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Abstract

In this study the key features and consequences of the asymptotic safety scenario are

highlighted as a possible means to renormalising quantum gravity in four dimensions. The

Wilsonian renormalisation scheme is used to deal with the short distance fluctuations in the

canonical field φ(q), where the pathological non-renormalisability of Einstein-Hilbert theory

arises. The resulting renormalisation group flow equation analyses the implications of a non-

trivial fixed point in the ultraviolet. It also links the macroscopic Einstein-Hilbert theory

at large distances with a microscopic action at short distances. Though the renormalisation

group equation is exact, it is solved numerically. Furthermore, a given approxiamtion scheme

can be optimised by an appropriate choice of regulator, a term added to the coarse-grained

effective action that acts as a momentum cut-off. Finally, the nature of the critical exponents

are investigated at the Gaussian and the interacting fixed point with regards to finding an

optimised trajectory connecting the infrared and ultraviolet physics.
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1 INTRODUCTION

1 Introduction

In reaching a unified theory of nature, one important challenge that remains in physics is to

overcome the problem of merging gravity with quantum physics satisfactorily. Ultimately, the

first step in the direction of a true Grand Unified Theory would be the union of quantum field

theories, such as QED [1] and classical general relativity. Presently, the quantum field theoretic

formalism in the form of the quantum gravity [2] is one such means of achieving such a union.

However, the problem is that quantum gravity as a field theory suffers from pathological non-

renormalisability [3]. In field theories such as QED, loop expansions in the Green’s function give

rise to divergent terms which may be regulated by introducing a physical cut-off. Adding a cut-

off amounts to compensating for screening effects of self-energy propagation in the ultraviolet.

This is could be due to having no a priori knowledge of the nature of interactions occuring

at high energy. Another means is to compensate the Lagrangian directly by introducing extra

terms countaining interactions that ought to cancel out the divergences at high energy. Theories

that exhibit compliance to these rules are said to be perturbatively renormalisable, good

examples being QED and non-abelian gauge theories like QCD [2]. Quantum gravity does not

respond well to such means of renormalisation, however, it is possible there exists a scheme by

which it may be renormalised non-perturbatively. This was suggested by S. Weinberg [2] early

on as an asymptotic safety scenario, in a similar but distinct manner in which non-abelian

gauge theories like QCD are asymptotically free.

The area of work covered in this article follows from studies done by [4], [5] [6], [7] and [8].

The studies focus on an aspect of asymptotic safety that involves stable fixed points under

renormalisation scaling in four dimensions. Extensive discussions on asymptotic safety involve

2+ ε dimension expansion [9, 10], higher derivative expansion in terms of the Lagrangian [11],4+

higher dimensional analysis and dimensional reduction [8, 12]. By appropriate choice of action

one can study the evolution of fixed points using exact renormalisation group equations [13, 14,

15, 16, 17, 11, 18, 19, 20], there are also intimate ties to thermal and statistical many-body

physics [21, 22, 23], insinuated by analogies between the partition function and functional path

integral [2.2]. There also exists a physical analogy between universality classes [21] and the onset
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1 INTRODUCTION

of quantum fluctuations at a sub-Planckian level. To corroborate this fact, we treat that classical

general relativistic physics as a low energy effective theory of some microscopic bare theory, so

that treatment by an appropriate choice of renormalisation group retrieves the fundamental

action which describes low energy physics, albeit a truncated Einstein-Hilbert action [15]. The

microscopic theory used here shall be described by the coarse grained effecive action Γk[φ], while

the effective action will be treated in the R truncation, that is, only terms first order in the

Ricci scalar are considered in the action. By carefully restricting transformations under the

renormalisation group, it is not unreasonable to assume scale dependence interpolates between

these two limits, and that this makes quantum gravity quasi-renormalisable in the very least.
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2 RENORMALISATION GROUP

2 Renormalisation Group

2.1 Perturbative renormalisation

Dimensionally, it is clear that quantum gravity in 3+1 dimensions with Newton’s constant GN ,

will have canonical dimensions of [GN ] = −2 due to the units GN = 6.7 × 10−39GeV −2. The

fundamental problem with quantum Einstein gravity (QEG) emanates from loop divergences.

As it turns out, in its first order formalism QEG is not perturbatively renormalisable [24]. In this

section renormalised perturbation theory is illustrated for the case of ‘phi to the fourth theory

λ
4!φ

4’ in QED†. Ideally one wants to calculate loop diagram integrals which are derived from the

expansion of the connected n-point Green’s function Gn(p1, p2, ..., pn). However, for theories like

λφ
4

4! , and indeed quantum gravity, it is here that divergences are manifested. This pathological

behaviour is a result of integrating over undefined momenta p in the loop diagrams, where∫
ddp
pn ∼

∫
pd−1

pn dp yields a logarithmic divergence for d = n, and an order ∼ pd−n divergence

when d > n. This issue can be resolved by regulating the integral with a cut-off Λ, which imposes

a finite value on Gn(p1, p2, ..., pn). For the purposes of this argument it is easier to work with

the two-point correlator Gn(p1, p2), which is written as a power series in Γ2(p2)‡, its one particle

irreducible (1PI) correlator

Gn(p1, p2) = finite piece×
∑
n

(
1

p2 −m2
0

.Γ2(p2)

)n
∼ 1

p2 −m2
0 + Γ2(p2)

(2.1)

The 1PI correlator Γ2(p2) is regulated (i.e. it depends on Λ and is finite), which ultimately

leads to a finite reduced correlator Gn(p1, p2). However, the pole of the propagator Gn is shifted

due to the presence of Γ2(p2) in the denominator. Any observable mass will correspond to the

new pole, where p2 − m2
0 + Γ2(p2) = 0. As a result, the renormalised mass mr is defined in

terms of m0 and Γ2(p2), where mr = m0 + Γ2(p2). On the other hand, by relating experimental

scattering amplitudes to appropriate 1PI funcions, an expression for the renormalised coupling

λr may be obtained. Finally, by series expanding Gn(p1, p2) in powers of Γ2(p2) around k2 = m2
r,

†The term λ is the interaction coupling constant in bosonic quantum field theory. Later, λ will also be used
to counter-balance matter attraction in the form of dimensional cosmological constant [2]
‡The 1PI correlators represent Feynman diagrams that cannot be split into products of propagators. By

ensuring that Γ2(k2) is regulated, any Green’s function that decomposes into products containing it can be taken
for granted as being regulated.
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2.1 Perturbative renormalisation 2 RENORMALISATION GROUP

the n-point correlator can re-expressed as,

Gn(p1, p2) = constant× Zφ
p2 −m2

r

+O(k2) (2.2)

Due to the renormalisation factor Zφ in the numerator, the residue of the pole in Gn is not one.

