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ABSTRACT

The scope of the present dissertation is to review some aspects of 11-dimensional supergravity.
We describe the construction of the gravity supermultiplet and review the central charges that
extend the N = 1 super-Poincaré algebra in eleven dimensions. We discuss the steps in the
construction of the d = 11 supergravity Lagrangian, present the symmetries of the theory
and the relevant transformation rules for the fields. We review the membrane and five-
brane solutions and their properties: the saturation of the BPS bound by the relevant mass
and charge densities, the preservation of half of the rigid space-time supersymmetries and
the ‘no-force-condition’. The supermembrane is introduced as the source that supports the
space-time singularity of the membrane solution. We also discuss the interrelation between
the saturation of the BPS bound and the partial breaking of supersymmetry and in the case
of the membrane solution, the kappa symmetry of the supermembrane action. We review
the Kaluza-Klein reduction of the 11-dimensional supergravity theory to ten dimensions. We
describe the reduction of the bosonic sector of the action and show that the massless spectrum
of the compactified theory coincides with the field content of type ITA supergravity in ten
dimensions. In addition, we show how the string solution of d = 10 supergravity emerges
upon a diagonal dimensional reduction of the membrane solution, while a double dimensional
reduction of the membrane and the d = 11 supergravity background gives rise to a string

coupled to type ITA supergravity.
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CHAPTER 1

Introduction

Since its conception [1, 2], supergravity has played an important role in theoretical high-energy
physics, merging the theory of general relativity with supersymmetry. In fact, supergravity
arises as the gauge theory of supersymmetry [3]; the promotion of supersymmetry to a local
symmetry signals the appearance of gravity [4, 6].

Consider the schematic form of the commutator of two supersymmetry transformations,

with anticommuting parameters €; and e
[0(e1),6(e2)] ~ €17 €2 Py, (1.1)

where P, is the generator of space-time translations. As equation 1.1 shows, two successive
supersymmetry transformations result in a space-time translation. Assume now that the
parameters €; and €3 depend on space-time points i.e. supersymmetry is converted from a
global to a local symmetry. In this case, two consecutive supersymmetry transformations
give rise to a local translation with parameter £#(z) = (€1v*€2)(z). On the other hand, local
translations are the infinitesimal form of general coordinate transformations. Consequently,
any theory that possesses local superymmetry invariance, must be invariant under general
coordinate transformations as well. Accordingly, the metric appears as a dynamical field,
rendering any locally supersymmetric theory, a theory of gravity.

Associated with any local (gauge) symmetry is a gauge field A, transforming as
0eAy, = 0pe+ ..., (1.2)

where € is the parameter of the gauge transformation. In the case of local supersymmetry, the
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gauge transformation parameter is a spinorial object and so the relevant gauge field, known as
Rarita-Schwinger field, carries one spinor and one vector index. The Rarita-Schwinger field,
denoted W{(x), represents (on-shell) a particle of helicity 3/2, the gravitino. As the name
implies, the gravitino is the superpartner of the graviton.

A supergravity theory in d dimensions is N-eztended, when the number of supercharges
that appear in the underlying supersymmetry algebra is N - n, where n is the dimension
of the minimal spinor representation in d space-time dimensions. A maximally extended
supergravity theory has exactly thirty-two supersymmetries; the upper bound on the number
of supersymmetries is based on the assumption that there are no physical fields with spin
higher than two, the spin of the graviton field.

The reason why supergravity is appealing as a physical theory, is that supersymmetry im-
poses stringent constraints on its dynamics and field content, giving rise to rich mathematical
structures [7]. Fields that typically appear in a gravity supermultiplet, apart from the gravi-
ton and IV gravitinos, are p-form gauge fields, which are generalisations of the electromagnetic
gauge potential and ‘matter’ fields such as scalar and spinor fields.

Supersymmetry has the property of alleviating the divergent ultraviolet behaviour of quan-
tum field theories [9]. Thereupon, supergravity was originally conceived as a fundamental the-
ory, capable of eliminating the non-renormalizable divergences that appear in the construction
of a quantum field theory of gravity. Additionally, the particle content and symmetries of
various supergravity models, made supergravity a viable framework for the unification of all
fundamental forces [4, 6]. The current consensus is that although local supersymmetry im-
proves the high-energy behaviour of quantum gravity, supergravity is an effective rather than
a fundamental theory of nature.

Supergravity models provide fertile soil for phenomenological discussions in particle physics
and cosmology [6, 8] but also play a prominent role in the context of string theory. The mass-
less sector of the spectrum of superstring theories is described by supergravity [10] and thus by
studying the behaviour of classical supergravity solutions, one retrieves valuable information
about the low-energy dynamics of superstring theories. In addition, many results established
at the supergravity level, such as dualities connecting different coupling regimes of various
supergravity theories, can be elevated to the superstring level [28].

Extensively studied classical solutions of the supergravity field equations, are brane solu-

tions [25, 26]. Brane solutions exhibit the structure of (p+ 1)-dimensional Poincaré-invariant
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hyperplanes, which are interpreted as world-volumes of objects extended in p spatial dimen-
sions; these objects are known as p-branes. Brane solutions have a non-perturbative character
and arise as electric, magnetic or dyonic ! excitations of the (p + 1)-form gauge fields that
appear in supergravity theories. They are classified as elementary or solitonic, according to
whether they are singular or non-singular solutions of the supergravity field equations.

A special class of brane solutions are BPS brane solutions [27]; these are supersymmetric
solutions, characterised by the saturation of a Bogomol'nyi-Prasad-Sommerfield (BPS) bound
which equates their mass density to the p-form charge(s) they carry. The BPS property
‘shields’ the brane solutions against quantum corrections [17] and thus, allows the extrapola-
tion of results obtained in the classical limit, to the quantum level of string theory.

Among the various supergravity theories, 11-dimensional supergravity occupies a distin-
guished position; eleven is the maximal space-time dimension in which a supergravity theory
can be constructed and possess no particle with helicity greater than two [19]. The supergrav-
ity theory in eleven dimensions was originally constructed [21] in order to obtain supergravity
theories in lower dimensions, via Kaluza-Klein dimensional reduction [22, 44]. This approach
eventually fell out of favour as it did not produce realistic models in four dimensions. The cur-
rent perspective on 11-dimensional supergravity is that it describes the low-energy dynamics
of M-theory [11]. At strong coupling, type ITA superstring theory on R is argued to coincide
with M-theory on R x S! [12]. The low-energy approximation of the former is type ITA
supergravity, which arises upon a Kaluza-Klein reduction of 11-dimensional supergravity to
ten dimensions. Accordingly, one expects that the supergravity theory in eleven dimensions
is the low-energy effective field theory of M-theory.

The field content of d = 11 supergravity is rather simple: it comprises the graviton field,
a Majorana gravitino field and a 3-form gauge field. Eleven-dimensional supergravity is a
maximal supergravity theory and so the gravity supermultiplet is the unique d =11, N =1
supermultiplet; it is impossible to couple any independent ‘matter’ field. The field equations
of 11-dimensional supergravity admit two BPS brane solutions: an elementary membrane
solution and a solitonic five-brane solution, which arise as the electric and magnetic excitations

of the 3-form gauge potential respectively.

LA dyon carries both electric and magnetic charges.



CHAPTER 2

The supersymmetry algebra in eleven

dimensions

2.1 The gravity supermultiplet

The super-Poincaré algebra in eleven dimensions has the following form

[Myn, Mpg) = — (MurMyg — MuoMyp — inp Marg + ivg Maip) (2.1a)
[Py, Px] = 0 (2.1b)

[Pri, Mpol = nupPo — o Pre (2.1c)

[Qas Myn] = (Sun)a” Qp,  a=1,...,32 (2.1d)

{Qa, Qp} = (TYC™)ap Py (2.1e)

Relations 2.1a, 2.1b and 2.1c define the Poincaré algebra; My, are the generators of SO(1,10)
and P,; the generators of space-time translations. The supercharges ), transform as a single
Spin(1,10) Majorana spinor (2.1d).

