in the last section the

standard deviation of the outcome grows so that for higher N more and more runs become necessary

to obtain the same standard error. The datapoint in Fig. 6.8b for 〈N〉 = 4000 took up more than

two weeks of CPU time and still has an enormous standard error. This illustrates how hard it is here

even by simulations to gain a comprehensive insight. A third option to tackle the problem would be

numerical integration. But as shown in Fig. 5.2c multidimensional numerical integration of volatile

functions can lead to instabilities and it is hard to rule out such problems. So for now the only hints

available are shown in Fig. 6.8.
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Figure 6.8: Numerical results for the expected action 〈S〉 on de Sitter 2d for causal intervals between

(t0, 0) and (t1, 0) for t0 = −150 and varying t1 and expected number of elements 〈N〉. Averaged data

from 2E4 to 5E5 runs.

Fig. 6.8a shows how the action behaves when one increases the size of the interval. For very small

sizes one can see the Minkowskian limit which is in agreement to the observations in chapter 5: The

action is approximately −1/2 regardless of the element number. For bigger interval sizes the action

tends towards smaller values, away from −1/2. This is clearly not what one expects from a topological

invariant. Furthermore the actions for different densities deviate: The larger the density the larger

will be the absolute value of the action. Unfortunately considering the data shown in Fig. 6.8b it is

impossible to judge whether it tends towards a finite value or whether it will diverge for 〈N〉 → ∞.

On M2 the average d’Alembertian of φ = 1 is zero. When summing up the action the only

contributions come from regions near the boundary where the cut-off disturbs the d’Alembertian. On

de Sitter the bulk d’Alembertian contributions are not zero but −R/2 = −1. Taking into account the

intrinsic cut-off of the de Sitter 2d geometry (cf. Sec. 5.3) one expects a term scaling roughly like −N

from the inner part of the sprinkling for large enough intervals. At the same time the boundary terms

may also grow and it is hard to tell without precise calculations what the total action will look like.

The regime in which the d’Alembertian correctly tends towards −R/2 requires lp � lc . lv which
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again requires a high enough sprinkling density and which therefore is numerically hard to investigate.

So the question whether the bulk or the boundary terms dominate in the high density limit cannot

be answered here. It is however crucial for the potential application of the action. Curvature is an

essential phenomenon of realistic theories. So an action must be able to deal with it.

57



Chapter 7

A Roadmap For Causal Set Theory

We have now seen approaches to recover information about curvature and topology from a causal

set. These are concepts known from continuum geometry. Furthermore we have discussed discrete

equivalents of retarded propagators and the d’Alembert operator, two vital components of the language

of partial differential equations. In the last chapter a proposed action to find manifold-like causal sets

has been introduced. All this is part of establishing the relation between manifolds and causal sets.

So it more or less serves the purpose of translating concepts that we know to the new spacetime

description.

But causal set theory was intended to be more than a mere new language. People who are working

with it are convinced that the notion of discrete atomic elements that are ordered by causality is

actually true. So eventually causal set theory must supply more: It must describe how the net that

forms spacetime is created. The proposed action is in fact a first step in that direction: In [14] it

is discussed that the action might not just be useful to find arbitrary manifold-like causal sets but

such sets that are equivalent to manifolds that satisfy Einstein’s equations. These equations give a

description of the interaction of matter and spacetime which is another thing that causal set theory

must eventually be able to provide.

So there is still more than enough work to be done. In the end one thing matters in particular

for a physical theory: Is it able to make predictions about the observable reality? Physicists must try

to deduce how the discreteness of space might be detectable by experiment. This is very hard as the

discreteness scale is conjectured to be so very small. Therefore people try to derive new phenomenology

with a lot of creativity. But one must always keep in mind: It must not just be a new prediction.

Most importantly it must be true.
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Appendix A

Documentation Of Koko

A.1 Prerequisites

Koko is a causal set code suite for C++ that was written to perform the simulations required for the

research this thesis is about.1 As these simulations are a crucial part of the thesis and because other

causal set researchers might benefit from reusing the code it shall be documented here.

Koko is available under the GNU General Public License Version 3. So anyone is welcome to

modify it and to work with it as long as he or she only redistributes it under the latest GNU GPL.

The full information on the license can be found in the read-me that comes with the package.

In order to work with the code it will be necessary to work directly with C++. So one needs a

working way of editing and compiling code files (e.g. one of many available IDEs) and a certain level

of understanding of the language: The very basic elements of C++ like atomic data types, functions,

classes, handling console applications and file output. More elaborate language elements that are used

are the vector template, class inheritance and pointers.