As a consequence, the self-scattering of the field must be ensured, in other words,

〈φ|Gn(p1, p2)|φ〉 = 1. Thus, the canonical field rescaling is introduced for both φ and Gn(p1, p2)

whereby φ =
√
Zφ φr preserves normalisation. In short, the terms mr, λr and Zφ are obtained

from the shifted residue in Gn(p1, p2), experimental scattering amplitudes and field rescaling

respectively. The original bare mass term m0 in Gn, also appears in the Lagrangian, along with

the canonical field φ and bare the coupling λ0,

L =
1

2
Zφ∂µφr∂

µφr +
1

2
Zφm

2
0φ

2
r + Z2

φλ0
φ4

4!
. (2.3)

Unfortunately, both bare and renormalised terms now appear in the Lagrangian. Ideally, we

would want the Lagrangian to describe a theroy in terms of only renormalised parameters,

so that those parameters correspond to experimentally observable quantities. This problem is

resolved by treating the terms Zφ, Zφm
2
0 and Z2

φλ0 perturbatively such that, Zφ = 1 + δZφ,

Zφm
2
0 = m2

r + δm and Z2
φλ0 = λr + δλ. Substituting into equation [2.3], splits the Lagrangian

into two parts, its renormalised part and its counterterms,

L =
1

2
∂µφr∂

µφr +
1

2
m2
rφ

2
r + λr

φ4

4!
+

1

2
δZφ∂µφr∂

µφr +
1

2
δmφ2

r + δλ
φ4

4!︸ ︷︷ ︸
Lcounter

(2.4)

The absorption of divergences coming from the bare theory into new counterterms in the La-

grangian is referred to as renormalised perturbation theory. These counterterms, which can

be treated as interactions, give rise to new Feynman diagrams in the loop expansion. By virtue

of this, gravity is renormalisable in only a very limited sense, that is, when the gravitational

Lagrangian is linear in the Ricci curvature R, the theory is finite in the first order of the loop

expansion [24]. However, at second order in the loop expansion the theory is already divergent.

Furthermore, when coupled to matter fields the theory is entirely pathological, producing di-
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2.2 Wilsonian Renormalisation 2 RENORMALISATION GROUP

vergences immediately at first order in the loop expansion. Adding terms [3] quadratic in the

Ricci scalar R2 and the Weyl tensor W (RµνR
µν , R2), absorbs the first order loop diveregence in

the presence of arbitrary matter fields. The downside being the inclusion of terms quadratic in

the metric gµν [25], which correspond to inpertinent degrees of freedom. Thus, it would seem

reasonable to think that if quantum gravity is non-renormalisable perturbatively, the challenge

remains to determine if it is non-perturbatively renormalisable.

2.2 Wilsonian Renormalisation

Strictly speaking, there are two cut-offs employed in the Wilsonian renormalisation scheme

(WRS). The physical cut-off Λ, which is used to isolate any divergences occuring in the ultraviolet

φ(q ∼ Λ), and the coarse graining k, which is used to supress fields with momenta φ(q < k).

The coarse-graining is used to define a unique point at which relatively large oscillations in φ(q)

first occur, and it is usually in the vicinity of the physical cut-off. In addition, there are unique

physical systems whereby it is useful to think of the cut-off in terms of space-like separations and

not energies. This can be seen through an anology between quantum field theory and statistical

thermodynamics. In relativistic field theory, the reduced Green’s function Gn can be constructed

by taking successive derivatives of the generating functional Z[J ]. The actual integral is in terms

of the Fourier transformed φ(q), since Λ is wanted in terms of energy not distance, therefore,

Z[J ] =

∫
Λ

Dφ ei
∫

[L+Jφ] ddx . (2.5)

When defining a momentum range for Z[J ] in Minkowski space, the statement k < Λ may lead to

ambiguity for on-shell momenta. This ambiguity can be resolved by performing a Wick rotation

on the path integral. Originally, Z[J ] is written in terms of a complex action in Minkowski space,

but it can be translated to Euclidean space by employing a complex time variable t → −iτ .

The Wick rotation relates a dynamic n − 1 dimensional field theory in real time, to a static n

dimensional statistical mechanical problem in complex time, by trading one time-like variable

for a space-like one. In Euclidean space,

ZΛ =

∫
Λ

Dφ e−S[φ] (2.6)
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2.2 Wilsonian Renormalisation 2 RENORMALISATION GROUP

which is reminescent of a four dimensional partition function of the form Z ∼
∫
e−βH dE. For

example, in condensed matter systems the physical cut-off is the atomic spacing, so there can

be no spin excitations between atoms. This would be the analogue for Λ in a field theoretical

sense, though in such a case the cut-off would be in units of distance 1/Λ not energy. In a com-

pletely uncorrelated thermodynamic system, like a demagnetised ferromagnet, all fluctuations

are of the order of a few atomic spacings. However, close to criticality Tc (the temperature at

which the material becomes magnetised), the system may exhibit corrleations well beyond the

atomic spacing 1/Λ. For the modified Einstein-Hilbert action, k plays the role of such criticality.

As another example, the scattering between phonons and electrons in a superconductor leads

to an effective attraction between pairs of electrons. When the superconductor’s temperature

falls below Tc [21], they effective attraction results in the formation of bound Cooper pairs. The

wavefunction order parameter ψ(x) represents a measure of the superconducting phase. It ex-

hibits the behaviour of non-locality as T → Tc. Eventually, ψ(x) extends uniformly throughout

the material, except for a small region at the boundaries (called the penetration depth). This

non-local behaviour of ψ(x), over a narrow band of temperature close to Tc, would be analogous

to the onset ultraviolet divergences in WRS.

Having defined the Wick rotated functional in Euclidean space, a suitable change of variable

φ(q)→ φ(q) + φk(q) allows ZΛ[J ] to be split into two parts giving,

ZΛ =

∫
0<q<k

Dφ
∫
k<q<Λ

Dφk e−S[φ+φk] . (2.7)

The momentum dependence of the new variables φ(q) and φk(q) is as follows:

φ(q) =

 φ(q), when q < k

0, when q > k

φk(q) =

 0, when q < k

φk(q), when q > k

The pathological nature of φk can be isolated by perturbative means, allowing for the expansion

of the exponential in ZΛ in powers of φk. The scale dependence, otherwise mediated by the

modes φk(q), and preserved in the evaluation of the integral over ∼
∫
Dφk is now contained
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2.2 Wilsonian Renormalisation 2 RENORMALISATION GROUP

Figure 1: Illustration showing Z0<q<Λ → Zeff as a function of momentum scale. The initial action S is
evaluated up to k with the domain k < q < Λ added on as a perturbation (left). As a result,
the new action describes a theory only up to k. The resulting transformations ‘squeezes’
(right) the length-scale and ‘stretches’ the momentum range to match a theory describing
the entire domain S′eff .
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2.2 Wilsonian Renormalisation 2 RENORMALISATION GROUP

in ∆Sk. Therefore, the remainder of the functional is written in terms of an effecvtive action

Seff [φ] = S[φ] + ∆Sk,

Zk =

∫
0<q<k

Dφ e−(S[φ]+∆Sk) =

∫
k

Dφ e−Seff [φ]. (2.8)

The UV divergences have been absorbed into couplings defined in a new effective Lagrangian

Seff =
∫
Leff d

dx, where

Leff = Leff [q, φ(q), φk(q), C] (2.9)

and C represents a generic coupling the Lagrangian. In the expression for Seff , the cut-off ∆Sk is

used as a regulator in the truncated Einstein-Hilbert action later on in section [4.1]. The effective

action is what determines the behaviour of fields at arbitrarily low energies in the EH formalism.