The gravity supermultiplet is a massless multiplet that contains a state of (highest) helic-
ity 2, corresponding to the graviton and a state of helicity 3/2, corresponding to the gravitino.
In the massless case the momentum 4-vector satisfies P2 = 0 and in a fixed light-like refer-
ence frame Py, = (—FE, FE,...,0). Inserting this expression into the anticommutator of the

supercharges 2.1e gives

{Qu,Qp} = B(-T°C ' +T'C Mg = EQ —T"),5, (2.2)
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where we used O~ = I'? and defined T'°! = o1,

Since I'% squares to the identity and is traceless, half of its eigenvalues are +1 and half —1.
Accordingly, the symmetric matrix {Q,, Q3} can be written as a diagonal matrix whose first
sixteen entries equal 2F and the rest sixteen are zero. Supercharges that correspond to zero
entries are discarded in the construction of the supermultiplet, as they produce non-physical
states of zero norm. We conclude that only half of the supersymmetries are preserved and the

supercharges Qq = (2E)~1/2Q, , where a = 1,...,16, generate an SO(16) Clifford algebra

{Qon QB} = 5(16 . (2.3)

We proceed to the construction of the gravity supermultiplet, by splitting the sixteen
fermionic generators into eight operators that lower the helicity of a state by 1/2 and eight
operators that raise the helicity of a state by 1/2 [5]. Introduce a Clifford vacuum state [2)
of lowest helicity —2 that is annihilated by the lowering operators; acting with the raising

operators on |Q2), yields the following tower of helicities

Helicity State Degeneracy
-2 |2) 1
-3/2 Qi) 8
-1 QiQ; ) 28
-1/2 QiQ;Qxk ) 56
0 QiQ;QrQr[SY) 70
1/2 QiQ;QrQiQm |2) 56
1 QiQ;QkQ1QmQn 1) 28
3/2 QiQ;QrQiQmQnQp ) 8
2 Q1Q2Q3Q1Q5Q6Q7Qs [$2) 1

In order to match the above states to the fields that appear in the supergravity theory, it
is necessary to find the helicity content of the latter. The helecity group is SO(2), the little
group in four dimensions and so the helicity content of a field in eleven dimensions is unveiled
by a dimensional reduction to four dimensions.

We start with the fields that we expect to appear in a supergravity theory, the gravi-

ton and the gravitino. The graviton is represented by a traceless symmetric tensor, whose
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decomposition under dimensional reduction is
h]\{N;)huV‘i’hul‘i“hl], /1/,]/207...,4 i,jzl,...77 (2.4)

giving rise to one state of helicity 2 (h,.), seven states of helicity 1 (h,;) and twenty-eight

states of helicity 0 (h;j). The gravitino decomposes as
L R (2.5)

where o/ = 1,...,4 is the spinor index in four dimensions and «” = 1,...,8 is the spinor
index in seven dimensions. Hence, the reduction of the gravitino gives rise to eight states of
helicity 3/2 (\Ilfj/a“) and fifty-six states of helicity 1/2 (0'®"). Subtracting the graviton and
gravitino states from the tower of helicities, we are left with twenty-one states of helicity 1
and forty-two states of helicity 0; these can be attributed to a 3-form field which decomposes
as

AMNP — Auup + A,ul/i + Auz] + Azjk (26)

giving rise to seven plus thirty-five states of helicity 0 (A,.,; + Aijr) and twenty-one states of
helicity 1 (A,uz])
We conclude that the supergravity theory in eleven dimensions has a rather simple field

content; it comprises a graviton, a gravitino and a 3-form field.

2.2 Central charges

The super-Poincaré algebra can be extended by additional generators known as central charges

[15] that appear in the right-hand side of 2.1e
M 1 Mq...M.
{QOM QB} = (F C aBPM *' Z r pC aﬁZMl...Mp- (2-7)
P

Here p is a non-negative integer and I'*1--*» denotes the antisymmetrised product of p gamma
matrices T M2 | TMpl | The generators ZM1--» commute with PM and Q, and transform
as rank-p antisymmetric tensors under Lorentz transformations.

Central charges typically appear in supersymmetric theories as topological charges of

soliton solutions [16, 17]; in supergravity theories, p-form charges are associated with the
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gauge transformations of p-form fields and arise in the supersymmetry algebra realisation of
BPS p-brane solutions [18].

Consistency with the symmetry properties of {Q.,Qg} requires that (', ... MpC’*l)ag is
symmetric. Using B.1, B.3 and C* = —C one finds the following symmetry property for

Ly, C ™1 under transposition [28]

(p—1)(p—2)
2

(FM1~»MpC_1)t = (-1 (walﬁjvjpc_l)- (2.8)

Equation 2.8 shows that I“Ml“MpC'*1 is symmetric for p =1 mod 4 and p = 2 mod 4. Due
to the identity

EMlmMpMpH“AMHFMPHNMH o TM1-Mp ’ (2'9)
we need only to consider the cases p = 2 and p = 5. Hence, the anticommutator of the
supercharges in the extended d = 11 super-Poincaré algebra is [20]

~ 1 - 1 -
{Qa; Qs} = (T C ™ NagPuy + 5 (T2 C o Zu oy + FLC DasZay ary - (2.10)

Notice that the left-hand side of the above equation has 32 - 33/2 = 528 components and
so does the right-hand side: 11 components of P,;, 55 independent components of Zy,, s,
and 462 independent components of Z,,, .. This means that the superalgebra is mazimally
extended.

The appearance of a p-form charge Z,,, .. m, 10 the supersymmetry algebra implies the
existence of an object extended in p spatial dimensions i.e. a p-brane, which ‘carries’ the
central charge. Since the fundamental fields of the supergravity theory do not carry such
charges, the aforementioned p-brane is inherently non-perturbative. Accordingly, in the 11-

dimensional supergravity theory we expect the presence of a 2-brane and a 5-brane.
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The supergravity theory in eleven

dimensions

Theories that involve particles of spin higher than two are known to yield inconsistent in-
teractions. Accordingly, the helicity of states that appear in the representations of a super-
symmetry algebra should not exceed two; this requirement restricts the maximum number
of supercharges [19] as follows. In the construction of a massless supermultiplet, only half
of the initial supercharges contribute and half of the latter act as raising operators. Since
each raising operator raises the helicity of a state by one-half, the highest number of raising
operators one can have, without exceeding the helicity bound, is eight. Consequently, the
maximum number of supercharges is 4 - 8 = 32.

The combination of the upper bound on the number of supercharges, with the dimension
of the minimal spinor representation in d space-time dimensions leads to d < 11: in eleven
dimensions a minimal spinor has exactly thirty-two components, while for d > 12 the di-
mension of the minimal spinor representation exceeds sixty-four (assuming only one time-like
dimension) [14]. Therefore, eleven is the highest number of space-time dimensions in which
a consistent supergravity theory exists.

In 1978 E. Cremmer, B. Julia and J. Scherk constructed the Lagrangian for the super-
gravity theory in eleven dimensions [21], in an attempt to obtain the N = 8 (maximally)
extended supergravity theory in four dimensions, by dimensional reduction [22]. The method
used in that construction was Noether method. Noether method is an iterative procedure for
constructing a non-linear gauge theory, from the linear limit: the Lagrangian of the linearised

theory is supplemented step by step with extra terms and the transformation rules of the

10
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fields are modified accordingly, until all variations vanish and a fully invariant Lagrangian is
constructed [28].
Following the original paper, [21] we outline this procedure for the Lagrangian of d = 11

supergravity and present the symmetries of the theory.!

3.1 Construction of the Lagrangian

The gravity supermultiplet revealed the on-shell field content of the linearised d = 11 su-
pergravity theory to consist of the graviton field (represented by) e®,(x), with 44 degrees
of freedom, the gravitino field ¥, (x), with 128 degrees of freedom and the 3-form gauge
field A,up(x), with 84 degrees of freedom. Thereupon, the starting point is a Lagrangian
comprising the kinetic terms for the aforementioned fields

e
2. 4!FM1M2M3M4F/‘1N2,“3N4 ? (31)

2k} L = eR(w) — 2ie U, T"*D, (w)¥, —

where k11 is the gravitational coupling constant and e the determinant of the vielbein. Fur-

thermore, F);, 45, 18 the field-strength of the gauge field A, 1,0,

Fupopapa = 48[M1Au2usu4] (3.2)

and D, the covariant derivative of the gravitino field
I
Dy(w)¥, =0,Y,+ il Lop¥,,. (3.3)

The construction of the non-linear theory is performed in the one-half order formalism [4];
the equations of motion of the spin connection are assumed to be satisfied and so any terms
arising from the variation of the Lagrangian with respect to the spin connection are neglected.

The initial supersymmetry transformation rules are
de*, =€V, , 0V, =Dy(w)e and 6A,,=0. (3.4)

In the one-half formalism, the combined (linear) variation of the kinetic terms for the graviton

and the gravitino fields vanishes [4] so we need only to compensate for the variation € W F? of

1We use a different metric convention and a different normalisation for the gauge and gravitino fields from
the original paper.
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the kinetic term for A,,,. This is achieved by adding to the Lagrangian a term of the form

UXVUF and at the same time introducing a ZeF term in the variation of the gravitino field

80, = [Dy + (ZF), e, (3.5)

where X and Z are undetermined products of gamma matrices.
The easiest way to determine X and Z is to require the equations of motion of the gravitino
field to be supercovariant i.e.

T™rD, W, =0, (3.6)

where D, is the supercovariant derivative defined by the variation of ¥,: D, = [D,+ (ZF),)].
Comparison of the terms that contain Z in 3.6 with the terms that contain X in the equations
of motion derived by varying the WX WF terms in the action, fixes the form of X and Z and
relates their coefficients.

