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1 Introduction

Interestingly, the entanglement of qubits in quantum infromation and the entropy of
supersymmetric black holes in string theory uses the same mathematics, Cayley’s hyper-
determinant and Cartan’s invariant. There are also surprising parallels in the way they
can be classified: e.g. wrapping cycles corresponds to three-qubit basis vectors [1].

In this work, we will discuss Cayley’s hyperdeterminant from a mathematical point
of view, followed by some physical applications. We shall then express the entropy of
a 24-charge N = 4 black hole (or the equivalent quantum entanglement problem) as a
quartic polynomial of imaginary quaternions. We shall then discuss attempts to solve a
more complicated 56-charge black hole problem, using imaginary octonions instead.

2 Cayley’s Hyperdeterminant

2.1 Mathematical Background

The hyperdeterminant generalises the concept of the determinant to hypermatrices: mul-
tidimensional arrays of numbers (from any field) with dimension greater than two. It is
a polynomial composed of the entries of the hypermatrix, which acts as a discriminant
for the multilinear map represented by the hypermatrix (see [2] for full details). There
is no known way to explicitly construct a hyperdeterminant given any hypermatrix of
arbitrary dimensions. Fortunately, for our purposes we only need the hyperdeterminant
of a 2 x 2 x 2 hypermatrix, and for this we do have an explicit form, discovered by Arthur
Cayley in 1845 [3].

Writing our 2 x 2 x 2 hypermatrix as aspc, with A, B, C taking values of either 0 or
1, Cayley’s hyperdeterminant is defined as

Deta = —16141A3€A2A4€BIB2€BBB4€CIC2ECSC4GA13101 A AyByCyAA3B3C3A A, B,Cy (1)

where we have used the Einstein summation convention, 4'42is the two-dimensional
Levi-Civita symbol with € = 1, and naturally aa,5,c, = aapc for i =1, 2, 3, 4. These
conventions will be followed throughout the paper. Explicitly it is

Deta = afyaiy + ago1310 + 510050 + 65110300
—2(a000a001a110a111 + @000@01001014111
+0a000@011@1000111 + G001A010A101@110
+a001@011@1000110 + @001A010G1000111
+4(a0000011 G101 @110 + @001001001000111 )-

The required discriminant property is satisfied by the fact that the hyperdeterminant
vanishes iff the following set of simultaneous equations in six unknowns x4, y?, 2“has a



non-zero solution:
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A property of the hyperdeterminant that will be useful later is that it is invariant
under a cyclic exchange of A, B, C, also known as a triality. That is, if one performs this
interchange on either gA14sgA2A4cBiBagBsBacCiC2CsCu o1 gy b 0 @A, ByCY A AL BsCs QAL BLC>
Det a remains unchanged. An elegant way to prove this is given in [1]: define three 2 x 2
matrices

313250102

v (a)aa, = € QA1 B CyAA; By Co
— C102 A1 A

Y (a)BlBQ = et e QG'AlBlclaAQBQCQ
3 — A1As _B1B

Y (a)CICZ = gM et QCLA]BlClaAzBQCQ.

Using the determinant formula
L Ayas_Asn,
det A = 55 € AA, Ay QA5 A,

we have
dety'(a) = —Det a.

Now observe that det v*(a) can be obtained from det v'(a) by performing the following
replacements on the 4 terms:
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Similarly, det v3(a) is obtained by performing the remaining cyclic interchange. However,
by manual calculation we can show

detv'(a) = det v*(a) = det 7> (a)

and we have proved the triality. Note that this proof also demonstrates how the hyper-
determinant is in some sense the determinant of a determinant.



2.2 Physical Background

Here we shall briefly describe the physical applications of the hyperdeterminant to entan-
glement in quantum information and black hole entropy in the context of string theory.
The results described are obtained from [1].

2.2.1 Qubit Entanglement

A qubit is a two-state quantum system, with basis state vectors |0) and |1). Any state
vector in this system can be expressed as a linear combination of these basis vectors:|

[¥) = «|0) + 3[1)

where «, 3 € C. If we impose the normalisation |a|® + |3]> = 1, then we can interpret
the coefficients as probability amplitudes of observing the corresponding basis states in
the usual way.

It turns out that the hyperdeterminant is a convenient way to give the measure of
tripartite entanglement of three qubits. Consider a three-qubit system whose state vectors
are a linear composition of eight basis states:

|1/1> = AQABC ‘ABC>

where |000) = [0) ® |0) ® |0) etc. and A, B, C = 0, 1 as usual. Then Deta gives the
tripartite entanglement of three qubits.[1] The problems detailed in 3.1 and 4.1 can be
viewed as the tripartite entanglement of seven qubits.