However, by comparing equations [2.6] and [2.8], it is clear that all fields and couplings must be

re-parametrised in order to offset the scale difference between the generating functional Zq=Λ and

the coarse-grained functional Zq=k. This can be done through a change of variable q′ → qΛ
k , a

re-scaling φ′ → f( kΛ , δZ)φ and a re-coupling C ′ = g( kΛ , δZ)(C+δC). The term δZφ stands for the

field renomalisation, δC comes from loop contributions in the expansion of e−∆Sk and k
Λ = b is

the dimensionless scale dependence. Strictly speaking, it is the function f(b, δZ) that acts as the

true field renormalization for φ, while g(b, δC) is the transformation law for a generic coupling C.

This transformation law is what is referred to as the renormalisation group tranformation.

The strength of this approach lies in the ability to determine infinitesimal transformations of

the coupling, which correspond to integrating over thin momentum shells. This gives rise to a

differential equation of the form

dC

d ln b
= f(C) (2.10)

The flow equation underlines the scale-dependent behaviours (or family of trajectories) of cou-

plings in the Lagrangian, and leads to the Callan-Symanzik equation (section 3.4).
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3 Quantum Einstein Gravity

3.1 Asymptotic safety

Singularities arising from sub-Planckian quantum fluctuations of the canonical field φ(q), are

systematically absorbed via iterative integrations of the path integral functional Z[J ]. Each time

the integral over the momentum shell k < q < Λ is carried out, the couplings in the original

action or Lagrangian can be redefined in terms of a new effective action Seff [φ] or new effective

Lagrangian Leff . The momentum cut-off Λ is mandatory, without it divergences will occur

due to contributions from field modes with momenta approaching the ultraviolet limit can be

taken to infinity. Moreover, it defines an energy-scale above which the physics described by the

original action is no longer reliable, albeit due to self-energy or screening effects [1] occuring in the

ultraviolet. However, some theories like QCD possess aymptotic freedom, which means that there

need not be a cut-off imposed on the upper limit of integration, in other words Λ→∞ (though

QCD is asymptotically free in the infrared). The reason for this is that the flow or trajectory for

such theories approaches a stable point (QED is believed to possess one such stability point in the

ultraviolet). By the same token, the aim is to remove the cut-off in the truncated EH formalism

altogether by taking Λ → ∞. This can be made possible only if there exists a fixed point in

the ultraviolet limit. A fixed point represents the invariance of a theory under renormalisation

group transformations. The universal Gaussian fixed point is a simple fixed point corresponding

to an uncoupled kinetic theory with L ∼ ∂µφ∂
µφ. Given, L ∼ ∂µφ∂

µφ + δm2φ2 + · · · where

δm� 1, an arbitrary coupling constant will either converge or diverge away from the fixed point

depending on whether the coupling is renormalisable or supereonrmalisable. The mass coupled

Lagrangian will diverge away from the trivial Gaussian point, for this reason it is essential that

there be a non-trivial fixed point to impede the flow into the ultraviolet. Evidence for such a

fixed point is the main purpose of this article, following on from studies made in [4],[5],[6] and [8].

The generalised criteria, first introduced by Weinberg [2], for dealing with the non-perturbative

renormalisability of theories such as QEG, is referred to as asymptotic safety. These require-

ments can be summarised as follows:

(i) As mentioned previously, there must be a non-trivial fixed point in the ultraviolet. This

12



3.2 Quantum effective action 3 QUANTUM EINSTEIN GRAVITY

means that in the space of all possible theories spanning close to g∗ 6= 0, there exists at

least one trajectory that approaches the fixed point asymptotically.

(ii) There must also be an interpolarity between the familiar long-distance action which takes

effect at low energy, and the microscopic effective action in the ultraviolet limit. Thus, the

two fixed points can be connected via an explicit renormalisation group flow.

(iii) Finally, a finite number of unstable trajectories towards low energy is required in the vicinity

of the fixed point, in order that only a finite number of parameters need to be fine-tuned

experimentally. If not, an arbitrary point away from the trivial or non-trivial fixed point

g∗ 6= 0 will define an unstable flow away towards the ultraviolet (see section [5.1]).

3.2 Quantum effective action

In classical thermodynamics, a pair of conjugate variables such as pressure and temperature,

and their respective thermodynamic potential, can be exchanged for a different pair of conjugate

varibales, like the entropy and volume, via a Legendre transformation[1]. Likewise, one can

relate energy density functional Wk[J ] in the terms of its current density, to the effective action

Γ[φ] in terms its canonical field. The energy functional is related to the Wick rotated Schwinger

functional [4] via Zk[J ] = eWk[J]. As a result, the effective action has the same boundary

conditions as a canocical action in the absence of sources, δΓ[φ(x)]
δφ(x)

∣∣∣
J(x)=0

= 0. The source

modified Schwinger functional is defined as,

expWk[J ] =

∫
Dφ exp

(
−S[φ]−∆Sk + Tr

{
φ†J

})
. (3.1)

The trace on the source term represents an integral over momenta. The added ∆Sk contains the

regulator which acts as a Wilsonian cutoff, ∆Sk ∼
∫
φ†Rkφ. It has the following properties: (i)

Rk vanishes when k → 0; (ii) it is finite when q ≈ 0; (iii) Rk diverges as k → Λ. The Legendre

transformation leads to a coarse grained effective action defined as,

Γ[φ] = −Wk[J ]−∆Sk[φ] + Tr
{
φ†J

}
, (3.2)
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3.3 Einstein-Hilbert action 3 QUANTUM EINSTEIN GRAVITY

The structure of equation [3.1] is similar to that of equation [2.8], with the exception of the

source term and the nature of the added cut-off. Whereas the cut-off used in WRS is a sharp

cut-off in the form a Heaviside function, the regulator R(q2) is smoothly varying function with

boundary conditions that mimic the behaviour of the sharp cut-off. Moreover, the fundamental

difference in the phenomenological effects of the effect action used in [3.1] comes from the

utilisation of the limits Λ → ∞ and k → 0, the latter by of virtue of the asymptotic safety

and the former based [4], [5] and [6]. The idea is to ensure that at low energies the truncated

Einstein-Hilbert action is retrieved [26, 27], while at high energies the theory is controlled by the

UV fixed point, rendering the cut-off Λ redundant. An alternative view would be to consider the

Einstein-Hilbert action as an effective theory, which is retrieved only by performing Wilsonian

integrals on some ansatz fundamental theory. If the WRS were to be employed, the quantum

corrections from such a theory, resulting from integrating out φk(q) modes between k < q < Λ,

would not suffice if the Einstein-Hilbert action were to be reproduced as an effective action.