Subsequently, a right adjustment of the undetermined coefficient of Z ensures that all
terms of the form éWF? in the (altered) variation of the (modified) action vanish. The
only exception is a term involving a product of nine gamma matrices, which is cancelled by

supplementing the Lagrangian with a Chern-Simons term

ae P Fus. s Apgmopny » (3.7)
imposing the supersymmetry transformation rule
5A;wp =0 gr[;w\:[/p] (3.8)

and arranging appropriately the product ab. The coefficient b which is left undetermined, is
fixed by requiring the terms of the form €OVF and éWOF in the variation of the action to
vanish.

At this stage, all terms are fixed up to trilinear terms in é¥ and up to quartic terms in
the gravitino field in the Lagrangian. The last step involves the replacement of F' and w in
0V by their supercovariant counterparts

. _ R i_ .
Fripopsps = Fuipopspa = 3¥ [ Duops Wpy) and - Wpap = Wyap — Z\I’vaaﬁp Vs, (3.9)
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where the spin connection w is

Wyas = €y (Qapy — Vya — Lyas) + % [0,Tas”" Uy — 2 (U, T30, — U, ToWs + 5T, 0,)] .
(3.10)
Imposing the condition that the gravitino field equation obtained from the action is super-
covariant, with respect to the aforementioned modified transformation §W, fixes the quartic
terms in the Lagrangian.
The final Lagrangian of the 11-dimensional supergravity theory is

e 1
21%1511 =eR(w) - MFMMMBMF”WW?’M + memmunAuwzuaﬂm---mFus---un

— 2T, T"PD, <w ;’ “) v,

ie T = 5 - 5 = A
+ % (\Ilulfﬂluzmuwoufi\l/w + 12\IIM3FM4“"\P%) (Fm#ws% + Fu3#4u5#6>
(3.11)

3.2 Symmetries and transformation rules

The symmetries of the Lagrangian and the corresponding transformation rules are (suppress-

ing trivial transformations)

e General coordinate transformation with parameter &,

de%, = e%,0,8" +£70,e%, (3.12a)
oV, =V,0,8" +£0,9, (3.12Db)
0A 1 pop = 3AP[M1M2 8,uza]gp + &7 0p Ay paps (3.12¢)
e Local Spin(1,10) transformations with parameter Ao = —Agq
5%, = —eP Ag® (3.13a)

1
oV, = —ZAQBFW% (3.13b)
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e N =1 supersymmetry transformations with anticommuting parameter €

de%, = eV, (3.14a)
. 1 .
5\IIM = D,u(w)e — 5.l (]_”’1’/21’31’4“ + 8FV1V2V3(5V4M) FV1V2V3V4€ (314b)
O A pops = 31€L 1y 1 U i) (3.14c)
e Abelian gauge transformations with parameter A, = —A,,
5AM1M2M3 = a[ulA#2u3] (315)

e An odd number of space or time reflections together with A, ., — — A4 pops-

In addition, the transformation
ey —e%ey, v, — 60/2\11“ and Ay, = egUAW,p (3.16)

rescales the Lagrangian by a factor e?”, which can be absorbed in a redefinition of the gravita-
tional coupling constant k%, — €?” k2. Since the gravitational coupling constant is rescaled,
the above transformation is not a symmetry of the action but it is a symmetry of the classical

equations of motion.



CHAPTER 4

BPS branes in 11-dimensional supergravity

4.1 The membrane

4.1.1 The elementary membrane solution

The membrane solution of 11-dimensional supergravity was discovered in 1991 by M. J. Duff
and K. S. Stelle [38], as a singular solution of the field equations that preserves half of the
rigid space-time supersymmetries and saturates a BPS bound.

In constructing the membrane solution, we seek a bosonic configuration of the fields that
reflects the presence of a membrane; a 2-dimensional object whose world-volume is a 3-
dimensional hyperplane embedded in the 11-dimensional space-time. We also require that
the solution preserve a fraction of the original space-time supersymmetries.

In the presence of a membrane, the initial Poincaré invariance in eleven dimensions is
reduced to P3 x SO(8) invariance i.e. Poincaré invariance in the flat world-volume of the
membrane and rotational invariance in the transverse to the membrane directions. Accord-
ingly, the membrane solution of the field equations should be invariant under the action of
P3 x SO(8).

We begin by making a three-eight split of the 11-dimensional space-time coordinates into

‘world-volume’ and ‘transverse’ coordinates respectively
M = (zH,y™), p=0,1,2 m=3,...,9. (4.1)
The ansatz for the line element is
ds®> = eQAnw,dx“dx” + €286, ndxmdx" (4.2)

15
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and the associated vielbeins are

ey = et 6%, and e%, =ePd%,. (4.3)
Letters from the beginning of the alphabet are used for tangent-space indices. Since the 3-
form gauge field naturally couples to the world-volume of the membrane, the relevant ansatz
is

Ay = €up eC, (4.4)

where €, is totally antisymmetric and €p12 = +1. All other components of Ay np are set
to zero and so is the gravitino field Wj,;. P3 invariance requires that the arbitrary functions
A, B and C depend only on y, while SO(8) invariance requires that this dependence be only
through r = /0 y™y".

If we require that the configuration of the fields be supersymmetric, the fields should
be invariant under a supersymmetry transformation J. with anticommuting parameter e.
Bosonic fields transform to fermionic ones and since the latter are set to zero, bosonic fields
are invariant. The transformation rule for the gravitino field is 6.V ps|lp—g = Dyse, where

henceforth Dy, denotes the supercovariant derivative

(FM1M2M3M4M +8 FM1M2M35M4M)

~ 1
Datlw=o = Oy + ~wp BT ap— Fayp vomsng, (4.5)

4 12 - 4]

Consistency of setting the gravitino field to zero, with the assumption of residual supersym-

metry, requires the existence of spinors €, known as Killing spinors, satisfying
Dye=0. (4.6)

We proceed to the solution of the Killing spinor equation, by adopting a basis for the

gamma matrices compatible with the P3 x SO(8) symmetry
Fa=(Ya®39,1®3%,), (4.7)

where v, are gamma matrices in d = 3 Minkowski space-time and ¥, are gamma matrices

in d = 8 Euclidean space. We have also defined Y9 = ¥3X4...Y o that satisfies Zg = 1.
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Furthermore, the spinor field €(z,y) is decomposed as

e(z,y) = co@n(r), (4.8)

where ¢y is a constant 2-component spinor of Spin(1,2) and 7(r) a 16-component spinor
of Spin(8). The latter can be further decomposed into chiral eigenstates, by applying the
projection operators %(1 + ).

The next step in solving the Killing spinor equation is to evaluate Dy for the ansitze 4.2

AB

and 4.4. The spin connection wy;“* is expressed in terms of the vielbeins as in A.6. The

M = p component of the spin connection is

AB __ ABy _ oBvA _ vAB
w7 = ey (Q Q Q47

1 A
B Bv A B A A B
= iew [(e Vel — el e 0peT, + €1V e O e, — e e Ope ,,]
1 _
— 567# e A [(eAl/ eBm _ eBV eAm)e'yV +ev eBm €Ay — e eAm €By] 8m€A
— B_A (eAM eBm - eBM 6Am) ameA ]

AB with Tap gives

Contracting wy,
w, BT ap =2e AT, I™0pe = 27,67 "0 5.
The terms in the supercovariant derivative 15# that involve the field strength are

My Mo M3 My _ T2 (U3 g C _
r wE vy pigng, = 4T 1 €pzpizpg Ome =0

and
My Mo M. m C m_ o a C
28 By s vz = 31 H2H3 € gy Ome” = 3X"y* 2% e, 0.0 €%, Ome

=3-213M, e 34 e’y Ome = 67“6_3A2m8mec .

Substituting the above expressions in 4.5 for M = p we find

1 1
D,=0,—- 57#6_A2m8me‘429 — gwe—?’f‘zmamec. (4.9)
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The M = m component of the spin connection is

wmAB = eem (QABC _ QBCA _ QCAB)
1
_ iecm [(eAkeBn _ €Bk€An)6n€ck _ (eBkecn o eckeBn)aneAk _ (eckzeAn o eAkecn)aneBk}
1 _
= SCeme B [(eAkeBn _ eBReAnyee,  (eBgen _ gckBnye A (gokgAn _ eAkecn)eBk} 8,eB

=B (eAm eBn —eb,, eA”) onel .

A

Contracting wy, B with T4p gives

WP Tap =2e 88,7 0,8 .
The terms in the supercovariant derivative D,, that involve the field strength are

M1y Mo Ms M, n C npaaa3Q C
s Fvg Moy, = 4T “2“3“4meu2u3u4 Ope” =43, T e 000, One

=4-318,"7"2 5934 9,eC = 24e734%,,7 9,75,
where we used the identity 912 = 4912 © ¥ = 1 ® 39 and

My Mo M. C ajasQ C
e 3‘{:11\/[1]\/[2]\/13771 = —[Hnels €u1paps Ome” = =193 €Cajazas Ome

= -3! 7012 Y9 e 34 9,8 = —6e7349,,e¢ D, .

