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Abstract

The scope of the present dissertation is to review some aspects of 11-dimensional supergravity.

We describe the construction of the gravity supermultiplet and review the central charges that

extend the N = 1 super-Poincaré algebra in eleven dimensions. We discuss the steps in the

construction of the d = 11 supergravity Lagrangian, present the symmetries of the theory

and the relevant transformation rules for the fields. We review the membrane and five-

brane solutions and their properties: the saturation of the BPS bound by the relevant mass

and charge densities, the preservation of half of the rigid space-time supersymmetries and

the ‘no-force-condition’. The supermembrane is introduced as the source that supports the

space-time singularity of the membrane solution. We also discuss the interrelation between

the saturation of the BPS bound and the partial breaking of supersymmetry and in the case

of the membrane solution, the kappa symmetry of the supermembrane action. We review

the Kaluza-Klein reduction of the 11-dimensional supergravity theory to ten dimensions. We

describe the reduction of the bosonic sector of the action and show that the massless spectrum

of the compactified theory coincides with the field content of type IIA supergravity in ten

dimensions. In addition, we show how the string solution of d = 10 supergravity emerges

upon a diagonal dimensional reduction of the membrane solution, while a double dimensional

reduction of the membrane and the d = 11 supergravity background gives rise to a string

coupled to type IIA supergravity.
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Chapter 1

Introduction

Since its conception [1, 2], supergravity has played an important role in theoretical high-energy

physics, merging the theory of general relativity with supersymmetry. In fact, supergravity

arises as the gauge theory of supersymmetry [3]; the promotion of supersymmetry to a local

symmetry signals the appearance of gravity [4, 6].

Consider the schematic form of the commutator of two supersymmetry transformations,

with anticommuting parameters ε1 and ε2

[δ(ε1), δ(ε2)] ∼ ε̄1γµε2 Pµ , (1.1)

where Pµ is the generator of space-time translations. As equation 1.1 shows, two successive

supersymmetry transformations result in a space-time translation. Assume now that the

parameters ε1 and ε2 depend on space-time points i.e. supersymmetry is converted from a

global to a local symmetry. In this case, two consecutive supersymmetry transformations

give rise to a local translation with parameter ξµ(x) = (ε̄1γ
µε2)(x). On the other hand, local

translations are the infinitesimal form of general coordinate transformations. Consequently,

any theory that possesses local superymmetry invariance, must be invariant under general

coordinate transformations as well. Accordingly, the metric appears as a dynamical field,

rendering any locally supersymmetric theory, a theory of gravity.

Associated with any local (gauge) symmetry is a gauge field Aµ transforming as

δεAµ = ∂µε+ . . . , (1.2)

where ε is the parameter of the gauge transformation. In the case of local supersymmetry, the
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Chapter 1. Introduction 4

gauge transformation parameter is a spinorial object and so the relevant gauge field, known as

Rarita-Schwinger field, carries one spinor and one vector index. The Rarita-Schwinger field,

denoted Ψα
µ(x), represents (on-shell) a particle of helicity 3/2, the gravitino. As the name

implies, the gravitino is the superpartner of the graviton.

A supergravity theory in d dimensions is N -extended, when the number of supercharges

that appear in the underlying supersymmetry algebra is N · n, where n is the dimension

of the minimal spinor representation in d space-time dimensions. A maximally extended

supergravity theory has exactly thirty-two supersymmetries; the upper bound on the number

of supersymmetries is based on the assumption that there are no physical fields with spin

higher than two, the spin of the graviton field.

The reason why supergravity is appealing as a physical theory, is that supersymmetry im-

poses stringent constraints on its dynamics and field content, giving rise to rich mathematical

structures [7]. Fields that typically appear in a gravity supermultiplet, apart from the gravi-

ton and N gravitinos, are p-form gauge fields, which are generalisations of the electromagnetic

gauge potential and ‘matter’ fields such as scalar and spinor fields.

Supersymmetry has the property of alleviating the divergent ultraviolet behaviour of quan-

tum field theories [9]. Thereupon, supergravity was originally conceived as a fundamental the-

ory, capable of eliminating the non-renormalizable divergences that appear in the construction

of a quantum field theory of gravity. Additionally, the particle content and symmetries of

various supergravity models, made supergravity a viable framework for the unification of all

fundamental forces [4, 6]. The current consensus is that although local supersymmetry im-

proves the high-energy behaviour of quantum gravity, supergravity is an effective rather than

a fundamental theory of nature.

Supergravity models provide fertile soil for phenomenological discussions in particle physics

and cosmology [6, 8] but also play a prominent role in the context of string theory. The mass-

less sector of the spectrum of superstring theories is described by supergravity [10] and thus by

studying the behaviour of classical supergravity solutions, one retrieves valuable information

about the low-energy dynamics of superstring theories. In addition, many results established

at the supergravity level, such as dualities connecting different coupling regimes of various

supergravity theories, can be elevated to the superstring level [28].

Extensively studied classical solutions of the supergravity field equations, are brane solu-

tions [25, 26]. Brane solutions exhibit the structure of (p+ 1)-dimensional Poincaré-invariant
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hyperplanes, which are interpreted as world-volumes of objects extended in p spatial dimen-

sions; these objects are known as p-branes. Brane solutions have a non-perturbative character

and arise as electric, magnetic or dyonic 1 excitations of the (p + 1)-form gauge fields that

appear in supergravity theories. They are classified as elementary or solitonic, according to

whether they are singular or non-singular solutions of the supergravity field equations.

A special class of brane solutions are BPS brane solutions [27]; these are supersymmetric

solutions, characterised by the saturation of a Bogomol’nyi-Prasad-Sommerfield (BPS) bound

which equates their mass density to the p-form charge(s) they carry. The BPS property

‘shields’ the brane solutions against quantum corrections [17] and thus, allows the extrapola-

tion of results obtained in the classical limit, to the quantum level of string theory.

Among the various supergravity theories, 11-dimensional supergravity occupies a distin-

guished position; eleven is the maximal space-time dimension in which a supergravity theory

can be constructed and possess no particle with helicity greater than two [19]. The supergrav-

ity theory in eleven dimensions was originally constructed [21] in order to obtain supergravity

theories in lower dimensions, via Kaluza-Klein dimensional reduction [22, 44]. This approach

eventually fell out of favour as it did not produce realistic models in four dimensions. The cur-

rent perspective on 11-dimensional supergravity is that it describes the low-energy dynamics

of M-theory [11]. At strong coupling, type IIA superstring theory on R10 is argued to coincide

with M-theory on R10 × S1 [12]. The low-energy approximation of the former is type IIA

supergravity, which arises upon a Kaluza-Klein reduction of 11-dimensional supergravity to

ten dimensions. Accordingly, one expects that the supergravity theory in eleven dimensions

is the low-energy effective field theory of M-theory.

The field content of d = 11 supergravity is rather simple: it comprises the graviton field,

a Majorana gravitino field and a 3-form gauge field. Eleven-dimensional supergravity is a

maximal supergravity theory and so the gravity supermultiplet is the unique d = 11, N = 1

supermultiplet; it is impossible to couple any independent ‘matter’ field. The field equations

of 11-dimensional supergravity admit two BPS brane solutions: an elementary membrane

solution and a solitonic five-brane solution, which arise as the electric and magnetic excitations

of the 3-form gauge potential respectively.

1A dyon carries both electric and magnetic charges.



Chapter 2

The supersymmetry algebra in eleven

dimensions

2.1 The gravity supermultiplet

The super-Poincaré algebra in eleven dimensions has the following form

[MMN ,MPQ] = − (ηMPMNQ − ηMQMNP − ηNPMMQ + ηNQMMP ) (2.1a)

[PM , PN ] = 0 (2.1b)

[PM ,MPQ] = ηMPPQ − ηMQPP (2.1c)

[Qα,MMN ] = (SMN)α
β Qβ, α = 1, . . . , 32 (2.1d)

{Qα, Qβ} = (ΓMC−1)αβPM (2.1e)

Relations 2.1a, 2.1b and 2.1c define the Poincaré algebra; MPQ are the generators of SO(1, 10)

and PM the generators of space-time translations. The supercharges Qα transform as a single

Spin(1, 10) Majorana spinor (2.1d).

The gravity supermultiplet is a massless multiplet that contains a state of (highest) helic-

ity 2, corresponding to the graviton and a state of helicity 3/2, corresponding to the gravitino.

In the massless case the momentum 4-vector satisfies P 2 = 0 and in a fixed light-like refer-

ence frame PM = (−E,E, . . . , 0). Inserting this expression into the anticommutator of the

supercharges 2.1e gives

{Qα, Qβ} = E(−Γ0C−1 + Γ1C−1)αβ = E(1− Γ01)αβ , (2.2)
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Chapter 2. The supersymmetry algebra in eleven dimensions 7

where we used C−1 = Γ0 and defined Γ01 ≡ Γ[0Γ1].

Since Γ01 squares to the identity and is traceless, half of its eigenvalues are +1 and half −1.

Accordingly, the symmetric matrix {Qα, Qβ} can be written as a diagonal matrix whose first

sixteen entries equal 2E and the rest sixteen are zero. Supercharges that correspond to zero

entries are discarded in the construction of the supermultiplet, as they produce non-physical

states of zero norm. We conclude that only half of the supersymmetries are preserved and the

supercharges Q̃α ≡ (2E)−1/2Qα , where α = 1, . . . , 16 , generate an SO(16) Clifford algebra

{Q̃α, Q̃β} = δαβ . (2.3)

We proceed to the construction of the gravity supermultiplet, by splitting the sixteen

fermionic generators into eight operators that lower the helicity of a state by 1/2 and eight

operators that raise the helicity of a state by 1/2 [5]. Introduce a Clifford vacuum state |Ω〉

of lowest helicity −2 that is annihilated by the lowering operators; acting with the raising

operators on |Ω〉, yields the following tower of helicities

Helicity State Degeneracy

-2 |Ω〉 1

-3/2 Qi |Ω〉 8

-1 QiQj |Ω〉 28

-1/2 QiQjQk |Ω〉 56

0 QiQjQkQl |Ω〉 70

1/2 QiQjQkQlQm |Ω〉 56

1 QiQjQkQlQmQn |Ω〉 28

3/2 QiQjQkQlQmQnQp |Ω〉 8

2 Q1Q2Q3Q4Q5Q6Q7Q8 |Ω〉 1

In order to match the above states to the fields that appear in the supergravity theory, it

is necessary to find the helicity content of the latter. The helecity group is SO(2), the little

group in four dimensions and so the helicity content of a field in eleven dimensions is unveiled

by a dimensional reduction to four dimensions.