2.2.2 Black Hole Entropy

In certain cases, supersymmetric black hole entropy as calculated in string theory is given
by Cartan’s invariant, of which Cayley’s hyperdeterminant is a key component. The 24
real numbers of the problem in 3.1 can be viewed as 24 black hole charges, following which
the invariant (2) becomes the entropy of a 24-charge black hole in N = 4 supersymmetry.
Similarly, (14) is the entropy of a 56-charge black hole in N = 8 supersymmetry. [1]

3 Cartan over the Quaternions

3.1 Setup

We have 24 real numbers, labelled agp, egra and ggac, where A, B,...G are either 0 or
1. Let

I = a* +e* 4+ g* + 2(a*e* + 2g* + g*ad?) (2)

>



with the individual terms defined as

= ;€A1Ag€B1B2€D1D3€A3A4€BsB4€D2D4 A, By Dy O Ay By Do @Ay B3 D3 0A, ByDs (3)
64 = ;€E1E2€F1F2€A1A3€E3E4€F3F4€A2A4€E1F1A16E2F2A26E3F3A36E4F4A4
g4 = ;8G1G28A1A2 601 CBEG3G48A3A480204901A101 GG AsCr9Gs AsCs G4 ACy
CL262 = ;EAlA3€BlB25D1D2€E3E45F3F4€A2A4CLA131D1CLAQBQDQ€E3F3A36E4F4A4 (4)
6292 = ;€E1E2€F1F2€A1A3€G3G4€A2A4€CSC4€E1F1A1 € Fy Fy Mg §Gis AsCs §G 4 AsCl
926L2 = 1€G1G2€A1A38C102€A2A4SBsB4€D3D4gG1A101gG2A202aASBSD3aA4B4D4.

Note that ais the negative of Cayley’s hyperdeterminant 1, treating aszp as a 2 X 2 x 2
hypermatrix. Similar remarks obviously apply to e*and g¢*. As mentioned in 2.1, the
triality of the hyperdeterminant means it does not matter which index is contracted with
gtz gA244 pather than e142¢4344 [} is Cartan’s quartic invariant in SL(2) x SO(6,6).
[1] The somewhat unusual labelling will be explained in 4.1.

Our objective is to express (2) as a linear combination of products of eight imaginary
quaternions, taken four at a time, similar to (3) and (4). Since each imaginary quaternion
can be viewed as a real vector space of dimension three, in some sense both sides have the
same number of degrees of freedom (8 x 3 = 24) and we can be optimistic about success.

We will also label these quaternions via the binary system (capital Roman letters),
and write them as

TABC — fEichei (5)

where e; are the standard imaginary quaternion basis, satisfying
€;6; = _5ij -+ 5z'jkek (6)

with 4,7,k taking values of 1,2 3.

3.2 Solution

It turns out one can directly assign the 24 a,pp of (2) to the 24 quaternion components
of (5) via

1 _

Tapc = QaABC

2 _

Tpape = €BCA (7)
3 _

Tapc = YcAB



and

I, = }8A1A3€A2A4€B1B2

B3By C1C2
£
4

C3Cy i J k l . ) )
€ xAlBlclxAngngAngngA4B4C4 (ezejekel + ezekele.])'

(8)

I, =1, (9)

then we have successfully defined this invariant over the imaginary quaternions.

3

Thus if we can prove that

3.3 Proof

Our proof will be slightly different from that found in [1]. Using the quaternion mul-
tiplication properties from (6) (note that quaternion multiplication is associative), we
have

eiejeper = (—0ij + €ijmem)(—0k + Exinen)

= 5ij5kl - 5ij8klnen - 5kl5ijm6m + Eijmgkln<_5mn + Emnpep)

5@' '(5kl - 52 i€kin€n — 5kl€i im€Em — EijmEkim + EiimEkin€pmnCp-
J J J J J P 14

Substituting the identity
EijmEklm = 5ik5jl - 5il5jk

yields

eiejere; = 00k — Oik0ji + 04105 + €1 — €jk1€i — 0ijEkimECm — OkIEijmEm -
Cycling the j, k, | indices gives

eiepere; = 0,051 — 0i10;k + 0450k + €itj€r — €kij€i — OikEljmCm — 0ji€ikmEm
and we have

eiejeper+eenere; = 20,0k —2€ e +iriej +Eijer — (05 kim + Ori€ijm + Oik€iim + 01€ikm ) €m
(10)
Using only the first term, let

1 , A
_ - A1A3 A2A4 B1B2 _B3By C1Co 0304 (3 J k l .
]3 - 46 € € € € 3 xAlBlClxAQBQCQxA3B3C3$A4B4C4 (25U5kl)