Substituting the above expressions in 4.5 for M = m we find

1 1 1
Dy, = Oy + ie’BZm” Ol — Ee’SAEm” OneC g + éengamecEg . (4.10)

Upon substitution of the expressions 4.9, 4.10 and the decomposition 4.8 into the Killing

spinor equation 4.6, the solution that arises is
e=eM/S¢ @, (4.11)
where 1) is a constant spinor satisfying
(1+3Xg)m0 =0. (4.12)

In addition, A and B are determined in terms of C' as
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1 1
A= gC and B = _60 + constant . (4.13)

The chirality condition 4.12 that the constant spinor 7y satisfies, reduces its components
by half. Consequently, the number of residual supesymmetries is 2 - 8 = 16 i.e. half of the
original thirty-two rigid space-time supersymmetries. Also note that the requirement for
residual supersymmetry results in the correlation of A, B and C, leaving only one function
undetermined.

In order to determine C' we turn to the Euler-Lagrange equations of the bosonic sector of

the d = 11 supergravity action Iﬁ) = d'le £gbl), where

b — V=g : 1
2'%%1 Egl) = V—gRWw) - 9. 4) FMMQ%MFM“Q“W‘I + 6 - 3!(4!)26H1 MHA#luzﬂsFMn#?F#Smun
(4.14)
The equation of motion of the 3-form gauge field is
1
8M( /_gFMM1M2M3) + 2(T)2 6M1M2M3“.M11FM4,,_M7FM8,,_M11 =0. (415)
Inserting into 4.15 the ansatze 4.2, 4.4 and the expressions 4.13 gives
O [6(3A+SB)(T) gﬂl’/l guzugguguggmn6V1VQVSBneC(r)] =0
=0, [ e(FBAFOB)) L smng eC’(r)} —0
(4.16)

= €011, 0" O [efw(r) aneC’(r)] _0

= §"M"9,,0,e ¢ =0

i.e. a Laplace equation in the transverse directions. Imposing the boundary condition that

the metric be asymptotically flat (Minkowski spacetime) yields the solution

-C
=14+ —, > 0. 4.17
e +r6 r ( )

where ks is an undetermined constant. The above expression also solves the Einstein equa-

tions.
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Hence, the membrane solution consists of the line element
ko \ —2/3 o\ 1/3
ds® = <1 + 7"§> N datdz” + (1 + 7“"23> Omndz™dz" (4.18)

and the 3-form gauge field

ko\
Ap,up = €uvp (1 + 7‘6> . (419)

Consider the coordinate reparametrisation 7% = ko[(1 — #3)~! — 1]. In terms of 7, the
solution 4.18 becomes [45]
ds® = P (—dt® + do® + dp?) + A k3 7 2d7 + k2 d0?
(4.20)

P11 — ) = 1) [4F 2 + dOZ).

Here we have introduced explicit coordinates z# = (¢, 0, p) and dQ% is the line element of the
unit 7-sphere, corresponding to the boundary of the 8-dimensional transverse space.

The geometry described by the line element 4.20 exhibits an event horizon at 7 = 0 and
interpolates between two ‘vacuum’ solutions of 11-dimensional supergravity, corresponding to

the limits 7 — 1 i.e. transverse infinity and 7 — 0 [45, 27].

e As 7 — 1, the solution becomes asymptotically flat i.e. approaches Minkowski space-

time.

e As 7 — 0, one approaches the event horizon. The near horizon geometry is described
by the first line of 4.20 which is the line element of AdS4 x S”. The AdS4 x S’ geometry
is a stable solution of the supergravity field equations [44] arising from a spontaneous
compactification. The spontaneous compactification is induced by a gauge field strength

of the Freund-Rubin form F),,.) X €uuin [42].

Analytic continuation through the horizon reveals a curvature singularity at ¥ = —oo
[45]. The space-time singularity classifies the membrane solution as an elementary solution
and requires the introduction of a d-function source, so that equations of motion are satisfied

everywhere; this is provided by the supermembrane.

4.1.2 The supermembrane

In 1987, E. Bergshoeff, E. Sezgin and P. K. Townsend [34] constructed the action for a

supermembrane propagating in a d = 11 supergravity background. The key element of
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the action is a local fermionic symmetry on the supermembrane world-volume, known as
kappa symmetry. A kappa symmetric supermembrane action requires the curved superspace
background to obey certain constraints, including the existence of a closed super 4-form.
These constraints are satisfied in the case of 11-dimensional supergravity and a consistent
coupling is allowed [34].

The supermembrane is viewed as a bosonic manifold, embedded in d = 11 curved super-

space; the corresponding coordinates are!

ZM — (XM gv), (4.21)

where XM are the bosonic coordinates and 6% the fermionic coordinates. The latter compose
a 32-component Spin(1,10) Majorana spinor. The propagation of the supermembrane in the

curved superspace background is described by a Green-Schwarz-type action [34]

Sy = Tz/d3€ <—;\ﬁ77ijEAiEBj naB + ;ﬁ) + % /435 é*ENEP B, Agpe.
(4.22)
Here i = 0,1,2 labels the coordinates & of the supermembrane world-volume with metric
7vi; and signature (—,+,+). Ajpa is the super 3-form in the superspace description of 11-

dimensional supergravity [23, 24] and EA,- denotes the pull-back of the supervielbein EA Jive
B4 = (0,2M)EY ;. (4.23)

T5 is the tension of the supermembrane and the term in the action that couples the super
3-form to the world-volume of the supermembrane is called Wess-Zumino term.

The symmetries of the action 4.22 are world-volume diffeomorphism invariance, target-
space (superspace) superdiffeomorphism invariance, Lorentz invariance and super 3-form
gauge invariance. In the case go = T (which is assumed henceforth) the supermembrane
action possesses an additional local world-volume symmetry, kappa symmetry. The relevant

transformation rules are [34]

§ZMEA =0, ZMEy = (1-T)°,k7(¢) (4.24)

'Henceforward, early Greek letters are used as spinorial indices and not as tangent-space indices.
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and a variation of the worldvolume metric that is of no interest in our analysis. The kappa
symmetry transformation parameter s is a Majorana space-time spinor and a world-volume

scalar. I' is given by the expression

R EBECL T ape . (4.25)

1
=
31—

Kappa (or k-) symmetry originally appeared as a symmetry of the superparticle [31] and
the superstring [32] and provides the link between space-time and world-volume supersym-
metry [30]. In 1986, it was generalised for higher dimensional objects (branes) by J. Hughes,
J. Liu and J. Polchinski [33], who explicitly constructed a Green-Schwarz-type action for a
super 3-brane in six dimensions.

Since we are considering a bosonic configuration, the fermionic coordinates 8¢ are set to

zero and the supermembrane action reduces to

1 . 1 1 ..
Sy =Ty /d35 <—2\/ 7779, XM, XN gprn + SVt 3 €Z]kaiXManNakXPAMNP> .
(4.26)

Variation of the membrane action 4.26 with respect to X yields the equation of motion

g 1 g 1 ..
0 (V=r110.X N gun) + 5= 10X N0, X P Orge = — 55 PFOXN 0, X0 XY Farveg
(4.27)

while varying with respect to v;; gives
vij = 0:XM0; XN gnw (4.28)

i.e. 7;; is identified with the induced from the target space world-volume metric.
Having set 8 to zero, the criterion for residual supersymmetry is that under a combination
of a k-symmetry and a space-time supersymmetry transformation, ¢ remain zero. The

variation of the fermionic coordinates to linear order in fermion is [36]
=(1-T)x+e, (4.29)

where k is the k-symmetry parameter and € the space-time supersymmetry parameter. The
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bosonic part of I' is given by the expression

1

=g = TR XM XN X Tyrnp . (4.30)

I is traceless and has the property I'> = 1. We prove the latter.

r21

= ﬁ Gijk €lmn 6ZXM1 8JXM28kXM5 (9IXN1 8mXN2 8”XN3 FM1M2M3 FN1N2N3 . (431)
Y

The product of gamma matrices that appears in the last expression is expanded as [14]

FM1M2M3FN1N2N3 — 65[M3[N15M2N26M1}N3] +18 6[M3[N15M2]N2]FM1N3 + 95M3N1FM1M2N2N3

(4.32)
and so we find
1 g .
2 :% GGUkGijk +18 El]kekjn aZX]\/h 871)(]\[3 PMlNS
+ 96Ky 0, XM, X M2 9™ X N, 0" X v, Ty gy V273 (4.33)
1 y
:%6 emkeijk =1 s

in courtesy of the embedding equation 4.28.