The code is set up as a console application and should run under any operating system. However,

depending on your environment some basic functions like round(),sqr() or min() or the constant

M PI might either already be defined or must be defined manually in the file “Common/Tools.h”.

A.2 Concept And Basic Functionality

The basic functionality that Koko supplies is a framework to describe the desired sprinkling region, cre-

ate sprinklings therein and to compute the adjacency matrices of the causet. To this end there are four

major interacting classes: Tp, TGeometry (both defined in “Common/UnitGeometry.h”), TSprinkling

(“Common/UnitSprinkling.h”) and TConnection (“Common/UnitConnection.h”). Their properties

and important methods are briefly listed in the Tables A.1, A.2 and A.3. The classes Tp and

TGeometry as presented in Table A.1 do not describe an actual spacetime region of interest but are

1Koko stands for causal set code.
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Class Tp

Stores the coordinates of a single sprinkled point on the manifold.

double t

Stores the time coordinate of the point.

Class TGeometry

Describes the necessary properties of the spacetime region the sprinkling shall be

performed in.

double V

Stores the volume of the spacetime region.

TGeometry()

Constructor: Initializes the instance.

virtual Tp *getRandomPoint()

Returns a pointer to a newly created instance of Tp that holds the coordinates of a

randomly picked sprinkling point.

virtual bool isCausal(Tp *a, Tp *b)

Returns true if the point referred to by a is to the causal past of the point referred

to by b on the spacetime. Otherwise it returns false.

virtual int countCausal(Tp *a, Tp *b)

Returns the number of equivalence classes of causal trajectories from the point referred

to by a to the point referred to by b.

Table A.1: Overview of the Tp and TGeometry class

merely dummies defined to supply at least formally the minimal requirements for the interaction with

the TSprinkling class. To describe a real scenario one might want to alter these definitions: Add

additional coordinates in Tp and fill the methods of TGeometry with useful instructions. However

there is a much more elegant way. For performing sprinklings into actual spacetimes define two new

classes. One derived from Tp and one derived from TGeometry. The sub class of Tp must have ad-

ditional double variables to store the rest of the coordinates. In the sub class of TGeometry the

constructor must initialize V with the correct volume of the sprinkling region. getRandomPoint()

must supply correctly distributed points and isCausal() and countCausal() must return appro-

priate answers for the manifold one wants to sprinkle in. Examples of how this could be done are

given in the files “Common/UnitGeometry Minkowski2d.h”, “Common/UnitGeometry deSitter2d.h”

and “Common/UnitGeometry Cylinder2d.h” that define sub classes to perform sprinklings into the

respective spacetimes. By the concept of inheritance the TSprinkling class will also work when called

with a pointer to the new geometry sub class. As all methods in the original TGeometry class were

declared to be virtual they will be overridden by the meaningful new methods supplied by the sub
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Class TSprinkling

Creates and handles the list of sprinkling elements by using a given instance of

TGeometry.

vector<Tp*> vertex

This list stores the set of sprinkled points.

TGeometry *geometry

Stores a pointer to the instance of TGeometry that is used for performing the sprin-

kling.

int size

Stores the number of sprinkled elements.

TSprinkling(int count exp, TGeometry * geometry)

This will create a sprinkling with count exp expected number of elements onto the

spacetime region described by the instance referred to by geometry which will be set

to geometry. count exp is assumed to be big enough so that the Poisson distribution

is well approximated by a Gaussian distribution. Hence the actual number of elements

is picked via a Gaussian with mean count exp and width
√
count exp.

TSprinkling(int count exp, bool randomCount, TGeometry * geometry)

The same constructor but by calling with randomCount=false the number of sprin-

kling elements will be precisely count exp.

∼TSprinkling()

The destructor deletes the set of points referred to by the entries of vertex.

void addRandom(int count)

This method will add count points to the sprinkling by calling the method

getRandomPoint() of the instance of TGeometry that geometry refers to.

bool isCausal(int i, int j)

The concept of Koko is that “above” TSprinkling there should be no direct inter-

action with any TGeometry instances any more. This method passes the question

whether the point referred to by vertex[i] is to the causal past of the point referred

to by vertex[j] on to the instance of TGeometry that geometry refers to.

void sort()

In its current form Koko assumes that for all spacetime regions in question there is a

global coordinate t whose gradient is always timelike so that a point a can only be to

the past of b if a.t<b.t. Thus after creating the list vertex of points TSprinkling

will sort them by t in ascending order by calling this method. Thus after sorting one

can immediately tell that vertex[i] can only be to the past of vertex[j] if i<j.