We start with the fields that we expect to appear in a supergravity theory, the gravi-

ton and the gravitino. The graviton is represented by a traceless symmetric tensor, whose
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decomposition under dimensional reduction is

hMN → hµν + hµi + hij , µ, ν = 0, . . . , 4 i, j = 1, . . . , 7 (2.4)

giving rise to one state of helicity 2 (hµν), seven states of helicity 1 (hµi) and twenty-eight

states of helicity 0 (hij). The gravitino decomposes as

Ψα
M → Ψα′α′′

µ + Ψα′α′′
i , (2.5)

where α′ = 1, . . . , 4 is the spinor index in four dimensions and α′′ = 1, . . . , 8 is the spinor

index in seven dimensions. Hence, the reduction of the gravitino gives rise to eight states of

helicity 3/2 (Ψα′α′′
µ ) and fifty-six states of helicity 1/2 (Ψα′α′′

i ). Subtracting the graviton and

gravitino states from the tower of helicities, we are left with twenty-one states of helicity 1

and forty-two states of helicity 0; these can be attributed to a 3-form field which decomposes

as

AMNP → Aµνρ +Aµνi +Aµij +Aijk. (2.6)

giving rise to seven plus thirty-five states of helicity 0 (Aµνi +Aijk) and twenty-one states of

helicity 1 (Aµij).

We conclude that the supergravity theory in eleven dimensions has a rather simple field

content; it comprises a graviton, a gravitino and a 3-form field.

2.2 Central charges

The super-Poincaré algebra can be extended by additional generators known as central charges

[15] that appear in the right-hand side of 2.1e

{Qα, Qβ} = (ΓMC−1)αβPM +
1

p!

∑
p

(ΓM1...MpC−1)αβZM1...Mp . (2.7)

Here p is a non-negative integer and ΓM1...Mp denotes the antisymmetrised product of p gamma

matrices Γ[M1ΓM2 . . .ΓMp] . The generators ZM1...Mp commute with PM and Qα and transform

as rank-p antisymmetric tensors under Lorentz transformations.

Central charges typically appear in supersymmetric theories as topological charges of

soliton solutions [16, 17]; in supergravity theories, p-form charges are associated with the
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gauge transformations of p-form fields and arise in the supersymmetry algebra realisation of

BPS p-brane solutions [18].

Consistency with the symmetry properties of {Qα, Qβ} requires that (ΓM1...MpC
−1)αβ is

symmetric. Using B.1, B.3 and Ct = −C one finds the following symmetry property for

ΓM1...MpC
−1 under transposition [28]

(ΓM1...MpC
−1)t = (−1)

(p−1)(p−2)
2 (ΓM1...MpC

−1). (2.8)

Equation 2.8 shows that ΓM1...MpC
−1 is symmetric for p = 1 mod 4 and p = 2 mod 4. Due

to the identity

εM1...MpMp+1...M11ΓMp+1...M11
∝ ΓM1...Mp , (2.9)

we need only to consider the cases p = 2 and p = 5. Hence, the anticommutator of the

supercharges in the extended d = 11 super-Poincaré algebra is [20]

{Qα, Qβ} = (ΓMC−1)αβPM +
1

2!
(ΓM1M2C−1)αβZM1M2

+
1

5!
(ΓM1...M5C−1)αβZM1...M5

. (2.10)

Notice that the left-hand side of the above equation has 32 · 33/2 = 528 components and

so does the right-hand side: 11 components of PM , 55 independent components of ZM1M2

and 462 independent components of ZM1...M5
. This means that the superalgebra is maximally

extended.

The appearance of a p-form charge ZM1...Mp in the supersymmetry algebra implies the

existence of an object extended in p spatial dimensions i.e. a p-brane, which ‘carries’ the

central charge. Since the fundamental fields of the supergravity theory do not carry such

charges, the aforementioned p-brane is inherently non-perturbative. Accordingly, in the 11-

dimensional supergravity theory we expect the presence of a 2-brane and a 5-brane.



Chapter 3

The supergravity theory in eleven

dimensions

Theories that involve particles of spin higher than two are known to yield inconsistent in-

teractions. Accordingly, the helicity of states that appear in the representations of a super-

symmetry algebra should not exceed two; this requirement restricts the maximum number

of supercharges [19] as follows. In the construction of a massless supermultiplet, only half

of the initial supercharges contribute and half of the latter act as raising operators. Since

each raising operator raises the helicity of a state by one-half, the highest number of raising

operators one can have, without exceeding the helicity bound, is eight. Consequently, the

maximum number of supercharges is 4 · 8 = 32.

The combination of the upper bound on the number of supercharges, with the dimension

of the minimal spinor representation in d space-time dimensions leads to d 6 11: in eleven

dimensions a minimal spinor has exactly thirty-two components, while for d > 12 the di-

mension of the minimal spinor representation exceeds sixty-four (assuming only one time-like

dimension) [14]. Therefore, eleven is the highest number of space-time dimensions in which

a consistent supergravity theory exists.

In 1978 E. Cremmer, B. Julia and J. Scherk constructed the Lagrangian for the super-

gravity theory in eleven dimensions [21], in an attempt to obtain the N = 8 (maximally)

extended supergravity theory in four dimensions, by dimensional reduction [22]. The method

used in that construction was Noether method. Noether method is an iterative procedure for

constructing a non-linear gauge theory, from the linear limit: the Lagrangian of the linearised

theory is supplemented step by step with extra terms and the transformation rules of the

10
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fields are modified accordingly, until all variations vanish and a fully invariant Lagrangian is

constructed [28].

Following the original paper, [21] we outline this procedure for the Lagrangian of d = 11

supergravity and present the symmetries of the theory.1

3.1 Construction of the Lagrangian

The gravity supermultiplet revealed the on-shell field content of the linearised d = 11 su-

pergravity theory to consist of the graviton field (represented by) eαµ(x), with 44 degrees

of freedom, the gravitino field Ψµ(x), with 128 degrees of freedom and the 3-form gauge

field Aµνρ(x), with 84 degrees of freedom. Thereupon, the starting point is a Lagrangian

comprising the kinetic terms for the aforementioned fields

2κ2
11L = eR(ω)− 2ie Ψ̄µΓµνρDν(ω)Ψρ −

e

2 · 4!
Fµ1µ2µ3µ4Fµ1µ2µ3µ4 , (3.1)

where κ11 is the gravitational coupling constant and e the determinant of the vielbein. Fur-

thermore, Fµ1µ2µ3µ4 is the field-strength of the gauge field Aµ1µ2µ3

Fµ1µ2µ3µ4 = 4 ∂[µ1Aµ2µ3µ4] (3.2)

and Dν the covariant derivative of the gravitino field

Dν(ω)Ψµ = ∂νΨµ +
1

4
ων

αβΓαβΨµ . (3.3)

The construction of the non-linear theory is performed in the one-half order formalism [4];

the equations of motion of the spin connection are assumed to be satisfied and so any terms

arising from the variation of the Lagrangian with respect to the spin connection are neglected.

The initial supersymmetry transformation rules are

δeαµ = iε̄ΓαΨµ , δΨµ = Dµ(ω)ε and δAµνρ = 0. (3.4)

In the one-half formalism, the combined (linear) variation of the kinetic terms for the graviton

and the gravitino fields vanishes [4] so we need only to compensate for the variation ε̄ΨF 2 of

1We use a different metric convention and a different normalisation for the gauge and gravitino fields from
the original paper.
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the kinetic term for Aµνρ. This is achieved by adding to the Lagrangian a term of the form

Ψ̄XΨF and at the same time introducing a ZεF term in the variation of the gravitino field

δΨµ = [Dµ + (ZF )µ]ε , (3.5)

where X and Z are undetermined products of gamma matrices.

The easiest way to determine X and Z is to require the equations of motion of the gravitino

field to be supercovariant i.e.

ΓµνρD̃νΨρ = 0 , (3.6)

where D̃ν is the supercovariant derivative defined by the variation of Ψν : D̃ν ≡ [Dν +(ZF )ν ].

Comparison of the terms that contain Z in 3.6 with the terms that contain X in the equations

of motion derived by varying the Ψ̄XΨF terms in the action, fixes the form of X and Z and

relates their coefficients.

Subsequently, a right adjustment of the undetermined coefficient of Z ensures that all

terms of the form ε̄ΨF 2 in the (altered) variation of the (modified) action vanish. The

only exception is a term involving a product of nine gamma matrices, which is cancelled by

supplementing the Lagrangian with a Chern-Simons term

aεµ1...µ11Fµ1...µ4Fµ5...µ8Aµ9µ10µ11 , (3.7)

imposing the supersymmetry transformation rule

δAµνρ = b ε̄Γ[µνΨρ] (3.8)

and arranging appropriately the product ab. The coefficient b which is left undetermined, is

fixed by requiring the terms of the form ε̄ ∂ΨF and ε̄Ψ∂F in the variation of the action to

vanish.

At this stage, all terms are fixed up to trilinear terms in δΨ and up to quartic terms in

the gravitino field in the Lagrangian. The last step involves the replacement of F and ω in

δΨ by their supercovariant counterparts

F̂µ1µ2µ3µ4 = Fµ1µ2µ3µ4 − 3Ψ̄[µ1Γµ2µ3Ψµ4] and ω̂ναβ = ωναβ −
i

4
Ψ̄ρΓναβ

ρσΨσ , (3.9)
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where the spin connection ω is

ωναβ = eγν (Ωαβγ − Ωβγα − Ωγαβ) +
i

4

[
Ψ̄ρΓναβ

ρσΨσ − 2
(
Ψ̄νΓβΨα − Ψ̄νΓαΨβ + Ψ̄βΓνΨα

)]
.

(3.10)

Imposing the condition that the gravitino field equation obtained from the action is super-

covariant, with respect to the aforementioned modified transformation δΨ, fixes the quartic

terms in the Lagrangian.