This is merely due to the fact that EH theory is a low energy effective theory. Only an integral

over all momenta, or low momenta in the very least, would yield the EH action as an effective

theory. This is the reason for the boundary conditions k → 0 and Λ → ∞ employed in [4]. If

such conditions were enforced then, Γ[φ] would represent a full quantum effective action with

interpolariting between ultraviolet and infrared, in contrast to the Wilsonian scheme whereby

the effective action only encodes quantum information in a thin momentum shell.

3.3 Einstein-Hilbert action

In order to determine Zk[J ] in terms of the relevant degrees of freedom, which would correspond

to the metric field, the path integral must be written in terms of the graviton field. Since

the metric encodes these symmetries, it is useful to define the functional Z[ηµν ], where ηµν

is spacetime dependent in its most general realisation. Thus, when dealing with gravity the

generating function is determined using the background field formalism [13, 14], where φ is

replaced with ηµν(xα) and ηµν(xα) = gµν(xα) + hµν(xα), so that

Z[ηµν ] =

∫
Dηµν exp (−S[ηµν ]) . (3.3)
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Figure 2: Diagrams ΓEH → ΓUV

Here gµν(xα) = 〈gµν〉 is the background metric, and hµν is the non-trivial fluctuation in the

field. The combined invariance of hµν and gµν(xα) under conformal transformation, allows the

functional to be gauge fixed by adding the gauge condition Fµ(g, h) = 0 and the Fadeev-Popov

ghost action Sgh[h, g, C,C]. Here Fµ(g, h) is defined as some construct in terms of covariant

derivatives, and C and C are the Fadeev-Popov fields. The modified Einstein-Hilbert action

[14, 15, 16, 17, 6, 8] is given as

Γ[φ] =

∫
ddx
√
g

(
1

16πGN
(−R+ 2Λ) + Sgf + Sgh + Ssource

)
, (3.4)

where Λ and GN are the unrenormalised cosmological and gravitational constant, Sgf is the

gauge fixing action

Sgf =
1

2α

∫
Lgf d

dx; Lgf =
√
ggµνF

µF ν , (3.5)

Sgh is the ghost action

Sgh = − 1

κ

∫
ddxgµνC

µ ∂Fmu
∂hµν

LC(gµν + hµν) (3.6)
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3.4 The Callan-Symanzik Equation 3 QUANTUM EINSTEIN GRAVITY

and Ssource is the source term. It is convenient to have Γ[φ] in terms of the metric and the

metric’s average expectation, so gµν is defined as

gµν = gµν + hµν . (3.7)

where hµν = 〈hµν〉 is the expectation in the fluctuation, and gµν is the expectation in the full

metric 〈ηµν〉. The Legendre transform Γk of the energy functional Wk[J ] implies that Γk depends

on h and g, as a result of which is the redefinition of Γ[g; g] by the change of variable h = g − g.

Subsequently, the effective action in terms of g only is obtained in the limit, Γ[g] = limk→∞ Γ[0, g].

3.4 The Callan-Symanzik Equation

The canonical dimension of an interaction term in any theory is evaluated in units of [m], where

[md] = d. The action has zero mass dimensions [S] =
[∫
ddx L

]
= 0, therefore the Lagrangian

must have dimensions [L] = −d. Using equation [3.4], the gravitational coupling’s canonical di-

mension is determined to be [GN ] = 2−d, which is negative for d > 2. Under the renormalisation

group, couplings with positive mass dimensions are referred to as essential (super-renormalisable)

couplings. They correspond to unstable trajectories under the RG transformations, that is, they

grow with every iteration of the re-scaling. Whereas, an inessential (non-renormalisable) coupling

with negative mass dimension has a stable or diminishing trajectory, and is also responsible for

the non-renormalisabilty of quantum gravity in d > 2 dimensions. In two dimensions [GN ] = dcr

the coupling is said to be marginal (renormalisable), that is, invariant under RG transforma-

tions. All couplings can be written in terms of a general vector ~g, so that only the attribute of

~g ′(Λ′, G′, ...)→ ~g(Λ, G, ...) under RG transformations is relevant. The uncoupled kinetic theory

always represents a trivial fixed point under the renormalisation group where ~g0 = 0, and the

non-trivial point is denoted by g∗ . A mathematically succint way of describing trajectories of

the vector ~g is the Callan-Symanzik beta function

β~g ≡ k
∂~g(k)

∂k
=
∂~g(k)

∂ ln k
. (3.8)
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3.4 The Callan-Symanzik Equation 3 QUANTUM EINSTEIN GRAVITY

At a given vector point in the vector field defined by ~g, β~g defines a vector in the direc-

tion of ln k, while its zeros indicate where the fixed points of a theory lie. The nature of both

fixed points is investigated following arguments in [4],[5], [6] and [8]. First, the scale dependent

renormalised coupling is introduced G(k) = Z−1
gr (k)G. The graviton is the carrier of the metric

degrees in QEG, so Zgr(k) is the graviton wave function renormalisation factor and k is the

momentum scale dependence. Subsequently, the dimensionless gravitational coupling is given as

g(k) = k(d−2)G(k). For small values of k = k0 � Λ (corresponding to low energy physics), the

gravitational coupling G(k0) behaves like the dimensionful Newton’s constant GN . Convention-

ally, in a field renormalisation where Zgr(k) is introduced, the anomalous dimension η must also

be introduced in order to take in to account the mixing of kinetic and potential terms in the

curvature scalar, so η is given as

η = −k ∂
∂k

lnZgr(k). (3.9)

In terms of the dimensionless coupling g, the Callan-Symanzik equation reads as

βg = k
∂g(k)

∂k
= (d− 2 + η)g(k) (3.10)

The anamalous dimension plays an important role in compensating for the shift in the critical

exponent of the field at the fixed point. Since there is no rescaling of the field at the Gaussian

fixed point, then η = 0 when g = g0. However, when g = g∗ the anomalous dimension must

be equal to 2 − d for the beta function to vanish. Given that g(k0) → g0 when k = k0, η ≈ 0

and so the beta function simplifies to βg ≈ (d − 2)g(k0). This shows a unique fixed point at

g0 = 0, implying that the Gaussian fixed corresponds to the low-energy Einstein-Hilbert theory.