1 . .
_ T A1A3 _AsAy _B1B> _B3By C1Cs .C3Cy .0 i k k
= 25 € € € € € L A1B101% Ay BoCo¥ A3 BsC3 ¥ Ay BLCy

A1A3 A2A4gBlBQ B3B4€C1CQ C3C4(

1
= —¢ € €

2
+€B,01A1€ByCa A€ B3C3A3€ByCuAy T 9C1 Ay BLYC2 A2 Bo9C3 A3 B3 9O 4 Ay By

€ QA1B1C1AA;B,C2 0 A3 B3C3 @A, B,Cy

+2(aA, B,01 G Ay ByCrEBsCs As€BuCu A, T €ByCy AL € ByCoAs JCsAsBs JC4 AL By

T9C1 A1 B19C2 Ay Bo @ A3 B3C G’A4B4C4>>

7



where we have used the definitions in (7) and the fact that gA14sgA2442B1B2B3 B4 cC1C2 030
is invariant under the interchange of 1 < 2, 3 < 4. By exploiting the triality of Cayley’s
hyperdeterminant from 2.1, we can see that the first three terms are a?, e?and g*from (3),
and the last three terms are ae, eg, and ga from (4). Thus we have

Il :Ig. (11)

Hence proving (9) has been reduced to proving that the remaining eight terms in (10)
vanish under contraction with eA14sgA24agBi1B2gBsBagOiCogCsCagi, o oy oo ok o oaly ooy
We will do so by exploiting the symmetries in this polynomial. For ease of expression let

ijkl _ _A1As_AsA, _B1By _B3By _C1Ca_C3Cy i j k !
JUF = ¢ € € € € € LAy B1C1 T A3ByCy T A3 BsCs L A By Cy -

A1A3€A2A4€B132 gB3BaC1Ca o

By inspection one can see that e ©3C g invariant under the

following interchanges:

1 < 2,34
1 <« 3,24
1 < 4,2 3.

As the A; are dummy indices, this implies J¥* is invariant under:

1 ) kel
T — k,jel

1 «— 1, ]k

Now we can show that the four terms of type €jie; cancel each other. Observe that
Eikl€j — €;k1€; 1S antisymmetric under the interchanges ¢ <» j, k «» [, which implies that it
will vanish under contraction with J¥*. This can be verified explicitly:

A1A3€A2A48B1B2€B3B450102€C3C4xi

J k l . o~ .
€ A1B1Cq xAQBQCQxA3Bgc3xA4B4C4 (Elkle] 6]1‘3[62)

A1A3 ~As Ay _B1Bs ~B3By ~C105 .C3Cy .k ! 7 J ) 7 . .
€ i€ € ‘e € 4xA3B3ngA4B4C4(mAlBlcleQBQCQ xAlBlclegBQCQ)glkleﬂ

gB1B2B3By cC1C2 O30y (5A1A3€A2A4 A1A45A2A3)

= £

— &
B1B2 o B3 By oC1C2 O30, <€A1A3€A2A4 _ 5A1A3€A2A4)

i J k l
T A, B1C1 VA ByCo T A3 B35 A, B, EiKIEG

. i J k l o
N c L A1 B1C1 ¥ Ay ByCy U A3 BsCs L Ay By Cy ikl €

= 0.

Similarly, e;er — €;me; is antisymmetric under ¢ <= k, 7 < [, and its contribution also
vanishes. Thus we have

T (cime; + eqjen — 2ejue;) = 0. (12)
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Next we will consider the terms of type 6;jcxmen. Here each term will individually
vanish: 0;;€xmen and 0x€;jmen, are both antisymmetric under ¢ < j, k < [, and 0jiixmem
and d;x€1jmem are both antisymmetric under ¢ <= k, j <= [. Thus we have

Jijkl(aijgklm + 5kl€ijm + 6ik5ljm -+ 5jl€ikm)em = 0. (13)
Combining (11) with (12) and (13) gives us
L =1

and we have proved the desired equality.

4 Cartan over the Octonions

4.1 Setup

Having successfully defined Cartan’s invariant over eight imaginary quaternions, we will
now tackle a more difficult problem. We will now construct a similar polynomial from 56
real numbers, and endeavour to express as a linear combination of products, taken four
at a time, of eight imaginary octonions. An imaginary octonion can be viewed as a real
vector space of dimension seven, so using the same degree of freedom argument from 3.1
(8 x 7=56), we can again be optimistic about success.
Similar to 3.1, we will label the 56 real numbers as asgp, bpck, ccpr, dpea, €era, fras, 9aac

with A, B, ...G either 0 or 1. Our polynomial has form

I, = ad*+bt+ctrd et gt (14)
+2(a®® + a*c® + a*d® + a*e® + a*f* + a®g® + b’ + V*d® + b*e + b f* + b g°
R (A S et M ey e N edy S R AT cal N o el Y oy R ROl L NEE L N
+8(abce + bedf + cdeg + defa+ efgb+ fgac+ gabd).