The final Lagrangian of the 11-dimensional supergravity theory is

2κ2
11L11 = eR(ω)− e

2 · 4!
Fµ1µ2µ3µ4Fµ1µ2µ3µ4 +

1

6 · 3!(4!)2
εµ1...µ11Aµ1µ2µ3Fµ4...µ7Fµ8...µ11

− 2ieΨ̄µΓµνρDν

(
ω + ω̂

2

)
Ψρ

+
ie

96

(
Ψ̄µ1Γµ1µ2µ3µ4µ5µ6Ψµ2 + 12Ψ̄µ3Γµ4µ5Ψµ6

) (
Fµ3µ4µ5µ6 + F̂µ3µ4µ5µ6

)
(3.11)

3.2 Symmetries and transformation rules

The symmetries of the Lagrangian and the corresponding transformation rules are (suppress-

ing trivial transformations)

• General coordinate transformation with parameter ξµ

δeαµ = eαν∂µξ
ν + ξν∂νe

α
µ (3.12a)

δΨµ = Ψν∂µξ
ν + ξν∂νΨµ (3.12b)

δAµ1µ2µ3 = 3Aρ[µ1µ2∂µ3]ξ
ρ + ξρ∂ρAµ1µ2µ3 (3.12c)

• Local Spin(1, 10) transformations with parameter λαβ = −λβα

δeαµ = −eβµλβα (3.13a)

δΨµ = −1

4
λαβΓαβΨµ (3.13b)



Chapter 3. The supergravity theory in eleven dimensions 14

• N = 1 supersymmetry transformations with anticommuting parameter ε

δeαµ = iε̄ΓαΨµ (3.14a)

δΨµ = Dµ(ω̂)ε− 1

12 · 4!
(Γν1ν2ν3ν4µ + 8 Γν1ν2ν3δν4µ) F̂ν1ν2ν3ν4ε (3.14b)

δAµ1µ2µ3 = 3iε̄Γ[µ1µ2Ψµ3] (3.14c)

• Abelian gauge transformations with parameter Λµν = −Λνµ

δAµ1µ2µ3 = ∂[µ1Λµ2µ3] (3.15)

• An odd number of space or time reflections together with Aµ1µ2µ3 → −Aµ1µ2µ3 .

In addition, the transformation

eαµ → eσeαµ , Ψµ → eσ/2Ψµ and Aµνρ → e3σAµνρ (3.16)

rescales the Lagrangian by a factor e9σ, which can be absorbed in a redefinition of the gravita-

tional coupling constant κ2
11 → e9σκ2

11. Since the gravitational coupling constant is rescaled,

the above transformation is not a symmetry of the action but it is a symmetry of the classical

equations of motion.



Chapter 4

BPS branes in 11-dimensional supergravity

4.1 The membrane

4.1.1 The elementary membrane solution

The membrane solution of 11-dimensional supergravity was discovered in 1991 by M. J. Duff

and K. S. Stelle [38], as a singular solution of the field equations that preserves half of the

rigid space-time supersymmetries and saturates a BPS bound.

In constructing the membrane solution, we seek a bosonic configuration of the fields that

reflects the presence of a membrane; a 2-dimensional object whose world-volume is a 3-

dimensional hyperplane embedded in the 11-dimensional space-time. We also require that

the solution preserve a fraction of the original space-time supersymmetries.

In the presence of a membrane, the initial Poincaré invariance in eleven dimensions is

reduced to P3 × SO(8) invariance i.e. Poincaré invariance in the flat world-volume of the

membrane and rotational invariance in the transverse to the membrane directions. Accord-

ingly, the membrane solution of the field equations should be invariant under the action of

P3 × SO(8).

We begin by making a three-eight split of the 11-dimensional space-time coordinates into

‘world-volume’ and ‘transverse’ coordinates respectively

xM = (xµ, ym) , µ = 0, 1, 2 m = 3, . . . , 9 . (4.1)

The ansatz for the line element is

ds2 = e2Aηµνdx
µdxν + e2Bδmndx

mdxn (4.2)

15
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and the associated vielbeins are

eαµ = eA δαµ and eam = eB δam . (4.3)

Letters from the beginning of the alphabet are used for tangent-space indices. Since the 3-

form gauge field naturally couples to the world-volume of the membrane, the relevant ansatz

is

Aµνρ = εµνρ e
C , (4.4)

where εµνρ is totally antisymmetric and ε012 = +1. All other components of AMNP are set

to zero and so is the gravitino field ΨM . P3 invariance requires that the arbitrary functions

A,B and C depend only on y, while SO(8) invariance requires that this dependence be only

through r =
√
δmnymyn.

If we require that the configuration of the fields be supersymmetric, the fields should

be invariant under a supersymmetry transformation δε with anticommuting parameter ε.

Bosonic fields transform to fermionic ones and since the latter are set to zero, bosonic fields

are invariant. The transformation rule for the gravitino field is δεΨM |Ψ=0 = D̃M ε , where

henceforth D̃M denotes the supercovariant derivative

D̃M |Ψ=0 = ∂M+
1

4
ωM

AB ΓAB−
1

12 · 4!

(
ΓM1M2M3M4

M + 8 ΓM1M2M3δM4
M

)
FM1M2M3M4 (4.5)

Consistency of setting the gravitino field to zero, with the assumption of residual supersym-

metry, requires the existence of spinors ε, known as Killing spinors, satisfying

D̃M ε = 0 . (4.6)

We proceed to the solution of the Killing spinor equation, by adopting a basis for the

gamma matrices compatible with the P3 × SO(8) symmetry

ΓA = (γα ⊗ Σ9,1⊗ Σa) , (4.7)

where γα are gamma matrices in d = 3 Minkowski space-time and Σa are gamma matrices

in d = 8 Euclidean space. We have also defined Σ9 ≡ Σ3Σ4 . . .Σ10 that satisfies Σ2
9 = 1.
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Furthermore, the spinor field ε(x, y) is decomposed as

ε(x, y) = ε0 ⊗ η(r) , (4.8)

where ε0 is a constant 2-component spinor of Spin(1, 2) and η(r) a 16-component spinor

of Spin(8). The latter can be further decomposed into chiral eigenstates, by applying the

projection operators 1
2(1± Σ9).

The next step in solving the Killing spinor equation is to evaluate D̃M for the ansätze 4.2

and 4.4. The spin connection ωM
AB is expressed in terms of the vielbeins as in A.6. The

M = µ component of the spin connection is

ωµ
AB = eγµ

(
ΩABγ − ΩBγA − ΩγAB

)
=

1

2
eγµ

[
(eAν eBm − eBν eAm)∂me

γ
ν + eγν eBm ∂me

A
ν − eγν eAm ∂meBν

]
=

1

2
eγµ e

−A [(eAν eBm − eBν eAm)eγν + eγν eBm eAν − eγν eAm eBν
]
∂me

A

= e−A
(
eAµ e

Bm − eBµ eAm
)
∂me

A .

Contracting ωµ
AB with ΓAB gives

ωµ
AB ΓAB = 2 e−A ΓµΓm∂me

A = −2 γµe
−A Σm∂me

A Σ9 .

The terms in the supercovariant derivative D̃µ that involve the field strength are

ΓM1M2M3M4
µFM1M2M3M4 = 4 Γmµ2µ3µ4µ εµ2µ3µ4 ∂me

C = 0

and

ΓM1M2M3FM1M2M3µ = 3 Γmµ2µ3 εµ2µ3µ ∂me
C = 3 Σmγα2α3εα2α3α e

α
µ ∂me

C

= 3 · 2! Σmγα e
−3A eαµ ∂me

C = 6 γµe
−3AΣm∂me

C .

Substituting the above expressions in 4.5 for M = µ we find

D̃µ = ∂µ −
1

2
γµe
−AΣm∂me

AΣ9 −
1

6
γµe
−3AΣm∂me

C . (4.9)
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The M = m component of the spin connection is

ωm
AB = ecm

(
ΩABc − ΩBcA − ΩcAB

)
=

1

2
ecm

[
(eAkeBn − eBkeAn)∂ne

c
k − (eBkecn − eckeBn)∂ne

A
k − (eckeAn − eAkecn)∂ne

B
k

]
=

1

2
ecme

−B
[
(eAkeBn − eBkeAn)eck − (eBkecn − eckeBn)eAk − (eckeAn − eAkecn)eBk

]
∂ne

B

= e−B
(
eAm e

Bn − eBm eAn
)
∂ne

B .

Contracting ωm
AB with ΓAB gives

ωm
AB ΓAB = 2 e−BΣm

n ∂ne
B .

The terms in the supercovariant derivative D̃m that involve the field strength are

ΓM1M2M3M4
mFM1M2M3M4 = 4 Γnµ2µ3µ4m εµ2µ3µ4 ∂ne

C = 4 Σm
nΓα2α3α4εα2α3α4 ∂ne

C

= 4 · 3! Σm
nγ012 Σ9 e

−3A ∂ne
C = 24 e−3AΣm

n ∂ne
CΣ9 ,

where we used the identity Γ012 = γ012 ⊗ Σ9 = 1⊗ Σ9 and

ΓM1M2M3FM1M2M3m = −Γµ1µ2µ3 εµ1µ2µ3 ∂me
C = −Γα1α2α3 εα1α2α3 ∂me

C

= −3! γ012 Σ9 e
−3A ∂me

C = −6 e−3A∂me
CΣ9 .

Substituting the above expressions in 4.5 for M = m we find

D̃m = ∂m +
1

2
e−BΣm

n ∂ne
B − 1

12
e−3AΣm

n ∂ne
CΣ9 +

1

6
e−3A∂me

CΣ9 . (4.10)

Upon substitution of the expressions 4.9, 4.10 and the decomposition 4.8 into the Killing

spinor equation 4.6, the solution that arises is

ε = eC(r)/6ε0 ⊗ η0 , (4.11)

where η0 is a constant spinor satisfying

(1 + Σ9)η0 = 0 . (4.12)

In addition, A and B are determined in terms of C as
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A =
1

3
C and B = −1

6
C + constant . (4.13)

The chirality condition 4.12 that the constant spinor η0 satisfies, reduces its components

by half. Consequently, the number of residual supesymmetries is 2 · 8 = 16 i.e. half of the

original thirty-two rigid space-time supersymmetries. Also note that the requirement for

residual supersymmetry results in the correlation of A,B and C, leaving only one function

undetermined.