Alternatively, as k → Λ the dimensionful coupling G(k) = g(k)/kd−2 diminishes indicating weak

coupling in the space of theories close to g∗ . It is also noteworthy that as k → 0, G(k) diverges,

isinuating possible modifications to extremely long range effects of gravity.
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4 Group Flow Equations

4.1 Properties of the flow equation

The standard action used in this study is the much simpler truncated Einstein-Hilbert action [14,

15, 16],

Γk[φ] = Γ[φ] =
1

16πGN

∫
ddx
√
g (−R+ 2Λ) (4.1)

governed by the flow equation [4, 5, 22, 19]

∂tΓk[φ] =
1

2
Tr

{
1

Γ
(2)
k +Rk

}
∂tRk (4.2)

where −R is the Ricci scalar corresponding to metric degrees of freedom in equaton [4.1]; t =

ln k, Γ
(2)
k = δ2Γk/δφ(p)δφ(q) in equation [4.2] and the trace denotes an integral over all fields

and momenta. Though equation [4.2] is an exact differential equation, it is typically solved

numerically. Analyses on the exact renormalisation group equation (ERGE) are given in [11]

and [17]. In this article only the simplified coupled system in the form of two beta functions is

solved numerically.

(i) Since the flow equation is exact and well behaved, it can be viewed as a smooth path

running between the ultraviolet physics and low energy classical general relativity [4].

(ii) The right hand side of the equation of motion given in [4.2] vanishes in two regions of

momenta; (i) for small momenta when q2 � k2 and R ∼ 0; (ii) for large momenta when

k2 � q2. On the other hand, it is peaked for momentum values in the range q2 ≈ k2. This

is due to a unique normalisation condition enforced on the regulator at Rk(q2 ≈ k2).

(iii) In section 5.1, rather than work with the flow equation dirtectly, the interacting fixed points

are investigated at the low-energies and high energies. Since Γk[φ] encodes information

about both, it is possible to obtain reasonable approximations for the trajectories from the

coupled equations for ~g = ~g(g, λ, ...).

(iv) The reliability of the approximations depend on the choice regulator. Appropriate regula-

tors are chosen based on optimisation techniques given in [7] and [26],
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4.2 Regulator optimisation 4 GROUP FLOW EQUATIONS

where Rk(q2) = (k2 − q2) is used as the optimal cut-off for Γk[φ].

(v) Finally, the global symmetry of the theory must satisfy diffeomorphic invariance. The use

of modified Ward-Takahashi identities ensures that the truncation of the EH action is still

a valid approximation, in order that it may satisfy diffeomorphic invariance.

4.2 Regulator optimisation

Opimisation of the regulator term
∫
ddq φ†(q)Rk(q)φ(q) leads to the choice of regulator

Rk(q2) = (k2 − q2) θ(k2 − q2) [4, 26]. The regulator is a smoothly varying function [22], in

contrast to the sharp cut-off used conventional the renormalisation scheme. This is important

because the flow equation is solved by approximative means. It also affects how quickly one gets

from the microscopic theory to the classical theory, due to the use of the truncated Einstein-

Hilbert action. So given a particular functional form of Rk(q2), one can ‘tweak’ it in order to

maximise convergence towards the physics in question [7, 26]. The following set of requirements

are necessary to ensure interpolarity between the infrared and the ultraviolet regimes. Given the

effective propagator of the form

Peff(q2) =
1

q2 +m2 +Rk(q2)
, (4.3)

the regulator is required to be finite Rk(q2) > 0 for vanishing field φ(q = 0), or else Peff will

diverge for stationary massless modes. The next requirement is that when the cut-off is taken to

zero the regulator should vanish, so that lim
k→0

Γk[φ]→ ΓEH[φ] desciribes classical general relativity.

Finally, in order that lim
k→Λ

Γeff [φ] → ΓUV[φ], the regulator is required to diverge Rk(q2) → ∞,

where ΓUV is defined as the microscopic effective action.

Further optimisation requires the introduction of a dimensionless inverse effective propagator

and a dimensionless regulator[26], given as

P−1
eff ≡

1

k2Peff(q2)
=
q2

k2
+
m2

k2
+

1

k2
Rk(q2) (4.4)
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4.2 Regulator optimisation 4 GROUP FLOW EQUATIONS

and

Rk(q2) = q2r

(
q2

k2

)
(4.5)

respectively. Based on the three conditions on the regulator, a heuristic scale dependence of

P−1
eff = Rk(q2) + q2 +m2 and Peff = [Rk(q2) + q2 +m2]−1 is illustrated in figure 3. By looking at

(a) Peff and Rk(q2) (b) Class Ia, Ib and II, showing the
relative optimisations of massive and
the massless modes. Note that all
function coincide at q2 = k2

Figure 3

the behaviour of P−1
eff as a function of y = q2/k2, different classes can be determined for different

types of regulators[26]. The regulators at this stage are still undefined, P−1
eff simply denotes the

generalized form of the function at important values of q2/k2. Figure [3(b)] shows the three

different functions of P−1
eff for three unique classes of arbitrary regulators. At large momenta the

inverse propagator’s functional dependence linearises P−1
eff → q2/k2 for all classes of Rk(q2).

as q2 → 0 q2/k2 → 0 P−1
eff ≈ [Rk(q2) +m2]/k2

as k2 → Λ Rk(q2)→∞ P−1
eff ≈ Rk(q2)/k2

as q2/k2 →∞ P−1
eff ≈ q2/k2

Such criteria causes a discrepancy in the relation between the regulators’ and the effective prop-

agators’ scale dependencies. For k ∼ Λ and q2/Λ2 → 0, the regulator Rk(q2) approaches it

boundary value at a different rate than when q2/k2 → 0 for k � Λ. This is resolved by imposing
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4.2 Regulator optimisation 4 GROUP FLOW EQUATIONS

a normalisation condition on Rk(q2), such that Rk(q2 ≈ k2) = k2. Thus, different classes of

Rk(q2) can be defined as functions of P−1
eff against q2/k2 in a consistent way (illustrated fig-

ure 3(b)). With those conditions set in place, the optimised regulator is determined by choosing

one whose minimum (shown by the curves defined on P−1
eff ) is as large as possible. This suggests

that of the three classes, class Ib is optimised with respect to class Ia for massive modes and class

II is optimised for massless. The optimisation parameter Copt is given for a several functions r(y)

in [22, 7], while the optimised regulator used for the quantum effective action Γk[φ] corresponds

to r(y) =
(
y−1 − 1

)
θ(k2 − q2).
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5 ANALYTICAL FIXED POINTS

5 Analytical Fixed Points

In this section the behaviour of the two coupling constants appearing in equation [4.1] are

investigated under the RG transformations. In order to do this, it is necessary to possess their

Callan-Symanzik flow equations [4, 5, 6], which are given by the coupled beta function system

given in section [5.1]. For an appropriate choice of the gauge fixing parameter α → ∞ [6],

the gauge fixing term in [3.4] vanishes and the beta functions are given in the equations [5.4]

and [5.3]. It turns out that in order for the coarse-grained action to obey modified Ward-

Takahashi [11] identities, the interactions coming from the Fadeev-Popov sector must also be

supressed. As final points, only the scalar part of the optimised regulator is used as Ropt =

(k2 − q2) θ(k2 − q2) [26, 27], and the Einstein-Hilbert action is defined in the absence of matter

fields Ssource = 0. Certain numerical factors [6] namely, 1
α have been supressed in the definition

of the dimensionless couplings and the constant cd = (
√

(4π)d−2Γ(d2 + 2) in the definition of g

in the beta functions, where g → g/cd.