Terms of the form a* are defined exactly as they were in (3), the negative of Cayley’s
hyperdeterminant. Terms of the form a?)? are defined similar to (4), except that one
must take care to contract the shared A, B, ...G index with the cross e4143g4244 term,
e.g.:
1
a’b? = 55‘41‘42531BSngDQEBQB%%C‘*EE‘"’E“CLAIBIDIaA232D263303E3b34C4E4.

Note that each pair of a, b etc. has exactly one shared index, and all possible pairs are
listed in (14). The new terms of form abce are defined as

A1A4€Ble €CIC2€D1D3 E2E'4€

_ s,
abce = ¢ £ a4, B, Dy 0By 0y ELCOs D3 F CE Py A, (15)



i.e. one contracts over each shared index. Note that there are always six different pairs of
shared indices in each abce term, and each of these seven terms excludes a different index
(there are seven indices).

I, is Cartan’s quartic invariant in Er(7), of which SL(2) x SO(6,6) is a maximal
subgroup.[1] Note that we chose aapp, egraand ggac to formulate the simpler problem
in 3.1; this is related to using three imaginary octonions to construct the algebra of the
imaginary quaternions.

As stated earlier, we now wish to define eight imaginary octonions in terms of the
aapp etc. and express Iy as a quartic polynomial of these octonions.

4.1.1 The Octonions

This will be a brief description of the octonions . They are an eight-dimensional normed
division algebra over the real numbers, discovered by John T. Graves in 1843 and inde-
pendently by Arthur Cayley in 1845 [4]. Writing their basis as e, €1, ...e7, g = 1 and
the remaining octonions satisfy the following multiplication table:

| e [ea s [eafoes [ e[ e |
€1 -1 €4 €7 —€9 € —€5 | —€3
€y | —€4 -1 €5 €1 —€3 €7 —E€g
€3 | —€7 | —€5 -1 €6 €9 —€4 €1
€4 €9 —€1 | —€g -1 €7 €3 —E€5
es | —eg | e3 | —ea | —er | =1 | e ey4
eg | es | —er | es | —e3 | —ep | —1 e
er | e3 eg | —e1 | es | —eq | —e9 | —1

Table 1: Octonion multiplication table

where each entry is the product of the corresponding basis octonion in the first column
with that in the first row, in that order. Note that

o 7 =—1.

[ €i€; = —€4€; if 4 7é ]

o If e;e; = eg, €ir1€j41 = ep41 under addition modulo seven.
A more instructive way to write the multiplication table is the Fano plane, found in [4]
and [1]. This demonstrates how there are seven ways to choose three imaginary octonions
which from a subalgebra isomorphic to the imaginary quaternions. The octonions can

also be constructed from the quaternions via the Cayley-Dickson construction [4].
Key properties of the octonions a, b, ¢ € O are as follows:

10



e normed: it has norm |.| : @ — R in the vector space sense, satisfying |ab| = |al|b].

e division algebra: if b # 0 then there exists exactly one x € O and exactly one y € O
such that a = bx and a = yb.

e non-commutative: ab # ba, like the quaternions.
e non-associative: (ab)c = a(bc).

e alternative: a(ab) = (aa)b and (ba)a = b(aa).

4.2 Unsatisfactory solution

One can construct 56 octonions, labelled z% - with i = 1,2, ..7 and A, B, C = 0, 1
from our 56 real numbers a4gp etc. via

1 —
xABC = aaBce€l

2 _
xABC = bABcel

and so on. e; are now basis octonions defined by the dual Fano plane, described in [1],
and so the multiplication table will be different from that in 4.1.1.
Then define a polynomial very similar to (14):

7
I = Y @)+ Y (2)%(2)) —8(a'a?r’2® + 2?22’ + ...+ 2Tal )
=1 all pairs
where (z°)4, (29)%(27)? and z'z/2*z! are defined exactly the same way as in (3), (4) and
(15). Note that double counting accounts for the missing factor of two on the (z%)?(z7)?
terms, and the new minus sign on the z’z/z¥z! terms.

The order of octonion multiplication makes no difference here. By inspection all the
octonions will multiply out to 1 or -1, and by construction we have

[4 - [5.

This, however, is an inferior solution, since we have defined 56 imaginary octonions, rather
than 8. Compare this to 3.3, where by exploiting symmetries we defined I; in terms of 8
imaginary quaternions rather than 24.

4.3 Outlook

This problem remains unsolved, largely due to the z’2z/2*2! terms. Note that due to the
non-associativity of octonions, there are five ways to multiply a e;ejere; term.
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