In order to determine C we turn to the Euler-Lagrange equations of the bosonic sector of

the d = 11 supergravity action I
(b)
11 =

∫
d11xL(b)

11 , where

2κ2
11 L

(b)
11 =

√
−gR(ω)−

√
−g

2 · 4!
Fµ1µ2µ3µ4Fµ1µ2µ3µ4 +

1

6 · 3!(4!)2
εµ1...µ11Aµ1µ2µ3Fµ4...µ7Fµ8...µ11

(4.14)

The equation of motion of the 3-form gauge field is

∂M (
√
−gFMM1M2M3) +

1

2 · (4!)2
εM1M2M3...M11FM4...M7FM8...M11 = 0 . (4.15)

Inserting into 4.15 the ansätze 4.2, 4.4 and the expressions 4.13 gives

∂m

[
e(3A+8B)(r) gµ1ν1gµ2ν2gµ3ν3gmnεν1ν2ν3∂ne

C(r)
]

= 0

⇒ ∂m

[
e(−3A+6B)(r)εν1ν2ν3δ

mn∂ne
C(r)

]
= 0

⇒ εν1ν2ν3δ
mn∂m

[
e−2C(r)∂ne

C(r)
]

= 0

⇒ δmn∂m∂ne
−C(r) = 0

(4.16)

i.e. a Laplace equation in the transverse directions. Imposing the boundary condition that

the metric be asymptotically flat (Minkowski spacetime) yields the solution

e−C = 1 +
k2

r6
, r > 0 . (4.17)

where k2 is an undetermined constant. The above expression also solves the Einstein equa-

tions.
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Hence, the membrane solution consists of the line element

ds2 =

(
1 +

k2

r6

)−2/3

ηµνdx
µdxν +

(
1 +

k2

r6

)1/3

δmndx
mdxn (4.18)

and the 3-form gauge field

Aµνρ = εµνρ

(
1 +

k2

r6

)−1

. (4.19)

Consider the coordinate reparametrisation r6 = k2[(1 − r̃3)−1 − 1]. In terms of r̃, the

solution 4.18 becomes [45]

ds2 = r̃2(−dt2 + dσ2 + dρ2) + 4 k
1/3
2 r̃−2dr̃2 + k

1/3
2 dΩ2

7

+ k
1/3
2 [(1− r̃3)−1 − 1][4 r̃−2dr̃2 + dΩ2

7] .

(4.20)

Here we have introduced explicit coordinates xµ = (t, σ, ρ) and dΩ2
7 is the line element of the

unit 7-sphere, corresponding to the boundary of the 8-dimensional transverse space.

The geometry described by the line element 4.20 exhibits an event horizon at r̃ = 0 and

interpolates between two ‘vacuum’ solutions of 11-dimensional supergravity, corresponding to

the limits r̃ → 1 i.e. transverse infinity and r̃ → 0 [45, 27].

• As r̃ → 1, the solution becomes asymptotically flat i.e. approaches Minkowski space-

time.

• As r̃ → 0, one approaches the event horizon. The near horizon geometry is described

by the first line of 4.20 which is the line element of AdS4 × S7. The AdS4 × S7 geometry

is a stable solution of the supergravity field equations [44] arising from a spontaneous

compactification. The spontaneous compactification is induced by a gauge field strength

of the Freund-Rubin form Fµνκλ ∝ εµνκλ [42].

Analytic continuation through the horizon reveals a curvature singularity at r̃ = −∞

[45]. The space-time singularity classifies the membrane solution as an elementary solution

and requires the introduction of a δ-function source, so that equations of motion are satisfied

everywhere; this is provided by the supermembrane.

4.1.2 The supermembrane

In 1987, E. Bergshoeff, E. Sezgin and P. K. Townsend [34] constructed the action for a

supermembrane propagating in a d = 11 supergravity background. The key element of
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the action is a local fermionic symmetry on the supermembrane world-volume, known as

kappa symmetry. A kappa symmetric supermembrane action requires the curved superspace

background to obey certain constraints, including the existence of a closed super 4-form.

These constraints are satisfied in the case of 11-dimensional supergravity and a consistent

coupling is allowed [34].

The supermembrane is viewed as a bosonic manifold, embedded in d = 11 curved super-

space; the corresponding coordinates are1

ZM̄ = (XM , θα) , (4.21)

where XM are the bosonic coordinates and θα the fermionic coordinates. The latter compose

a 32-component Spin(1, 10) Majorana spinor. The propagation of the supermembrane in the

curved superspace background is described by a Green-Schwarz-type action [34]

S2 = T2

∫
d3ξ

(
−1

2

√
−γ γijEAiEBj ηAB +

1

2

√
−γ
)

+
q2

3!

∫
d3ξ εijkEĀiE

B̄
jE

C̄
k AĀB̄C̄ .

(4.22)

Here i = 0, 1, 2 labels the coordinates ξi of the supermembrane world-volume with metric

γij and signature (−,+,+). AĀB̄C̄ is the super 3-form in the superspace description of 11-

dimensional supergravity [23, 24] and EĀi denotes the pull-back of the supervielbein EĀM̄

EĀi ≡ (∂iZ
M̄ )EĀM̄ . (4.23)

T2 is the tension of the supermembrane and the term in the action that couples the super

3-form to the world-volume of the supermembrane is called Wess-Zumino term.

The symmetries of the action 4.22 are world-volume diffeomorphism invariance, target-

space (superspace) superdiffeomorphism invariance, Lorentz invariance and super 3-form

gauge invariance. In the case q2 = T2 (which is assumed henceforth) the supermembrane

action possesses an additional local world-volume symmetry, kappa symmetry. The relevant

transformation rules are [34]

δZM̄EAM̄ = 0, δZM̄EαM̄ = (1− Γ)αβ κ
β(ξ) (4.24)

1Henceforward, early Greek letters are used as spinorial indices and not as tangent-space indices.
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and a variation of the worldvolume metric that is of no interest in our analysis. The kappa

symmetry transformation parameter κβ is a Majorana space-time spinor and a world-volume

scalar. Γ is given by the expression

Γ =
1

3!
√
−γ

εijkEAiE
B
jE

C
k ΓABC . (4.25)

Kappa (or κ-) symmetry originally appeared as a symmetry of the superparticle [31] and

the superstring [32] and provides the link between space-time and world-volume supersym-

metry [30]. In 1986, it was generalised for higher dimensional objects (branes) by J. Hughes,

J. Liu and J. Polchinski [33], who explicitly constructed a Green-Schwarz-type action for a

super 3-brane in six dimensions.

Since we are considering a bosonic configuration, the fermionic coordinates θα are set to

zero and the supermembrane action reduces to

S2 = T2

∫
d3ξ

(
−1

2

√
−γ γij∂iXM∂jX

NgMN +
1

2

√
−γ +

1

3!
εijk∂iX

M∂jX
N∂kX

PAMNP

)
.

(4.26)

Variation of the membrane action 4.26 with respect to XM yields the equation of motion

∂i
(√
−γ γij∂iXNgMN

)
+

1

2

√
−γ γij∂iXN∂jX

P∂MgNP = − 1

3!
εijk∂iX

N∂jX
P∂kX

QFMNPQ ,

(4.27)

while varying with respect to γij gives

γij = ∂iX
M∂jX

NgMN (4.28)

i.e. γij is identified with the induced from the target space world-volume metric.

Having set θα to zero, the criterion for residual supersymmetry is that under a combination

of a κ-symmetry and a space-time supersymmetry transformation, θα remain zero. The

variation of the fermionic coordinates to linear order in fermion is [36]

δθ = (1− Γ)κ+ ε , (4.29)

where κ is the κ-symmetry parameter and ε the space-time supersymmetry parameter. The
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bosonic part of Γ is given by the expression

Γ =
1

3!
√
−γ

εijk∂iX
M∂iX

N∂iX
P ΓMNP . (4.30)

Γ is traceless and has the property Γ2 = 1. We prove the latter.

Γ2 =
1

36γ
εijk εlmn ∂iX

M1∂jX
M2∂kX

M3 ∂lXN1∂
mXN2∂

nXN3 ΓM1M2M3 ΓN1N2N3 . (4.31)

The product of gamma matrices that appears in the last expression is expanded as [14]

ΓM1M2M3ΓN1N2N3 = 6 δ[M3

[N1δM2
N2δM1]

N3] + 18 δ[M3

[N1δM2]
N2]ΓM1

N3 + 9 δM3
N1ΓM1M2

N2N3

(4.32)

and so we find

Γ2 =
1

36γ

[
6 εijkεijk + 18 εijkεkjn ∂iX

M1 ∂nXN3 ΓM1
N3

+ 9 εijkεkmn ∂iX
M1∂jX

M2 ∂mXN2∂
nXN3 ΓM1M2

N2N3

]
=

1

36γ
6 εijkεijk = 1 ,

(4.33)

in courtesy of the embedding equation 4.28.

Due to the aforementioned properties of Γ, the matrices (1±Γ) act as projection operators.

Consequently, κ-symmetry can be used to set sixteen of the thirty-two components of θα to

zero, by imposing (1− Γ)θ = 0. Around a purely bosonic background the above condition is

preserved if (1− Γ)δθ = 0 [36] or upon inserting the variation 4.29

2 (1− Γ)κ+ (1− Γ) ε = 0 . (4.34)

The above equation implies that κ = −ε/2 and thus

δθ =
1

2
(1 + Γ)ε . (4.35)

Therefore, the requirement for residual supersymmetry boils down to (1 + Γ)ε = 0.

The reparametrisation invariance on the world-volume of the supermembrane allows one

to impose a physical or light-cone gauge condition [35]. The fully gauged-fixed world-volume

theory is globally supersymmetric; it contains eight bosonic degrees of freedom, corresponding
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to the embedding scalars and eight fermionic degrees of freedom. The former appear as the

Goldstone bosons associated with broken translation invariance in the transverse dimensions

and the latter as the Goldstinos associated with broken rigid supersymmetry [33]. The origin

of world-volume supersymmetry is the kappa invariance of the supermembrane action, which

can be used to gauge away half of the fermionic coordinates.

4.1.3 The combined supergravity-supermembrane equations

As we saw earlier, the membrane solution has a singularity at the core, requiring the introduc-

tion of a δ-function source for its support. We therefore supplement the supergravity action

I
(b)
11 with the bosonic sector 4.26 of the supermembrane action.