5.1 Phase diagram

In d-dimensional Euclidean space, the gravitational and cosmological dimensionless couplings

are given as

gk = kd−2G(k) = kd−2Z−1
G GR(k), (5.1)

λ = k−2Λk, (5.2)

where k is the scale dependence and d is the canonical dimension. The beta functions are

βg =
∂g

∂t
= (d− 2)g +

2(d− 2)(d+ 2)g2

2(d− 2)g − (1− 2λ)2
, (5.3)

βλ =
∂λ

∂t
= −2λ+

g

2
d(d+ 2)(d− 5)− d(d+ 2)g

(d− 1)g + 1
d−2 (1− 4d−1

d λ)

2g − 1
d−2 (1− 2λ)2

. (5.4)

22



5.1 Phase diagram 5 ANALYTICAL FIXED POINTS

From βg the anomalous dimension η can be determined,

η =
βg
g

+ 2− d =
(d− 2)(d+ 2)g

(d− 2)g − (1− 2λ)2
. (5.5)

The anomalous dimension is divergent when g = gcr = 1
2 (1 − 2λ)2/(d − 2), this provides an

explicit boundary g < gcr within which the trajectory of dimensionless coupling is valid. The

anomalous dimension vanishes for d = 2 and g = g0 = 0, reinforcing the statement made in

section [3.4] that gravity is power-counting renormalisable at the Gaussian fixed point and when

d = dcr. Given the pair of equations in [5.4], there is ample information to determine the value

of the interacting fixed point in the specified dimensions. The dimensionally invariant Gaussian

fixed point is trivially (0, 0). The non-trivial fixed point can be obtained by equating βg and βλ

to zero and solving the pair of equations simultaneously to eliminate g, leaving λ in terms of a

quadratic equation in d. When βg = 0, g∗(λ) = (1/4d)(1− 2λ)2, substituting this into βλ yields,

βλ =
1

4
(d− 4)(d+ 1)(1− 4λ− 4λ2)− 2dλ+

d

2
. (5.6)

The roots of the quadratic equation in λ are substituted into g∗(λ), to obtain

g∗ =
(
√
d2 − d− 4−

√
2d)2

2(d− 4)2(d+ 1)2
, λ∗ =

d2 − d− 4−
√

2d(d2 − d− 4)

2(d− 4)(d+ 1)
(5.7)

It is clear that the only real solutions occur when d > 4, however, in four dimensions the

quadratic piece in equation [5.6] vanishes simplifying its solution to (g∗, λ∗) =
(

1
64 ,

1
4

)
. Further-

more, for simplicity in forthcoming linearisation analyses, the couplings and the coupled beta

functions are redefined as the following binary vectors,

~g =

 g

λ

 , ~β =

 βg

βλ

 (5.8)
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5.1 Phase diagram 5 ANALYTICAL FIXED POINTS

Finally, the coupled beta functions are also evaluated in four dimensions,

βg = 2g +
24g2

4g − (1− 2λ)2
(5.9)

βλ = −2λ− 12g − 24g[6g + (1− 3λ)]

4g − (1− 2λ)2
(5.10)

With the above definitions it is now convenient to analyse the flow of the couplings under RG

-0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

Λ

g

Figure 4: Illustration of the vector field ~β. Values of the ~β were evaluated over a carefully chosen range
to ensure that g < gcr(λ) = 1

4
(1 − 2λ)2. The data was obatined by taking a set grid points

over a range 0 < g < 0.025 and 0 < λ < 0.34 using step-sizes of 0.0005 and 0.005 respectively.

transformations. The quantity ~β indicates the direction of the flow at given point on the vector

field defined by ~g. The convention used here represents the transition from the high energy

microscpic limit k → ∞ to the infrared k → 0, as a result ~β has been defined on the negatives

of the beta functions (−βg,−βλ). The vector field clearly manifests interesting structure in the

vicinity of ~g ≈ (0, 0) and the interval ~g ≈ ([0.014, 0.017], [0.24, 0.28]), corresponding to g = g0 and

g = g∗ respectively. Its behaviour close to the fixed points is shown more detail in figures [5(a)]

and [5(b)]. Moreover, it can be seen in the relativie sizes of the vectors that the flow diverges as
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5.1 Phase diagram 5 ANALYTICAL FIXED POINTS

one approaches the forbidden region gcr. Strictly speaking, since the flow vanishes at the fixed

points they can only reached by the trajectories asymptotically. If the directions of the flows were

positivley outgoing in the usual sense (that is emanating away from the trivial fixed point and

towards the non-trivial), then it would be reasonable to assume that a well chosen tracjectory ~g

would safely approach the ultraviolet asymptotically. This well chosen path is in fact called the

separatrix line[4, 5]. It is also worth pointing out that in the region of g � 1, the vector field lies

solely in the direction of λ. It would seem that in this limit λ’s behaviour is consistent with that

of an essential coupling. Furthermore, the regions of the vector field for which g < 0 and g > 0

are completely isolated. In other words, no trajectory lying above the origin can end up below

it, a fact also highlighted by the scale dependence of g = G(k)/kd−2 > 0. This is not the case for

the line λ = 0, where a number of trajectories beginning in the quadrant ~g = (−g,−λ) end up in

the adjacent quadrant. ~g(−g, λ). This does not pose any phenomenological issues as we are only

interested in λ > 0 and g > 0. The flow in the vicinity of the non-trivial fixed point shows that

not all of the trajectories end up at the Gaussian. Indeed, only one particular tracjetory will

approach g0 infinitesimally, this path is defined as the separatrix line [4]. By introducing a third

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
-0.003

-0.002

-0.001

0.000

0.001

0.002

0.003

Λ

g

(a)

0.240 0.245 0.250 0.255 0.260
0.0145

0.0150
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0.0165

Λ

g

(b)

Figure 5: (a) Gaussian fixed point g = g0 (left): The flow pattern indicates some line that separates
unstbale trajectories in the left an right directions. This line is in fact the separatrix line[4,
6, 26], and it connects the high energy and the low energy physics. (b) Non-trivial fixed
point g = g∗ (right): The pattern shows unique spiral trajectories as a result of the nature of
scaling exponents; and diminishing magnitude of the vector field approaching the fixed point
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5.2 Stability matrix and critical exponents 5 ANALYTICAL FIXED POINTS

parameter z, a three dimensional vector field can be defined using the coupled beta function βg

and βλ. Then, it is possible to obtain β̂ as a function of βg(g, λ), βλ(g, λ) and βz, in the directions

ĝ, λ̂ and ẑ respectively. The inclusion of z allows for an extra component function, albeit an

empty one, βz(g, λ)† to be defined along the z−axis, where β̂ = βg(g, λ)ĝ+βλ(g, λ)λ̂+βz(g, λ)ẑ

and therefore,

β̂(g, λ) =


βg(g, λ)ĝ =

(
2g +

24g2

4g − (1− 2λ)2

)
ĝ

βλ(g, λ)λ̂ =

(
−2λ− 12g − 24g(6g + (1− 3λ))

4g − (1− 2λ)2

)
λ̂

βz(g, λ)ẑ = 0

(5.11)

Having defined β̂, the perpendicular vorticity of the vector field can be obtain through,

~∇× β̂ =

[
−12− 72g

− 1
2 (1− 2λ)2 + 2g

+
48( 1

2 (1− 3λ) + 3g)

(− 1
2 (1− 2λ)2 + 2g)2

−

24( 1
2 (1− 3λ) + 3g)

− 1
2 (1− 2λ)2 + 2g

+
96g2(1− 2λ)

(−(1− 2λ)2 + 4g)2

]
ẑ .