Due to the aforementioned properties of I', the matrices (1£I") act as projection operators.
Consequently, k-symmetry can be used to set sixteen of the thirty-two components of 8% to
zero, by imposing (1 —I')# = 0. Around a purely bosonic background the above condition is

preserved if (1 —I')d60 = 0 [36] or upon inserting the variation 4.29

201-Trk+(1-T)e=0. (4.34)
The above equation implies that kK = —¢/2 and thus
1
60 = 5(1 +De. (4.35)

Therefore, the requirement for residual supersymmetry boils down to (1 4 I')e = 0.
The reparametrisation invariance on the world-volume of the supermembrane allows one
to impose a physical or light-cone gauge condition [35]. The fully gauged-fixed world-volume

theory is globally supersymmetric; it contains eight bosonic degrees of freedom, corresponding
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to the embedding scalars and eight fermionic degrees of freedom. The former appear as the
Goldstone bosons associated with broken translation invariance in the transverse dimensions
and the latter as the Goldstinos associated with broken rigid supersymmetry [33]. The origin
of world-volume supersymmetry is the kappa invariance of the supermembrane action, which

can be used to gauge away half of the fermionic coordinates.

4.1.3 The combined supergravity-supermembrane equations

As we saw earlier, the membrane solution has a singularity at the core, requiring the introduc-
tion of a Jd-function source for its support. We therefore supplement the supergravity action
1 ﬁ) with the bosonic sector 4.26 of the supermembrane action.

The Einstein equation in the presence of the membrane becomes [38]

1
Run — QQJWNR = K/%lTMN y (4'36)

where the stress-energy tensor TN =T, (%N + T(]‘g)N receives a contribution from the 3-form

gauge field
1

1
T(%N =02 <FMPQRFNPQR - 89MNFPQRSFPQRS> (4.37)
11

and the membrane

Sz — X)

N (4.38)

THY = -1 / A6/ =70, XM 9; XN

Moreover, the equation of motion of the 3-form gauge potential is

1
Owmr (\/TQFMMlMlM?’) + 5. (4!)2€M1M2M3M4“'MnFM4M5M6M7FMgMngMH
= —2k2,T / d3¢ 9% 9; XM 9; X M2 0, XM M (2 — X))
(4.39)
or more elegantly
dxF@W + LAG AFW) = 247, % JO), (4.40)

where * denotes the Hodge dual [56]. The above equation gives rise to a conserved Page

charge [48]
1

V2R

Q@ / (F@ 4 1AG) A F@) (4.41)
0Xg
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where 0%g is the boundary of the 8-dimensional transverse space Xg. Equivalently, the

conserved charge can be expressed as

Q2 = \@Hn/ *J @) (4.42)

g

where

g @) =Ty [ a6t 0,X70,X 20X 5w - X) (4.43)

()2 is conserved by virtue of the equations of motion of the 3-form gauge potential and thus
it is an ‘electric’ charge.
The combined supergravity-supermembrane equations are solved by the static gauge
choice [38]
XH =¢H uw=0,1,2 (4.44)

in which the p 4+ 1 longitudinal space-time coordinates are identified with the coordinates of

the membrane world-volume and the solution
X" =Y™ = constant, m=23,...,10 (4.45)
Substituting 4.44 and 4.45 into 4.39 yields the equation
By Ope ) = —212, 15 6%(y) . (4.46)
Integrating both sides over the volume of the 8-dimensional transverse space Xg gives
/Z A8z M Ope™C = —263 Ty . (4.47)
8

Since the geometry of the membrane solution is asymptotically flat, the integral on the left-
hand side of the above equation can be transformed to a surface integral over the boundary

0Yg of the transverse space.

/ Bz dmOpe ¢ = / dXm e ¢ (4.48)
38 0%
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Rotational invariance in the transverse directions allows a 7-sphere S’ boundary. Hence,

k —6kaym
/ dX" Ope ¢ = / dX™ O, [1 + o2t O(rlQ)] = / Q7 roy™ Lgy = —6k2Q7,
8%g S7 T S7 T

(4.49)

where Q7 is the volume of the unit 7-sphere. Therefore, ko is determined in terms of the

membrane tension T5 as
2
HllTQ

fog = 14172
S TOR

(4.50)

A consistent coupling of the membrane to the supergravity background of the membrane
solution, requires that the former preserve one-half of the original rigid space-time supersym-
metries, as does the latter. We saw in the previous section that this is the case if (1+1I")e = 0.
For the solution 4.44 and 4.45

I=1®%y (4.51)

and by virtue of (1 + Xg)ng = 0, the required condition I'e = € is satisfied.

4.1.4 The BPS property and the ‘no force’ condition

The asymptotically flat geometry of the membrane solution allows the definition of an ADM
[46] mass density Ms: a conserved mass per unit spatial surface of the membrane [37, 47].
We start by making the split g,y = Nayn + Parn, Wwhere 1y, is the flat Minkowski metric;
for the membrane solution h,,y tends to zero at spatial infinity. The part of the Einstein tensor
that is linear in h,,y is regarded as the ‘kinetic’ term and the remaining as the gravitational
stress-energy pseudo-tensor. Therefore, the ‘world-volume’ component of the latter is given

by the expression
1 1
O = 2 (R;(}z/) - 277.UVR(1)> : (4.52)
11

The linearised Ricci tensor wa) is given in terms of hyy as

pn_ 1

9%h*, 0%n* 0’h* 0?h,,
w1 LB Py

0xPozrt ' OxPOr’  OxtdzV OxpOx?

where indices are raised and lowered using the flat Minkowski metric. Inserting the metric
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ansatz 4.2 into the above equation gives

1 0%h 1 9?e?A
RO -~ 2w g, T 4.54
v 2 0y, Oy™ o'l OYym Oy™ (4.54)
Similarly for the Ricci scalar RY) = gMV RSVBV we get
21, P 21 M 2 2A 2 2B
R(l): 0°“h* _8}1 M:_S(‘)e —(8—1)86 (4.55)
o0xPoxM  Oxplzt Y, OYy™ OYp OYy™
Inserting 4.54 and 4.55 into 4.52 we find
1 6262A 62€2B
O = —Nuw 7 . 4.56
ST [ a7z T oy } (4.56)

The total energy density of the membrane solution is then given by an integral of the Gqg

component of the stress-energy pseudo-tensor, over the volume g of the transverse space

1 8262A 82623
E=[ d20p=-—% | dx [2 +7 } : 4.57
e 263, Iy oy? oy? ( )
The above integral can be recast as a surface integral over the boundary 93g
1
E=—5a [ d5"0n (2?4 4 7€%P) . (4.58)
11 JO0Xs

Recall that the existence of residual supersymmetry imposed the relations 4.13. Hence 4.58

becomes

1 1 6ko(27

E= —/ dX™ O, (e — 1eC) = / A8 Opme” = ) (4.59)
2131 Joxs m(3 s ) 2k7) Jome " 2k1,

where the surface integral is evaluated similar to 4.49. Since we are considering the membrane
in its rest frame, the energy density £ coincides with the mass density Mo of the membrane.

On the other hand, the charge density of the membrane solution is

1

V2R
1 1 6kQQ7

= gyxmemie omel = / d¥"0,,e¢ =
V2K11 /828 e V2k11 Josg " V2511

Qs / ((FW 1+ 1AG) AFW)
0Xg

(4.60)
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Comparing equations 4.58 and 4.60 we conclude that
Q2 = V2k11 M, (4.61)

i.e. the membrane solution saturates the BPS bound v/2k11 My > Q. In addition, using 4.50
we find
Q2 = V2k11 Mz = V2511 Th . (4.62)

The connection between the partial breaking of supersymmetry and the saturation of
the BPS bound is also revealed in the asymptotic realisation of the supersymmetry algebra
[13]. The geometry of the membrane solution at spatial infinity is Poincaré invariant and
admits Killing spinors. Accordingly, the supersymmetry algebra is realised asymptotically;
the supercharges and the momentum 4-vector are defined as Noether charges of the asymptotic

symmetries by ADM-type formulas [49, 37]

P — / 105 @0 (4.63)
310

QOC — /82 dENP(FAJNP\IIIM)a, (4.64)
10

where Y1 is a 10-dimensional space-like surface.
As it turns out [18], the asymptotic supersymmetry algebra is not the super-Poincaré

algebra but the extended version
_ 1 _
{Qa,Qp} = (TMC™Y) 05 Py + 5(erM2C YasZ s, 11y - (4.65)

The origin of the modification of the supersymmetry algebra is the term in the superme-
mbrane action 4.22 that describes the coupling of the super 3-form to the supermembrane
world-volume; under a supersymmetry transformation, the variation of the Wess-Zumino term
produces a total derivative [18]. In general, when a Lagrangian £(¢™, 9;¢™) is quasi-invariant

i.e. it transforms by a total derivative

5uL = O; A, (4.66)
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the conserved currents J;, contain an anomalous piece A,

Ji= 95 5.em— Al 4.67
86,6m o7

and the charge densities JO satisfy a modified Poisson bracket algebra. In the case of the

supermembrane the Wess-Zumino term gives rise to a central charge [18]

ZMiMy — Tz/dfldfg jOMIMQ, (4.68)

where 712 ig the world-volume time component of the identically conserved topological
current

jiMMy ik, M 9; XM (4.69)

Consider a stationary membrane along the z1-z2 plane so that Py, = (—M3V52,0,...,0),
where V5 is the spatial surface of the membrane? and assume a static gauge. The supersym-

metry algebra 4.65 becomes

{Qa, Qp} = MaVa - 1og+ (T°"%) 43212 . (4.70)

The Majorana spinor @), is real and so the left-hand side of the above equation is positive

definite. Hence My must satisfy the bound
MoV > | Zy9]. (4.71)

Comparison of the definition 4.42 of the electric charge density and the definition 4.68 of
the topological charge yields v/2r11|Z12| = Q2V» and so the familiar form of the BPS bound
V2k11Ma > Q9 is retrieved.