The Einstein equation in the presence of the membrane becomes [38]

RMN −
1

2
gMNR = κ2

11TMN , (4.36)

where the stress-energy tensor TMN = TMN

(1) + TMN

(2) receives a contribution from the 3-form

gauge field

TMN

(1) =
1

12κ2
11

(
FM

PQRF
NPQR − 1

8
gMNFPQRSF

PQRS

)
(4.37)

and the membrane

TMN

(2) = −T2

∫
d3ξ
√
−γ γij∂iXM∂jX

N δ11(x−X)√
−g

. (4.38)

Moreover, the equation of motion of the 3-form gauge potential is

∂M

(√
−gFMM1M1M3

)
+

1

2 · (4!)2
εM1M2M3M4...M11FM4M5M6M7

FM8M9M10M11

= −2κ2
11T2

∫
d3ξ εijk ∂iX

M1∂jX
M2∂kX

M3 δ11(x−X)

(4.39)

or more elegantly

d(?F(4) + 1
2A(3) ∧ F(4)) = −2κ2

11 ? J(3), (4.40)

where ? denotes the Hodge dual [56]. The above equation gives rise to a conserved Page

charge [48]

Q2 =
1√

2κ11

∫
∂Σ8

(?F(4) + 1
2A(3) ∧ F(4)) (4.41)
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where ∂Σ8 is the boundary of the 8-dimensional transverse space Σ8. Equivalently, the

conserved charge can be expressed as

Q2 =
√

2κ11

∫
Σ8

?J(3) (4.42)

where

JM1M2M3(x) = T2

∫
d3ξ εijk ∂iX

M1∂jX
M2∂kX

M3 δ3(x−X) . (4.43)

Q2 is conserved by virtue of the equations of motion of the 3-form gauge potential and thus

it is an ‘electric’ charge.

The combined supergravity-supermembrane equations are solved by the static gauge

choice [38]

Xµ = ξµ , µ = 0, 1, 2 (4.44)

in which the p+ 1 longitudinal space-time coordinates are identified with the coordinates of

the membrane world-volume and the solution

Xm = Y m = constant, m = 3, . . . , 10 (4.45)

Substituting 4.44 and 4.45 into 4.39 yields the equation

δmn∂m∂ne
−C(r) = −2κ2

11T2 δ
8(y) . (4.46)

Integrating both sides over the volume of the 8-dimensional transverse space Σ8 gives

∫
Σ8

d8x ∂m∂me
−C = −2κ2

11T2 . (4.47)

Since the geometry of the membrane solution is asymptotically flat, the integral on the left-

hand side of the above equation can be transformed to a surface integral over the boundary

∂Σ8 of the transverse space.

∫
Σ8

d8x ∂m∂me
−C =

∫
∂Σ8

dΣm∂me
−C (4.48)
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Rotational invariance in the transverse directions allows a 7-sphere S7 boundary. Hence,

∫
∂Σ8

dΣm∂me
−C =

∫
S7
dΣm∂m

[
1 +

k2

r6
+O(r−12)

]
=

∫
S7
dΩ7 r

6ym
−6k2ym
r8

= −6k2Ω7 ,

(4.49)

where Ω7 is the volume of the unit 7-sphere. Therefore, k2 is determined in terms of the

membrane tension T2 as

k2 =
κ2

11T2

3Ω7
. (4.50)

A consistent coupling of the membrane to the supergravity background of the membrane

solution, requires that the former preserve one-half of the original rigid space-time supersym-

metries, as does the latter. We saw in the previous section that this is the case if (1+Γ)ε = 0.

For the solution 4.44 and 4.45

Γ = 1⊗ Σ9 (4.51)

and by virtue of (1 + Σ9)η0 = 0, the required condition Γε = ε is satisfied.

4.1.4 The BPS property and the ‘no force’ condition

The asymptotically flat geometry of the membrane solution allows the definition of an ADM

[46] mass density M2: a conserved mass per unit spatial surface of the membrane [37, 47].

We start by making the split gMN = ηMN +hMN , where ηMN is the flat Minkowski metric;

for the membrane solution hMN tends to zero at spatial infinity. The part of the Einstein tensor

that is linear in hMN is regarded as the ‘kinetic’ term and the remaining as the gravitational

stress-energy pseudo-tensor. Therefore, the ‘world-volume’ component of the latter is given

by the expression

Θµν =
1

κ2
11

(
R(1)
µν −

1

2
ηµνR

(1)

)
. (4.52)

The linearised Ricci tensor R
(1)
µν is given in terms of hMN as

R(1)
µν =

1

2

(
∂2hP

ν

∂xP∂xµ
+

∂2hP
µ

∂xP∂xν
− ∂2hP

P

∂xµ∂xν
− ∂2hµν
∂xP∂xP

)
, (4.53)

where indices are raised and lowered using the flat Minkowski metric. Inserting the metric
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ansatz 4.2 into the above equation gives

R(1)
µν = −1

2

∂2hµν
∂ym∂ym

= −1

2
ηµν

∂2e2A

∂ym∂ym
(4.54)

Similarly for the Ricci scalar R(1) ≡ gMN R
(1)
MN we get

R(1) =
∂2hP

M

∂xP∂xM
− ∂2hM

M

∂xP∂xP
= −3

∂2e2A

∂ym∂ym
− (8− 1)

∂2e2B

∂ym∂ym
(4.55)

Inserting 4.54 and 4.55 into 4.52 we find

Θµν =
1

2κ2
11

ηµν

[
2
∂2e2A

∂y2
+ 7

∂2e2B

∂y2

]
. (4.56)

The total energy density of the membrane solution is then given by an integral of the Θ00

component of the stress-energy pseudo-tensor, over the volume Σ8 of the transverse space

E =

∫
Σ8

d8xΘ00 = − 1

2κ2
11

∫
Σ8

d8x

[
2
∂2e2A

∂y2
+ 7

∂2e2B

∂y2

]
. (4.57)

The above integral can be recast as a surface integral over the boundary ∂Σ8

E = − 1

2κ2
11

∫
∂Σ8

dΣm∂m
(
2e2A + 7e2B

)
. (4.58)

Recall that the existence of residual supersymmetry imposed the relations 4.13. Hence 4.58

becomes

E = − 1

2κ2
11

∫
∂Σ8

dΣm∂m
(

4
3e
C − 7

3e
C
)

=
1

2κ2
11

∫
∂Σ8

dΣm∂me
C =

6k2Ω7

2κ2
11

, (4.59)

where the surface integral is evaluated similar to 4.49. Since we are considering the membrane

in its rest frame, the energy density E coincides with the mass densityM2 of the membrane.

On the other hand, the charge density of the membrane solution is

Q2 =
1√

2κ11

∫
∂Σ8

(?F(4) + 1
2A(3) ∧ F(4))

=
1√

2κ11

∫
∂Σ8

dΣm1...m7 εm1...m7m ∂
meC =

1√
2κ11

∫
∂Σ8

dΣm∂me
C =

6k2Ω7√
2κ11

(4.60)
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Comparing equations 4.58 and 4.60 we conclude that

Q2 =
√

2κ11M2 (4.61)

i.e. the membrane solution saturates the BPS bound
√

2κ11M2 > Q2. In addition, using 4.50

we find

Q2 =
√

2κ11M2 =
√

2κ11T2 . (4.62)

The connection between the partial breaking of supersymmetry and the saturation of

the BPS bound is also revealed in the asymptotic realisation of the supersymmetry algebra

[13]. The geometry of the membrane solution at spatial infinity is Poincaré invariant and

admits Killing spinors. Accordingly, the supersymmetry algebra is realised asymptotically;

the supercharges and the momentum 4-vector are defined as Noether charges of the asymptotic

symmetries by ADM-type formulas [49, 37]

PM =

∫
Σ10

d10xΘ0M (4.63)

Qα =

∫
∂Σ10

dΣNP (ΓMNPΨM)α , (4.64)

where Σ10 is a 10-dimensional space-like surface.

As it turns out [18], the asymptotic supersymmetry algebra is not the super-Poincaré

algebra but the extended version

{Qα, Qβ} = (ΓMC−1)αβPM +
1

2!
(ΓM1M2C−1)αβZM1M2

. (4.65)

The origin of the modification of the supersymmetry algebra is the term in the superme-

mbrane action 4.22 that describes the coupling of the super 3-form to the supermembrane

world-volume; under a supersymmetry transformation, the variation of the Wess-Zumino term

produces a total derivative [18]. In general, when a Lagrangian L(φm, ∂iφ
m) is quasi-invariant

i.e. it transforms by a total derivative

δaL = ∂i∆
i
a (4.66)
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the conserved currents J ia contain an anomalous piece ∆i
a

J ia =
∂L

∂(∂iφm)
δaφ

m −∆i
a (4.67)

and the charge densities J0
a satisfy a modified Poisson bracket algebra. In the case of the

supermembrane the Wess-Zumino term gives rise to a central charge [18]

ZM1M2 = T2

∫
dξ1dξ2 j

0M1M2 , (4.68)

where j0M1M2 is the world-volume time component of the identically conserved topological

current

jiM1M2 = εijk∂iX
M1∂jX

M2 . (4.69)

Consider a stationary membrane along the x1-x2 plane so that PM = (−M2V2, 0, . . . , 0),

where V2 is the spatial surface of the membrane2 and assume a static gauge. The supersym-

metry algebra 4.65 becomes

{Qα, Qβ} =M2V2 · 1αβ + (Γ012)αβZ12 . (4.70)

The Majorana spinor Qα is real and so the left-hand side of the above equation is positive

definite. Hence M2 must satisfy the bound

M2V2 > |Z12| . (4.71)

Comparison of the definition 4.42 of the electric charge density and the definition 4.68 of

the topological charge yields
√

2κ11|Z12| = Q2V2 and so the familiar form of the BPS bound
√

2κ11M2 > Q2 is retrieved.

In the case of the membrane we are considering, equation 4.68 yields

Z12 = T2

∫
dξ1dξ2 = T2V2 =M2V2 . (4.72)

2V2 is a formal factor which should be normalised, so that the supersymmetry algebra is well-defined per
unit spatial surface of the membrane.
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As a consequence, the BPS bound is saturated and 4.70 becomes

{Qα, Qβ} =M2V2 (1 + Γ012)αβ. (4.73)

Since Γ012 squares to the identity and is traceless, the matrix (1 + Γ012) acts like a projection

operator, which projects out half of the supercharges. Hence, the fact that only half of

the original thirty-two rigid supersymmetries are preserved by the membrane solution, is

reproduced in the realisation of the supersymmetry algebra.