(5.12)

Curl of β̂ was evaluated over a range of values spanning up to and including the interacting fixed

point g∗. The trend indicated that ~∇× β̂ remains fairly stable close to the Gaussian fixed point,

whereas there is a dramatic increase in the size of curl as on approaches the interacting fixed

point. This increase continues until ~∇× β̂ becomes singular in the forbidden region marked out

by the parabola gcr. As a result, this approach proves to be an inconclusive way of observing

any structure around the interacting fixed point g∗, since the curl function has no local maxima

or minima in the domain of validity.

5.2 Stability matrix and critical exponents

In this section a more consistent way of working out the precise structure of the ultraviolet and

infrared fixed points is discussed. It involves obtaining eigenvalues of the stability matrix S,

derived from the second derivatives of the beta functions. The stability matrix is obtained by

†Not to be confused with the beta coupling used to investigate stability of the non-trivial fixed under the
variation of Ri truncation for i = 1, 2, · · ·
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5.2 Stability matrix and critical exponents 5 ANALYTICAL FIXED POINTS

taylor expanding the beta functions around either of the fixed points up to leading order,

βg(g, λ) = βg(gi, λi) + ∂gβgδg + ∂λβgδλ+O(δg2, δλ2) · · · (5.13)

βλ(g, λ) = βλ(gi, λi) + ∂gβλδg + ∂λβλδλ+O(δg2, δλ2) · · · (5.14)

where βg(gi, λi) = βλ(gi, λi) = 0 represents the fixed point values for i = 1, 2 at the Gaussian

and interacting fixed point respectively. The Taylor expansion can be written more succintly,

~β ≈ ~βi +

 ∂gβg ∂λβg

∂gβλ ∂λβλ


︸ ︷︷ ︸

S

 δg

δλ

 (5.15)

where ~βi = (βg(gi, λi), βλ(gi, λi)). The second derivatives of the beta functions describe the flow

at a given point as stable or unstable. If the value ∂mβn for m = n at a given point is positive,

then the flow is unstable (away from the point), whilst the flow is stable (towards the point) when

∂mβn < 0 for m = n. However, it turns out to be useful to have an expression for the stability of

a trajectory in the direction of the infinitesimal stability vector δ~g. Though the stability matrix

equation simplifies due to ~βi = 0, the cross terms ∂mβn where are m 6= n and m ≡ g; n ≡ λ, are

non-vanishing for δ~g in the vicinity of ~βi. By diagonalising S, the eigenvalues of in the linearised

basis can be used to work out the stability vector at any given point.

The eigenvalue decomposition of S in the vicinity of the fixed points, linearises the flow equation

in order that the critical exponents may be evaluated [19]. In its diagonal basis,the stability

matrix looks like M−1SM = S̃. The matrix M is used to rotate the basis vectors, (g, λ) 7→

(g′, λ′), so that equation [5.15] becomes ~β ≈ ~βi + M−1SMδ~g. Then multiplying through by M

gives

∂t

 g′

λ′

 = M ~βi +

 ∂β′g/∂g
′ 0

0 ∂β′λ/∂λ
′


 δg′

δλ′

 , (5.16)

where the right hand side is the beta function ~β ′ and δ~g ′ is the stability vector in the diagonal

basis. The eigenvalues of S̃ are ∂β′g/∂g
′ and ∂β′λ/∂λ

′, corresponding to simplified flow equations

∂tg
′ = (∂β′g/∂g

′)δg′ and ∂tλ
′ = (∂β′λ/∂λ

′)δλ′. The solutions are exponential functions of the
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form

g′(t) = g′(t0) e(∂β′g/∂g
′)t (5.17)

λ′(t) = λ′(t0) e(∂β′λ/∂λ
′)t (5.18)

The critical exponents are then given by the eigenvalues; ∂β′g/∂g
′ = −θg and ∂β′λ/∂λ

′ = −θλ.

5.3 Diagonalised coordinates

The following analysis considers what the effects of linearisation of the basis vectors are at the

Gaussian and non-trivial fixed point, with the aim of producing a suitable pair of eigenvalues, in

order to define the coupled parametric equations. Once these equations are obtained, the pair can

be reverted to their original basis using the rotation matrix M . Evaluating the stability matrix at

the Gaussian yields the stability matrix S0, which diagonalises to S̃0 with eigenvalues ±2, where

∂β′g/∂g
′ = −θg = −2 and ∂β′λ/∂λ

′ = −θλ = 2. Equations [5.18] become g′(t) = g′(t0) exp[−2t]

and λ′(t) = λ′(t0) exp[2t], eliminating t yields the reciprocal function g′ = g′(t0)λ′(t0)(λ′)−1. A

family of solutions can be obtained depending on the choice of initial conditions of the stability

vector components g′(t0) and λ′(t0). Thus, it is possible to obtain the phase diagram around

the Gaussian fixed point g0 in terms of explicit trajectories using critical exponents, while the

amplitude and direction of the flow is given by S̃δ~g ′ directly. The eigenvalues of S at the

Gaussian fixed are simple to calculate, due the fact that S is upper triangular. However, at

the intercating fixed point the stability matrix is neither triangular or symmetric, which means

its eigenvalues are not necessarily real. Table [5.3] shows the two stability matrices and their

corresponding eigenvalue decomposition.