In the case of the membrane we are considering, equation 4.68 yields

Zho = Tg/d§1d§2 =ToVo = MyVs. (4.72)

2V} is a formal factor which should be normalised, so that the supersymmetry algebra is well-defined per
unit spatial surface of the membrane.
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As a consequence, the BPS bound is saturated and 4.70 becomes

{Qa, Qp} = MaVa (14+T%) 4. (4.73)

Since I'%'2 squares to the identity and is traceless, the matrix (1 +I'°'2) acts like a projection
operator, which projects out half of the supercharges. Hence, the fact that only half of
the original thirty-two rigid supersymmetries are preserved by the membrane solution, is
reproduced in the realisation of the supersymmetry algebra.

Recall that initially the Wess-Zumino term appeared in the supermembrane action 4.22
multiplied by a g factor. The same factor instead of T would appear in the topological
charge 4.68 if the requirement for kappa invariance of the action did not dictate qo = T5.
In the latter case, as the above analysis revealed, the BPS bound is saturated and a partial
breaking of supersymmetry is induced. Thus, the BPS property and the partial breaking of
supersymmetry are traced back to the kappa symmetry of the supermembrane action.

Another property of the membrane solution related to the existence of residual supersym-
metry is the ‘no-force’ condition [37, 38]: the exact cancellation of attractive gravitational
and repulsive electrostatic (generated by the 3-form gauge field) forces, between two separated
static membranes.

Consider a stationary test membrane at some distance from a source membrane located
at the origin. Both membranes run along the x1-x5 plane and have the same orientation. The
motion of the test membrane is described by the action 4.26 in the background of the source
membrane, upon substitution of 4.28. Assuming the static gauge X* = £#, the potential

acting on the stationary test membrane is

V = —/det (—n;j €24) + Agra = —* + €@ (4.74)

The existence of Killing spinors imposed 3A = C and so V' = 0; the stationary test membrane
experiences no force.
The ‘no-force’ condition allows the construction of stable multi-membrane configurations

obtained by a linear superposition of solutions [3§]

eC=1+Y" i (4.75)

r — 1|’
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where r; corresponds to the arbitrary location of each membrane.

4.2 The five-brane

As anticipated from the presence of a 5-form central charge in the supersymmetry algebra,
there is one more BPS brane solution of the d = 11 supergravity equations, the 5-brane
solution [39]. In contrast to the membrane, the 5-brane is a soliton i.e. non-singular solution
of the field equations and arises as the ‘magnetic’ excitation of the 3-form gauge field. Due to
the non-singular nature of the 5-brane, a source is not required in the solution and one does
not need to include a o-model term in the supergravity action.

The construction of a bosonic field configuration with residual supersymmetry, that de-
scribes a 5-brane, mirrors the construction of the membrane solution. In the case of the
5-brane the invariance group is Pg x SO(5). Accordingly, we make a six-five split of the

space-time coordinates
e = (2", y™),  pu=0,....,5 m=6,...,10. (4.76)
The ansatz for the line element is
ds® = eQAanx“d:):” + €285, dx ™ da™. (4.77)

The 5-brane is a ‘magnetic’ excitation of the gauge potential and so the corresponding field

strength supports the transverse to the 5-brane space. The relevant ansatz is
Frnpg = —€mnpgr 0"e " C. (4.78)

All other components of Fiysnpg are set to zero and so is the gravitino field ¥;. Pg invariance
requires that the arbitrary functions A, B and C' depend only on y, while SO(5) invariance
requires that this dependence be only through r = /0, y™y™.

As we argued in the case of the membrane solution, the requirement for residual super-
symmetry is equivalent to solving the Killing spinor equation Djre = 0. We adopt a basis for

the gamma matrices compatible with the Pg x SO(5) symmetry

'y = (701 ®1,77® Ea) ) (4'79)
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where v, are gamma matrices in d = 6 Minkowski space-time and ¥, are gamma matrices
in d = 5 Euclidean space. We have also defined 77 = o1 ...75 that satisfies 72 = 1.

Furthermore, the spinor field e(x,y) is decomposed as

e(z,y) =eo@n(r), (4.80)

where 7(r) is a 4-component spinor of Spin(5) and €y is a constant 8-component spinor of
Spin(1,5). The latter can be further decomposed into chiral eigenstates, by applying the
projection operators %(1 =+ ).

In the background 4.77 and 4.78, the components of the supercovariant derivative 4.5 are

- 1 1

D,=09,+ 57#6_A2m8me’477 + E’y“e_?’BEm@me_c (4.81a)
~ 1 1 1
D,, = 0y, + ge_BZm" el + ﬁe—?’Bame—% — 66_332m” e Cvr. (4.81Db)

Substituting the decomposition 4.80 and the above expressions for the supercovariant deriva-

tive, into the Killing spinor equation 4.6, yields the solution

e=eCN2¢ @0, (4.82)

where 79 is a constant spinor and ey satisfies (1 — 77)eg = 0. Additionally, A and B are

determined in terms of C' as
1 1
A= EC and B = _§C + constant . (4.83)

The chirality condition that the constant spinor €g satisfies, reduces its components by half.
Consequently, the number of residual supesymmetries is 4 - 4 = 16; the 5-brane solution
preserves half of the original rigid space-time supersymmetries.

Upon substitution of 4.77, 4.78 and 4.83, the Einstein equation and the equation of motion

of the 3-form gauge field reduce to the single equation

8By, B¢ = 0. (4.84)
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Imposing the boundary condition that the geometry be asymptotically flat yields the solution

e “=1+ r>0. (4.85)

37

Hence, the 5-brane solution consists of the line element
ks -1/3 Jos 2/3
ds® = <1 + r3> N drt dz” + (1 + 7"3> Omndx ™ dz"™ (4.86)

and the 4-form field strength

y’l"
anpq = 3k5 Emnpqrﬁ. (487)
The 5-brane geometry exhibits an event horizon but no curvature singularity. Furthermore,
it interpolates between two ‘vacuum’ solutions of d = 11 supergravity; Minkowski space-time
at spatial infinity and AdS7 x Sa [43] space-time near the horizon [27].

The ADM mass density M5 of the 5-brane solution is evaluated similar to Mo

Ms =20 [ iy [5 : (4.88)

8262‘4 +482€23 . 3k5Q4
2“%1 X5 -

Oy? Oy? 2K2,

where 24 is the volume of the unit 4-sphere corresponding to the boundary of the transverse

space. Moreover, the 5-brane solution carries a ‘magnetic’ charge

1
Ps = / F&, 4.89
° V2k11 85 ( )

where 0Y5 is the boundary of the 5-dimensional transverse space 5. Ps is conserved by

virtue of the Bianchi identity dF*) = 0. Using 4.87 we find

Ps

1 fesy™ k ™ 3ksQ)
35y —35/dQ4r3yy _ ksl (4.90)
S4

= / dxm-ma €mi...mam = = .
V2611 Joss ro V2611 ro V2611
Therefore, Ps = v/2k11 M35 and the 5-brane solution saturates the relevant BPS bound.
The electric charge of the membrane and the magnetic charge of the 5-brane obey a Dirac

quantization rule

QaPs=2mn, neZ (491)
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and so P5 can be expressed in terms of the membrane tension as

2mn

p=—"
V211 Ty

(4.92)

A ‘no-force’ condition, related to the existence of residual supersymmetry, applies to the
5-brane solution and allows for stable composite configurations of membranes and 5-branes

40, 41].



CHAPTER 5

Kaluza-Klein reduction to ten dimensions

5.1 Dimensional reduction of d = 11 supergravity over a circle

A maximal supergravity theory in ten space-time dimensions can be of type IIA or type IIB,
depending on the chiral character of the underlying superalgebra [7]. The minimal spinor
representation of Spin(1,9) is a 16-dimensional Majorana-Weyl representation [14]. Accord-
ingly, the thirty-two supercharges of the d = 10, N = 2 supersymmetry algebra compose
two Majorana-Weyl spinors; if these two spinors are of opposite chirality, they can be as-
sembled into a single Majorana spinor and the resulting non-chiral supersymmetry algebra
underpins type ITA supergravity. On the other hand, type IIB supergravity is based on a
chiral supersymmetry algebra: the supercharges compose two Majorana-Weyl spinors of the
same chirality.

Reduction of the d = 11, N = 1 supersymmetry algebra to ten dimensions, yields the non-
chiral d = 10, N = 2 supersymmetry algebra, as a Spin(1,10) Majorana spinor decomposes
to two Spin(1,9) Majorana-Weyl spinors of opposite chirality [55]. The above reduction
elevates to the supergravity theories: type ITA supergravity in ten dimensions is obtained as
the massless spectrum of d = 11 supergravity with one dimension compactified on a circle
[51, 52, 53].