Recall that initially the Wess-Zumino term appeared in the supermembrane action 4.22

multiplied by a q2 factor. The same factor instead of T2 would appear in the topological

charge 4.68 if the requirement for kappa invariance of the action did not dictate q2 = T2.

In the latter case, as the above analysis revealed, the BPS bound is saturated and a partial

breaking of supersymmetry is induced. Thus, the BPS property and the partial breaking of

supersymmetry are traced back to the kappa symmetry of the supermembrane action.

Another property of the membrane solution related to the existence of residual supersym-

metry is the ‘no-force’ condition [37, 38]: the exact cancellation of attractive gravitational

and repulsive electrostatic (generated by the 3-form gauge field) forces, between two separated

static membranes.

Consider a stationary test membrane at some distance from a source membrane located

at the origin. Both membranes run along the x1-x2 plane and have the same orientation. The

motion of the test membrane is described by the action 4.26 in the background of the source

membrane, upon substitution of 4.28. Assuming the static gauge Xµ = ξµ, the potential

acting on the stationary test membrane is

V = −
√

det (−ηij e2A) +A012 = −e3A + eC . (4.74)

The existence of Killing spinors imposed 3A = C and so V = 0; the stationary test membrane

experiences no force.

The ‘no-force’ condition allows the construction of stable multi-membrane configurations

obtained by a linear superposition of solutions [38]

e−C = 1 +
∑
i

k2

|r− ri|
, (4.75)
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where ri corresponds to the arbitrary location of each membrane.

4.2 The five-brane

As anticipated from the presence of a 5-form central charge in the supersymmetry algebra,

there is one more BPS brane solution of the d = 11 supergravity equations, the 5-brane

solution [39]. In contrast to the membrane, the 5-brane is a soliton i.e. non-singular solution

of the field equations and arises as the ‘magnetic’ excitation of the 3-form gauge field. Due to

the non-singular nature of the 5-brane, a source is not required in the solution and one does

not need to include a σ-model term in the supergravity action.

The construction of a bosonic field configuration with residual supersymmetry, that de-

scribes a 5-brane, mirrors the construction of the membrane solution. In the case of the

5-brane the invariance group is P6 × SO(5). Accordingly, we make a six-five split of the

space-time coordinates

xM = (xµ, ym) , µ = 0, . . . , 5 m = 6, . . . , 10. (4.76)

The ansatz for the line element is

ds2 = e2Aηµνdx
µdxν + e2Bδmndx

mdxn. (4.77)

The 5-brane is a ‘magnetic’ excitation of the gauge potential and so the corresponding field

strength supports the transverse to the 5-brane space. The relevant ansatz is

Fmnpq = −εmnpqr ∂re−C . (4.78)

All other components of FMNPQ are set to zero and so is the gravitino field ΨM . P6 invariance

requires that the arbitrary functions A,B and C depend only on y, while SO(5) invariance

requires that this dependence be only through r =
√
δmnymyn.

As we argued in the case of the membrane solution, the requirement for residual super-

symmetry is equivalent to solving the Killing spinor equation D̃M ε = 0. We adopt a basis for

the gamma matrices compatible with the P6 × SO(5) symmetry

ΓA = (γα ⊗ 1, γ7 ⊗ Σa) , (4.79)
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where γα are gamma matrices in d = 6 Minkowski space-time and Σa are gamma matrices

in d = 5 Euclidean space. We have also defined γ7 ≡ γ0γ1 . . . γ5 that satisfies γ2
7 = 1.

Furthermore, the spinor field ε(x, y) is decomposed as

ε(x, y) = ε0 ⊗ η(r) , (4.80)

where η(r) is a 4-component spinor of Spin(5) and ε0 is a constant 8-component spinor of

Spin(1, 5). The latter can be further decomposed into chiral eigenstates, by applying the

projection operators 1
2(1± γ7).

In the background 4.77 and 4.78, the components of the supercovariant derivative 4.5 are

D̃µ = ∂µ +
1

2
γµe
−AΣm∂me

Aγ7 +
1

12
γµe
−3BΣm∂me

−C (4.81a)

D̃m = ∂m +
1

2
e−BΣm

n ∂ne
B +

1

12
e−3B∂me

−Cγ7 −
1

6
e−3BΣm

n ∂ne
−Cγ7 . (4.81b)

Substituting the decomposition 4.80 and the above expressions for the supercovariant deriva-

tive, into the Killing spinor equation 4.6, yields the solution

ε = eC(r)/12ε0 ⊗ η0 , (4.82)

where η0 is a constant spinor and ε0 satisfies (1 − γ7)ε0 = 0. Additionally, A and B are

determined in terms of C as

A =
1

6
C and B = −1

3
C + constant . (4.83)

The chirality condition that the constant spinor ε0 satisfies, reduces its components by half.

Consequently, the number of residual supesymmetries is 4 · 4 = 16 ; the 5-brane solution

preserves half of the original rigid space-time supersymmetries.

Upon substitution of 4.77, 4.78 and 4.83, the Einstein equation and the equation of motion

of the 3-form gauge field reduce to the single equation

δmn∂m∂ne
−C(r) = 0. (4.84)



Chapter 4. BPS branes in 11-dimensional supergravity 33

Imposing the boundary condition that the geometry be asymptotically flat yields the solution

e−C = 1 +
k5

r3
, r > 0 . (4.85)

Hence, the 5-brane solution consists of the line element

ds2 =

(
1 +

k5

r3

)−1/3

ηµνdx
µdxν +

(
1 +

k5

r3

)2/3

δmndx
mdxn (4.86)

and the 4-form field strength

Fmnpq = 3k5 εmnpqr
yr

r5
. (4.87)

The 5-brane geometry exhibits an event horizon but no curvature singularity. Furthermore,

it interpolates between two ‘vacuum’ solutions of d = 11 supergravity; Minkowski space-time

at spatial infinity and AdS7 × S4 [43] space-time near the horizon [27].

The ADM mass density M5 of the 5-brane solution is evaluated similar to M2

M5 =
η00

2κ2
11

∫
Σ5

d5x

[
5
∂2e2A

∂y2
+ 4

∂2e2B

∂y2

]
=

3k5Ω4

2κ2
11

, (4.88)

where Ω4 is the volume of the unit 4-sphere corresponding to the boundary of the transverse

space. Moreover, the 5-brane solution carries a ‘magnetic’ charge

P5 =
1√

2κ11

∫
∂Σ5

F(4), (4.89)

where ∂Σ5 is the boundary of the 5-dimensional transverse space Σ5. P5 is conserved by

virtue of the Bianchi identity dF(4) = 0. Using 4.87 we find

P5 =
1√

2κ11

∫
∂Σ5

dΣm1...m4εm1...m4m
3k5y

m

r5
=

3k5√
2κ11

∫
S4
dΩ4 r

3 ymy
m

r5
=

3k5Ω4√
2κ11

. (4.90)

Therefore, P5 =
√

2κ11M5 and the 5-brane solution saturates the relevant BPS bound.

The electric charge of the membrane and the magnetic charge of the 5-brane obey a Dirac

quantization rule

Q2 P5 = 2πn , n ∈ Z (4.91)
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and so P5 can be expressed in terms of the membrane tension as

P5 =
2πn√
2κ11T2

. (4.92)

A ‘no-force’ condition, related to the existence of residual supersymmetry, applies to the

5-brane solution and allows for stable composite configurations of membranes and 5-branes

[40, 41].



Chapter 5

Kaluza-Klein reduction to ten dimensions

5.1 Dimensional reduction of d = 11 supergravity over a circle

A maximal supergravity theory in ten space-time dimensions can be of type IIA or type IIB,

depending on the chiral character of the underlying superalgebra [7]. The minimal spinor

representation of Spin(1, 9) is a 16-dimensional Majorana-Weyl representation [14]. Accord-

ingly, the thirty-two supercharges of the d = 10, N = 2 supersymmetry algebra compose

two Majorana-Weyl spinors; if these two spinors are of opposite chirality, they can be as-

sembled into a single Majorana spinor and the resulting non-chiral supersymmetry algebra

underpins type IIA supergravity. On the other hand, type IIB supergravity is based on a

chiral supersymmetry algebra: the supercharges compose two Majorana-Weyl spinors of the

same chirality.

Reduction of the d = 11, N = 1 supersymmetry algebra to ten dimensions, yields the non-

chiral d = 10, N = 2 supersymmetry algebra, as a Spin(1, 10) Majorana spinor decomposes

to two Spin(1, 9) Majorana-Weyl spinors of opposite chirality [55]. The above reduction

elevates to the supergravity theories: type IIA supergravity in ten dimensions is obtained as

the massless spectrum of d = 11 supergravity with one dimension compactified on a circle

[51, 52, 53].

Assume that the eleventh dimension of d = 11 space-time has circular (S1) topology, i.e.

the x10 coordinate, denoted henceforth as ρ, is periodic

0 ≤ ρ ≤ 2πR , (5.1)

where R denotes the radius of the circle. Let φ(x, ρ) be a field in eleven dimensions. Due to

35
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the periodicity of ρ, φ(x, ρ) can be expanded as

φ(x, ρ) = φ(x) +
n=∞∑
n=−∞
n 6=0

exp

(
inρ

R

)
φn(x) . (5.2)

In the limit R → 0 only the n = 0 modes survive and the 10-dimensional theory comprises

fields which do not depend on the compactified dimension.