Table A.2: Overview of the TSprinkling class
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Class TConnection

Creates and handles the adjacency matrices AC and AR from a given instance of

TSprinkling. Within TConnection a causet element will only be referred to by an

integer that is determined by the position of that element in the list vertex of the

given instance of TSprinkling.

vector< vector<bool> > storeCausal,storeLink

These two dimensional lists store the entries of the adjacency matrices. storeCausal

will contain the data for AC and storeLink the data for AR.

int size

The number of sprinkling elements.

TConnection(TSprinkling *Sprinkling)

Constructor: Initializes causal and link data. size is set to Sprinkling->size,

createCausalFromSprinkling(Sprinkling) and createLinkTable() are called.

TConnection(TSprinkling *Sprinkling, bool needLinks)

If called with needLinks=false no link matrix will be created.

void createCausalFromSprinkling(TSprinkling *Sprinkling)

This method initializes causalStorage using the instance of TSprinkling referred

to by Sprinkling. The list Sprinkling->vertex is assumed to be sorted by t.

This means AC is upper triangular. Thus not the full square matrix is stored in

causalStorage but only the upper triangle. storageCausal has size size and

storageCausal[i] has size size-i-1. storageCausal[i][j] stores the result of

Sprinkling->isCausal(i,i+j+1).

bool causal(int i, int j)

For most applications it is convenient to be able to work with the full causal matrix.

This translates between the full matrix and the storage of the upper triangle data

in storageCausal: The method returns true if storageCausal[i][j-i-1]=true

otherwise false.

void createLinkTable()

After the initialization of storageCausal this initializes storageLink which is orga-

nized in exactly the same way.

bool link(int i, int j)

This is the link-equivalent of the causal method.

vector<bool> getInterval(int i, int j)

This method returns a vector<bool> of size size where entry k is true iff

causal(i,k)=causal(k,j)=true.

int getCardinality(int i, int j)

Returns the number of elements k such that causal(i,k) and causal(k,j) is true.

Table A.3: Overview of the TConnection class
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class.

For clarity the de Sitter 2d example shall briefly be discussed here. We will use conformally

flat coordinates (cf. Sec. 2.4.4). The sprinkling region of interest is a causal interval between the

points (t0, 0) and (t1, 0). The sub classes Tp deSitter2d and TGeometry deSitter2d are defined

based on the classes Tp and TGeometry. In Tp deSitter2d an additional coordinate double x is

defined to hold the spatial position of each point. In TGeometry deSitter2d the constructor takes

the arguments alpha, t0 and t1 that determine the metric scale factor and the coordinates of the

start and end point of the interval. The method getRandomPoint() sprinkles points into a rectangle

[t0, t1]× [−(t1 − t0)/2, (t1 − t0)/2] according to Eq. (2.20) and rejects the points until one inside the

interval is found. A pointer to that point is then returned. Due to conformal flatness the lightcones

in these coordinates are just like in M2 which is why the physical part of the implementation of the

isCausal() method is straightforward. Note however that the method is via inheritance required

to accept pointers to the fundamental Tp class whereas inside it needs to work with instances of

Tp deSitter2d. Therefore the two pointers must be typecast before their de Sitter-specific x variable

can be accessed. As between any two pairs of points there is at most one equivalent class of paths the

function countCausal() only needs to return 1 if isCausal() returns true and 0 else. Therefore the

original method defined in TGeometry is totally sufficient and no new version needs to be defined in

the sub class.

A.3 Examples And Application

Koko comes with some simple examples of how to use that fundamental causet handling functionality

to built more complex applications.

The algorithm introduced in Chapter 4 that approximately recovers the homotopy zones of a point

is implemented in “Common/UnitHomotopyAlgorithm.h” and an application that uses it is given in

“Examples/HomotopyAlgorithm.cpp”.

A class to compute the discrete d’Alembertian as introduced in Chapter 5 is defined in “Common/

UnitDAlembertian.h” and “Examples/DiscreteDAlembertian.cpp” gives basic examples of how to

use that class and of how to collect the layer cardinality data 〈Ncard(x, n)〉.

In “Examples/Action.cpp” an application that computes the action defined in Chapter 6 is

given.
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