Assume that the eleventh dimension of d = 11 space-time has circular (S!) topology, i.e.

the 20 coordinate, denoted henceforth as p, is periodic
0<p<2rR, (5.1)
where R denotes the radius of the circle. Let ¢(z, p) be a field in eleven dimensions. Due to

35
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the periodicity of p, ¢(z, p) can be expanded as

n=oo

e = o)+ 3 e (2 )onte), 5.2)

n#0

In the limit R — 0 only the n = 0 modes survive and the 10-dimensional theory comprises
fields which do not depend on the compactified dimension.

We proceed to the dimensional reduction of the bosonic sector of d = 11 supergravity in
the R — 0 limit and make a 10 + 1 split of the vielbein. Local Lorentz invariance in eleven

dimensions allows for a triangular parametrisation [50]
Q= ia,&=0,...,10 oo =0,...,9. (5.3)

Henceforward, a hat symbol designates an object in eleven dimensions. The exponential
parametrisation of the scalar field is imposed to ensure positivity and ¢ is a parameter that
will be determined by requiring the Einstein-Hilbert term in the reduced Lagrangian to have
a canonical form. The inverse of the vielbein 5.3 is

e 0 ek, 0

et = . (5.4)
—e 04, e ®

The corresponding space-time metric in eleven dimensions is given by

R 625(1)9”1/ + 62(1)14“—41/ 62<I>AV
9pp = . (5.5)
62(1)"4# e2<I>

As the above expression shows, the metric decomposition yields the 10-dimensional space-
time metric g,,,, a vector field A, and a scalar field e®. In order to prove this statement in a

concrete way, we turn to the general coordinate transformation
6950 = 08P G0 + 05€PGpp + £P0s 000 (5.6)

and assume that the parameters éﬂ are independent of the compactified dimension p. The
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[t = p component of 5.6 yields

5g;w = a,ugpgpy + auépgp,u + fpapg;w (5.7&)
6A, = 0,87 A, + 0P0,A, (5.7b)
0d = fpapq). (5.7C)

The above transformation rules in ten dimensions validate the scalar and vector character of
e® and A, respectively. Furthermore, the general coordinate transformation with parameter

f 10" acts as a local gauge transformation for A,
5A, = 9, (5.8)

Let us now focus on the reduction of the Einstein-Hilbert term in the d = 11 supergravity

action
1 .
I =— [ d'zéR(®) (5.9)
2KT,
or in the language of differential forms
E—H 1 A A& A A 1 N - ~ 4 ~& r af
If :ﬂ R,; N*(&*N&7) = 22, (dw, s+ @ay A@75) A x(&* N &7), (5.10)

where Rd,é is the curvature form of the spin connection. The term in the Einstein-Hilbert

action involving the exterior derivative of the spin connection can be recast as

dd 5 A (@5 N E7) = d[@y; A+ A7) + @5 Adx (&0 N80 (5.11)

Due to the vanishing torsion condition Dé% =0 ,

D (8% A8%) =0 =dx (6% A &)+ @™ Ax(e5 A 87) + 0P Ax(@¥ A& (5.12)

Discarding the total derivative terms and using the above identity to replace d % (&% A &),

we arrive at the following expression for the Einstein-Hilbert action

1 R . R
IﬁiH = 21%2/(:)@3, /\(;JB'Y /\*(éa /\éﬁ) . (5.13)
11
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The component form of the above expression is

, 1 (& B A A& B
I = o dHze (wo‘d& wﬁ/g +wo‘m wﬁ'y&) , (5.14)
where
w’?@é = _Q’AY&B + Qd,BA'?/ — QB’AYOAC (515)
The non-vanishing ’s for the vielbein 5.3 and its inverse 5.4 are
A 1 TN INVEENY, ~ 1 —25®/ _u v w v 0P
Qam:i(e ot g—€ge" )6l,eu,y:§e (el'ae’g—elge’s) 0y(e” euy)
. 5 o (5.16a)
T apy + 5 €7 (Mare”s — Mgye”a) Oy P
A 1 NN PN TN 1 INY 10 sv
Qa610:§(€ atg—ege” )86#10-1-2( 05— 5¢,)0ve1010

1 1
= 56_2&1)(6#& e’g—el'ge’y) a,j(eq)A#) + 56_25‘1)(—14&6”5 + Age” ) d,e®  (5.16b)
— %67(2671)4)(81,14,1 . 8,UAI/) _ _367(2571)4)}7“”
A 1 1
Qa1010 = —561010é dver010 = —5¢ —OFDy 5,e? = %, 0,® (5.16¢)

Q100410 = _Qalo 10 - (516(1)

Inserting these expressions in 5.15 we find the following spin connection components

a)ocﬁ’y = 6_64)(*}@,87 + 66_6@ (77704 eyﬂ — Thg eya) 0,® (5.17&)
. . T o5
Wioas = ~Wapr0 = —5¢ (28 1)¢wa (5.17b)
©10100 = —~@10a10 = € *%€’4 9, . (5.17¢)

Substituting the above spin connection components, the Einstein-Hilbert action 5.14 becomes

1
It =— dPzdpé (Aa

S oy @ g7 200, 0T 0%, 07 + 0105 67 )  (5.18)
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where

W oy @557 — "9 Wy wﬂﬁv + (96)2 e~ 20® 0,P0"® (5.19a)
200, 0" 7 = 185 ¢ 2% 9,001 P (5.19b)

0%, WP, = e PP W W, — 95272 9,004 D (5.19¢)
@10, &% = —i e~ p, prv (5.19d)

Using the above expressions and the relation é = e (100t where e is the determinant of

the vielbein in ten dimensions we find

= 2;%1 d% dp e 10912 =200 [R(w) - i e_(d_l)Qq)FWF“” + (7262 + 180)0, PO+ D | .
(5.20)

The requirement that the Einstein-Hilbert action in ten dimensions have a canonical form

i.e. R(w) is not multiplied by an exponential of ®, leads to § = —%. Using the above value

of § and integrating over the compactified dimension, we arrive at the following action in ten

dimensions

1 9

1 9
Iy = TR dV%ze <R(w) — ~e1®F,, F*™ — = au@af@) , (5.21)
k1o 4 8

where we have defined the gravitational coupling constant in ten dimensions

) H%l

Thus the Einstein-Hilbert Lagrangian in eleven dimensions reduces to an Einstein-Hilbert
Lagrangian in ten dimensions and the kinetic terms for the scalar field ®(x) and the vector
gauge field A, (z) that appear in the decomposition of the metric.

The reduction of the 3-form gives rise to a 3-form and a 2-form in ten dimensions
Ay =Cuyp and A0 = B, (5.23)
with corresponding field strengths

Fuum\ = F,uun)\ and Fuunl(} = G,uw—c . (5.24)

The reduction of the kinetic term for the 3-form gauge field and the Chern-Simons term is
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performed more conveniently in the tangent space, where the metric is diagonal. We thus use

the inverse vielbein to convert to tangent-space indices

FaﬁWlﬂ = euae g€

. L (5.25)
. PPN S 1 -
Fogys = &' €7 5" €5 F 5 = 2% (Fapys — 4 AGapy)) = €2% Fapys
The kinetic term for Aﬂ,}ﬁ reduces to
Fﬂ1ﬂ2ﬂ3ﬂ4me”3M4 = Fayaaga B0
. (5.26)
= €¢Fa1a2a3a4Fala2a3a4 +4 eilq)Gﬂlﬂzﬁ?,GBl&ﬁS
while the Chern-Simons term, after an integration by parts, reduces to
émm#nAﬂlﬂzﬂ:«xFﬂ4~~~ﬂ7Fﬂ&n/lu = AalmallAd1@2&3Fd4md7FAsmd11
=3 falmawBa1a2Fa3...a6Fa7...a10
(5.27)

Qai...000
+6e€ Ca1a2a3Fa4...a7Ga8aga10

@q...0010
— 96 BalagFag...agFa7...a10 .

Aggregating all terms of the reduced bosonic sector of d = 11 supergravity, we obtain the

following action in ten dimensions

® _ 1 10 L 9g v 9 L 342 -
I T 2k2, d7we [R(w)—4e4 Eyy FP — 20,001 — o €8 Fpy gy 112101
1 —39 V1UoV3 6_1 Sl 10
_2 : 3' e 2 GV1V2V3G + W € BN1N2FI~L3~--M6FH7~-M10

(5.28)

The finishing touch would be to rescale the scalar field ® by factor of 2/3 so that the cor-
responding kinetic term has a conventional form. The above action is the bosonic sector of
type ITA supegravity action [51, 52, 53].