We proceed to the dimensional reduction of the bosonic sector of d = 11 supergravity in

the R → 0 limit and make a 10 + 1 split of the vielbein. Local Lorentz invariance in eleven

dimensions allows for a triangular parametrisation [50]

êα̂µ̂ =

eδΦ eαµ 0

eΦAµ eΦ

 µ̂, α̂ = 0, . . . , 10 µ, α = 0, . . . , 9 . (5.3)

Henceforward, a hat symbol designates an object in eleven dimensions. The exponential

parametrisation of the scalar field is imposed to ensure positivity and δ is a parameter that

will be determined by requiring the Einstein-Hilbert term in the reduced Lagrangian to have

a canonical form. The inverse of the vielbein 5.3 is

êµ̂ α̂ =

 e−δΦ eµα 0

−e−δΦAa e−Φ

 . (5.4)

The corresponding space-time metric in eleven dimensions is given by

ĝµ̂ν̂ =

e2δΦgµν + e2ΦAµAν e2ΦAν

e2ΦAµ e2Φ

 . (5.5)

As the above expression shows, the metric decomposition yields the 10-dimensional space-

time metric gµν , a vector field Aµ and a scalar field eΦ. In order to prove this statement in a

concrete way, we turn to the general coordinate transformation

δĝµ̂ν̂ = ∂µ̂ξ̂
ρ̂ĝρ̂ν̂ + ∂ν̂ ξ̂

ρ̂ĝρ̂µ̂ + ξ̂ρ̂∂ρ̂ĝµ̂ν̂ (5.6)

and assume that the parameters ξ̂µ̂ are independent of the compactified dimension ρ. The
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µ̂ = µ component of 5.6 yields

δgµν = ∂µξ
ρgρν + ∂νξ

ρgρµ + ξρ∂ρgµν (5.7a)

δAµ = ∂µξ
ρAρ + ∂ρ∂ρAµ (5.7b)

δΦ = ξρ∂ρΦ. (5.7c)

The above transformation rules in ten dimensions validate the scalar and vector character of

eΦ and Aµ respectively. Furthermore, the general coordinate transformation with parameter

ξ̂10 acts as a local gauge transformation for Aµ

δAµ = ∂µξ̂
10. (5.8)

Let us now focus on the reduction of the Einstein-Hilbert term in the d = 11 supergravity

action

IE−H

11 =
1

2κ2
11

∫
d11x ê R̂(ω̂) (5.9)

or in the language of differential forms

IE−H

11 =
1

2κ2
11

∫
R̂α̂β̂ ∧ ?(ê

α̂ ∧ êβ̂) =
1

2κ2
11

∫
(dω̂α̂β̂ + ω̂α̂γ̂ ∧ ω̂γ̂ β̂) ∧ ?(êα̂ ∧ êβ̂), (5.10)

where R̂α̂β̂ is the curvature form of the spin connection. The term in the Einstein-Hilbert

action involving the exterior derivative of the spin connection can be recast as

dω̂α̂β̂ ∧ ?(ê
α̂ ∧ êβ̂) = d[ ω̂α̂β̂ ∧ ?(ê

α̂ ∧ êβ̂) ] + ω̂α̂β̂ ∧ d ? (êα̂ ∧ êβ̂) . (5.11)

Due to the vanishing torsion condition Dêα̂ = 0 ,

D ? (êα̂ ∧ êβ̂) = 0 = d ? (êα̂ ∧ êβ̂) + ω̂α̂γ̂ ∧ ?(êγ̂ ∧ êβ̂) + ω̂β̂γ̂ ∧ ?(êα̂ ∧ êγ̂). (5.12)

Discarding the total derivative terms and using the above identity to replace d ? (êα̂ ∧ êβ̂),

we arrive at the following expression for the Einstein-Hilbert action

IE−H

11 =
1

2κ2
11

∫
ω̂α̂γ̂ ∧ ω̂β̂

γ̂ ∧ ?(êα̂ ∧ êβ̂) . (5.13)
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The component form of the above expression is

IE−H

11 =
1

2κ2
11

∫
d11x ê

(
ω̂α̂α̂γ̂ ω̂

β̂ γ̂

β̂
+ ω̂α̂

β̂γ̂
ω̂β̂γ̂α̂

)
, (5.14)

where

ω̂γ̂α̂β̂ = −Ω̂γ̂α̂β̂ + Ω̂α̂β̂γ̂ − Ω̂β̂γ̂α̂. (5.15)

The non-vanishing Ω’s for the vielbein 5.3 and its inverse 5.4 are

Ω̂αβγ =
1

2
(êµα ê

ν
β − ê

µ
β ê

ν
α) ∂ν êµγ =

1

2
e−2δΦ(eµα e

ν
β − eµβ eνα) ∂ν(eδΦeµγ)

= e−δΦΩαβγ +
δ

2
e−δΦ(ηαγe

ν
β − ηβγeνα) ∂νΦ

(5.16a)

Ω̂αβ10 =
1

2
(êµα ê

ν
β − ê

µ
β ê

ν
α) ∂ν êµ10 +

1

2
(ê10

α ê
ν
β − ê10

β ê
ν
α) ∂νe10 10

=
1

2
e−2δΦ(eµα e

ν
β − eµβ eνα) ∂ν(eΦAµ) +

1

2
e−2δΦ(−Aαeνβ +Aβe

ν
α) ∂νe

Φ

=
1

2
e−(2δ−1)Φ(∂νAµ − ∂µAν) = −1

2
e−(2δ−1)ΦFµν

(5.16b)

Ω̂α10 10 = −1

2
ê10

10 ê
ν
α ∂νe10 10 = −1

2
e−(δ+1)Φeνα ∂νe

Φ = e−δΦeνα ∂νΦ (5.16c)

Ω̂10α10 = −Ω̂α10 10 . (5.16d)

Inserting these expressions in 5.15 we find the following spin connection components

ω̂αβγ = e−δΦωαβγ + δe−δΦ(ηγα e
ν
β − ηγβ eνα) ∂νΦ (5.17a)

ω̂10αβ = −ω̂αβ10 = −1

2
e−(2δ−1)ΦFµν (5.17b)

ω̂10 10α = −ω̂10α10 = e−δΦeνα ∂νΦ . (5.17c)

Substituting the above spin connection components, the Einstein-Hilbert action 5.14 becomes

IE−H

11 =
1

2κ2
11

∫
d10x dρ ê

(
ω̂ααγ ω̂

β γ
β + 2 ω̂ααγ ω̂

10 γ
10 + ω̂αβγ ω̂

βγ
α + ω̂10

βγ ω̂
βγ

10

)
(5.18)
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where

ω̂ααγ ω̂
β γ
β = e−2δΦ ωααγ ω

β
β
γ

+ (9δ)2 e−2δΦ ∂µΦ∂µΦ (5.19a)

2 ω̂ααγ ω̂
10 γ

10 = 18δ e−2δΦ ∂µΦ∂µΦ (5.19b)

ω̂αβγ ω̂
βγ
α = e−2δΦ ωαβγ ω

βγ
α − 9δ2e−2δΦ ∂µΦ∂µΦ (5.19c)

ω̂10
βγ ω̂

βγ
10 = −1

4
e−(2δ−1)2ΦFµνF

µν . (5.19d)

Using the above expressions and the relation ê = e e(10δ+1)Φ, where e is the determinant of

the vielbein in ten dimensions we find

IE−H

11 =
1

2κ2
11

∫
d10x dρ e e(10δ+1)Φe−2δΦ

[
R(ω)− 1

4
e−(δ−1)2ΦFµνF

µν + (72δ2 + 18δ)∂µΦ∂µΦ
]
.

(5.20)

The requirement that the Einstein-Hilbert action in ten dimensions have a canonical form

i.e. R(ω) is not multiplied by an exponential of Φ, leads to δ = −1
8 . Using the above value

of δ and integrating over the compactified dimension, we arrive at the following action in ten

dimensions

I ′10 =
1

2κ2
10

∫
d10x e

(
R(ω)− 1

4
e

9
4

ΦFµνF
µν − 9

8
∂µΦ∂µΦ

)
, (5.21)

where we have defined the gravitational coupling constant in ten dimensions

κ2
10 ≡

κ2
11

2πR
. (5.22)

Thus the Einstein-Hilbert Lagrangian in eleven dimensions reduces to an Einstein-Hilbert

Lagrangian in ten dimensions and the kinetic terms for the scalar field Φ(x) and the vector

gauge field Aµ(x) that appear in the decomposition of the metric.

The reduction of the 3-form gives rise to a 3-form and a 2-form in ten dimensions

Âµνρ = Cµνρ and Âµν10 = Bµν , (5.23)

with corresponding field strengths

F̂µνκλ = Fµνκλ and F̂µνκ10 = Gµνκ . (5.24)

The reduction of the kinetic term for the 3-form gauge field and the Chern-Simons term is
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performed more conveniently in the tangent space, where the metric is diagonal. We thus use

the inverse vielbein to convert to tangent-space indices

F̂αβγ10 = êµ̂α ê
ν̂
β ê

κ̂
γ ê

10
10 F̂µ̂ν̂κ̂10 = e−

5
8

ΦGαβγ

F̂αβγδ = êµ̂α ê
ν̂
β ê

κ̂
γ ê

λ̂
δ F̂µ̂ν̂κ̂λ̂ = e

1
2

Φ
(
Fαβγδ − 4A[δGαβγ]

)
= e

1
2

ΦF̃αβγδ .

(5.25)

The kinetic term for Âµ̂ν̂ρ̂ reduces to

F̂µ̂1µ̂2µ̂3µ̂4F̂
µ̂1µ̂2µ̂3µ̂4 = F̂α̂1α̂2α̂3α̂4F̂

α̂1α̂2α̂3α̂4

= eΦF̃α1α2α3α4F̃
α1α2α3α4 + 4 e−

5
4

ΦGβ1β2β3G
β1β2β3

(5.26)

while the Chern-Simons term, after an integration by parts, reduces to

ε̂µ̂1...µ̂11Aµ̂1µ̂2µ̂3F̂µ̂4...µ̂7F̂µ̂8...µ̂11 = ε̂α̂1...α̂11Aα̂1α̂2α̂3F̂α̂4...α̂7F̂α̂8...α̂11

= 3 εα1...α10Bα1α2Fα3...α6Fα7...α10

+ 6 εα1...α10Cα1α2α3Fα4...α7Gα8α9α10

→ 9 εα1...α10Bα1α2Fα3...α6Fα7...α10 .

(5.27)

Aggregating all terms of the reduced bosonic sector of d = 11 supergravity, we obtain the

following action in ten dimensions

I
(b)
10 =

1

2κ2
10

∫
d10x e

[
R(ω)− 1

4
e

9
4

ΦFµνF
µν − 9

8
∂µΦ∂µΦ− 1

2 · 4!
e

3
4

ΦF̃µ1µ2µ3µ4F̃
µ1µ2µ3µ4

− 1

2 · 3!
e−

3
2

ΦGν1ν2ν3G
ν1ν2ν3 +

e−1

2 · 2!(4!)2
εµ1...µ10Bµ1µ2Fµ3...µ6Fµ7...µ10

]
(5.28)

The finishing touch would be to rescale the scalar field Φ by factor of 2/3 so that the cor-

responding kinetic term has a conventional form. The above action is the bosonic sector of

type IIA supegravity action [51, 52, 53].