S0 S̃0 S∗ S̃∗ 2 0

228 −2


 −2 0

0 2


 − 8

3 − 1
3

5084
3 − 2

3


 5

3 (−1 + i
√

203) 0

0 5
3 (−1− i

√
203)


The critical exponents at the interacting fixed point are given by −θg = 5(−1 + i

√
203)/3

and −θλ = 5(−1 − i
√

203)/3. In terms of the complex argument θ = θ′ ± iθ′′, the exponentials

in [5.16], become exp[θ′ ± iθ′′] = exp[θ′](cos θ′′ + i sin θ′′), where θ′ = − 5
3 and θ′′ = ± 5

3

√
203.
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Figure 6: (a) Family of reciprocal functions from the linearisation of the Gaussian fixed; (b) The nature
of the flow here is identical to that of [5(a)] up to coordinate rotation

The linearised beta functions are transformed to,

g′(t) = g′(t0)e−θgt = g′(t0)e−5t/3

(
cos

5
√

203

3
t+ i sin

5
√

203

3
t

)
(5.19)

λ′(t) = λ′(t0)e−θλt = λ′(t0)e−5t/3

(
cos

5
√

203

3
− i sin

5
√

203

3

)
(5.20)

The implications of [5.20] are as follows:

(i) Real roots in θ imply that g′(t) and λ′(t) are real valued functions, and S is a real symmetric

matrix. The scale dependence t can be eliminated from the linearised equations, to obtain

g ∼ λa/b.

(ii) If the roots are purely imaginary, it means that both g′(t) and λ′(t) are complex phasors.

Therefore, the trajectories are circles modulated by the g′(t0) and λ′(t0) respectively.

(iii) Finally, for complex roots both functions exhibit spiral trajectories emanating from g′(t0)

and λ′(t0) respectively. This is the origin of the spiral like behaviour seen in [5(b)].
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Figure 7: Individual parmetrisation of the λ and g evaluated at a single point, they full would contain
many such parametrisations. It interesting that g and λ rotate in opposite directions as
result of relative phases. This may have implications on the nature of the spiral trajectories
in [4]

5.4 Standard coordinates

It is possible to obtain the behaviour for both trajectories in their original coordiante system by

applying the simple counter-rotation,

M−1∂t

 g′

λ′

 = M−1M ~βi +M−1

 ∂β′g/∂g
′ 0

0 ∂β′λ/∂λ
′


 δg′

δλ′

 . (5.21)

Once again the non-trivial fixed point poses a problem owing to the fact both g′(t) and λ′(t)

are complex functions, and consequently do not possess real valued parametrisations of the

logarithmic momentum t. It follows that it is much easier to evaluate directly the trajectories

in their original coordinate system by numerical means. To this end, the coupled beta function

numerical solutions have been determined in original coordinates ~g = (g, λ). Figure [8] shows the

demarcation of flows to left and right of the separatrix line. The reliability of the approximation

method is compromised close to g = gcr, as a result of function interpolation between increasingly

divergent estimation terms. This can be seen in the form of “unsmoothness” of the individual

trajectories in figure [7] in the vicinity of the parabolic function. The results clearly show that
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Figure 8: The full flow trajectories showing the separatrix line (red); the regions roughly the right of
that (yellow); and the regions to its left (blue). Also the forbidden region is marked by the
parabolic (black)

nature of the optimised flow is indeed confined to the separatrix. In other words, for a given

choice of fine-tuned parameters in a given region, the resulting theories will divergent if those

parameters lie initially on the right of the separatrix (in which case the flow diverges via yellow)

or the left (in which case it follows the blue lines). The flow in this case is meant in an outward

sense originating from the Gaussian, since separating out right-unstable and left-unstable flows

at k → ∞ is made difficult due to the fact that their trajectories spiral infinitely towards the

interacting fixed point.
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6 Conclusions

The properties of the possible fixed points in QEG have been studied under the renomralisation

group and have found to possess, in the very least basic properties that satisfy preliminary

requirements of asymptotic safety in d = 4 dimensions, albeit in the presence of a truncated EH

action. A number of explicit trajectories were evaluated, and it was determined that at least

one trajectory ought to connect the ultraviolet and the infrared physics. In the presence of an

appropriate regulator scheme the low energy dimensional scaling behaves like classical general

relativity in the very least. The results from figure [4] would suggest there indeed exists a flow

connecting the micrscopic and macroscopic physics. By observing figure [5(a)] it can be seen

that all trajectories are also isolated from negative values of the cosmological constant, while a

narrow band of trajectories are unstable in the left and right directions of g → ±∞. On the

other hand, the structure in the region of the non-trivial fixed point indicates intricate scaling

behaviour in the microscopic action. In addtion, in both the original and diagonal basis the

nature of the flow bares the similarity of being separated into isolated regions of flows above

and below the line g = g′ = 0, however the former shows a slightly odd symmetric behaviour.

Though the curl ~∇× β̂ does not indicate any local maxima or minimum which might highlight

the scaling behaviour at the non-trivial fixed point, it does show that the vorticity is markebly

smaller in the regions of the Gaussian fixed point.

The values of critical exponent have been determined at both fixed points and have been used

to deduce the explicit nature of the trajectories in both vicinites. In the low energy limit the

functional dependence g = g(λ; t) is simpler than the functional dependence in the high energy

limit, where the trajectories exhibit a spiral nature. Table [6] shows a summary of the critical

exponent results,
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S-element −θ ordinate(
∂β′g
∂g′

)
~g0

-2 g = g′ = 0(
∂β′λ
∂λ′

)
~g0

2 λ = λ′ = 0

(
∂β′g
∂g′

)
~g∗

5
3 (−1 + i

√
203) g = g′ = 1

64(
∂β′λ
∂λ′

)
~g∗

5
3 (−1− i

√
203) λ = λ′ = 1

4

Naturally, an extension to the above study would be the inclusion of higher order terms in R

into the Lagrangian, specifically, the quadratic term R2. If this were the case, then one could

investigate whether the nature fixed point changes much under such variation. To do this a third

invariant would have to be introduced into the Einstein-Hilbert action such that

Γk[φ] = Γ[φ] =
1

16πGN

∫
ddx
√
g (−R+ 2Λ) +XR2. (6.1)

Here, X is the new coupling constant and its dimensionless form is given by X = k4−dχ. Now we

have a third beta function βχ, and a third component to the vector ~g = ~g(g, λ, χ), which would

result in a flow in a three dimensional vector space. Studies carried out in [13, 16, 11] investigate

the nature of the RG flow under R2 truncation. Furthermore, the inclusion of terms quadratic

in curvature would also include RµνR
µν and RµνρδR

µνρδ. The analysis involving such terms is

technically demanding due to the following:

(i) The projection technique [16] which maps the RG flow onto a space of maximally symmet-

ric sub-spheres is degenerate when dealing with (curvature)2 terms because they all have

canonical scaling k4−d. Whereas,
√
g and

√
gR have unique scalings 0 and −2 respectively.

(ii) Projecting each of the three terms unto their own space leads to the insertion asymmetric

spaces
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(iii) The Gaussian fixed point can include all three (curvature)2 terms due to its scaling invari-

ance, but the interacting fixed points differently with the inclusion of different curvature)2

terms

However, analysis on RG flow in [4, 5, 11] indicate that the non-trivial fixed point is still stable

in the presence of R2 inclusion and that the most defining instability arises from the gauge fixing

sector. It is clear that such factors still pose pertinent issues, however, for the time being it

would seem the under appropriate approximation there is good evidence supporting asymptotic

safety in Quantum Einstein Gravity.
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