In the fermionic sector, the gravitino decomposes to two gravitinos of opposite chiral-
ity and two spinors of opposite chirality, according to the Spin(9) D Spin(8) representation
decomposition [55]

128 — 56 + 56 + 8 + 8. (5.29)

In terms of fields, the 10 + 1 decomposition of the 11-dimensional gravitino gives rise to a
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Majorana gravitino

P, =es®(B, — A,0) (5.30)

and a Majorana spinor

=80 Wi = e Py (5.31)

in ten dimensions, which can be further decomposed into two chiral eigenstates of opposite
chirality. The latter compose the fermionic sector of type IIA supegravity.
The Lagrangian of type ITA supegravity in its full fermionic glory is presented in references

[51], [52] and [53] .

5.2 Reduction of the membrane solution and the membrane

A natural next step would be to investigate what kind of solution emerges in ten dimensions,
upon reducing a brane solution of the d = 11 supergravity equations. Thereupon, we consider
the dimensional reduction of the membrane solution.

The membrane solution depends only on the ‘transverse’ coordinates and can be read-
ily reduced to ten dimensions, by compactifying a ‘world-volume’ coordinate. This kind of
reduction, where both the space-time dimension d and the brane dimension p are reduced,
is called diagonal dimensional reduction [27]. Accordingly, we make a ten-one split of the

space-time coordinates

~

i‘M:(:L‘M,fL‘Q), M=0,1,3,...,9 (5.32)

and the following ansatz for the metric g5 and the 3-form gauge field A, xp (38]

éMN = C_Cb/GgMNa §]22 = €4¢/3 and AMNQ = Bun-. (5-33)

All other components of G;;x and Ay xp are set to zero. Upon insertion of the above decom-

positions into 4.18 and 4.19, the membrane solution reduces to
1/4

2 ko —8/4 v ko m j..n
ds® = 1+r—6 N datdz” + 1+T—6 Omndxdx (5.34)

and

e\ L o ko —1/2
Bm:@+w>, e:<1+r6 (5.35)
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The above equations define the elementary BPS string solution of d = 10 supergravity de-
scribed in [37].

In addition to the reduction of the membrane solution, a double dimensional reduction
of the supermembrane leads to the superstring in ten dimensions. The double dimensional
reduction is performed by reducing a supermembrane coupled to a d = 11 supergravity back-
ground from 11 to 10-dimensional space-time and simultaneously from 3 to 2-dimensional
world-volume. The result is a superstring coupled to a type IIA supergravity background
[54]. We will demonstrate the aforementioned reduction for the bosonic sector of the super-
membrane.

Let us start with the membrane action 4.26 in eleven dimensions and make a two-one split

of the world-volume coordinates
€= (€4,€?), I1=0,1,2 i=0,1 (5.36)
and a ten-one split of the space-time coordinates
XM= (x*, X1, pw=0,...,9. (5.37)

The crucial step is the identification of the compactified world-volume coordinate with the

compactified space-time coordinate, through the partial gauge choice
e2=Xx0=). (5.38)

Effectively, the membrane ‘wraps around’ the compactified dimension so that the membrane
world-volume and the space-time are compactified over the same circle. The 10 + 1 ansatz

for the 11-dimensional space-time metric is [54]

g 1/"’62@14 A, 62(1)141/
g . , (5.39)

Iun 672‘1)/ 3
€2€I> A,u 62613

while the 3-form gauge field and the 4-form field strength decompose as in 5.23 and 5.24

respectively. We discard the massive modes of the space-time and world-volume fields by

imposing

angN - 0 — apAMNp and 8pX'u — 0 . (540)
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Using 4.28 we find the induced metric on the world-volume of the membrane to be

Yij + EQ(DAZ‘A]‘ €2¢Ai

62<I>Aj 62<I>

Y1 =722/ : (5.41)

where

Yij = (%X'uanng, and Az = aiXMAH . (542)

Inserting the 10 + 1 decompositions 5.39, 5.41 and 5.24 in the equation of motion 4.27 of the

membrane gives for M = p
. 1 . 1 ..
0; (\/ -y ’}/UaiXng,) + 5\/ -y y”&X”(?jXp@ug,,p + 56”61-X”6jX"GWp =0, (5.43)

while for M = p the resulting equation is an identity, as it must be for consistency.

The above equation is the equation of motion of a bosonic string in ten space-time dimen-
sions coupled to the 2-form gauge field B, of type IIA supergravity. Note that the gauge
fields C,p and A, and the scalar field ® appear to have decoupled. What actually happens

is that they survive in the fermionic sector [54]. Equation 5.43 can be derived from the action
1 . 1 ..
Si=1T /d2§ <—2\/—'y ¥ 0 X10; XY g + QGZjaiX“E?jX”BW> ) (5.44)

which is no other than the bosonic sector of the superstring action coupled to a type IIA
supergravity background [32].

We have worked in the limit that the radius R of the compactified dimension tends to
zero and only the massless modes survive. At the same time, the membrane tension T5 tends

to infinity, so that the string tension 77 = 27 R T5 remains finite.
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The vielbein formalism

Spinor fields in d-dimensional Minkowski space-time appear as representations of the double
cover of the Lorentz group, Spin(1,d — 1). The standard formalism of General Relativity does
not allow the introduction of fermions, since the group of general coordinate transformations
GL(d,R) does not admit spinorial representations. To circumvent this problem, one formulates
General Relativity in terms of wielbeins [56].

Equivalence principle states that the tangent vector space T,M at a point p of a d-
dimensional space-time manifold M with metric g, admits an orthonormal basis {é,} of d

vectors

9(éa,€8) =Nap , (A1)

where 1,5 is the Minkowski metric. Early letters of the Greek alphabet («,f3,7,...) are
used for tangent-space indices and late letters of the Greek alphabet (u,v, p,...) are used for

base-space indices. The orthonormal basis {é,} is related to the coordinate basis {é,} as
éa =€'q €y, ety € GL(d,R). (A.2)

The inverse e, of the matrix e, is the vielbein, which defines the one-form e® = e*,dx".

The vielbein is determined up to a local Lorentz transformation
e — A% eﬁu, A%3€S0(1,d-1), (A.3)

that reduces its independent components from d? to %d(d + 1), the number of independent

components of the metric.

44
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The vielbeins and their inverses allow the transition between the tangent vector space and
the base manifold; the metric g,, of the base manifold is related to the Minkowski metric 7,3

of the tangent space as
Juv = eau eﬁV Nap and Nap = e euﬁ Iuv - (A4)
The covariant derivative for the local Lorentz transformations is
|
D,=0,+ JWu Mg, (A.5)

where M,g = — Mg, are the generators of the Lorentz group and w#aﬁ is the spin connection,
acting as the gauge field for the local Spin(1,d — 1) group. The spin connection can be
expressed in terms of the vielbein upon imposing the torsion free condition T}, = Dj,e*,; = 0.

The result is

W = e, (Qaﬁv — QP _ anﬁ) (A.6)

where

1 » 5
Qopy = i(e”ae g—elge a)@,,ew. (A.7)

Spinors are introduced as representations of the local Spin(1,d — 1) group. The covariant
derivative of a spinor V is

1
D,V =9,V + iwuaﬁsagw : (A.8)

where S, = i[Fa, I'] are the generators of the Lorentz group in the spinorial representation.
In analogy with a Yang-Mills theory, the field strength (or curvature form) of the spin

connection is defined as
af _ af _ af ay,, B _  , ay B
R, = 0wy D™ + wy ™ Wiy —wy T wp (A.9)
The curvature form is related to the Riemann curvature tensor R*,.) via the expression

R“VH)\ = e“a Eﬁy RHAOZB. (AlO)
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Clifford algebra and spinors in eleven

dimensions

The Clifford algebra in eleven space-time dimensions is generated by gamma matrices I',

which satisfy the relation

T} =000+ 0,0, = 2n,,, v =0,...,10 (B.1)
where 7 is the metric of flat space-time with signature (—,+,...,+). There are two inequiv-
alent irreducible representations of the Clifford algebra and both have dimension 255 = 32.

They differ according to whether the product T'°T'' ... T''0 equals 1 or —1.

The complex conjugate I'), and the transpose FZ of the original representation I';,, form
equivalent representations of the Clifford algebra B.1. Consequently, there exists a matrix B
such that

I'* =Br,B™" (B.2)

and a matrix C, called the charge conjugation matrix, such that
Il, = —CT,C~". (B.3)

In eleven dimensions B satisfies B*B = 1 and can be set equal to the identity 1, while
C satisfies C'* = —(C. Accordingly, gamma matrices obey the reality condition I, =Ty
Furthermore, the representation I';, can be chosen to be unitary i.e. I‘#FL =1. Since I',I', =

Ny We conclude that

Il =T, (B.4)

46
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or equivalently

I'f, =TTy (B.5)

Combining B.2, B.3, B.5 and B = 1 yields the expression C' = T.
The relation B*B = 1 allows the existence of Majorana spinors, defined as spinors
satisfying
" = By, (B.6)

Majorana spinors are the minimal spinors in eleven dimensions and consist of thirty-two real
components.
A detailed discussion on Clifford algebras and spinors in various space-time dimensions

can be found in references [14] and [28].
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