In the fermionic sector, the gravitino decomposes to two gravitinos of opposite chiral-

ity and two spinors of opposite chirality, according to the Spin(9) ⊃ Spin(8) representation

decomposition [55]

128→ 56 + 56 + 8 + 8 . (5.29)

In terms of fields, the 10 + 1 decomposition of the 11-dimensional gravitino gives rise to a
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Majorana gravitino

Ψµ = eαµ ê
µ̂
α̂Ψ̂µ̂ = e

1
8

Φ(Ψ̂µ −AµΨ̂10) (5.30)

and a Majorana spinor

ψ = eα10 ê
10
α̂Ψ10 = e−ΦΨ̂10 (5.31)

in ten dimensions, which can be further decomposed into two chiral eigenstates of opposite

chirality. The latter compose the fermionic sector of type IIA supegravity.

The Lagrangian of type IIA supegravity in its full fermionic glory is presented in references

[51], [52] and [53] .

5.2 Reduction of the membrane solution and the membrane

A natural next step would be to investigate what kind of solution emerges in ten dimensions,

upon reducing a brane solution of the d = 11 supergravity equations. Thereupon, we consider

the dimensional reduction of the membrane solution.

The membrane solution depends only on the ‘transverse’ coordinates and can be read-

ily reduced to ten dimensions, by compactifying a ‘world-volume’ coordinate. This kind of

reduction, where both the space-time dimension d and the brane dimension p are reduced,

is called diagonal dimensional reduction [27]. Accordingly, we make a ten-one split of the

space-time coordinates

x̂M̂ = (xM , x2) , M̂ = 0, 1, 3, . . . , 9 (5.32)

and the following ansatz for the metric ĝM̂N̂ and the 3-form gauge field ÂM̂N̂P̂ [38]

ĝMN = e−Φ/6gMN , ĝ22 = e4Φ/3 and ÂMN 2 = BMN . (5.33)

All other components of ĝM̂N̂ and ÂM̂N̂P̂ are set to zero. Upon insertion of the above decom-

positions into 4.18 and 4.19, the membrane solution reduces to

ds2 =

(
1 +

k2

r6

)−3/4

ηµνdx
µdxν +

(
1 +

k2

r6

)1/4

δmndx
mdxn (5.34)

and

B01 =

(
1 +

k2

r6

)−1

, eΦ =

(
1 +

k2

r6

)−1/2

(5.35)
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The above equations define the elementary BPS string solution of d = 10 supergravity de-

scribed in [37].

In addition to the reduction of the membrane solution, a double dimensional reduction

of the supermembrane leads to the superstring in ten dimensions. The double dimensional

reduction is performed by reducing a supermembrane coupled to a d = 11 supergravity back-

ground from 11 to 10-dimensional space-time and simultaneously from 3 to 2-dimensional

world-volume. The result is a superstring coupled to a type IIA supergravity background

[54]. We will demonstrate the aforementioned reduction for the bosonic sector of the super-

membrane.

Let us start with the membrane action 4.26 in eleven dimensions and make a two-one split

of the world-volume coordinates

ξI = (ξi, ξ2) , I = 0, 1, 2 i = 0, 1 (5.36)

and a ten-one split of the space-time coordinates

XM = (Xµ, X10) , µ = 0, . . . , 9 . (5.37)

The crucial step is the identification of the compactified world-volume coordinate with the

compactified space-time coordinate, through the partial gauge choice

ξ2 = X10 ≡ ρ . (5.38)

Effectively, the membrane ‘wraps around’ the compactified dimension so that the membrane

world-volume and the space-time are compactified over the same circle. The 10 + 1 ansatz

for the 11-dimensional space-time metric is [54]

ĝMN = e−2Φ/3

gµν + e2ΦAµAν e2ΦAν

e2ΦAµ e2Φ

 , (5.39)

while the 3-form gauge field and the 4-form field strength decompose as in 5.23 and 5.24

respectively. We discard the massive modes of the space-time and world-volume fields by

imposing

∂ρĝMN = 0 = ∂ρÂMNP and ∂ρX
µ = 0 . (5.40)
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Using 4.28 we find the induced metric on the world-volume of the membrane to be

γ̂IJ = e−2Φ/3

γij + e2ΦAiAj e2ΦAi

e2ΦAj e2Φ

 , (5.41)

where

γij ≡ ∂iXµ∂jX
νgµν and Ai ≡ ∂iXµAµ . (5.42)

Inserting the 10 + 1 decompositions 5.39, 5.41 and 5.24 in the equation of motion 4.27 of the

membrane gives for M = µ

∂i
(√
−γ γij∂iXνgµν

)
+

1

2

√
−γ γij∂iXν∂jX

ρ∂µgνρ +
1

2
εij∂iX

ν∂jX
ρGµνρ = 0 , (5.43)

while for M = ρ the resulting equation is an identity, as it must be for consistency.

The above equation is the equation of motion of a bosonic string in ten space-time dimen-

sions coupled to the 2-form gauge field Bµν of type IIA supergravity. Note that the gauge

fields Cµνρ and Aµ and the scalar field Φ appear to have decoupled. What actually happens

is that they survive in the fermionic sector [54]. Equation 5.43 can be derived from the action

S1 = T1

∫
d2ξ

(
−1

2

√
−γ γij ∂iXµ∂jX

νgµν +
1

2
εij∂iX

µ∂jX
νBµν

)
, (5.44)

which is no other than the bosonic sector of the superstring action coupled to a type IIA

supergravity background [32].

We have worked in the limit that the radius R of the compactified dimension tends to

zero and only the massless modes survive. At the same time, the membrane tension T2 tends

to infinity, so that the string tension T1 = 2πRT2 remains finite.
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The vielbein formalism

Spinor fields in d-dimensional Minkowski space-time appear as representations of the double

cover of the Lorentz group, Spin(1, d− 1). The standard formalism of General Relativity does

not allow the introduction of fermions, since the group of general coordinate transformations

GL(d,R) does not admit spinorial representations. To circumvent this problem, one formulates

General Relativity in terms of vielbeins [56].

Equivalence principle states that the tangent vector space TpM at a point p of a d-

dimensional space-time manifold M with metric g, admits an orthonormal basis {êα} of d

vectors

g(êα, êβ) = ηαβ , (A.1)

where ηαβ is the Minkowski metric. Early letters of the Greek alphabet (α, β, γ, . . . ) are

used for tangent-space indices and late letters of the Greek alphabet (µ, ν, ρ, . . . ) are used for

base-space indices. The orthonormal basis {êα} is related to the coordinate basis {êµ} as

êα = eµα êµ , eµα ∈ GL(d,R). (A.2)

The inverse eαµ of the matrix eµα is the vielbein, which defines the one-form eα = eαµdx
µ.

The vielbein is determined up to a local Lorentz transformation

eαµ → Λαβ e
β
µ , Λαβ ∈ SO(1, d− 1) , (A.3)

that reduces its independent components from d2 to 1
2d(d + 1), the number of independent

components of the metric.

44
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The vielbeins and their inverses allow the transition between the tangent vector space and

the base manifold; the metric gµν of the base manifold is related to the Minkowski metric ηαβ

of the tangent space as

gµν = eαµ e
β
ν ηαβ and ηαβ = eµα e

ν
β gµν . (A.4)

The covariant derivative for the local Lorentz transformations is

Dµ ≡ ∂µ +
1

2
ωµ

αβMαβ , (A.5)

where Mαβ = −Mβα are the generators of the Lorentz group and ωµ
αβ is the spin connection,

acting as the gauge field for the local Spin(1, d− 1) group. The spin connection can be

expressed in terms of the vielbein upon imposing the torsion free condition T aµν ≡ D[µe
α
ν] = 0.

The result is

ωµ
αβ = eγµ

(
Ωαβγ − Ωβγα − Ωγαβ

)
(A.6)

where

Ωαβγ =
1

2
(eµα e

ν
β − eµβ eνα)∂νeµγ . (A.7)

Spinors are introduced as representations of the local Spin(1, d− 1) group. The covariant

derivative of a spinor Ψ is

DµΨ = ∂µΨ +
1

2
ωµ

αβSαβΨ , (A.8)

where Sαβ = 1
4 [Γα,Γβ] are the generators of the Lorentz group in the spinorial representation.

In analogy with a Yang-Mills theory, the field strength (or curvature form) of the spin

connection is defined as

Rµν
αβ = ∂µων

αβ − ∂ νωµαβ + ωµ
αγ ωνγ

β − ωναγ ωµγ
β . (A.9)

The curvature form is related to the Riemann curvature tensor Rµνκλ via the expression

Rµνκλ = eµα eβν Rκλ
αβ. (A.10)
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Clifford algebra and spinors in eleven

dimensions

The Clifford algebra in eleven space-time dimensions is generated by gamma matrices Γµ

which satisfy the relation

{Γµ,Γν} ≡ ΓµΓν + ΓνΓµ = 2ηµν , µ, ν = 0, . . . , 10 (B.1)

where η is the metric of flat space-time with signature (−,+, . . . ,+). There are two inequiv-

alent irreducible representations of the Clifford algebra and both have dimension 2
11−1

2 = 32.

They differ according to whether the product Γ0Γ1 . . .Γ10 equals 1 or −1.

The complex conjugate Γ∗µ and the transpose Γtµ of the original representation Γµ, form

equivalent representations of the Clifford algebra B.1. Consequently, there exists a matrix B

such that

Γ∗µ = BΓµB
−1 (B.2)

and a matrix C, called the charge conjugation matrix, such that

Γtµ = −CΓµC
−1. (B.3)

In eleven dimensions B satisfies B∗B = 1 and can be set equal to the identity 1, while

C satisfies Ct = −C. Accordingly, gamma matrices obey the reality condition Γ∗µ = Γµ.

Furthermore, the representation Γµ can be chosen to be unitary i.e. ΓµΓ†µ = 1. Since ΓµΓµ =

ηµµ we conclude that

Γ†µ = ηµνΓν (B.4)

46
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or equivalently

Γ†µ = Γ0ΓµΓ0 . (B.5)

Combining B.2, B.3, B.5 and B = 1 yields the expression C = Γ0.

The relation B∗B = 1 allows the existence of Majorana spinors, defined as spinors ψ

satisfying

ψ∗ = Bψ. (B.6)

Majorana spinors are the minimal spinors in eleven dimensions and consist of thirty-two real

components.

A detailed discussion on Clifford algebras and spinors in various space-time dimensions

can be found in references [14] and [28].
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